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User reviews of mobile applications are often provided by users about their satisfaction, 

complaints or suggestions on the mobile apps. They form valuable and instructive 

feedback for app developers in the maintenance process to fix bugs, add new features, 

enhance the user experience of using the app, etc. However, due to the large quantity 

and various qualities of the user reviews, it is not realistic for developers to manually 

read every review to elicit useful information for application maintenance. To address 

this problem, the study proposes a mobile Application Review Analysis system for 

Maintenance (ARAM). ARAM is able to identify the useful app review information 

that can contribute to mobile application maintenance, extract keyphrases from review 

contents, and analyze users’ sentiments for the keyphrases. A new method called 

DoubleRank was proposed for extracting keyphrases from app reviews. By classifying 

and summarizing the user reviews, ARAM produces a report of users’ opinion on the 

extracted keyphrases and their associated reviews, which can provide useful 

suggestions for developers to plan maintenance activities. The generated report is 

accurate when comparing with the results of manual analysis. 
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1. Introduction 

1.1. Research background 

Motivated by the ubiquity of smartphones and tablets, abundant and various mobile 

applications continue to grow and evolve at a tremendous pace. Resulting from the 

unexpected software defects and the changing requirements, application developers 

have to maintain and update their applications frequently to keep them robust and 

trendy.  

Most app stores, such as Google Play
1
, App Store (iOS)

2
 and Microsoft Store

3
, not 

only offer users comprehensive information and convenient download of mobile 

applications, but also allow users to comment on mobile applications they have 

downloaded. As a free source of feedback, these user reviews may provide application 

developers with a wealth of information related to application maintenance and updates, 

such as bug discovery, enhancements of existing functionalities and even ideas for new 

features. Previous studies [Pagano and Maalej, 2013; Chen et al., 2014] have showed 

that nearly one third of app reviews contain useful information including existing 

shortcomings and feature requests that can directly help developers improve their 

applications. Consequently, application developers can benefit from user reviews by 

exploiting useful information for arranging maintenance activities to keep users 

satisfied with their applications. 

However, due to the large quantities and various qualities of the user reviews, it is 

not realistic for application developers to manually read each user review to gather 

useful feedback. Thus, different automated approaches have been proposed in literature 

to classify and extract information contained in user reviews. Nevertheless, only few 

recent studies [Panichella et al., 2015; Panichella et al., 2016; Sorbo et al., 2016] 

concentrate on analyzing mobile application user reviews for the purpose of 

maintenance. More researches and works still need to be done in this area to develop a 

system that can automatically analyze user reviews for mobile application maintenance, 

which will benefit developers in planning further software maintenance tasks to meet 

up-to-date market requirements. 

1.2. Research aims 

The main research aim of this study is to implement a mobile application user review 

analysis system for the maintenance purpose. Building such a system requires an 

answer to the question “How do the analysis of a mobile app's user reviews contribute 

                                                 
1 https://play.google.com/store. Access date: 29.11.2017 

2 https://www.apple.com/ios/app-store/. Access date: 29.11.2017 

3 https://www.microsoft.com/en-us/store/. Access date: 29.11.2017 

https://play.google.com/store
https://www.apple.com/ios/app-store/
https://www.microsoft.com/en-us/store/
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to its maintenance activities”. To answer this question, three related research questions 

are proposed in the course of implementing the app review analysis system. They are as 

follows: 

 What kind of app review information can contribute to the maintenance of mobile 

applications? 

 What are the proper techniques to extract keyphrases from app reviews?  

 How to analyze the users’ sentiments expressed in their reviews towards the 

extracted keyphrases?  

Some app reviews contain useful information for application maintenance while 

others are uninformative. The app review analysis system should be able to identify the 

informative user reviews for application maintenance. Thus, the first research question 

“What kind of app review information can contribute to the mobile application 

maintenance” is proposed. By solving this question, the system could filter out useless 

app review information and only process the informative app reviews that can 

contribute to application maintenance. 

The app review analysis system should also have the ability to summarize app 

reviews for application developers to quickly figure out the key issues discussed in the 

reviews and further plan corresponding maintenance activities for the application. In 

this study, the techniques of keyphrase extraction and sentiment analysis are chosen for 

summarizing the reviews in the proposed system named ARAM (App Review Analyzer 

for Maintenance). The reasons and details of choosing these techniques will be 

explained in the thesis. Thus, the second research question is proposed to find the 

proper keyphrase extraction methods for summarizing app review contents. The third 

research question is related to analyze the users’ sentiments towards the extracted 

keyphrases. 

1.3. Thesis structures 

This thesis is composed of nine chapters. The second chapter introduces the background 

knowledge of application maintenance, which includes the types of maintenance 

activities and user reviews as a source of requests for application maintenance. The 

third chapter analyzes the characteristics of user reviews in app stores, presents the 

taxonomy of app review sentences for the maintenance purpose proposed by Panichella 

et al. [2015], and maps the informative types of user review sentences namely 

“information giving”, “information seeking”, “feature request” and “problem discovery” 

[Panichella et al., 2015] with twelve types of maintenance activities [Chapin et al., 

2001]. The fourth chapter focuses on the technique of keyphrase extraction, which 

exhibits the keyphrase extraction methods that are widely used in the literature and 

illustrates the TextRank [Mihalcea and Tarau, 2004] method that is employed in 

ARAM. The fifth chapter introduces the background and terminology of sentiment 
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analysis. This chapter also introduces the related studies of sentiment analysis using app 

review data, and the sentiment analysis tool named Stanford CoreNLP Sentiment 

Analyzer [Socher et al., 2013]. The sixth chapter demonstrates the overall process and 

the implementation details of ARAM. The seventh chapter evaluates ARAM by testing 

its overall performance, data using rate, keyphrase extraction results, and sentiment 

analysis results. The eighth chapter validates the results produced by ARAM and 

discusses the limitations and possible improvements of ARAM, followed by the 

conclusion with the contributions of this study in the ninth chapter. 
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2. Application maintenance 

Software maintenance is “the modification of a software product after delivery to 

correct faults, to improve performance or other attributes, or to adapt the product to a 

modified environment” [IEEE, 1998]. After the software is delivered, the maintenance 

phase starts until the software is retired. Software maintenance consumes a major share 

of the entire software life circle cost, which is between 40% and 70% [Hunt et al., 

2008]. Software maintenance is a vital phase in software engineering. Not only is it the 

most expensive phase, but business opportunities are lost if a software cannot be 

maintained timely and reliably [Bennett and Rajlich, 2000]. 

This chapter contains three sections. The first section introduces the types of 

software maintenance based on the taxonomy of maintenance activities proposed by 

Chapin et al. [2001]. The second section shows that the users are a vital source of 

requests for change that lead to software maintenance. The third section demonstrates 

that user reviews in app stores, as a free source of user feedback, contain useful 

information for application maintenance. 

2.1. Types of software maintenance 

A widely cited study by Lientz and Swanson [1980] categorized maintenance activities 

into four types: 

 Corrective maintenance: maintenance activities that fix discovered defects. 

 Adaptive maintenance: maintenance activities that modify the software to adapt a 

changed or changing environment. 

 Perfective maintenance: maintenance activities that improve performance or 

meeting new requirements. 

 Preventive maintenance: maintenance activities that prevent problems before they 

occur. 

However, this categorization was not detailed enough for classifying maintenance 

activities in an illuminating way for practitioners [Chapin et al., 2001]. Thus, Chapin et 

al. [2001] extended the prior work by refining software maintenance, and classified 

maintenance activities into twelve types of four clusters.  

As presented in Figure 2.1, maintenance activities were classified into four clusters, 

and they were “support interface”, “documentation”, “software properties”, and 

“business rules”, and presented as four rectangles. The classification was based on three 

criterion decisions, and they were “was software changed”, “was source code changed”, 

and “was function changed”) [Chapin et al., 2001]. The maintenance activities were 

further categorized into different maintenance types in each cluster. 
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Figure 2.1. Decision tree for classifying maintenance activities into twelve types  

of four clusters [Chapin et al., 2001]. 

 

If the answer to criterion decision A “Was the software changed by the 

maintenance activity” was “no”, which meant the maintenance activity did not change 

the software, then this activity belonged to the “support interface” cluster. In this cluster, 

activities were further divided into three different types namely “evaluative”, 

“consultive” and “training”. If the activity involved evaluating the software such as 

auditing and testing, it would be of the “evaluative” type. “Consultive” activities used 

the software as a basis for consultation. It evolved such activities as answering 

questions for customers about the software, conferring with customers or managers 

about the possible changes to the software, and informing stakeholders the estimated 

cost and time of the maintenance work. If the activity used the software for stakeholder 

training such as conducting classes for customer personnel, it belonged to the “training” 

type.  

If the maintenance activity resulted in software change, it came to criterion decision 

B “Was the source code changed by the activity”. If the activity did not change the 

source code, it belonged to the “documentation” cluster, which consisted of two types 

namely “reformative” and “updative”. “Reformative” activities changed the non-code 

documentation for the stakeholders. It involved activities such as updating a user 

manual and preparing instruction materials for users. “Updative” activities changed the 

non-code documentation for describing the implemented system. It contained activities 

such as updating UML models and test plans. 
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If the maintenance activity changed the source code, criterion decision C “Did the 

activity change the user-experienced functionality” was then considered. If the activity 

did not change the system functionality sensible by the users, it belonged to the 

“software properties” cluster containing four different types namely “groomative”, 

“preventive”, “performance” and “adaptive”.  The “groomative” type involved source 

code grooming activities, which could improve the system maintainability or security. It 

included activities such as updating source code annotation lines, changing personal 

access authorizations, and altering code readability. “Preventive” activities made efforts 

to avoid or reduce future maintenance activities such as changing the source code to 

make the system more extensible for future changes. The “performance” type involved 

activities that improve software performance such as changing the source code to speed 

system execution, reduce memory space, and improve system reliability and robustness. 

“Adaptive” activities changed the technology or resources used by the system. They 

were activities that updated the system to work on a new platform, in a new operation 

system or based on a new database.  

If the maintenance activity changed the user-experienced functionality, it belonged 

to the “business rules” cluster, which included three different types namely “reductive”, 

“corrective” and “enhancive”. “Reductive” activities reduced or restricted the user-

experienced functionality such as removing a launched function. “Corrective” activities 

fix the bugs concerning the system functionality. These activities remove defects caused 

by coding errors or design shortfalls. The “enhancive” type involved activities that 

replaced, added to, or extended the user-experienced functionality. It included activities 

that were significant for software evolution such as adding a new function or changing 

existing functions to enlarge their scope. 

Mobile applications are the kind of software designed to run on mobile devices, 

and there is no study suggesting mobile application maintenance activities differed 

significantly from the maintenance activities of other kinds of software. Thus, the 

taxonomy of maintenance activities proposed by Chapin et al. [2001] can also provide a 

generic guideline on studying the possible activities in mobile application maintenance, 

which is supposed to help app developers understand and organize the maintenance 

activities in a systematic way. 

2.2. Sources of change requests that lead to software maintenance 

Software maintenance is carried out to meet the requests for software change. A request 

for change often originates from the users of the software in a form of a bug report or a 

request for new functionality [Bennett and Rajlich, 2000]. It can also come from the 

stakeholders inside the company to support the company’s business processes. 

Change requests from users are important for software maintenance. Studies by 

Sundararajan et al. [2017] and Heeager and Rose [2015] present the situations of the 
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software maintenance caused by the change request from users. Sundararajan et al. 

[2017] describes that the change requests start with registering the users’ requests 

received at the “help desk”. If a request is not resolved at the front desk level, it is 

assigned to appropriate application support team for action. If software maintenance is 

necessary, then the corresponding maintenance activities are planned. The case study by 

Heeager and Rose [2015] shows that the maintenance operation at Aveva, a British 

multinational software company specializing in technology consulting services for the 

plant, power and marine industries, is for many years based on a conventional task 

management system, with maintainers servicing their own customers. By this way, 

maintenance activities are carried out mostly according to the change requests from the 

customers at Aveva. Both studies show that the software maintenance activities are 

carried out due to the change requests from users. 

Change requests can also generate from the stakeholders inside the company (e.g., 

project managers, designers, QA engineers) to support the company’s business 

processes. For example, if a software is implemented on the Windows operation system 

and proves to be successful in the market place, then the company might decide to 

update the software to also work on the Mac operating system to make a profit from 

attracting more users. Another example is that a competing company realises a new 

function in their software that rapidly becomes popular to attract many users, other 

companies should also act quickly to update their softwares with new features to 

prevent their customers from being taken away by the competing company. 

Additionally, the designers of the software can design new features after the app is 

releases, and they can be the source of requests for enhancive maintenance. The QA 

engineers might discover a problem after the software is released, which involves 

corrective maintenance. Although these change requests from the stakeholders inside 

the company might not be explicitly proposed by the users, they are still proposed in 

order to change the software to meet users’ potential needs and further create profits for 

the company. Just as mentioned by Bennett and Rajlich [2000], “the software is being 

evolved because it is successful in the marketplace; revenue streams are buoyant, user 

demand is strong, the development atmosphere is vibrant and positive, and the 

organization is supportive. Return on investment is excellent”. Companies would not be 

willing to spend money in maintaining their softwares if they cannot get return on 

investment, and user demand is of prime importance to consider when companies 

maintain their softwares in order to gain benefits.  

Change requests and other feedback from users are also important for mobile 

application maintenance. Inukollu et al. [2014] described the mobile application 

maintenance as “fixing the issues that were fronted by the mobile users and also 

involves developing/releasing new features”. They also suggested that “developers 

should integrate user feedback into subsequent versions of the app to remove non-
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obvious blocks to sustained usage, so developers need to treat user questions and 

comments like high-valuable unpaid consulting opinions” to avoid making bad apps 

[Inukollu et al., 2014]. Thus, user feedback should be valued, understood and seriously 

treated by developers in application maintenance. Although there are no case studies 

found concerning how mobile application companies have carried out maintenance 

activities in practice, the feedback from users has to be an important source of change 

requests for application maintenance. 

2.3. User reviews as a guidance for application maintenance 

In classic software engineering, companies spend lots of time and money in gathering 

user feedback by techniques such as questionnaires, interviews, or focus groups [Iacob 

et al., 2013]. For the mobile application maintenance, app stores change this by 

allowing users to submit their feedback by writing reviews. Users can share their 

experiences, ideas and suggestions towards a mobile application by submitting a review 

in the app store. These user reviews as a free source of change requests from users can 

contain valuable information for application maintenance.  

 

 

Figure 2.2. Topics in app user reviews [Pagano and Maalej, 2013]. 

 

A previous empirical study by Pagano and Maalej [2013] manually analyzed 528 

app reviews (12 reviews from each of 44 apps in Google Play) to investigate the topics 

discussed in the reviews. Figure 2.2 showed the analysis results of topics covered in 

these reviews. Although a large proportion of user reviews contained the topic of 

“praise”, which might be of less importance for application maintenance, there were 

still about one third of user reviews covering the topics of “feature information”, 
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“shortcoming”, “bug report”, “feature request”, “content request” or “improvement 

request”, which might contain useful information for maintenance.  Another study by 

Chen et al. [2014] used a semi-supervised machine learning algorithm based on the 

combination of Expectation-Maximization and Naive Bayes [Nigam et al., 2000] to 

train a model for filtering out non-informative reviews, and found that nearly 35.1% of 

app reviews were informative for developers to improve their apps. Thus, user reviews 

in app stores form a valuable source for developers to identify change requests and to 

plan application maintenance activities. 

However, user reviews in app store are less structured and in copious amounts 

[Iacob et al., 2013]. Famous apps such as the social app Facebook received around 4275 

reviews in just one single day [Pagano and Maalej, 2013]. Also from the data in App 

Annie
4
, Facebook received average 3136 English reviews each day in Google Play 

during September, 2017. It is not realistic for application developers to manually read 

all user reviews to gather useful feedback. Thus, a user review analysis system is 

needed to crawl, filter, and summarize user reviews in the app store for application 

maintenance purposes. Build such a system needs the background knowledge of the 

characteristics of the app review data and other existing studies of the app review data, 

which are discussed in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
4 https://www.appannie.com/apps/google-play/app/com.facebook.katana/reviews/.  Access date: 

29.11.2017 

https://www.appannie.com/apps/google-play/app/com.facebook.katana/reviews/
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3. User reviews in app store 

This chapter analyzes the characteristics of the app review data and other existing 

studies of the app review data. It contains six sections. The first section introduces the 

user reviews in different app stores. The second section analyzes the characteristics of 

app review contents. The third section exhibits the existing studies and system of 

analyzing app reviews. The fourth section focuses on the studies of analyzing app 

reviews for maintenance purpose, and explains the taxonomy proposed by Panichella et 

al. [2015], which classifies app review sentences into five categories related to 

application maintenance. The fifth section carries out a systematic mapping between the 

four informative types of user review sentences [Panichella et al., 2015] with twelve 

types of maintenance activities [Chapin et al., 2001]. The sixth section introduces the 

high-level overall architecture of ARAM, which leads to the topics of keyphrase 

extraction and sentiment analysis employed in ARAM. 

3.1. User reviews in different app stores 

App stores, which are also called app marketplaces, are digital distribution platforms for 

mobile applications. All major mobile operating systems, such as Android, iOS and 

Windows, have their corresponding official app stores that are Google Play, App Store 

(iOS) and Microsoft Store. Users not only can search and download mobile applications, 

but are also able to share their thoughts by writing comments for the mobile 

applications they have downloaded in these app stores.  

 

 

Figure 3.1. User reviews in Google Play (a), App Store (b) and Microsoft Store (c). 
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As shown in Figure 3.1, a user review in all three app stores generally comprises 

the review contents and other meta-data such as the review rate (from one to five stars), 

the reviewer’s username, the review title and the review date. Two exceptions are that 

the review title is currently not required in Google Play when writing a review, and 

reviews in Microsoft Store do not show their review dates. There is no study suggesting 

that user reviews in different app stores vary largely in contents or other respects.  

3.2. Characteristics of app review contents 

App review contents are quite different from other documents or long length texts used 

in the text mining field including journal articles, news articles and blogs. App review 

contents are short, informal, version specified, and of various quality. 

App review contents are generally short in length since a large portion of them are 

submitted from mobile devices on which typing is not easy [Fu et al., 2013]. Vasa et al. 

[2012] analyzed a large dataset of user reviews (8.7 million reviews from 17,330 apps) 

from App Store (iOS). They found that user review length is highly skewed with an 

average of 117 characters, and median at 69 characters. Nearly 75% of the reviews are 

short enough to fit within a tweet (140 characters). Another similar research by Pagano 

and Maalej [2013] found that the review data from Google Play had a slightly reduced 

result concerning review length (Average of 106 characters, median at 61 characters 

and 76.7% of reviews less than 140 characters). Overall app review contents are much 

shorter than journal articles, news articles and blogs. 

App review contents are also very informal. They tend to have many misspellings, 

slang terms, abbreviations and incomplete sentences. Hoon et al. [2012] discovered that 

17% of the text expressions occurring less than 3 times in user reviews suggests either 

sentences without spaces or intentional and unintentional spelling mistakes (e.g., lovin, 

coul, amazzzzzzzin). Observably, emoticons and abbreviations (e.g., lmao, wtf, cuz) are 

also widely observed in app reviews. These types of informal expressions will 

definitely pose a tremendous challenge for computer based text analysis. 

One app review is always specific to a particular version of the mobile application. 

A mobile application might have many different versions, and users always commented 

on the version they were using at the time of submitting the reviews. Therefore, app 

reviews vary over time due to the evolvement of the app, and generally only recent app 

reviews for the current version of the app can serve as the useful analysis sources for 

planning maintenance activities. 

The quality of app review contents varies from help advices and innovation ideas to 

insulting offenses [Pagano and Maalej, 2013]. As discussed in Section 2.3, previous 

studies [Pagano and Maalej, 2013; Chen et al., 2014] suggested that about one third of 

user reviews were informative for developers. There are still a large portion of user 

reviews that do not provide useful information. Users wrote these uninformative 
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reviews mostly for expressing their sentiments without explaining the reasons such as 

“Nice app”, “I love this app”, and “Fire the idiot who designed this stupid app”. Thus, 

an app review analysis system should have the ability to filter out these uninformative 

reviews. 

3.3. Studies of app review data 

Several studies [Iacob et al., 2013; Guzman and Maalej, 2014; Chen et al., 2014; Maalej 

and Nabil, 2015; Gu and Kim, 2015; Panichella et al., 2015; Panichella et al., 2016; 

Sorbo et al., 2016] have proposed different approaches to analyze app review data.  

Iacob et al. [2013] extracted bug information in app reviews. They identified three 

categories of bugs (major, medium and minor bugs) based on the extent of the 

malfunctioning caused by the bugs, and further identified a set of linguistic rules 

associated with each type of bugs. They manually associated each sentence in the 

training sample with a keyword, identified the contexts in which these keywords were 

used, and finally conclude the linguistic rules. 

