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FRACTIONAL MAXIMAL OPERATOR AND ITS

COMMUTATORS IN GENERALIZED MORREY SPACES ON

HEISENBERG GROUP

AHMET EROGLU, JAVANSHIR V. AZIZOV, AND VAGIF S. GULIYEV

Abstract. In this paper we study the boundedness of the fractional
maximal operator Mα on Heisenberg group Hn in the generalized Mor-
rey spaces Mp,ϕ(Hn). We shall give a characterization for the strong and
weak type Spanne and Adams type boundedness of Mα on the general-
ized Morrey spaces, respectively. Also we give a characterization for the
Spanne and Adams type boundedness of fractional maximal commutator
operator Mb,α on the generalized Morrey spaces.

1. Introduction

Heisenberg groups, in discrete and continuous versions, appear in many parts
of mathematics, including Fourier analysis, several complex variables, geometry,
and topology. We state some basic results about Heisenberg group. More detailed
information can be found in [4, 7, 8] and the references therein. Let Hn be the
2n+ 1-dimensional Heisenberg group. That is, Hn = Cn×R, with multiplication

(z, t) · (w, s) = (z + w, t+ s+ 2Im(z · w̄)),

where z · w̄ =
n∑
j=1

zjw̄j . The inverse element of u = (z, t) is u−1 = (−z,−t) and

we write the identity of Hn as 0 = (0, 0). The Heisenberg group is a connected,
simply connected nilpotent Lie group. We define one-parameter dilations on Hn,
for r > 0, by δr(z, t) = (rz, r2t). These dilations are group automorphisms and
the Jacobian determinant is rQ, where Q = 2n+2 is the homogeneous dimension
of Hn. A homogeneous norm on Hn is given by

|(z, t)| = (|z|2 + |t|)1/2.

With this norm, we define the Heisenberg ball centered at u = (z, t) with radius
r by B(u, r) = {v ∈ Hn : |u−1v| < r}, and we denote by Br = B(0, r) = {v ∈
Hn : |v| < r} the open ball centered at 0, the identity element of Hn, with radius
r. The volume of the ball B(u, r) is CQr

Q, where CQ is the volume of the unit
ball B1.
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Using coordinates u = (z, t) = (x + iy, t) for points in Hn, the left-invariant

vector fields Xj , Yj and T on Hn equal to
∂

∂xj
,
∂

∂yj
and

∂

∂t
at the origin are

given by

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, T =

∂

∂t
,

respectively. These 2n + 1 vector fields form a basis for the Lie algebra of Hn

with commutation relations

[Yj , Xj ] = 4T

for j = 1, ..., n, and all other commutators equal to 0.
Let f ∈ Lloc

1 (Hn). The fractional maximal operator Mα and the fractional
integral operator Iα are defined by

Mαf(u) = sup
r>0
|B(u, r)|−1+α/Q

∫
B(u,r)

|f(v)| dV (v),

Iαf(u) =

∫
Hn

f(v)dV (v)∣∣u−1v∣∣Q−α , 0 < α < Q,

where Q is the homogeneous dimension of the Heisenberg group Hn and |B(u, r)|
is the Haar measure of the Hn- ball B(u, r). If α = 0, then M ≡ M0 is the
Hardy-Littlewood maximal operator on Hn. Recall that, for 0 < α < Q,

Mαf(u) ≤ C
α
Q
−1

Q Iα|f |(u).

The operators Mα and Iα play an important role in real and harmonic analysis
and applications (see, for example [4] and [7]).

In the present work, we shall give a characterization for the Spanne and Adams
type boundedness of the operator Mα on the generalized Morrey spaces, including
weak versions. Also we give a characterization for the Spanne and Adams type
boundedness of fractional maximal commutator operator Mb,α on the generalized
Morrey spaces.

By A . B we mean that A ≤ CB with some positive constant C independent
of appropriate quantities. If A . B and B . A, we write A ≈ B and say that A
and B are equivalent.

