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1. Introduction

As is well known, Morrey spaces are widely used to investigate the local behaviour of solu-
tions to second-order elliptic partial differential equations (PDE). Recall that the classical
Morrey spacesMp,λ(Rn) are defined by

Mp,λ(Rn) =
{
f ∈ Lploc(R

n) : ‖f ‖Mp,λ = sup
x∈Rn, r>0

r−λ/p‖f ‖Lp(B(x,r)) < ∞
}
,

where 0 ≤ λ ≤ n, 1 ≤ p < ∞. Mp,λ(Rn) was an expansion of Lp(Rn) in the sense that
Mp,0(Rn) = Lp(Rn) andMp,n(Rn) = L∞(Rn). Here and everywhere in the sequelB(x, r)
is the ball inR

n of radius r centred at x and |B(x, r)| = vnrn is its Lebesgue measure, where
vn is the volume of the unit ball in R

n.
By WMp,λ(Rn) we denote the weak Morrey space defined as the set of functions f in

the local weak spaceWLploc(R
n) for which

‖f ‖WMp,λ = sup
x∈Rn, r>0

r−λ/p‖f ‖WLp(B(x,r)) < ∞.
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The spacesMp,ϕ(Rn) defined by the norm

‖f ‖Mp,ϕ = sup
x∈Rn, r>0

ϕ(x, r)−1 |B(x, r)|−1/p‖f ‖Lp(B(x,r))

with a function ϕ positive and measurable onR
n × (0,∞) are known as generalizedMor-

rey spaces. Also by WMp,ϕ(Rn) we denote the weak generalized Morrey space of all
functions f ∈ WLploc(R

n) for which

‖f ‖WMp,ϕ = sup
x∈Rn, r>0

ϕ(x, r)−1 |B(x, r)|−1/p‖f ‖WLp(B(x,r)) < ∞.

Note that, in the case ϕ(x, r) = r(λ−n)/p, we get the classical Morrey spaceMp,λ(Rn) from
generalized Morrey spaceMp,ϕ(Rn).

The Orlicz space was first introduced by Orlicz [1,2] as generalizations of Lebesgue
spaces Lp. Since then this space has been one of the important functional frames in the
mathematical analysis, and especially in real and harmonic analysis. Orlicz space is also
an appropriate substitute for L1 space when L1 space does not work. For example, the
Hardy–Littlewood maximal operator

Mf (x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f (y)| dy (1.1)

is bounded on Lp for 1 < p < ∞, but not on L1, but using Orlicz spaces, we can investigate
the boundedness of themaximal operator near p=1, see [3–5] formore precise statements.

A natural step in the theory of functions spaces was to study generalized Orlicz–Morrey
spacesM�,ϕ(Rn)where the ‘Morrey-type measuring’ of regularity of functions is realized
with respect to the Orlicz norm over balls instead of the Lebesgue one. Such spaces were
first introduced and studied byNakai [6]. Then another kind of generalizedOrlicz–Morrey
spaces were introduced by Sawano et al. [7]. The generalized Orlicz–Morrey spaces used
in this paper was introduced in [8]. In words of Guliyev et al. [9], our generalized
Orlicz–Morrey space is the third kind and the ones in [6,7] are the first kind and sec-
ond kind, respectively. According to the examples in [10], one can say that the generalized
Orlicz–Morrey spaces of the first and second kind are different and that second kind and
third kind are different. However, it is not known that relation between first and third kind.

Let 0 < α < n. The fractional maximal operator Mα and the Riesz potential operator
Iα are defined by

Mαf (x) = sup
t>0

|B(x, t)|−1+α/n
∫
B(x,t)

|f (y)| dy, Iαf (x) =
∫

Rn

f (y)
|x − y|n−α

dy.

If α = 0, thenM ≡ M0 is the Hardy–Littlewood maximal operator defined in (1.1).
The classical result by Hardy–Littlewood–Sobolev states that the operator Iα is of weak

type (p, np/(n − αp)) if 1 ≤ p < n/α and of strong type (p, np/(n − αp)) if 1 < p < n/α.
Also the operatorMα is of weak type (p, np/(n − αp)) if 1 ≤ p ≤ n/α and of strong type
(p, np/(n − αp)) if 1 < p ≤ n/α.

Around the 1970s, the Hardy–Littlewood–Sobolev inequality is extended from
Lebesgue spaces to Morrey spaces. The following theorem was proved by Adams [11].



286 F. DERINGOZ ET AL.

Theorem 1.1 (Adams [11]): Let 0 < α < n, 1 < p < n/α, 0 < λ < n − αp and 1/p −
1/q = α/(n − λ). Then for p > 1, the operator Iα is bounded fromMp,λ(Rn) toMq,λ(Rn)

and for p = 1, Iα is bounded fromM1,λ(Rn) to WMq,λ(Rn).

