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Abstract. In this work, we study the so-called polynomial general helices
in an arbitrary dimensional Euclidean space. First, we give a method
to construct helices from polynomial curves in n-dimensional Euclidean
space Rn, and another method to construct polynomial general helices in
R
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n+2. Then, we proceed
with a method to construct rational helices from polynomial general
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1. Introduction

Helical structures is a significant workframe in the study of differential ge-
ometry. They have been studied to a great extent for a long time and are
being studied even today. We can observe these structures in nature, in ar-
chitecture, in simulation of kinematic motion, or in the design of highways
and mechanic tools, etc [2,4,6,15].

A general helix is defined by the property that its tangent vector field
makes a constant angle with a fixed direction which is called the axis of
the general helix in Euclidean 3-space. This well-known result was stated by
Lancret in 1802 [10] and first proved by de Saint Venant in 1845. A necessary
and sufficient condition for a curve α to be a general helix is to have the
ratio of its curvature to torsion constant. If both curvature and torsion are
non-zero constants, then the curve is called a circular helix [10,14].

Harmonic curvature functions were defined earlier by Özdamar and
Hacisalihoğlu in [11]. The authors generalized helices from R

3 to R
n and
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then gave a characterization. Recently, many studies have been published on
general helices [3,8,12].

In [5], the authors studied Pythagorean-hodograph (PH) curves in R3

which are also polynomial general helices. Also in [13] authors studied
Pythagorean-hodograph (PH) curves in R5 and R9.

The notion of a general helix in R
3 can be generalized to higher dimen-

sions in many ways. In [12], the same definition is proposed but in R
n. In [8]

the definition is more restrictive: the fixed direction makes a constant angle
with all vectors of the Frenet frame. It is easy to check that this definition
only works in odd dimensions. Moreover, in the same paper, it is proven that
this definition is equivalent to the fact that the ratios k1

k2
, k3

k4
, . . . , kn−4

kn−3
, kn−2

kn−1
,

where curvatures ki are constants. This statement is related with the Lancret
theorem for general helices in R

3.
This paper is organized in the following fashion. We begin in Sect. 2 by

recalling some preliminary results about general helices. In Sect. 3, we give a
method to construct general helices from polynomial curves in n-dimensional
Euclidean space R

n, and another method to construct polynomial general
helices in R

n from polynomial general helices in R
n+1 or R

n+2. Finally in
Sect. 4, we show how to build rational helices from polynomial general helices.

2. Preliminaries

Let α : I ⊂ R → R
n be an arbitrary curve in the Euclidean n-space R

n.
Recall that the curve α is said to be of unit speed (or parameterized by
arclength function s) if 〈α′(t), α′(t)〉 = 1, where 〈·, ·〉 is the standard scalar
product of Rn given by

〈X,Y 〉 =
n∑

i=1

xiyi,

for each X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn) ∈ R
n. In particular, the

norm of a vector X ∈ R
n is given by ||X||2 = 〈X,X〉. Let {V1, V2, . . . , Vn}

be the moving Frenet frame along a space curve α, where Vi (i = 1, 2, . . . , n)
denote ith Frenet vector field. Then the Frenet formulas are given by

⎧
⎨

⎩

V
′
1 (t) = ν(t)k1(t)V2(t)

V
′
i (t) = ν(t)(−ki−1(t)Vi−1(t) + ki(t)Vi+1(t)), i = 2, 3, . . . , n − 1

V
′
n(t) = −ν(t)kn−1(t)Vn−1(t)s

(2.1)

where ν(t) = ||α′(t)|| and ki (i = 1, 2, . . . , n − 1) denote the ith curvature
function of the curve [3,9]. We call α a regular curve of order m (where
m � n), if and only if for any t ∈ I,

{α′(t), α′′(t), . . . , α(m)(t)}
is a linearly independent subset of Rn.