2. Generalized Morrey spaces

In the study of local properties of solutions to of partial differential equations,
together with weighted Lebesgue spaces, Morrey spaces Lp,λ(Hn) play an impor-
tant role, see [9]. They were introduced by C. Morrey in 1938 [17]. The Morrey
space in a Heisenberg group is defined as follows: for 1 ≤ p ≤ ∞, 0 ≤ λ ≤ Q, a
function f ∈ Lp,λ(Hn) if f ∈ Lloc

p (Hn) and

‖f‖Lp,λ := sup
u∈Hn, r>0

r
−λ
p ‖f‖Lp(B(u,r)) <∞,

(If λ = 0, then Lp,0(Hn) = Lp(Hn); if λ = Q, then Lp,Q(Hn) = L∞(Hn); if λ < 0
or λ > Q, then Lp,λ(Hn) = Θ, where Θ is the set of all functions equivalent to 0
on Hn.)
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We also denote by WLp,λ(Hn) the weak Morrey space of all functions f ∈
WLloc

p (Hn) for which

‖f‖WLp,λ
≡ ‖f‖WLp,λ(Hn) = sup

u∈Hn, r>0
r
−λ
p ‖f‖WLp(B(u,r)) <∞,

where WLp(B(u, r)) denotes the weak Lp-space of measurable functions f for
which

‖f‖WLp(B(u,r)) = sup
t>0

t |{v ∈ B(u, r) : |f(v)| > t}|1/p . (2.1)

We find it convenient to define the generalized Morrey spaces in the form as
follows.

Definition 2.1. Let 1 ≤ p <∞ and ϕ(u, r) be a positive measurable function on
Hn × (0,∞). The generalized Morrey space Mp,ϕ(Hn) is defined of all functions

f ∈ Llocp (Hn) by the finite norm

‖f‖Mp,ϕ = sup
u∈Hn,r>0

r
−Q
p

ϕ(u, r)
‖f‖Lp(B(u,r)).

Also the weak generalized Morrey space WMp,ϕ(Hn) is defined of all functions

f ∈ Llocp (Hn) by the finite norm

‖f‖WMp,ϕ = sup
u∈Hn,r>0

r
−Q
p

ϕ(u, r)
‖f‖WLp(B(u,r)).

The following lemma in the Euclidean setting was proved in [2, 3]

Lemma 2.1. [6] Let ϕ(u, r) be a positive measurable function on Hn × (0,∞).

(i) If

sup
t<r<∞

r
−Q
p

ϕ(u, r)
=∞ for some t > 0 and for all u ∈ Hn, (2.2)

then Mp,ϕ(Hn) = Θ.
(ii) If

sup
0<r<τ

ϕ(u, r)−1 =∞ for some τ > 0 and for all u ∈ Hn, (2.3)

then Mp,ϕ(Hn) = Θ.

Remark 2.1. We denote by Ωp the sets of all positive measurable functions ϕ on
Hn × (0,∞) such that for all t > 0,

sup
u∈Hn

∥∥∥ r
−Q
p

ϕ(u, r)

∥∥∥
L∞(t,∞)

<∞, and sup
u∈Hn

∥∥∥ϕ(u, r)−1
∥∥∥
L∞(0,t)

<∞,

respectively. In what follows, keeping in mind Lemma 2.1, we always assume that
ϕ ∈ Ωp.

A function ϕ : (0,∞) → (0,∞) is said to be almost increasing (resp. almost
decreasing) if there exists a constant C > 0 such that

ϕ(r) ≤ Cϕ(s) (resp. ϕ(r) ≥ Cϕ(s)) for r ≤ s.
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Let 1 ≤ p < ∞. Denote by Gp the the set of all almost decreasing functions

ϕ : (0,∞)→ (0,∞) such that t ∈ (0,∞) 7→ t
Q
p ϕ(t) ∈ (0,∞) is almost increasing.

Seemingly the requirement φ ∈ Gp is superfluous but it turns out that this
condition is natural. Indeed, Nakai [18, p. 446] established that there exists

a function ρ such that ρ itself is decreasing, that ρ(t)tQ/p ≤ ρ(r)rQ/p for all
0 < t ≤ r <∞ and that Mp,φ(Hn) = Mp,ρ(Hn).

By elementary calculations we have the following, which shows particularly
that the spaces Mp,ϕ(Hn) and WMp,ϕ(Hn) are not trivial, see for example, [5].

Lemma 2.2. [6] Let ϕ ∈ Gp, 1 ≤ p < ∞, B0 = B(u0, r0) and χ
B0

is the

characteristic function of the ball B0, then χ
B0
∈ Mp,ϕ(Hn). Moreover, there

exists C > 0 such that

1

ϕ(r0)
≤ ‖χ

B0
‖WMp,ϕ ≤ ‖χB0

‖Mp,ϕ ≤
C

ϕ(r0)
.