Recall that, for 0 < α < n,

Mαf (x) ≤ υ
α/n−1
n Iα(|f |)(x),

hence Theorem 1.1 also implies boundedness of the fractional maximal operatorMα .
Guliyev [12] (see also [13,14]) extended the results of Spanne and Adams fromMorrey

spaces to generalized Morrey spaces (see also [15]). Later on, some of these results are
obtained in [16,17] under weaker condition.

The boundedness ofMα fromOrlicz space L�(Rn) to the corresponding another Orlicz
space L�(Rn) was studied in [5]. There were given necessary and sufficient conditions for
the boundedness of the operatorMα from L�(Rn) to L�(Rn) and also from L�(Rn) to the
weak Orlicz spaceWL�(Rn).

In this paper, we shall give a characterization for weak/strong Adams-type boundedness
of the fractional maximal operator on generalized Orlicz–Morrey spaces.

By A � B we mean that A ≤ CB with some positive constant C independent of appro-
priate quantities. If A � B and B � A, we write A ≈ B and say that A and B are equivalent.

2. Preliminaries

2.1. On Young Functions andOrlicz Spaces

We recall the definition of Young functions.

Definition 2.1: A function� : [0,∞) → [0,∞] is called a Young function if� is convex,
left-continuous, limr→+0 �(r) = �(0) = 0 and limr→∞ �(r) = ∞.

From the convexity and �(0) = 0 it follows that any Young function is increasing. If
there exists s ∈ (0,∞) such that �(s) = ∞, then �(r) = ∞ for r ≥ s. The set of Young
functions such that 0 < �(r) < ∞ for 0 < r < ∞ will be denoted by Y . If � ∈ Y , then
� is absolutely continuous on every closed interval in [0,∞) and bijective from [0,∞) to
itself. For a Young function � and 0 ≤ s ≤ ∞, let

�−1(s) = inf{r ≥ 0 : �(r) > s}.

If � ∈ Y , then �−1 is the usual inverse function of �.
Note that Young functions satisfy the properties{
�(αt) ≤ α�(t), if0 ≤ α ≤ 1
�(αt) ≥ α�(t), ifα > 1 and

{
�−1(αt) ≥ α�−1(t), if 0 ≤ α ≤ 1,
�−1(αt) ≤ α�−1(t), if α > 1.

(2.1)

Remark 2.2: We can easily see that �(Cr) ≈ �(r) and �−1(Cr) ≈ �−1(r) for a positive
constant C from (2.1).
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It is well known that

r ≤ �−1(r)�̃−1(r) ≤ 2r for r ≥ 0, (2.2)

where �̃(r) is defined by

�̃(r) =
{

sup{rs − �(s) : s ∈ [0,∞)}, r ∈ [0,∞),
∞, r = ∞.

A Young function � is said to satisfy the �2-condition, denoted also as � ∈ �2, if
�(2r) ≤ C�(r), r > 0 for some C>1. If � ∈ �2, then � ∈ Y . A Young function � is
said to satisfy the ∇2-condition, denoted also by � ∈ ∇2, if �(r) ≤ (1/2C)�(Cr), r ≥ 0
for some C>1.

A Young function � is said to satisfy the �′-condition, denoted also as � ∈ �′, if

�(tr) ≤ C�(t)�(r), t, r ≥ 0

for some C>1.
Note that, each element of �′-class is also an element of �2-class.

Remark 2.3: Let � ∈ �′, then we have

�(tr) ≤ C�(t)�(r), t, r ≥ 0.

If we set�(t) = u and�(r) = v, we get�(�−1(u)�−1(v)) ≤ Cuv ⇒ �−1(u)�−1(v) ≤
�−1(Cuv) ≤ C�−1(uv), since � ∈ Y and �−1 is concave.

Definition 2.4 (Orlicz Space): For a Young function �, the set

L�(Rn) =
{
f ∈ L1loc(R

n) :
∫

Rn
�(k|f (x)|) dx < ∞ forsome k > 0

}

is called Orlicz space. If�(r) = rp, 1 ≤ p < ∞, then L�(Rn) = Lp(Rn). If�(r) = 0, 0 ≤
r ≤ 1 and�(r) = ∞, r > 1, then L�(Rn) = L∞(Rn). The space L�

loc(R
n) is defined as the

set of all functions f such that fχB ∈ L�(Rn) for all balls B ⊂ R
n.

L�(Rn) is a Banach space with respect to the norm

‖f ‖L� = inf
{
λ > 0 :

∫
Rn

�

( |f (x)|
λ

)
dx ≤ 1

}
.