Guzman and Maalej [2014] proposed an automated approach to identifying features 

and user sentiments towards the features in app reviews. They firstly extracted features 

based on the co-occurrence relations of the words and the term frequencies of the co-

occurred words. Then sentiments related to the extracted features were calculated using 

the SentiStrength [Thelwall et al., 2012]. Finally, they used the topic modelling 

algorithm namely Latent Dirichlet Allocation (LDA) [Blei et al., 2003] to group 

features into topics and produce a high-level summary as a final result. 

 Chen et al. [2014] proposed AR-Miner, a computational framework for app review 

mining, and it automatically extracts, groups and prioritizes informative reviews. AR-

Miner [Chen et al., 2014] firstly extracts informative user reviews using a semi-

supervised machine learning algorithm based on the combination of Expectation-

Maximization and Naive Bayes [Nigam et al., 2000]. Then two algorithms in topic 

modelling, i.e., Aspect and Sentiment Unification Model (ASUM) [Jo and Oh, 2011] 

and LDA [Blei et al., 2003] were compared to group the reviews. Finally, the groups 

and review instances in each group are ranked by their importance and presented in the 

report [Chen et al., 2014]. 

Maalej and Nabil [2015] presented a classifier for analyzing app reviews according 

to the type of information they include. They classified app reviews into four types 

namely “bug reports”, “feature requests”, “user experience” and “ratings”, and used the 

supervised machine learning algorithms to train a classifier based on different attributes 

including text feature, review metadata (rate and length), and sentiment score. 

Gu and Kim [2015] demonstrated SUR-Miner for automatic app review 

summarization. SUR-Miner [Gu and Kim, 2015] classified reviews into five categories 

namely “aspect evaluation”, “praises”, “feature requests”, “bug reports” and “others” 
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based on lexical features and structural features. Then it extracted aspect-opinion pairs, 

associated a sentiment score to each pair, and finally presented the results of popular 

aspects and their sentiment trends by two diagrams namely the aspect heat map and the 

aspect trend map [Gu and Kim, 2015]. 

Only three studies [Panichella et al., 2015; Panichella et al., 2016; Sorbo et al., 

2016] were found in analyzing app reviews for maintenance purpose. These three 

studies would be introduced in the next section. 

3.4. Taxonomy of user review sentences for maintenance purpose 

Panichella et al. [2015] proposed a tailor-made taxonomy of app review categories 

related to application maintenance. They firstly investigated the types of messages 

exchanged by developers in development mailing lists in Qt Project
5
 and Ubuntu

6
, and 

came up with six different categories of developers’ communication purposes 

concerning application maintenance namely “information giving”, “information 

seeking”, “feature request”, “problem discovery”, “opinion asking” and “solution 

proposal” [Panichella et al., 2015]. Then they performed a systematic mapping between 

the six categories with 17 topics in app reviews proposed by Pagano and Maalej [2013] 

(shown in Figure 2.2), and found “opinion asking” and “solution proposal” were not 

covered by the topics in app reviews. Thus they finally classified user reviews into five 

categories at the sentence-level granularity:  

 Information giving: sentences that inform users or developers about an aspect 

related to the app.  

 Information seeking: sentences that request information or help from other users 

or developers. 

 Feature request: sentences that express ideas, advices or needs for improving or 

enhancing the application or its functionalities. 

 Problem discovery: sentences that describe bugs or unexpected behaviors of the 

application. 

 Other: sentences that do not belong to any one of the four previous categories and 

are considered uninformative for maintenance purpose. 

For instance, following is an app review of a mobile game (a number is marked 

before each sentence for easy reference): 

“(1) Awesome game! (2) The sound effects for the battle are inspiring. (3) However, 

it feels terrible when the attack button sometimes does not work. (4) Please release the 

new weapon in next version. (5) By the way, does anybody know how to unlock the new 

campaign?” 

                                                 
5 https://www1.qt.io/developers/. Access date: 29.11.2017 

6 https://www.ubuntu.com/. Access date: 29.11.2017 

https://www1.qt.io/developers/
https://www.ubuntu.com/
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Sentence (1) is considered as the “other” type. Sentence (2) belongs to “information 

giving” since it talks about the “sound effect” aspect of the app. Sentence (3) is of the 

“problem discovery” type because it describes the bug concerning the attack button. 

Sentence (4) is seen as “feature request” that expresses needs for the new weapon. 

Sentence (5) is classified as “information seeking” for requesting information of the 

new campaign. 

Panichella et al. [2016] further presented the ARdoc classifier, a tool that classified 

user review sentences into these five categories [Panichella et al., 2015] based on the 

combination of techniques of natural language parsing, text analysis and sentiment 

analysis. ARdoc could correctly classify user review sentences with high precision 

(ranging from 84% to 89%), recall (ranging from ranging from 84% to 89%), and F-

measure (ranging from ranging from 84% to 89%) [Panichella et al., 2016]. The ARdoc 

Java API
7
  is available for developers to integrate this tool in their own projects. 

Sorbo et al. [2016] proposed SURF (Summarizer of User Reviews Feedback), 

which was a system to analyze app reviews for recommending software changes. Sorbo 

et al. [2016] proposed a set of 12 topic clusters observed in app reviews (“App”, “GUI”, 

“Contents”, “Pricing”, “Feature or Functionality”, “Improvement”, “Updates”, 

“Resources”, “Security”, “Download”, “Model” and “Company”), and implemented a 

classifier to assign a review sentence to one or more topics. They also integrated ARdoc 

[Panichella et al., 2016] into SURF to further classify review sentences in each topic 

cluster. Thus, SURF [Sorbo et al., 2016] performed a two-level clustering for each 

review sentence and then the review sentences in each topic cluster were ranked and 

presented in a summary report. 

As mentioned in Section 3.2, the quality of app reviews varies, and ARAM should 

have the ability to filter out the reviews that are uninformative for maintenance purpose. 

The first research question of this study is also related to find the kinds of informative 

user reviews that can contribute to application maintenance. The taxonomy presented 

by Panichella et al. [2015] actually helps to solve this question. The “information 

giving”, “information seeking”, “feature request” and “problem discovery” review 

sentences are supposed to be informative for application maintenance while the review 

sentences of the “other” type are uninformative. 

However, the taxonomy presented by Panichella et al. [2015] classifies user review 

sentences based on the users’ intentions. In other words, the users write the review 

sentences to give information about an aspect of the app (“information giving”), seek 

for information concerning the app (“information seeking”), request their needs for 

improving the app (“feature request”), or describe bugs that they have found (“problem 

discovery”). Thus the taxonomy is considered from the user’s perspective. As explained 

                                                 
7 http://www.ifi.uzh.ch/en/seal/people/panichella/tools/ARdoc.html. Access date: 29.11.2017 

http://www.ifi.uzh.ch/en/seal/people/panichella/tools/ARdoc.html
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in Section 2.1, the taxonomy of maintenance activities is from the developer’s 

perspective to categorize maintenance activities. To verify whether the four informative 

types of app review sentences (e.g., “information giving”, “information seeking”, 

“feature request” and “problem discovery”) based on the taxonomy proposed by 

Panichella et al. [2015] contain useful information that can contribute to application 

maintenance, this study maps the four informative types of user review sentences 

[Panichella et al., 2015] with twelve types of maintenance activities [Chapin et al., 2001] 

by analyzing the typical types of maintenance activities that are possibly carried out for 

the four informative types of user review sentences. 

3.5. Four categories of user review sentences leading to possible types of 

maintenance activities 

To analyze what typical types of maintenance activities that the four informative 

categories of user review sentences (e.g., “information giving”, “information seeking”, 

“feature request” and “problem discovery”) [Panichella et al., 2015] can lead to, the 

author firstly used the ARdoc classifier [Panichella et al., 2016] to classify the 

sentences in 549 reviews of the social app Instagram and 963 reviews of the mobile 

game Pokémon GO published between 20
th

 and 23
rd

, May 2017. Then the classified 

sentences were manually analyzed by the author for the possible types of maintenance 

activities that could be carried out relying on the information in each category of the 

review sentences. The mapping results in Table 3.1, Table 3.2, Table 3.3 and Table 3.4 

included the typical examples of the different possible maintenance activities and types 

that could be inspired by the four categories of informative review sentences. 

 

Information Giving 

Example Possible Maintenance Activity Type 

"The algorithm for the 

timeline is really 

annoying." 

 

Gather more feedback about 

the timeline 
Evaluative 

"It’s a really good app, but 

the new version is not 

working on my Samsung 

tablet.” 

 

Carry out diagnostic testing 

concerning this issue. 
Evaluative 

“People are using fake 

GPS add-ons and have 

ruined this game.” 

 

Add functions to forbid fake 

GPS or other plug-ins. 
Enhancive 

"It stops working 

sometimes, and it really 

does need quite a bit of 

battery, so you can't have it 

up for long." 

Reduce battery consumption of 

the app. 
Performance 
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“Once the Pokemon is 

there, it can stay there 

forever (should not it get 

tired and needing rest and 

thus be removed from the 

gym after couple of 

hours?).” 

Change the corresponding 

functionality. 
Enhancive 

"I loved this game before it 

kept saying no GPS signal 

even though I have turned 

it on." 

Fix the possible bug  Corrective 

Table 3.1. Typical maintenance types for “information giving” review sentences. 

 

For the “information giving” review sentences, they discussed different aspects of 

an app and could lead to different kinds of maintenance activities as shown in Table 3.1. 

Evaluative maintenance activities were the most relevant type of activities that are 

supposed to be considered for the “information giving” review sentences. Developers 

could find out the possible requirements and bugs in the “information giving” review 

sentences where the user experiences of different aspects of the app were described, and 

further gather more information concerning the issues or plan diagnostic tests, which 

belonged to evaluative maintenance activities. Moreover, it was also noticed that some 

“information giving” review sentences contained important messages for the app but 

were not related to maintenance activities. For instance, an “information giving” review 

sentence of Pokémon GO said “So far no responses from their Twitter support page and 

no other way to contact them.”, in which the reported issue was not concerned with 

application maintenance but the customer service. Thus, by analyzing the “information 

giving” review sentences, developers can discover different issues related to the app 

that are not only limited in the application maintenance field. In summary, the 

“information giving” review sentences generally covered rich information concerning 

different aspects of the app and they were most likely to lead to evaluative maintenance 

activities. 

 

Information Seeking 

Example Possible Maintenance Activity Type 

"Does the face filters only 

available for OS higher 

than android 5.1?" 

Answer questions about the 

software. 
Consultive 

"I’m still confusing how to 

do stuff on the app." 

Update the user manual, non-

code documentation changed. 
Reformative 

"Why my Instagram is so 

slow?" 

Change the code to improve 

execution speed with 

functionality unchanged. 

Performance 

“How to find the gym and 

pokestops?” 

 

Add instructions for new users Training 
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“Why is the GPS such a 

killer on my battery 

usage?” 

Reduce battery consumption of 

the app. 
Performance 

Table 3.2. Typical maintenance types for “information seeking” review sentences. 

 

As shown in Table 3.2, the “information seeking” review sentences generally 

contained users’ questions for information or help, which mostly required consultive 

maintenance activities to answer these questions. If the problem asked in the 

“information seeking” review sentences were common among users, developers could 

also consider updating the user manual (reformative maintenance) or creating some 

tutorials for users (training maintenance). 

 

Feature Request 

Example Possible Maintenance Activity Type 

 

"You also need to allow 

the option of chronological 

order as I STILL don't see 

the point of this 

algorithmic feed." 

 

Algorithm replacement, add or 

change functionality. 
Enhancive 

 

"I wish you could add a 

time limit share function 

for uploaded photos and 

videos!" 

 

Add component or algorithm 

implementing functionality. 
Enhancive 

"I wish we could battle 

other players not just at 

gyms and I wish we could 

use our Pokemon to battle 

wild ones." 

Update battle component. Enhancive 

"I love this game, but I 

wish it was better at 

keeping up with your 

location." 

Increase the accuracy of 

location. 
Performance 

Table 3.3. Typical maintenance types for “feature request” review sentences. 

 

The “feature request” review sentences generally expressed users’ ideas and 

suggestions for enhancing the app, which could inspire developers to add new features. 

As presented in Table 3.3, enhancive maintenance was the main type of maintenance 

activities that developers would plan after analyzing the “feature request” review 

sentences.  

The “problem discovery” category of review sentences might be the most vital 

category that developers should pay attention to. These review sentences described bugs 

and unexpected behaviors of the app encountered by users. Developers should firstly 
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check the common described bugs in these review sentences, which involved evaluative 

maintenance activities. Then if the bugs were indeed existed in the system, further 

corrective maintenance activities or performance maintenance activities were needed to 

be planned and carried out as shown in Table 3.4. 

 

Problem Discovery 

Example Possible Maintenance Activity Type 

"It crashes way too much 

and error reports are 

displayed after every 

second!" 

Fix the coding error that causes 

the problem. 
Corrective 

“It's lagging to watch 

videos hope it gets fixed.” 
Change the execution speed. Performance 

“Fix the app that takes too 

much space.” 

Change the external storage 

utilization. 
Performance 

“I also have a problem 

with the amount of battery 

it uses, it just kills it, even 

in battery saver mode." 

Reduce battery consumption of 

the app. 
Performance 

Table 3.4. Typical maintenance types for “problem discovery” review sentences. 
 

Five types of maintenance activities were not covered in any four categories of 

informative user review sentences when the total 1512 app reviews were manually 

analyzed, which included updative activities, reductive activities, adaptive activities, 

preventive activities, and groomative activities. Although no example was found in the 

sample reviews, the reductive maintenance activities and the adaptive maintenance 

activities could still be inspired by the informative user reviews. For example, if a new 

function released by an app was considered to be racism, users were likely to discuss it 

in their reviews and thus might lead to reductive maintenance activities by developers 

to remove corresponding components of this function. “Feature request” or “problem 

discovery” user review sentences might contain information that request an update to 

make the app run on the newest Android system or describe the bug that the app could 

not run on the newest system, which might lead to adaptive maintenance activities by 

the developers to make the app work on a changed system. However, updative activities, 

preventive activities, and groomative activities were generally carried out by developers 

to improve the maintainability and rarely related to and sensible by users [Chapin et al., 

2001]. Thus, user reviews generally did not contain information for these three types of 

maintenance activities. 

In conclusion, classified informative user review sentences (e.g., “information 

giving”, “information seeking”, “feature request” and “problem discovery”) had 

valuable information for guiding developers to plan most types of maintenance 

activities. Different categories of user review sentences could lead to different typical 

types of maintenance activities. With the mapping results discussed above, developers 
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could have a good understanding and expectation of different kinds of maintenance 

activities that were related to each category of informative user review sentences. 

Moreover, the classified results of the 1512 app reviews by ARdoc [Panichella et al., 

2016] used in the manual mapping process were mostly correct. Although there were 

some wrong cases discovered such as classifying some “other” type review sentences as 

the “information giving” type (e.g., “I just loved the game” and "I am a very rare user 

so cannot judge"), ARdoc was broadly in line with its high precision (ranging from 84% 

to 89%) as tested in the study of Panichella et al. [2016]. 

3.6. An overview of ARAM 

Figure 3.2 presented the high-level overall architecture of ARAM. ARAM firstly 

collected the user reviews of an app. English user reviews in Google Play were used in 

the implementation and test of ARAM. However, ARAM was also able to process user 

reviews from other app stores if the reviews were stored in the predefined JSON format 

described in Section 6.2. Review contents were the main subject that ARAM would 

process. Review rates were used in the test of sentiment analysis results (in Section 7.4). 

Other meta-data including reviewers’ usernames and review dates were stored for the 

presentation purpose of the user reviews in the final report produced by ARAM. 

Then, ARAM employed the ARdoc [Panichella et al., 2016] to classify user review 

sentences into five different categories namely “Information Giving”, “Information 

Seeking”, “Feature Request”, “Problem Discovery” and “Other”. If all sentences of an 

app review were classified as “Other”, this review was considered uninformative and 

was filtered out by ARAM.  Other app reviews with at least one sentence classified as 

“Information Giving”, “Information Seeking”, “Feature Request” or “Problem 

Discovery” were considered to contain useful information for app maintenance. These 

reviews were further processed by ARAM in order to produce an instructive report for 

app developers to plan maintenance activities. 

 

 

Figure 3.2. An overview of ARAM. 
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Techniques of keyphrase extraction and sentiment analysis were employed in 

ARAM to process the informative reviews. Keyphrases extraction could help app 

developers to quickly figure out the key features and aspects of the app that were 

discussed in each category of user reviews. For example, if a new version of a map app 

had a bug that its navigation function could not work, many users might start 

mentioning the problematic navigation function in their reviews, and these reviews 

would contain sentences classified as “Problem Discovery”. Thus, the keyphrases 

related to the navigation function such as “navigation” and “navigation function” would 

be extracted and listed in the category of “Problem Discovery” by ARAM. Therefore, 

developers could notice that something was wrong with the navigation function and it 

might need corrective maintenance. Moreover, if many users required a new voice 

navigation function for the map app, it was supposed that the keyphrase “voice 

navigation” would appear in the “Feature Request” category of the report produced by 

ARAM. Hence developers could notice the users’ requests and might carry out 

enhancive maintenance to add the voice navigation function in the next version. 

Sentiment analysis was utilized to analyze users’ sentiments towards the extracted 

keyphrases, which mostly represented for the features and aspects of the app. Therefore, 

developers could figure out which features or aspects of the app were considered worst 

by users and respond quickly to maintain the corresponding parts. Sentiment analysis 

could also help developers to examine whether a new feature was loved or hated by the 

users. For instance, if a map app released a new voice navigation function, many users 

might start talking about their user experience of this new feature. Therefore, the 

keyphrase “voice navigation” would appear in the “Information Giving” category, and 

users’ sentiments towards the keyphrase could reflect whether they liked or hated this 

new feature.  

Therefore, by employing keyphrase extraction and sentiment analysis, ARAM 

could produce a concise and informative summary of useful app reviews to guide 

developers for maintenance activities. The techniques of keyphrase extraction and 

sentiment analysis were introduced separately in the following two chapters.  
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4. Keyphrase extraction 

Classified app reviews are considered to contain useful information for mobile 

application maintenance. They need to be summarized in an effective way for 

developers to quickly figure out what these reviews are mainly talking about. It appears 

natural to use the keyphrase to summarize the review contents. 

When using search engines, people do not have to enter a complete sentence but 

only a couple of keyphrases to be able to find the related contents that they want. 

Scientific writing often includes a list of keywords to give readers an idea about the 

topics. In a textbook, keywords are also utilized as the titles of each chapter and section, 

which serve as good summaries and indexes of the corresponding contents. Hence 

appropriate keywords are able to summarize the text in a highly concise way, which can 

save people lots of time and energy to grasp the key points. Therefore, it would be of 

great benefit to developers if the app review analysis system could have the ability to 

automatically extract keywords as a succinct summary of the classified app reviews. 

This involves the topic of keyphrase extraction. 

This chapter focuses on the technique of keyphrase extraction. It contains three 

sections. The first section introduces the basic concepts of keyphrase and keyphrase 

extraction. The second section describes the general process of keyphrase extraction, 

which includes the supervised methods and the unsupervised methods that are widely 

used in the literature. The third section illustrates the TextRank algorithm, which is a 

graph-based ranking method implemented in ARAM for the keyphrase extraction task. 

4.1. Definition of keyphrase and keyphrase extraction 

The keyphrases of a given document, which are also called keywords or key terms, are 

a small group of representative words or phrases that can capture the primary topics of a 

document [Turney, 2000]. There is a difference between the term “keyphrase” and 

“keyword” in the literature. “Keyword” always refers to a single word, while 

“keyphrase” emphasizes the ability to find the multi-word phrase. In this study, the term 

“keyphrase” is used to infer both single words and multi-word phrases. Furthermore, 

the ideal keyphrases of app review contents are the words and phrases that can represent 

the most relevant features or aspects of the app that are discussed in the reviews. 

Appropriate keyphrases can help readers to quickly understand the key points expressed 

in a large quantity of textual material. They can serve as a concise summary of the 

review contents.  

Keyphrases can be assigned manually. For example, most academic theses require 

their authors to summarize a list of keyphrases added after the abstract. Some journal 

articles, news articles and blogs are also labeled with keyphrases by the editors. 

However, many documents and web contents do not have keyphrases assigned by their 

authors, and manually assigning keyphrases can be very time-consuming. Thus, the 
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need for automatic process of extracting the keyphrases, which is called (automatic) 

keyphrase extraction, has spawned many studies in the last two decades. Keyphrase 

extraction is a vital task in the study field of Natural Language Processing (NLP), Text 

Mining, and Information Retrieval, and can be used for text summarization, automatic 

indexing, query refinement, documents classification, etc [Siddiqi and Sharan, 2015]. 