The following theorem was proved in [14].

Theorem 2.1. [14] Let 1 ≤ p <∞ and ϕ1, ϕ2 ∈ Ωp satisfies the condition

sup
r<t<∞

t
−Q
p ess sup

t<s<∞
ϕ1(u, s) s

Q
p ≤ C ϕ2(u, r), (2.4)

where C does not depend on u and r. Then for p > 1, the operator M is bounded
from Mp,ϕ1(Hn) to Mp,ϕ2(Hn) and for p = 1, the operator M is bounded from
M1,ϕ1(Hn) to WM1,ϕ2(Hn).

Corollary 2.1. Let 1 ≤ p <∞ and ϕ ∈ Ωp satisfies the condition

sup
r<t<∞

t
−Q
p ess sup

t<s<∞
ϕ(u, s) s

Q
p ≤ C ϕ(u, r), (2.5)

where C does not depend on u and r. Then for p > 1, the operator M is
bounded on Mp,ϕ(Hn) and for p = 1, the operator M is bounded from M1,ϕ(Hn)
to WM1,ϕ(Hn).

3. Fractional maximal operator in the spaces Mp,ϕ(Hn)

3.1. Spanne type result. The following theorem is valid.

Theorem 3.1. [14] Let 1 ≤ p < ∞, 0 ≤ α < Q
p , 1

q = 1
p −

α
Q , ϕ1 ∈ Ωp, ϕ2 ∈ Ωq

and the pair (ϕ1, ϕ2) satisfy the condition

sup
t<r<∞

r
−Q
q ess sup

r<s<∞
ϕ1(u, s)s

Q
p ≤ C ϕ2(u, t), (3.1)

where C does not depend on u and t. Then for p > 1 the operator Mα is bounded
from Mp,ϕ1(Hn) to Mq,ϕ2(Hn) and for p = 1 the operator Mα is bounded from
M1,ϕ1(Hn) to WMq,ϕ2(Hn).

Remark 3.1. Note that, in the Euclidean setting Theorem 3.1 was proved in [15],
see also [10, 11, 12, 13].

For proving our main results, we need the following estimate.
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Lemma 3.1. If B0 := B(u0, r0), then rα0 ≤ C
− α
Q

Q 2Q−αMαχB0
(u) for every u ∈

B0.

Proof. It is well known that

Mαf(u) ≤ 2Q−αMαf(u), (3.2)

where Mα(f)(u) = sup
B3u
|B|−1+

α
Q
∫
B |f(v)|dV (v).

Now let u ∈ B0. By using (3.2), we get

MαχB0(u) ≥ 2α−QMαχB0(u) ≥ 2α−Q sup
B3u
|B|−1+

α
Q |B ∩B0|

≥ 2α−Q|B0|−1+
α
Q |B0 ∩B0| = C

α
Q

Q 2α−Qrα0 .

�

The following theorem is one of our main results.

Theorem 3.2. Let 0 ≤ α < Q, p, q ∈ [1,∞), ϕ1 ∈ Ωp and ϕ2 ∈ Ωq.

1. If 1 ≤ p < Q
α and 1

q = 1
p −

α
Q , then the condition (3.1) is sufficient for the

boundedness of Mα from Mp,ϕ1(Hn) to WMq,ϕ2(Hn). Moreover, if 1 < p < Q
α ,

the condition (3.1) is sufficient for the boundedness of Mα from Mp,ϕ1(Hn) to
Mq,ϕ2(Hn).

2. If the function ϕ1 ∈ Gp, then the condition

tαϕ1(t) ≤ Cϕ2(t), (3.3)

for all t > 0, where C > 0 does not depend t, is necessary for the boundedness of
Mα from Mp,ϕ1(Hn) to WMq,ϕ2(Hn) and Mp,ϕ1(Hn) to Mq,ϕ2(Hn).

3. Let 1 ≤ p < Q
α and 1

q = 1
p−

α
Q . If ϕ1 ∈ Gp, then the condition (3.3) is neces-

sary and sufficient for the boundedness of Mα from Mp,ϕ1(Hn) to WMq,ϕ2(Hn).

Moreover, if 1 < p < Q
α , then the condition (3.3) is necessary and sufficient for

the boundedness of Mα from Mp,ϕ1(Hn) to Mq,ϕ2(Hn).