We note that ∫
Rn

�

( |f (x)|
‖f ‖L�

)
dx ≤ 1. (2.3)

Lemma 2.5 ([8]): For a Young function� and B = B(x, r), the following inequality is valid:

‖f ‖L1(B) ≤ 2|B|�−1(|B|−1)‖f ‖L�(B),

where ‖f ‖L�(B) = ‖fχB‖L� .
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By elementary calculations we have the following.

Lemma 2.6: Let � be a Young function and B be a set in R
n with finite Lebesgue measure.

Then

‖χB‖L� = 1
�−1(|B|−1)

.

The following theorem is an analogue of Lebesgue differentiation theorem in Orlicz
spaces.

Theorem 2.7 ([18]): Suppose that � is a Young function and let f ∈ L�(Rn) be nonnega-
tive. Then

lim inf
r→0+

‖fχB(x,r)‖L�

‖χB(x,r)‖L�

≥ f (x), foralmosteveryx ∈ R
n.

If we moreover assume that � ∈ �′, then

lim
r→0+

‖fχB(x,r)‖L�

‖χB(x,r)‖L�

= f (x), foralmosteveryx ∈ R
n.

2.2. Orlicz–Morrey spaces

Definition 2.8: For a Young function � and λ ∈ R, we denote by M�,λ(Rn) the
Orlicz–Morrey space, defined as the space of all functions f ∈ L�

loc(R
n) with finite quasi-

norm

‖f ‖M�,λ = sup
x∈Rn, r>0

�−1(|B(x, r)|−λ/n)‖fχB(x,r)‖L� .

Note thatM�,λ|λ=0 = L�(Rn) andM�,λ|�(t)=tp = Mp,λ(Rn).

Lemma 2.9: If � ∈ �′, thenM�,n(Rn) = L∞(Rn).

Proof: Let f ∈ L∞(Rn), then

�−1(|B(x, r)|−1)‖fχB(x,r)‖L� ≤ ‖f ‖L∞�−1(|B(x, r)|−1)‖χB(x,r)‖L� ≤ ‖f ‖L∞ ,

which implies ‖f ‖M�,n ≤ ‖f ‖L∞ .
Now let f ∈ M�,n(Rn). Theorem 2.7 implies that |f (x)| ≤ ‖f ‖M�,n for almost every

x ∈ R
n, which means that ‖f ‖M�,n ≥ ‖f ‖L∞ . �

In the following we denote by 
 the set of all functions equivalent to 0 on R
n.

Lemma 2.10: Let� be a Young function. If λ < 0 or λ > n and� ∈ �′, thenM�,λ(Rn) =

.
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Proof: First let λ < 0 and f ∈ M�,λ(Rn). For all x ∈ R
n and r>0, we have

‖fχB(x,r)‖L� ≤ ‖f ‖M�,λ

�−1(|B(x, r)|−λ/n)
,

which implies that ‖f ‖L� = limr→∞ ‖fχB(x,r)‖L� = 0 ⇒ f (x) = 0, for almost every x ∈
R
n, since limr→∞ �−1(r) = ∞.
Now let λ > n and f ∈ M�,λ(Rn). For all x ∈ R

n and r>0 we have from Remark 2.3
and Theorem 2.7

‖fχB(x,r)‖L�

‖χB(x,r)‖L�

≤ �−1(|B(x, r)|−1)

�−1(|B(x, r)|−1|B(x, r)|1−λ/n)
‖f ‖M�,λ ≤ ‖f ‖M�,λ

�−1(|B(x, r)|1−λ/n)
,

which implies that |f (x)| = 0, for almost every x ∈ R
n. �

Remark 2.11: In the case �(t) = tp for 1 ≤ p < ∞ from Lemmas 2.9 and 2.10, we get
the following well-known results:Mp,n(Rn) = L∞(Rn) andMp,λ(Rn) = 
 for λ < 0 or
λ > n.

2.3. Generalized Orlicz–Morrey Spaces

Various versions of generalized Orlicz–Morrey spaces were introduced in [6–8]. We used
the definition of Deringoz et al. [8] which runs as follows.

Definition 2.12: Let ϕ(x, r) be a positive measurable function on R
n × (0,∞) and � any

Young function. We denote byM�,ϕ(Rn) the generalized Orlicz–Morrey space, the space
of all functions f ∈ L�

loc(R
n) for which

‖f ‖M�,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1�−1(|B(x, r)|−1)‖f ‖L�(B(x,r)) < ∞.

In the case ϕ(x, r) = �−1(|B(x, r)|−1)/�−1(|B(x, r)|−λ/n) , we get the Orlicz–Morrey
spaceM�,λ(Rn) from generalized Orlicz–Morrey spaceM�,ϕ(Rn) .