From early studies of keyphrase extraction, it has been conventional to only 

consider noun phrases as keyphrases [Turney, 2000; Hulth, 2003; Mihalcea and Tarau, 

2004]. This convention is based on the fact that when people manually assign 

keyphrases, the vast majority are also proved to be nouns or noun phrases with 

adjectives [Hulth, 2003]. This fact remains unchanged for now when inspecting the 

manually assigned keyphrases by the authors of academic theses, nearly all of these 

keyphrases are noun phrases. There are many approaches for keyphrase extraction, 

which are discussed in the following sections. 

4.2. Keyphrase extraction methods 

As presented in Figure 4.1, the keyphrase extraction task generally processes in two 

steps: (1) identifying a list of words and phrases from the document as the candidate 

keyphrases; (2) selecting correct keyphrases from the candidate keyphrases using 

supervised methods or unsupervised methods [Hasan and Ng, 2014]. 

 

 

Figure 4.1. General process of keyphrase extraction. 

 

4.2.1. Candidate keyphrase identification 

Selecting a list of candidate keyphrases from a document generally involves three steps 

of Natural Language Processing: 

The first step is to select words and phrases with certain part-of-speech (POS) tags 

(e.g., nouns, verbs, adjectives, etc). As noted before, keyphrases are always proved to 

be noun phrases [Turney, 2000; Hulth, 2003; Mihalcea and Tarau, 2004]. Therefore, 

adjectives and nouns, or noun phrases are selected in this step. 
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Secondly, the stop words are removed from the candidate keyphrases. The stop 

words are uninformative words that appear frequently in texts such as “the”, “you” and 

“is”. Candidate keyphrases should not contain any of these stop words. 

Thirdly, the candidate keyphrases are lemmatized to avoid repetition. For example, 

the lemmatization forms of “image”, “images” and “imaging” are the same, and they 

should be counted as one candidate keyphrase using the lemmatization form “image”. 

Stemming is another method to convert a word to its common base form. The 

difference between stemming and lemmatization is that the stemming method always 

cut the end of the word to remove derivational affixes, while lemmatization method 

only remove the inflectional ending after understanding the POS of the word and return 

its base or dictionary form [Jivani, 2011]. For instance, the stemming form of “saw” is 

“s” or “saw” (some stemmers consider “aw” as a derivational affix while the others do 

not). The lemmatization form of “saw” will be “see” if it is used as a verb or “saw” if it 

is used as a noun. Thus, although lemmatization generally takes more time, it can 

produce more accurate results than truncated and ambiguous stems [Korenius et al., 

2004].  

After identifying the candidate keyphrases, supervised methods or unsupervised 

methods are used to determine whether a candidate keyphrase is correct or not. 

4.2.2. Supervised methods 

The supervised methods consider keyphrase extraction as a binary classification 

problem, where a model is trained on annotated data to determine whether a candidate 

keyphrase is a correct keyphrase or not [Hasan and Ng, 2014]. Different classifiers have 

been used in training the model such as Naive Bayes [Frank et al., 1999], Decision 

Trees [Turney, 2000; Ercan and Cicekli, 2007], and Neural Networks [Wang et al., 

2006; Sarkar et al., 2010].  

The disadvantage of the supervised methods is that they generally require a large 

amount of annotated data to train the model, which means that many documents with 

known keyphrases are needed. The trained models also show bias towards the domain 

on which they are trained [Hasan and Ng, 2010]. Currently no annotated dataset is 

available for the keyphrase extraction task of app reviews. There are only few app 

review studies using keyphrase extraction [Oh et al., 2013; Vu et al., 2015], and all of 

them employ unsupervised methods. Unsupervised methods remove the need for 

training data. Considering the huge amount of time and energy needed for annotating 

the train data, ARAM also used unsupervised methods rather than supervised methods. 

4.2.3. Unsupervised methods 

The unsupervised methods formulate the keyphrase extraction as a ranking problem. 

Candidate keyphrases with higher rank values are selected as keyphrases. They can be 



 24 

divided into the statistics methods, the graph-based ranking methods and the topic-

based clustering methods. 

For the statistics methods, the most straightforward one is to rank the candidate 

keyphrases by their term frequencies. This is based on the fact that keyphrases generally 

appear more frequently than other phrases in the document. Many keyphrase extraction 

studies [Tonella et al., 2003; Zhang et al., 2007; Lee and Kim, 2008; Liu et al., 2009a] 

use term frequency-inverse document frequency (tf-idf) instead of term frequency to 

reduce the influence of the words that appear more frequently in the corpus of websites 

[Tonella et al., 2003; Zhang et al., 2007], news [Lee and Kim, 2008] and meeting 

transcripts [Liu et al., 2009a]. However, for analyzing app reviews, the words that 

appear in many reviews probably imply important issues concerning the app and should 

not be penalized. For example, in Feb 2015, Facebook Messenger released a new 

version with a bug that caused high CPU usage and thus drained the battery quickly, 

which leaded to the majority of reviews discussing the “battery draining” topic and its 

related keyphrases [Vu et al., 2015].  Using tf-idf in this case would largely reduce the 

rank values of these keyphrases such as “battery” and “energy” since they appeared in 

many reviews, which was definitely not a good choice because these keyphrases were 

the most vital ones that developers should pay attention to. Thus, term frequency is 

supposed to work better than tf-idf in the keyphrase extraction task of app reviews. 

The graph-based ranking methods determine the importance of a candidate by its 

relatedness to other candidates. These methods assume that a candidate is important if it 

is related to (1) many other candidates and (2) candidates that are important [Hasan and 

Ng, 2014]. The relatedness between two candidates can be computed by the co-

occurrence relation [Mihalcea and Tarau, 2004] or semantic relatedness [Wan et al., 

2007]. A graph is generated with each node (vertice) corresponding to a candidate 

keyphrase, and edges between two related nodes. Then the rank value of each node is 

calculated recursively based on the rank values of its adjacent nodes connected by 

edges [Hasan and Ng, 2014]. TextRank [Mihalcea and Tarau, 2004] is one of the most 

famous graph-based ranking methods for keyphrase extraction. There are also some 

variants of TextRank such as ExpandRank [Wan and Xiao, 2008] and CiteTextRank 

[Gollapalli and Caragea, 2014]. 

For the topic-based clustering methods, the basic idea is to group candidate 

keyphrases into different clusters, where each cluster corresponds to a topic covered in 

the document. The candidate phrases that are close to the centroid of a cluster are 

selected as keyphrases. This method is called KeyCluster [Liu et al., 2009b], and it 

ensures that the result list of keyphrases can cover all topics of the document [Liu et al., 

2009b]. Besides, there is another method called CommunityCluster [Grineva et al., 

2009], and it is to rank clusters based on their density and informativeness. All 

candidate phrases in the top clusters are selected as keyphrases. This assumes that if a 
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candidate phrase is related to an important topic of the document, it should be extracted 

as a keyphrase [Grineva et al., 2009].  

Considering the studies of app reviews, only two studies [Oh et al., 2013; Vu et al., 

2015] are found using the technique of keyphrase extraction, and both of them extract 

keyphrases based on term frequency. Oh et al. [2013] aimed to find a set of issue 

keywords for building a model to determine whether a review was informative or not. 

They used term frequency to generate one set of keywords of the informative reviews 

named SetIssue_freq, and another set of keywords appeared in the uninformative reviews 

named SetNon-Issue_freq. The final keywords were the words in the SetIssue_freq but not in the 

SetNon-Issue_freq. In their study, only stemming was applied for preprocessing the review 

contents, and they did not have the process of identifying candidate keywords by using 

POS tagging, lemmatization and stop word removal. As a result, the generated 

keywords were very ambiguous (e.g., “clos”, “const”, “xper”, “otherw”, “confus”, “pls”, 

“7”, etc).  

Vu et al. [2015] developed a keyword-based framework for review analysis. They 

chose the nouns and verbs as candidate keywords, and the candidate keywords were 

ranked based on their term frequency in negative reviews and positive reviews. The 

candidate keywords that appeared more often in negative reviews than in positive 

reviews had the higher rank value, which was based on the assumption that keywords 

frequently appearing in negative reviews could help identify the problems of an app. 

Furthermore, they did the work of keyword clustering and expanding after keyword 

extraction. However, their framework was not able to extract multi-word keyphrases. 

The ability to extract also phrases as results is important. For example, many reviews of 

the social app Instagram talked about its powerful “face filter” function. The result 

would be very confusing if the keyphrase “face filter” was separated as two keywords 

“face” and “filter”.  

ARAM planned to use the statistics method term frequency and the graph-based 

ranking method TextRank for the keyphrase extraction task. The reason for choosing 

these two methods was that they were relatively easy to implement and had been proved 

to work well in practice. However, to the best of the author’s knowledge, the graph-

based ranking method TextRank had not been used in analyzing short informal data 

such as app reviews in previous studies. Therefore, it remained to be seen which 

method could perform better in the keyphrase extraction task of app reviews.  

Since the idea of term frequency is easy to understand, the tricky part of using term 

frequency is the preprocessing phase for candidate keyphrase identification and the 

detailed implementation is presented in section 6.4. The Textrank method is introduced 

in the next section. 
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4.3. TextRank method 

TextRank [Mihalcea and Tarau, 2004] is a graph-based ranking method for keyphrase 

extraction and it originates from PageRank [Page et al., 1999], a famous algorithm used 

by Google Search to rank websites in their search engine results. The idea of TextRank 

could be easily understood with the background knowledge of PageRank. Therefore, 

PageRank is firstly introduced in the next subsection. 

4.3.1. Introduction to PageRank 

In order to rank web pages by their importance, PageRank works by considering the 

link structure of the web [Page et al., 1999]. A web page has a high rank if there are 

many other web pages linking to it, or some web pages that have high ranks linking to it. 

This is based on the assumption that an important web page is received many links from 

other web pages or a link from another important web page. Formally, the simplified 

algorithm defines the rank value of a web page u as follows [Page et al., 1999]: 

 𝑃𝑅(𝑢) =  ∑
𝑃𝑅(𝑣)

𝐿(𝑣)𝑣 ∈𝐵𝑢
 (Formula 4.1) 

The rank value of the web page u (𝑃𝑅(𝑢)) equals to the sum of the rank value of 

each web page v (𝑃𝑅(𝑣)) contained in the set 𝐵𝑢 (the set that contains all web pages 

linking to u) divided by its 𝐿(𝑣), which is the number of links from v.  

 

 

Figure 4.2. An example of PageRank calculation in the first iteration. 

 

For example, as shown in Figure 4.2, there are four web pages (A, B, C, and D) in 

the whole web. The initial rank value for each web page is equal to one divided by the 

number of web pages, which is 0.25 in this example. For the web page A, all other web 

pages have a link to it. Since the web page B has three links to all other web pages, it 

will give out one third of its current rank value to A. Similarly, A will also receive the 

rank value of C and half of the rank value of D. Thus, the rank value of A is calculated 

by the following formula: 

 𝑃𝑅(𝐴) =  
𝑃𝑅(𝐵)

3
+  

𝑃𝑅(𝐶)

1
+  

𝑃𝑅(𝐷)

2
  (Formula 4.2) 
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Similarly,  

 𝑃𝑅(𝐵) =  
𝑃𝑅(𝐴)

1
  

 𝑃𝑅(𝐶) =  
𝑃𝑅(𝐵)

3
+   

𝑃𝑅(𝐷)

2
   

 𝑃𝑅(𝐷) =  
𝑃𝑅(𝐵)

3
  (Formulae 4.3) 

 

PageRank works like a voting. In every iteration, each web page gives out all of its 

votes (current rank value) evenly to all the web pages that it is linking to, and receives 

the votes from other web pages that are linking to it. As shown in Table 4.1, the rank 

values of the web pages are calculated using the above formulae for several iterations. 

The rank values gradually become stable when the iterations go on. As a result, the web 

pages A and B rank higher than C and D.  

 

Iteration 1 2 3 4 5 6 7 8 9 

A 0.458 0.333 0.319 0.382 0.350 0.343 0.361 0.353 0.350 

B 0.25 0.458 0.333 0.319 0.382 0.350 0.343 0.361 0.353 

C 0.208 0.125 0.194 0.188 0.162 0.181 0.180 0.172 0.177 

D 0.083 0.083 0.153 0.111 0.106 0.130 0.117 0.114 0.120 

Table 4.1. Rank values of the four web pages during nine iterations. 

 

Moreover, if a web page has no other pages linking to it, its rank value will always 

be 0 after the first iteration. To avoid this, the damping factor d is added to the 

PageRank, and changes Formula 4.1 into Formula 4.4:  

 𝑃𝑅(𝑢) = (1 − 𝑑) + 𝑑 ∑
𝑃𝑅(𝑣)

𝐿(𝑣)𝑣 ∈𝐵𝑢
 (Formula 4.4) 

 The damping factor d is between 0 and 1. It originates from the idea that if a web 

surfer who starts on a random web page has a d likelihood of choosing a random link 

from the page he/she is currently visiting, and (1-d) likelihood of getting bored and 

requesting another random page in the whole web [Brin and Page, 2012]. It is a 

common practice to set the damping factor d to 0.85 [Brin and Page, 2012; Mihalcea 

and Tarau, 2004]. Therefore, if a web page has no other pages linking to it, it still has a 

(1- d) likelihood of being visited. Formula 4.4 is also the key formula used in TextRank. 

4.3.2. From PageRank to TextRank 

TextRank is an adaption of PageRank for ranking phrases instead of web pages. In 

PageRank, the graph is built using web pages as vertices and their link relations as 

edges. The problem is how to present the text into a graph in TextRank. For the 

keyphrase extraction task, the idea of TextRank is to select candidate keywords as 

vertices and using their co-occurrence relations to form the edges [Mihalcea and Tarau, 
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2004]. Selecting nouns and adjectives as candidate keywords to form the vertices could 

achieve the best performance [Mihalcea and Tarau, 2004]. Then two vertices are 

connected if their corresponding candidate keywords co-occur within a window of 

maximum N words (the distance between two words is less than N). In PageRank, the 

links among web pages have directions and thus form a directed graph such as Figure 

4.2. In TextRank, Mihalcea and Tarau [2004] also considered building a directed graph 

by the word order in the text. A candidate keyword will point to the following (or 

previous) candidate keywords in the text that co-occur within a window of maximum N 

words. They also used the undirected graph, which was equal to the idea that two 

keywords will point to each other if they meet the co-occurrence constraint. Their 

experiments showed that undirected graphs outperformed directed graphs, and the best 

result was achieved when the co-occurrence window N was set to 2. 

To take a concrete example, following is a piece of user review of a map 

application: 

“It is an awesome app to help me reach destination. The navigation function 

always works well in finding short routes. However, the voice navigation 

was too chatty and once led me to a wrong destination.” 

To form a graph, firstly the candidate keywords are found by identifying nouns and 

adjectives, removing the stop words, and lemmatizing. Then the list of candidate 

keywords that has no duplications (“awesome”, “app”, “destination”, “navigation”, 

“function”, “short”, “route”, “voice”, “chatty”, “wrong”) forms the vertices of the 

undirected graph. Next, if two keywords co-occur within a window of maximum 2 

words, an edge is added between them. Finally, the generated graph of the review text is 

shown in Figure 4.3. 

 

 

Figure 4.3. The undirected graph built by TextRank from a sample review text. 

 

After the graph is built, the rank value for each vertex is set to 1, and then the same 

formula used in PageRank (Formula 4.4) is run on the graph for several iterations 

(usually 20–30 iterations) until it converges [Mihalcea and Tarau, 2004]. Then the top T 

vertices with highest rank values are selected as keywords for post-processing to form 
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the keyphrases. Mihalcea and Tarau [2004] set the T to a third of the total vertices 

number. Next, in the post-processing phase, these selected keywords are marked in the 

original text, and if there are adjacent keywords in the original text, these adjacent 

keywords are collapsed into a multi-word keyphrase. For instance, if “navigation”, 

“destination” and “voice” are calculated as the top T keywords in the last example, then 

the final keyphrases will be “destination” and “voice navigation”, since “voice” and 

“navigation” are once adjacent in the original text. 

TextRank has been proved to work well in the keyphrase extraction task of journal 

papers’ abstracts with the F-measure score of 36.2% [Mihalcea and Tarau, 2004]. 

However, considering app reviews as a kind of short informal texts are very different 

from the abstracts, some necessary adjustments are made in the implementation of 

TextRank in ARAM, which are explained in the Section 6.4. 
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5. Sentiment analysis 

Most of people tend to consider and be influenced by others’ opinions before making 

decisions. Consumers like to seek out other existing users’ sentiments towards a 

product before purchasing it. When people shop online, negative reviews received by a 

product can eliminate their thoughts of buying it; Movies that have a good reputation 

among people who have watched them will attract more new audience; When a user 

needs to download a mobile application for some purposes such as booking a hotel, 

chances are ten to one that he will choose from the hotel booking mobile applications 

that are rated high by other users instead of those with low scores. The rating scores or 

the amounts of positive and negative reviews are a direct reflection of users’ sentiments.  

Users’ sentiments represented by their rating scores are vital to a product’s future. 

Previous studies [Chevalier and Mayzlin, 2006; Flanagin et al., 2014] have 

demonstrated that how positively a product is rated by customers can influence the sales 

of the product. Chevalier and Mayzlin [2006] prove that an improvement in a book’s 

review scores increase its sales. Flanagin et al. [2014] also argue that user ratings reflect 

perceived product quality and in return influence customers’ purchase intention. For 

mobile applications, Harman et al. [2012] identify a strong positive correlation between 

the average customer rating score and the rank of app downloads by analyzing 32,108 

apps in the Blackberry app store
8

. Therefore, mobile application development 

companies should care about users’ sentiments expressed in the app store reviews 

towards their products and services, since the ratings and reviews on app stores can 

motivate or discourage users to download an app [Khalid et al., 2015]. Hence 

application developers should find out and respond quickly the worst aspects of the 

application from the users’ perspective, and thus satisfy users’ needs to harvest higher 

rating scores in return. However, it is not realistic for developers to manually go 

through large quantities of reviews to summarize users’ sentiments towards different 

aspects of the application. Therefore, techniques to automatically identify users’ 

sentiments presented in their reviews towards different aspects of the apps are needed. 

This chapter contains five sections. The first section introduces the basic concepts 

related to sentiment analysis. The second section illustrates the document-based, 

sentence-based and aspect-based sentiment analysis. The third section gives an overall 

presentation of the sentiment classification methods. The fourth section exhibits the 

related studies of sentiment analysis using app review data. The fifth section introduces 

the Stanford CoreNLP Sentiment Analyzer [Socher et al., 2013], a powerful sentiment 

analysis tool that is utilized in building ARAM. 

                                                 
8 https://appworld.blackberry.com/webstore/. Access date: 29.11.2017 

https://appworld.blackberry.com/webstore/
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5.1. Terms of sentiment analysis 

Sentiment analysis, also known as opinion mining, is the research field that analyzes 

people’s subjective judgements (sentiments, opinions, evaluations and attitudes) 

towards entities and their aspects [Liu, 2012]. The basic task of the sentiment analysis is 

to identify the sentiment polarity of a given text, which means to determine the author’s 

attitude is positive, neutral or negative towards the subject. 

 

 

 

 

 

Figure 5.1. An example of sentiment analysis. 

 

As shown in Figure 5.1, a simple review sentence “The background music of the 

game is awesome!” is analyzed to introduce the basic terms of sentiment analysis. An 

entity is the subject on which an opinion is expressed. It can be an item, individual, 

organization, service, topic, or event [Liu, 2012]. In the example, the entity is the “game” 

on which the review sentence is commenting. An aspect is a part, attribute, or feature of 

an entity [Liu, 2012], e.g., the camera of a smartphone, the plot of a movie, or the food 

of a restaurant. In the example, the aspect is the “background music” of the game. In a 

review, a user can express the opinions on different aspects of a mobile application, 

such as the graphics, sound effects, price, security, updates, or even its development 

company. The sentiment polarity or orientation (positive, neutral or negative) on the 

aspect “background music” of the entity “game” is positive in the example, which is 

deduced by the positive sentiment word “awesome”. The sentiment word is a word that 

conveys positive or negative sentiment polarity [Qiu et al., 2009]. The opinion holder is 

the author of the review. 

5.2. Three levels of sentiment analysis 

According to different levels of analysis, sentiment analysis can generally be divided 

into document-based, sentence-based, and aspect-based sentiment analysis. Document-

based, sentence-based, and aspect-based sentiment analysis correspondingly analyzes 

the sentiment polarity of a whole document, a single sentence, and the aspects of a 

given text [Liu, 2012]. A user review of a social app is used as an example. The 

reviewer rates the app four stars (from one to five) and the review content is as follows 

(a number is marked before each sentence for easy reference): 

“(1) I downloaded this app last week. (2) It was a great app. (3) I liked the 

convenient way to chat with friends using the voice input instead of typing. 

