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Abstract 

Background The grade IV glioma tumor Glioblastoma multiforme (GBM) arises from a 

normal brain tissue, grows rapidly and is highly malignant. GBM causes an increase of 

blood vessels around the tumor containing dead cells. GBMs are common diagnosed in 

adults especially men aged between 45 and 56 years. Since the major cause of most brain 

tumor is unidentified, it is important to study the genes that play a role in glioblastoma 

development, hence the need for gene expression profiling. Gene expression profiling 

helps to identify/reveal molecular classes, which can never be detected by looking at GBM 

samples under the microscope (American Brain Tumor Association, 2016).   

 
Aims: This study aims to use statistical methods on glioblastoma multiform (GBM) data 

obtained from microarray experiment to identify genes and samples subgroup, get 

differentially expressed genes, discover class membership, identify pathways, evaluate the 

aggressiveness of GBM sample groups and verify analysis outcome using an independent 

glioblastoma dataset. 
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Methods: The GBM data (Experimental data) used was obtained from The Cancer Genome 

Atlas (TCGA) via University of California Santa Cruz (UCSC) Genome browser as a zipped file 

that contains preprocessed data matrix, clinical data etc. The data matrix is used for class 

discovery, class comparison and class prediction analysis, while the clinical data is used for 

survival analysis. Samples subgroup, list of differentially expressed genes, sample 

membership, GBM aggressiveness prediction are results obtained from these analyses with 

the help of R and Biocondutor tools. In addition, biological interpretation is also one of the 

results obtained and it was done with PANTHER data analysis tool. PANTHER reveals the 

pathways and functional enrichment of the differentially expressed genes from 

experimental and validation datasets. Results from this study are validated with an 

independent GBM dataset (Validation data) obtained from Gene Expression Omnibus 

(GEO) by comparing the pathways and functional enrichment between the experimental 

dataset and the independent GBM dataset. 

 

Results: A correlation matrix is obtained after filtering and scaling the gene expression data 

matrix. This correlation matrix is plotted on the heatmap to show the relationships that 

exist between samples, and on dendrogram to show how samples are clustered into 

groups. Class comparison analysis produces a new data matrix, which contains as rows the 

differentially expressed genes, obtained between the sample groups (two sample groups) 

identified with clustering analysis, which appear as the matrix column. The differentially 

expressed genes are obtained with fold change and t-test analysis. The top 50 differentially 

expressed genes from the new data matrix are interpreted with PANTHER in order to 

discover molecular functions, biological processes, cellular components and pathways in 

which these genes are active. The Kaplan-Mier survival curve obtained from GBM clinical is 

generated to evaluate survival difference between classes. Comparing molecular functions, 

biological processes, cellular components and pathways in which DEGs from both datasets 

play significant roles helps in validating analysis results. 

 
Conclusion: Statistical methods are very important in analyzing microarray data since it 

gives insight into the data under study.  
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1. INTRODUCTION 

1.1 BACKGROUND TO THE STUDY 

Glioblastoma multiforme (GBM) is a grade IV glioma tumor, which arises from a normal 

brain tissue, grows rapidly and is highly malignant. There is an increase of blood vessels 

around GBM and it contains dead cells. GBMs are rare and most commonly occur in adults 

especially men aged between 45 to 65 years and very aggressive (American Brain Tumor 

Association, 2014). Been aggressive, it is important to predict the survival of patients with 

GBM. 

 
Since the major cause of most brain tumor is unidentified, it is important to study the 

genes that play different roles in the development of glioblastoma. Hence, gene expression 

profiling is essential. In addition, molecular classes which can never be the detected by 

looking at GBM samples under the microscope has been revealed by gene expression 

profiling (American Brain Tumor Association, 2014).  

 
In recent times, the advancement achieved in high-throughput microarrays has provided 

series of information relating to the biology behind glioma. Microarrays has helped to 

distinguish difference in the gene expression between normal and tumor (glioma) tissue 

(B.W. Kunkle et al 2013). Microarray experiment is a large-scale experiment that involves 

studying gene expression levels under a particular condition for thousand of genes 

concurrently. The process above is called gene expression analysis and sometimes referred 

to as gene expression profiling.  Microarray technology has become a vey important tools 

employed by biologists to study an organisms genome wide expression levels of gene. It 

should however be noted that microarray measures the expression of genes in many ways 

but it most popular application is to compare gene expression levels maintained between 

two conditions such as healthy versus normal (M.M. Babu, 2004). 

 
To achieve an outstanding results from microarray experiment we need to properly plan. A 

good plan will come in place if there are clear objectives, which must be able to answer 

biomedical questions before proceeding with the experiment. Hence, microarray 
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experiment objectives can be class comparism, class prediction and or class discovery. Class 

comparism involves identifying differentially expressed genes among predefined group of 

samples. Class prediction involves accurately predicting the biologic group a sample from a 

patient belongs based on the patient’s gene expression profile with the help of a classifier. 

Class discovery involves discovering samples or gene groups that are similar based on their 

gene expression profile (R. Simon, 2003). 
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2. LITERATURE REVIEW 

2.1   GLIOBLASTOMA MULTIFORME (GBM) 

Glioma is a tumor that emanates from glial or the supportive tissue of the brain. An 

example of glioma is astrocytoma. Astrocytoma grows from astrocytes, which are star-

shaped cells (American Brain Tumor Association, 2014). In addition, astrocytoma is the 

most common glioma with glioblastoma multiforme been their most threatening form. 

Researches conducted recently have helped to identify the basic biology behind GBM, 

though the major structure of the development of GBM remains unidentified. It has been 

difficult to understand the elementary molecular structure of pathophysiology that 

stimulates astrocytoma development and this has thus prevents the breakthrough that 

ought to have been achieved in astrocytoma treatment (B.W. Kunkle et al 2013). 

 
Glioblastoma multiforme (GBM) is a grade IV glioma tumor, which arises from a normal 

brain tissue, grows rapidly, highly malignant (American Brain Tumor Association, 2014) and 

destructive (C.V. Neubeck et al 2015). Glioblastoma multiforme is the aggregation of 

tumors that emerges from glia or their precursors inside the central nervous system. 

Gliomas are of four grades with glioblastoma multiforme (GBM) been the most threatening 

of the gliomas. Most of the patients with GMB find it difficult to survive the disease in a 

period beyond one year and importantly with short survival. This has thus made these 

tumors popular (E.C. Holland 2000). 

 
It is evident that lineage restricted progenitor and cells neural stem cells functions as the 

source of GBM or glioma-initiating cells (C.V. Neubeck et al 2015). It is a harsh brain cancer 

type defined by immense potential for growth and awful clinical result. It is an incurable 

form of cancer with a median survival of less than a year (M. Henriksen et al 2014). Since 

GBM occurs in different forms, necrosis and hemorrhage regions are excessively displayed. 

Also pleomorphic nuclei and cells, pseudopalisading necrosis and microvascular 

proliferation regions can be observed under the microscope. In addition, deletions, point 

mutations and amplification are also visible genetically in GBM, which leads to the 

amplification of signal transduction pathway activation downstream of platelet-derived 
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growth factor receptor (PDGFR) and epidermal growth factor receptor (EGFR) and cell cycle 

arrest pathway disruption by p53 mutations or INK4a-ARF loss (E.C. Holland 2000). 

 

2.1.1   OCCURRENCE OF GBM 

Glioblastoma multiforme (GBM) is a primary brain tumor that poses danger to life. It exists 

in 3 to 4 grown-up patients per 100,000 people living in Europe.  GBM occurs mostly in 

adults aged 50 and above and it affects male than female. In addition, close to 9% of brain 

tumors that affect children are GBM (X. Xu et al 2011).  

 
GBM is subdivided into primary and secondary. Primary GBM is also known as de novo 

GBM, they emerge quickly and their presence is easy to detect.  In addition, they are the 

most common and aggressive form of GBM and occur in individual aged 55 and above  

(American Brain Tumor Association, 2014). In primary GBM, about 40 to 60% of these 

GBMs are characterized by overexpression and genetic mutation of epidermal growth 

factor receptor (EGFR) and its gene, which consecutively result in mutated, form of EGFR 

(M. Henriksen et al 2014). Secondary GBM on the other hand arises as low-grade 

astrocytoma, which will later develop into dangerous and actively growing glioblastoma 

(American Brain Tumor Association, 2014). It is characterized by continuous accumulation 

of mutations in p53, growth factor derived from platelets, and retinoblastoma gene (M. 

Henriksen et al 2014). 

 
Furthermore, the larger parts of GBM emerge from primary glioblastoma while the 

remaining parts originate from lower grade astrocytoma. The molecular genetic differences 

between the benign minor astrocytoma (Grade I - II) and malignant major astrocytoma 

need to be determined so that characterization of these tumors can be achieved easily. 

Also, the genes and pathways involved in these tumor classes need to be determine so that 

better treatments could be provided for in years to come (B.W. Kunkle et al 2013).  
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2.1.2   CAUSE AND SYMPTONS GBM 

The major cause of GBM and other forms of brain tumor is still unidentified. In addition, 

most brain tumors are not hereditary but some can sometimes be induced by syndrome 

such as Neurofibromatosis, Li-Frameni, Von Hippel-Lindau, Turcot and Tuberous Sclerosis 

that are inherited genetically. The genetically inherited syndromes are present in small 

number of patients (say 5% or lower) having this tumor. In recent time, scientists have 

traced the major causes of glioblastoma to deformities in genes of various chromosomes, 

which may be involved in the tumor development. Although, the major cause of the 

deformities that occur in genes remains unclear (American Brain Tumor Association, 2014). 

 
The growth of this tumor in the brain causes a disruption of the brains normal function due 

to the fact that the skull size cannot be increased. This thus leads to increase pressure on 

brain, headache, seizures, loss of memory and behavioral changes. In addition, there is also 

loss in movement, cognitive deterioration and language dysfunction. Other symptoms are 

also possible depending on the size and location of the tumor in the brain (American Brain 

Tumor Association, 2014). 

 

2.1.3   BIOLOGY BEHIND GBM 

Over the last 20 years, knowledge of the molecular biology behind GBM has greatly 

advanced. Cells in GBM are subjected to different kind form cell deterioration, which 

makes them resistance to anti-GBM treatments. Intracellular events occur alongside tumor 

forming events and both together cause and sustain GBM (M. Nakada et al 2011).  

 
The first of these events is cell cycle control loss. Glioma cells create a means for escaping 

the strict control that regulates normal cell progression. This thus makes glioma cells to 

gain growth benefit, which in turn leads to genetic defect in growth regulatory molecules 

within the glioma cells. These defects are common in malignant gliomas compared to low-

grade gliomas. Alteration of at least one component of p16INK4a/cyclin-dependent kinase 

(CDK)-4/RB (retinoblastoma) 1 pathway, which is major pathways controlling G1–S phase 
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transition cell cycle checkpoint occur in several anaplastic astrocytomas and in the 

unlimited cases of GBMs (M. Nakada et al 2011). 

 
The second event that cause and sustain GBM is the overexpression of growth factors and 

their receptors. Glioma cells set up an autocrine growth-promoting loop because they 

express both growth factor ligands and their receptors. Epidermal growth factor receptor 

(EGFR), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF, FGF-2), 

transforming growth factor (TGF)-α, and insulin-like growth factor (IGF)-1 are the growth 

factors that are overexpressed in GBM and they thus gives merits to neoplastic cells. 

Among the growth factors overexpressed in GBM, EGFR and PDGF are the most common 

(M. Nakada et al 2011).  

 
Another event that play role in the cause and sustenance of GBM is angiogenesis. In GBM 

progression, sequence of angiogenic alterations appears like a ring-like contrast 

enhancement around the rapidly growing tumor. These alterations are seen to surround he 

tumor when viewed Magnetic Resonance Imaging (MRI) scan. Angiogenic molecules are 

present in malignant glioma especially GBMs. This is because malignant gliomas are 

vascular tumors of high grades as a result microvascular proliferation (M. Nakada et al 

2011). 

 
Invasion and migration is also a key feature that cause and sustain GBMs. Invasion and 

migration are influenced by expression of many extracellular matrix (ECM) molecules and 

cell surface receptors and this causes GBM to diffuse into their surrounding neural net (M. 

Nakada et al 2011). 

 
Another event that create and sustain GBMs is abnormality in apoptosis. Apoptosis also 

known as cell death is usually characterized by non-inflammatory cellular condensation and 

it takes place in a programmed manner. Cells in glioma develop means for increased 

reproduction and to annul apoptosis. Mutation in p53 affects apoptotic response in normal 

glial, which normally accompany growth factor overexpression in low-grade glioma (M. 

Nakada et al 2011). 
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Genomic instability also plays a vital role in the cause and sustenance of GBM. Low-grade 

glioma progress to high-grade lesions quickly and such progression is related to the 

development of malignant clones. Many malignant clones are selected when genomic 

dame occurs as a result of genomic instability. Genomic instability causes tumor 

progression in genome with mutation in p53 genes (M. Nakada et al 2011). 

 

2.1.4   PROGNOSIS AND TREATMENT OF GBM 

Before the tumor can be treated, a proper diagnosis needs to be conducted on patients 

suspected of having this tumor. Diagnosis is commenced by first carrying out a neurological 

examination on the patient followed by a Magnetic Resonance Imaging (MRI), Computed 

Tomography (CT) or Magnetic Resonance Spectroscopy (MRS) scan. This scan thus helps to 

determine the location, size, tumor type and mineral and chemical level in the tumor, 

which in turn revealed whether the tumor is benign or malignant and also to know whether 

the patient has tumor or not (American Brain Tumor Association, 2014). 

 
GBM is a tumor with complex characteristics, among which is the presence of subclones 

within the tumor cell population that makes the tumor to be genetically heterogeneous. 

Their complex characteristic has made them resistant to treatment interventions. For 

years, the conventional method of treating GBM has remained unchanged. Firstly a surgery 

is carried out on the patient in order to get rid of tumor, secondly is radiation therapy and 

lastly is chemotherapy. In most conditions, the mean survival of the patients with this 

disease only increases with just 9 to 10 months even after all the tumor seen on MRI scan 

has been surgically removed and the patients are fully treated with radiation and 

chemotherapy. This is so because the disease is diffuse topographically making the tumor 

and its location variable, which leads in improper resection of the tumor (E.C. Holland 

2000).  It is impossible to have a gross total resection without neurological and functional 

impairments such as motoric disorders, which thus have an adverse effect on quality of life 

(C.V. Neubeck et al 2015).  

Before the last 10 years, the outcome of patents with GBM has been slightly improved 

despite the improvement in technology achieved in surgery, radiotherapy and also in 
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chemotherapy development. Despite applying intense treatments applied to GBM, it shows 

resistance to multimodal therapy and its survival time is still reported in months. The 

current method employed in treating GBM was proposed by the European Organization for 

Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical 

Trials Group (NCIC). This method involves surgery carried out to remove all tumors 

(debulking surgery) accompanied by fractionated radiotherapy alongside concomitant and 

adjuvant treatment of the cytostatic agent temozolomide (TMZ). This method has thus 

increased the median and the 2 years survival of patients with this disease to 14.6 months 

and 26.5% compared to the median and 2 years survival of patients treated with only 

radiotherapy, which is 12.1 months and 10.4% (C.V. Neubeck et al 2015). 

 

2.2   RNA SEQUENCING VERSUS MICROARRAY IN GENE EXPRESSION PROFILING 

An organism’s transcriptome defines the whole range of transcripts present in that 

organism. The genes encode these transcripts as a phenotypic reply to the condition in 

which they occur.  The ability to quantify the expression of thousand of genes at the same 

time has changed the face of biomedical research and this enables the analysis of gene 

expression pattern at a genome-wide scale. In the past 10 years, there has been a huge 

advancement in the improvement of methods used for analyzing and quantifying the 

expression level of gene transcriptome wise. RNA-seq and DNA microarray are exceptional 

and are the two most commonly used method for genome-wide gene expression 

quantification among the transcriptome profiling methods (S. Kogenaru et al 2012).  

 
In RNA-seq, isolated transcripts are first converted into complementary DNA (cDNA). The 

resulting cDNA are then sequenced with a massive deep-sequencing approach. The gene 

expression levels in relation to the condition of interest or absolute level are quantified by 

mapping the resulting short sequencing reads to the reference genome.  RNA-seq can be 

carried out on different platforms such as Illumina’s Genome Analyzer, Roche 454 Genome 

Sequence, and Applied Biosystems’ SOLiD. On the contrary, specimen target strands are 

hybridized unto the fastened complementary probe strands in microarray.  In a two-color 

microarray, the extracted transcript from different conditions are labeled with specific 
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fluorescent dyes and converted to cDNA. The labeled transcripts are however hybridized to 

the fastened complementary probe strands in an array depicting the genes.  The relative 

abundance of each transcript in the two different conditions is determined by measuring 

the intensity of light from the specific fluorescent dye. Microarray can be carried out on 

Affymetrix and Agilent platforms, which are the two common microarray technology 

platforms (S. Kogenaru et al 2012). 

 
Recent literatures have compared two of the most widely used gene expression profiling 

method namely, gene expression microarray and RNA-seq documenting the utility and 

reproducibility of these methods. It is important to understand gene expression control as 

this makes understanding the relationship that exists between phenotype and genotype 

possible.  Scientist developed DNA microarray technology with the aim of assessing 

transcript abundance in biological sample reliably. However, RNA-seq gives a more 

accurate measurement and absolute transcript abundance (K.J Mantione et al 2014).  

 
Over the past 10 years, the analysis of microarray data has become easier for a beginner. 

