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1. Introduction

As is well known, Morrey spaces are widely used to investigate the local behaviour of solu-
tions to second-order elliptic partial differential equations (PDE). Recall that the classical
Morrey spaces MP*(R") are defined by

MP’MR"):{feL{’ogR'l)wvnMp,x: sup r—“f’uf||m<x,r>)<oo},

xeR", r>0

where 0 < A < n,1 < p < oo. MP*(R") was an expansion of LP(R") in the sense that
MPO(R") = [P(R") and MP"(R") = L°°(R"). Here and everywhere in the sequel B(x, r)
is the ball in R” of radius r centred at x and |B(x, r)| = v,r" is its Lebesgue measure, where
v, is the volume of the unit ball in R”.

By WMP*(R") we denote the weak Morrey space defined as the set of functions f in
the local weak space WL‘ID o R™) for which

—A
Ifllwaer = sup 7 PIIfllwreBery) < 00
xeR" r>0
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The spaces MP#(R") defined by the norm

fllavee = sup (o) 1B D PIIf e B
x€R", r>0
with a function ¢ positive and measurable on R” x (0, 0o) are known as generalized Mor-

rey spaces. Also by WMP¥(R") we denote the weak generalized Morrey space of all
functions f € WLf oc R™) for which

Ifllwaese = sup @)~ B ) TVPIf llwee o) < 00
xeR™, r>0

Note that, in the case ¢(x, r) = r*~™/P, we get the classical Morrey space MP*(R") from
generalized Morrey space MP¥¢ (R").

The Orlicz space was first introduced by Orlicz [1,2] as generalizations of Lebesgue
spaces L?. Since then this space has been one of the important functional frames in the
mathematical analysis, and especially in real and harmonic analysis. Orlicz space is also
an appropriate substitute for L' space when L! space does not work. For example, the
Hardy-Littlewood maximal operator

Mf(x) = sup
f r>0 |B(x’ 7‘)| B(x,r)

If )1 dy (1.1)

isbounded on L for 1 < p < oo, but not on LY, but using Orlicz spaces, we can investigate
the boundedness of the maximal operator near p =1, see [3-5] for more precise statements.

A natural step in the theory of functions spaces was to study generalized Orlicz-Morrey
spaces M ®¥(IR") where the ‘Morrey-type measuring’ of regularity of functions is realized
with respect to the Orlicz norm over balls instead of the Lebesgue one. Such spaces were
first introduced and studied by Nakai [6]. Then another kind of generalized Orlicz—Morrey
spaces were introduced by Sawano et al. [7]. The generalized Orlicz-Morrey spaces used
in this paper was introduced in [8]. In words of Guliyev et al. [9], our generalized
Orlicz-Morrey space is the third kind and the ones in [6,7] are the first kind and sec-
ond kind, respectively. According to the examples in [10], one can say that the generalized
Orlicz—-Morrey spaces of the first and second kind are different and that second kind and
third kind are different. However, it is not known that relation between first and third kind.

Let 0 < o < n. The fractional maximal operator M, and the Riesz potential operator
I, are defined by

f» d

n |x _y|n—Ol

Maf (x) = sup |B(x, )]~ F/" / FO)Idy,  Tuf(x) = /
t>0 B(x,t) R
If « = 0, then M = M, is the Hardy-Littlewood maximal operator defined in (1.1).

The classical result by Hardy-Littlewood-Sobolev states that the operator I, is of weak
type (p, np/(n — ap)) if 1 < p < n/a and of strong type (p, np/(n — ap)) if1 < p < n/c.
Also the operator My, is of weak type (p, np/(n — ap)) if 1 < p < n/a and of strong type
(p,np/(n —ap)) ifl < p < n/a.

Around the 1970s, the Hardy-Littlewood-Sobolev inequality is extended from
Lebesgue spaces to Morrey spaces. The following theorem was proved by Adams [11].
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Theorem 1.1 (Adams [11]): Let 0 <o <n, l <p <n/a, 0 <A <n—ap and 1/p —
1/q = a/(n — ). Then for p > 1, the operator I, is bounded from MFP*(R") to M*(R")
and for p = 1, I is bounded from M (R") to WMT*(R™).

Recall that, for 0 < o < n,

a/n—1

Maf(x) < Uy Ia(lﬂ)(x))

hence Theorem 1.1 also implies boundedness of the fractional maximal operator M.