(4) The friend recommendation system was also fabulous, which helped me 

<sentence> =  
The background music of 

the game is awesome! 

<entity> =  game 
<aspect> =  background music 
<sentiment word> =  awesome 
<polarity> =  positive 

<opinion holder> = author 
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find my old friends and meet lots of interesting new people. (5) However, the 

frequent updates were quite annoying. (6) My girlfriend was mad with me as 

I spent too much time chatting with my friends.” 

Firstly, it can be noticed that the sentiment polarity of sentence (1) is neutral. It does 

not express any opinions but simply states a fact. Sentences (2), (3) and (4) express 

positive sentiments, while sentences (5) and (6) show negative sentiments expressed by 

two different opinion holders “I” and “my girlfriend”. To classify sentiment expressed 

in each sentence is called the sentence-based sentiment analysis [Liu, 2012]. Then, the 

sentence (2) is an overall assessment of the entity “app”, and the sentiments expressed 

in sentences (3), (4) and (5) are towards different aspects “voice input”, “friend 

recommendation system” and “frequent updates” of the entity “app”. It is easy to figure 

out that the author’s sentiments towards “voice input” and “friend recommendation 

system” are positive while the sentiment towards “frequent updates” is negative. To 

discover the aspects and determine the sentiment polarity of each aspect is called the 

aspect-based sentiment analysis [Liu, 2012]. Finally, it can be evaluated that the 

sentiment polarity of the whole review content is positive, which can also be supported 

by the high rate score of the review. Document-based sentiment analysis analyzes the 

sentiment polarity of the whole document, which usually provides an overall opinion on 

an entity [Liu, 2012].  

In this study, the goal is to analyze the sentiment polarities of the keyphrases 

extracted in the reviews and calculate the numbers of positive, negative and neutral 

reviews concerning each keyphrase. Thus, the mobile application developers can firstly 

focus on the keyphrases that receive most negative reviews and take quick actions to 

find the causes from the reviews. To analyze the sentiments for the keyphrases is 

counted as an aspect-based sentiment analysis task. 

5.3. Sentiment classification methods 

As stated earlier, the basic task of the sentiment analysis is to identify the sentiment 

polarity of a given text, which is called sentiment classification [Pang et al., 2002]. It 

can be done by three different types of approaches: the machine learning approach, the 

lexicon-based approach and the hybrid approach [Maynard and Funk, 2011; Medhat et 

al., 2014].  
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Figure 5.2. Sentiment classification methods [Medhat et al., 2014]. 

 

The machine learning approach considers the sentiment analysis task as a text 

classification problem, which classifies text based on its sentiment polarity into three 

different categories: positive, negative and neutral. It always relies on the supervised 

learning methods, where a large quantity of labeled texts of their sentiment polarities is 

utilized to train classifiers. The unsupervised learning methods are used when it is 

challenging to gain the labeled train data.  

The lexicon-based approach is to judge the sentiment polarity of a text based on the 

sentiment words that it contains. It relies on a sentiment lexicon, which means a list of 

positive and negative words manually created or automatically generated. Then the 

sentiment polarity of the text can be decided on the ratio of the positive to negative 

sentiment words [Maynard and Funk, 2011]. In the previous example of the user review 

of a social app in Section 5.2, the whole review content is considered to be positive 

because more positive words such as “great”, “liked”, “fabulous” and “helped” can be 

found than the negative words in the review content. To use the lexicon-based approach, 

the key task is to generate the sentiment lexicon. Except manually creating the 

sentiment lexicon, which is very time consuming, there are two automated approaches 

collecting a sentiment lexicon, and they are the dictionary-based approach and the 

corpus-based approach.  

The basic idea of the dictionary-based approach is to firstly manually collect a small 

set of sentiment words as the seed list. Then, these sentiment words are searched in a 

dictionary such as WordNet [Miller, 1995], a popular lexical database for the English 

language, for their synonyms and antonyms. For a positive (or negative) word, its 

synonyms are considered as positive (or negative), while its antonyms are seen as 

negative (or positive). All these new found synonyms and antonyms are added to the 

https://en.wikipedia.org/wiki/Lexical_database
https://en.wikipedia.org/wiki/English_language
https://en.wikipedia.org/wiki/English_language
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seed list and then the next iteration starts. When no new synonyms and antonyms are 

found, the iteration process stops, and the sentiment lexicon is finally obtained. The 

major disadvantage of the dictionary-based approach is that the generated lexicon is not 

domain specific [Medhat et al., 2014]. To explain that some sentiment words usually 

have different sentiment polarities in different domains, a good example is the word 

“unpredictable”. It always has a negative polarity in the health domain and aerospace 

filed, e.g., “the new flu virus is evolving in an unpredictable way” and “the landing 

point of the rocket is unpredictable”, but is most likely to be positive in the movie 

domain, e.g., “the plot of this movie is unpredictable” [Ofek et al., 2013]. The 

SentiWordNet [Baccianella et al., 2010] is one of the most commonly used sentiment 

lexicons generated based on this dictionary-based approach. As shown in Figure 5.3., 

the adjective “unpredictable” always has a positive sentiment score of 0 and a negative 

sentiment score of 0.625 or 0.25 based on its different meanings in the SentiWordNet 

v3.0.0, which means it will be calculated as negative regardless of the domain in which 

it appears. 

 

 

Figure 5.3. The word “unpredictable” in the SentiWordNet. 

 

The corpus-based approach helps to generate the domain specific sentiment lexicon 

[Medhat et al., 2014]. It also starts with a small set of sentiment words as a seed list and 

the list is expanded by finding other sentiment words in a large document corpus based 

on syntactic or co-occurrence patterns [Medhat et al., 2014]. Hatzivassiloglou and 

McKeown [1997] did the first study using the corpus-based approach. They started with 

a labelled seed list of adjectives (657 positive and 679 negative adjectives) and used the 

conjunctions between adjectives to determine other adjectives’ sentiment polarities. For 

most connectives such as “and”, “or”, “either-or” and “neither-nor”, the conjoined 

adjectives were seen of the same sentiment polarity. The only exception was for the 

connective “but”, which connected two adjectives of the opposite sentiment polarities. 

The weakness of this method using conjunction rules was obvious that it could not 

extract unpaired adjectives. Qiu et al. [2009] proposed a more complex method called 

double propagation, which parsed words in a sentence by their dependency relations 

and used part-of-speech (POS) information to extract the related features and sentiment 

words that matched the predefined dependency rules. After finding the related features 

and sentiment words, Qiu et al. [2009] defined the rules to estimate the sentiment 

polarity of a sentiment word based on two observations: “same polarity for same feature 

in a review” and “same polarity for same sentiment word in a domain corpus”. 
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Therefore, features were added as a bridge to connect sentiment words that are related 

(modify the same feature) but not literally connected by connectives, which was proved 

to be an effective method with a high F-score [Qiu et al., 2009]. To the best of the 

author’s knowledge, currently there is no domain specific sentiment lexicon available 

based on the app review data as a corpus, which might be caused by the fact that the 

app store data mining is a new study field inspired by the proliferation of mobile 

application business. 

5.4. Related studies of sentiment analysis using app review data 

Along with the explosive growth of social media in recent years, sentiment analysis has 

been broadly applied to analyze movie reviews, product reviews, news, blogs and 

twitter. The twitter sentiment, for instance, was proved as a valid indicator of political 

elections [Tumasjan et al., 2010]. Bollen et al. [2011] used the twitter sentiment to 

predict the daily up and down changes in the stock market. There are also online 

applications available to track public opinions towards a topic from Twitter. An 

example can be seen in Figure 5.4, the Sentiment Viz
9
 was used to find public opinions 

about the topic “gay marriage” on Twitter.  It was an online application to search for 

tweets containing the keyword and to analyze their sentiments. Recent tweets 

containing the keyphrase “gay marriage” were shown as the dots positioned by the 

estimated sentiments of their texts. Unpleasant (negative) tweets were drawn as blue 

dots on the left side, while pleasant (positive) tweets were shown as green dots on the 

right side.  

 

 

Figure 5.4. The online sentiment analysis application for Twitter. 

                                                 
9 https://www.csc2.ncsu.edu/faculty/healey/tweet_viz/tweet_app. Access date: 29.11.2017 
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Sentiment analysis of app review data is a relatively new domain and only a few 

studies can be found. Guzman and Maalej [2014] performed the aspect-based sentiment 

analysis of apps’ review in Google Play and App Store (iOS). They extracted features 

(aspects) from the user reviews using the collocation finding algorithm provided by the 

NLTK toolkit [Loper and Bird, 2002], a natural language processing tool in Python. 

Then, they utilized the SentiStrength [Thelwall et al., 2012], a lexicon-based sentiment 

analysis tool for short informal English text, to calculate the sentiment score of the 

review sentences from which the features are extracted. Finally, they considered the 

sentiment score of a feature to be the sentiment score of the sentence from which it is 

extracted. 

Maalej and Nabil [2015] and Panichella et al. [2015] both performed sentiment 

analysis on the sentence level and used the analyzed sentiment score or polarity as an 

attribute of the sentence for the follow-up text classification tasks. Maalej and Nabil 

[2015] also used the SentiStrength for analyzing the sentiment polarities of the review 

sentences, while Panichella et al. [2015] implemented the supervised learning method 

by training the Naive Bayes classifier using a set of 2090 manually labelled review 

sentences. Both studies found that adding the sentiment analysis result as an attribute 

improved the accuracy of the trained classifier.  

 Gu and Kim [2015] carried out the aspect-based sentiment analysis. They built a 

pattern-based parser to extract aspect-opinion pairs from the semantic dependency 

graph (SDG) of a review sentence. They also used the Deeply Moving, which was an 

early version of the Stanford CoreNLP Sentiment Analyzer [Socher et al., 2013], to 

analyze the sentiment score of each review sentence and adjusted the sentiment score 

using the review rate. Their evaluation of the sentiment analysis step on reviews of 17 

popular Android apps from Google Play achieved a good result with a high average F1-

scores of 0.80. 

In this study, the goal is to analyze the sentiments of the extracted keyphrases. The 

sentiment polarity of the keyphrase will be considered the same as the sentiment 

polarity of the review sentence from which the keyphrase is extracted. Although this 

assumption was also used in [Guzman and Maalej, 2014] and [Gu and Kim, 2015], it 

was not precise. For the review sentence “I really love the outstanding graphics of the 

app, but the sound effects is not satisfying.”, the sentiment polarity of the whole 

sentence is positive. However, the author’s sentiment towards the two keyphrases 

“graphics” and “sound effects” are not both positive. Nevertheless, by manually 

analyzing 100 review sentences randomly selected from the 1512 app reviews of 

Instagram and Pokémon GO used in the mapping process in Section 3.5, 72 review 

sentences only described one aspect of the app, and the sentiment polarity of the 

sentence could represent the sentiment polarity of the corresponding aspect described in 

the sentence. Thus, this assumption was correct in most cases. Since it is also the third 
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research question of this study to find a proper way to analyze the users’ sentiments 

expressed in their reviews towards the extracted keyphrases, the accuracy of the 

sentiment analysis results based on the assumption that represents the sentiment polarity 

of the keyphrase by the sentiment polarity of the review sentence from which it is 

extracted will be further tested. For analyzing the sentiment polarity of a review 

sentence, the Stanford CoreNLP Sentiment Analyzer [Socher et al., 2013] is utilized in 

ARAM and will be discussed in next section. 

5.5. Stanford CoreNLP Sentiment Analyzer 

Stanford CoreNLP [Manning et al., 2014] is a Java annotation pipeline framework 

which is a comprehensive Natural Language Processing toolkit that can perform most 

of the common core NLP tasks such as tokenization, POS tagging, name entity 

recognition (NER), dependency parsing, and sentiment analysis. The sentiment analysis 

tool and other annotators that support it in Stanford CoreNLP, which is called the 

Stanford CoreNLP Sentiment Analyzer, is a deep-learning model for sentiment analysis 

based on the Stanford Sentiment Treebank and the Recursive Neural Tensor Network 

[Socher et al., 2013]. The Stanford Sentiment Treebank is the first corpus with fine 

grained sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences 

extracted from movie reviews of the famous film review aggregator website Rotten 

Tomatoes [Socher et al., 2013]. The Recursive Neural Tensor Network (RNTN) is a 

powerful model to predict the compositional semantic effects with high accuracy 

[Socher et al., 2013]. It parses phrases into a tree of word vectors and then uses a 

tensor-based composition function to calculate the vectors in a bottom up fashion 

[Socher et al., 2013]. 

 

 

Figure 5.5. An example of RNTN predicting sentiment classes  

 

Figure 5.5 shows the parsing result of the sentence “Although the weather in 

Tampere is not lovely, I still love this beautiful town.” using RNTN. From bottom to top, 
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every node of the parse tree is calculated for its sentiment polarities from very negative 

to very positive (--, -, 0, +, ++) [Socher et al., 2013]. The sentiment polarity of the root 

node is the sentiment polarity of the whole sentence, which is correctly calculated as 

positive in the example. The advantage of using RNTN is that it can accurately handle 

the negations (71.4% accurate for handling negated positive and 81.8% accurate for 

handling negated negative [Socher et al., 2013]) and clauses, which can also be 

supported in the above example for correctly handling the negation “is not lovely” and 

the although-clause.  

The reason to choose the Stanford CoreNLP Sentiment Analyzer is that it has 

reached a very high accuracy of 85.4% in binary classification of positive/negative for 

single sentence and 80.7% accuracy on fine-grained sentiment prediction (from very 

negative to very positive) across all phrases [Socher et al., 2013]. Although its model is 

trained and tested using the movie review data, it is still promising to perform well in 

analyzing mobile application user review data. The reason is that the app review data 

and the movie review data are both informal review texts that share many 

characteristics in common. This study will test whether the Stanford CoreNLP 

Sentiment Analyzer can also perform effectively in the sentence-based sentiment 

analysis of app review data.  
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6. Implementation of ARAM 

This chapter demonstrates the implementation details of ARAM. It contains six sections. 

The first section gives an overall introduction of the design and process of ARAM. The 

second section introduces the data collector and the JSON format used to store app 

review data. The third section presents the user review classifier that employs ARdoc 

[Panichella et al., 2016] to classify app review sentences and filter out uninformative 

reviews. The fourth section exhibits three different implementations of the keyphrase 

extractor, and they are relatively based on the term frequency method, the TextRank 

method [Mihalcea and Tarau, 2004], and the DoubleRank method that combines 

TextRank with term frequency. In the fifth section, the implementation of the sentiment 

analysis of the extracted keyphrase is explained followed by the visualization of the 

analysis results of the app reviews produced by ARAM in the sixth section. 

6.1. Overall process of the user review analysis system 

With the purpose of extracting useful information concerning application maintenance 

from app reviews and producing a report that concluded the analysis result for 

application developers, ARAM was designed to implement three main tasks. The first 

task was to classify user review sentences based on the taxonomy proposed by 

Panichella et al. [2015] and filter out uninformative reviews. Secondly, the top ten 

keyphrases of each informative category of review sentences (“information giving”, 

“information seeking”, “feature request”, and “problem discovery”) were extracted to 

represent the primary topics contained in each category of informative review sentences. 

Thirdly, users’ sentiments on each extracted keyphrase were analyzed and presented in 

the report, so developers would be able to pay more attention to the keyphrases with 

more negative votes, find the causes of users’ negative attitudes towards the keyphrases, 

and take action to maintain the corresponding aspects of the app if necessary. 

 

 

Figure 6.1. Overview of the system process.  
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To perform these three tasks, ARAM was composed of five components as shown 

in Figure 6.1. The data collector was coded with Python 2.7.10, while the other four 

components of ARAM including the user review classifier, the keyphrase extractor, the 

sentiment analyzer, and the visualization component were implemented by Java SE 1.8. 

The design of ARAM was not complicated, and it straightforwardly followed the 

process of collecting app review data, classifying user review sentences using ARdoc 

[Panichella et al., 2016], extracting top ten keyphrases, analyzing users’ sentiments 

towards the extracted keyphrases, and visualizing the results. Apart from the data 

collector, each part carried out a further analysis based on the output of the previous 

part until the final report was produced. The implementation details of the five 

components of ARAM would be discussed separately in the next five sections. 

6.2. Collection of data 

A data collector, which was a web crawler implemented in Python, was used to crawler 

the user review data of a selected app in Google Play. The reviews were crawled in 

chronological order, and the number of reviews to crawl could be set to a desired value. 

The input of the data collector was the app id (e.g., “com.facebook.katana”, 

“com.instagram.android”, “com.nianticlabs.pokemongo”). The id of an app could be 

found on the URL of the app home page in Google Play as shown in Figure 6.2. 

  

 

Figure 6.2. The Facebook app home page in Google Play. 
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Figure 6.3. Raw JSON data of user reviews. 

 

The output was a JSON file storing the crawled user reviews of the app. As shown 

in Figure 6.3, for each user review, its review data, review contents, review title, review 

rate and author’s username were stored in a piece of JSON data. Additionally, as 

mentioned in Section 3.1, user reviews in Google Play currently do not have review 

titles. When the data collector was firstly implemented in January 2017, some reviews 

in Google Play were observed to have review titles, and thus the data collector also 

collected the review title. The review titles would always be an empty value since 

reviews in Google Play do not have titles nowadays. However, it had no impact on the 

system since only the review contents were analyzed by ARAM. 

6.3. User review classifier 

The user review classifier firstly filtered out reviews whose contents were less than four 

words. The reason was that after manually reading total 1,200 user reviews of six 

different apps (200 reviews of each app including Facebook, Instagram, Clash Royale, 

Pokémon GO, Maps - Navigation & Transit, and TripAdvisor Hotels Restaurants) 

collected in 11
th

, May 2017, it was found that the reviews whose contents were less than 

four words were mostly uninformative for maintenance. Most of them were either 

generic praises or complaints such as “Cool app”, “Definitely 5 stars!” and “Nothing 

good”, or totally meaningless words or incomplete sentences. Although these reviews 

would mostly be correctly classified as the “other” type by ARdoc [Panichella et al., 

2016], directly filtering out these uninformative short reviews before the classification 

work could increase efficiency. 
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Figure 6.4. Processed JSON data of user reviews with classification results. 

 

After filtering out the reviews whose contents are less than four words, the user 

review classifier further employed ARdoc [Panichella et al., 2016] to classify the user 

reviews at the sentence-level granularity into five categories namely “information 

giving”, “information seeking”, “feature request”, “problem discovery” and “other” 

based on the taxonomy proposed by Panichella et al. [2015]. The input of the user 

review classifier was the JSON file produced by the data collector. As presented in 

Figure 6.4, the output was another JSON file, in which the classification results were 

stored by adding a property named the “review_class”. The value of the property 

“review_class” was a JSON array, and it stored the review sentences that were 

classified as one of the four informative types including “information giving”, 

“information seeking”, “feature request” and “problem discovery”. For instance, the 

user review “I love this app. But I'm not okay with you constantly updating it and this 

will be the 3rd update I have had this week. Now thanks to the updates, it crashes 

constantly now!” contained three sentences. The first sentence “I love this app.” was 

classified as “other”, the second sentence “But I'm not okay with you constantly 

updating it and this will be the 3rd update I have had this week.” was categorized as 

“information giving”, and the third sentence “Now thanks to the updates, it crashes 

constantly now!” was tagged as “problem discovery” by ARdoc [Panichella et al., 

2016]. Then the second sentence of the “information giving” type and the third sentence 

of the “problem discovery” category were stored as two JSON objects in the value array 

of the property “review_class” as shown in Figure 6.4. All classified sentences that 

were not of the “other” type were stored in the array as the values of JSON objects and 

their corresponding types as the keys. In this way, the classified results of review 

sentences were stored for further analysis. 

The reason to produce a JSON file as output was to separate the implementation of 

the user review classifier from the following three components of ARAM including the 

keyphrase extractor, the sentiment analyzer, and the visualization component. Two 

reasons for this separation were: firstly, the user review classifier often took some time 

to process reviews (the performance of the user review classifier was tested in Section 
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7.1). If the user review classifier was combined with the following three components 

without a JSON output, then any crashes in the following three components would 

result in restarting the whole computation from beginning and waste time on the user 

review classifier performing the same classification work again. Secondly, the user 

review classifier employed ARdoc [Panichella et al., 2016], and ARdoc relied on the 

old version 3.4.1 (published on 27
th

, August 2014) of Stanford CoreNLP
10

. In the 

following three components, the new version 3.7.0 (published on 31
th

, October 2016) of 

Stanford CoreNLP was utilized for performing NLP tasks including POS tagging, 

lemmatization and parsing. Since the ARdoc [Panichella et al., 2016] was not open 

source, its code could not be updated to adopt the Stanford CoreNLP 3.7.0, which was 

used in the keyphrase extractor and the sentiment analyzer of ARAM. To avoid possible 

incompatibility problems, the implementation of the user review classifier was also 

needed to be separated from the following three components of ARAM. 