The software packages used in analyzing microarray data are user friendly with most of 

them available for free. The protocols in each of these packages are universally applicable 

and can be compared across platforms. On the contrary, there are many data analysis 

method available in RNA-seq each with different protocols. The analysis of data from RNA-

seq requires broad experience and bioinformatics skills required in processing the data 

files. The techniques used in analyzing data from RNA-seq differ in both the software 

employed for data transformation and different RNA-seq experiments. Data sharing and 

storage in RNA-seq is extremely difficult because an unprocessed RNA-Seq raw file is 

approximately 5GB compare to microarray with an unprocessed raw data of 0.7MB (K.J 

Mantione et al 2014). 

 

In conclusion, the complex nature of data from RNA-seq will be reduced due to 

advancement in software and invention of newer techniques. Also the cost of running RNA-

sequencing experiment will also drop with time. However, presently, it is more dependable 
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and cheaper to use microarray for gene-expression profiling in model organism compared 

with RNA-seq. In addition, gene expression microarray quickly and easily gives unique, 

useful and hidden information from examining the gene expression patterns across large 

number of samples. Microarrays has been used for clinical application for a longer period 

and might obtain regulatory approval for diagnostics purposes before RNA-seq gets its 

approval. In the future, RNA-seq will replace microarray but presently both techniques can 

complement each other (K.J Mantione et al 2014). 

 

2.2.1   MICROARRAY 

Microarrays give a good approach in understanding gene expression analysis that can be 

used for different experimental purposes. It has thus helped researchers to perform 

experiments that are impossible few years back, gives distinctive challenges in data analysis 

and experimental design (S. A. Ness 2006). 

 
Microarrays are devices that identify and quantify the amount of mRNA transcript available 

in a cell (A. Sánchez and M. C. Ruíz de Villa 2008). They are usually made of glass slide, 

silicon chip or nylon membrane on to which DNA molecules are settled in a precise way at 

particular areas called spots. They may contain huge number of spots and every spot in 

turn contains a couple of million duplicates of indistinguishable genomic DNA molecule 

that compare to a gene (M.M. Babu 2004). These spots could also contain cDNAs, PCR 

products or chemically synthesized oligonucleotide that interestingly compare to a gene.  

Spots in microarrays are imprinted on to the glass slide by a robot or are blended by the 

procedure of photolithography and are called probes (London school of Hygiene and 

Tropical medicine 2016).  

 
Furthermore, microarrays plays roles in events like gene transcription, protein coding, 

mutation detection, copy number variation, and DNA methylation by measuring them and 

identifying where such event occurs in the human genome (C. Seidel 2008). It examines at 

the same time the expressions levels of more that hundreds of genes, gene relationship, 
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functions of genes and gene/samples classification in reply to some biological disorder (E. 

Naghieh and Y. Peng 2006).  

 

2.2.1.1   MICROARRAY EXPERIMENT 

Microarray experiments are very robust and it equips researchers with new and old 

methods of solving problems pan-genomic. Since microarrays contains probes for 

thousands of different genes, researchers can assess changes in all the genes in the 

genome simultaneously. However this experiment is very expensive, consumes time, 

complicated, and gives large and complex dataset that requires a lot of effort to analyze 

and validate. Hence, microarray experiment should not be performed without the 

researcher considering other options and checking for the right experimental design. New 

microarray users are however advised to consult with their domestic microarray main 

facility before preparing samples for the microarray experiment (S.A. Ness 2006). The steps 

involved in microarray experiment are as follow 

 
A. TARGET EXTRACTION 

mRNA is extracted from cells or tissues grown in two condition such that A is the reference 

condition, B is the test condition (M.M. Babu 2004). The mRNA in this case is called a target 

(A.D. Tarca et al. 2006, D.P. Berrar et al. 2003). 

 

B. TRANSCRIBTION AND LABELLING 

The mRNA molecules in the extract are transcribed in a reversed manner into cDNA and 

labeled with fluorescent dyes. Label the cDNA from the cell grown in condition A with red 

dye and that from condition B with blue dye (M.M. Babu 2004). 

 

C. HYBRIDIZATION 

Differentially labeled samples are allowed to hybridize onto the same glass slide. The cDNA 

sequences in the sample thus hybridize to spots on the slide that contains their 

complementary sequence. The number of cDNA attached to a particular spot is 

proportional to the original amount of RNA molecules for the gene in question in both 
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samples (M.M. Babu 2004). The hybridization step is done with great care in order to 

minimize cross-hybridization between genes that are similar (A.L. Tarca et al. 2006). After 

completing the hybridization reaction, target and any reference materials that couldn’t find 

a probe partner are washed off (D.P. Berrar et al. 2003). 

 

D.   SCANNING 

The hybridized spot in the microarray are excited by a laser and scanned in order to 

identify the red and the green dyes. The amount of florescent that is emitted after 

excitation is proportional to the amount of nucleic acid that is bounded (M.M. Babu 2004). 

 

E.   DETECT AND EVALUATE mRNA ABUNDANCE 

After the scanning process, we obtain an image, which contain spots that compare to a 

gene  (M.M. Babu 2004). The image obtained is stored as a 16-bit tagged image file format 

(TIFF) file, which are in pairs and each fluorescent dye corresponds to one TIFF file (S. 

Dudoit et al. 2002). 
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Figure 2.1: (A) A microarray (B) Steps in microarray experiment (Figure adapted from M.M 

Babu, 2004) 
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2.2.1.2   WHY MICROARRAY EXPERIMENT 

Microarray experiment can be carried for the following reasons 

 
A.   Comparing patient samples 

Microarray experiment helps to compare gene expression profiles of leukemia samples 

from patients in order to identify samples that might respond to a particular type of 

treatment or to identify the likely cause of the disease in question (S.A. Ness 2006). 

 

B.   Genetic difference analysis 

Here microarray experiment are used to compare genetic expression pattern changes in 

the cell of an organism with the same genetic makeup (isogenic organism) which differs by 

mutation or overexpression of genes at particular gene location (S.A. Ness 2006). 

 

C.   Comparing treatment 

The comparism of a cell line before or after some defined treatment is applied to a 

particular disease can be studied with the aid of a microarray experiment. Here, we expect 

the cell line to behave in a certain way after the treatment and as a result this type of study 

is easy and straightforward (S.A. Ness 2006). 

 

2.3   TYPES OF MICROARRAY 

Microarray can be classified by probe length, method of manufacturing and number of 

samples profiled on one array (A.L. Tarca et al. 2006). 

 
2.3.1   PROBE LENGTH 

Array can be classified according to the length of its probe as: 

 
A.   Complementary DNA (cDNA) arrays 

This array uses long probes with length up to hundreds or thousand base pairs (A.L. Tarca 

et al. 2006). Due to their long length, cDNA array might detect the entire transcript 

produced through different RNA splicing. This array type is quite cheaper with robust 

hybridization. Its major disadvantages are high cost and it produces large libraries of 
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purified cDNAs that are always difficult to assemble (S.A. Ness, 2006). This type of array has 

a lot of variability in its design, more flexible, and easier to analyze with appropriate 

experimental design (S. Drăghici 2011).  

 

B.   Oligonucleotide arrays 

The probes here are short with length of 50 base pairs or less (A.L. Tarca et al. 2006). This 

array gives reliable data than cDNA array, which are prone to specificity and G-C content 

problems. This array type is however expensive and has reduced hybridization efficiency 

(S.A. Ness 2006). 

 

2.3.2   METHOD OF MANUFACTURING 

Arrays are either manufactured by deposition or in-situ. 

 
2.3.2.1   DEPOSITION APPROACH 

This method of manufacturing microarray involves depositing spots of ante-synthesized 

nucleic acid on array support surface (S. Drăghici 2011). This can be  

 
A. Deposition of PCR-amplified cDNA clones 

Here, DNA is prepared at a distance from the chip. Thin pins are the dipped into the DNA 

material with the aid of robots and the pins are touched onto the array surface. A spot is 

then formed which results from the deposition of small DNA quantity on the array surface 

(S. Drăghici 2011). 

 
B. Printing of synthesized oligonucleotides 

Here, short, synthesized oligonucleotides are attached to the solid support.  Since the 

probes used are short, the detection of splice variants is possible. This approach is called 

printed microarray (S. Drăghici 2011). 
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2.3.2.2   IN-SITU SYNTHESIS APPROACH 

This method of manufacturing microarray involves photo-chemically synthesizing the 

probes on the chips.  Probes are selected based on sequence information and hence each 

of the synthesized probes is recognized. This method monitors and differentiates genes 

that are related since it can avoid sequences that are identical among gene family 

members. Also this method does not introduce noise into the cDNA system, as there are no 

cloning, PCR reaction and spotting (S. Drăghici 2011). The approaches in this method are 

 
A.   Photolithographic approach 

This approach uses a photolithographic mask for each probe. This mask however has a hole 

that takes in a probe with a given base. The next masks will the construct the sequences 

base by base. This approach thus produces arrays of very high densities but the DNA 

sequences constructed has limited length. Examples of array produce with this method are 

Affymetrix, Santa Clara, CA etc. (S. Drăghici 2011). 

 

B.   Ink-jet technology 

This approach utilizes the technology used in ink-jet color printer. Cartridges are loaded 

with A, C, G and T nucleotides. Nucleotide deposition occurs when print head moves across 

the array substrate. Examples of array that uses this method are Agilent, Protogene etc. (S. 

Drăghici 2011). This method is thus fast, versatile and high yielding but gives a low 

resolution (R.D. Egeland and E.M. Southern 2005). 

 

C.   Electrochemical synthesis 

This method makes use of small electrodes, which are planted into the microarray 

substrate in order to control individual reaction sites. These electrodes are activated in the 

required positions in a fixed sequence after solutions with specific bases are washed over 

the substrate. This will thus construct the required sequences base wise. Examples of 

arrays here are CombiMatrix, WA, Mukilteo, Bothel  (S. Drăghici 2011).  
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2.3.3   NUMBER OF SAMPLES PROFILED ON ONE ARRAY 

Another array classification is based on the number of samples that can be profiled on one 

array. This can be  

 
A.   Single-channel array 

This is a type of array in which one sample is hybridized at a time and it is less common (J. 

Kesseli 2015). 

 
B. Multi-channel array    

Also called two-channel array, it hybridizes two sample at a time with each of the sample 

having is own fluorescent dye. The fluorescent dye thus allows the separation of the 

samples. This type of array is common in microarray experiments (J. Kesseli 2015). 

 

2.4   APPLICATIONS OF MICROARRAYS 

Microarray finds applications in the following areas  

 
2.4.1   DIFFERENTIAL GENE EXPRESSION ANALYSIS 

This analysis involves comparing gene expression levels between different experimental 

conditions say phenotypes i.e. comparing the expression discrepancy of a single gene 

expression profile against the experimental conditions. It usually considers one sample as 

the control or reference and the other sample as the experiment. Examples are healthy 

versus disease, treated versus untreated etc. (D.P. Berrar et al. 2003). 

 

2.4.2   CO-REGULATION OF GENES ANALYSIS 

This analysis involves comparing gene profiles of two or more genes with the purpose of 

identifying genes which expression measures differs in a corresponding manner throughout 

the experimental conditions.  Two genes are said to co-regulate positively if the expression 

measure of one gene increases as that of the other and co-regulate negatively if the 

expression measure of one gene decreases as that of the other (D.P. Berrar et al. 2003). 
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2.4.3   GENE FUNCTION IDENTIFICATION  

The function of a unique gene can be obtained from a detailed microarray experiment. This 

is done by comparing the expression profiles of previously studied genes with known 

function with that of the unique gene’s expression profile under different conditions. The 

functions of the previously studied genes with highly similar expression profile can be used 

to predict the functions of the unique gene in question (D.P. Berrar et al. 2003). 

 

2.4.4   PATHWAYS AND GENE REGULATORY NETWORK IDENTIFICATION 

Microarray experiment helps to identify pathways and genes regulatory network when a 

cell is stimulated by finding genes that are turned on and off at different time points. 

Pathway identification analysis helps to show the paths and procedures where genes and 

their products function in cell, tissue and organism while gene regulatory network 

regulates gene expression (D.P. Berrar et al. 2003). 

 

2.4.5   SEQUENCE VARIATION STUDIES 

Microarray experiments also helps to study variations that occur in sequences. Sequence 

variation studies aims to uncover DNA sequence variations that corresponds with change in 

phenotype e.g. diseases. Examples of sequence variation can be single nucleotide 

polymorphism (SNP), insertions and deletion etc. (D.P. Berrar et al. 2003). 

 

2.4.6   CLINICAL DIAGNOSTICS 

Microarray also finds application in clinical diagnostics where it helps to reveal the different 

pattern in expression measures that are feature for a particular type of disease and also to 

deduce unknown disease subtypes from previously known diseases (D.P. Berrar et al. 

2003). 
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2.5 ISSUES WITH MICROARRAY ANALYSIS 

The major issues associated with microarray user are as follows 

 
A. NOISE 

Noise is one of the major issues associated with microarray experiment because it is 

introduced at every step in the experiment. Since microarrays are noisy, repeating an 

experiment more than once using the same materials and same preparations as done in 

the previous experiment, many genes gives different quantification values after scanning 

and image processing steps as a result of noise (S. Drăghici 2011). 

 

B. EXPERIMENTAL DESIGN  

Experimental design is the most important phase microarray analysis process but      

frequently ignored. It refers to the test or series of tests that a scientist influences the input 

variable of a process with the aim of detecting and recognizing the effect that change has 

on the process outcome. If the microarray experiment to be carried out is not well 

designed, then the experiment will give a false result (S. Drăghici 2011). 

 

C. HUGE NUMBER OF GENES 

The microarray technology is capable of examining thousands of genes at the same time. 

When the number of genes is too large say tens of thousand in a microarray experiment,  

experimental quality and designed method might change and this might lead to a problem 

in the analysis process (S. Drăghici 2011). 

 

D. ASSESSMENT OF ARRAY QUALITY 

Assessing the quality of array should be the aims of the data analysis process in a 

microarray experiment. This assessment thus helps in rejecting the data from faulty array 

and to determine why a microarray process may fail. Hence it is very important and if not 

giving proper attention, might after result from the experiment (S. Drăghici 2011). 
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2.6   MICROARRAY ANALYSIS PROCESS 

The processes involved in microarray analysis are shown in the figure 2.2 below 

 

 

 
 
Figure 2.2: Microarray analysis processes (Figure adapted from A. Sánchez and M. C. Ruíz 

de Villa 2008). 
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2.6.1   BIOLOGICAL QUESTIONS 

This is the first phase of microarray analysis process, which tends to define the         

 biological effect of the microarray experiment we are about to start. Here we  

 formulate hypothesis and we check relevant literatures that will back the biological       

 findings we intend to make (D.P. Berrar 2003). 

 

2.6.2   EXPERIMENTAL DESIGN 

Experimental design is the most important phase microarray analysis process but      

frequently ignored. It refers to the test or series of tests that a scientist influences the input 

variable of a process with the aim of detecting and recognizing the effect that change has 

on the process outcome. To obtain a viable conclusion, experiment must be properly 

designed (S. Drăghici 2011).  For a successful experiment, the following should be consider 

 

2.6.2.1   EXPERIMENTAL DESIGN PRINCIPLES 

This refers to the rules which when adapted, leads to a successful experiment. The rules 

are replication, randomization and blocking. 

 
A. Replication  

It is a process of repeating an experiment more than once. If introduced in a microarray 

experiment, it helps to recognize and limit the noise introduced in the hybridization step of 

the microarray experiment and to constrain biological variability (S. Drăghici 2011). In a 

microarray experiment, replication can be technical or biological replication (A. Sánchez 

and M. C. Ruíz de Villa 2008). 

 

B. Randomization  

Randomization is a process of using a random choice for all factors that are unimportant 

but can have influent the experimental result. This can be done in microarray analysis 

process by printing replicated spot at random location throughout the array or by using 

different batches of microarray slide in differential gene expression (i.e. comparing a 
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reference group versus a treatment group). It thus helps to deal with nuisance factors (S. 

Drăghici 2011). 

 

C. Blocking  

This is a technique of creating similar microarray slides of data in which factor of interest is 

left to vary while nuisance factor is kept constant.  It helps to remove variability due to the 

difference between microarray slides (S. Drăghici 2011). 

 

2.6.2.2   EXPERIMENTAL DESIGN GUIDELINES 

When panning a microarray experiment, the following can be taken into account:  

i. Define research problem 

ii. Select the type of microarray to be used. 

iii. Seek experts opinion on experimental design and data analysis 

iv. Choose factors of interest in according to level of importance 

v. Identify possible nuisance factors 

vi. Choose significance level and desired power 

vii. Design your experiment 

viii. Execute the experiment and collect data 

ix. Analyze data 

x. Extract biological meaning from data analytics result (S. Drăghici 2011). 

 

2.6.3   MICROARRAY EXPERIMENT 

The steps involved in microarray experiment have been described in in section 2.2.1.1. 

Once the experiment as been performed, we proceed to the next step in the analysis 

process. 
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2.6.4   IMAGE ANALYSIS 

Image analysis involves measuring spots intensities and calculating gene expression values 

based on these intensities. This analysis assists in evaluating data reliability, helps to 

produce warning showing possible issues during hybridization and array production phases 

(S. Drăghici 2011). 

 
Furthermore, this analysis forms the basis of any further analysis as it represents the basic 

data collection step. The images from microarray experiment are seen as spots, which are 

arranged in an orderly manner into sub-grid and this orderly arrangement thus makes spot 

detection easy (M.M Babu 2004). The stages in image processing are explained in the 

subsections below. 

 

2.6.4.1   SPOT DETECTION 

This stage involves detecting signal spots in the images and computing the size of each 

spot. The method employed for spot detection can be manual, semiautomatics and 

automatic (S. Drăghici 2011). 