Guliyev [12] (see also [13,14]) extended the results of Spanne and Adams from Morrey
spaces to generalized Morrey spaces (see also [15]). Later on, some of these results are
obtained in [16,17] under weaker condition.

The boundedness of My, from Orlicz space L®(R") to the corresponding another Orlicz
space LY (R") was studied in [5]. There were given necessary and sufficient conditions for
the boundedness of the operator M,, from L®([R") to LY (R") and also from L? (R") to the
weak Orlicz space WLY (R™).

In this paper, we shall give a characterization for weak/strong Adams-type boundedness
of the fractional maximal operator on generalized Orlicz—Morrey spaces.

By A < B we mean that A < CB with some positive constant C independent of appro-
priate quantities. If A < Band B < A, we write A & B and say that A and B are equivalent.

2. Preliminaries
2.1. On Young Functions and Orlicz Spaces

We recall the definition of Young functions.

Definition 2.1: A function ® : [0, 00) — [0, 00] is called a Young function if ® is convex,
left-continuous, lim,—, o ®(r) = ®(0) = 0 and lim,_, ,c (1) = oco.

From the convexity and ®(0) = 0 it follows that any Young function is increasing. If
there exists s € (0, 00) such that ®(s) = 00, then ®(r) = oo for r > s. The set of Young
functions such that 0 < ®(r) < oo for 0 < r < oo will be denoted by V. If & € ), then
® is absolutely continuous on every closed interval in [0, 00) and bijective from [0, 00) to
itself. For a Young function ® and 0 < s < oo, let

& 1) =inf{r>0: d(r) > s).

If ® € ), then ®! is the usual inverse function of ®.
Note that Young functions satisfy the properties

d(at) <ad(t), fo<a<l d O Nat) > ad (), f0<a<l,
d(at) > ad(t), ifa >1 O Nat) <ad (1), ifa>1.
(2.1)

Remark 2.2: We can easily see that ®(Cr) ~ ®(r) and ®~1(Cr) ~ &~ 1(r) for a positive
constant C from (2.1).
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It is well known that
r<® '(nNd'(r) <2r forr>0, (2.2)
where ®(r) is defined by
b(r) = { sup{rs — ®(s) : s € [0,00)}, 1 € [0,00),
0, r = oo.

A Young function @ is said to satisfy the A,-condition, denoted also as ® € A,, if
®(2r) < CP(r), r > 0 for some C> 1. If & € A,, then & € V. A Young function & is
said to satisfy the V,-condition, denoted also by ® € V,, if ®(r) < (1/2C)P(Cr), r > 0
for some C > 1.

A Young function @ is said to satisfy the A’-condition, denoted also as ® € A/, if

O(tr) < CO(HP(r), t,r>0

for some C > 1.
Note that, each element of A’-class is also an element of A,-class.

Remark 2.3: Let ® € A’, then we have
O(tr) < CO()P(r), t,r=>0.

If we set @ (t) = uand O (r) = v, we get O M wd (v) < Cuv = O L wd(v) <
&~ (Cuv) < CP~(uv), since ® € Y and ®~! is concave.

Definition 2.4 (Orlicz Space): For a Young function &, the set
LP(R") = {f € LIIOC(R") : / @ (k|f (x)]) dx < oo forsome k > 0}
RYI
is called Orlicz space. If ®(r) = 7, 1 < p < 0o, then L*(R") = LP(R"). If &(r) =0, 0 <

r < land ®(r) = oo, r > 1,then L* (R") = L>°(R"). The space LgC(R”) is defined as the
set of all functions f such that fx, € L*(R") for all balls B C R”.

L®(R™) is a Banach space with respect to the norm

If Lo =inf{k >O:/ﬂCD(Lf(;)|>dx§ 1}_
[Lo(U)azn o

Lemma 2.5 ([8]): For a Young function ® and B = B(x, ), the following inequality is valid:

We note that

Ifllz2 sy < 21BI® " (IBI"DIf 1o (5)»

where ||fll o) = IIf sl re-
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By elementary calculations we have the following.

Lemma 2.6: Let ® be a Young function and B be a set in R" with finite Lebesgue measure.
Then

1

ol = a1y

The following theorem is an analogue of Lebesgue differentiation theorem in Orlicz
spaces.