In this paper, we assume that Frenet frame of the curve are given by
Gram–Schmidt method [7]. If the curve lies in a hyperplane of Rn, then it is
said that α is a (n − 1)-flat curve [12]. It is well known that α is (n − 1)-flat
curve in R

n if and only if kn−1(t) = 0 [12].
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Proposition 2.1. A curve α : I ⊂ R → R
n is a general helix if and only

if the function det(α
′′
(t), α

′′′
(t), . . . , α(n+1)(t)) is identically zero, where α(i)

represents the ith derivative of α with respect to t). Equivalently, α is general
helix if and only if αT is a n-flat curve, where αT : I ⊂ R → S

n is tangent
indicatrix of the curve [11].

Definition 2.1. Let α be a curve in R
n. Harmonic curvatures of the curve α

are defined by

Hi : I ⊂ R → R , i = 0, 1, 2, . . . , n − 2,

Hi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, i = 0

k1
k2

i = 1

1
ki+1

[
1
ν H ′

i−1 + kiHi−2

]
, i = 2, 3, . . . , n − 2

[11].

Theorem 2.1. Let α be a general helix in n-dimensional Euclidean space R
n.

Let {V1, V2, . . . , Vn}, {H1,H2, . . . , Hn−2} be denote the Frenet frame and the
higher ordered harmonic curvatures of the curve, respectively. Then, the fol-
lowing equation holds

〈Vi+2,X〉 = Hi〈V1,X〉, 1 � i � n − 1, (2.2)

where X is the axis of the helix α [3].

Corollary 2.1. If X is the axis of the helix α, then we can write

X = λ1V1 + λ2V2 + · · · + λnVn.

From the Theorem 2.1, we get

λj = 〈Vj ,X〉 = Hj−2〈V1,X〉, 1 < j � n

where 〈V1,X〉 = cos θ = constant.
By the definition of the harmonic curvature, we obtain

X = cos θ(V1 + H1V3 + · · · + Hn−2Vn).

Also,
D = V1 + H1V3 + · · · + Hn−2Vn

is a axis of the helix α [3].

Definition 2.2. A curve α : I ⊂ R → R
n with α(t) = (α1(t), α2(t), . . . , αn(t))

is called a polynomial curve in R
n if αi(t), 1 � i � n is a polynomial function

whose coefficients are real numbers.

In the following theorem, Camci et al. [3] gave the explicit characteriza-
tion for a non-degenerate curve to be a general helix by using the harmonic
curvatures of the curve:

Theorem 2.2. Let α be a non-degenerate curve in n-dimensional Euclidean
space R

n. Let {V1, V2, . . . , Vn}, {H1,H2, . . . , Hn−2} denote the Frenet frame
and harmonic curvatures of the curve, respectively. Then, α is a general helix
if and only if H

′
n−2 + νkn−1Hn−3 = 0.
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3. Polynomial General Helices

As we know for Euclidean space R
3, there are characterizations and a lot of

examples about helices. For Euclidean spaces R
n, n ≥ 4 there is only one

example when n = 5 [1]. Especially, there is no example when n is even.
In this section, we examine polynomial general helices in R

n depending on
whether n is even or odd.

3.1. Polynomial General Helices in R
n When n is Even

Consider the curve α given by,

α(t) =
(

a1t,
a2

2
t2,

a3

3
t3, . . . ,

an−1

n − 1
tn−1,

an

n − 1
tn−1 +

an+1

n + 1
tn+1

)
.

So,

det(α′(t), α′′(t), . . . , α(n)(t)) = 1!2!3! · · · (n − 2)!n!

(
n−1∏

i=1

ai

)
an+1t.

Therefore; if an+1

∏n−1
i=1 ai �= 0, then α is a regular polynomial curve of order

n.

Theorem 3.1. Let

α(t) =
(
a1t,

a2

2
t2,

a3

3
t3,

a4

3
t3 +

a5

5
t5

)

be a curve in R
4 with 1 � j � 3, bj ∈ R

+ and

a1 = b1, a
2
2 = 2b1b2, a

2
3 = 2b1b3, a4 = b2, a5 = b3

then α is a polynomial general helix which makes a constant angle

θ = arccos
(

1
‖D‖

)

with the fixed direction
D

‖D‖
where

D = (1, 0, 0, 1).