Lemma 2.13: Let � be a Young function and ϕ be a positive measurable function on R
n ×

(0,∞).

(i) If

sup
t<r<∞

�−1(|B(x, r)|−1)

ϕ(x, r)
= ∞ forsomet > 0andforallx ∈ R

n, (2.4)

thenM�,ϕ(Rn) = 
.
(ii) If � ∈ �′ and

sup
0<r<τ

ϕ(x, r)−1 = ∞ forsomeτ > 0andforallx ∈ R
n, (2.5)

thenM�,ϕ(Rn) = 
.
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Proof: (i) Let (2.4) be satisfied and f benot equivalent to zero. Then supx∈Rn ‖f ‖L�(B(x,t)) >

0, hence

‖f ‖M�,ϕ ≥ sup
x∈Rn

sup
t<r<∞

ϕ(x, r)−1�−1(|B(x, r)|−1)‖f ‖L�(B(x,r))

≥ sup
x∈Rn

‖f ‖L�(B(x,t)) sup
t<r<∞

ϕ(x, r)−1�−1(|B(x, r)|−1).

Therefore ‖f ‖M�,ϕ = ∞.
(ii) Let f ∈ M�,ϕ(Rn) and (2.5) be satisfied. Then there are two possibilities: Case 1:

sup0<r<t ϕ(x, r)−1 = ∞ for all t>0. Case 2: sup0<r<s ϕ(x, r)−1 < ∞ for some s ∈ (0, τ).
For Case 1, by Theorem 2.7, for almost all x ∈ R

n,

lim
r→0+

‖fχB(x,r)‖L�

‖χB(x,r)‖L�

= |f (x)|. (2.6)

We claim that f (x) = 0 for all those x. Indeed, fix x and assume |f (x)| > 0. Then by
Lemma 2.6 and (2.6) there exists t0 > 0 such that

�−1(|B(x, r)|−1)‖f ‖L�(B(x,r)) ≥ |f (x)|
2

for all 0 < r ≤ t0. Consequently,

‖f ‖M�,ϕ ≥ sup
0<r<t0

ϕ(x, r)−1�−1(|B(x, r)|−1)‖f ‖L�(B(x,r))

≥ |f (x)|
2

sup
0<r<t0

ϕ(x, r)−1.

Hence ‖f ‖M�,ϕ = ∞, so f /∈ M�,ϕ(Rn) and we have arrived at a contradiction.
Note that Case 2 implies that sups<r<τ ϕ(x, r)−1 = ∞, hence

sup
s<r<∞

ϕ(x, r)−1�−1(|B(x, r)|−1) ≥ sup
s<r<τ

ϕ(x, r)−1�−1(|B(x, r)|−1)

≥ �−1(|B(x, τ)|−1) sup
s<r<τ

ϕ(x, r)−1 = ∞,

which is the case in (i). �

Remark 2.14: Let � be a Young function. We denote by �� the sets of all positive
measurable functions ϕ on R

n × (0,∞) such that for all t > 0,

sup
x∈Rn

∥∥∥∥�−1(|B(x, r)|−1)

ϕ(x, r)

∥∥∥∥
L∞(t,∞)

< ∞,

and

sup
x∈Rn

‖ϕ(x, r)−1‖L∞(0,t) < ∞,

respectively. In what follows, keeping inmind Lemma 2.13, we always assume that ϕ ∈ ��

and � ∈ �′.
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The following theorem and lemma play a key role in our main results.

Theorem 2.15 ([8]): Let � be a Young function, the functions ϕ ∈ �� and � ∈ �′ satisfy
the condition

sup
r<t<∞

�−1(|B(x, t)|−1) ess inf
t<s<∞

ϕ(x, s)
�−1(|B(x, s)|−1)

≤ Cϕ(x, r), (2.7)

where C does not depend on x and r. Then the maximal operator M is bounded from
M�,ϕ(Rn) toM�,ϕ(Rn) for � ∈ ∇2.

A functionϕ : (0,∞) → (0,∞) is said to be almost increasing (resp. almost decreasing)
if there exists a constant C>0 such that

ϕ(r) ≤ Cϕ(s) (resp.ϕ(r) ≥ Cϕ(s)) forr ≤ s.

For a Young function �, we denote by G� the set of all almost decreasing functions ϕ :
(0,∞) → (0,∞) such that t ∈ (0,∞) �→ ϕ(t)/�−1(t−n) is almost increasing.

Lemma 2.16 ([19]): Let B0 := B(x0, r0). If ϕ ∈ G�, then there exist C>0 such that

1
ϕ(r0)

≤ ‖χB0‖M�,ϕ ≤ C
ϕ(r0)

.

