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Vagushermostimulaatio on neuromodulatorinen hoitomuoto, jota käytetään vaikean epilepsian ja 
masennuksen hoidossa. Sen tiedetään vähentävän kohtauksien määrää epilepsiassa, mutta sen 
vaikutuksia kognitioon ei ole vielä kattavasti selvitetty. Tässä työssä tutkittiin 
vagushermostimulaation vaikutuksia tarkkaavaisuuteen, kognitioon ja tunteiden säätelyyn 
potilailla, jotka saavat vagushermostimulaatiohoitoa vaikeaan epilepsiaan. Työssä käytettiin 
tietokoneella tehtävää tunneärsykkeitä sisältävää reaktioaikatestiä mittaamaan koehenkilöiden 
(n=20) kognitiivista suoriutumista stimulaattorin ollessa päällä tai pois kytkettynä. Koehenkilöiltä 
mitattiin testin aikana aivosähkökäyrää (EEG), josta tutkittiin herätevasteita ja aivojen etuosien 
toiminnan epäsymmetriaa. EEG:sta tutkittiin erityisesti vagushermostimulaation vaikutusta 
näköinformaation prosessointiin liittyvän herätevasteen N1-komponentin amplitudiin ja 
aivosähkötoiminnan frontaalisen alfataajuuden epäsymmetriaan. Vagushermostimulaation ollessa 
päällä koehenkilöt tekivät testissä merkittävästi vähemmän virheitä ja aivojen herätevasteiden N1-
komponenttien amplitudi kasvoi. Virheiden väheneminen viittaa työmuistin paranemiseen ja N1-
komponentin amplitudin kasvu tarkkaavuuden lisääntymiseen stimulaation seurauksena. Lisäksi 
tutkimuksessa havaittiin, että koehenkilöiden reaktioajat pidentyivät ja aivojen etuosien toiminta 
oli epäsymmetrisempää stimulaation aikana, kun mukana oli negatiivinen uhkaan liittyvä 
tunneärsyke. Lisäksi vagushermostimulaation huomattiin muokkaavan aivojen reaktioita uhkaan. 
Tämä on ensimmäinen tutkimus, jossa kuvataan vagushermostimulaation välittömiä vaikutuksia 
aivojen fysiologiaan, tiedonkäsittelytoimintoihin ja tunnereaktioihin. Vagushermostimulaatiolla 
havaittiin olevan hyödyllisiä vaikutuksia kognitioon ja sen potentiaalia muissakin kliinisissä 
sovelluksissa tulee tutkia. 
 
Tämän opinnäytteen alkuperäisuus on tarkastettu Turnitin OriginalityCheck -ohjelmalla 
Tampereen yliopiston laatujärjestelmän mukaisesti.   
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1 INTRODUCTION 
 

 

Neuromodulatory treatments for neurological and psychiatric disorders are becoming more 

popular due to the limitation of traditional therapy methods and the promising results of these 

treatments. Vagus nerve stimulation (VNS) is a safe neuromodulatory therapy used for refractory 

epilepsy and pharmacoresistant depression (Nemeroff et al. 2006; Vonck et al. 2014a). Despite the 

positive outcome in treating epilepsy and depression, the exact mechanisms by which VNS affects 

cognition, executive and affective functions in addition to neurophysiology are still unclear 

(Nemeroff et al., 2006; Vonck et al., 2014). For these reasons, it is essential to develop methods to 

assess and understand the effects of stimulation. In this study, the aim was to investigate the 

immediate effects of VNS on executive and affective functions in patients with epilepsy.  The 

methods used include a computer based visual attention task with emotional distractors (i.e., the 

Executive reaction time (RT) test) and electroencephalogram (EEG).  The hypothesis of this work is 

that VNS has immediate effects on cognitive or affective brain functions and this could be seen as 

a change in cognitive performance in the Executive RT test, emotional interference or 

physiological markers extracted from the EEG recorded during the Executive RT test.   