Theorem 2.7 ([18]): Suppose that ® is a Young function and let f € L®(R") be nonnega-
tive. Then

lim inf If xBeer Il o

> f(x), foralmosteveryx € R".
r=>0+ || xBexn e

If we moreover assume that ® € A', then

If xBeer Il o

= f(x), foralmosteveryx € R".
r=>0+ || xBeen e

2.2. Orlicz-Morrey spaces

Definition 2.8: For a Young function ® and A € R, we denote by M®*(R") the
Orlicz-Morrey space, defined as the space of all functions f € qug (R™) with finite quasi-
norm

Ifllper = sup @ LB DI If Xpeon I o

xeR™, r>0
Note that M®*|,—o = L®(R") and MCD’)‘Iq)(t):tp = MPHR™M).
Lemma2.9: If ® € A/, then M®"(R") = L®(R").
Proof: Letf € L°°(R"), then
O (1B DD xBeen e < Ifle @™ (1BGG NI D I xBen e < Il

which implies [|f || pqon < |If Il
Now let f € M®"(R"). Theorem 2.7 implies that |f(x)| < [|f|| y(o for almost every
x € R", which means that ||| yqon > ||f |1 [

In the following we denote by © the set of all functions equivalent to 0 on R”.

Lemma 2.10: Let ® be a Young function. If A < 0orA > nand ® € A/, then M®*(R") =
0.
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Proof: Firstlet A < 0andf € M®*(R"). For all x € R" and r > 0, we have

I v
OL(|B(x, )| =H/m)’

”fXB(x,r) e <

which implies that ||f||;e = lim, oo [If XBaxr llre = 0 = f(x) = 0, for almost every x €
R", since lim,_, oo @71 (r) = o0.

Now let A > nandf € M®*(R™). For all x € R" and r > 0 we have from Remark 2.3
and Theorem 2.7

If xBxr ll Lo _ O 1(|B(x,n)|™h) Ul on < If Il pqeor
IxBeen e — D1(Bx, )|~ B(x, r)[14/m) ¥ IMP = =1 (|B(x, r)|1=4/1)

which implies that [f(x)| = 0, for almost every x € R". n

Remark 2.11: In the case ®(¢) =t for 1 < p < oo from Lemmas 2.9 and 2.10, we get
the following well-known results: MP"(R") = L (R") and MP*(R") = © for A < 0 or
A >

2.3. Generalized Orlicz-Morrey Spaces

Various versions of generalized Orlicz-Morrey spaces were introduced in [6-8]. We used
the definition of Deringoz et al. [8] which runs as follows.

Definition 2.12: Let ¢(x, r) be a positive measurable function on R” x (0, c0) and ® any
Young function. We denote by M ®¢ (IR") the generalized Orlicz-Morrey space, the space
of all functions f € Lfg (R™) for which

flpee = sup @G @7 (B DI DIf o e < 00

xeR",r>0

In the case ¢(x,7) = ®~L(|B(x, r)|~1)/ D 1(|B(x, )| ~*/") , we get the Orlicz-Morrey
space M®*(R") from generalized Orlicz-Morrey space M ®¢ (R") .

Lemma 2.13: Let ® be a Young function and ¢ be a positive measurable function on R" x
(0, 00).

@ If
&~ 1(|B(x,r)| 7!
M = oo forsomet > Oandforallx € R”, (2.4)
t<r<oo @(x,71)
then M®#(R") = @©.
(i) If® € A" and
sup ¢(x, ! =00 forsomer > Oandforallx € R”, (2.5)

O<r<rt

then M®#(R") = @.
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Proof: (i) Let (2.4) bessatisfied and f be not equivalent to zero. Then sup, g [If [l 1# () >
0, hence

Ifllpgee = sup sup (o) @ (IBCL DI DI llLo By

xeR" t<r<oo

> sup [Ifllzopes sup @GN @ (B, .
xeR” t<r<oo

Therefore ||f|| yq0.0 = 00.
(ii) Let f € MP?(R™) and (2.5) be satisfied. Then there are two possibilities: Case I:
supg_,_; ¢(x, 1)1 = oo for all t> 0. Case 2: sup,_,_, ¢(x,7) "1 < oo for some s € (0, 7).
For Case 1, by Theorem 2.7, for almost all x € R”,

”fXB(x,r) ”L‘D
r—>0+ || XB(x,r) ”L‘I>

= [f)I. (2.6)

We claim that f(x) = 0 for all those x. Indeed, fix x and assume |f(x)| > 0. Then by
Lemma 2.6 and (2.6) there exists g > 0 such that

[f 0l
2

O (B DI DI o By =
forall 0 < r < t5. Consequently,

Ifllpgoe = sup @Cer) '@ (B NI DI llLe Bry)

O<r<ty

If &)

=

sup @(x, r)fl.