6.4. Keyphrase extractor 

Based on the background knowledge of keyphrase extraction in Chapter 4, the 

keyphrase extractor implemented two different algorithms including the statistics 

method term frequency, and the graph-based ranking method TextRank [Mihalcea and 

Tarau, 2004]. Moreover, the author also proposed a new method named DoubleRank 

that combined TextRank with term frequency. The input of the keyphrase extractor was 

the JSON file produced by the user review classifier. The output would be the top ten 

keyphrases of the user review sentences in each category of informative review 

sentences (e.g., “information giving”, “information seeking”, “feature request” and 

“problem discovery”). 

6.4.1. Term frequency method 

As mentioned before in Subsection 4.2.3, the tricky part of the term frequency method 

was the preprocessing phase for candidate keyphrase identification. To identify 

candidate noun phrases, Stanford Parser [Chen and Manning, 2014], an annotator 

integrated in Stanford CoreNLP [Manning et al., 2014] to analyze the grammatical 

structure of sentences, was utilized to extract noun phrases from informative review 

sentences. For example, for the “information giving” review sentence “The app keeps 

closing randomly while I’m trying to watch a video”, the Stanford Parser [Chen and 

Manning, 2014] could generate a parse tree of the review sentence as shown in Figure 

6.5. The structure of the sentence was parsed and tagged with syntactic tags (e.g., “S” 

for “simple declarative clause”, “NP” for “noun phrase”, “VP” for “verb phrase”, 

“ADVP” for “adverb phrase”, etc) and POS tags (e.g., “DT” for “determiner”, “NN” for 

“singular noun”, “VBZ” for “3
rd

 person singular present verb”, etc) [Marcus et al., 

                                                 
10 https://stanfordnlp.github.io/CoreNLP/history.html. Access date: 29.11.2017 

https://stanfordnlp.github.io/CoreNLP/history.html
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1993]. The matching pattern “NP !<< NP & !<< VP” was used to extract the noun 

phrases that were not dominating another noun phrase or verbal phrase from the parse 

tree. Thus, for the example sentence in Figure 6.5, three noun phrases “The app”, “I” 

and “a video” would be extracted. Although a parse tree was powerful to extract 

grammatically relevant words as phrases, which was a necessary step of the term 

frequency method for keyphrase extraction, the time to generate a parse tree was much 

longer than POS tagging. This would be shown when comparing the performance of the 

term frequency method and the TextRank method in Section 7.1. 

 

 

Figure 6.5. A parse tree of a review sentence. 

 

Then, the extracted noun phrases were converted to lowercase, and the stop words 

in the phrases were removed. A default English stop words list
11

 containing 174 stop 

words was used, and some informal abbreviations such as “bc”, “plz” and “cuz” 

encountered when manually reading the app reviews were also appended to the list. 

Thus, the three extracted noun phrases “The app”, “I” and “a video” would turn into 

two noun phrases “app” and “video”. Finally, the noun phrases were lemmatized using 

the Stanford CoreNLP Toolkit [Manning et al., 2014] and formed the “candidate 

phrases”. The “candidate phrases” contained both nouns and noun phrases. 

The term frequencies of the candidate phrases extracted from each informative 

category of user review sentences were calculated. If reduplicative candidate phrases 

were extracted from one review’s same category of the informative review sentences 

(“information giving”, “information seeking”, “feature request” or “problem 

discovery”), the candidate phrases would only be counted once. For example, if a 

review had three “information giving” review sentences that all included the noun 

phrase “user interface”, or one “information giving” review sentence where the “user 

                                                 

11 https://www.ranks.nl/stopwords. Access date: 29.11.2017 

https://www.ranks.nl/stopwords
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interface” appeared twice, the candidate noun phrase “user interface” would only be 

counted once in the “information giving” category. Moreover, if a review had one 

“information seeking” sentence and one “problem discovery” sentence that both 

contained the noun phrase “user interface”, the candidate noun phrase “user interface” 

would be counted once in both the “information seeking” category and the “problem 

discovery” category. The purpose of this process was to keep the principle of “one 

review one vote”. Therefore, a candidate phrase in one review would only be counted 

once even though it might appear multi-times, and hence enhance the keyphrase results’ 

representativeness of the topics that were covered in most reviews. 

For each informative category of user review sentences, the term frequency of 

every candidate keyphrase was counted, and the ten keyphrases with highest term 

frequencies were selected as the final result. Figure 6.6 showed the top ten keyphrases 

result of 4449 informative reviews of the social app Instagram analyzed by the term 

frequency method. The top ten keyphrases of each informative category were sorted by 

their frequencies (the numbers after the symbol “=>”). 

 

 

Figure 6.6. The keyphrase result of the term frequency method. 

 

6.4.2. TextRank method 

Four sets of the review sentences namely Setig, Setis, Setfr, and Setpd were formed from 

the JSON file produced by the user review classifier, and they separately contained all 

the “information giving” sentences, the “information seeking” sentences, the “feature 

request” sentences and the “problem discovery” sentences of the reviews. The size of a 

set was defined as the number of reviews that contained the corresponding informative 

review sentences. For example, if the Setig contained 105 information giving sentences 

that were from 74 user reviews, the size of Setig was the number of reviews which was 

74. The set size was used as a threshold in the post-processing phase. 
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The preprocessing of the review sentences in each set also applied the lowercase 

conversion, the stop words removal and the word lemmatization. However, instead of 

parsing to extract noun phrases as candidate phrases, which was a very time-consuming 

process, only POS tagging was needed to extract nouns and adjectives as candidate 

words. The Stanford Part-Of-Speech Tagger [Toutanova et al., 2003] was utilized for 

automatic POS tagging.  

After the preprocessing, for each review sentence set (Setig, Setis, Setfr, and Setpd), 

all the candidate words (nouns and adjectives) were added to an undirected graph, and 

an edge was added between two words if they co-occurred within a window of two 

words. Then the initial rank value of each word was set to 1, and the Formula 4.4 

introduced in the Section 4.3 (the damping factor d was set to 0.85 in the 

implementation) was run on the graph for 20 iterations. After 20 iterations of 

calculation, all the candidate words obtained their final score, and the top one third of 

the candidate words with highest scores were formed the keywords set.  

Then, for the post-processing phase to form the keyphrases, the method proposed 

by Mihalcea and Tarau [2004] was quite straightforward: if there existed adjacent 

keywords in the original text, they would be collapsed into a multi-word keyphrase. 

Unlike the journal papers’ abstracts analyzed in [Mihalcea and Tarau, 2004], the app 

review contents were informal, and the keyphrase results would contain many 

unexpected phrases if directly applying this post-processing method. Thus, a threshold 

was set that only the adjacent keywords had appeared at least T times instead of just one 

time would be collapsed into the final keyphrase. T was a positive integer and equaled 

the larger value of V1 and V2: V1 was set to one fortieth of the set size (the size of Setig, 

Setis, Setfr, or Setpd); V2 was set to one third of the lowest term frequency of the 

keywords forming the keyphrase. For instance, if the size of Setig was 480 reviews, its 

keywords set included the nouns “user” and “interface”, and the “user” and the 

“interface” separately appeared 83 times and 68 times in the original text, then V1 

would be 24 (one twentieth of 480) and V2 would be 22 (the integer part of 68 divided 

by 3). Hence the combination of the two words (“user interface” or “interface user”) 

needed to appear at least 24 times in the original text to be collapsed into the keyphrase 

(which would be represented by the one combination with the highest frequency, which 

was supposed to be “user interface” in this example). The value V1 was to guarantee the 

combined keyphrases appeared enough times in the reviews, while the value V2 was to 

ensure that only the candidate words frequently appearing together could form the 

keyphrases. The threshold could also be set to other suitable values. However, after 

testing different thresholds, using the combination of V1 and V2 as the threshold 

produced the best results.  

The rank value of a multi-words keyphrase would be the average value of its 

combined words’ rank values multiplied by 1.2 to promote the multi-words keyphrase. 
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Finally, the final keyphrase set with both single-word and multi-words keyphrases was 

formed, and the top ten keyphrases with highest rank values were selected as the result. 

Figure 6.7 showed the top ten keyphrases result of 4449 reviews of the social app 

Instagram analyzed by the TextRank method. The top ten keyphrases of each 

informative category were sorted by their TextRank values (the numbers after the 

symbol “=>”). 

 

 

Figure 6.7. The keyphrase result of the TextRank method. 

 

6.4.3. DoubleRank method 

A self-designed algorithm named DoubleRank that combined TextRank with term 

frequency was proposed. To keep the performance advantage of using POS tagging 

instead of parsing, DoubleRank mainly adopted the process of the TextRank method 

presented in the previous subsection, and it simplified the post-processing phase by 

adding term frequency as a factor in calculating the rank value.  

DoubleRank firstly followed the same approach of the TextRank method to 

forming the keywords set that contained the top one third of words with highest 

TextRank scores. Then, for the post-processing phase to form the keyphrases, if there 

existed adjacent keywords in the original text, they would be combined into a multi-

word keyphrase.  The TextRank value of a combined keyphrase was set to the average 

value of its combined words’ TextRank values. In the previous subsection, the 

TextRank method would “collapse” the keywords into the keyphrases if the thresholds 

were met, which meant the keywords that had combined into multi-word keyphrases 

would be discarded. However, the DoubleRank method would still store these 
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keywords as candidates. For example, if the nouns “face” and “filter” were in the 

keywords set and the noun phrase “face filter” had appeared once in the original text, 

then “face”, “filter” and “face filter” would all be candidates and their DoubleRank 

values would be calculated later to decide whether they could become top ten 

keyphrases.  

All the words in the keywords set and the phrases they formed in the post-

processing phase formed the candidate set V. For a given word or phrase k in the set, its 

DoubleRank value 𝐷𝑅𝑘 was defined as follows: 

 𝐷𝑅𝑘 = α ∗  
𝑇𝐹𝑘

∑ 𝑇𝐹𝑖𝑖∈𝑉
∗  𝛽 + (1 − α) ∗ 

𝑇𝑅𝑘

∑ 𝑇𝑅𝑖𝑖∈𝑉
 (Formula 6.1) 

𝑇𝐹𝑘 was the term frequency of k, and 𝑇𝑅𝑘 was the TextRank value of k.  ∑ 𝑇𝐹𝑖𝑖∈𝑉  

was the sum of the term frequencies of words and phrases in the set V.  ∑ 𝑇𝑅𝑖𝑖∈𝑉  was 

the sum of the TextRank values of words and phrases in the set V. α was a parameter 

for adjusting the weights between the term frequency and the TextRank value. It was 

set to 0.15 in the implementation. 𝛽  was a parameter for promoting multi-word 

keyphrases. If k was a phrase, 𝛽 was set to 8.0; if k was a single word, 𝛽 was set to 1.0. 

Finally, words and phrases were sorted in descending order of their DoubleRank 

values for selecting the top ten keyphrases. The word or phrase with the highest 

DoubleRank value was directly selected as the first keyphrase in the result set named 

Setres. Then, for the word or phrase with the second highest DoubleRank value, if it did 

not contain any duplicated words appeared in the Setres, it would be added into the Setres; 

if it contained a duplicated word appeared in the Setres, it would be discarded, and the 

word or phrase with the third highest DoubleRank value would be considered. The 

process went on until Setres obtained ten elements. For example, if “app” and “face filter” 

had already been selected in the Setres, then the words including “face” and “filter”, and 

the phrases such as “good app”, “useless app”, “cute face”, “bad filter” would not be 

added into the Setres even though they had the highest DoubleRank values among the 

remaining words and phrases that were “competing” to be added into Setres. In this way, 

the words or phrases containing a duplicated word would be represented by the only 

one word or phrase with the highest DoubleRank value among them. 

Following was an example to explain the reason of setting parameters α and 𝛽. 

Considering the phrase “face filter”, if either one of the two words “face” and “filter” 

had a larger DoubleRank value than “face filter”, and was selected into the Setres, then 

“face filter” would have no chance to be selected into the Setres. The desired situation 

was that the “face filter” was added into the Setres and further prevented its combined 

words “face” and “filter” from adding into the Setres. Thus, the phrase “face filter” 

should have a larger DoubleRank value than “face” and “filter”. The DoubleRank value 

was relied on the TextRank value and the term frequency. While the TextRank value of 

a phrase was set to the average value of its combined words’ TextRank values in the 
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post-processing phase, the term frequency was the main reason why a phrase’s 

DoubleRank value was generally smaller than the DoubleRank values of its combined 

words if the parameters α and 𝛽 were not introduced in calculating the DoubleRank 

value. Theoretically, the term frequencies of the words must be no less than the phrases 

containing them. Actually, the term frequencies of words were much larger than the 

phrases containing them. By analyzing 4449 reviews of the social app Instagram, it was 

found that the term frequency of the phrase “face filter” was 863, while the “face” and 

the “filter” separately appeared 1112 times and 1532 times. Thus, the parameter α was 

set to 0.15 to reduce the weight of the term frequency in DoubleRank, and 𝛽 was set for 

making up the relatively low term frequencies of phrases. 𝛽  was set to 8.0 for 

calculating the DoubleRank values for phrases. This set of 𝛽 could highly promote the 

phrases that appeared many times in the original text, while it had little influence on the 

DoubleRank values of the phrases with low term frequencies. 

 

 

Figure 6.8. The keyphrase result of the DoubleRank method. 

 

Figure 6.8 showed the top ten keyphrases result of 4449 reviews of the social app 

Instagram analyzed by the DoubleRank method. The top ten keyphrases of each 

informative category were sorted by their DoubleRank values multiplied by 100 (the 

numbers after the symbol “=>”). The keyphrases result of the DoubleRank method 

contained the keyphrases such as “samsung galaxy”, “refresh feed” and “latest update” 

that were not discovered by the previous two methods.  
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6.5. Sentiment analyzer 

The sentiment analyzer employed the Stanford CoreNLP Sentiment Analyzer [Socher et 

al., 2013] to analyze the sentiments towards the keyphrases produced by the keyphrase 

extractor. The keyphrase extractor not only extracted the keyphrases as the result, but 

also stored the information of the review sentences from which each keyphrase was 

extracted. The review sentences from which a keyphrase was extracted were called the 

original review sentences for the keyphrase. 

The sentiments for each keyphrase’s original review sentences were calculated by 

the Stanford CoreNLP Sentiment Analyzer to represent the sentiment towards the 

keyphrase. The Stanford CoreNLP Sentiment Analyzer calculated the sentiments for 

each review sentence into five categories including “very negative”, “negative”, 

“neutral”, “positive”, and “very positive”. For each keyphrase, the sentiment analyzer 

added the numbers of its original review sentences that were “very negative” and 

“negative” as the number of negative votes for the keyphrase. Similarly, the numbers of 

the “very positive” original review sentences and the “positive” original review 

sentences were added as the number of positive votes for the keyphrase. The number of 

the “neutral” original review sentences was seen as the number of neutral votes for the 

keyphrase. In this manner, the numbers of positive, neutral, and negative votes for each 

keyphrase were obtained and stored as the final result of the sentiment analyzer. 

6.6. Visualization of results 

The final output of ARAM was a HTML report on the local machine. As shown in 

Figure 6.9, combined with a predefined CSS file, the HTML report presented the 

analysis results for the input reviews including the numbers of reviews containing each 

category of informative review sentences (e.g., “information giving”, “information 

seeking”, “feature request” and “problem discovery”), the top ten keyphrases in each 

category of informative review sentences, and the numbers of positive, negative and 

neutral votes for each keyphrase.  

The keyphrases were listed for each category of informative review sentences from 

top to bottom in the order of discending term frequencies or rank values. On the right 

side of each keyphrase, the colorful sentiment bar showed the numbers of negative, 

neutral and positive votes for the corresponding keyphrase. The ratios of negative, 

neutral and positive votes for each keyphrase were also visualized by the widths of 

three different colors in the sentiment bar (red for negative votes, yellow for neutral 

votes, and green for positive votes). Thus, app developers could pay more attention to 

the keyphrases whose votes were mostly negative with largest widths of the red color in 

their sentiment bars. Additionally, a brief introduction of the four categories of 

informative review sentences was also listed in the report, combined with a brief 
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conclusion of the typical maintenance types concerning each category of informative 

review sentences analyzed in Section 3.5. 

 

 

Figure 6.9. A sample HTML report produced by ARAM. 

 

 

Figure 6.10. Retrieving the original reviews containing a keyphrase in the report. 

 

Moreover, the original review sentences for each keyphrase and the corresponding 

app reviews (including the review contents and other meta-data) were also stored in the 

HTML report. A predefined JavaScript file was coded for the users to interact with the 

HTML report to retrieve the app reviews related to a selected keyphrase. As shown in 

Figure 6.10, when users clicked on a keyphrase in the table, its original reviews related 
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to the keyphrase were presented. For each original review, its review contents and other 

meta-data including the reviewer’s username, the review date and the review rate were 

shown in a cell of the table, and the original review sentence for the keyphrase in the 

review was highlighted in red. The sentiment polarity of the keyphrase (the original 

review sentence) in each review was also shown under the order number. Therefore, 

benefit from the retrieval function, app developers could check the original reviews 

related to the keyphrases that they were interested in to dig out more information for 

planning maintenance activities. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 53 

7. Evaluation of ARAM 

This chapter contains four sections. The first section tests the performance of each 

component of ARAM including the user review classifier, the keyphrase extractor, and 

the overall performance. The second section analyzes the proportion of the informative 

reviews in Google Play according to the data using rate of ARAM. The third section 

carries out a keyphrase extraction test for comparing the automatic generated 

keyphrases by the keyphrase extractor to the human-generated keyphrases. In the fourth 

section, a sentiment analysis test was carried out to test how well the sentiment 

polarities of the keyphrases calculated by the sentiment analyzer of ARAM could agree 

with the human judgments. 

7.1. System performance 

A system performance test was carried out for testing the execution speed of the major 

components of ARAM. The test was run on a laptop computer. The testing environment 

was presented in Table 7.1. 

 

CPU Intel® Core™ i5-3230M @ 2.60GHz (2 cores) 

memory 4 GB 

hard disk 500 GB, 7200 RPM 

graphics card Nvidia GeForce GT 740M 

operation system Windows 7 SP1 64-bit 

runtime environment Java 1.8.0_77 

Table 7.1. The testing environment. 

 

Total 21,500 pieces of reviews of the social app Facebook in Google Play 

published during 8
th

 and 15
th

 November, 2017 were crawled to form the test dataset. 

These reviews were randomly assigned into one of the six small test datasets of 500, 

1000, 2000, 4000, 6000 and 8000 reviews. The performance was tested by running 

ARAM to process the reviews in each small test dataset, and the processing times of the 

user review classifier, the processing times of three different implementations of the 

keyphrase extractor including the term frequency method, the TextRank method and the 

DoubleRank method, and the total processing times of the three components of ARAM 

including the keyphrase extractor, the sentiment analyzer, and the visualization 

component were recorded. 

Table 7.2 presented the processing times of the user review classifier. The 

processing of the user review classifier started from reading the JSON file that 

contained the user reviews of the test dataset and ended by producing another JSON file 

that included the classification results.  
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dataset 1 2 3 4 5 6 average 

number of 

reviews 
500 1000 2000 4000 6000 8000 - 

total 

processing 

time (second) 

321.9 582.9 1559.1 2419.1 3344.2 5091.0 - 

average time 

(second / per 

review) 

0.644 0.583 0.780 0.605 0.557 0.636 0.634 

Table 7.2. The processing times of the user review classifier. 

 

 

Figure 7.1. The average times of the user review classifier to process one review. 

 

Figure 7.1 showed the diagram of the average times of the user review classifier to 

process one review. The average time of processing one review by the user review 

classifier was between 0.55s and 0.78s.  

As explained in Section 6.3, the reviews whose contents were less than four words 

would be filtered out by the user review classifier. Thus, the six output JSON files 

obtained by running the user review classifier to process the six test datasets of 500, 

1000, 2000, 4000, 6000 and 8000 reviews correspondingly contained 234, 470, 1101, 

1908, 2748 and 4050 reviews remained. These six output JSON files were used for the 

tests of the following components of ARAM. 

The author further tested the performances of the three different implementations 

of the keyphrase extractor including the term frequency method, the TextRank method, 

the DoubleRank method. The processing of the keyphrase extractor started from 
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reading the JSON file produced by the user review classifier and ended by producing 

the top ten keyphrase results of each type of informative reviews (e.g., “information 

giving”, “information seeking”, “feature request” and “problem discovery”). Table 7.3 

presented the processing times of the three different implementations of the keyphrase 

extractor.  

