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Abstract

Background: The burden of severe acute malnutrition (SAM) is estimated using unadjusted prevalence estimates. SAM
is an acute condition and many children with SAM will either recover or die within a few weeks. Estimating SAM
burden using unadjusted prevalence estimates results in significant underestimation. This has a negative impact on
allocation of resources for the prevention and treatment of SAM. A simple method for adjusting prevalence estimates
intended to improve the accuracy of burden estimates and caseload predictions has been proposed. This method
employs an incidence correction factor. Application of this method using the globally recommended incidence
correction factor has led to programs underestimating burden and caseload in some settings.

Methods: A method for estimating a locally appropriate incidence correction factor from prevalence, population size,
program caseload, and program coverage was developed and tested using data from the Nigerian national SAM
treatment program.

Results: Applying the developed method resulted in errors in caseload prediction of about 10%. This is a considerable
improvement upon the current method, which resulted in a 79.5% underestimate. Methods for improving the
precision of estimates are proposed.

Conclusions: It is possible to considerably improve predictions of caseload by applying a simple model to data that
are readily available to program managers. This implies that more accurate estimates of burden may also be made
using the same methods and data.
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Background
A child with severe acute malnutrition (SAM) has a high
risk of near term mortality [1, 2]. It has been estimated
that SAM affected more than 16 million children globally
in 2016 [3]. This figure is based on prevalence estimates
from cross-sectional surveys. SAM is an acute condition

and many children with SAM will either recover or die
within a few weeks. Estimating the number of SAM cases
present in a population over a given period of time, the
“SAM burden”, using unadjusted prevalence estimates is
likely, therefore, to miss many new (incident) cases and
significantly underestimate the SAM burden [4]. A recent
estimate of the annual global SAM burden that attempts
to account for incident cases suggests that 110 million
cases per year might be a more accurate estimate [5]. Poor
estimates of SAM burden are a problem for program
managers at all levels. Underestimation has a negative
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impact on the prioritization of resource allocation for the
prevention and treatment of SAM both globally and
locally [6].
Burden is the sum of prevalent cases at the start of a

period and incident cases that arise during that period.
The number of prevalent cases in a population at a given
point in time can be estimated using a combination of a
prevalence estimate from a cross-sectional survey and
population data. This information is usually already
available to program managers. Incidence is more com-
plicated and more expensive to estimate.
The relationship between incidence and prevalence

is frequently described using a “bathtub” metaphor
[7]. In this model the flow of water into the bathtub
is analogous to incidence, the level of the water in
the bathtub represents prevalence, and the flow of
water out of the bathtub through the drain represents
recovery and mortality. Incidence in relation to preva-
lence depends, to a large extent, upon the average
duration of illness (see Fig. 1).
The simple relationship between prevalence, inci-

dence, and duration of illness makes it possible to
create a simple mathematical model that allows the
estimation of burden using prevalence and population
estimates together with other data (e.g. program
coverage and program caseloads) that will usually be
available to program managers.
The Community Management of Acute Malnutrition

(CMAM) Forum has proposed a simple method to esti-
mate SAM burden and predict the number of cases that
a program will treat over a given planning period [8].
The number of prevalent cases present in a population
at the time of a prevalence survey is estimated as the
product of prevalence and population size:

Estimated number of prevalent cases ¼ NP

where:

N is the size of the population of interest

P is the prevalence of the condition of interest

The population burden (B) consists of both prevalent
cases and new (incident) cases that are expected to
occur in the program area over a given planning period:

Burden Bð Þ ¼ Estimated number of prevalent cases
þ Expected number of incident cases

The expected number of incident cases can be esti-
mated using:

Expected numer of incident cases ¼ NPK

where K is a correction factor [9] calculated as:

K ¼ Duration of planning period
Average duration of a disease episode

This allows the population burden (B) to be estimated:

B ¼ Estimated number of prevalent cases
þ Expected number of incident cases

B ¼ NP þ NPK

B ¼ NP 1þ Kð Þ
The population burden (B) can be used to predict

the number of cases that a program will treat over
the planning period (L) using an estimate of program
coverage (C):

Fig. 1 The “bathtub” metaphor for the relationship between incidence and prevalence. The rate at which cases leave the population depends
upon the average duration of illness
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Expected program caseload Lð Þ
¼ Expected coverage Cð Þ � Population burden Bð Þ