Proof. By making calculations, we have

V1(t) =
(

b1

b1+b2t2+b3t4
,

√
2b1b2 t

b1+b2t2+b3t4
,

√
2b1b3 t2

b1 + b2t2 + b3t4
,

b2 t2 + b3 t4

b1 + b2t2 + b3t4

)
,

k3(t) =
12 t

√
2b1b2 (b2 + 4b3 t2)b3

3/2

f2(t)

H1(t) =
√

b1

(
b2 + 4b3 t2

)3/2

f(t)
,

H2(t) =
√

2b2b3

(
b1 − 3b3 t4

)2

f(t)
,



Vol. 28 (2018) On Polynomial General Helices in n-Dimensional Euclidean Space Page 5 of 12 4

where

f(t) =
√

2b2
1b2b3 + 18b2b3

3 t8 + b1 (b3
2 + 12b2

2b3 t2 + 36b2b32t4 + 64b3
3 t6).

Then,
H

′
2 + νk3H1 = 0.

From Theorem 2.2, α is a polynomial general helix. By using Corollary 2.1
we have

D = (1, 0, 0, 1).
Therefore 〈

V1(t),
D

‖D‖
〉

=
1√
2
.

This completes the proof. �

Example 3.1. If we take b1 = 1, b2 = b3 = 2 in Theorem 3.1 then we have,

β(t) =
(

t, t2,
2
3

t3,
2
3

t3 +
2
5

t5
)

.

The curve β is a polynomial general helix whose tangent vector field

V1(t) =
(

1
1 + 2 t2 + 2 t4

,
2 t

1 + 2 t2 + 2 t4
,

2t2

1 + 2 t2 + 2 t4
,

2(t2 + t4)
1 + 2 t2 + 2 t4

)
.

makes a constant angle θ = arccos( 1√
2
) with the fixed direction

(
1√
2
, 0, 0,

1√
2

)
.

In the following theorem, we obtain a polynomial general helix in R
6.

Since, it can be done similarly to Theorem 3.1, we omit the proof.

Theorem 3.2. Let

α(t) =
(
a1t,

a2

2
t2,

a3

3
t3,

a4

4
t4,

a5

5
t5,

a6

5
t5 +

a7

7
t7

)

be a curve in R
6 with 1 � j � 4, bj ∈ R

+ and

a1 = b1, a
2
2 = 2b1b2, a

2
3 = b2

2 + 2b1b3,

a2
4 = 2b1b4 + 2b2b3, a

2
5 = 2b2b4,

a6 = b3, a7 = b4

then α is a polynomial general helix which makes a constant angle

θ = arccos
(

1
‖D‖

)

with the fixed direction
D

‖D‖
where

D =
(

1, 0,
b2

a3
, 0, 0, 1

)
.

Now, we give a new theorem for n ≥ 8.
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Theorem 3.3. Let n ≥ 8 be an even number, 1 � j � n+2
2 , bj ∈ R

+, bn+4
2

=
bn+6

2
= · · · = bn−2 = 0,

a1 = b1, a2
2 = 2b1b2, a2

n−1 = 2bn−2
2

bn+2
2

, an = bn
2
, an+1 = bn+2

2
,

a2
2k+1 = b2

k+1 + 2
k∑

j=1

bjb2k−j+2, 1 � k � n − 4
2

,

a2
2l = 2

l∑

j=1

bjb2l−j+1, 2 � l � n − 2
2

.

Then, the curve

α(t) =
(

a1t,
a2

2
t2,

a3

3
t3, . . . ,

an−1

n − 1
tn−1,

an

n − 1
tn−1 +

an+1

n + 1
tn+1

)

is a polynomial general helix which makes a constant angle

θn = arccos
(

1
‖Dn‖

)

with the fixed direction
Dn

‖Dn‖
where,

Dn =

n−2
2∑

m=1

bm

a2m−1
e2m−1 +

bn
2

an
en

and

{e1, e2, . . . , en}
is the standard orthonormal basis in R

n.