Proof. The first part of the theorem proved in Theorem 3.1.
We shall now prove the second part. Let B0 = B(u0, t0) and x ∈ B0. By

Lemma 3.1 we have tα0 ≤ CMαχB0
(x). Therefore, by Lemma 2.2 and Lemma 3.1

tα0 . |B0|−
1
p ‖MαχB0

‖Lq(B0) . ϕ2(t0)‖MαχB0
‖Mq,ϕ2

. ϕ2(t0)‖χB0
‖Mp,ϕ1

.
ϕ2(t0)

ϕ1(t0)

or

tα0 .
ϕ2(t0)

ϕ1(t0)
for all t0 > 0⇐⇒ tα0ϕ1(t0) . ϕ2(t0) for all t0 > 0.

Since this is true for every t0 > 0, we are done.
The third statement of the theorem follows from first and second parts of the

theorem. �

Remark 3.2. If we take ϕ1(t) = t
λ−Q
p and ϕ2(t) = t

µ−Q
q at Theorem 3.2, then con-

dition (3.3) is equivalent to 0 < λ < Q− αp and λ
p = µ

q , respectively. Therefore,

we get the following Spanne result for Morrey spaces on Heisenberg groups.
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Corollary 3.1. Let 0 ≤ α < Q, 1 ≤ p < Q
α , 0 < λ < Q − αp and 1

q = 1
p −

α
Q .

Then the operator Mα is bounded from Lp,λ(Hn) to WLq,µ(Hn) if and only if
λ
p = µ

q . Moreover, if 1 < p < Q
α , then the operator Mα is bounded from Lp,λ(Hn)

to Lq,µ(Hn) if and only if λ
p = µ

q .

3.2. Adams type results. We got the Adams-Guliyev (see, [15]) type result
for the operator Mα in the space Mp,ϕ(Hn) in [14, Theorem 3.3]. The following
is a result of Adams-Gunawan (see, [16]) type for the operator Mα in the space
Mp,ϕ(Hn).

Theorem 3.3. (Adams type result). Let 0 < α < Q, 1 ≤ p < q <∞ and ϕ ∈ Ωp

satisfy condition (2.5) and

rαϕ(u, r) + sup
r<t<∞

tα ϕ(u, t) ≤ Cϕ(u, r)
p
q , (3.4)

where C does not depend on u ∈ Hn and r > 0. Then for p > 1, the operator
Mα is bounded from Mp,ϕ(Hn) to M

q,ϕ
p
q
(Hn) and for p = 1, the operator Mα is

bounded from M1,ϕ(Hn) to WM
q,ϕ

1
q
(Hn).

Proof. Let 1 ≤ p <∞ and f ∈Mp,ϕ(Hn).
Write f = f1+f2, where f1(v) = fχ2B (v), f2(v) = fχ

{
(2B)

(v) and B = B(u, r).

Then

Mαf(v) ≤Mαf1(v) +Mαf2(v).

For Mαf1(v), following Hedberg’s trick (see for instance [20], p. 354), for all
v ∈ Hn we obtain Mαf1(v) ≤ C1r

αMf(v).

Let v be an arbitrary point in B. If B(v, t) ∩ {
(B(u, 2r)) 6= ∅, then t > r.

Indeed, if z ∈ B(v, t) ∩ {
(B(u, 2r)), then

t > |v−1z| ≥ |u−1z| − |u−1v| > 2r − r = r.

On the other hand, B(v, t) ∩ {
B(u, 2r) ⊂ B(u, 2t). Indeed, if z ∈ B(v, t) ∩

{
(B(u, 2r)), then we get |u−1z| ≤ |v−1z|+ |u−1y| < t+ r < 2t.

Hence

Mαf2(v) = sup
t>0

1

|B(v, t)|1−
α
Q

∫
B(v,t)∩ {(B(u,2r))

|f(z)|dV (z)

≤ 2Q−α sup
t>r

1

|B(u, 2t)|1−
α
Q

∫
B(u,2t)

|f(z)|dV (z)

= 2Q−α sup
t>2r

1

|B(u, t)|1−
α
Q

∫
B(u,t)

|f(z)|dV (z)

≤ 2Q−αC
α
Q

Q sup
r<t<∞

tα

|B(u, t)|
1
p

‖f‖Lp(B(u,t)).