L ¼ CNP 1þ Kð Þ
All of the terms in this estimator are subject to

uncertainty.
Uncertainty regarding coverage (C) and prevalence (P)

is usually quantifiable and is quantified by confidence in-
tervals or credible intervals on point estimates. The
prevalence of severe acute malnutrition (SAM) is often
estimated with poor relative precision. For example, the
commonly used Standardised Monitoring and Assess-
ment of Relief and Transitions (SMART) prevalence sur-
veys typically have effective sample sizes (i.e. the sample
size after accounting for survey design effects) between
n = 300 and n = 400 [10]. An effective sample size of
n = 400 yields an exact 95% confidence interval of
[0.55%; 3.24%] on a 1.50% point estimate of SAM preva-
lence [11]. The relative precision of this estimate is:

Relative precision %ð Þ ¼ 3:24−0:55
1:50

� 100 ¼ 179:3%

Coverage is typically estimated with a precision of
about ± 10% on a 50% estimate [12]. This is a 40% rela-
tive precision.
Useful accuracy of population estimates can be

achieved by correcting census data to account for popu-
lation growth and migration. It can often be assumed
that the population is estimated with little or no error.
This may not, however, be the case in emergencies in
which there is considerable and ongoing population
movement and / or high levels of mortality.
Caseload (L) is a simple count of program admissions.

This data is collected and reported on a routine basis
and can usually be assumed to be measured with little
or no error.
There is considerable uncertainty about the value of the

incidence correction factor (K). The average duration of an
untreated SAM episode that is currently being used globally
is 7.5 months. This is based on data from two cohort stud-
ies and provides an incidence correction factor (K) of 1.6
for a one-year planning period [13]. It was assumed that
this value of K would apply in all contexts. Governments,
United Nations agencies, non-governmental organizations
(NGOs), and other SAM treatment program implementing
partners have, in the absence of other evidence, been using
this value of K to estimate the burden and expected case-
load and to advocate for resources to treat children with
SAM. Reports from SAM treatment programs suggest that
the use of K = 1.6 has led to programs underestimating
caseload in some West African settings. Recent work indi-
cates that a single value of K for use globally may not be
useful (see Table 1) [6, 14–16].

Data from the Nigerian Community-based Manage-
ment of Acute Malnutrition (CMAM) program from
2014 and 2015 are presented in this article. This pro-
gram started operations in 2009 and has treated be-
tween 300 thousand and 500 thousand SAM cases
each year. During the course of implementation it
was recognized that the use of K = 1.6 had led to
considerable underestimation of SAM burden and
program caseload. Given the public health and secur-
ity situation in Nigeria it is anticipated that the Ni-
gerian CMAM program will run for many years and
accurate estimates of expected caseloads will be re-
quired to secure adequate continued funding.
This article presents a method to adjust or calibrate

the value of K using the population of the program area,
the number of program admissions, estimates of pro-
gram coverage, and estimates of the prevalence of SAM
in order to provide more accurate estimates of burden
and expected caseload during program implementation.
The method is illustrated using data from the Nigerian
CMAM program. The revised estimate of K may also be
useful to predict SAM burden and caseload from preva-
lence surveys in similar settings.

Methods
The caseload estimation formula:

L ¼ CNP 1þ Kð Þ
can be rearranged to find K given the other terms:

L ¼ CNP 1þ Kð Þ

1þ K ¼ L
CNP

K ¼ L
CNP

−1

A suitable value for K can be found by substituting
known values for L, C, N, and P with L being the ob-
served program caseload (i.e. the number of admissions).
The method outlined here assumes that both popula-

tion (N) and caseload (L) are measured with little or no
error although the method can be easily extended to ac-
commodate uncertainty in these terms. The principal
sources of uncertainty in this analysis are, therefore,
prevalence (P) and coverage (C). This can lead to con-
siderable uncertainty in their product (PC) used in the
estimator (Additional file 1).
An approximate 95% confidence interval for the prod-

uct of two proportions (i.e. prevalence (P) and coverage
(C) in this application):

θb¼ P � C

is given by:
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θb� e�1:96�SE logθb Þ�
where:

SE logθb
�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−P

nP � P
þ 1−C
nC � C

r�

and nP and nC are the sample sizes used to estimate
prevalence (P) and coverage (C) respectively [17]. This
formula is not immediately applicable to the sorts of
data likely to be available to program managers because
the effective sample sizes used to estimate both preva-
lence and coverage (nP and nC) will differ from reported
sample sizes due to design effects introduced by the use
of complex samples and / or the use of prior informa-
tion [12, 18, 19].
Prevalence is usually estimated using surveys employing

complex sample designs. The prevalence estimates used in
this report were made by combining results from several
cross-sectional household surveys that used a two-stage
cluster sample design representative at the state level fol-
lowing the SMART methodology [10, 20, 21].
Coverage of CMAM programs is often estimated using

spatially stratified samples [12, 22–24]. Semi-Quantitative
Evaluation of Access and Coverage (SQUEAC) coverage
assessments use a Bayesian beta-binomial conjugate
analysis in which the conjugate prior contains infor-
mation that contributes “pseudo-observations” to the
analysis [12, 19].

The effective sample size associated with the estimate
of a proportion can be calculated from the reported
point estimate (p) and its associated upper and lower
95% confidence limits (UCL and LCL).
Variance (VAR) is calculated as:

VAR ¼ UCL−LCL
2� 1:96

� �2

The effective sample size (neffective) is calculated as:

neffective ¼ p 1−pð Þ
VAR

rounded to the nearest whole number.
This calculation is performed to find both nP and nC

before calculating SE logθb
��
.

We used the approach outlined above to find a
suitable value for K for the Nigerian CMAM pro-
gram. Data relating to program admissions (i.e. case-
load) in 2014 and 2015 were taken from routine
program monitoring reports. Population estimates
were made using data from the 2006 Nigerian Census
corrected for population growth and migration [25].
Prevalence estimates for SAM were available for 2014
and 2015 [20, 21]. An estimate of program coverage
was available from a wide-area Simplified Lot-quality-
assurance Evaluation of Access and Coverage
(SLEAC) survey completed in early 2014 [12, 26, 27].
The reported coverage from this survey was used for

Table 1 Values of incidence correction factors (K) found in recent studiesa

Country Year(s) Kb SAM case definition(s)c W/H
Referencec

Data Source(s) Method Source

Niger 2010–2013 4.30–9.50 W/H < −3 z-scores or
MUAC <115 mm or bi-
lateral pitting edema

WGS Surveillance system (weekly)
Routine program data (weekly)
Routine program data (monthly)

Simple mathematical
models

Deconinck
et al., 2016
[14]

Niger 2006–2007 5.37–11.78 W/H < −3 z-scores or
MUAC <115 mm or bi-
lateral pitting edema

WGS Community cohort (monthly) Compartmental model
to estimate mean
duration of SAM
episodes

Isanaka et
al., 2011 [6]

Mali 2010–2013 2.10–2.50 W/H < −3 z-scores or
MUAC <115 mm or bi-
lateral pitting edema

WGS Community cohort (quarterly)
Surveys (occasional)

Simple mathematical
models

Isanaka et
al., 2016
[15]

Niger 2010–2011 5.00–8.10 W/H < −3 z-scores or
bilateral pitting edema

WGS Community cohort (monthly)
Surveys (monthly)

Simple mathematical
models

Burkina Faso 2009–2010 7.30–17.00 MUAC <110 mm
(prevalence) MUAC
<120 mm (incidence)

WGS Surveys (annual) Routine
program data (monthly)

Simple mathematical
models

Variousd 2005–2009 11.21 W/H < 70% of median NCHS Surveys Caseloads for 5 months
after survey