Proof. We can write,

V1(t) =
α

′
(t)

‖α′ (t)‖
=

1
‖α′ (t)‖

(
a1, a2 t, a3 t2, . . . , an tn−2 + an+1t

n
)

=
1

‖α′ (t)‖
(
b1, a2 t, a3 t2, . . . , bn

2
tn−2 + bn+2

2
tn

)

If we make the necessary calculations, we will have

‖α
′
(t)‖2 =

⎛

⎝
n+2
2∑

j=1

bjt
2(j−1)

⎞

⎠
2

If we take

Dn =

n−2
2∑

m=1

bm

a2m−1
e2m−1 +

bn
2

an
en
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we have
〈V1(t),Dn〉 = 1.

Therefore 〈
V1(t),

Dn

‖Dn‖
〉

= cos(θn).

This completes the proof of the theorem. �

We can give the following corollary as the result of Theorem 3.3.

Corollary 3.1. In Theorem 3.3, if bn+2
2

vanishes, then the polynomial general
helix is included in the (n − 1)-dimensional hyperplane of R

n, so we can
consider it to be a helix in (n − 1)-dimensional Euclidean space, where n − 1
is an odd number.

3.2. Polynomial General Helices in R
n When n is Odd

Consider the curve α denoted by,

α(t) =
(
a1 t,

a2

2
t2,

a3

3
t3, . . . ,

an

n
tn

)
. (3.1)

So,

det(α′(t), α′′(t), . . . , α(n)(t)) = 1!2! . . . (n − 1)!
n∏

i=1

ai.

Therefore, if
∏n

i=1 ai �= 0 then α is a regular polynomial curve of order n.

Theorem 3.4. Let

α(t) =
(
a1 t,

a2

2
t2,

a3

3
t3,

a4

4
t4,

a5

5
t5

)

be a curve in R
5 with 1 � j � 3, bj ∈ R

+,

a1 = b1, a
2
2 = 2b1b2, a

2
3 = b2

2 + 2b1b3, a
2
4 = 2b2b3, a5 = b3

then α is a polynomial general helix which makes a constant angle

θ = arccos
(

1
‖D‖

)

with the fixed direction
D

‖D‖
where

D =
(

1, 0,
b2

a3
, 0, 1

)

Proof. The proof of the above theorem is similar to the proof of the theo-
rem 3.1. �

Example 3.2. If we take b1 = b2 = b3 = 1 in Theorem 3.4, then we have

γ(t) =

(
t,

√
2

2
t2,

√
3

3
t3,

√
2

4
t4,

1
5

t5

)
.
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The curve γ is a polynomial general helix whose tangent vector field

V1(t) =

(
1

1 + t2 + t4
,

√
2 t

1 + t2 + t4
,

√
3 t2

1 + t2 + t4
,

√
2 t3

1 + t2 + t4
,

t4

1 + t2 + t4

)
.

makes a constant angle θ = arccos(
√

3/7) with the fixed direction
(√

3
7
, 0,

1√
7
, 0,

√
3
7

)
.

Now, we give a new theorem for n ≥ 7.

Theorem 3.5. Let n ≥ 7 be an odd number, 1 � j � n+1
2 , bj ∈ R

+, 1 � j �
n+1

2 , bj ∈ R
+, bn+3

2
= bn+5

2
= · · · = bn−1 = 0,

a1 = b1, a
2
2 = 2b1b2, an = bn+1

2
,

a2
2k+1 = b2

k+1 + 2
k∑

j=1

bjb2k−j+2, 1 � k � n − 3
2

,

a2
2l = 2

l∑

j=1

bjb2l−j+1, 2 � l � n − 1
2

.

Then, the curve
α(t) = (a1t,

a2

2
t2,

a3

3
t3, . . . ,

an

n
tn)

is a polynomial general helix which makes a constant angle

θn = arccos
(

1
‖Dn‖

)

with the fixed direction
Dn

‖Dn‖
where,

Dn =

n+1
2∑

m=1

bm

a2m−1
e2m−1

and

{e1, e2, . . . , en}
is the standard orthonormal basis in R

n.