(3.5)
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Then from conditions (3.4) and (3.5) and the technique in [19, p. 6492] we
have

Mαf2(v) . rαMf(v) + sup
r<t<∞

tα

|B(u, t)|
1
p

‖f‖Lp(B(u,t))

≤ rαMf(v) + sup
r<t<∞

t
α−Q

p ‖f‖Lp(B(u,t))

≤ rαMf(v) + ‖f‖Mp,ϕ sup
r<t<∞

tαϕ(u, t)

. min{ϕ(u, r)
p
q
−1
Mf(v), ϕ(u, r)

p
q ‖f‖Mp,ϕ}

. sup
s>0

min{s
p
q
−1
Mf(v), s

p
q ‖f‖Mp,ϕ}

= (Mf(v))
p
q ‖f‖

1− p
q

Mp,ϕ
,

(3.6)

where we have used that the supremum is achieved when the minimum parts are
balanced. From Corollary 2.1 and (3.6), we get

‖Mαf‖M
q,ϕ

p
q
. ‖f‖

1− p
q

Mp,ϕ
‖(Mf(·))

p
q ‖M

q,ϕ
p
q

= ‖f‖
1− p

q

Mp,ϕ
‖Mf‖

p
q

Mp,ϕ
. ‖f‖Mp,ϕ ,

if 1 < p < q <∞ and

‖Mαf‖WM
q,ϕ

p
q
. ‖f‖

1− p
q

Mp,ϕ
‖Mf‖

p
q

Mp,ϕ
. ‖f‖Mp,ϕ ,

if 1 ≤ p < q <∞. �

The following theorem is one of our main results.

Theorem 3.4. Let 0 < α < Q, 1 ≤ p < q <∞ and ϕ ∈ Ωp.
1. If ϕ(u, t) satisfy condition (2.5), then the condition (3.4) is sufficient for

the boundedness of Mα from Mp,ϕ(Hn) to WM
q,ϕ

p
q
(Hn). Moreover, if p > 1,

then the condition (3.4) is sufficient for the boundedness of Mα from Mp,ϕ(Hn)
to M

q,ϕ
p
q
(Hn).

2. If ϕ ∈ Gp, then the condition

rαϕ(r) ≤ Cϕ(r)
p
q , (3.7)

for all r > 0, where C > 0 does not depend r, is necessary for the boundedness of
Mα from Mp,ϕ(Hn) to WM

q,ϕ
p
q
(Hn) and from Mp,ϕ(Hn) to M

q,ϕ
p
q
(Hn), if p > 1.

3. If ϕ ∈ Gp, then the condition (3.7) is necessary and sufficient for the
boundedness of Mα from Mp,ϕ(Hn) to WM

q,ϕ
p
q
(Hn). Moreover, if p > 1, then

the condition (3.7) is necessary and sufficient for the boundedness of Mα from
Mp,ϕ(Hn) to M

q,ϕ
p
q
(Hn).

Proof. The first part of the theorem is a corollary of Theorem 3.3.
We shall now prove the second part. Let B0 = B(u0, t0) and x ∈ B0. By

Lemma 3.1 we have tα0 ≤ CMαχB0(x). Therefore, by Lemma 2.2 and Lemma 3.1
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we have

tα0 . |B0|−
1
q ‖MαχB0

‖Lq(B0) . ϕ(t0)
p
q ‖MαχB0

‖M
q,ϕ

p
q
. ϕ(t0)

p
q ‖χB0

‖Mp,ϕ . ϕ(t0)
p
q
−1

or

tα0ϕ(t0)
1− p

q . 1 for all t0 > 0⇐⇒ tα0ϕ(t0) . ϕ(t0)
p
q .

Since this is true for every u ∈ Hn and t0 > 0, we are done.
The third statement of the theorem follows from first and second parts of the

theorem. �

Remark 3.3. If we take ϕ(t) = t
λ−Q
q at Theorem 3.4, then condition (3.4) is

equivalent to 0 < λ < Q− αp and condition (3.7) is equivalent to 1
p −

1
q = α

Q−λ .

Therefore, we get the following Adams result for Morrey spaces in Heisenberg
groups.

Corollary 3.2. Let 0 < α < Q, 1 ≤ p < q <∞ and 0 < λ < Q− αp. Then the
operator Mα is bounded from Lp,λ(Hn) to WLq,λ(Hn) if and only if 1

p −
1
q = α

Q−λ .