 

2 VAGUS NERVE STIMULATION 
 

 

2.1 Vagus nerve and the effects of vagus nerve stimulation in central 
nervous system 

 
Vagus nerve (cranial nerve X) is a paired nerve that consists of both efferent and afferent (sensory, 

65-80 %) nerve fibers (Foley & DuBois, 1937). The parasympathetic efferent fibers are 

unmyelinated and responsible for the autonomic regulation of heart and gastrointestinal organs 

but also larynx, esophagus, and trachea. There are anatomical and physiological differences 

between the right and the left vagus nerve. For example, the right nerve regulates heart rate by 

innervating the sinus node and the left innervates the atrioventricular node. By stimulating the 

right vagus nerve it is possible to cause bradycardia (Randall et al., 1988). The myelinated motor 
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efferent fibers innervate vocal cords and other voluntary laryngeal muscles. The sensory afferent 

fibers convey information from head, neck, thorax and abdomen to the nucleus tractus solitarii 

(NTS) in medulla. (Ben-Menachem, 2002)   

 

The neurobiological mechanisms of how VNS therapy reduces seizure burden of epileptic patients 

are not fully understood. The current view is that by activating the norepinephrine system of locus 

coeruleus (LC) VNS helps to suppresses the seizures (Fornai et al., 2011; Krahl & Clark, 2012). The 

afferent cervical fibers of the vagus nerve innervate the NTS which in turn forwards information to 

several brain regions including parabrachial nucleus (PBN), LC, and dorsal raphe nucleus (DRN) 

(Nemeroff et al., 2006; Krahl & Clark, 2012). PBN relays information, for example, to 

hypothalamus, thalamus, and amygdala and thus the afferent fibers of vagus nerve affect limbic, 

pre-motor, and endocrine systems (Nemeroff et al., 2006) and LC and DRN play an important role 

in the decreasing the seizure burden during VNS therapy  (Krahl & Clark, 2012).     

 

2.2 Vagus nerve stimulation in clinical use 
 

VNS is successfully used for treating refractory epilepsy (Penry & Dean, 1990; McGlone et al., 

2008; Zeiler et al., 2015) and pharmacoresistant depression (Penry & Dean, 1990; Sackeim et al., 

2001; McGlone et al., 2008). In Finland, VNS therapy is currently used only for treating patients 

with refractory epilepsy. The first VNS device in humans was implanted to a patient with epilepsy 

in 1988 (Penry & Dean, 1990).  Positive effects on mood were reported after some time when 

several patients with epilepsy had been treated with VNS therapy (Elger et al., 2000; Klinkenberg 

et al., 2012) and after that VNS therapy was also applied to patients with refractory depression 

(Rush et al., 2000; Marangell et al., 2002). In Tampere University Hospital, the first VNS device was 

implanted in 2003 and until now about hundred patients have undergone the implantation 

surgery (personal communications with Jukka Peltola, 2016). 

   

In VNS therapy, a stimulation device is implanted surgically. In the surgery, a helical bipolar lead 

with two electrodes is placed around the left cervical vagus nerve and a subcutaneous generator 

in the left upper chest (Cyberonics Inc., 2016). The VNS device is recommended to be turned on 

earliest 2 weeks after the surgery (Cyberonics Inc., 2016). There are different stimulation 

parameters that can be adjusted in the VNS device: output current (mA), signal frequency (Hz), 
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pulse width (µs), signal on time (s), and signal off time (s) (Cyberonics Inc., 2016). An external 

programming wand is used to adjust the parameters. The current is ramped up to the target value 

in one to two week intervals taking care of the tolerance of the patient (personal communications 

with Jukka Peltola, 2014). 