Proof. The proof of the above theorem is similar to the proof of the Theo-
rem 3.3. �

With the help of the Theorem 3.5, one can easily obtain the following
important result.

Corollary 3.2. In Theorem 3.5, if bn+1
2

vanishes, then the polynomial general
helix is included in the (n − 2)-dimensional hyperplane of R

n, so we can
consider it to be a helix in (n − 2)-dimensional Euclidean space, where n − 2
is an odd number.
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Figure 1. Polynomial general helix β(t) = (t,
√

2
2 t2, 1

3 t3)
lies on the saddle z =

√
2

3 xy

4. Constructing Rational Helices from Polynomial General
Helices

We can use polynomial general helices to construct rational curves which are
general helices. Now, we will give a method of this.

4.1. Constructing Rational Helix in R
4 from a Polynomial General Helix in

R
3

Let b1, b2 ∈ R
+,

β1 (t) = b1t,

β2 (t) =
√

2b1b2

2
t2,

β3 (t) =
b2

3
t3.

Then, β (t) = (β1 (t) , β2 (t) , β3 (t)) is a polynomial general helix in R
3 which

makes angle θ = π/4 with the axis u =
(

1√
2
, 0, 1√

2

)
[5].

Now, we want to find a rational curve γ in R
4 which makes angle θ = π/4

with the axis v =
(
0, 1√

2
, 0, 1√

2

)
. In order to do this; first, we have to write

γ by using the curve β (see Fig. 1).
Let γ (t) = (γ1 (t) , γ2 (t) , γ3 (t) , γ4 (t)) be a curve in R

4 denoted by

γ1 (t) = a (t) ,

γ2 (t) = a (t) β1 (t) ,

γ3 (t) = a (t) β2 (t) ,

γ4 (t) = a (t) β3 (t) .
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where a (t) is a real valued function. Therefore, we have the differential equa-
tion

〈V1 (t) , v〉 =
1√
2
.

If we solve this equation, we find

a(t) =
c

−6 + b1b2t4

where c ∈ R − {0}. Then, we have

γ (t) =
c

−6 + b1b2 t4

(
1, b1t,

√
2b1b2

2
t2,

b2

3
t3

)
.

4.2. Constructing Rational Helix in R
5 from a Polynomial General Helix in

R
4

Let b1, b2, b3 ∈ R
+,

β1 (t) = b1t,

β2 (t) =
√

2b1b2

2
t2,

β3 (t) =
√

2b1b3

3
t3,

β4 (t) =
b2

3
t3 +

b3

5
t5.

From Theorem 2.2, β (t) = (β1 (t) , β2 (t) , β3 (t) , β4 (t)) is a polynomial gen-
eral helix in R

4 which makes angle θ = π/4 with the axis u =
(

1√
2
, 0, 0, 1√

2

)
.

Now, we want to find a rational curve γ in R
5 which makes angle θ = π/4

with the axis v =
(
0, 1√

2
, 0, 0, 1√

2

)
. In order to do this, first we have to write

γ by using the curve β.
Let γ (t) = (γ1 (t) , γ2 (t) , γ3 (t) , γ4 (t) , γ5 (t)) be a curve in R

5 denoted
by

γ1 (t) = a (t) ,

γ2 (t) = a (t) β1 (t) ,

γ3 (t) = a (t) β2 (t) ,

γ4 (t) = a (t) β3 (t) ,

γ5 (t) = a (t) β4 (t) ,

where a (t) is a real valued function. Therefore; if we do the necessary calcu-
lations, we have

γ (t) =
c

−90 + 15b1b2 t4 + 16b1b3 t6(
1, b1 t,

√
2b1b2

2
t2,

√
2b1b3

3
t3,

b2

3
t3 +

b3

5
t5

)

where c ∈ R − {0}.
We can find rational helices in upper dimensions similarly.
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