Linear regression Dale et al.,
2017 [16]

aA range of methods and data sources were used (surveillance systems, workload returns, cohort studies, repeated cross-sectional surveys, compartmental models,
and regression of observed caseload against prevalence) were used to estimate the incidence correction factors (K). Refer to the original articles for details
bA range of values (i.e. from different methods, data sources, settings, and case-definitions for severe acute malnutrition) is given when available
cSAM = severe acute malnutrition, W/H = weight-for-height, MUAC = mid-upper-arm circumference, WGS = World Health Organization child growth standards,
NCHS = National Center for Health Statistics child growth reference
d24 datasets (surveys and program admissions) from DRC (8), Burundi (2), Somalia (2), Sudan (7), Myanmar (2), and Niger (3). The incidence correction factor (K)
given in the table is for pooled data assuming coverage (C) of 38% (from Rogers et al., 2015). Considerable variation in K between settings was observed
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both 2014 and 2015 since it was the only coverage
data available. Data were entered and analyzed using
Microsoft Excel. This software was used because it is
likely to be available and familiar to CMAM program
managers. A Microsoft Excel spreadsheet that per-
forms the required calculations is provided as online
supporting material. All calculations were checked
using the R Language and Environment for Statistical
Computing version 3.3.3 [28].
The method used to calculate the 95% confidence limits

for the product of prevalence and coverage (PC) is ap-
proximate. A less approximate 95% confidence interval
(i.e. an interval that contains the true value close to 95% of
the time) may be calculated using a bootstrap estimator
[29, 30]. Estimates of the incidence correction factor (K)
were made using a bootstrap estimator for the product of
prevalence and coverage (PC). A percentile bootstrap esti-
mator with one million replicates for prevalence and cover-
age drawn from appropriate binomial distributions was
used [29]. Data were analyzed using the R Language and
Environment for Statistical Computing version 3.3.3 [28].

Results
Table 2 shows the observed and expected (i.e. calcu-
lated using K = 1.6) caseloads and the revised inci-
dence correction factors (K) for 2014 and 2015

together with the data on which the calculations were
based. Use of K = 1.6 to predict caseload had resulted
in gross underestimates in both years. The resulting
revised estimates for K were K = 14.39 (95% CI = 6.64;
30.02) and K = 11.66 (95% CI = 5.94; 22.10) for 2014
and 2015 respectively. These estimates were pooled
giving K = 13.02 (95% CI = 6.80; 19.25). The final
two rows of Table 2 show the expected caseloads for
2014 and 2015 using the pooled estimate for K and
difference between the observed and expected case-
loads. Table 3 compares estimates of the incidence
correction factor (K) calculated using the approximate
method and the bootstrap estimator.

Discussion
The approach outlined in this document can provide useful
estimates of locally appropriate incidence correction fac-
tors. Applying the value of K estimated for 2014 to the
population, prevalence, and coverage data for 2015 yields a
predicted caseload of 484,766 cases. This is a 21.6% over-
estimate of the observed caseload for 2015. Some of this
error may have been due to lower than specified coverage
during the implementation phase of additional CMAM
programming initiated in early 2015 as part of the ongoing
emergency response in Northern Nigeria. This degree of
error in caseload prediction is a considerable improvement

Table 2 Incidence correction factors for northern Nigeria CMAM program 2014 and 2015 and the data used to calculate them

Year

2014 2015 Data sources

Population N 3,550,827 4,281,700 Nigeria census 2006 corrected for population growth
and migration. Population is for children aged between
6 and 59 months in districts in which CMAM services
were delivered.

Prevalencea P 1.60% (0.50%; 2.71%) 2.01% (0.82%; 3.19%) Pooled prevalence from state level SMART surveys

Program Coverageb C 36.6% (32.3%; 40.9%) 36.6% (32.3%; 40.9%) Wide-area SLEAC survey

Observed caseload L 320,047 398,676 Routine program monitoring data

Expected caseload
(using K = 1.6)

EK = 1.6 = CNP(1 + K) 54,063 81,897 C, N, and P as above (C and P expressed as
proportions). Calculations are based on K = 1.6

Difference (observed −
expected)

L − EK = 1.6 265,984 316,779 Calculated as the difference between observed
caseload (L) and expected caseload (E).

Prevalence × Coverage PC 0.59% (0.29%; 1.18%) 0.74% (0.40%; 1.34%) Calculated (see text)

Incidence correction
factorc

K ¼ L
PCN−1 14.39 (6.64; 30.02) 11.66 (5.94; 22.10) Calculated (see text)

Expected caseload (using
pooled adjusted
incidence correction
factor)

EK = 13.02 = CNP(1 + K) 291,527 441,612 C, N, and P as above (C and P expressed as
proportions). Calculations are based on K = 13.02 (see
text).