 

2.6.4.2   IMAGE SEGMENTATION 

This is a method of dividing image into regions, which do not overlap but whose unification 

represents the whole image. Segmentation aims to break the image down into spot and 

background in other to measure spot signal and evaluate the intensity of the background.  

Image segmentation step is introduced once the spot has been discovered, because it helps 

to determine which pixels represents the spot and should be used in signal calculation, 

which pixels represents the background and which pixel represents noise and should be 

removed. Segmentation methods can be pure spatial-based, intensity based, Mann-

Whitney, etc. (S. Drăghici 2011). 
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2.6.4.3   SPOT QUANTIFICATION 

Spot quantification involves calculating a unique value for each gene on the chip, which 

might be proportional to the quantity of mRNA present in the solution that hybridized the 

chip. It aims to marge pixel intensity values into a distinctive value that represents the 

expression level of a gene saved on each spot (S. Drăghici 2011). 

 
Spot quantification can be achieved by taking total, mean, median, mode, volume and ratio 

signal intensities across the two channels. These intensities value are taken for the entire 

pixel within the area taken into consideration for the spot (S. Drăghici 2011). 

  

2.6.4.4   SPOT QUALITY ESTIMATION 

Spot quality estimation helps to assess spot in images with questionable values. In 

microarray analysis, the following quality measures are important 

i. Ratio between spot signal area and total spot area  

ii. Shape regularity 

iii. Spot area to perimeter ratio 

iv. Displacement 

v. Spot uniformity (S. Drăghici 2011). 
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Figure 2.3: Microarray image spot and background (Figure adapted from 

M.M. Babu 2004). 

 

 

2.6.5 QUALITY ASSESSMENT 

 Quality assessment is a crucial step after obtaining the raw data in a microarray 

experiment. It involves assessing the quality of data obtained for correct data 

interpretation and to proceed to the next step in the analysis. Since a single error or few 

weird arrays can disrupt the results of the data analysis process, it is mandatory that the 

data be of good quality before proceeding to the next step in the analysis (S. Drăghici 

2011). It thus helps to know whether the whole microarray experiment has worked well so 

that the data used can be considered trustworthy (A. Sánchez and M. C. Ruíz de Villa 2008). 
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Quality assessment starts by visual inspection of the images followed by plots of the raw 

data (N.J. Armstrong and M.A. Van de Wiel 2004). For two channel arrays, quality 

assessment is based on image inspection and plots while for one channel array, it is based 

on image inspection, degradation plots, quality control metrics estimation such as average 

background, present calls, scale factors, hybridization quality etc. (A. Sánchez and M. C. 

Ruíz de Villa 2008). 

 

2.6.6   PREPROCESSING  

Preprocessing is a step in microarray analysis process that extracts meaningful data 

characteristics from dataset obtained from image analysis step (A.L. Tarca et al. 2004). The 

dataset (gene expression dataset) can be represented by a real-valued matrix I where Iij is 

the measured expression level of gene i in experiment (condition) j. The i-th row of the 

matrix represents the expression pattern of gene I and the j-th column represents the 

expression profile of gene j (A. Ben-Dor et al. 1999).  

 
The gene expression matrix can thus be represented as absolute measurement, expression 

ratio (relative measurement), log2 expression ratio, discrete value or vectors i.e. 

representing expression profiles as vectors  (M.M Babu 2004). Since the gene expression 

matrix obtained contains noise, missing values and systemic variation dues to experimental 

procedure, hence it must be preprocessed before any further data analysis (D. Jiang et al. 

2004). Preprocessing can be carried out by background correction, logarithmic 

transformation, and normalization (S. Drăghici 2011, A.L. Tarca et al. 2006). 

 

2.6.6.1   BACKGROUND CORRECTION 

It is the first preprocessing step in microarray analysis (S. Drăghici 2011). It aims to obtain 

an intensity value, which is proportional to the expression level by determining the level of 

hybridization that occurs between the targets and the samples (A. Sánchez, M.C. Ruíz de 

Villa 2004). Background correction can be local, sub-grid, group, blank spots, and control 

spots background correction (S. Drăghici 2011). 
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2.6.6.2   LOGARITHMIC TRANSFORMATION  

Logarithmic transformation is the first technique used to preprocess microarray data. This 

technique provides data that are more meaningful and easy to interpret biologically (S. 

Drăghici 2011). It also makes statistical distribution symmetrical and almost normal, and 

very convenient. Hence, logarithmic transformation is called transformation to normality 

(D.P. Berrar 2003). 

 

2.6.6.3   NORMALIZATION  

Normalization is a step in data preprocessing that aims to correct systemic differences 

(error) between genes or array in a microarray experiment. The systemic error, which may 

be due to variability in sample preparation, experimental bias (A.L. Tarca et al. 2006), 

labeling efficiencies, scanner settings and spatial effect can occur at numerous stages 

during microarray experiment, hence the need for data normalization (S. Dudoit 2002) 

 
The specific normalization techniques to use for data preprocessing depend on the array 

technology used. The Biocondutor projects has various algorithms which includes MAS 5.0, 

Robust Microarray Average (RMA), GC-RMA (for one channel array), and LOESS 

normalization (for two-channel array) which are used for microarray data preprocessing 

(A.L. Tarca 2006). 
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2.6.7   STATISTICAL ANALYSIS 

Once the raw data has been preprocessed, statistical analysis of the data matrix can be 

carried out. In this study, the following analysis will be examined. 

 

2.6.7.1   CLASS DISCOVERY 

Class discovery involves analyzing a set of gene expression profiles with the sole aim of 

discovering subgroups that share similar features. This analysis helps to make meaningful 

biological inference about the set of genes or samples, identify different stages of disease 

severity and identify groups of gene that may behave alike in a disease state (A.L. Tarca et 

al. 2006). Class discovery is also known as clustering analysis (A. Sánchez and M.C. Ruíz de 

Villa 2008) 

 
Clustering is an unsupervised analysis because there is no prior knowledge about the data 

and is currently the most frequently used technique in analyzing gene expression data (S. 

Drăghici 2011). It is the process of grouping objects into different classes called clusters, so 

that objects within a class are more similar to each other while objects from different 

classes are dissimilar (D. Jiang et al. 2004).  

 
To group items (genes or samples) that are similar together successfully, one needs to 

define a good measure of similarity called metrics or distance. There are different 

measures of similarity that can be applied to clustering and this includes Euclidean, 

Manhattan, Chebychev, Correlation, Mahalanobis, Minkowski distances etc. It should be 

noted that the choice of the distance metric to use depends on the array technology in use 

as different array technology represents expression matrix in different format (S. Drăghici 

2011) as explained section 2.1.5.6.  

 
Clustering can be gene-based, sample-based or subspace clustering depending on the 

researchers aims and objectives. In gene-based clustering, genes are the objects, while the 

samples are the features. Gene-based clustering helps to determine co-regulated genes, 

recognize temporary expression patterns and to reduce the prediction model redundancy. 

Sample-based clustering however treats samples as objects and the genes as the features. 
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It helps to identify new tumor classes and to detect experimental artifact. Subspace 

clustering treats both samples and genes uniformly, so that either samples or genes can be 

objects or features and it captures clusters formed by a subset of genes across a subset of 

samples. Clustering results are usually shown in a diagram called dendogram (D. Jiang et al. 

2004). 

 
Clustering algorithms applied to microarray data may be hierarchical or non-hierarchical 

(M.M. Babu 2004) as shown in figure 1.4 below. It should be noted that clustering 

algorithms are dependent on distance metric used and the relationship between patterns 

within the clusters is independent of their position  (S. Drăghici 2011). 

 

 

 
 

Figure 2.4: Clustering classifications (Figure adapted from M.M. Babu 2004). 
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2.6.7.1.1   HIERARCHICAL CLUSTERING ALGORITHM 

Hierarchical clustering algorithm is the oldest clustering algorithm used in the analysis of 

microarray data (S. Drăghici 2011). It creates a hierarchical series of nested clusters (based 

on degree of similarity), which can be represented graphically by a tree like structure, 

called dendrogram (D. Jiang et al. 2004). 

 
Furthermore, hierarchical clustering result may also be shown with a heatmap (A.L. Tarca 

et al. 2006). Heatmap is a color image plot, which is made up of a rectangular array of 

colored block with each block representing the expression level of one gene on the array 

(A. Sánchez and M. C. Ruíz de Villa 2008). Hierarchical clustering algorithm can be 

agglomerative or divisive clustering depending on the method used in drawing the 

dendrogram (D. Jiang et al. 2004).  

 

A. AGGLOMERATIVE CLUSTERING  

Agglomerative clustering is also known as the bottom-up approach. Here each object is 

considered as a cluster and all objects are successfully fused until a single cluster is formed.  

Agglomerative clustering thus lacks robustness and it expensive computationally (S. 

Drăghici 2011). The fusion of all objects (clusters) into a single cluster is based on the 

pairwise distance between them, hence object that are similar are first clustered and the 

process continues until a single cluster is formed. The pairwise distances used in 

agglomerative clustering are single, complete, average linkage and centroid linkage (M.M 

babu 2004). 

 
a.   Single linkage clustering  

This computes the minimum distance between all possible pairs of objects; one from each 

cluster and it chooses clusters that are closest together. This method is insensitive to 

outliers and is also known as minimum distance or nearest neighbor linkage (M.M babu 

2004). The distance here is given as  

 
D (A, B)    =  𝒎𝒊𝒏�⃗⃗� ∈𝑨,�⃗⃗� ∈𝑩 ∥ �⃗⃗�  - �⃗⃗�  ∥                    Eqn 1 
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b.   Complete linkage clustering  

It also called maximum distance or farthest neighbor linkage, it chooses the clusters that 

are farthest apart by computing the maximum distance between all possible pairs of 

objects, one from each cluster.  The method major disadvantage is that it is sensitive to 

outliers (M.M babu 2004). Complete linkage distance is given as   

 
D (A, B)    =  𝒎𝒂𝒙�⃗⃗� ∈𝑨,�⃗⃗� ∈𝑩 ∥ �⃗⃗�  - �⃗⃗�  ∥                     Eqn 2 

 

c.   Average linkage clustering  

Average linkage clustering evaluates the distance between two clusters as the average of 

the distances between all possible pairs of objects in the two clusters (M.M babu 2004). 

Distance here is given as  

 
D (A, B)    =  𝑨𝒗𝒆𝒓𝒂𝒈𝒆�⃗⃗� ∈𝑨,�⃗⃗� ∈𝑩 ∥ �⃗⃗�  - �⃗⃗�  ∥             Eqn 3 

 

d.   Centroid linkage clustering  

It finds the distance between the centers of the cluster. It calculates an average expression 

profile called centroid by first finding the mean in each dimension profile for all objects in 

the cluster and it then measures the distance between the clusters as the average 

expression profile of the two clusters (M.M babu 2004). 

 

B. DIVISIVE CLUSTERING 

Divisive clustering is also known as top-down approach. It is the reverse of agglomerative 

clustering as the entire set of object is seen as a single cluster and split is performed 

repeatedly until a single cluster of each object remains. Divisive clustering is not a popular 

clustering method unlike agglomerative clustering (M.M babu 2004) though it is faster and 

requires less computation (S. Drăghici 2011). 
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2.6.7.1.2   NON-HIERARCHICAL CLUSTERING 

Non-hierarchical clustering algorithm is a partitioning-based clustering algorithm that 

decomposes data into a set of dismembered clusters (D. Jiang et al. 2004). The number of 

clusters is predetermined in this algorithm and the existing objects are grouped into these 

predefined clusters. Non-hierarchical clustering can be K-means clustering, Self-organizing 

maps (SOMs) etc. (M.M babu 2004). Details of k-means and SOMs are explained in the 

subsections below 

 

A. K-means clustering  

K-means clustering is the most wide used non-hierarchical clustering methods. It is simple, 

fast and involves grouping objects arbitrarily into a predetermined number of K clusters (S. 

Drăghici 2011). The predetermined number clusters can be obtained from hierarchical 

clustering results or chosen randomly.  A centroid is then calculated for each cluster and 

objects are re-grouped from one cluster to the other depending on the centroid closer to 

the gene. This procedure of calculating centroid and re-grouping is repeated iteratively 

until the composition of clusters remains unaltered by further iteration (M.M babu 2004). 

 

A shortcoming in K-means clustering is the specification of the number of clusters (K) 

before the algorithm is run. In a situation where there is no fix value for K, user has to try 

different values of K, which is not a good approach (F.M. Al-Akwaa 2012).  

 

B. Self-organizing maps (SOMs)  

SOMs are also known as Self-organizing feature maps or Kohonen map, was developed by 

Tuevo Kohonen in late 80s. It is a clustering method that tends to divide input patterns into 

group of patterns that are similar are plotted next to one another.  SOMs are a grid neural 

network, which can be one (a string), two (an array) or three (a cube) dimensional (S. 

Drăghici 2011). Further details about SOMs and other non-hierarchical clustering 

algorithms can be found in (S. Drăghici 2011). 
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2.6.7.2 CLASS COMPARISON 

Class comparison involves detecting the differences in gene expression levels between 

predefined groups of samples in patients e.g. tumor and normal sample (A.L. Tarca 2006). 

The genes selected are thus called differentially expressed genes while the process is called 

differential expression analysis (A. Sánchez, M.C. Ruíz de Villa 2004).   

 
For a successful class comparison analysis, definite experimental design, hypothesis testing, 

sample size estimation (A.L. Tarca 2006) and performance assessment (S. Drăghici 2011) 

should all be considered.  

 

2.6.7.2.1   HYPOTHESIS TESTING  

Hypothesis testing helps in selecting the real genes that are differentially expressed 

between the groups under study. A null and alternative hypothesis needs to be developed 

with the null hypothesis stating that a given gene on the array is not differentially 

expressed between the two groups under study and the alternative hypothesis stating that 

the expression level of that is different between the two groups. This can be achieved by 

calculating the t-statistic of the expression value of the gene under study measured in the 

two groups. This value will then be compared with a chosen significant value and particular 

threshold (A.L. Tarca 2006). Further details on hypothesis testing can be found in (S. 

Drăghici 2011). 

 

2.6.7.2.2   SAMPLE SIZE  

This refers to the number of measurements in an experiment. Its computation required 

knowledge about the minimum fold change to be detected, gene expression variances 

within each group and statistical power. Large number of samples results in high fold 

change value, more expression variability and high statistical power, which will in turn give 

more differentially expressed genes, hence a large sample size is encouraged. However due 

to the high cost of microarray experiment, a certain number of replicate such as 5 samples 

per group are usually adopted (A.L. Tarca 2006). 
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2.6.7.2.3   PERFORMANCE ASSESSMENT  

Performance assessment of each gene selection method helps to determine the best 

approach since there are several approaches used in selecting genes that are differentially 

expressed (DE Genes). Gene selection methods performance can be computed in terms of 

accuracy, specificity, sensitivity, positive predicted value (PPV), and negative predicted 

value (NPV). These measures have values between 0 and 1 and are sometimes expressed in 

percentage (S. Drăghici 2011). They are defined as follows  

 
Accuracy = (T.P + T.N)/ (T.P + F.P + T.N + F.N)         Eqn. 4 

 
                  Specificity = T.N / (T.N + F.P)                                       Eqn. 5 

 
                               Sensitivity = T.P / (T.P + F.N)                                       Eqn. 6 

 
                               PPV = T.P / (T.P + F.P)                                                    Eqn. 7 

 
                               NPV = T.N / (T.N + F.N)                                                  Eqn. 8 

 
Furthermore, they all play a major role in selecting the best approach for selecting genes 

that are differentially expressed and they all depends on prevalence, which is given as  

 
                               Prevalence = (T.P + F.N) / (T.P + F.P + T.N + F.N)       Eqn. 9 

 
Using change/unchanged as the condition, the following definitions hold: T.P (True 

positives) are the true change that are reported as change, F.P (False positives) are 

unchanged reported as change, F.N (False negatives) truly change reported as unchanged, 

and T.N (True negatives) are the truly unchanged that are reported. A perfect gene 

selection approach will produce value of 1 for accuracy, specificity, sensitivity, positive 

predicted value (PPV), and negative predicted value (NPV) (S. Drăghici 2011). 
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2.6.7.2.4 METHODS OF SELECTING DIFFERENTIALLY EXPRESSED GENES  

Several methods of selecting differentially expressed genes have been developed but the 

methods employed in this study will be discussed briefly. 

 
A. Fold change method 

The fold change approach is the simplest and the most natural method used in finding 

genes that are differentially expressed between the two conditions (reference and 

experiment). An easy way to achieve this is by calculating the ratio between the two 

expression levels for each gene (S. Drăghici 2011). This ratio is then log-transformed (log2) 

and the transformation helps to improve the symmetry of the data distribution by giving a 

mean log-ratio of zero (A.L. Tarca et al. 2006). 

 
To select the genes that are differentially expressed, a histogram which horizontal axis 

represents the log-ratio can be plotted. A threshold will then be set and the differentially 

expressed genes (DEG’s) are those outside this threshold. This method’s major drawback is 

that the fold threshold is chosen arbitrarily, which might be inappropriate and it doesn’t 

consider the variance of the expression value measured (S. Drăghici 2011). 

 

B. Unusual ratio method 

This method involves the selection of genes for which experiment and reference values 

ratio is a certain distance (±2 multiplied by standard deviation) from the mean 

experiment/control ratio.  This can be achieved by applying a z-transform to the log ratio 

value. The z-transform thus subtracts the mean and divides by the standard deviation. This 

method is also simple, intuitive and more superior than the fold change method as it adjust 

the cut-off threshold automatically, hence it picks the most affected genes irrespective of 

the number and extent the genes regulated.  However, this method report 5% of the genes 

as differentially regulated even if there is none and 5% of the genes even if there are more 

differentially regulated genes (S. Drăghici 2011). 
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C. T-Test Method  

This method employs classical hypothesis testing methodology along with some correction 

for multiple comparison (Bonferroni, Benjamini-Horcberg etc.) in selecting genes that are 

differentially expressed (S. Drăghici 2011). 