3. Adams type results forMα inM�,ϕ

For proving our main results, we need the following estimate.

Lemma 3.1: If B0 := B(x0, r0), then rα0 ≤ CMαχB0(x) for every x ∈ B0.

Proof: It is well known that

Mαf (x) ≤ 2n−αMαf (x), (3.1)

where Mα(f )(x) = supB�x |B|−1+α/n ∫
B |f (y)| dy.

Now let x ∈ B0. By using (3.1), we get

MαχB0(x) ≥ CMαχB0(x) ≥ C sup
B�x

|B|−1+α/n|B ∩ B0|

≥ C|B0|−1+α/n|B0 ∩ B0| = Crα0 .

�

Theorem 3.2: Let � ∈ �′ ∩ ∇2 and 0 < α < n. Let ϕ ∈ �� satisfy the conditions (2.7)
and

rαϕ(x, r) + sup
r<t<∞

tαϕ(x, t) ≤ Cϕ(x, r)β , (3.2)

for some β ∈ (0, 1) and for every x ∈ R
n and r>0. Define η(x, r) ≡ ϕ(x, r)β and �(r) ≡

�(r1/β). Then the operator Mα is bounded fromM�,ϕ(Rn) toM� ,η(Rn).
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Proof: For arbitrary ball B = B(x, r), we represent f as

f = f1 + f2, f1(y) = f (y)χ2B(y), f2(y) = f (y)χ �
(2B)

(y), r > 0,

and have

Mαf (x) = Mαf1(x) + Mαf2(x).

Let y be an arbitrary point in B. If B(y, t) ∩ �
(B(x, 2r)) �= ∅, then t> r. Indeed, if z ∈

B(y, t) ∩ �
(B(x, 2r)), then t > |y − z| ≥ |x − z| − |x − y| > 2r − r = r.

On the other hand, B(y, t) ∩ �
(B(x, 2r)) ⊂ B(x, 2t). Indeed, if z ∈ B(y, t) ∩ �

(B(x, 2r)),
then we get |x − z| ≤ |y − z| + |x − y| < t + r < 2t.

Hence

Mαf2(y) = sup
t>0

1
|B(y, t)|1− α

n

∫
B(y,t)∩ �

(B(x,2r))
|f (z)| dz

≤ 2n−α , sup
t>r

1
|B(x, 2t)|1− α

n

∫
B(x,2t)

|f (z)| dz

= 2n−α sup
t>2r

1
|B(x, t)|1− α

n

∫
B(x,t)

|f (z)| dz

≤ C2 sup
r<t<∞

�−1(|B(x, t)|−1)tα‖f ‖L�(B(x,t)).

Consequently from Hedberg’s trick and the last inequality, we have

Mαf (y) � rαMf (y) + sup
r<t<∞

�−1(|B(x, t)|−1)tα‖f ‖L�(B(x,t))

� rαMf (y) + ‖f ‖M�,ϕ sup
r<t<∞

tαϕ(x, t).

Thus, using the technique in [20, p. 6492], by (3.2) we obtain

|Mαf (y)| � min{ϕ(x, r)β−1Mf (y),ϕ(x, r)β‖f ‖M�,ϕ }
� sup

s>0
min{sβ−1Mf (y), sβ‖f ‖M�,ϕ }

= (Mf (y))β ‖f ‖1−β

M�,ϕ ,

where we have used that the supremum is achieved when theminimum parts are balanced.
Hence for every y ∈ B, we have

Mαf (y) � (Mf (y))β ‖f ‖1−β

M�,ϕ . (3.3)

By using the inequality (3.3), we have

‖Mαf ‖L�(B) � ‖(Mf )β‖L�(B) ‖f ‖1−β

M�,ϕ .

Note that from (2.3), we get

∫
B
�

⎛
⎝ (Mf (x))β

‖Mf ‖β

L�(B)

⎞
⎠ dx =

∫
B
�

(
Mf (x)

‖Mf ‖L�(B)

)
dx ≤ 1.
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Thus ‖(Mf )β‖L�(B) ≤ ‖Mf ‖β

L�(B)
. Consequently by using the boundedness of themaximal

operator, we get

η(x, r)−1�−1(|B|−1)‖Mαf ‖L�(B) � η(x, r)−1�−1(|B|−1)‖Mf ‖β

L�(B)
‖f ‖1−β

M�,ϕ

= (
ϕ(x, r)−1�−1(|B|−1)‖Mf ‖L�(B)

)β ‖f ‖1−β

M�,ϕ � ‖f ‖M�,ϕ .