 

dataset 1 2 3 4 5 6 average 

number of 

reviews 
234 470 1101 1908 2748 4050 - 

total 

process

-ing 

time 

(second

) 

Term 

Freque-

ncy 

55.8 74.2 203.5 312.9 412.0 670.6 - 

TextR-

ank 
3.8 3.9 6.9 15.1 23.5 53.2 - 

Doubl-

eRank 
3.5 3.9 7.8 13.6 23.8 49.5 - 

average 

time 

(second 

/ per 

review) 

Term 

Freque-

ncy 

0.238 0.158 0.185 0.164 0.150 0.166 0.177 

TextR-

ank 
0.016 0.008 0.006 0.008 0.009 0.013 0.010 

Doubl-

eRank 
0.015 0.008 0.007 0.007 0.009 0.012 0.010 

Table 7.3. The processing times of the three different keyphrase extraction methods. 

 

 

Figure 7.2. The average times of the keyphrase extractor to process one review. 
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Figure 7.2 showed the average times of the three different keyphrase extraction 

methods to process one review. The TextRank method and the DoubleRank method 

only needed around 0.01s to process one review, while the term frequency method took 

between 0.15s and 0.24s to process one review. The execution speeds of the TextRank 

method and the DoubleRank method vastly outperformed the term frequency method. It 

was mainly caused by the fact that the sentence parsing used in the term frequency 

method took much longer than the POS tagging used in the TextRank method and the 

DoubleRank method. 

The author finally tested the total processing time of the three components of 

ARAM including the keyphrase extractor based on the term frequency method, the 

sentiment analyzer, and the visualization component. The processing of these three 

components started from reading the JSON file produced by the user review classifier 

and ended by producing the summary report. Currently only the keyphrase extractor 

implemented by the term frequency method had been integrated into ARAM due to the 

time constraints of this study. The keyphrase extractor based on the TextRank method 

and the DoubleRank method would be integrated into ARAM in the future work. Table 

7.4 presented the test result of the total processing times of the three components of 

ARAM.  

 

dataset 1 2 3 4 5 6 average 

number of 

reviews 
234 470 1101 1908 2748 4050 - 

total 

processing 

time (second) 

176.6 240.1 651.4 1106.4 1490.3 2586.9 - 

average time 

(second / per 

review) 

0.755 0.511 0.592 0.580 0.542 0.639 0.603 

Table 7.4. The total processing times of the three components including the keyphrase 

extractor based on the term frequency method, the sentiment analyzer, and the 

visualization component. 

 

Figure 7.3 showed the average times of the three components of ARAM including 

the keyphrase extractor based on the term frequency method, the sentiment analyzer, 

and the visualization component to process one review. The average time of processing 

one review by the three components was between 0.51s and 0.76s. 
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Figure 7.3. The average times of three components to process a review. 

 

The total processing time of ARAM was considered the sum of the processing time 

of the user review classifier and the processing time of the following three components 

of ARAM including the keyphrase extractor, the sentiment analyzer, and the 

visualization component. Thus, combined the test results in Table 7.2 with Table 7.4, 

the total processing time of ARAM was shown in Table 7.5. 

 

dataset 1 2 3 4 5 6 average 

number of 

reviews 
500 1000 2000 4000 6000 8000 - 

total 

processing 

time (second) 

498.5 823.0 2210.5 3525.5 4834.5 7677.9 - 

average time 

(second / per 

review) 

0.997 0.823 1.105 0.881 0.806 0.960 0.929 

Table 7.5. The total processing time of ARAM. 

 

It could be seen in Table 7.5 that ARAM took averagely one second to process a 

review, which meant that it could process about 1800 reviews in half an hour. The 

performance could be better if the keyphrase extractor based on the TextRank method 

or the DoubleRank method was employed in ARAM. Overall, the performance speed 

was acceptable considering the sophisticated processing of the app reviews by ARAM. 
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7.2. Proportion of the informative reviews classified by ARAM 

As mentioned in Section 2.3, Chen et al. [2014] trained a model for filtering out non-

informative reviews, and found that nearly 35.1% of app reviews were classified as 

informative reviews for developers to improve their apps. This study also tested the 

proportion of the informative reviews in Google Play for the application maintenance 

according to the classification results of the user review classifier of ARAM.  

The user review classifier of ARAM firstly filtered out the reviews whose contents 

were less than four words, and these reviews were called as the “discarded” reviews. 

Then, if all sentences of one review were classified as the “other” type by the user 

review classifier, the review belonged to the “other” review and was considered 

uninformative and useless by ARAM. Hence the proportion of the informative reviews 

was defined as follows: 

 𝑅𝑎𝑡𝑖𝑜𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 =  1 −  
𝑁𝑢𝑚𝑜𝑡ℎ𝑒𝑟 + 𝑁𝑢𝑚𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 

𝑁𝑢𝑚𝑡𝑜𝑡𝑎𝑙
 (Formula 7.1) 

The number of uninformative reviews was the number of the “other” reviews 

(Numother) added with the number of the “discarded” reviews (Numdiscarded). The 

proportion of informative reviews equaled one minus the number of uninformative 

reviews divided by the number of total reviews (Numtotal). 

The user reviews of six Android mobile applications were collected by the data 

collector for analysis. The six apps were Facebook (social app), Instagram (social app), 

Clash Royale (strategy game), Pokémon GO (adventure game), Maps - Navigation & 

Transit (travel and local app) and TripAdvisor Hotels Restaurants (travel and local app). 

These mobile applications were mainly chosen because they covered three different 

application categories including social app, game, and travel app. Users of different 

categories of apps might belong to different age groups, have different requirements for 

the apps, and write their reviews in different styles. The reviews of different apps might 

also contain diverse vocabularies and describe different features. Thus, different apps 

were selected to evaluate whether the informative rates of app reviews for ARAM 

would vary for different kinds of apps. Additionally, these six apps were popular 

applications that had large datasets of user reviews available for analysis.  

Two thousand reviews for each app including Facebook, Instagram, Clash Royale, 

Pokémon GO, Maps - Navigation & Transit, and TripAdvisor Hotels Restaurants were 

crawled on May 11
th

, 2017. Figure 7.4 presented the classification results of these 

reviews by the user review classifier of ARAM. The numbers in the “Problem 

Discovery” row were the numbers of reviews that contained at least one sentence 

classified as the “problem discovery” type. Similarly, for the 2000 reviews of the app 

Facebook, 8 reviews contained at least one sentence classified as the “feature request” 

type, 20 reviews contained at least one sentence classified as the “information seeking” 

type, and 123 reviews contained at least one sentence classified as the “information 
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giving” type. The numbers in the “Other” row and the “Discarded” row were the 

numbers of the “other” reviews and the “discarded” reviews respectively. The numbers 

in the “Proportion of Informative Reviews” row were the proportion of the informative 

reviews calculated by Formula 7.1. 

 

 

Figure 7.4. Classification results of the reviews crawled on May 11
th

, 2017. 

 

The average proportion of the informative reviews of the six apps was 15.21%. The 

proportion of the informative reviews of the social apps Facebook and Instagram were 

lower than the other four apps. It could be noticed that more than half of their reviews 

were the “discarded” reviews whose contents were less than four words. 

Figure 7.5 showed another test based on the dataset of two thousand reviews for 

each of the six apps crawled on November 1
st
, 2017, which was nearly five months later 

after the first test.  

The results of the second test based on the reviews crawled on November 1
st
, 2017 

were consistent with the results of the first test. The average proportion of the 

informative reviews of the six apps was 14.55% according to the second test. 
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Feature Request 8 11 24 23 15 15

Information Seeking 20 14 22 43 25 30
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Proportion of Informative Reviews 9.35% 12.55% 16.15% 20.65% 12.85% 19.70%
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Figure 7.5. Classification results of the reviews crawled on November 1
st
, 2017. 

 

Both tests showed that the proportion of the informative reviews classified by 

ARAM was around 15%. It meant that if 1000 reviews were processed by ARAM, only 

about 150 reviews could pass the user review classifier, and be further analyzed by the 

keyphrase extractor and the sentiment analyzer. The keyphrase extractor was supposed 

to process a large number of reviews for text summarization. The results produced by 

the keyphrase extractor would be reasonably unacceptable when the number of reviews 

is not enough. Thus, ARAM was not suitable for analyzing mobile applications that did 

not receive many reviews in the app store. 

7.3. Evaluation of the keyphrase extraction result 

As illustrated in Section 6.4, three different methods including the term frequency 

method, the TextRank method and the DoubleRank method were implemented in the 

keyphrase extractor of ARAM. In order to test which methods are effective to extract 

the keyphrases from the app review contents, the author carried out a keyphrase 

extraction test by designing a questionnaire (see Appendix 1). The questionnaire 

included 50 reviews of the social app Facebook crawled from Google Play, and the 

testers were required to manually extract the top ten keyphrases of the reviews. Three 

testers including two graduate students and one researcher in the software development 

field took the test, and the 50 reviews in the questionnaire were also processed by the 

keyphrase extractor using the term frequency method, the TextRank method and the 

DoubleRank method. Table 7.6 showed the top ten keyphrases analyzed by the testers 

and the keyphrase extractor. 
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Term 

Frequency 
TextRank 

Double 

Rank 
Tester 1 Tester 2 Tester 3 

app useless app app 
latest 

updates 

recent 

update 

recent update 

terrible 

update video news feed news feed news feed crashes 

video notification new post video notification 
new useless 

feature 

news feed news feed video new post video 
recommended 

friends 

post facebook last update notification 
auto 

updates 

new feeds not 

loading 

facebook post notification 
update 

features 
posts videos 

phone friend facebook auto update bug 
notification 

tab 

notification phone friend button friend tab auto updates 

feed 
latest 

update 
phone bugs back button 

draining my 

battery 

bug 
recent 

update 
back button 

comment 

section 
camera privacy setting 

Table 7.6. Top ten keyphrases extracted by the keyphrase extractor and three testers. 

 

The number of matches between the machine-generated phrases and the human-

generated phrases was employed to measure the three different keyphrase extraction 

methods. As recommended in [Turney, 2000], the precision was defined as the number 

of matches divided by the number of generated keyphrases. Formally, 

                                      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ 𝐶𝑜𝑢𝑛𝑡𝑡𝑜𝑡𝑎𝑙⁄                (Formula 7.2) 

To calculate the precision of one keyphrase extraction method, the top ten 

keyphrases extracted by this method formed the set V. The three lists of the keyphrases 

extracted by the testers were firstly lemmatized and named as S1, S2 and S3 respectively. 

The precision of the keyphrases set V based on each human-generated keyphrase list S1, 

S2 and S3 would be calculated using Formual 7.2. The 𝐶𝑜𝑢𝑛𝑡𝑡𝑜𝑡𝑎𝑙  would be 10, and the 

𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ would be the sums of the match scores of the ten keyphrases in the set V. If 

the keyphrase k in the set V exactly matched another keyphrase in the human-generated 

keyphrase list S, the match score would be 1; if the keyphrase k was a noun phrase and 
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only a noun matches another keyphrase in the list S, the match score would be 0.7; in 

other cases, the match score would be 0. Formally, 

 

 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ =  ∑ 𝑀𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒𝑘𝑘 ∈𝑉  

 

 𝑀𝑎𝑡𝑐ℎ𝑆𝑐𝑜𝑟𝑒𝑘 =  {
1 , if lematized form exactly matches

0.7, if a noun matches
0 , if no nouns matches

 (Formulae 7.3) 

For instance, as shown in Table 7.6, “new post”, “back button” and “friend” were 

included in the top ten keyphrases results of the DoubleRank method. To calculate the 

precision of the results of the DoubleRank method based on the keyphrase list S1 

extracted by the tester 1, the match score for the keyphrase “new post” was 1, since 

“new post” was also in the keyphrase list S1. The match score for the keyphrase “back 

button” was 0.7, since only “button” was found in in the keyphrase list S1 and the noun 

matched. The match score for the keyphrase “friend” was 0, because there was no 

keyphrase containing the noun “friend” in the list S1. 

Table 7.7 showed the precisions of the three keyphrase extraction methods 

including the term frequency method, the TextRank method and the DoubleRank 

method. 

 

Precision Tester 1 Tester 2 Tester 3 Average 

Term Frequency 0.61 0.64 0.38 0.543 

TextRank 0.54 0.64 0.45 0.543 

DoubleRank 0.57 0.61 0.38 0.52 

Table 7.7. Precisions of the keyphrase extraction methods. 

 

The agreements between each pair of the results produced by three testers were 

also calculated using the same criterion of calculating the precision, and the results were 

listed in Table 7.8. 

 

Agreement Tester 1 Tester 2 Tester 3 Average 

Tester 1 - 0.71 0.48 0.595 

Tester 2 0.71 - 0.48 0.595 

Tester 3 0.48 0.48 - 0.48 

Table 7.8. Agreements of the keyphrase results between testers. 

 

It could be found that the precisions of these three automatic keyphrase extraction 

methods including the term frequency method, the TextRank method, and the 

DoubleRank method did not vary greatly, and the precisions were also very close to the 
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agreements between testers’ manual extraction results. Although it might be caused by 

the test dataset of 50 reviews was too small to reveal the differences among the 

keyphrase results of the three methods and three testers, it showed that these three 

automatic keyphrase extraction methods could produce the keyphrase results that were 

close to human’s results. Additionally, although the precision of the DoubleRank 

method was slightly lower than the precisions of the other two methods, the 

DoubleRank method was better at extracting multi-word keyphrases than the other two 

methods. It could be seen by that the keyphrase results of the DoubleRank method 

included “new post” and “back button” that were not extracted as phrases by the other 

two methods. Moreover, it could be noticed that the keyphrase results of the three 

keyphrase extraction methods all include the keyphrase “app” (or “useless app”) and the 

keyphrase “facebook”, while the three testers’ results did not contain them. “App” and 

“facebook” were the words mentioned a lot by users in their reviews to refer to the 

Facebook mobile application as a whole. These two words inevitably had high term 

frequencies or rank values to be selected into the top ten keyphrases by the automatic 

keyphrase extraction methods. Testers tended to extract keyphrases that could represent 

the specific aspects of the app and did not consider the “app” as an aspect. This was one 

of the major differences found between the results produced by the automatic keyphrase 

extraction methods and the testers. What’s more, it could be seen that the results 

produced by the Tester 3 included many informative adjectives, and gave keyphrases 

the ability to imply the issues related to an aspect such as “recent update terrible” and 

“new useless feature”. However, the three automatic keyphrase extraction methods 

could not produce such “informative” keyphrases. Thus, the retrieval function based on 

the produced keyphrases as shown in Section 6.6 was added in the report to compensate 

for this disadvantage. Although the keyphrases extracted by the three automatic 

keyphrase extraction methods could reveal the important aspects of the app discussed 

by users such as “news feed”, “video” and “post”, developers still had no idea what 

issues were related to these aspects by only reviewing these extracted keyphrases. Thus, 

the keyphrases were used as indexes for retrieving the reviews from which they were 

extracted, and developers could conveniently study the reviews concerning the 

keyphrases that they were interested in. 

It was also found from the test that the average time for testers to extract the top ten 

keyphrases from 50 reviews were 32 minutes (24 minutes for Tester 1, 46 minutes for 

Tester 2, and 25 minutes for Tester 3). That was the reason why the test dataset was 

designed to be small because a large number of reviews would cost testers much times 

to extract the top ten keyphrases and could threaten the accuracy of the test. 

Additionally, three testers believed that their extracted top ten keyphrases can represent 

70% - 80% of the information contained in the reviews, which proved the ability of 

keyphrase extraction as an effective approach for text summarization. Moreover, three 
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testers all claimed that they considered the term frequency as the main criteria for 

extracting the keyphrases. Tester 1 and Tester 2 extracted most frequently mentioned 

aspects of the app as keyphrases, while Tester 3 focused more on extracting “the 

frequent complaints”. 

In conclusion, according to the test results of a small set of 50 reviews, the term 

frequency method, the TextRank method, and the DoubleRank method all performed 

well in the keyphrase extraction task of app review contents. A potential drawback that 

the keyphrases produced by these three methods rarely contained noun phrases with 

“informative” adjectives was also remedied by the retrieval function based on the 

automatic extracted keyphrases. Thus, the keyphrases results produced by the keyphrase 

extractor of ARAM could not only represent the most relevant aspects of the app that 

were discussed in the reviews, but also act as indexes for developers to easily retrieve 

the reviews concerning the keyphrases. 

7.4. Evaluation of the sentiment analysis result 

As explained in Section 6.5, the sentiment analyzer of ARAM represented the sentiment 

for a keyphrase by the sentiment for the sentence from which the keyphrase was 

extracted. A sentiment analysis test was carried out to test whether this approach was 

accurate. A questionnaire (see Appendix 2) included 50 reviews of the adventure game 

app “Pokémon GO” crawled from Google Play. The 50 reviews were divided into two 

sets. The first set of 25 reviews all contained the keyphrase “pokemon”, and the second 

set of 25 reviews all contained the keyphrase “update”. The testers were required to 

judge the author’s sentiment for the keyphrase in each review was positive, negative or 

neutral. Four testers including three graduate students and one researcher in the 

software development field took the test, and the 50 reviews in the questionnaire were 

also processed by the sentiment analyzer to calculate the sentiment polarities of the 

keyphrase in each review. Moreover, the review rate (from one to five stars) of each 

review was also used to represent the sentiments for the keyphrase in the review as a 

control group in the test. The review rates could provide the information about users’ 

overall sentiments towards the app [Gu and Kim, 2015], and they could be seen as a 

document-level sentiment of the review contents. The result of using the document-

level sentiment showed by the review rates to represent the sentiment towards the 

keyphrase was used as a baseline in the test. If the review rate was three stars, the user’s 

sentiment towards the keyphrase in this review was considered as neutral; if the review 

rate was one star or two stars, the user’s sentiment towards the keyphrase was seen as 

negative; if the review rate was four stars or five stars, the user’s sentiment towards the 

keyphrase was regarded as positive. 

Appendix 3 listed the test results of the sentiment polarities (positive, negative, and 

neutral) of the keyphrase in each review judged respectively by the four testers, the 
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sentiment analyzer, and the review rates. The accuracy of a sentiment analysis system 

depended on how well it agreed with human judgments
12

. Thus, the agreement was 

defined as the number of matched sentiment polarities divided by the number of the 

total test reviews. Formally, 

                                      𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 =  𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ 𝐶𝑜𝑢𝑛𝑡𝑡𝑜𝑡𝑎𝑙⁄             (Formula 7.4) 

Table 7.9 and Table 7.10 showed the inter-rater agreements of the sentiment 

polarities for the first test set of 25 reviews containing the keyphrase “pokemon” and 

the second test set of 25 reviews containing the keyphrase “update”. The average inter-

rater agreement was 73.3% and 80% for the two sets. 

 

Agreement Tester 1 Tester 2 Tester 3 Tester 4 

Tester 1 - 0.68 0.68 0.8 

Tester 2 0.68 - 0.84 0.72 

Tester 3 0.68 0.84 - 0.68 

Tester 4 0.8 0.72 0.68 - 

Average 0.72 0.747 0.733 0.733 

Table 7.9. Inter-rater agreements of the sentiment polarities for the first test set 

concerning the keyphrase “pokemon”. 

 

Agreement  Tester 1 Tester 2 Tester 3 Tester 4 

Tester 1 - 0.8 0.68 0.88 

Tester 2 0.8 - 0.8 0.84 

Tester 3 0.68 0.8 - 0.8 

Tester 4 0.88 0.84 0.8 - 

Average 0.787 0.813 0.76 0.84 

Table 7.10. Inter-rater agreements of the sentiment polarities for the second test set 

concerning the keyphrase “update”. 

 

As presented in Table 7.11 and Table 7.12. The average agreement between the 

results of the Sentiment Analyzer and the four testers reached 65% and 67% for the two 

test sets. The average agreement between the results of the review rates and the four 

testers were 52% and 57% for the two sets. 

 

 

 

 

 

                                                 
12 https://en.wikipedia.org/wiki/Sentiment_analysis. Access date: 29.11.2017 

https://en.wikipedia.org/wiki/Sentiment_analysis
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Agreement Tester 1 Tester 2 Tester 3 Tester 4 Average 

Sentiment 

Analyzer 
0.64 0.64 0.68 0.64 0.65 

Review rate 0.48 0.52 0.64 0.44 0.52 

Table 7.11. The agreements between the results of the Sentiment Analyzer and the 

review rates, and the results of the four testers for the first test set. 

 

Agreement Tester 1 Tester 2 Tester 3 Tester 4 Average 

Sentiment 

Analyzer 
0.68 0.64 0.64 0.72 0.67 

Review rate 0.6 0.52 0.6 0.56 0.57 

Table 7.12. The agreements between the results of the Sentiment Analyzer and the 

review rates, and the results of the four testers for the second test set. 