O<r<ty

Hence ||f|| pqo.0 = 00,50 f ¢ M®#(R™) and we have arrived at a contradiction.
Note that Case 2 implies that sup,_,_, ¢(x,7) "' = oo, hence

sup @(x,n) 'O (IBGe, )T = sup @) 'O (BT
S<r<oo S<r<t

> & 1 (|Bx, 7)Y sup @@, = oo,

S<r<t

which is the case in (i). [ |

Remark 2.14: Let @ be a Young function. We denote by Q¢ the sets of all positive
measurable functions ¢ on R” x (0, 00) such that for all ¢ > 0,

>~ '(IB(x I

SUu
b o6 1)

xeR"

< 00,
L2 (t,00)

and

~1
sup [[@(x, 7)™ [l (0,0 < 00,
xeR"

respectively. In what follows, keeping in mind Lemma 2.13, we always assume that ¢ € Qo
and ® € A,
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The following theorem and lemma play a key role in our main results.

Theorem 2.15 ([8]): Let ® be a Young function, the functions ¢ € Q¢ and ® € A’ satisfy
the condition

-1 1) essinf — P59
rfipooqb (IB(x, )] )gggg o T(BGs) D) < Co(x,1), (2.7)

where C does not depend on x and r. Then the maximal operator M is bounded from

MPC R to MP¢R") for d € V.

A function ¢ : (0,00) — (0, 00) is said to be almost increasing (resp. almost decreasing)
if there exists a constant C > 0 such that

¢(r) = Cp(s)  (resp.p(r) = Cp(s)) forr <s.

For a Young function ®, we denote by G¢ the set of all almost decreasing functions ¢ :
(0,00) — (0,00) such that t € (0,00) > ¢(t)/®L(+™") is almost increasing.

Lemma 2.16 ([19]): Let By := B(xo, 19). If ¢ € Go, then there exist C> 0 such that

= IxBollmoe =

@(ro) — p(r9)”

3. Adams type results for M, in M®¢

For proving our main results, we need the following estimate.

Lemma 3.1: If By := B(xo, 10), then rj < CMy x,(x) for every x € By.

Proof: 1t is well known that
Mgf (x) < 2" Myf (x), (3.1)

where My (f)(x) = supy., |B|~1T%/" Sz f )1 dy.
Now let x € By. By using (3.1), we get

My xB, (%) = CMy x,(x) > Csup |B|~1F/"|B N By

B>x

> C|Bo|~"*/"|By N By| = Crf.

Theorem 3.2: Let ® € A'NV, and 0 < « < n. Let ¢ € Qg satisfy the conditions (2.7)
and

o)+ sup *o(xt) < Co(x,n)P, (3.2)
r<t<oo
for some B € (0,1) and for every x € R" and r > 0. Define n(x,r) = ¢(x, NP and U (r) =
®(r'/P). Then the operator My is bounded from M®%(R") to MY (R").
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Proof: For arbitrary ball B = B(x, ), we represent f as
f=hf+h hO) =fDxmO): L) =fO)xe,, ), 1>0,
and have
Mof (%) = Maf1(x) + Mafa(x).

Let y be an arbitrary point in B. If B(y,t) N G(B(x, 2r)) # ¥, then t > r. Indeed, if z €
B(y,t) N C(B(x,Zr)),thent >|ly—zl>|x—z|—|x—y|>2r—r=r.