Moreover, if 1 < p < q <∞, then the operator Mα is bounded from Lp,λ(Hn) to

Lq,λ(Hn) if and only if 1
p −

1
q = α

Q−λ .

Remark 3.4. Note that, in the case Hn = Rn the sufficient part of the Corollary
3.2 was proved in [1].

4. Fractional maximal commutator operator in the spaces
Mp,ϕ(Hn)

4.1. Spanne type result. We recall the definition of the space of BMO(Hn).

Definition 4.1. Suppose that b ∈ Lloc
1 (Hn), and let

‖f‖∗ = sup
u∈Hn,r>0

1

|B(u, r)|

∫
B(u,r)

|b(v)− bB(u,r)|dV (v) <∞,

where

bB(u,r) =
1

|B(u, r)|

∫
B(u,r)

b(v)dV (v).

Define
BMO(Hn) = {b ∈ Lloc

1 (Hn) : ‖b‖∗ <∞}.
Modulo constants, the space BMO(Hn) is a Banach space with respect to the

norm ‖ · ‖∗.
The following lemma is valid.

Remark 4.1. [7, 20] (1) Let b ∈ BMO(Hn). Then

‖b‖∗ ≈ sup
u∈Hn,r>0

(
1

|B(u, r)|

∫
B(u,r)

|b(v)− bB(u,r)|pdV (v)

) 1
p

(4.1)

for 1 < p <∞.
(2) Let b ∈ BMO(Hn). Then there is a constant C > 0 such that∣∣bB(u,r) − bB(u,τ)

∣∣ ≤ C‖b‖∗ log
τ

r
for 0 < 2r < τ, (4.2)

where C is independent of f , u, r and τ .
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For the fractional maximal commutator operator Mb,α

Mb,α(f)(u) = sup
τ>0
|B(u, τ)|−1+

α
Q

∫
B(u,τ)

|b(u)− b(v)||f(v)|dV (v)

the following statement is true [14].

Theorem 4.1. [14] Let 1 < p <∞, 0 ≤ α < Q
p , 1

q = 1
p −

α
Q , b ∈ BMO(Hn) and

ϕ1 ∈ Ωp, ϕ2 ∈ Ωq satisfies the condition

sup
r<t<∞

t
α−Q

p log
(
e+

t

r

)
ess sup
t<s<∞

ϕ1(u, s) s
Q
p ≤ C ϕ2(u, r), (4.3)

where C does not depend on u and r.
Then the operator Mb,α is bounded from Mp,ϕ1(Hn) to Mq,ϕ2(Hn). Moreover

‖Mb,αf‖Mq,ϕ2
. ‖b‖∗ ‖f‖Mp,ϕ1

.

In the case α = 0 and ϕ1 = ϕ2 from Theorem 4.1 we get the following corollary.

Corollary 4.1. Let 1 < p <∞, b ∈ BMO(Hn) and ϕ ∈ Ωp satisfies the condition

sup
r<t<∞

t
−Q
p log

(
e+

t

r

)
ess sup
t<s<∞

ϕ(u, s) s
Q
p ≤ C ϕ(u, r), (4.4)

where C does not depend on u and r.
Then the operator Mb ≡Mb,0 is bounded on Mp,ϕ(Hn).

For proving our main results, we need the following estimate.

Lemma 4.1. If b ∈ Lloc
1 (Hn) and B0 := B(u0, r0), then

rα0 |b(u)− bB0 | ≤ 2α−QC
α
Q

QMb,αχB0(u) for every u ∈ B0.

Proof. It is well-known that

Mb,αf(u) ≤ 2Q−αMb,αf(u), (4.5)

where Mb,α(f)(u) := sup
B3u
|B|−1+

α
Q
∫
B |b(u)− b(v)| |f(v)| dV (v).

Now let x ∈ B0. By using (4.5), we get

Mb,αχB0(u) ≥ 2α−Q Mb,αχB0(u)

= 2α−Q sup
B3x
|B|−1+

α
Q

∫
B∩B0

|b(u)− b(v)|dV (v)

≥ 2α−Q|B0|−1+
α
Q

∫
B0∩B0

|b(u)− b(v)|dV (v)

≥ 2α−Q|B0|
α
Q
∣∣|B0|−1

∫
B0

(b(u)− b(v))dV (v)
∣∣

= 2α−QC
α
Q

Q rα0 |b(u)− bB0 |.