 
Classical hypothesis testing (statistical hypothesis) refers to the assumption made about 

the genes involved the microarray experiment in other to make statistical decision about 

those genes on the basis of sample information. These assumptions are statements about 

genes probability distributions. The major steps in hypothesis testing are as follows 

 
a. Define the problem clearly 

b. Generate null and alternative hypothesis. 

Null hypothesis is the hypothesis that occurs by chance while an alternative 

hypothesis is that hypothesis that differs from the given null hypothesis. 

c. Choose level of significance (S). 

   Level of significance refers to the probability of rejecting a true null hypothesis. 

d. Calculate statistics based on data and compute p-value.  

  P-value is defined as the probability of drawing the wrong deduction by rejecting a   

  null hypothesis that is true. 

e. Compare p-value and significant level in other to accept or reject null hypothesis. 

   If p-value is less S, we reject a true null hypothesis (Type I error) otherwise, we  

   accept false null hypothesis (Type II error) (S. Drăghici 2011, M.R. Spiegel et al. 2001). 

 

This method is conservative and it assumes that genes in the experiment are independent 

which is not always true in any real data set (S. Drăghici 2011).  

 
In the past, many publications of microarray experiment determine differentially expressed 

genes solely from fold-change analysis by using a 2-fold cutoff. This method however does 

not consider variability in the data; hence its results are not reliable. T-test or the Wilcoxon 

test approach is later introduced in order to correct the defects in fold change analysis but 

it was found out that the result obtained with this test produces a lot False Discovery Rates 
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(FDRs) in small number of samples. In addition, the result obtained is poorly related to that 

obtained from the fold change analysis (D.J. McCarthy and G.K. Smyth 2009).   

 
In recent years, modern statistical tests for microarray analysis have been developed. 

These tests derive their information between genes adopting empirical Bayes along side 

other statistical methods. In addition, the tests have thus performed better than the t-test 

and give results that are related with fold change analysis.  Since these modern statistical 

tests allows genes with small fold change to be considered significant statically. Hence, it is 

now common practice that differentially expressed genes satisfy at the same time both p-

value and fold-change thresholds. Peart et al. (2005) and Raouf et al. (2008) obtained 

differentially expressed genes by setting a fold-change cutoff of at least 1.5 and a p-value 

less than 0.05 after performing multiple testing. In addition, Huggins et al. (2008) adopts a 

fold change of 1.3 and a p-value less than 0.2 to find differentially expressed genes. It was 

observed that the combination of fold change and p-value threshold gives differentially 

expressed genes that are more meaningfully biologically than using the p-value alone (D.J. 

McCarthy and G.K. Smyth 2009).   

 
Other methods used for selecting differentially expressed genes are Analysis Of VAriance 

(ANOVA), Noise sampling, Model-based maximum likelihood estimation, Significance 

Analysis of Microarray (SAM), moderated t-statistics, Use of Biocondutor packages such as 

Limma (S. Drăghici 2011), DESeq, DESeq2 etc.  
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2.6.7.3 CLASS PREDICTION 

Class prediction analysis involves discovering class membership of a sample based on its 

gene expression profile. Its main goal is to accurately predict the class membership (e.g. 

phenotype) of a new individual by building a classifier that can distinguish between the 

classes. This goal can be achieved by first learning the existing complex relationship 

between the class membership and the expression values of the genes (A.L. Tarca et al 

2006). Class prediction analysis involves three major components namely: 

 

A.  FEATURE SELECTION 

Feature selection is the first component of class prediction analysis and it defines the 

number of genes to include in the predictor to be built. Feature selection is of great 

importance in microarray studies due to the fact that the number of informative variables 

used for differentiating our classes of interest is usually very small when compared to the 

overall genes on the microarray. Hence it is of great importance to choose informative 

genes to be use by the class predictor (R. Simon 2003).  

 
Furthermore, future selection employs class comparism analysis, as it’s most common 

approach i.e. selecting and identifying differentially expressed genes among gene classes 

when the classes are treated one after the other (R. Simon 2003). 

 

B. SELECTING PREDICTOR FUNCTION (CLASSIFIER) 

Classifiers are functions that take as input the values of several features (variables that are 

independent) from an example set of independent variable values and presume the 

category that the example set belongs i.e. a classifier is a function that produce a class label 

prediction from an example input. Classifiers are usually trained so as to learn some useful 

parameters from the training data and this turns the classifier to a model that reveals the 

relationship between variables and the training set class labels. The relationship between 

the variables and class labels in the training set are tested using the test data (F. Pereiraa et 

al. 2009). 
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Defining a predictor function that will for any expression vector gives a class label is the 

second component of class prediction analysis. Predictor function can be nearest neighbor 

predictor, linear discriminant analysis, logistic regression, support vector machine etc. (R. 

Simon 2003). 

 
The K nearest neighbor classifier, also called case based reasoning, example based 

reasoning, memory based reasoning, instance based learning and lazy learning is a classifier 

that categorize samples based on the similarity measure of the class of their nearest 

neighbor. It is a very popular, easy to understand, effective and very efficient algorithm 

used in classification, statistical estimation and pattern recognition (M.A. Jabbar et al. 

2013).  

 
Furthermore, KNN is not expensive computationally and hence it is useful for data that 

changes quickly. KNN algorithm starts by first measuring the distance of a new sample with 

all the samples in the training set. The calculated euclidean distance are arranged in 

ascending order and the K sample, which distance is closest to the new sample are called 

the k-nearest neighbors. The K-nearest neighbors obtained are then used to categorize the 

new sample to the predefined class and this depends on the type of data in use. If data 

contain categorical variables, then a voting (simple or weighted) is adopted. However, for 

data continuous or quantitative variables, mean, geometric mean or median is adopted (Z. 

Jan et al. 2008). 

 
The K value selected for KNN algorithm is important in evaluating the model effectiveness 

as this helps to decide the best way to use the available data so as to generalize KNN 

algorithm. If the value of k is large, then the variance value is reduced as a result of noisy 

data.  However, this large value of k is disadvantageous since it causes bias. The bias thus 

makes the learner to ignore pattern, which might have useful insights. The value of k is 

usually taken as the square root of the number of observation in the data (Analytics 

Community 2016).  
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C. CLASSIFIER PERFORMANCE ASSESSMENT 

The final component of class prediction analysis involves assessing the performance of the 

built classifier for future samples. This is carried out by determining how well the classifier 

predicts unseen sample and reliability of the prediction. Accuracy of class predictor can be 

estimated with split-sample and cross-validation method (R. Simon 2003). 

 
The split-sample method is the most straightforward method of estimating the accuracy of 

future prediction of samples. It involves splitting the current set of data into training and 

test set with the test set emulating the future samples, which class label is to predicted.  

It should be noted that samples within the test set shouldn’t be used for developing the 

prediction model and choosing the genes to be used in the model building (R. Simon 2003). 

 
Cross-validation method on the other hand also involves splitting data into training and 

test set. The test set in this case consist of a single sample, which is placed aside and not 

used in class prediction model development, while the training set is used for selecting 

informative genes and model parameter are adapted to the data. (R. Simon 2003). 

 
Cross-validation can be leave-one-out cross-validation, k-fold cross validation, hold-out set 

and bootstrapping. Details of different cross-validation techniques can be found in (J.H. 

Friedman et al. 2001). 

 
The assessment result of the built classifier is usually displayed on a confusion matrix. A 

confusion matrix refers to a table that classify foresighted and actual elements according to 

how they match with the foresighted elements vertical and the original elements shown 

horizontally or vice-versa. A confusion matrix can be two by two; three by three etc. 

depended on the numbers of classes available in the built model as shown in the figure 

below (B. Lantz 2015). From the table, performance is measure by accuracy and error rate 

and other parameters as described in section 2.6.7.2.3.  
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FORESIGHTED VALUE 

                                                         Negative               Positive 

 

                             Negative 

 

     ORIGINAL  

        VALUE 

                            Positive  

 

Table 2.1: A two by two confusion matrix 

 

2.6.8   BIOLOGICAL VERIFICATION AND INTERPRETATION  

The result of microarray analysis irrespective of the platform and the analysis method 

employed is, in most cases the list of differentially expressed genes. This list of 

differentially expressed genes needs to be transformed to the underlying biological 

phenomena for better understanding. To achieve this, the list needs to be to be translated 

into functional profile, which will give insight into the cellular mechanism relevant in the 

condition under study. Many tools have been developed to help with this task among 

which are Gene Ontology (GO), Onto-Express, DAVID etc. The ontology tools are thus 

similar in their approaches but are greatly different in many respects, which influence the 

nature of the results of the analysis  (P. Khatri, and S. Drăghici 2001). Details of different 

ontology tools, their capabilities, statistical model and annotation databases are explained 

in (P. Khatri, and S. Drăghici 2001). The interpretation of the list of differentially expressed 

genes can be analyzed with a method called enrichment analysis.  

 

 

 

 

 

 

T.N 

True Negative 

 

F.P 

False Positive 

 

F.N 

False Negative 

 

T.P 

True Positive 
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2.6.8.1 ENRICHMENT ANALYSIS 

Enrichment analysis is defined as the method of obtaining biological significance in term of 

statistical significance and its main objective is to interpret gene group in order to identify 

biological information for the event under study. Gene Ontology (GO) database is very 

efficient in performing enrichment analysis (M. Mayo and J. Luís 2014). This analysis thus 

helps to interpret the results obtained from the statistical analysis of microarray data in 

other to get biological meaning into the data under study.  

 

2.6.8.2 METHODS USED IN ENRICHMENT ANALYSIS 

Several methods have been developed in the past with the aim of seeking biological 

meaning based on enrichment analysis. All the methods are similar and they work in two 

steps. First, they consider list of genes of interest from a gene population, which results 

from an experiment and maps each gene in the list to the annotation terms that are 

correlated with it. Second, enrichment of each gene annotated in each category is 

computed. Comparing the proportion of genes of interest assigned to such category 

against the genes from the population that were in that same category does the 

computation. Methods in enrichment analysis are Singular Enrichment Analysis, Modular 

Enrichment analysis and Gene Set Enrichment analysis (M. Mayo and J. Luís 2014). Details 

of each method are explained the subsections below. 

 

2.6.8.2.1 SINGULAR ENRICHMENT ANALYSIS 

Singular Enrichment Analysis (SEA) takes a list of genes that are differentially expressed 

from obtained from class comparison analysis by performing a statistical test and then uses 

the list to query different annotation terms one after the other.  A threshold of significance 

is set; terms with p-values lower than this threshold is ordered by the enrichment p-value. 

Binomial probability, Hypergeometric distribution, Fisher’s Exact Test, or Chi-square is the 

common statistical method used for SEA (M. Mayo and J. Luís 2014). 
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2.6.8.2.2 MODULAR ENRICHMENT ANALYSIS 

Modular Enrichment Analysis (MEA) is an analysis that uses list of differentially expressed 

genes to test multiple annotation term at once considering the relationship between each 

pair of terms. Since MEA considers the relationship between each pair of term, it is 

possible to obtain unique biological meaning, which cannot be shown by a single 

annotation term (M. Mayo and J. Luís 2014). 

 

2.6.8.2.3 GENE SET ENRICHMENT ANALYSIS 

Gene Set Enrichment Analysis (GSEA) is a method used to find out whether a gene set 

display statistical significant difference between phenotypes by considering the measured 

difference that exist between them for individual genes from high-throughput experiment. 

It takes in a list of differentially expressed genes and a set of gene expression values 

measured from the two phenotypes under study. GSEA depends on thousands of 

predefined gene sets assembled from GO, KEGG etc. (M. Mayo and J. Luís 2014). 

 
Furthermore, GSEA’s statistical method involves testing some gene set from the high-

throughput experiment for enrichment by arranging all the genes in the entire list based on 

the correlation of the gene expression pattern with the phenotype. The arrangement thus 

gives the fraction of genes that appear in the gene set called hits and the fraction of genes 

that doesn’t appear in the gene set called misses, at a particular position in the entire list of 

genes. The result here is then used to compute enrichment score with Kolmogorov-

Smirnov statistic, z-score or t-test (M. Mayo and J. Luís 2014). 
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2.6.8.3 GENE LIST ANALYSIS WITH PANTHER  

Gene list analysis can be achieved with PANTHER ((Protein Analysis THrough Evolutionary 

Relationships). PANTHER is a commonly used online tool employed for evolutionary and 

efficient classification of protein and analysis of biological data on a large scale. It makes 

use of data set from UniProt Reference Proteomes, which are arranged into families of 

similar genes. Results from PANTHER is shown on a phylogenetic tree, which is built for 

each family reveals the evolutionary relationship between all the genes in the family and 

also transcription, speciation, gene duplication and horizontal transfer processes. 

Phylogenetic tree from PANTHER thus deduce all the processes above for all the available 

protein coding genes in organisms and helps to determine groups of genes that are similar 

within each gene family (H. Mi et al. 2016).  

 
Furthermore, PANTHER gathers proteins, which have been further divided into families 

that are functionally related using human knowledge. Accurate association with function 

such as ontology terms and pathways is possible because the subfamilies of proteins in 

PANTHER model these functions divergence within the families of protein (H. Mi et al. 

2005). In addition, PANTHER helps to translate protein sequence relationship to functional 

relationship in an perfect and flexible way. It is made up two main parts namely; PANTHER 

library and PANTHER index. PANTHER library refers to different books, with each book 

serving as a protein family in terms of a Hidden Markov Model (HMM), multiple sequence 

alignment, and a family tree while PANTHER index and it thus depicts compressed ontology 

and it performs the function of shortening and maneuvering molecular functions and 

biological processes associated with the protein families and their subfamilies (P.D. Thomas 

et al. 2003).  

 

 

 

 

 

 



 

 45 

2.7 OVERVIEW OF SURVIVAL ANALYSIS  

Survival analysis also known as failure analysis, event history analysis, hazard analysis, 

duration analysis, or transition analysis is an analysis developed by biostatisticians to 

predict the occurrence of death. It deals with gathering different statistical methods, which 

are used to interpret an event, its occurrence and timing. The event to be interpreted can 

be deaths, births, marriages, divorces, job terminations, migrations etc. (P.D. Allison 2012).  

The occurrence of an event of interest say death is described with the term “failure”, which 

in some cases might represent a successful event e.g. therapy recovery. The amount of 

time it take for an event of interest to occur is referred to as the survival time (M. 

Stevenson 2009). 

 
Furthermore survival analysis deals with analyzing survival time data, which can be 

obtained by different approaches. The approaches used in obtaining the survival time data 

thus affect its analysis. The following sampling (data collection) processes are used in 

generating survival time data (S.P. Jenkins 2005). 

 
a. Stock Sampling Approach 

Standard sampling approach is an approach, which involves the random sampling of 

individuals that are in a particular state of interest (e.g. Tumor relapse). Not all 

individuals in this state are interviewed and the time at which they entered the state of  

interest is determined (S.P. Jenkins 2005). 

 

b. Inflow Sampling Approach 

This approach involves random sampling of all individuals that are in a defined state of 

interest and each of the individual in the study are followed until a predefined date or end 

of the study (S.P. Jenkins 2005). 
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c. Outflow Sampling Approach 

This approach generates survival data by taking random sample of individuals that leaves 

state of interest. In this approach, the start date of the state of interest is determined (S.P. 

Jenkins 2005). 

 

d. Population Sampling Approach 

This approach involves the overall sampling of the entire population. Sampling in this  

approach is not related to the state of interest. In this approach, individuals are asked  

about their current and past state [(S.P. Jenkins 2005).  

 

It should be noted that a survival data can be generated by the combination of any or all of 

the sampling method stated above depending on purpose the data is meant for (S.P. 

Jenkins 2005). 

 

2.7.1 CONCEPTS IN SURVIVAL ANALYSIS 

In analyzing survival data, it is important to explain the following concepts 

 
2.7.1.1 EVENT  

Events refers to a change that takes place at a particular point in time, hence it is 

dependent on time. Examples of events are deaths, marriages, promotions etc. In 

understanding survival analysis, it is quite important to note that: firstly, the event to be 

modeled must be properly defined before proceeding with the analysis of data (P.D. Allison 

2012). 

 
Secondly, one must decide whether to treat all events as the same or to distinguish them. 

The distinctions between different events types depend on the available data, provided it 

gives enough information for the distinction. Distinguishing events helps to reveal the 

different effects that predictor variables used in our model has on different event types 

(P.D. Allison 2012). 
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Thirdly, when each individual have the different repeated events associated with them, 

one must decide whether to pick the first event or to employ a technique that merge all 

the events together (P.D. Allison 2012). 

 

2.7.1.2 TIME TO EVENT  

Time to event or survival time is the amount of time it takes for an event to take place. It is 

usually given in days, weeks, months, years etc. and the following terms helps in describing 

survival time. 

 
A.  Instantaneous Failure Rate 

If the count of the length of time taken for an event to occur is plotted as a function of  

time on a frequency histogram, a curve fitted to this histogram gives the instantaneous   

failure rate of the event in question. It is denoted by f(t) and is shown in figure 1.6  

below. Failure function F(t) signifies the fraction of individual who have died as a  

function of time t and it is obtained by setting the area under curve of fig 1.6 to be equal    

to 1. Then it is observed that for any time t, the area under the curve to the left of time t  

represents the failure function. Hence individual in this portion have experienced the  

event of interest (death) (M. Stevenson 2009). 