 

VNS therapy can have side effects, acute or long-term effects. The acute complications of VNS 

implantation include infection, vocal-cord paresis, lower facial weakness, and rarely, asystole and 

bradycardia. The most common side effects due to the stimulation are stimulus-related coughing, 

throat pain, voice alterations and hoarseness. All of these side effects are typically mild and they 

are likely to diminish over time. (Ben-Menachem, 2002) 

 

Cognitive and affective effects of VNS have mostly been positive or the changes have not been 

significant as recently reviewed by Vonck et al. (2014b). Furthermore, VNS has also been found to 

improve recognition memory similarly to arousal and thus inspired its application in treatment of 

Alzheimer’s disease (Clark et al., 1999). Overall, it can be said that the knowledge 

on effects that VNS therapy have on cognition or emotion, especially on executive functions and 

attention-emotion interaction, is limited.  VNS therapy has been also used for treatment-resistant 

depression since positive effects on mood during VNS therapy on patients with 

epilepsy were reported (Sackeim et al., 2001) and in 2005 VNS therapy was approved as a 

treatment for treatment-resistant depression by FDA. Despite the positive outcome in treating 

depression, the exact mechanisms by which VNS affect the mood are still unclear (Nemeroff et al., 

2006; Vonck et al., 2014).  

 

3 EXECUTIVE FUNCTIONS AND WORKING MEMORY 
 

  

Executive functions are processes that are involved in controlling of our behavior, cognition and 

affective functions. They are a vital part of our everyday life since they enable planning of the 

tasks to be done and a fluent order for them so that we are able to do what we want or are 

required to do. Considering all this, it is clear that a decline in executive functions could make 

individual’s daily life difficult.  Anatomically the neural networks associated with executive 
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functions extend to the frontal lobe of the brain (Fuster, 2001; Alvarez & Emory, 2006). Executive 

functions include working memory, planning, focusing attention, shifting from a task to another, 

and emotional control.  

 

As one of the important parts of executive functions, working memory is also a part of memory 

that is used to keep things in mind for a short period, from seconds to minutes. The maintaining 

time is just enough for the brain to use, process and react according to the information and, if 

necessary, to transfer it to the long-term memory deposit. The capacity of working memory is 

limited. Baddeley and Hitch (1974) have suggested a model for working memory that involves a 

central executive system which has two subsystems, the phonological loop for encoding acoustic 

information and the visuospatial sketch pad for encoding visual and visuospatial information. 

Based on lesion studies, the phonological loop has been anatomically mapped to the left 

supramarginal gyrus, whereas, the visuospatial sketchpad has been mapped to the parietal and 

occipital lobes (Gazzaniga et al., 2014). The visuospatial sketchpad involves both hemispheres but 

damage to the right side lead to more difficult working memory problems than the damage on 

left.  Despite the mechanisms for memory, it is not possible to remember anything if you cannot 

focus your attention to it. Thus according to current understanding, attention is a requirement for 

other cognitive operations including working memory with attention and working memory as 

concepts intricately intertwined.  

4 ATTENTION AND EMOTION  
 

 

To be able to perform a task, allocating of an attention to it is needed. Attention makes it possible 

to focus on one stimulus, task, or though and to ignore irrelevant stimuli, tasks, and thoughts. The 

brain has a capacity to process all stimuli and thus dynamic selective focusing of attention is 

required (Desimone & Duncan, 1995). According to current theories, the attentional control 

mechanism can be divided in to goal guided (top-down) and stimulus guided (bottom-up) control 

(Corbetta & Shulman, 2002). The prefrontal cortex is responsible for the top-down control of 

attention which is voluntary (Shimamura, 2000). In voluntary top-down control of attention, the 

brain chooses to focus the attention to the task in hand, for example reading this thesis. The 

involuntary bottom-up mechanisms arising from limbic system, on the other hand, withdraw the 
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attention from the voluntary task to the stimulus i.e., shift from top-down control to bottom-up 

control. The stimulus can be for example a sound of a fire alarm or a rapid movement at the edge 

of the field of vision.  

 

According to current understanding, emotions are valenced responses to external stimuli or 

intrinsic mental depiction and they involve changes in various response systems in the body, for 

example, behavioral or peripheral physiology (Ochsner & Gross, 2005). Emotions are separate 

from mood in a sense that they have usually identifiable objects or triggers (Ochsner & Gross, 

2005).  They are can be also automatic or learned responses to stimuli (Ochsner & Gross, 2005).  