On the other hand, B(y,t) N G(B(x, 2r)) C B(x,2t). Indeed, if z € B(y,t) N B(B(x, 2r)),
thenweget |[x —z| <|y—z|+|x—y| <t+7r <2t

Hence

Mgfa(y) = su @ If ()] dz

]
=0 [By, )1~ n JBunn B2

1
< 2" sup —————— / f(2)] dz
t>r |B(x,2t)|" " n JB(x21)

=2"%sup ———— If (z)| dz
t>2r |B(x, )" 77 JBx)

<Cy sup @ (B OO lle Bex)-

r<t<oo

Consequently from Hedberg’s trick and the last inequality, we have

Mof(y) S *Mf(y) + sup @7 (IBGs O™ DI Il 1o By

r<t<oo

SEMFD) + Ifllpgee sup te(x,t).

r<t<oo

Thus, using the technique in [20, p. 6492], by (3.2) we obtain

IMof )| < minfeCx, )P IMF ), 006 )P (Il o}
< sup min{s? ' MF (), P |If | pgo )

s>0
= MFO)? If Iy o

where we have used that the supremum is achieved when the minimum parts are balanced.
Hence for every y € B, we have

Maf () S MFO)P If 1 ofh, (3.3)

By using the inequality (3.3), we have

1—
IMafllw @y S NP o ) 1 -

Note that from (2.3), we get

/\y (Mf)P dx:/q> M Y g <1
B ||Mf||f¢(3) B \IIMfllLe s B
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Thus || (Mf Y| v < IMfll fd, ) Consequently by using the boundedness of the maximal
operator, we get

_ — — — — — 1—
0o )™ W BITDIMaf Il ) S 1) T BT IMS g ) 1 o,

= (pG N O B DIMF ow)” 11y S Iflagoo.

By taking the supremum of all B, we get the desired result. |

Remark 3.3: Note that, for n(x,7) = ¢(x,r)? and W(r) = ©(/#), ¢ € Qo implies that
n € Qy. Also, ® € A" implies W € A,

The following theorem is one of our main results.

Theorem 3.4 ((Adams type result)): Let0 <o <n,® € A',p € Qg, B € (0,1),n(t) =
o(H)P and W (t) = d(tV/F).

1. If® € V, and ¢(t) satisfies (2.7) then the condition

t“p(t) + sup 1% @(r) < Co(t)P, (3.4)

t<r<oo

for all t > 0, where C > 0 does not depend on t, is sufficient for the boundedness of My
from M®¢[R") to M¥1(R").
2. Ifg € Go, then the condition

t*o(t) < Co(DP, (3.5)

for allt > 0, where C> 0 does not depend on t, is necessary for the boundedness of My
from M®¢R") to MY (R™).

3. Let ® € V, and ¢ € Go. Then, the condition (3.5) is necessary and sufficient for the
boundedness of My, from M®¢(R") to MY (R™).

Proof: The first part of the theorem is a corollary of Theorem 3.2.
We shall now prove the necessary part. Let By = B(xy, to) and x € By. By Lemma 3.1,
we have tj < CM,, xB,(x). Therefore, by Lemmas 2.6 and 2.16
t§ < CY ™ (1Bol ™) 1M Xy ll v 3y < C11(t0) [ Mar Xy ll e
n(t)

< Cn(to) | Xy | ppow < C < Co(to)P "
@ (o)
Since this is true for every tp > 0, we are done. The third statement of the theorem follows
from the first and second parts of the theorem. |

If we take ®(t) = t#, p € [1,00) and B = p/q with p < g < oo at Theorem 3.4 we get
the following result for the generalized Morrey spaces which also can be seen as a special
case of [21, Theorem 1].

Corollary 3.5: Let0 <a <n 1l <p<g<ooandg € Q)= Qp.
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1. If o(t) satisfies

ess inf ¢ (s)s™/?
<§<OO
r<5;1<POO BT — =< Co(n), (3.6)
then the condition
o)+ sup ro(r) < CpHP/1, (37)
t<r<oo

for all t > 0, where C > 0 does not depend on t, is sufficient for the boundedness of My
from MP#(R") to Mae' (R™).
2. Ifpe Qp = Gy, then the condition

" o(t) < Cp(t)P/4, (3.8)

for all t > 0, where C> 0 does not depend on t, is necessary for the boundedness of My
from MP#(R") to Mae' (R™).