�

The following theorem is one of our main results.
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Theorem 4.2. Let p, q ∈ [1,∞), 0 ≤ α < Q, ϕ1 ∈ Ωp, ϕ2 ∈ Ωq and b ∈
BMO(Hn).

1. Let 1 < p < Q
α , 1

q = 1
p −

α
Q , then the condition

sup
r<t<∞

(
1 + ln

t

r

)
t
Q
q ess sup

t<s<∞
ϕ1(s)s

Q
p ≤ Cϕ2(r)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness
of Mb,α from Mp,ϕ1(Hn) to Mq,ϕ2(Hn).

2. If ϕ1 ∈ Gp, then the condition (3.3) is necessary for the boundedness of
Mb,α from Mp,ϕ1(Hn) to Mq,ϕ2(Hn).

3. Let 1 < p < Q
α , 1

q = 1
p −

α
Q . If ϕ1 ∈ Gp satisfies the condition

sup
r<t<∞

(
1 + ln

t

r

)
tα ϕ1(t) ≤ Crαϕ1(r) (4.6)

for all r > 0, where C > 0 does not depend on r, then the condition (3.3) is nec-
essary and sufficient for the boundedness of Mb,α from Mp,ϕ1(Hn) to Mq,ϕ2(Hn).

Proof. The first part of the theorem is a Theorem 4.1.
We shall now prove the second part. Let B0 = B(u0, r0) and x ∈ B0. By

Lemma 4.1 we have rα0 |b(u)− bB0 | .Mb,αχB0(u). Therefore, by Remark 4.1

rα0 .
‖Mb,αχB0‖Lq(B0)

‖b(·)− bB0‖Lq(B0)
. ‖Mb,αχB0‖Lq(B0)|B0|−

1
q

. ϕ2(r0)‖Mb,αχB0‖Mq,ϕ2
. ϕ2(r0)‖χB0‖Mp,ϕ1

.
ϕ2(r0)

ϕ1(r0)
.

Since this is true for every r0 > 0, we are done.
The third statement of the theorem follows from the first and second parts of

the theorem. �

4.2. Adams type result. In this section we shall give a characterization for
the Adams type boundedness of the operator Mb,α in generalized Morrey spaces
defined on Heisenberg groups.

The following lemma is the analogue of the Hedberg’s trick for Mb,α.

Lemma 4.2. If 0 < α < Q and f, b ∈ Lloc
1 (Hn), then for all u ∈ Hn and r > 0

we get ∫
B(u,r)

|f(v)|
|u−1v|Q−α

|b(u)− b(v)|dV (v) . rαMbf(u). (4.7)

Proof.∫
B(u,r)

|f(v)|
|u−1v|Q−α

|b(u)− b(v)|dV (v)

=
∞∑
j=0

∫
B(u,2−jr)\B(u,2−j−1r)

|f(v)|
|u−1v|Q−α

|b(u)− b(v)|dV (v)

.
∞∑
j=0

(2−jr)α(2−jr)−n
∫
B(u,2−jr)

|f(v)||b(u)− b(v)|dV (v) . rαMbf(u).
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�

The following is a result of Adams type.

Theorem 4.3. Let 1 < p < q < ∞, 0 < α < Q, b ∈ BMO(Hn) and let
ϕ(u, ·) ∈ Ωp satisfy the conditions (4.4) and

rα ϕ(u, r) + sup
r<t<∞

log
(
e+

t

r

)
tα ϕ(u, t) ≤ Cϕ(u, r)

p
q , (4.8)

where C does not depend on u ∈ Hn and r > 0.
Then Mb,α is bounded from Mp,ϕ(Hn) to M

q,ϕ
p
q
(Hn).

Proof. Let 1 < p < q <∞, 0 < α < Q
p and f ∈Mp,ϕ(Hn). For arbitrary x ∈ Hn,

set B = B(u, r) for the ball centered at u and of radius r. Write f = f1 +f2 with
f1 = fχ2B and f2 = fχ {(2B)

.

For z ∈ B we have

Mb,αf2(z) . sup
t>0

tα−Q
∫
B(z,t)

|b(v)− b(z)| |f2(v)|dV (v)

≈ sup
t>2r

tα−Q
∫
B(z,t)

|b(v)− b(z)| |f2(v)|dV (v).