 

B. Survival Function 

Survival function is denoted by S(t) and is defined as the fraction of individual in a   

population who have survived to time t. It is denoted by the area under the instantaneous 

failure curve to the right of time as shown in figure 1.6 and it gives a survival curve when 

plotted against time t (M. Stevenson 2009). It is given as  

 

S(t) = Probability (an individual survives longer than t)         Eqn   12(a) 

 
                                                 S(t) = P(T > t)                                                      Eqn   12(b) 
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Since the area to the left of the curve in figure 1.6 represents the failure function F(t),  

then, S(t) can also be given as   

       
S(t) = 1-Probability (an individual fails before t)                       Eqn   13(a) 

 
                                                 S(t) = 1 - F(t)                                                        Eqn   13(b) 

 

 

 

 
Figure 2.5: Line plot of instantaneous failure rate. Figure adapted from (M. Stevenson 

2009). 

 

C. Hazard Function 

Hazard function h(t) is defined as the instantaneous time at which an individual that is  

selected randomly are alive at time (t -1) dies at time t. (E.T. Lee and J.W. Wang 2003). 

Also known as the conditional failure rate, instantaneous failure rate, conditional mortality 

rate, or force of mortality, gives the failure probability during a small interval provided the 

individual has survived to the start of the interval (M. Stevenson 2009). 
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2.7.1.3 PERIOD OF OBSERVATION 

The period of observation in survival analysis refers to the process of observing each 

individual in the study over an interval of time. The time is thus recorded provided an event 

occurred, otherwise the observation continues and observation is stopped when an 

occurred event doesn’t repeat itself.  For a proper and accurate analysis of survival data, 

the origin and termination time results should be accounted for and validated (P.D. Allison 

2012). 

 

2.7.1.4 CENSORING AND TRUNCATION IN SURVIVAL ANALYSIS 

2.7.1.4.1 CENSORING 

An event is said to censored if it doesn’t occur during the period of observing an individual 

but the total time in which the event doesn’t occur is known. Individuals in this category 

are called censored observation and the data contributed by censored observations are 

included in the study until they are excluded from the risk set (M. Stevenson 2009). 

 
However, an event of interest is said to be exact or uncensored if it occurs during the 

period of observing an individual and the number of days from the start to the end of event 

is known (E.T. Lee and J.W. Wang 2003). Censoring can be divided into the following  

 
A. RIGHT CENSORING 

In right censoring, an event of interest usually occurs after the recorded follow-up period 

(M. Stevenson 2009). This means that an observation is ended before an individual 

experiences an event of interest. It is the most conventional type of censoring (P.D. Allison 

2012) and it can be sub-divided into the following (E.T. Lee and J.W. Wang 2003). 

 
a. Type I Censoring  

In type I censoring, all censored observation corresponds to the length of the study period 

provided there are no accidental losses such as death (E.T. Lee and J.W. Wang 2003). 
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b. Type II Censoring  

In type Ii censoring, all censored observation corresponds to the length of the largest  

uncensored observation provided there are no accidental losses such as death.  Type I  

and type II censored observations are also known as singly censored data since the study  

period here is not fixed and individuals in this study starts at the same time (E.T. Lee and    

J.W. Wang 2003). 

 

c. Type III Censoring  

Here, the study period is fixed and individual can enter the study at different time. It is also 

called progressively censored data with different censored times (E.T. Lee and J.W. Wang 

2003). 

 

In solving right censoring problems, it is best to assume that the censoring doesn’t give 

enough information. For the assumption above to hold, the censoring time of the entire 

individual in the study must be the same. However, it should be noted that an informative 

censoring is one in which its censoring time occurs at varying time due to individuals 

leaving the study at different time (P.D. Allison 2012). 

 

B. LEFT CENSORING 

In left censoring, an event of interest usually occurs before the recorded follow-up period 

(M. Stevenson 2009). It is the least common among censoring types and the exact time 

before the event of interest occur is unknown (P.D. Allison 2012). 

 

C. INTERVAL CENSORING 

In interval censoring, an event of interest usually occurs between two times, but the exact 

time is unknown. It means that one can know that an event occurs between date A and B 

but there is no clear knowledge abut the date (M. Stevenson 2009).  
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2.7.1.4.2 TRUNCATION 

Truncation on the contrary means that the outcome of an event of interest cannot 

probably occur. Truncation is divided into two namely:  

 
A. RIGHT TRUNCATION 

Right truncation occurs when an individual leaves a study after the study has commenced 

and progressed to a particular stage. Hence, individuals here cannot experience the event 

of interest at the time he left the study (M. Stevenson 2009). 

 

B. LEFT TRUNCATION 

Left truncation on the contrary occurs when an individual enters a study after the follow-up 

period has commenced. Hence, individuals cannot experience the event of interest at the 

time they enter the study because the follow-up period has already started (M. Stevenson 

2009). 

 

2.7.2 DESCRIBING SURVIVAL DATA 

Once the survival data has been collected, the next step is to describe it graphically with a 

survival curve. The plot of this curve helps to reveal the patterns in the survival data, 

determine data distribution. Data pattern and its distribution are thus important in 

describing survival data. Methods used in describing data can be non-parametric or 

parametric (M. Stevenson 2009). 

 

2.7.2.1 NON-PARAMETRIC METHOD 

Non-parametric methods of describing survival data are quite simple to understand and 

implement. They are effective than parametric method when there are no known 

theoretical distributions and less effective when the time to event follow a theoretical 

distribution. Hence, it is encourage analyzing survival data with non-parametric methods 

before attempting to fit a theoretical distribution. These methods thus give estimates and 

graphs that help in selecting a distribution if we are to find a model for the data at hand 

(E.T. Lee and J.W. Wang 2003). 
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Non-parametric method is a method that is used when there is no theoretical distribution 

that fits the survival data. This method is also known as semi-parametric or and is usually 

used in epidemiology. The popular non-parametric methods used in describing survival 

data are Kaplan-Mier method and the life-table method (M. Stevenson 2009). 

 

A. KAPLAN-MIER METHOD 

Kaplan-Mier method is a method developed Kaplan and Mier in the year 1958, also called 

product-limit method and is based on the survival times of an individual. It estimates 

survival function, probabilities and graphical representation of survival distribution. It is the 

most wide used non-parametric method of analyzing survival data and is applicable to 

small, medium and large samples (E.T. Lee and J.W. Wang 2003). The characteristics of 

Kaplan-Mier method are as follows 

 
a. It assumes that censoring times are not dependent on survival time i.e. a censored 

observation is independent of the state of interest (E.T. Lee and J.W. Wang 2003). 

 
b. The survival curve produced by this method gives the median survival time when S(t) = 

0.5 at time t. If there are times t1 and t2 when at S(t) = 0.5, then the median survival 

time equals any t value between t1 and t2 (E.T. Lee and J.W. Wang 2003). 

 
c. Median survival time from this method is unavailable if number of censored 

observation exceeds the number of uncensored observation (E.T. Lee and J.W. Wang 

2003). 

 
d. It is based on individual survival times; hence it is less prone to bias (M. Stevenson 

2009). 
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Kaplan-Mier estimator of survival at time t is given as  

 

S(t) = ∏
(𝒎𝒌− 𝒅𝒌)

𝒎𝒌
𝒌:𝒕𝒌≤𝒕                               Eqn 14 

 
Where tk, k = 1, 2, .., n is the total set of failure times, dk is the number of failures at time tk, 

mk is the number of individuals at risk at time tk and 𝒎𝒌 − 𝒅𝒌  is the number of individual 

in the sample who will survive longer than tk (M. Stevenson 2009). 

 

B. LIFE-TABLE METHOD 

It is one of the ancient methods employed for measuring death and interpreting 

populations’ survival experience. Actuaries, demographers, governmental agencies, and 

medical researchers have made use of the life-table to study survival, population growth, 

fertility, migration, length of married life, and length of working life etc. Clinical life-tables 

are developed by epidemiologist to investigate patients with a particular disease who have 

been followed for a period of time in a study. Other examples of life-table are population 

life-table and survival life-table (E.T. Lee and J.W. Wang 2003). The life-table method 

assumes that   

 
a. There are random selections of individual throughout each interval. This assumption 

leads to bias when intervals are long, however with short intervals, there is no bias (M. 

Stevenson 2009). 

 
b. Failure rate within an interval is equal for all individuals and doesn’t dependent on the 

probability of survival at other time periods (M. Stevenson 2009). 

 
Furthermore, the life-table method is similar to Kaplan-Mier method but its survival times 

are grouped into intervals and thus efficient for large data sets (E.T. Lee and J.W. Wang 

2003). 
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2.7.2.2 PARAMETRIC METHOD 

Parametric methods are employed in describing survival data when the distribution of the 

survival function follows predictable pattern. This method is sometimes preferred to non-

parametric method because it evaluates survival time easily even after the occurrence of 

the event of interest (M. Stevenson 2009). Parametric methods used to describe survival 

time are exponential, Weibull, Gompertz, lognormal, log-logistic, and gamma (P.D. Allison 

2012). 

 

2.7.3 COMPARING SURVIVAL CURVE 

It is a usual practice to compare the survival between two or more groups. For instance one 

may compare if it takes a longer time for a particular disease to develop in a one region of 

a country compered with another region, if a treated patient survive longer than expected 

etc. The survival curve gives an insight on how the time to event differs among the groups 

under study. In addition, different survival curves for different group helps to recognize the 

factors that play important role in deciding survival. The curve thus serves as a tool for 

effective screening these important factors, which influence can then be tested with 

multivariate analysis after they are screened  (M. Stevenson 2009). The comparism of 

survival curve for uncensored observation can be done with non-parametric test. The non-

parametric tests are Gehan’s generalized Wilcoxon test, the Cox-Mantel test, the log-rank 

test, Peto and Peto’s generalized Wilcoxon test and Cox’s F-test (E.T. Lee and J.W. Wang 

2003). 

 
The log-rank test, which is also called the Mantel log-rank test, the Cox Mantel log-rank 

test, and the Mantel- Haenszel test, appears to be the most popular test employed in 

comparing survival curves. It finds application in data with continuous censoring and it 

assigns identical weight to failure that occur early and that that occur lately. Log-rank test 

works with the assumption that hazard functions are parallel for the two groups. With this 

assumption, it picks each time point when a failure event takes place and creates a two by 

two table, which contains as columns the number of deaths and the overall number of 

subjects that are under follow up.  The observed death, expected death and the variance of 
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the expected number are calculated and summed over all table to yield a chi-square 

statistics having a degree of freedom of 1 (E.T. Lee and J.W. Wang 2003). 

 
Furthermore, for each group, the log-rank test also calculates the ratio of observed and 

expected number of death. This values thus relates the number of death observed to the 

expected number during follow up with a null hypothesis that he survival curve for the 

separate groups is the same as that for the combined data (E.T. Lee and J.W. Wang 2003). 
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3. AIMS OF THE STUDY 

The aims of this study are as follows 

 Download Glioblastoma Multiforme (GBM) preprocessed data matrix from 

microarray platform 

 Classify genes and samples into subgroups (clusters) with similar features from a set 

of gene expression profile 

 Identify differentially expressed genes among predefined phenotypic group of 

samples 

 Discover class membership of samples from patients based on their gene 

expression profile 

 Interpret differentially expressed genes with PANTHER for pathway and functional 

enrichment analysis 

 Analyze GBM cluster aggressiveness by performing survival analysis on GBM’s 

clinical data  

 Verify pathways and functional enrichment analysis result obtained from 

differentially expressed genes with independent glioblastoma dataset 
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4. MATERIALS AND METHODS 

4.1 SOURCE OF DATA 

4.1.1 EXPERIMENTAL DATA 

The data was obtained from The Cancer Genome Atlas (TCGA) via the University of 

Califonia Santa Cruz (UCSC) Cancer Browser as a zipped file named 

“TCGA_GBM_exp_u133a-2015-02-24.tgz”. This means that the GBM gene expression data 

is obtained from microarray experiment (Affymetrix HT Human Genome U133a). The 

unzipped file thus contains a preprocessed data matrix, clinical and other relevant 

information used in this study. The preprocessed data matrix has 12042 rows (genes) and 

539 columns (samples) i.e. there are 12042 genes and 539 tumor samples all from patients 

with GBM. The clinical data has 147 columns, which contains clinical information of GBM 

patients. 

 
The National Cancer Institute (NCI) and National Human Genome Research Institute 

(NHGRI) collaborated to create TCGA, which has helped to create global and complex maps 

of the main genomic changes in different types of cancer. Its datasets are available publicly 

and have been employed in different types of research playing different roles in over one 

thousand studies of cancer by independent researchers and in the publications from the 

TCGA research network (The Cancer Genome Atlas 2016). 

 
Furthermore, TCGA has developed a genomic data analysis pipeline, which on a large scale 

can accurately assemble, pick, and evaluate tissues from human for genomic alterations. 

The success enjoyed by the TCGA project louds the effect of teamwork in science and it can 

be used as a prototype for future project. The Center for Cancer Genomics (CCG) is an NCI 

initiative that will replace the TCGA in 2017 and it will rely on the success enjoyed by TCGA 

by making genomic data available publicly using similar model collaboration for extensive 

genomic analysis (The Cancer Genome Atlas 2016). 
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In addition, the cancer browser by the University of Califonia Santa Cruz (UCSC) offers a 

series of web-based tools used to visualize, harmonize and examine cancer genomics data 

and its corresponding clinical data.  The UCSC Cancer Browser is developed and maintained 

by the collaborative effort of the UCSC Cancer Genomics and UCSC Genome Browser 

groups. Both groups operate in the Center for Biomolecular Science and Engineering (CBSE) 

located at the University of California Santa Cruz (University of California Santa Cruz 

Genome Browser 2016). 

 

4.1.2 VALIDATION DATA 

The GBM dataset employed for result validation is obtained from the Gene Expression 

Omnibus (GEO) database via the National Center for Biotechnology Information (NCBI) 

website as a zipped file named “GSE20736_RAW”. The unzipped file contains the raw CEL 

files, which are used in this study for validation.  

 
GEO is a global archive, available to the general public. . GEO stores and distributes freely, 

next-generation sequencing, microarray, and different high-throughput functional genomic 

data, obtained from various research communities. Its main goals are to provide a 

database that is flexible, functional, and can efficiently store high-throughput functional 

genomic data. In addition, the archive provides a database that allows users to examine, 

detect, inspect and download datasets from experiments of their interest; and beyond it 

offers easy submission methods as well as schemes that back complete and well annotated 

data deposits (National Center for Biotechnology Information 2016) 

 

4.2 MATERIALS USED IN DATA ANALYSIS 

The major tool used in the analysis of the data obtained form The Cancer Genome Atlas 

(TCGA) is R and packages from Biocondutor.  

 
The programming language R is a GNU project with an environment developed by John 

Chambers and colleagues at the Bells laboratories (Lucent Technologies). The programming 

language is used for analytical computing and graphical visualization.  It is a highly flexible 
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programming language, which can perform series of statistical analysis such as nonlinear 

and linear modeling, standard statistical tests, time-series analysis, classification, class 

discovery, regression analysis, and graphical techniques (R Project for Statistical Computing 

2016). 

 
Furthermore, R gives a standard graphical plots when used for graphical display and it also 

has in built mathematical symbols and formulae. It is available as free software and runs on 

t UNIX platforms, FreeBSD, Linux, Windows and MacOS. The R environment includes 

efficient data manipulation and storage facilities, collection of standard tools for data 

analysis and graphical visualization, and operators for matrices manipulation (R Project for 

Statistical Computing 2016). 

 
On the other hand, Bioconductor is an open development software project, which is 

available freely online. It offers the tools for extensive analysis of high throughput genomic 

data using R programming language. In addition, it contains many metadata packages, 

which provides pathway, organism, microarray and other annotations.  Bioconductor has 

both development and release versions with the later updated two time in a year and 

relevant for most users and the former has new features and packages, which are added 

before the incorporation of the release version (Bioconductor 2016). 

 
Furthermore, Bioconductor project aims to give public access to many efficient statistical 

and graphical techniques for genomic data analysis, enable the addition of biological 

metadata in genomic data analysis, produce excellent documentation and reproducible 

research for improve scientific findings and train researchers on computational and 

statistical techniques employed in genomic data analysis etc. (Bioconductor 2016). 
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4.3 CLASS DISCOVERY ANALYSIS 

This analysis aims to find subgroup of genes and samples that are identical. Both 

hierarchical clustering and non-hierarchical clustering was performed on the gene 

expression data matrix. Since there are 12042 rows (genes) and 539 columns (samples), 

clustering the whole gene expression data matrix might be tedious.  

 
4.3.1 HIERARCHICAL CLUSTERING 

It is however important to first perform some analysis on the data matrix before carrying 

out hierarchical clustering. First, the data is filtered. Filtering is done with the gene filter 

package from the Bioconductor. It helps to remove genes that are uninteresting, and this 

reduces the number of rows (genes) in the data matrix while the number of columns 

(samples) remains the same. Next the correlation between samples are computer after 

finding the variance of the rows in the matrix, ordering the filtered data with the variance-

calculated to get the top 100 row (genes) with the highest variance and scaling the matrix. 

Scaling makes the data matrix to have mean of zeros and standard deviation of ones. The 

correlation heatmap is plotted to compare samples that are similar.  

 
The heat map is a fusion of a lot of different graphical display, developed by statisticians 

over 100 years ago. Also called cluster heat map is a diagram that shows at the same time 

the hierarchical cluster structures of row and column in data matrix. It consist of a colored 

rectangular blocks, which are shaded by a predefined color code and represents the values 

of the matrix element. The rows and columns of the shaded rectangular blocks are 

arranged such that rows and columns that are similar are next to one another and the 

block also has hierarchical cluster trees on its vertical and horizontal margins (L. Wilkinson 

and M. Friendly 2009). 