By taking the supremum of all B, we get the desired result. �

Remark 3.3: Note that, for η(x, r) ≡ ϕ(x, r)β and �(r) ≡ �(r1/β), ϕ ∈ �� implies that
η ∈ �� . Also, � ∈ �′ implies � ∈ �′.

The following theorem is one of our main results.

Theorem 3.4 ((Adams type result)): Let 0 < α < n, � ∈ �′, ϕ ∈ ��, β ∈ (0, 1), η(t) ≡
ϕ(t)β and �(t) ≡ �(t1/β).

1. If � ∈ ∇2 and ϕ(t) satisfies (2.7) then the condition

tαϕ(t) + sup
t<r<∞

rα ϕ(r) ≤ Cϕ(t)β , (3.4)

for all t > 0, where C>0 does not depend on t, is sufficient for the boundedness of Mα

fromM�,ϕ(Rn) toM� ,η(Rn).
2. If ϕ ∈ G�, then the condition

tαϕ(t) ≤ Cϕ(t)β , (3.5)

for all t > 0, where C>0 does not depend on t, is necessary for the boundedness of Mα

fromM�,ϕ(Rn) toM� ,η(Rn).
3. Let � ∈ ∇2 and ϕ ∈ G�. Then, the condition (3.5) is necessary and sufficient for the

boundedness of Mα fromM�,ϕ(Rn) toM� ,η(Rn).

Proof: The first part of the theorem is a corollary of Theorem 3.2.
We shall now prove the necessary part. Let B0 = B(x0, t0) and x ∈ B0. By Lemma 3.1,

we have tα0 ≤ CMαχB0(x). Therefore, by Lemmas 2.6 and 2.16

tα0 ≤ C�−1(|B0|−1)‖MαχB0‖L�(B0) ≤ Cη(t0)‖MαχB0‖M� ,η

≤ Cη(t0)‖χB0‖M�,ϕ ≤ C
η(t0)
ϕ(t0)

≤ Cϕ(t0)β−1.

Since this is true for every t0 > 0, we are done. The third statement of the theorem follows
from the first and second parts of the theorem. �

If we take �(t) = tp, p ∈ [1,∞) and β = p/q with p < q < ∞ at Theorem 3.4 we get
the following result for the generalized Morrey spaces which also can be seen as a special
case of [21, Theorem 1].

Corollary 3.5: Let 0 < α < n, 1 < p < q < ∞ and ϕ ∈ �p ≡ �tp .
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1. If ϕ(t) satisfies

sup
r<t<∞

ess inf
t<s<∞ ϕ(s)sn/p

tn/p
≤ Cϕ(r), (3.6)

then the condition

tαϕ(t) + sup
t<r<∞

rαϕ(r) ≤ Cϕ(t)p/q, (3.7)

for all t > 0, where C>0 does not depend on t, is sufficient for the boundedness of Mα

fromMp,ϕ(Rn) toMq,ϕp/q
(Rn).

2. If ϕ ∈ Gp ≡ Gtp , then the condition

tαϕ(t) ≤ Cϕ(t)p/q, (3.8)

for all t > 0, where C>0 does not depend on t, is necessary for the boundedness of Mα

fromMp,ϕ(Rn) toMq,ϕp/q
(Rn).

3. If ϕ ∈ Gp, then the condition (3.8) is necessary and sufficient for the boundedness of Mα

fromMp,ϕ(Rn) toMq,ϕp/q
(Rn).

If we take ϕ(t) = �−1(t−n)/�−1(t−λ), 0 ≤ λ ≤ n, �(t) ≡ �(t1/β), β ∈ (0, 1),

η(t) ≡ ϕ(t)β =
(

�−1(t−n)

�−1(t−λ)

)β

= �−1(t−n)

�−1(t−λ)
,

at Theorem 3.4 we get the following new result for Orlicz–Morrey spaces.

Corollary 3.6: Let � ∈ �′ ∩ ∇2, �(t) ≡ �(t1/β) and β ∈ (0, 1). If

sup
t<r<∞

rα
�−1(r−n)

�−1(r−λ)
≤ Ctα

�−1(t−n)

�−1(t−λ)
, (3.9)

for all t > 0, where C>0 does not depend on t, then the condition

tα ≤ C
[
�−1(t−n)

�−1(t−λ)

]β−1

(3.10)

for all t > 0,where C>0 does not depend on t, is necessary and sufficient for the boundedness
of Mα fromM�,λ(Rn) toM� ,λ(Rn).

Remark 3.7: If we take �(t) = tp, β = p
q with p<q at Corollary 3.6, then condi-

tion (3.9) is equivalent to 0 ≤ λ < n − αp and condition (3.10) is equivalent to 1/p −
1/q = α/(n − λ). Therefore, we get the following Adams result for Morrey spaces (see
Theorem 1.1).