Analogously section 4.1, for all p ∈ (1,∞) and z ∈ B we get

Mb,αf2(z) . sup
t>2r

t
α−Q

p

(
1 + log

t

r

)
‖f‖Lp(B(u,t)). (4.9)

Then from conditions (4.8) and (4.9) we get

Mb,αf(z) . rαMbf(z) + ‖b‖∗ sup
t>2r

t
α−Q

p

(
1 + log

t

r

)
‖f‖Lp(B(u,t))

≤ rαMbf(z) + ‖b‖∗ ‖f‖Mp,ϕ sup
t>r

(
1 + log

t

r

)
tα ϕ(u, t)

. rαMbf(z) + ‖b‖∗ ϕ(u, r)
p
q ‖f‖Mp,ϕ

. sup
s>0

min
{
s
p
q
−1
Mbf(z), s

p
q ‖f‖Mp,ϕ

}
= (Mbf(z))

p
q ‖f‖

1− p
q

Mp,ϕ
, (4.10)

where we have used that the supremum is achieved when the minimum parts are
balanced. From Corollary 4.1 and (4.10), we get

‖Mb,αf‖M
q,ϕ

p
q
. ‖f‖

1− p
q

Mp,ϕ
‖(Mbf(·))

p
q ‖M

q,ϕ
p
q

= ‖f‖
1− p

q

Mp,ϕ
‖Mbf‖

p
q

Mp,ϕ
. ‖f‖Mp,ϕ .

�

The following theorem is one of our main results.
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Theorem 4.4. Let 0 < α < Q, 1 ≤ p < q <∞, ϕ ∈ Ωp and b ∈ BMO(Hn).
1. If 1 < p <∞ and ϕ(t) satisfies

sup
r<t<∞

(
1 + ln

t

r

)
t
−n
p ess sup

t<s<∞
ϕ(s) s

n
p ≤ Cϕ(r)

for all r > 0 and C > 0 does not depend on r, then the condition

rα ϕ(r) + sup
r<t<∞

(
1 + ln

t

r

)
tα ϕ(t) ≤ Cϕ(r)

p
q

for all r > 0 and C > 0 does not depend on r, is sufficient for the boundedness
of Mb,α from Mp,ϕ(Hn) to M

q,ϕ
p
q
(Hn).

2. If ϕ ∈ Gp, then the condition

rα ϕ(r) ≤ Cϕ(r)
p
q (4.11)

for all r > 0 and C > 0 does not depend on r, is necessary for the boundedness
of Mb,α from Mp,ϕ(Hn) to M

q,ϕ
p
q
(Hn).

3. Let 1 < p < q <∞. If ϕ ∈ Gp satisfies the condition

sup
r<t<∞

(
1 + ln

t

r

)
tα ϕ(t) ≤ Crα ϕ(r)

for all r > 0 and C > 0 does not depend on r, then the condition (4.11) is nec-
essary and sufficient for the boundedness of Mb,α from Mp,ϕ(Hn) to M

q,ϕ
p
q
(Hn).

Proof. The first part of the theorem is a corollary of Theorem 4.3.
We shall now prove the second part. Let B0 = B(u0, r0) and x ∈ B0. By

Lemma 4.1 we have rα0 |b(u)− bB0 | .Mb,αχB0(u). Therefore, by Remark 4.1 and
Lemma 2.2

rα0 .
‖Mb,αχB0‖Lq(B0)

‖b(·)− bB0‖Lq(B0)
. ‖Mb,αχB0‖Lq(B0)|B0|−

1
q

. ϕ(r0)
p
q ‖Mb,αχB0‖M

q,ϕ
p
q
. ϕ(r0)

p
q ‖χB0‖Mp,ϕ . ϕ(r0)

p
q
−1
.

Since this is true for every r0 > 0, we are done.
The third statement of the theorem follows from the first and second parts of

the theorem. �

In the case ϕ(u, r) = r
λ−Q
p , 0 < λ < Q from Theorem 4.4 we get the following

Adams type result for the commutator of fractional maximal operator.

Corollary 4.2. Let 0 < α < Q, 1 < p < q < ∞, 0 < λ < Q − αp and
b ∈ BMO(Hn). Then the operator Mb,α is bounded from Lp,λ(Hn) to Lq,λ(Hn) if

and only if 1
p −

1
q = α

Q−λ .
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