3. Ifg € Gp, then the condition (3.8) is necessary and sufficient for the boundedness of My,
from MP#(R™) to M3 (RM).

If we take p(t) = @1t /P 1 t1),0 <A < n, W(t) = d(tV/P), B € (0,1),

q)—l(t—n) B \I/_l(t_n)
=) = = ,
10 =¢0 (cb—lw)) W
at Theorem 3.4 we get the following new result for Orlicz-Morrey spaces.
Corollary 3.6: Let ® € A' NV, W(t) = d(t/P) and p € (0,1). If

) _ LT

sup ¥ < , (3.9)
e @G T BT
for all t > 0, where C > 0 does not depend on t, then the condition
d)—l (t_n) B-1
i <C|l———= 3.10
- [@D—l(t—k)} 10

forallt > 0, where C > 0 does not depend on t, is necessary and sufficient for the boundedness

of My from M®*(R") to M¥*(R™).

Remark 3.7: If we take ®(t) =, B =1—q7 with p<gq at Corollary 3.6, then condi-
tion (3.9) is equivalent to 0 < A < n — ap and condition (3.10) is equivalent to 1/p —

1/q = a/(n — X). Therefore, we get the following Adams result for Morrey spaces (see
Theorem 1.1).

Corollary 3.8: Let0 <o <n,1 <p<gq<ooand0 < A < n — ap. Then M, is bounded
from MP*(R™) to MP*(R™) if and only if 1/p — 1/q = a/(n — A).

To compare, we formulate the following theorem proved in [19] and remark below.



INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS . 295

Theorem 3.9: Let 0 <a <n, ®c A, ¢ € Qop, B € (0,1), n(t) = <p(t)ﬂ and V(1) =
(/P

1. If® € V, and ¢(t) satisfies (2.7) then the condition
o0 d
(1) + / Fo(n= = Cov”,
t

for all t > 0, where C> 0 does not depend on t, is sufficient for the boundedness of 1,
from M®#R"™) to MY1(R™).

2. If ¢ € G, then the condition (3.5) is necessary for the boundedness of I from
MPLR") to MYT(R™).

3. Let ® € V. If ¢ € Go satisfies the regularity condition

© dr
/ r¢ go(r)T < Ct%p(t), (3.11)
t

forallt > 0, where C> 0 does not depend on t, then the condition (3.5) is necessary and
sufficient for the boundedness of I, from M®¢(R") to MY (R™).

Remark 3.10: Although fractional maximal function is pointwise dominated by the Riesz
potential, and consequently, the results for the former could be derived from the results for
the latter, we consider them separately, because we are able to study the fractional maxi-
mal operator under weaker assumptions than it derived from the results for the potential
operator. More precisely, for ¢ € G, we do not need to regularity condition (3.11) for the
boundedness of fractional maximal operator.

4. Weak-type results
Definition 4.1: Let ® be a Young function. The weak Orlicz space is defined as
WLPR") == {f € L, .(R") : ||fllye < o0},

where

t
Iflwre = inf{k >0:sup®P (X) dr(t) < 1} ,

t>0

and df(t) = [{x € R" : [f(x)] > t}].

Lemma 4.2: If0 < ||f|lyye < 00, then

t

sup ®(

de(t) < 1. 4.1
Sup |lf||WL<l>) (1) < (4.1)

Proof: By the definition of || - ||y @, forall A > ||f|lyy e wehave ®(¢/1)ds(t) < 1, Vt > 0.
Now as A decreases to ||f| ¢, the quotient t/A increases to t/||f|yye. By the left-
continuity of ®, we have ®(¢t/A) + ®(t/|/f|lyr»). Therefore we get the desired result. W

By elementary calculations we have the following.
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Lemma 4.3: Let ® be a Young function and B a set in R" with finite Lebesgue measure. Then
P rr—
AW = T BT

Definition 4.4: For a Young function ® and A € R, we denote by WM ®*(IR") the weak
Orlicz—-Morrey space, defined as the space of all functions f € WLg (R™) with finite quasi-
norm

Ifllwpger =  sup @ (BCL D™ xBesr lwre-

x€R", r>0

Definition 4.5: Let ¢(x, ) be a positive measurable function on R” x (0, c0) and & any
Young function. By WM ®¢ (R") we denote the weak generalized Orlicz-Morrey space of
all functions f € WLfI; (R") for which

Ifllwagee = sup @) @ (BN lwre o) < 00

xeR",r>0
Lemma 4.6: Let By := B(xo,70). If ¢ € Go, then || xp, |l w po0 = @(ro)~ L.
Proof: The proof is similar to the proof of Lemma 2.16 thanks to the Lemma 4.3. |

Theorem 4.7 ([8]): Let ® be a Young function, the functions ¢ € Qg and ® € A’ satisfy the
condition (2.7) then the maximal operator M is bounded from M®¢ (R") to WM P9 (R™).