 

The test results showed the average inter-rater agreement was 76.65% for the 

aspect-based keyphrase sentiment analysis task for the keyphrase “pokemon” and the 

keyphrase “update”. Thus, the sentiment analyzer that achieved the average agreement 

of 66% with the raters in calculating the sentiment polarities could be considered to 

perform nearly as well as humans. The sentiment analyzer also outperformed using the 

review rates to represent the sentiments for keyphrases, which had the average 

agreement of 54.5% with the raters. 

In summary, the Sentiment Analyzer that employed the Stanford CoreNLP 

Sentiment Analyzer [Socher et al., 2013] performed well in analyzing the app review 

data. The results were also accurate in most cases to represent the sentiment for a 

keyphrase by the sentiment for the sentence from which the keyphrase was extracted.  
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8. Results and discussion 

8.1. Discussion 

To discuss how users of ARAM could benefit from its result, the author manually 

analyzed a summary report produced by ARAM. The summary report was generated by 

running ARAM to analyze 4480 reviews of the social app Instagram published during 

15
th 

and 21
st
, May 2017 in Google Play. Instagram had no new release during 15

th 
and 

21
st
, May 2017, and all these reviews should comment on the version 10.21.0 of 

Instagram. Additionally, these reviews were not crawled by the “newest” order but by 

the order of “helpfulness” provided by Google Play. As shown in Figure 8.1, Google 

Play provided three different sorting methods of the user reviews (e.g., “newest”, 

“rating”, and “helpfulness”). The data collector of ARAM collected user reviews by the 

“newest” chronological order by default. However, it could also be set to collect the 

reviews by the order of “helpfulness” or “rating”. The mechanism how Google Play 

calculated the “helpfulness” of one review was unclear. However, among the 4480 

reviews crawled by the “helpfulness” order, only 31 reviews’ contents were less than 

four words and discarded. Thus, the ARAM’s data using rate (the ratio of informative 

reviews) of the reviews crawled by the “helpfulness” order was much higher than the 

ARAM’s data using rate of the reviews crawled by the “newest” order. Therefore, 

collecting user reviews by the “helpfulness” as the data source could be an effective 

way to improve the efficiency of ARAM. However, the review dates of the reviews 

crawled by the “helpfulness” order should be checked to make sure that all the reviews 

had commented on the same version of the app.  

 

 

Figure 8.1. Three different sorting methods of user reviews provided by Google Play. 
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Figure 8.2 presented the summary report of the 4449 reviews whose contents were 

no less than four words. The author would select one keyphrase in each category of the 

informative reviews (e.g., “information giving”, “information seeking”, “feature request” 

and “problem discovery”) to illustrate how application developers (the main target user 

of ARAM) could benefit from the summary report by exploiting the useful information 

for arranging maintenance activities. 

 

 

Figure 8.2. The summary report of the Instagram reviews produced by ARAM. 

 

The keyphrase “face filter” was mentioned frequently in the reviews classified as 

the “problem discovery” category and its sentiment polarities were mostly negative. By 

clicking the keyphrase “face filter” in the “Problem Discovery” column of the table, the 

118 reviews from which the keyphrase “face filter” were extracted were presented as 

shown in Figure 8.3. After manually reading the 118 reviews, it was found that 117 

reviews described the issues and bugs that the face filter could not work on their 

devices. The only exception was one review complaining that Instagram did not fix the 

issues concerning (Samsung Galaxy) S7 phones by writing “Instead of fixing issues for 

a lot of S7 users they copy Snapchat with face filters because that's more important”. 

Additionally, 56 reviews mentioned that the users had updated or reinstalled the app but 

the new “face filter” function still could not work on their devices (e.g., “I am unable to 

use the face filters, the option doesn't even show and I just updated the app”, “Also I 

updated the app and the face filter ain't working just worked for 1 day!”, and “I have 

the new update which is with face filters however they are not coming up or not 
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working properly please fix”). Some reviews also mentioned the devices on which the 

face filter could not work, and the devices included the Samsung Galaxy phones (S8+, 

J1, E5, A7, Express 3, and J5), the Redmi phone and the Huawei Y360.  

 

 

Figure 8.3. A part of the reviews that contain the keyphrase “face fileter” in the 

“problem discovery” category. 

 

Thus, the evaluative maintenance activities might be planned to test whether the 

face filter function could work properly after installing the new updates on most devices. 

Then it should be further tested whether the face filter function could work on the 

devices on which the users had trouble in using the face filter function. If the test found 

that the face filter function could not work on some devices or even most devices, 

further corrective maintenance activities should be planned and carried out. 

The keyphrase “chronological order” was selected to analyze in the “feature 

request” category. As presented in Figure 8.4, 7 reviews in the “feature request” 

category mentioned the “chronological order”. The users expressed their requirement in 

the reviews to have the option to view photos / posts by the chronological order. Thus, 

developers might consider adding different options to sort the photos / posts and allow 

users to choose their favorite sorting methods. This could involve the enhancive 

maintenance activities. 
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Figure 8.4. Reviews that contain the keyphrase “chronological order” in  

the “feature request” category. 

 

 

Figure 8.5. Reviews that contain the keyphrase “post” in  

the “information seeking” category. 

 

The keyphrase “post” was chosen to analyze in the “information seeking” category. 

There were 8 reviews related to the keyphrase “post” in the “information seeking” 

category as shown in Figure 8.5. The sentence “What was the purpose of changing the 

order of the posts to algorithm instead of chronological” in the first review was 

complaining the new sorting order of the posts. The issues mentioned in the third 

review (“When I refresh new posts appear but they were posted 20 hours ago so should 

not be at the top”) and the sixth review (“Why am I seeing post from hours and days 
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before”) were actually also caused by that the chronological order of the posts used in 

the old versions had been changed into the new sorting order. The users did not notice 

this change and thought that something might went wrong that the posts were not in the 

chronological order. Thus, the customer service should notify this change to the users, 

which could be counted as the consultive maintenance activity. Moreover, for the issues 

mentioned in review 2, 4, 5 and 8, these reviews all described a possible bug that the 

users could only view 12 or 18 posts in the profiles, which required the evaluative 

maintenance activities for a diagnostic test and possible corrective maintenance 

activities to fix the bug. 

 

 

Figure 8.6. A part of the reviews that contain the keyphrase “video” in 

the “information giving” category.. 

 

The keyphrase “video” was selected in the “information giving” category. After 

manually went through the 162 reviews as shown in Figure 8.6, it was found that all 

these reviews described the reviewers’ experiences and issues concerning the “video” 

of Instagram. The mostly discussed issues in these reviews were that the videos could 

not be loaded (e.g., “Ever since I updated the app it won’t load any videos at all.”, 

“Massive issues loading videos, some fail to load completely.”, and “I can't load videos 

to watch them even though I'm on the Wi-Fi at home.”) or uploaded (e.g., “I cannot 

upload the video, even it full video or trimmed video”, “Having tried everything from 

compressing videos, Instagram modifying apps and even a new phone I still cannot 

upload a video.”, and “Can't upload any videos after last update...seriously 

Instagram.”). Some reviews also complained that loading or uploading the videos was 

slow (e.g., “Videos take FOREVER to load and now I can't see all the pictures I have 
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posted”, and “I can't post videos I want to share, it either takes a long time or never 

posts, and the videos are 1 minute long”), or the videos crashed during play (e.g., “I 

recorded the whole video correctly and you instagram KEEP CRASHING on the part 

when my idol is laughing??”, and “Videos will play shortly and then the refresh arrow 

will pop up and the video stops.”). Thus, these reviews revealed different issues related 

to the “video” of Instagram, and reading these reviews could actually be counted as an 

evaluative maintenance activity to gather data concerning a specific aspect of the app. 

Moreover, the issues found by reading these reviews should also be further tested, 

which also belonged to the evaluative maintenance activities. 

In conclusion, the report produced by ARAM contained the informative reviews for 

the application maintenance, and these reviews were classified into four different 

categories (e.g., “information giving”, “information seeking”, “feature request”, and 

“problem discovery”) that contained different types of information that could lead to 

different categories of maintenance activities. The top ten keyphrases in each category 

of informative reviews could not only summarize the review contents, but also provide 

indexing for users to easily retrieve the reviews concerning the keyphrases. If the user 

reviews were like the scattered pages of a rough draft provided by an unprofessional 

writer, then ARAM was the editor who reviewed these pages carefully and bound the 

informative ones into a delicate book with a catalog. The author only took around half 

an hour to finish reading the whole report, and could have a comprehensive 

understanding of the different issues, problems, suggestions and ideas provided by the 

reviewers, which inspired the author to figure out different possible maintenance 

activities to improve the app. It would take much more time and energy to directly read 

the 4480 reviews to gain the same information. Moreover, as developers of the app, 

they were more familiar with the app, and could be more sensitive to the useful 

information contained in the reviews that might be ignored by the author. Thus, 

developers could even identify more issues by reading the report produced by ARAM 

to plan maintenance activities. Therefore, the author would argue that the results 

produced by ARAM could benefit developers in understanding their app from the users’ 

perspective and plan maintenance activities to meet users’ requirements.  

8.2. Limitations and possible improvements 

The main defect of ARAM was its slow performance speed. As tested in Section 7.1, 

although the performance speed of ARAM was still acceptable (nearly one second to 

process a review), it would take a long time to process a large number of reviews. 

ARAM was actually designed to help developers to filter and summarize large 

quantities of app reviews. Thus, the performance speed of ARAM needed to be 

improved. 
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To improve the performance speed of ARAM, firstly the keyphrase extractor based 

on the TextRank method or the DoubleRank method needed to be integrated into 

ARAM to replace the current keyphrase extractor based on the term frequency method. 

It was originally designed and implemented in the first version of ARAM that users 

could choose one of these three methods used in the keyphrase extractor based on the 

strategy pattern
13

. However, the keyphrase extractor of the first version of ARAM only 

extracted the top ten keyphrases and did not store the reviews related to each keyphrase 

for the retrieval function. The retrieval function was added in the second version of 

ARAM when the author noticed that the top ten keyphrases extracted by the keyphrase 

extractor could not provide detailed information of the issues related to each keyphrase 

that generally represented an aspect of the app. Thus, the author spent much time in 

changing the data structure and implementing the retrieval function in the keyphrase 

extractor based on the term frequency method. Due to the time constraints of this study, 

currently the retrieval function was not implemented in the keyphrase extractor based 

on the TextRank method and the DoubleRank method, and thus they were not 

integrated into ARAM. As shown in Section 7.1, the performance speeds of the 

TextRank method and the DoubleRank method vastly outperformed the term frequency 

method in the implementation of the keyphrase extractor. Thus, by integrating the 

keyphrase extractor based on the TextRank method or the DoubleRank method into 

ARAM in the future work would improve the performance speed of ARAM. 

Additionally, the results of the sentiment analyzer were not informative. The sentiment 

analyzer was designed to sort the keyphrases by the ratios of negative reviews they 

received, and thus the developers could focus more on the keyphrases that receive most 

negative reviews. However, as shown in Figure 8.2, the sentiment polarities of the most 

keyphrases were mostly negative. Thus, developers might still need to check all the 

keyphrases, and the results of the sentiment analyzer were not really helpful. Therefore, 

the sentiment analyzer could be considered to be removed from ARAM to improve the 

performance speed. Moreover, the code could also be optimized in the future version of 

ARAM to improve the performance. 

Another limitation of ARAM was that it was not suitable for analyzing apps that 

only received a small number of reviews. As mentioned in Section 7.2, the proportion 

of the informative reviews classified by ARAM was low (around 15%), and the 

keyphrase extractor that only processed the informative reviews required enough inputs 

to produce an acceptable result. Generally, ARAM could not generate a nice report 

when the number of the input reviews was less than a thousand. However, for the 

applications that only received hundreds of reviews during one version, developers 

could directly read all the reviews instead of using a tool to summarize the reviews in 

                                                 
13 https://en.wikipedia.org/wiki/Strategy_pattern . Access date: 29.11.2017 

https://en.wikipedia.org/wiki/Strategy_pattern
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practice. It was also possible to only utilize the user review classifier of ARAM to filter 

out the informative reviews for manual inspection. Normally, if there were more than 

two thousand reviews as input, ARAM could produce a reasonably good summary 

report.  
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9. Conclusions 

This thesis proposed a mobile application user review analysis system for the 

maintenance purpose named ARAM. ARAM was a comprehensive system that started 

from collecting app reviews from Google Play and ended by producing a summary 

report for the users. It was composed of five components including the data collector, 

the user review classifier, the keyphrase extractor, the sentiment analyzer, and the 

visualization component. 

The user review classifier employed ARdoc [Panichella et al., 2016] to classify 

user review sentences based on the taxonomy presented by Panichella et al. [2015]. To 

verify the information contained in the four types of informative review sentences (e.g., 

“information giving”, “information seeking”, “feature request” and “problem 

discovery”) could contribute to planning application maintenance activities, the author 

carried out a systematic mapping between the four informative types of user review 

sentences [Panichella et al., 2015] with twelve types of maintenance activities [Chapin 

et al., 2001] in Section 3.5. The analysis and discussion of the four types of informative 

review sentences and their implication for maintenance activities form the rationale of 

the ARAM implementation, and is an important contribution in this study. 

The keyphrase extractor was implemented using three different algorithms 

including the statistics method term frequency, the graph-based ranking method 

TextRank [Mihalcea and Tarau, 2004], and a self-designed algorithm named 

DoubleRank that combined TextRank with term frequency. TextRank [Mihalcea and 

Tarau, 2004] had rarely been used in analyzing short informal texts, and this study 

made some adjustments of the post-processing phase of the TextRank algorithm. The 

test in Section 7.3 showed that the adjusted TextRank method and the DoubleRank 

method performed well in the keyphrase extraction task of application user reviews. 

The Stanford CoreNLP Sentiment Analyzer [Socher et al., 2013] was employed in 

the sentiment analyzer to perform sentence-based sentiment analysis. The test in 

Section 7.4 validated the assumption that for analyzing the sentiments towards the 

keyphrases extracted from the app review contents, it was accurate to represent the 

sentiment for a keyphrase by the sentiment for the sentence from which the keyphrase 

was extracted. 

The visualization component would produce a summary report on the local 

machine after finishing analyzing the reviews. The author manually went through a 

summary report generated by running ARAM to analyze the 4480 reviews of the social 

app Instagram in Section 8.1. It was shown that the report produced by ARAM was 

concise and informative, and could benefit developers in quickly figuring out the key 

issues discussed in the reviews and further planning corresponding maintenance 

activities. 
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In conclusion, ARAM was the first system that applied the techniques of keyphrase 

extraction and sentiment analysis to analyze the mobile application user reviews for 

maintenance purpose. It was a promising tool for helping developers to easily gain 

useful information from app reviews for planning application maintenance activities. 
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Appendix 1 

Questionnaire for keyphrase extraction test 

 

Designer: Libin Tan 

 

Thanks a lot for participating in the keyphrase extraction test! The purpose of the test is 

to obtain manually extracted keyphrase from 50 selected user reviews as the test data to 

compare with the output of my system. Following are 50 user reviews of the social app 

Facebook crawled from Google Play (review dates are between May 1
st
 and May 5

th
, 

2017). All of them are classified as useful reviews that contain helpful information for 

app maintenance and updates. Your task is to read all the reviews and conclude top 10 

keyphrases from them. 

 

Following are something to notice before the test: 

(1) Please record the time that you spend on the test when you start analyzing the 

reviews. Notice that this is not an easy test and might take some times. 

  

(2) The keyphrase means the word or phrase that can capture the primary topics and 

represent the most relevant information contained in the reviews. A typical keyphrase 

can be a noun such as “button”, or a noun phrase such as “social app” (noun + noun) 

and “nearest hotel location” (adjective + noun).  

 

(3) For the test reason, please only use nouns or noun phrases as your final result. It can 

contain adjective if you think the adjective is informational and necessary. Moreover, 

the keyphrase must have appeared at least once in the original texts of the 50 reviews 

(please don’t use your own word that the original text does not have). You can consider 

the phrases of the same meaning as the same when you choose the keyphrase. Moreover, 

it is normal that the review texts have spelling and grammar mistakes. 

 

(4) There is no specified criterion for choosing the final top 10 keyphrases from the 50 

reviews (Different algorithm also have different criteria such as the appearing times, 

phrase locations and so on. As human beings, we can even depend on our solid instinct 

to figure out the keyphrases based on our rich experience of reading). Please choose the 

top 10 keyphrases and ranked them by the descending order of the “key” extent 

(importance) in your own opinion.  

 

(5) The result of the test will only be used for my research test purpose. There are two 

answer pages at the end. You can draft anywhere you want except the answer pages. 

The order of the 50 reviews is totally random and does not indicate their importance. If 
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you are ready to start, please go to next page to start reading the 50 reviews. Please 

don’t forget to start recording the time. Thank you! 

 

 

(reviews page) 

1. Most recent update is terrible. I can see notifications but I cannot view the post that 

the notification is for. 

 

2. I was hoping the latest update would fix the issue of the app not loading new stories. 

But now it doesn't load anything at all. You'd think a company with the resources that 

Facebook has would be able to develop a decent app at this point. Uninstalling until you 

can prove that you're capable of fixing things. 

 

3. Any plans on releasing a Night Mode setting? Twitter and Reddit have one. It's nice, 

especially at night. :) 

 

4. Update, new phone, year further still no improvement, instant crash now. Old review : 

Huawei Ascend P7,  Android 5.1.1 keeps crashing, less crashes when i turn off auto 

play videos. 

 

5. "Unfortunately facebook needs to be restarted" every 15-25mins. Also, it bounces me 

off some pages, profiles jus so back to my news feed..slow loading like really? Just feel 

to uninstall soon 

 

6. The new update means I can't even open my app anymore. Even without trying to 

open the app it reminds me every 30 seconds that it had crashed. Not to mention the 

horrific content that they allow to be posted, even when I report gruesome violent 

content they tell me they don't have a problem with it. Facebook just gets worse. 

 

7. I can't see my friends online or not? Please fix it for me ,thanks in advance 

 

8. Every update is worse than the last.  *edit* I read the reviews now and not a single 

good one. Useless app, how is it not possible to view the posts from newest to oldest? It 

keeps going to the top of the news feed when you go back from a post or link, if you 

search in a group that has for sale posts it only brings up current sale no sold items or 

'discussions' often the notifications don't come through. It's just all round the worst app 

out there. Possibly better to have a worm on your phone than this app. 

 

9. Facebook not working . Please deduct problem.and saluve 
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10. I gave it 3 stars because why do you feel the need to update like every day or every 

2 days. Then it takes forever to install seriously STOP WITH THE CONSTANT 

UPDATES EVERY TWO OR THREE DAYS!!!! Can't update it without it force 

closing. Fix it!!! Now since my phone updated it takes forever to load and so I logged 

out and it won't let me log back in. Keeps saying try again later. It won t load or it takes 

forever to load. I have to shut my phone off and power it back on just to get it to load. 

Fix it already and stop with the crappy updates 

 

11. So my phone told me yesterday that I needed to update for reliability for 

improvements and speed. This is the biggest joke. My app is slower than ever, and it 

freezes up. I'm so aggravated 

 

12. I can't use this app to download videos..I have to go through the browser in order to 

download videos. 

 

13. Great app, but the newest update made the Like button on comments highlighted 

instead of a number. This makes it hard to read on a mobile device and I have to squint 

to make sure it is highlighted. Other than that it's still great. 

 

14. It can't play videos. How can i solve this? 

 

15. News Feed is STILL NOT loading. My Newsfeed is BLANK again This morning. 

Get someone who knows what their doing to fix this annoying problem. Please fix.... 

 

16. Hate, hate, HATE the new "camera"! It's on an inconvenient spot and when I do 

accidently hit it, it freezes my entire phone. Please remove from top left corner! 

 

17. facebook continues to ruin its own mobile app with update features that nobody has 

asked for, nobody needs and that are annoyingly cluttering up every section of the app.   

the newest addition is the news page being split after 2-3 new items by some contacts 

suggested for adding - a total useless action during every day usage of the news feed. 

this, and many other details, makes checking facebook a tedious, unfriendly experience 

and i personally feel cheated and let down by it.   unfortunately, facebooks crushing 

dominance on the social media market is unbroken, so they continue to act like market 

monopolists who dont give a monkeys wet fart about any user experience. at all. as long 

as they can sell ads. 

 

18. Why not you show my post to all friends 
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19. Ever since the last update, the comment section is very touch sensitive. Simply 

scrolling through comments will bring up the "copy text" list menu completely 

unwarranted. It makes viewing comments extremely tedious. Please fix. 

 

20. Since this last update photos and videos don't load on the news feed. It's definitely 

not a speed issue as I just tested and I'm getting 35 Mbps, but all I get on the feed is 

spinning circles. The media never loads. 