Difference (observed −
expected)

L − EK = 13.02 28,520 −42,936 Calculated as the difference between observed
caseload (L) and expected caseload (EK = 13.02).

aPrevalence is for MUAC <115 mm or bilateral pitting edema. This case-definition accounts for c. 98% of all program admissions based on an analysis of routine
program monitoring data from two states of northern Nigeria (n = 102,245 admissions from January 2010 to December 2013). Prevalence estimates for the states
in which the program was operating are reported. This was calculated as the population weighted average of SMART survey results from individual states
bCoverage refers to point coverage (i.e. the proportion of current SAM cases found by the survey that were enrolled in the CMAM program). Results from a wide-area
SLEAC survey from February 2014 are used for both years [Banda et al., 2014]
cThe formula of the estimator for K is rearranged to reflect the fact that PC was calculated prior to use
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upon the 79.5% underestimate experienced when using
K = 1.6. Applying the pooled estimate of K (i.e. K = 13.02)
to the population, prevalence, and coverage data yields pre-
dicted caseloads of 291,257 cases and 441,612 cases for
2014 and 2015 respectively. These are a 9.0% underestimate
and 10.8% overestimate of the true cases for 2014 and
2015. Error are likely to decrease over time as more annual
estimates of K become available. Not all errors have the
same consequences. For example, overestimation may have
positive consequences if program coverage is limited by
stop-start funding and supply breaks caused by underesti-
mation of burden and / or predicted caseload. Underesti-
mation may lead to an under-resourced program in which
program activities essential to achieving and maintaining
coverage (e.g. community mobilization, community
sensitization, and community-based case-finding activities)
are neglected in order to maintain core clinical activities.
Underestimation, in some cases, may lead to supply breaks
necessitating the temporary closure of programs.
Confidence intervals for the bootstrap estimates of the

incidence correction factors are wider than when the ap-
proximate method is used. Estimates made using the ap-
proximate method are likely to be spuriously precise.
The use of approximate methods to calculate confidence
intervals is, however, a widely accepted practice for
many public health applications. The approximate
method has the advantage of being easy to implement
using software, such as Microsoft Excel, that is available
and familiar to CMAM program managers.
Estimates of the incidence correction factor (K) lack

precision even when the approximate method is used.
For example, the 95% confidence interval for the 2015
estimate of the incidence correction factor (K) using the
approximate method ranges between K = 5.94 and
K = 22.10. This translates into a 95% confidence interval
for the caseload prediction of between about 218 thou-
sand and 728 thousand. This degree of imprecision may
limit the utility of the method as a planning tool.
The principal sources of imprecision are in estimates

of prevalence and coverage. Improving the precision of
estimates of prevalence and / or coverage will improve
the precision with which the incidence correction factor
(K) is estimated.
SAM prevalence is usually estimated with poor relative

precision. Relative precision of the prevalence estimates

are 138% for the 2014 SAM prevalence estimate and
118% for the 2015 prevalence estimate. The lack of pre-
cision in prevalence estimates is due, in part, to the use
of sample designs that reduce the effective sample sizes
of surveys. It is likely that precision could be improved
using, for example, stratified sample designs and larger
sample sizes. This would, however, require considerable
changes to current practice. Lack of precision is also due
to the way that survey data are analyzed. Replacing the
classic estimator:

Prevalence ¼ Number of SAM cases found in the survey sample
Survey sample size

with a PROBIT estimator has been demonstrated to re-
duce the half-width of 95% CIs by about 60% with only
small losses of accuracy [31–33]. Slightly Larger gains in
precision have been demonstrated using a Bayesian-
PROBIT estimator [19, 34]. The advantage of data ana-
lytic approaches to improving precision are that they
can be applied to data collected with currently used sur-
vey methods including historical data at little extra cost.
The precision of the coverage estimate was not an

issue in the work reported here because a large stratified
sample was used to estimate coverage with good relative
precision (i.e. 23.5%). Precision of coverage estimates
may, however, be a problem for smaller programs. We
investigated this issue using data from 227 SQUEAC
coverage assessments of district-level NGO-delivered
CMAM programs performed between January 2010 and
July 2015 and provided to us by the Coverage Monitor-
ing Network. The median relative precision for coverage
estimates between 40% and 60% was 42.6% (IQR = 38.4%;
48.5%). This is an expected result as SQUEAC coverage
assessments are usually designed to estimate coverage
with this level of precision [12].
The poorer relative precision of SAM prevalence esti-