Theorem 4.8: Let ® € A’ and 0 < o < n. Let ¢ € Qo satisfy the conditions (2.7) and
(3.2). Define n(x,t) = ¢(x, )8 and W (t) = @(tl/ﬁ)for B € (0,1). Then the operator M,
is bounded from M®¢ (R™) to WM Y1 (R™),

Proof: By using the inequality (3.3), we have

1—
||Maf||WL‘I'(B) 5 ||(Mf)ﬂ||WL‘I’(B) |Lf||M§>,W

where B = B(x, 1).
Note that from (4.1), we get

v v dors () ® ' dyr(t) <1

sup _— 8 = sup — | dpur(t) < 1.

£=0 ||Mf||€VL¢(B) ) >0 IMf lwie s '

Thus ||(Mf)'8 lwrw s < | Mf ||€VL¢ B Consequently by using the weak boundedness of the

maximal operator, we get
_ _ _ — — — 1—
nGer) T BT IMf lwpv ) S 166~ W ABITDIMENG, o ) Iy o

_ _ — 1—
= (e, N O BT IMS o) I oy S Il pse.

By taking the supremum of all B, we get the desired result. |



INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS . 297

Theorem 4.9 (Weak version of Adams-type result): Let 0 <a <n, ® € A/, ¢ € Qo,
B € (0,1),n(t) = )P and W(t) = O (t'/P).

1. Ifo(¢) satisfies (2.7) then the condition (3.4) is sufficient for the boundedness of M, from
MP2(R") to WMYI(R™).

2. If ¢ € Go, then the condition (3.5) is necessary for the boundedness of M, from
MPER") to WMPIR™).

3. Ify € Go, then the condition (3.5) is necessary and sufficient for the boundedness of M,
from M®¢([R") to WMYT(RM).

Proof: The first part of the theorem is a corollary of Theorem 4.8.
We shall now prove the second part. Let By = B(xp, tp) and x € Byg. By Lemma 3.1, we
have t§ < CM, xB,(x). Therefore, by Lemmas 4.3 and 2.16

£ < CW ™ (IBol ™) IMa xBo lwrv 8y < Cn(to) M X Il w g v
n(to)
@(to)

Since this is true for every #p > 0, we are done.
The third statement of the theorem follows from the first and second parts of the

theorem. [ |

< Cn(to) l xBll ppoe < C = Co(tg)P 1.

If we take ®(t) = 1P, p € [1,00) and B = p/q with p < g < 0o at Theorem 4.9 we get
the following corollary which also can be seen as a special case of [21, Theorem 2].

Corollary 4.10: Let1 <p <q<00,0 <a <nandg € Q).

(1) Ife(t) satisfies (3.6) then the condition (3.7) is sufficient for the boundedness of M,, from
MP#(R") to WM™ (R™),

(2) If ¢ € Gy, then the condition (3.8) is necessary for the boundedness of My from
MP# (R™) to WM (R™).

(3) Ifp € Gy, then the condition (3.8) is necessary and sufficient for the boundedness of My
from MP#(R") to WM (R™).

If we take p(t) = 1) /O~ (t4),0 < A < n, W(t) = O(/P), B € (0, 1),

CD_I(t_”))ﬁ B \P_l(t_n)
Ol ) WLy

n() = e®F = (
at Theorem 4.9 we get the following corollary.

Corollary 4.11: Let ® € A, W(t) = ®(t'/P) and B € (0, 1). If the condition (3.9) is sat-
isfied, then the condition (3.10) is necessary and sufficient for the boundedness of My from
MEHR™) to WMPH(R™).

If we take into account Remark 3.7, we get the following weak version of Adams result
for Morrey spaces (see Theorem 1.1).
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Corollary 4.12: Let 0 <a <n, 1<p<g<o00 and 0<i <n—ap. Then M, is
bounded from MP*(R™) to WMP*(R™) ifandonly if1/p —1/q = a/(n — X).
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