Corollary 3.8: Let 0 < α < n, 1 < p < q < ∞ and 0 ≤ λ < n − αp. ThenMα is bounded
fromMp,λ(Rn) toMq,λ(Rn) if and only if 1/p − 1/q = α/(n − λ).

To compare, we formulate the following theorem proved in [19] and remark below.
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Theorem 3.9: Let 0 < α < n, � ∈ �′, ϕ ∈ ��, β ∈ (0, 1), η(t) ≡ ϕ(t)β and �(t) ≡
�(t1/β).

1. If � ∈ ∇2 and ϕ(t) satisfies (2.7) then the condition

tαϕ(t) +
∫ ∞

t
rαϕ(r)

dr
r

≤ Cϕ(t)β ,

for all t > 0, where C>0 does not depend on t, is sufficient for the boundedness of Iα
fromM�,ϕ(Rn) toM� ,η(Rn).

2. If ϕ ∈ G�, then the condition (3.5) is necessary for the boundedness of Iα from
M�,ϕ(Rn) toM� ,η(Rn).

3. Let � ∈ ∇2. If ϕ ∈ G� satisfies the regularity condition∫ ∞

t
rα ϕ(r)

dr
r

≤ Ctαϕ(t), (3.11)

for all t > 0, where C>0 does not depend on t, then the condition (3.5) is necessary and
sufficient for the boundedness of Iα fromM�,ϕ(Rn) toM� ,η(Rn).

Remark 3.10: Although fractional maximal function is pointwise dominated by the Riesz
potential, and consequently, the results for the former could be derived from the results for
the latter, we consider them separately, because we are able to study the fractional maxi-
mal operator under weaker assumptions than it derived from the results for the potential
operator. More precisely, for ϕ ∈ G�, we do not need to regularity condition (3.11) for the
boundedness of fractional maximal operator.

4. Weak-type results

Definition 4.1: Let � be a Young function. The weak Orlicz space is defined as

WL�(Rn) := {f ∈ L1loc(R
n) : ‖f ‖WL� < ∞},

where

‖f ‖WL� = inf
{
λ > 0 : sup

t>0
�

(
t
λ

)
df (t) ≤ 1

}
,

and df (t) = |{x ∈ R
n : |f (x)| > t}|.

Lemma 4.2: If 0 < ‖f ‖WL� < ∞, then

sup
t>0

�(
t

‖f ‖WL�

)df (t) ≤ 1. (4.1)

Proof: By the definition of ‖ · ‖WL� , for all λ > ‖f ‖WL� we have�(t/λ)df (t) ≤ 1, ∀t > 0.
Now as λ decreases to ‖f ‖WL� , the quotient t/λ increases to t/‖f ‖WL� . By the left-
continuity of�, we have�(t/λ) ↑ �(t/‖f ‖WL�). Therefore we get the desired result. �

By elementary calculations we have the following.
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Lemma 4.3: Let� be a Young function and B a set inR
n with finite Lebesguemeasure. Then

‖χB‖WL� = 1
�−1(|B|−1)

.

Definition 4.4: For a Young function � and λ ∈ R, we denote byWM�,λ(Rn) the weak
Orlicz–Morrey space, defined as the space of all functions f ∈ WL�

loc(R
n)with finite quasi-

norm

‖f ‖WM�,λ = sup
x∈Rn, r>0

�−1(|B(x, r)|−λ/n)‖fχB(x,r)‖WL� .

Definition 4.5: Let ϕ(x, r) be a positive measurable function on R
n × (0,∞) and � any

Young function. ByWM�,ϕ(Rn)we denote the weak generalized Orlicz–Morrey space of
all functions f ∈ WL�

loc(R
n) for which

‖f ‖WM�,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1�−1(|B(x, r)|−1)‖f ‖WL�(B(x,r)) < ∞.

Lemma 4.6: Let B0 := B(x0, r0). If ϕ ∈ G�, then ‖χB0‖WM�,ϕ ≈ ϕ(r0)−1.

Proof: The proof is similar to the proof of Lemma 2.16 thanks to the Lemma 4.3. �

Theorem 4.7 ([8]): Let� be aYoung function, the functionsϕ ∈ �� and� ∈ �′ satisfy the
condition (2.7) then the maximal operator M is bounded fromM�,ϕ(Rn) to WM�,ϕ(Rn).

Theorem 4.8: Let � ∈ �′ and 0 < α < n. Let ϕ ∈ �� satisfy the conditions (2.7) and
(3.2). Define η(x, t) ≡ ϕ(x, t)β and �(t) ≡ �(t1/β) for β ∈ (0, 1). Then the operator Mα

is bounded fromM�,ϕ(Rn) to WM� ,η(Rn).