mates means that efforts to improve the precision of these
estimates are likely to yield greater improvements in the
precision with which the incidence correction factor (K) is
estimated than may be achieved by efforts to improve the
precision of coverage estimates. This is illustrated in
Table 4 using the data from 2015. It is important to note
that improvement in the precision of prevalence estimates
can be achieved with very little increase in costs but that
improvements in the precision of coverage estimates
would entail considerable increases in costs.

Limitations
A key limitation of the work reported here is that cover-
age data was not current, particularly for 2015.
A limitation of the method described here is that burden

and caseload may be influenced by migration into and out
of the program area. Rapid and substantial changes in the
population of the program area are likely to affect

Table 3 Estimates of the incidence correction factor made
using two methods to calculate the product of prevalence and
coverage

Year K (approximate) K (bootstrap)

2014 14.39 (6.64; 30.02) 14.72 (7.73; 40.44)

2105 11.66 (5.94; 22.10) 11.91 (6.17; 27.08)

Pooled 13.02 (6.80; 19.25) 13.32 (6.10; 20.53)
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population size (N), prevalence (P), and program coverage
(C). Migration may, therefore, result in grossly inaccurate
predictions of burden (B) and caseload (L) that are based
on estimates of population size (N), prevalence (P), and
program coverage (C). Monitoring population movements
and adjusting burden and caseload predictions may help to
address this problem. Adjustment may also require that
additional prevalence and coverage surveys be undertaken.
In the case of the Nigerian CMAM program there have
been reports of SAM cases entering Nigeria from Niger
and being admitted to CMAM sites in districts that border
Niger. The effect of this on the work reported here is likely
to be small since data for the whole country were used. It is
important to note that this may have larger effects on bur-
den (B) and caseload (L) predictions for (e.g.) small NGO-
delivered programs operating in border districts.
The assumption that caseload (L) is measured with

little or no error may also be a limitation. In the case
of the Nigerian CMAM program there have been re-
ports from 3 of the 114 districts in which the pro-
gram is operating of beneficiaries being registered at
more than one CMAM site with the assumed
intention of receiving additional food and drugs. New
CMAM sites were opened in these districts and some
of the double registration may have been due to in-
formal transfers between sites. An informal transfer
would have been reported as a new admission at the
destination site and, some weeks later, as a defaulting
patient at the originating site. The effect of this
would have been to increase reported caseload (L). It
seems likely that double registration will have had
only a small effect on caseload (L) used in the work
reported here. This would have caused only a small
increase in the estimates for K reported here. The
covert nature of some double registrations does mean
that the magnitude of any increase will always be dif-
ficult to quantify.

Conclusion
The work reported here shows that it is possible to consid-
erably improve predictions of CMAM caseload by applying
a simple mathematical model to data that are readily avail-
able to program managers. This implies that more accurate

predictions of burden may also be made using the same
methods and data. The precision of estimates of caseload
and burden may be improved by using PROBIT or
Bayesian-PROBIT estimators of SAM prevalence.
The implication of this study, and of similar reports

based on a variety of approaches (see Table 1), is that
the current estimates of SAM burden are likely to be
gross underestimates. Applying the pooled incidence
correction factor found in this study to the 16 million
estimate made using prevalence data yields an estimated
global SAM burden of 208 (95% CI = 109; 308) million
cases annually. It seems unlikely, however, that the inci-
dence correction factor estimated for the Nigerian
CMAM program will be globally applicable. Local esti-
mates of K will be needed to make local prediction of
burden and caseload. These local estimates of K could
be applied to local estimates of prevalence and popula-
tion with the results summed in order to estimate global
SAM burden.
Given the public health importance of having reliable

estimates of burden and caseload and the uncertainties of
this approach based on program data, a confirmation of
estimates of K using direct estimates of incidence from
continuous monitoring of open cohorts and surveillance
systems in similar settings may be warranted. Comparison
with other indirect methods may also prove useful.

Additional file

Additional file 1: Caseload method. (XLSX 36 kb)
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