 
The correlation matrix is converted to a “dist” object and a dendogram is drawn with 

“ward.D” hierarchical clustering method.  The dendrogram thus helps to group the samples 

and the genes into two groups (i.e. group A and group B samples), which will be useful for 

class comparison analysis.  

 



 

 61 

4.3.2 CLUSTER VALIDATION 

The result of a clustering analysis can be validated with an R package called “clValid”. The 

“clValid” R package contains several method employed in clustering result validation. It has 

three validation methods namely internal, stability, and biological validation measures. The 

”clValid” package main function is given as clVAlid(), this function thus allows the 

simultaneous selection of numerous clustering algorithms, validation measures, clusters 

number in a one time call in order to determine the best clustering method to use and the 

perfect number of clusters for the dataset. In addition, clValid package calculates biological 

validation measures automatically by employing the biological information the Gene 

Ontology (GO) database through Bioconductor annotation packages (G. Brock et al 2008).  

 
Cluster validation is of three different types namely internal, stability and biological 

validation. Internal validation is a clustering validation measure that takes as input the 

dataset and the number of clusters to assess clustering quality using the underlying 

information in the data.  In addition, the compactness, connectedness and separation of 

the cluster partitions are measured with internal validation. Compactness determines how 

homogenous clusters are by observing intra-cluster variance while separation estimates 

the distance between the centroids of the clusters and hence it evaluates separation 

between clusters. Compactness and separation are both combined in Dunn index and 

Silhouette Width, along side compactness and the three are displayed as internal validation 

measures result. The ratio of the minimum distance that exist between observations that 

doesn’t belong to the same cluster to the largest intra-cluster distance is given as the Dunn 

Index while the Silhouette Width measures an observation’s Silhouette value i.e. Silhouette 

value assign a value close to 1 for well clustered observations and a value close to -1 for 

badly clustered observations (G. Brock et al 2008).   

 
Stability validation measures compares how consistent clustering results are by comparing 

this result with the cluster obtained when the column is deleted one after the other. It is a 

special form of internal validation measure and it worked well for highly correlated data, 

such as that obtained from high-throughput experiment. The measures in stability 
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validation are the average proportion of non-overlap (APN), the average distance (AD), the 

average distance between means (ADM), and the figure of merit (FOM) (G. Brock et al 

2008). 

 
Biological validation measures the competence of a clustering algorithm to produce a 

result that is relevant biologically.  This measures finds application in microarray data, 

where the observations are represented as genes by using biological homogeneity index 

(BHI) and biological stability index (BSI).  BHI examines clusters biological homogeneity 

while BSI investigates the clustering consistencies for genes that perform similar biological 

functions (G. Brock et al 2008). 

 

4.4 CLASS COMPARISON ANALYSIS 

This analysis involves selecting genes that are differentially expressed from the gene 

expression data. This was done with fold change and t-test method.  

 

4.4.1 THE FOLD CHANGE METHOD 

The fold change method involves calculating the mean expression level for each condition 

and then selecting genes that has fold changes that are greater than an approximate 

threshold. The filtered data matrix is used to calculate the arithmetic means and the log 

fold change, which corresponds to the log ratio of the mean intensities of two groups of 

samples. The two groups of samples are obtained from the hierarchical clustering results 

since the samples are not predefined (S. Drăghici 2011). 

 
The result obtained here can be shown on a scatter plot, which is similar to a Minus-Add 

plot and has two lines that correspond to the threshold used. The scatter plots can be plot 

of log fold changes versus log intensities and log intensities of one group versus that of the 

other group (S. Drăghici 2011). 
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4.4.2 T-TEST METHOD  

The T-Test Method is a parametric method of selecting genes that are differentially 

expressed. This method deals with multiple testing issues which normally arises during 

microarray analysis by first filtering the genes from the gene expression data matrix. Gene 

filtering is done with the gene filter package and it helps to get rid of array spike control, 

remove probes with little irregularity among samples or those with low level of expression. 

Probes removal thus makes the number of hypothesis to be tested to reduce and also 

reduces the number of uninteresting, differentially expressed genes (S. Drăghici 2011). 

 
The t-test is carried out between the sample groups with the null hypothesis there is no 

particular gene on the array that is differentially expressed and an alternative hypothesis 

that the gene in question has a different expression level between the sample groups (A.L. 

Tarca et al 2008). After performing the t-test between the sample groups from the data 

matrix, the p-values obtained are plotted on a histogram. Multiple adjustments depend on 

the shape of the plot of p-value.  

 
In this study, differentially expressed genes are selected by combining the fold change and 

the t-test method using different thresholds for each method. This thus helps to get the 

genes that are truly differentially expressed. The data matrix obtained contains the truly 

differentially expressed genes, as its row and the samples remains its column.   

 

4.5 CLASS PREDICTION ANALYSIS 

Class prediction analysis comprise of creating of a classification function that can correctly 

deduce a patient biologic group or his diagnostics category based on the expression 

pattern of a tissue from the patient in question.  The phenotype classes are stated priori 

and this does not depend on the gene expression data, hence it a supervised analysis. The 

major steps in class prediction analysis are feature selection, selecting predictor function 

(classifier) and assessing classifier performance (R. Simon 2003). 
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The future selection step involves selecting genes that are differentially expressed from the 

expression data. These genes are informative and they are used in building the classifier (R. 

Simon 2003). Differentially expressed genes are obtained with the methods describes in 

section 3.3 above and the result from this section is adapted as the informative genes for 

this analysis. 

 
The selection of a predictor function (classifier) is the next step after feature selection. 

Several classifiers such as linear discriminant analysis, nearest neighbor predictor, logistic 

regression or support vector machine can be adopted depending on the problem at hand 

(R. Simon 2003). It should be noted that data must be first divided before a classifier can be 

used to build a model, thus classifier performance assessment is incorporated into the 

model-building algorithm.  

 
The KNN classifier is a straightforward algorithm that assembles all cases available and 

proceeds to categorize them using the majority vote of its k nearest neighbor. It thus 

classifies uncategorized data into groups that are well defined. The algorithm starts by 

creating the training and test set from the entire expression data set by dividing the data 

into two portions with larger path of the data as the training set and the rest as the test 

set. The KNN classifier is then used to train the model using classes from training sets and 

specifying the value of k as the number of samples in the expression set. KNN classifier 

selects the nearest neighbor using euclidean distance as its distance metric (B. Lantz 2015). 

 
Furthermore, the performance of the built model is displayed in a confusion matrix. The 

confusion matrix is build by the table() function in R. However the CrossTable() function 

from the gmodel package in R gives a more detailed confusion matrix called the 

contingency table. From this table, accuracy and error rate is computed in percentage. A 

high value of accuracy and low value of error rate, say 95% and 0.05% implies that the built 

classifier is nearly perfect. However, a low accuracy value and a high error rate indicate a 

poor classifier and the classifier has to be re-built (B. Lantz 2015). 
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4.6 ENRICHMENT ANALYSIS 

Enrichment analysis helps in obtaining biological significance in term of statistical 

significance and to interpret gene group in order to identify biological information for the 

event under study. Modular enrichment analysis is the method of enrichment analysis is 

employed and it involves using a list of differentially expressed genes to test multiple 

annotation term at once considering the relationship between each pair of terms 

(Mosquera Mayo and José Luís 2014).  

 
Gene list analysis is performed on PANTHER by first pasting or uploading a gene list into the 

database. The pasted gene list needs to be similar with the supported IDs (e.g. Ensemble 

Gene ID, Entrez Gene ID etc.) on PANTHER database and the uploaded list has to be a file, 

which is in a format recognized by the PANTHER database.  The list in question may be an 

identifier list, previously exported text search or a PANTHER generic mapping file. The next 

step involves selecting homosapiens as the organism of interest since the gene list is from 

human. Next, the analysis carried out is selected on the database as functional 

classification viewed in pie chart or bar chat. The result here is viewed as PANTHER GO-slim 

Biological Process which is the default Annotation and other Annotations such as PANTHER 

GO-slim Molecular Function, PANTHER GO-slim Cellular Component, PANTHER Protein 

Class and Pathway are obtained by using the drop down menu in the close to the 

Annotation data set. The chart showing the different 100% of the categories involves in 

each annotation analysis (PANTHER user manual 2015). 
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4.7 SURVIVAL ANALYSIS 

Survival analysis is carried out using the non-parametric method i.e. Kaplan-Mier method 

and plotting the resulting survival curve.  

 
The Kaplan-Mier method is the most wide used non-parametric method of analyzing 

survival data and is applicable to small, medium and large samples. It estimates survival 

function, probabilities and graphical representation of survival distribution by assuming 

that the censoring time does not depend on survival time (E.T. Lee and J.W. Wang 2003).  

 
First the clinical data is read into R and the columns that contain the important parameter 

for this analysis are noted.  These columns (event, time to event and sample ID) are 

extracted and used for plotting the Kaplan-Mier survival curve. The median survival times 

of the curves are computed and the curves are compared statistically with log-rank test. 

The comparison aims to determine if these curves are the same or not. In comparing 

survival curve with log-rank test, the following steps are involved. 

 
a. Define hypothesis and determine significant level 

 Ho  (Null hypothesis) - The survival curves from the two groups are identical 

 H1  (Alternate hypothesis) - The survival curves from the two groups are not 

identical (i.e. α = 0-05) (Lisa Sullivan 2016). 

 
b. Select appropriate statistics (Lisa Sullivan 2016). 

 The “survdiff” function from the survival package in R gives the result as chi-

square statistics with degree of freedom and resulting p-value. 

 
c. Define the decision rule to adopt 

 The critical value of chi-square distribution from chi-square table is for degree of 

freedom 1 (i.e. two group comparison) and α = 0-05. The chi-square critical value 

is 3.841 and the decision rule is to reject H0 if chi-square critical value is greater 

than > 3.841 (Lisa Sullivan 2016). 

 
d. Compute the test statistics by running the “survdiff” function and make conclusions. 
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4.8 RESULT VERIFICATION USING INDEPENDEDNT GBM DATASET 

The verification dataset is obtained from the Gene expression Omnibus (GEO) database of 

the National Center for Biotechnology Information (NCBI). The dataset has an accession 

number of GSE20736_RAW and contains 6 GBM tumor samples, which are obtained from 

the Affymetrix Human Genome U133 Plus 2.0 Array platform. The file containing these 

samples are downloaded as zipped filled, unzipped and read into R as raw CEL files. Probe 

effects (RLE & NUSE plots), intensity plot, and box plot are used to access the qualities of 

the 6 raw CEL files. These plots reveal that the CEL files are raw in nature.  

 
Furthermore, the CEL files are preprocessed using the rma() function, which performs 

background correction and normalization on the raw CEL files to give a normalized data. for 

The expr() function is applied to the normalized data to obtain the data matrix needed. The 

data matrix is in turn filtered in other to remove irrelevant genes.  Correlation matrix is first 

created to define relationships that exist between samples and dendrograms are drawn for 

both samples and genes to perform hierarchical clustering on samples and genes 

correlation matrices. Differentially expressed genes are then obtained in a similar way as 

explained in section 4.4 above. The verification process is carried out by transforming the 

differentially expressed genes into biological meaning with the help of the PANTHER 

database. The results from experimental data are compared with the one from here in 

terms of molecular function, biological process, cellular components and pathways in 

which both differentially expressed genes play different roles.  
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5. FINDINGS  

5.1 CLASS DISCOVERY ANALYSIS 

5.1.1 HIERARCHICAL CLUSTERING 

The data matrix derived from the gene expression matrix is clustered so that similar 

samples and genes are grouped together. It will be difficult to cluster the entire data matrix 

since the matrix has 12042 rows (genes) and 539 columns (samples). 

 
A filtered data with of 3128 rows (genes) and 539 columns (samples) is obtained after 

filtering. A sample-sample Pearson’s correlation matrix with 539 rows and 539 columns, 

that shows correlation between samples is obtained. This is done by finding and selecting 

the top 100 rows (genes) from the matrix with the highest variance. The result is ordered 

with the filtered data and finally scaled. A correlation heatmap is plotted using hierarchical 

clustering with ward’s method to compare samples that are similar. In figure 5.1 below, the 

red color specifies the samples that correlate positively with each other and it implies that 

there are highly correlating genes between this samples. On the other hand, the green 

color indicated samples that correlate. Positive correlation also indicates a high similarity in 

sample’s expressions within a group while negative correlation is the inverse. In addition, 

figure 5.1 also shows that samples are divided into two distinct clusters with each cluster 

having two sub-clusters each.  

 
Dendrograms are drawn for both genes and samples by performing hierarchical clustering 

on the correlation matrices that relate to the genes and samples respectively. Both 

dendrograms are shown in figures 5.2a and 5.2b respectively. From figure 5.2a, there are 

two sample groups with group A having 253 samples and group B having 286 samples. 

Figure 5.2b shows two gene groups with group A having 60 genes and group B having 40 

genes. Samples and gene group numbers are shown in table 4.1 below 
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GROUP SAMPLES GENES 

A 253 60 

B 286 40 

 
Table 5.1: Samples and Genes groups 

 

 

 
 

Figure 5.1: Correlation heatmap of data matrix 
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Figure 5.2A: Sample dendrogram 

 

 

 
Figure 5.2B: Gene dendrogram 
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5.1.2 CLUSTER VALIDATION WITH “CLVALID” R PACKAGE  

The result of samples and genes clustering is validated with an R package called “clValid”. 

For sampled clustering, the scaled data that has genes as its rows and samples as its 

column is transposed. The transpose is carried out since the “clValid” package performs 

row clustering. Hence the need to have a transposed scaled data, which has the samples as 

its rows and genes as its column. The clValid” function test for hierarchical and k-means 

clustering for both the samples and genes from the expression data matrix. The validation 

considers two to five clusters and the results are shown in table 5.2 and 5.4 below. 

 

 

S/N 

CLUSTERING 

METHOD 

VALIDATION 

PARAMETERS 

NUMBER OF CLUSTERS AND SCORES 

2 3 4 5 

 

 

 

1 

 

 

 

HIERARCHICAL 

CLUSTERING 

 

Connectivity 

 

11.2060   

 

14.9933   

 

17.8683   

 

25.1520 

 

Dunn 

 

0.4382 

 

0.4382 

 

0.4382 

 

0.4382 

 

Silhouette 

 

0.2589    

 

0.2410 

 

0.2056  

 

0.2024 

 

 

2 

 

 

K-MEANS  

CLUSTERING 

 

Connectivity 

 

157.0353 

 

145.5774 

 

160.9516  

 

167.7873 

 

Dunn 

 

0.35492 

 

0.3645 

 

0.3780    

 

0.3780 

 

Silhouette 

 

0.1316    

 

0.1372    

 

0.1278    

 

0.125 

 

Table 5.2: Sample cluster validation result 
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From table 5.2 above, a table showing the clustering method, numbers of clusters, 

validation parameters, and their scores is generated.  

 

 

S/N 

VALIDATION 

PARAMETERS 

 

SCORE 

CLUSTERING 

METHOD 

NUMBER OF 

CLUSTERS 

 

1 

 

Connectivity 

 

11.2060 

 

Hierarchical 

 

2 

 

2 

 

Dunn 

 

0.4382 

 

Hierarchical 

 

2 

 

3 

 

Silhouette 

 

0.2589 

 

Hierarchical 

 

2 

 

Table 5.3: Optimal scores for sample cluster validation 

 

From table 5.3 above, the three internal validation parameters give two clusters and 

suggest hierarchical clustering as the appropriate clustering technique for the data. Larger 

values of Dunn index and Silhouette width indicates a good cluster while a lower 

connectivity value indicates a good cluster. This means that the Dunn Index and Silhouette 

width internal validation parameters are maximized while the connectivity internal 

validation parameter is minimized. Hence, hierarchical clustering with two clusters gives a 

better performance. In addition, it is clear that the samples that appeared as the column in 

the transposed version of the scaled data has two clusters and hierarchical clustering is the 

appropriate clustering technique that should be employed in clustering the data.  Hence, 

the result obtained earlier with the dendrogram in section 5.1.1 has been validated.  

 
For gene clustering result validation, the same method is employed. The data matrix used 

here is the scaled data that has genes as its rows and samples as its column.  The result of 

genes clusters validation testing for hierarchical and k-means clustering for two to five 

clusters are shown in table 5.4 below.  
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S/N 

CLUSTERING 

METHOD 

VALIDATION 

PARAMETERS 

NUMBER OF CLUSTERS AND SCORES 

2 3 4 5 

 

 

 

1 

 

 

 

HIERARCHICAL 

CLUSTERING 

 

Connectivity 

 

2.9290 

 

13.9171 

 

16.8460 

 

19.7750 

 

Dunn 

 

0.5756 

 

0.2383 

 

0.2383 

 

0.2383 

 

Silhouette 

 

0.2246  

 

0.2342 

 

0.1876  

 

0.1727 

 

 

2 

 

 

K-MEANS  

CLUSTERING 

 

Connectivity 

 

30.7845 

 

33.0607 

 

43.9794 

 

50.0595 

 

Dunn 

 

0.2637   

 

0.2637 

 

0.3438 

 

0.3328 

 

Silhouette 

 

0.2379   

 

0.2381  

 

0.1799   

 

0.1616   

 
Table 5.4: Gene cluster validation result 

 

From table 5.4 above, a table showing the clustering method, numbers of clusters, 

validation parameters, and their scores is generated. Larger values of Dunn index and 

Silhouette width indicates a good cluster while a lower connectivity value indicates a good 

cluster. This means that the Dunn Index and Silhouette width internal validation 

parameters are maximized while the connectivity internal validation parameter is 

minimized. It is clear from table 5.5 below that Connectivity and Dunn validation 

parameters give two clusters and suggest hierarchical solution as the appropriate 

clustering technique while the Silhouette validation parameter gives three clusters and 

suggest Kmeans clustering as the appropriate clustering technique that should be adopted. 