 

21. I hate it when it updates! Thank you fb, but every time you update, it messes up. I 

can't seem to open it right now bc the app crashes when I open it. 

 

22. Its so irritating having recommended friends pop up right in the middle of my 

notifications. Why is that necessary? Notifications are of importance. I don't need all 

these recommendations about who to add and j can't get rid of them from that section. 

 

23. After recent update I can't tap on a notification as it won't let me so I have to close 

the app sometimes for it to work I'm on a galaxy s8 plus so it's not my phone 

 

24. It doesn't work. Crashes on startup making it a useless app, how can a multibillion ? 

business not be able to build a reliable app? 

 

25. After the latest update 03May17, the app is now continuously crashing and is 

unusable! Please fix the bug and I will fix my rating. 

 

26. Fix your video playback. The app keeps closing randomly while I'm trying to watch 

a video. As well as live videos getting me stuck watching it as I'm trying to back out, 

and it will also set my orientation to landscape even though I haven't flipped it. It's a bit 

of a mess.  Also in my opinion, you still need to remove the your day feature. It's 

useless this isn't Snapchat and clearly trying to pay attention to new useless features is 

causing you to forget about taking care of the app itself. 

 

27. Updated and STILL not loading my feed.  I have to access FB via browser for me to 

see my feed...why do i have this app if it doesnt work...? 

 

28. Two "updates" in a row that do not work. News feed not loading. Does anyone from 

Facebook even read these comments? Freaking idiots. 

 

29. Your Facebook team works hard to keep us Well informed. Great to use with other 

apps regarding games, email, social! Enjoying the new added features! Such as the 
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videos (those special occasions Are thoughtful from All of you. My favorite, is the 

Little blue 'Like' balls that drop into a bin! So ? ?) that your team puts together. Nice 

you Personalize these for each of us Facebook users! ? I Love seeing these! They are 

Amazing! ? Thank you for putting these mini videos out on our walls to share, if we 

like too! This tells us that you Do care, for all of us! ~ 

 

30. Hate when it just automatically updates itself. Why don't you ask first before 

updating. Really frustrating. 

 

31. Fix the app!!!! Keeps crashing after the update i open the app then the app keeps 

freezing and crashing so tell me for what good is the updates you keep doing all day 

(yeah this app updates a lot during the day) for nothing just to see the app closings on 

its own!!! 

 

32. New update has bug! auto closes 3 posts into feed. Fix to get 5 stars back! I use a 

Droid Turbo. 

 

33. Bad update. Making the notification and friend tab the same is not a good idea. I 

don't want to see friend recommendations in my notification tab. 

 

34. I have used this app for a few months and everything seems to work as expected. 

However now I can only see new posts in my feed. Once I have viewed the new posts 

and refresh my feed the posts disappear. It's like the app can't get past posts from the 

sever. If I log into facebook using Chrome everything comes up normal and I can see 

the posts I have previously viewed. I have checked everywhere for a setting but can't 

find one. Sadly I am only using this app for the notifications then I open facebook in 

chrome. I have filed a help ticket and have yet to hear anything. I can only hope that 

some future update will fix it. 

 

35. The videos are not displaying properly and there seems to be some issues with the 

alignment part. I am using MI note 4 model. 

 

36. Every time I think this app, that updates every other day, couldn't get worse, it 

surprises and runs crappier than before the update. I go on pages and it's showing me 

stuff from months ago but not the most recent posts. Stop updating the app all the time 

and fix the bugs before you update. Ridiculous! 

 

37. It drains up too much battery when on background. What happened?? 
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38. Jfc you guys made it so the back button on android not only scrolls back up to the 

top but also refreshes your entire news feed. This is by far one of the worst features to 

happen to this app yet. If you ever decide to actually fix anything on this app get rid of 

this feature. It's not how android is supposed to work. 

 

39. Unable to open details like birthday of friends and other details. The app keeps on 

crashing the moment i try to access / see friends details. Kindly fix the same 

 

40. Auto updates? Why is this app allowed to override my phone settings and auto 

update when my phone is set NOT to allow this? Stop taking the piss out of us all. 

You've lost the final 2 stars because of it 

 

41. Getting really hating the current version. I'll be reading something on my news feed 

and suddenly it will refresh for no reason. Then I won't be able to find the post i was 

reading. Seriously annoying! 

 

42. Please fix the problem with video player...  It just stops working after the last 

update...  Done times the aspect ratio is not good...  Sometimes the video starts coming 

 

43. The new feed should be in order of what was last posted, not what was last 

commented on. The privacy settings don't work. I put everything on private or friends 

only but I can still see what I don't want other people to see when I check from a 

different fb that is not connected to my profile at all.  

 

44. Rubbih, many bugs still. Watch a video and cannot return to the main page feeds. 

Have to quit the app then go back to FB. Please fix. 

 

45. Videos constantly crash or do not load. Screen layout is getting worse. 

 

46. Awful app.  Forces auto play on videos which isn't good for 500MB data limits. The 

app should ask this in the setup process. No messenger included it tries to force 

download of the separate messenger app. I see repeated posts in my feed at times and 

I'm defiantly scrolling down. Back button refreshes news feed. I like to pull down to 

refresh only. No option to default to most recent news. Top stories is default. 

 

47. I love this app because it is something different than other apps this app helps to 

stay connected with people and many more facilities are given in the app 
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48. Well! I have been using fb for the last 10 years, but i with the passage of time i 

made myself used to and up to date with the upgradation and introduction of new 

features, but recent update is really not good! In which friend requests and notifications 

are joint together in notification panel, when i try to view profile of new request it goes 

to request panel and then get mix up with other pending requests rather than showing in 

order of date.. kindly separate this option... thanks 

 

49. Latest update again intermittently fails to load notifications. That's four updates this 

has been broken now! Rubbish!! Also, whenever I click on a photo and try to enlarge it 

the app freezes. I have to force-close it and open it again, losing where I was into the 

bargain. Further to these problems, even when closed the app constantly works away 

draining my battery in the background....why?? What are you doing exactly, spying? 

Yet another app I wish that I hadn't updated :-/ 

 

50. Love the app, just wish it wouldn't auto refresh when I'm watching something or 

reading a post. Very frustrating to have to find that post again and then it auto refreshes 

again. 

 

(All 50 reviews are done! You might need to go back and rank the top 10 keyphrases 

that you have recognized.) 

 

 

(answer pages) 

1. Your name:               

 

2. Your result of the top 10 keyphrases (written in descending order of importance): 

 

1 

(Most important) 

 

2  

3  

4  

5  

6  

7  
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8  

9  

10 

(Not most important) 

 

 

3. Time you used for finding out all the 10 keyphrases :      min      s 

 

4. What are your criteria for choosing the 10 keyphrases? 

 

5. Score from 0 to 10, to what extent do you think your selected 10 keyphrases can 

represent the information contained in the 50 reviews? (0 means the keyphrases can 

represent nearly nothing, 1 means they can represent about 10% of the information and 

so on, while 10 means they can represent nearly all the information.)  

 

6. You have manually extracted 10 keyphrases from the 50 reviews. Do you think it is 

possible for you to manually go through 500 reviews to extract top 10 keyphrases? 

Select one from the following answers:         

(1) Sure, it’s a snap.   (2) Yes, although it might be a challenging task.   

(3) Not sure, but it is possible to have a try.     (4) Not really, it is too challenging. 

(5) Are you kidding me? It is impossible! 
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Appendix 2 

Questionnaire for sentiment analysis test 

 

Designer: Libin Tan 

 

Thanks a lot for participating in the aspect sentiment test! It might take about 15 

minutes to finish the test. In this test, there are 50 user reviews of the adventure game 

app “Pokémon GO” crawled from Google Play, which are divided into two sets. The 

first set of 25 reviews all contains the keyphrase (aspect) “pokemon”, and the second 

set all contains the keyphrase “update”. Your task is to judge the author’s sentiment of 

each review towards the keyphrase is positive, negative or neutral. Notice that you need 

only to analyze the sentiment towards the keyphrase but not the sentiment of the whole 

review. Please put a tick mark (√) on the corresponding underline of each review on 

the last two answer pages.  

 

A simple example:  

01. I hate this game because it costs too much time, but I can’t stop catching these cute 

Pokemons!! 

 

We know that the sentiment on “Pokemon” is positive in this review, so tick the 

corresponding place on the answer page:  

01. Positive    √            Negative                  Neutral         

 

Now you can start reading the 50 reviews, and the keyphrase in each review is marked 

in red color. You only need to judge the sentiment towards the keyphrase. You can 

mark the result on the answer pages every time you finish analyzing one review. 

 

 

(reviews page) 

Set one: keyphrase “pokemon” 

 

01. I love the game and I also love pokemon I real life aswell. So I love the game as I 

said and I love the pokemon and make it easier to find pikachus please I'm desperate to 

find one seriously. 

 

02. Why can't I catch Pokemon's during this event, it started well but now I can't catch 

anything. ,Help please. 
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03. Please make the amount of candies smaller to evolve your pokemon. I needed to 

evolve my Eevee and it was 25 and I had 24. 

 

04. I wish you could trade and actually fight pokemon except for just catching 

them.Overall it's amazing. 

 

05. I hate it because it won't let me get the pokemon on the same space some one tell 

me how to get the pokemon!!!!!!!!!!! 

 

06. I go to my grandma village in summer vacation and I can't find any pokestop or any 

pokemon in that place. the area is nizampatnam,andhra 

Pradesh,Hyderabad,telangana,india 

 

07. Cant even catch a pokemon now it just stops working when i try to catch a 

pokemon..... Sad i used to love this game 

 

08. They are telling me to go the gym when I'm level 5, but when I'm level 5, they are 

telling me to go where the gym is. Also,  wwhen I'm near a pokespot, I open my tablet 

and they are telling me that there is no internet  connection. Besides, I find the same 

pokemon in the same place evreyday. How do they expect me to play it like this? 

 

09. I think we should encounter Pokemon in a new way. I think we should  fight to 

encounter Pokemon . 

 

10. Can you plz sort the bugs out as I carnt see my pokemon when I catch them plz I am 

23 and yer still love my pokemon since I was a kid ?? 

 

11. Good, but not everyone has the funds to travel the world to catch Pokemon. Would 

be great if you made them all accessible on the states. Thanks 

 

12. I had to delete and reinstall the game and now the Pokemon are invisible. and now 

my character is out of control 

 

13. I just love Pokemon as a kid and now this game came out it just brings out my child 

hood memories only better because I have to go out and look for them to get a little of 

realness of the game just love this game 

 

14. It needs much better improvement because there are still several problems with this 

game including how the Pokemon don't show up when I check on or use them in a gym 
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battle making me have to wait until something pops up and I'm also incredibly sick of 

dealing with encounting such useless Pokemon that aren't specific enough and the egg 

groups still needs to be fixed really badly because they're still some Pokemon out there 

that are very difficult for us to find in the wild such as Snubbull and Houndour. But 

instead it gives us Pokemon that are very common and that really annoys us still like 

Staryu, the Nidorans, and those loathsome Goldeens that I couldn't stand to waste 2 

kilometers over. That problem really needs to be fixed first or give us much better 

events to participate in if we ever want to enjoy playing this yet again. 

 

15. I Wish you have to fight each pokemon you find to weaken them like in the shoe 

and games... 

 

16. The game is so slow i cant do anything i wasted an incesne waiting for pokemon to 

pop up all there is, is a ball of light that will disappear 

 

17. I can't catch the Pokemon they get away every time when throw the ball. 

 

18. Not know how to catch Pokemon first time 

 

19. You need to make pokemon around water inevitable. It's stupid to travel to a lake to 

do d nothing. 

 

20. HELP I'M STUCK. I tried to catch the pokemon on the tutorial and I was on top of 

them. When i touched them they wouldnt move. Plz fix 

 

21. I can hear the Pokemon spawning around me but they are not visible and I'm unable 

to click on any Pokemon 

 

22. Amazing game, highly addictive, pokestops, walking eggs and ur buddy, as well as 

catching all those pokemon. Bringing adults and their children together to bond over a 

common intrest for a blast from the past =). Does have some bugs, but deff looking 

forward to the updates to come =) 

 

23. How about some updates like Pokemon coming to us like using an insence but an 

automated insence according to player's stats on everyday run.... I have been playing 

this game day and night yet I fail to catch any rare Pokemons. And in here My place 

(Siliguri and Kolkata) very less pokestop are available and very far. Yet somehow I 

manage to fill my bag And yet I fail to catch good Pokemons. It's been 3/4 months I 

have been playing I have reached lvl 24 yet I see only pidgey, rattata, speraow, mukrow, 
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sentret ,etc very common Pokemon. All my lil good Pokemons are hatched from egg, 

else all those I have caught are either have very low cp or poor IVs. It feels like all 

those hardwork have gone in vain. And there are players who cheats can't you do 

something about it. Those players have best of defense pokemon and Cp yet I fail to see 

a single player or anybody near gym. Cause I play day and night I have been to gyms at 

2/3 am and I am the only one walking yet I see battle is going on and there's no one 

present. How about gym battles on the basis of players lvl from 1 to 40... I guess that's 

the max lvl one could reach. They can have options whom to battle according to palyers 

lvl. 24 vs 24 if one wishes to go higher they can. I just mean fair play and everyone 

should be Happy. But I guess doing this you won't earn. All I want to say is there are 2 

types one who could pay and have it all. And one who cannot and do all on his own. 

And that's me so why not we have some advantages who really works hard and are true 

to Game. Otherwise Pokemon go is now my among the best Games I have ever palyed 

and wanted to play. Hope you have given a thought about the hard working palyers. 

 

24. You know all this talk about spoofers is pissing me off i personally know a past 

spoofer and had a legitimate reason for it...He lived in the middle of no where which 

spawned the same pokemon every day nothing new. When you go to big populated 

cities you catch pokemon that are super rare but they catch them everyday...How is this 

game supposed to be fair if the type of pokemon and amount depends on how many 

spray on tan blownout hair people you live by 

 

25.I love this game. I just wish they would hurry and add all the rare pokemon like mew 

and mewtwo and the legendary birds or if they have make it more often to find them. 

And ones like Charizard i have yet to find one. Also i wish they would make the game 

to where we can trade pokemon with people and also battle other people 1v1 or 2v2 etc. 

Also could you guys put some pokestops up at truck stops??? I am a truck driver and i 

like playing this game but i run out of balls and have to wait until i go home to get more. 

I live on the road and truckstops are all i got for weeks.... thanks. 

 

 

Set two: keyphrase “update” 

 

26. I can't login using mobile data after i update....login problem. 

 

27. I think you niantic should make an update on the voice of the Pokémons... Only 

Pikachu has its original voice from the TV series 
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28. I HATE THE UPDATES. I WAS DOING GOOD AND NOW MY PHONE ISN'T 

COMPATIBLEEEE. PLZ FIX THIS. 

 

29. I absolutely love this game more than any other game hands down. However the 

updates help, but sometimes make things worse. When I catch a Pokemon sometimes it 

tells me I didnt.. Never had this problem before this most recent update. Also gps is 

getting better. But why one week straight I caught enough Onix to get 39 candies and 

that was 3 months ago and I go to the same spot every day and dont find a single one 

now.. Also the evolvements are getting shorted on CP some double.. Others only barely 

move. Still love the game, but have a few bugs to fix. 

 

30. I love these updates each time it drains more battery than last time ... better start 

taking 2 battery packs instead of 1 extra 

 

31. PLEASE give us the option to delay updates!!!!! Twice now a forced update cost 

me a gym. 

 

32. Since the update I can't play it because it refuses to find my GPS. 

 

33. Still waiting !!!!!Can't get any pokemon to show up on game   HELP FIX IT  ill 

give 5 stars but I can't play Does not need update Already updated Also just spent 

money on game Love this game but HATE IT RIGHT NOW HELP FIX IT HELP FIX 

IT FIX IT I LIKE PLAYING BUT HAVEN'T BEEN ABLE TO PLAY FOR ABOUT 

2 WEEKS FIX IT 

 

34. This is such a fun game but there needs to be trading and breeding and also more 

updates love all of the events and we need more of them thx Niantic for this game good 

job ?? 

 

35. This update sucks....i have to wait nearly 30 mins everytime I login......it often 

shows unable to authenicate.....please fix it.... 

 

36. It's a great game but it's not getting 5 stars cause since the update when i load the 

game all the Pokémon in my area flash on the screen then disappear this only seams to 

happen where i live cause when i go anywhere else it works perfectly. 

 

37. Thank you for the updates. Please keep adding features such as trading system and 

player vs player battle. 
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38. I think you should add a update where we can battle to other pokemon players that 

are near us please 

 

39. Since a long time waited for an update but can't play the game after update as GPS 

signal not found 

 

40. Would you fix the connectivity issues with the Go Plus! With each update it gets 

worse. I have to discover to proper sequencing of unpairing/ pairing/ restarting the 

game/ rebooting my phone... it must rival those at nuclear missile silos by now.  

 

41. Update mended it all, can play again, the game is great fun and addicting but I still 

haven't found any new pokemon for a while 

 

42. Unfinished game released. Updates are very slow. Can't breed eggs or get candies 

from my buddy, while i lock my mobile phone. Items are hard to get without real 

money. Arena fights while the GPS isn't fully stable are very bad/bugged. IV can#t be 

shown without 3rd party apps. Niantic does everthing to make the life hard for 3rd party 

developers and the community, while not really doing anything against cheaters. ...... 

 

43. THE UPDATE THAT KILLED POKEMON GO!  The reason for this is simple, it 

says that it can't log in, and it's not just my account because I've tested it on different 

accounts on different devices and they all sat the same message, "Failed to authenticate 

to server, please try agein later" 

 

44. I love this game but it is hard to get 7 days in a row when the updates frequently 

cause the game to crash. 

 

45. Great for my ADHD, until everything slowed down and login failed repeatedly, or 

game crashed several times a day. Hoping this update fixes those new prolems. 

 

46. Worst update ever for a game it's absolutely irritating I've lost my interest 

completely on this game me and my friends are gonna drop playing this game If this 

update is not fixed soon once again thank you for making me forget a good game by a 

worst update fy! 

 

47. Update as of 4/9/17 this game is trash now. Location no longer works and the game 

is unplayable. I uninstalled this game and I will NEVER come back. Niantic is a trash 

developer. 
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48. Still no trading. Still no battling. It's impossible to hunt for pokemom you want or 

need. Niantic doesn't support tracking features. Gyms are horrible experiences. No 

status effects on moves, boring gameplay and a huge time sink. Everything in this game 

is a random gamble(spawns, moves, items, and even evolutions!). You never know if 

it's worth it to actually play. Its too bad.. Pokemon GO could have been the greatest 

Pokémon game ever :(  I play everyday hoping it gets better. The problem is everytime 

Niantic releases an event or an update that doesn't address these issues, it proves that 

the real issues are of no concern to them. 

 

49. The updates are getting better, but the inability to spin pokestops above 20mph is 

just stupid. I can understand not allowing radar to work, but spinning stops should still 

be allowed. 

 

50. It would be nice if updates were tested and debugged BEFORE being forced onto 

everyone. 
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Appendix 3 

Results of the sentiment analysis test 

 

P: Positive         N: Negative      O: Neutral 

 

Set one: keyphrase “pokemon” 

 

Review ID 
Sentiment 

Analyzer 

Review 

Rate  
Tester 1 Tester 2 Tester 3 Tester 4 

01 P P P P P P 

02 N P O N N O 

03 O P O N O O 

04 N P O P P O 

05 N N N N N N 

06 N O O N N O 

07 O N N N N N 

08 N O N N N N 

09 O P O O O O 

10 O P O N N N 

11 N P O O P O 

12 N P N N N N 

13 P P P P P P 

14 N N N O N N 

15 O O O O O O 

16 N N O N N N 

17 N N N N N O 

18 O N O O N O 

19 O O N N N N 

20 P N N N N O 

21 N N N N N N 

22 P P P P P P 

23 N P N N N N 

24 N N N N N N 

25 N P O P P N 
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Set two: keyphrase “update” 

 

Review ID 
Sentiment 

Analyzer 

Review 

Rate  
Tester 1 Tester 2 Tester 3 Tester 4 

26 N O O N N N 

27 N P O N N O 

28 O N N N N N 

29 N P N N P N 

30 N O N P N N 

31 N O N N N N 

32 N N N N N N 

33 N N N N N N 

34 P P O O P P 

35 O N N N N N 

36 O P N N P N 

37 N P P P P P 

38 O P O O O O 

39 O N N N N N 

40 N O N N N N 

41 P P P P P P 

42 N N N N N N 

43 N O N N N N 

44 N N N N P N 

45 O P O N N O 

46 N N N N N N 

47 N N N N N N 

48 N N N N N N 

49 N N N P P P 

50 N N N N N N 

 