Proof: By using the inequality (3.3), we have

‖Mαf ‖WL�(B) � ‖(Mf )β‖WL�(B) ‖f ‖1−β

M�,ϕ ,

where B = B(x, r).
Note that from (4.1), we get

sup
t>0

�

⎛
⎝ tβ

‖Mf ‖β

WL�(B)

⎞
⎠ d(Mf )β (tβ) = sup

t>0
�

(
t

‖Mf ‖WL�(B)

)
dMf (t) ≤ 1.

Thus ‖(Mf )β‖WL�(B) ≤ ‖Mf ‖β

WL�(B)
. Consequently by using theweak boundedness of the

maximal operator, we get

η(x, r)−1�−1(|B|−1)‖Mαf ‖WL�(B) � η(x, r)−1�−1(|B|−1)‖Mf ‖β

WL�(B)
‖f ‖1−β

M�,ϕ

= (ϕ(x, r)−1�−1(|B|−1)‖Mf ‖WL�(B))
β ‖f ‖1−β

M�,ϕ � ‖f ‖M�,ϕ .

By taking the supremum of all B, we get the desired result. �
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Theorem 4.9 (Weak version of Adams-type result): Let 0 < α < n, � ∈ �′, ϕ ∈ ��,
β ∈ (0, 1), η(t) ≡ ϕ(t)β and �(t) ≡ �(t1/β).

1. If ϕ(t) satisfies (2.7) then the condition (3.4) is sufficient for the boundedness of Mα from
M�,ϕ(Rn) to WM� ,η(Rn).

2. If ϕ ∈ G�, then the condition (3.5) is necessary for the boundedness of Mα from
M�,ϕ(Rn) to WM� ,η(Rn).

3. If ϕ ∈ G�, then the condition (3.5) is necessary and sufficient for the boundedness of Mα

fromM�,ϕ(Rn) to WM� ,η(Rn).

Proof: The first part of the theorem is a corollary of Theorem 4.8.
We shall now prove the second part. Let B0 = B(x0, t0) and x ∈ B0. By Lemma 3.1, we

have tα0 ≤ CMαχB0(x). Therefore, by Lemmas 4.3 and 2.16

tα0 ≤ C�−1(|B0|−1)‖MαχB0‖WL�(B0) ≤ Cη(t0)‖MαχB0‖WM� ,η

≤ Cη(t0)‖χB0‖M�,ϕ ≤ C
η(t0)
ϕ(t0)

= Cϕ(t0)β−1.

Since this is true for every t0 > 0, we are done.
The third statement of the theorem follows from the first and second parts of the

theorem. �

If we take �(t) = tp, p ∈ [1,∞) and β = p/q with p < q < ∞ at Theorem 4.9 we get
the following corollary which also can be seen as a special case of [21, Theorem 2].

Corollary 4.10: Let 1 ≤ p < q < ∞, 0 < α < n and ϕ ∈ �p.

(1) If ϕ(t) satisfies (3.6) then the condition (3.7) is sufficient for the boundedness of Mα from
Mp,ϕ(Rn) to WMq,ϕp/q

(Rn).
(2) If ϕ ∈ Gp, then the condition (3.8) is necessary for the boundedness of Mα from

Mp,ϕ(Rn) to WMq,ϕp/q
(Rn).

(3) If ϕ ∈ Gp, then the condition (3.8) is necessary and sufficient for the boundedness of Mα

fromMp,ϕ(Rn) to WMq,ϕp/q
(Rn).

If we take ϕ(t) = �−1(t−n)/�−1(t−λ), 0 ≤ λ ≤ n, �(t) ≡ �(t1/β), β ∈ (0, 1),

η(t) ≡ ϕ(t)β =
(

�−1(t−n)

�−1(t−λ)

)β

= �−1(t−n)

�−1(t−λ)
,

at Theorem 4.9 we get the following corollary.

Corollary 4.11: Let � ∈ �′, �(t) ≡ �(t1/β) and β ∈ (0, 1). If the condition (3.9) is sat-
isfied, then the condition (3.10) is necessary and sufficient for the boundedness of Mα from
M�,λ(Rn) to WM� ,λ(Rn).

If we take into account Remark 3.7, we get the following weak version of Adams result
for Morrey spaces (see Theorem 1.1).
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Corollary 4.12: Let 0 < α < n, 1 ≤ p < q < ∞ and 0 ≤ λ < n − αp. Then Mα is
bounded fromMp,λ(Rn) to WMq,λ(Rn) if and only if 1/p − 1/q = α/(n − λ).
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