Since two validation parameters gives two clusters and suggest hierarchical clustering as 

the appropriate clustering, it implies that hierarchical clustering with two clusters gives a 

better performance compared to the Kmeans clustering with five clusters. Hence, the 

result obtained from dendrogram in section 5.1.1 has been validated.  
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S/N 

VALIDATION 

PARAMETERS 

 

SCORE 

CLUSTERING 

METHOD 

NUMBER OF 

CLUSTERS 

 

1 

 

Connectivity 

 

2.9290 

 

Hierarchical 

 

2 

 

2 

 

Dunn 

 

0.5756 

 

Hierarchical 

 

2 

 

3 

 

Silhouette 

 

0.2381 

 

Kmeans  

 

3 

 

Table 5.5: Optimal scores for genes cluster validation 

 

5.2 CLASS COMPARISON ANALYSIS 

5.2.1 FOLD CHANGE METHOD 

Fold change method is used to find the differentially expressed genes between the two 

sample groups obtained from hierarchical clustering analysis. With an absolute fold change 

greater than 1.0, the top 20 differentially expressed obtained are shown in table 5.6 below.  

 

4.2.2 T-TEST METHOD 

The t-test method is used to find the differentially expressed genes between sample groups  

obtained from hierarchical clustering analysis. The p-values obtained from t-test are 

plotted on the histogram as shown in figure 5.3 and the plot thus determines the need for 

p-value adjustment (multiple testing). The plot in figure 5.3 shows the p-value obtained 

from the t-test analysis with the horizontal axis showing the p-values and the vertical axis 

showing he number of times each p-value occurs. It is clear from this figure that the set of 

p-values obtained gives us evidence against the null hypothesis. This is because the flat 

distribution to the right of the figure contains the entire null p-values (null hypotheses), 

which are distributed uniformly between 0 and 1. In addition, the peak to the left (close to 

zero) contains the alternative hypotheses. Since majority of the null hypotheses are 

obtained at low p-values, then all p-values less than 0.05 are called significant. The top 20 

genes with a p-value less than 0.05 are shown in table 5.6 below.  
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                          Figure 5.3: Histogram of p-values from t-test analysis 

 
However, genes that are truly differentially expressed are obtained by a fold-change cutoff 

greater than 1.0 and a p-value less than 0.05. A total of 1351 genes are obtained as 

differentially expressed genes between the two sample groups. The top 20 differentially 

expressed genes are shown in table 5.6 below. From the table, some of the genes appeared 

as fold change genes and t-test genes simultaneously. Hence, this combination gives a 

better result because both technical and biological significance are considered at the same 

time.  
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S/N 

FOLD CHANGE 

GENES 

T-TEST 

GENES 

FOLD CHANGE AND T-TEST 

DE GENES 

1.  UBE2Q1 RNF11 RNF14 

2.  RNF10 RNF13 UBE2Q1 

3.  RNF11 PMM1 RNF10 

4.  RNF13 ASS1 RNF11 

5.  NDP NID2 RNF13 

6.  PMM1 ZC3H14 NDP 

7.  ZC3H15 DHX9 PMM1 

8.  ZC3H14 GRINA ASS1 

9.  RNF111 NUP93 NID2 

10.  NACAP1 OPA1 ZNF706 

11.  DHX9 RAB40B ZC3H15 

12.  XPC KIAA0831 ZC3H14 

13.  GRINA UGCG RNF111 

14.  SP3 ATP2A2 NACAP1 

15.  NUP93 RIT1 DHX9 

16.  GOLIM4 ITGA7 XCP 

17.  OPA1 DENND4B GRINA 

18.  RAB40B SWAP70 SP3 

19.  KIAA0831 PHLDA1 NUP93 

20.  ATP2A2 GAP43 GOLIM4 

 
Table 5.6: Differentially expressed genes from experimental data 

 

For the validation data, the same method used in section 5.2.1 and 5.2.2 was repeated and 

the lists of differentially expressed genes are shown in table 5.7 below. 
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S/N 

FOLD CHANGE 

GENES 

T-TEST 

GENES 

FOLD CHANGE AND T-TEST 

DE GENES 

1.  DDR1  EPHB3 DDR1 

2.  RFC2   C4orf33 RFC2 

3.  PAX8    C6orf141 PABX 

4.  UBA7        JAK1 UBA7 

5.  EPHB3 CARD16 EPHB3 

6.  ESRRA CARD16 ESRRA 

7.  SCARB1    CASP1 SCARB1 

8.  TTLL12    TLR4 TTLL12 

9.  MAPK1   RAB46 MAPK1 

10.  PXK      ALKBH5 PXK 

11.  C9orf30     NFX1 PXK 

12.  AFG3L1   STK38 C9orf30 

13.  PIGX   FOXC1 AFG3L1 

14.  SLC39A13      NPB PIGX 

15.  NEXN ZNF791 SLC39A13 

16.  MFAP3      ZNF791 NEXN 

17.  CNOT7   TMTC4 MFAP3 

18.  CRYZL1 CLDND1 CNOT7 

19.  LEAP2         CENPL CRYZL1 

20.  C4orf33   TIPRL LEAP2 

 

Table 5.7: Differentially expressed genes for independent GBM data (validation data).  
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5.3 CLASS PREDICTION 

Class prediction analysis intends to build a model to predict the class membership of the 

sample groups obtained from hierarchical clustering analysis. First, features are selected, 

then a classifier is chosen. The chosen classifier is used to build a model, and finally the 

built model evaluated by computing model assessment parameters such as accuracy, error, 

sensitivity, specificity etc. This analysis gives a contingency table (confusion matrix) as 

shown in table 5.8 below. 

 

                                                                              FORESIGHTED VALUE 

                                                                          Negative               Positive 

 

                                        Negative                

                 ORIGINAL 

                   VALUE 

         Positive 

 
Table 5.8: Contingency table 

 
This analysis is done with the data matrix obtained from class comparison analysis. Since 

the data matrix contains the differentially expressed genes as its rows and the samples as 

its column, then it is transposed in other to have the samples as columns and the 

differentially expressed genes as rows. Samples are first splitted into training and testing 

sets. Two-third of the total number of samples (539 samples) are used to create the 

training set (359 samples) while one-third of the samples give the testing set (180 samples). 

Then a KNN classifier is adopted and the value of K used is the odd number close to the 

square root of the training set size (i.e. √359 ≈ 19). Training sets are used in building the 

model while the training sets are used in testing the built model. Table 5.9 below shows 

the True Negative (TN), False Negative (FN), True Positive (TP) and False Positive (FP) values 

obtained with K= 19. It should be noted that the total number of items in table 5.9 equals 

the number of items in the training set.  

 

T.N 

True Negative 

F.P 

False Positive 

F.N 

False Negative 

T.P 

True Positive 
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                        Table 5.9: KNN Contingency table for K of 19 
 
Other K values are also tested in the other to check for the K value that gives an improved 

model. Their results are shown in table 5.10 below. 

 

S/N K-VALUES TESTING CLASS/ KNN PREDICTION 

 

1 

 

17 

 SAMPLE A SAMPLE B 

SAMPLE A 66 29 

SAMPLE B 6 79 

 

2 

 

15 

 SAMPLE A SAMPLE B 

SAMPLE A 69 26 

SAMPLE B 7 78 

 

3 

 

13 

 SAMPLE A SAMPLE B 

SAMPLE A 69 24 

SAMPLE B 6 79 

 

4 

 

11 

 SAMPLE A SAMPLE B 

SAMPLE A 71 24 

SAMPLE B 5 80 

 

5 

 

9 

 SAMPLE A SAMPLE B 

SAMPLE A 69 26 

SAMPLE B 7 78 

 

6 

 

7 

 SAMPLE A SAMPLE B 

SAMPLE A 69 26 

SAMPLE B 6 79 

 

7 

 
 

5 

 SAMPLE A SAMPLE B 

SAMPLE A 68 27 

SAMPLE B 9 76 

 
Table 5.10: Contingency table for different values of K. 

 KNN PREDICTION 

TESTING CLASS SAMPLE A SAMPLE B 

SAMPLE A 64 31 

SAMPLE B 6 79 
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The best K value is however selected form table 5.10 above and it is used for model 

performance assessment. It is clear from table 5.10 below that the K value of 11 gives a 

better result since it gives more true negatives and true positives, as well as lower false 

negative and false positives, when compared with other K values results. Hence it is 

adopted and used for model performance assessment. The contingency table for model 

with K value of 11 is shown in figure 5.11 below. 

  
           Cell Contents 

N 

N / Row Total 

N / Col Total 

N / Table Total 

                                                    

                            Total Observations in Table:  180 

  

KNN PREDICTION 

 

TESTING CLASS 

 

SAMPLE A 

 

SAMPLE B 

 

ROW TOTAL 

 

 

SAMPLE A 

71 

0.747 

0.934 

0.394 

24 

0.253 

0.231 

0.133 

95 

0.528 

 

SAMPLE B 

5 

0.059 

0.066 

0.028 

80 

0.941 

0.767 

0.444 

85 

0.472 

COLUMN 

TOTAL 

76 

0.422 

104 

0.578 

180 

 
Table 5.11: Contigenct table for K value of 11 
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The following model performance parameters are computed from the values obtained in 

table 4.11 above. 

 
A. ACCURACY 

Accuracy = (T.P + T.N) / (T.P + T.N + F.N + F.P) 

                      = (80 + 71) / (80 + 71 + 5 + 24) = 151/180 

                      = 0.839 

                      = 83.9% 

 This implies that the classifier is 80% accurate. 

 

B. ERROR RATE 

Error rate = 1 - Accuracy 

                  = 1 – 0.839 

                  = 0.161 

                  = 16.1% 
 
The error rate here is 16.1% and it can be attributed to system bias.  

         

C. SENSITIVITY 

 Sensitivity = T.P / (T.P + F.N) 

                     = 80 / (80 + 5)  

                     = 0.941 

                     = 94.1% 

 
This implies that 94.1% of sample A were correctly classified. This mean that 80 samples 

out of 85 samples classified as sample A are correctly classified while 5 samples are 

incorrectly classified.  
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D. SPECIFICITY 

Specificity = T.N / (T.N + F.P) 

                   = 71 / (71 + 24) 

                   = 0.747 

                   = 74.7% 

 
This implies that 74.7% of sample B were correctly classified. This mean that 71 sample out 

of 95 samples classified as sample B is correctly classified while 24 samples are incorrectly 

classified.  

 

E. PRECISION (Positive Predictive Value) 

Precision  = T.P / (T.P + FP) 

                  = 81 / (81 + 24) 

                  = 0.771 

                  = 77.1% 

 
Since precision defines how exact a classifier is, it is clear that a classifier with a precision 

value of 0.771 (77.1%) is almost perfect and has a lot of true positives. 

 

F. RECALL (SENSITIVITY) 

Recall  = T.P / (T.P + F.N) 

             = 80 / (80 + 5)  

             = 0.941 

             = 94.1% 

 
Since recall measures how complete a classifier is, it implies that the classifier above is 

94.1% complete.  
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G.  F-MEASURE  

F-Measure = (2 * PRECISION * RECALL) / (PRECISION + RECALL) 

                    = (2 * 0.771 * 0.941) / (0.771 + 0.941) 

                    = 0.848 

                   = 84.8% 

This implies that the performance of the classifier is 84.8%, which is nearly effective. 

 
In summary, all the measures above have values close to 1. Based on this analysis, 

separation of two classes is established.  

 

5.4 ENRICHMENTS AND FUNCTIONAL ANALYSIS  

The list of differentially expressed genes is translated into biological terms with PANTHER 

for both the experimental and verification data and the results obtained are shown below. 

 

5.4.1 MOLECULAR FUNCTION (MF) 

The molecular functions in which the differentially expressed genes from both data 

perform are shown in the table 5.12 below. It is observed that 32 genes out of the total 50 

differentially expressed genes from the experimental data performs molecular functions 

while 30 genes out of the total 50 DE genes from the validation data performs molecular 

function. Also the DE genes from both data perform similar molecular functions (i.e. five). 

From the results displayed in from table 5.12, analysis result is validated.   

 

5.4.2 BIOLOGICAL PROCESS (BP) 

The biological processes in which the differentially expressed genes from both data play 

roles are shown in the table 5.13 below. It is observed that 80 genes out of the total 50 

differentially expressed genes from the experimental data perform molecular functions 

while 60 genes out of the total 50 DE genes from the validation data play role in biological 

processes. It implies that some genes are involved in more than one biological process for 

both data. Also the DE genes from both data are involved in similar biological processes 

(i.e. ten) except for locomotion (GO:0040011) biological process, which is performed by 
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NEXN and JAK1 genes in the validation data. From the results displayed in from table 5.13, 

analysis result is validated.   

 

5.4.3 CELLULAR COMPONENT 

The differentially expressed genes from both data are part of the cellular components 

shown in the table 5.14 below. It is observed that 40 out of 50 differentially expressed 

genes from the experimental data are part of cellular components and it implies that some 

genes are part of different cellular components. For the validation data, 31 out of 50 DE 

genes are part of different cellular components shown in table 5.14 below. Also the DE 

genes from both data are part of similar cellular components (i.e. five), except for Synapse 

(GO:0045202) cellular component, which is present in the experimental data and 

extracellular region (GO:0005576) present in validation data. From the results displayed in 

from table 5.14, analysis result is validated.   

 

5.4.5 PATHWAY 
 
The pathways in which the differentially expressed genes from both data play roles are 

shown in the table 5.15 below. It is observed that 29 genes out of the total 50 differentially 

expressed genes from the experimental data play roles in the pathway while 38 genes out 

of the total 50 DE genes from the validation data play roles in the pathway. Also the DE 

genes from both data play roles in similar pathways (i.e. seven) most of which are signalling 

pathways. In addition, the other pathways from both data overlap as shown in table 5.15. 

The major pathways in GBM reported by M. Nakada et al 2011 are all present in the 

pathways discovered in the experimental data column of table 5.15. Hence the result from 

this analysis is validated.  
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Table 5.12: Molecular functions and their genes for experimental and validation data 

 

 

 

 

 

 

 

 

DATA EXPERIMENTAL DATA VALIDATION DATA 

(INDEPENDENT GBM DATASET) 

S/N MF GENES MF GENES 

1 Binding 
(GO:0005488) 

SP3, OPA1, SMAD4, 

CKS1B, PREB, 

SMAD1, FBL, RIT1, 

XPC, RNF14, RIT1, 

SWAP70, NACAP1, 

ZC3H15, ZC3H14 

Binding 
(GO:0005488) 

NEXN, TRNT1, PAX8, 

MEGF11, JAK1, 

ESRRA, RFC2, PLCD3, 

STX6 

2 Catalytic activity 
(GO:0003824) 

ASS1, DHX9, SPTLC1, 

OPA1, CKS1B, 

PMM1, FBL, CHST7, 

RIT1, UBE2Q1, 

UGCG, CHST2, 

ATP2A2 

 

Catalytic activity 
(GO:0003824) 

CASP1, HS6ST2, 
GAMT, TRNT1, 

CRYZL1, POLR2J3, 
JAK1, MAPK1, 

LACTB, TTLL12, 
CNOT7, RFC2, 

PLCD3, ATAD3A, 
UBA7, PRUNE2 

 

3 Receptor activity 
(GO:0004872) 

 

GRINA Receptor activity 
(GO:0004872) 

 

TLR4, SCARB1 
 

4 Structural 
molecule activity 

(GO:0005198) 
 
 

OPA1, NUP93 Structural 
molecule activity 

(GO:0005198) 
 
 

TTLL12, MFAP3 

5 Transporter 
activity 

(GO:0005215) 
 

ATP2A2 Transporter 
activity 

(GO:0005215) 
 

SLC39A13 
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DATA EXPERIMENTAL DATA VALIDATION DATA 

(INDEPENDENT GBM DATASET) 

S/N BP GENES BP GENES 

1 Biological 

adhesion 

(GO:0022610) 

 

ITGA7, RIT1, COL4A1, 

COL4A2, ITGAV 

Biological 

adhesion 

(GO:0022610) 

 

SCARB1 

2 Biological 

regulation 

(GO:0065007) 

GRINA, RNF14, 

RAB40B, ATP2A2 

Biological 

regulation 

(GO:0065007) 

 

NEXN, CASP1, 

SLC39A13, JAK1 

3 Cellular 

component 

organization or 

biogenesis 

(GO:0071840) 

OPA1, FBL, COL4A1, 

COL4A2, RAB40B, 

NUP93 

Cellular 

component 

organization or 

biogenesis 

(GO:0071840) 

 

NEXN, STX6 

4 Cellular process 

(GO:0009987) 

ASS1, DHX9, SP3, 

OPA1, SMAD4 

CKS1B, RNF11, 

SMAD1, FBL, CHST7, 

RNF111, RIT1, 

COL4A1, XPC, 

ATP6V0E2, RNF14, 

COL4A2, UGCG, RIT1, 

CHST2, RAB40B, 

ZC3H14, ATP2A2, 

NUP93 

 

Cellular process 

(GO:0009987) 

NEXN, CASP1, 

HS6ST2, GAMT, 

SCL39A13, TLR4, 

MEGF11, POLR2J3, 

JAK1, MAPK1, ESRRA, 

SCARB1, CNOT7, 

RFC2, PLCD3, MFAP3, 

UBA7, PRUNE2, STX6 

5 Developmental 

process 

(GO:0032502) 

 

COL4A1, UBE2Q1, 

RIT1 

Developmental 

process 

(GO:0032502) 

NEXN, CASP1, 

CRYZL1, PAXB, JAK1, 

EPHB3, PRUNE2 

6 Immune system 

process 

(GO:0002376) 

COL4A1, COL4A2, 

SWAP70 

Immune system 

process 

(GO:0002376) 

JAK1, MAPK1 

7 Localization 

(GO:0051179) 

 

OPA1, PREB, RIT1, 

RAB40B, NUP93 

Localization 

(GO:0051179) 

NEXN, JAK1, KLC3, 

STX6 

8 Metabolic process 

(GO:0008152) 

 

 

 

ASS1, DHX9, SPTLC1, 

SP3, SMAD4, RNF11, 

PREB, PMM1, 

SMAD1, FBL, CHST7, 

RNF111, DENND4B, 

Metabolic process 

(GO:0008152) 

HS6ST2, GAMT, 

TRNT1, CRYZL1, PAXB, 

POLR2J3, JAK1, 

TTLL12, CNOT7, RFC2, 

PLCD3, UBA7, 
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Table 5.13: Biological Processes and their genes for experimental and validation data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 UBE2Q1, UGCG, 

RIT1, SWAP70, 

NACAP1, CHST2, 

ZC3H15 ZC3H14, 

ATP2A2 

PRUNE2 

 

 

9 Multicellular 

organismal 

process 

(GO:0032501) 

 

RIT1, COL4A1, 

RAB40B 

 

Multicellular 

organismal 

process 

(GO:0032501) 

 

NEXN, TLR4 

 

10 Response to 

stimulus 

(GO:0050896) 

 

RNF111, XCP, RIT1 Response to 

stimulus 

(GO:0050896) 

CASP1, JAK1, MAPK1, 

RFC2 

 

 

 

 

 

 

 Locomotion 

(GO:0040011) 

 

NEXN, JAK1 
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DATA EXPERIMENTAL DATA VALIDATION DATA 

(INDEPENDENT GBM DATASET) 

S/N CC GENES CC GENES 

1 Cell part 

(GO:0044464) 

ASS1, DHX9, GAP43, 

SP3, OPA1, FBL, 

RNF111, XPC, RNF14, 

RIT1, RAB40B, 

ZC3H14, ATP2A2, 

NUP93 

 

Cell part 

(GO:0044464) 

NEXN, CASP1, 

GAMT, SLC39A13, 

POLR2J3, JAK1, 

TTLL12, CNOT7, 

RFC2, UBA7, 

PRUNE2, STX6 

2 Extracellular matrix 

(GO:0031012) 

COL4A1 COL4A2 Extracellular matrix 

(GO:0031012) 

MEGF11 

3 

 

 

 

 

Macromolecular 

complex 

(GO:0032991) 

 

DHX9, FBL, XPC, 

RNF14, NUP93 

Macromolecular 

complex 

(GO:0032991) 

 

CASP1, POLR2J3, 

CNOT7, RFC2, STX6 

4 Membrane 

(GO:0016020) 

CHST7, FAM134A, 

CHST2, RAB40B, 

ATP2A2, NUP93 

 

Membrane 

(GO:0016020) 

 

 

SLC39A13, JAK1, 

STX6 

5 Organelle 

(GO:0043226) 

GAP43, SP3, OPA1, 

FBL, RNF111, XPC, 

RIT1, RAB40B, 

ZC3H14, ATP2A2, 

NUP93 

Organelle 

(GO:0043226) 

NEXN, GAMT, 

SLC39A13, TTLL12, 

KLC3, RFC2, UBA7 

6 Synapse 

(GO:0045202) 

GAP43, RBA40B Extracellular region 

(GO:0005576) 

TLR4, MEGF11, 

MFAP3 

 

 

 
Table 5.14: Cellular components and their genes for experimental and validation data 

 
 
 

 

 

 

 

 



 

 90 

 

 

 

 

 

 

DATA EXPERIMENTAL DATA VALIDATION DATA 

(INDEPENDENT GBM DATASET) 

S/N PATHWAY GENES PATHWAY GENES 

1 Apoptosis signaling 

pathway (P00006) 

IGF2R Apoptosis signaling 

pathway (P00006) 

MAPK1 

2 CCKR 

signaling map 

(P06959) 

SP3, ITGAV CCKR 

signaling map 

(P06959) 

 

MAPK1 

3 Gonadotropin-

releasing hormone 

receptor pathway 

(P06664) 

SMAD4, 

SMAD1 

Gonadotropin-

releasing hormone 

receptor pathway 

(P06664) 

 

MAPK1, ESRRA 

 

4 Histamine H1 

receptor mediated 

signaling pathway 

(P04385) 

 

HRH1 Histamine H1 

receptor mediated 

signaling pathway 

(P04385) 

 

PLCD3 

5 Insulin/IGF pathway-

mitogen activated 

protein kinase 

kinase/MAP kinase 

cascade (P00032) 

IGF2R Insulin/IGF pathway-

mitogen activated 

protein kinase 

kinase/MAP kinase 

cascade (P00032) 

MAPK1 

6 Integrin 

signalling pathway 

(P00034) 

COL4A5, ITGA7, 

COL4A1, 

COL4A2, ITGAV 

Integrin 

signalling pathway 

(P00034) 

MAPK1 

7 TGF-beta 

signaling pathway 

(P00052) 

SMAD4, 

SMAD1 

TGF-beta 

signaling pathway 

(P00052) 

MAPK1 
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                 Table 5.15: Pathways and their genes for experimental and validation data 

 

 

 

 

 

 

 

 

 

 

8 ALP23B 

signaling pathway 

(P06209) 

SMAD4 5HT2 type receptor 

mediated signaling 

pathway (P04374) 

PLCD3 

9 Activin beta Signaling 

pathway (P06210) 

SMAD4 Alpha adrenergic 

receptor signaling 

pathway (P00002) 

 

STX6 

10 BMP/activin signaling 

pathway-drosophila 

(P06211) 

SMAD4 Angiogenesis 

(P00005) 

JAK1, MAPK1, 

EPHB3 

11 DPP 

signaling pathway 

(P06213) 

SMAD4 EGF receptor signaling 

pathway (P00018) 

 

MAPK1 

12 DPP-SCW 

signaling pathway 

(P06213) 

 

SMAD4 Endothelin signaling 

pathway (P00019) 

 

MAPK1 

13 Insulin/IGF pathway-

protein kinase B 

signaling cascade 

(P00033) 

IGF2R Interleukin signaling 

pathway (P00036) 

 

JAK1, MAPK1 

14 Wnt 

signaling pathway   

(P00057) 

 

SMAD4, SMAD1 JAK/STAT 

signaling pathway 

(P00038) 

JAK1 

15 Mannose metabolism 

(P02752) 

PMM1 PDGF signaling 

pathway (P00047) 

 

JAK1, MAPK1 
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5.5 SURVIVAL ANALYSIS 

The data frame used for this analysis is obtained by merge the clinical data, which contain 

the patient information and data matrix, which contains the expression values. The two 

data thus has a column (Sample ID) in common, hence the merging was successful.  The 

resulting data frame thus contains as its columns the sample ID, event and time to event 

and as rows the patient sample ID. From this data frame, a survival object is created with 

event, time to event and sample ID. 

 
A survival curve is plotted with a Kaplan-Meier estimate of 95% confidence bounds as 

shown in figure 5.4 below. The curve estimates survival throughout event time and event 

till the patients drop out of the study. The vertical line of this curve gives the proportion of 

people surviving while the horizontal axis represents the time (in days) after the beginning 

of the experiment. It is clear from figure 5.4 below that the survival curves for patients with 

sample A tumor and patients with sample B tumor are almost smooth, which implies that 

the curve accurately explains the death time.  

 
Also the curves have median survival times (i.e. the time at which the proportion surviving 

is 50%) of 372 days (approximately 12 months) for sample A tumor and 298 days  

(approximately 10 months) for sample B tumor as shown in table 5.16 below. This thus 

implies that the survival of patients with GBM is below a year and this thus confirms that 

the tumor is very aggressive. Hence, the chance of surviving GBM is very low.    

 

Sample ID Events Events Median 0.95 LCL 0.95 UCLL 

Sample A 245 245 372 327 432 

Sample B 279 279 298 268 345 

 
Table 5.16: Median survival time of GBM patients samples 
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Figure 5.4: Kaplan-Mier Survival Plot 
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5.6.1 SURVIVAL CURVE COMPARISON 

Observing the survival curves physically and computing their median survival is not enough 

to compare survival curve from two groups. A statistical approach, which involves the use 

of log-rank test, is employed to compare the curves in question. The result obtained after 

running the “survdiff” function from the survival package in R is shown in table 5.17 below. 

 
 

Sample ID Events Observed Expected (O-E)^2/E (O-E)^2/V 

Sample A 245 245 265 1.48 3.04 

Sample B 279 279 259 1.52 3.04 

 
Table 5.17: Log-rank test result 

 
Also the function gives a chi-square value of 3.000 on 1 degrees of freedom and an 

associated p-value of 0.0814. The chi-square value is less than 3.841, hence the null 

hypothesis that the survival curves for the two sample groups are identical. This implies 

that there is no statistical significant evidence at α = 0.05 that the survival time between 

the two sample groups (sample A and sample B) are different.  
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6. DISCUSSIONS  

6.1 EVALUATION OF STUDY METHODS 

This study aims to obtain sample and gene subgroup from data matrix, identify genes that 

are differentially expressed between samples, predict sample membership. In addition, it 

also aims to transform differentially expressed genes into biological meaning and verify 

analysis results with an independent GBM dataset.  

 
To achieve this, class discovery analysis (clustering) was performed on a filtered data 

matrix. This analysis helps in grouping the samples and or genes into subgroup (clusters) 

and the result from here can be adopted in class comparison and class prediction analysis. 

Since clustering works for any data even if there are no relationships between the terms in 

the data, it is important to perform this analysis in the best possible way. In order to get a 

perfect cluster from a data matrix, the correction between data column (samples) are 

evaluated and the resulting matrix is a sample-sample correlation matrix.  The dendrogram 

plot of this correlation matrix gives the real relationship that exists between samples and 

the subgroups are identified easily along side the number of elements in each subgroup. 

The same approach is used to obtain a gene-gene correlation matrix. Unlike the use of 

heatmap for hierarchical clustering, the correlation matrix approach is very reliable since it 

gives a better result than the former.  

 
The result from class discovery analysis was verified by the “clValid” R package with the 

aim of determining best number of cluster and assessing the performance of the method 

adopted. The package thus gives an internal validation measure of two-cluster solution and 

it suggests hierarchical clustering as the best method to be adopted in both sample and 

gene clustering. The result from the “clValid” R package conforms with that obtained from 

the class discovery analysis carried out in this study. The class discovery analysis reveals 

that GBM was grouped into two distinct clusters and each cluster has two sub-clusters. This 

indicates that GBM are of four subtypes. 
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Class comparison analysis aims to find genes that are differentially expressed between two 

conditions (samples) in a data matrix. This analysis somewhat depends on class discovery 

analysis, which gives insight into the subgroups that might be present in the data matrix. 

The analysis was carried out with fold change and t-test methods using a filtered data 

matrix. Filtering is done with gene filter package in R with the aim of removing genes with 

low expression value. The fold change method evaluates the mean of the expression level 

between the two-sample subgroups defined in class discovery analysis. The genes with a 

fold change greater than an absolute fold change (a.f.c of 1.0) threshold are selected as the 

genes that are differentially expressed between both sample subgroups. The value of 

absolute fold change mean is chosen arbitrarily and different value of it can be tested. It 

should be noted that the bigger the absolute fold change value, the lower the number of 

genes that will be selected as differentially expressed.  

 
The t-test method selects differentially expressed genes between the sample subgroups 

obtained in class discovery analysis by calculating their p-values. Since a filtered matrix is 

used for this analysis, the problem of multiple testing has been dealt with. The histogram 

of the p-value obtained from this analysis reveals that there is evidence against the null 

hypothesis. The differentially expressed genes are obtained by calling all p-values less than 

0.05 significant.  However, the truly differentially expressed genes are obtained by a fold-

change cutoff greater than 1.0 and a p-value less than 0.05. A total of 1351 genes are 

obtained as differentially expressed genes between the two sample groups. 

 
Class prediction analysis predicts the membership of the sample group obtained from class 

discovery analysis by using the data matrix obtained after class comparison analysis. This 

matrix was transposed so that the samples appear as the rows and the DEGs appear as the 

column. KNN classifier was used to build the model and different K values are used to 

search for the best performing model. The performance of the selected model is assessed 

by computing accuracy, error rate, sensitivity, specificity, precision, recall etc. 
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Functional and pathway enrichment analysis gives the biological interpretation to the 

differentially expressed genes obtained from class comparison analysis. These genes are 

pasted into PANTHER database and the Molecular Function (MF), Biological Process (BP), 

Cellular Component (CC) and Pathways in which these genes plays significant role are 

obtained.  

 
Results from the functional and pathway enrichment analysis in this study were validated 

with an independent GBM dataset from GEO. The same analysis steps were repeated for 

the independent dataset and the functional and pathway enrichment analysis was 

compared. The two results shows similar Molecular Function (MF), Biological Process (BP), 

Cellular Component (CC) and Pathways and this thus validates the results obtained in this 

study. 

 
The aggressiveness of GBM was predicted by computing the survival of patients using both 

the clinical data matrix, which contains vital patient information and expression data 

matrix, which contains patients sample ID. Non-parametric survival method that involves 

the plot of Kaplan-Mier curve is adopted. First a new data frame, which has as its columns; 

event, time to event, and patients sample ID is obtained from the clinical data. A survival 

object is then created from the data frame with event, time to event and patient sample ID 

with the aim of predicting the aggressiveness of GBM using patient sample ID classification 

obtained from hierarchical clustering analysis. It was observed that median survival time 

for patients with sample A is 12 months and that for patients with samples B is 10 months. 

This implies that median survival of patients with GBM is under 1 year and this thus 

confirms the tumor aggressiveness. The survival curve for patients with samples A is 

compared with the curve for patients with samples B using log-rank test. The test indicates 

that the survival curves are identical.  
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6.2 ANALYSIS RESULTS VERSUS RESULTS FROM PREVIOUS STUDIES  

The results from this study are broadly consistence with those achieved from previous 

studies. Sample-sample correlation matrix from this study gives two distinct clusters, which 

are made up of two sub-clusters each and this indicates that GBM are of four subtypes.  

Pearson correlation analysis was performed on 173 GBM samples from an mRNA 

expression dataset obtained TCGA website and the result gives two distinct clusters, which 

are made up of four different sub-clusters and that suggests that GBM is made of four 

distinct subtype (D. Renu et al 2015). In addition, it was also establish that GMB has four 

subtypes according to R.G.W. Verhaak et al (2010). 

 
Differentially expressed genes in this study were selected by combining fold change and T-

test method with different threshold. Although the issue of plotting p-value histogram to 

determine whether to perform multiple testing and to select p-value threshold has not 

been proper addressed. This study however suggests that the shape of the p-value 

histogram obtained goes a long way in determining the p-value threshold to be employed. 

Huggins et al. (2008) adopts a fold change of 1.3 and a p-value less than 0.2 to find 

differentially expressed genes and this is similar to what is done in this study. 

  
The pathways in which the differentially expressed genes from this analysis play significant 

roles have been reported in previous studies. Apoptosis signaling (cell death), integrin 

pathway (Angiogenesis), TGF and IGF signalling pathways, MAPK pathway are the pathways 

found in GBM reported by M. Nakada et al (2011). In addition, Marina M. Marelli et al 

(2009) reported that Receptors for gonadotropin-releasing hormone (GnRH) is present in 

glioblastoma tissue. Yeri Lee et al (2016) reported that the deregulation of WNT signalling 

is related to glioblastoma.  

 
This study also indicates that the median survival of GBM patients irrespective of the 

patients sample ID is under 1 year and this thus confirms the aggressiveness of GBM. 

Previous studies such as Michael Henriksen et al (2014) reported that GBM patients has 

median survival of less than 1 year while Azizul Haque et al (2011) reported that the 
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median survival of glioblastoma patients is between 10-12 months. These statements thus 

support the result obtained from this study. 

 

6.3 FURTHER RESEARCH WORK  

The analysis of GBM data has mainly addressed class discovery, class comparison, class 

prediction, and survival analysis while the identification of the molecular subtype in GBM 

has been neglected. In the future, analysis of GBM data should aim to identify and 

distinguish molecular subtype in GBM with R and Bioconductor tools.  

 
Also, in the selection of differentially expressed genes with t-test method, the shape of the 

p-value histogram play a huge role in determining the significant level to adopt and it also 

give information on the need for multiple testing. Future research work should consider 

the need for P-value histogram after t-test analysis so as to ascertain the need for multiple 

testing and to determine the accurate significance level.  
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7. CONCLUSION 

The true relationship that exists between samples and or genes in a gene expression data 

matrix can be best revealed with a sample-sample (or gene-gene) correlation matrix. The 

methods used in selecting differentially expressed genes from the experimental and 

validation datasets perform better because combining two methods gives better results. 

The use of PANTHER database helps to transform DEGs into biological information. The 

information from both datasets are compared in term of Molecular Functions, Biological 

Processes, Cellular Components, and Pathways. It was observed that the results are 95% 

similar and this validates the result obtained in this study. A KNN classifier achieves sample 

membership prediction by building a model, which is later assessed by performance 

parameters such as accuracy, sensitivity, and specificity etc. Also the Kaplan-Mier survival 

curve produced from GBM clinical data confirms that GBM is aggressive irrespective of 

sample types because it gives a median survival of less than 1 year. With the descriptions 

above, it can be concluded that the aims in this study were all met. However there could 

still be improvements to the methods adopted in this study for a better analysis outcome.  
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