The interaction of attention and emotion has been under widening investigation. It has been 

shown that emotional stimuli, especially negative threat-related stimuli, occupy attentional 

resources and interfere with the task performance although being irrelevant regarding the task 

(Hartikainen et al., 2000, 2010a, 2012b) and activate attentional networks (Mäki-Marttunen et al., 

2014).  

 

Our adaptive behavior is due to the flexible and delicate balance between the top-down and 

bottom-up control mechanisms. Our research group has previously shown that orbitofrontal 

cortex contributes to the appropriate balance between voluntary and involuntary attention 

allocation especially in context of emotional stimuli (Hartikainen et al., 2012a; Mäki-Marttunen et 

al., 2016). It is thought that depression could be due to imbalance between these mechanisms as 

the bottom-up mechanism dominates voluntary attention allocation and tasks become difficult. 

Amygdala is a part of the limbic system and its hyperactivity has been observed in patients with 

depression in the presence of negative or arousing visual stimuli (Jaworska et al., 2015) and it has 

been linked also to posttraumatic stress disorder (Koenigs & Grafman, 2009). There is some 

evidence that VNS might also affect the amygdala. Zobel et al. (2005) and Kraus et al. (2007) have 

suggested that VNS inhibits (transcutaneous VNS in later) activity of amygdala in humans by 

reducing blood flow and Lyubashina and Panteleev (2009) that it reduces the amygdala-cortical 

interaction in rats. Pena, Engineer and McIntyre (2013) have also shown that VNS reduces 

conditioned fear in rats. 
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5 METHODS 
 

 

5.1 Executive reaction time test 
 

Executive reaction time test (Executive RT test) is a computer-based visual attention Go-NoGo test 

in which the subject has to respond (Go) or refrain from responding (NoGo). The test used in this 

work include distractors, neutral and emotional. Traditional neuropsychological tests measure 

usually only one executive function at a time and thus at least subtle, but relevant in managing 

everyday life, impairments in executive functions are not detected. The executive RT test requires 

multiple executive functions, such as working memory, inhibition, focusing attention, shifting from 

task to another, and emotional control, to be engaged simultaneously. It is thus a powerful 

method to test executive functions and control of behavior, cognition and emotions. The test 

has been previously shown to detect subtle executive impairment after mild head injury 

(Hartikainen et al., 2010b), alterations in emotion-attention interaction due to deep brain 

stimulation in patients with epilepsy  (Hartikainen et al., 2014; Sun et al., 2015), and improvement 

in cognitive flexibility after a heart surgery (Liimatainen et al., 2016). 

 

The subjects sat in a sound-attenuated room one meter away from a computer screen and 

responded to visual stimuli according to instructions. The test was presented and the response 

data was collected using a computer program (Presentation, Neurobehavioral Systems, Inc.). Each 

trial in the test started with a triangle pointing up or down followed by a fixation cross and then a 

Go or NoGo signal each shown for 150 ms at the center of the screen (Figure 1. in Original 

research article). The orientation of the triangle was random. The Go/NoGo signal was presented 

indicating whether the subject should respond with a button press to the orientation of the 

previously presented triangle or withhold from responding.  After the Go signal the subject had 

1150 ± 150 ms to press a button on a special keyboard (Cedrus RB-830) with index finger if the 

triangle had been pointing down and a different button with middle finger if the triangle had been 

pointing up. The subjects used their right hand when responding except one subject, who was not 

able to use his right hand, used left hand. Half of the trials were Go trials and half were NoGo 

trials.   
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In the Executive RT test the subject can make three kind of errors: missed responses, incorrect 

button presses, and commission errors. In missed response, the subject does not press the button 

after the Go signal and it may indicate decrease in attention or problems with rule switching. 

Whereas when there is an incorrect button press, it may indicate problems with working memory 

as the subject remembers the orientation of the triangle incorrectly or difficulties in focusing 

attention to the task. In commission error, the subject presses a button after NoGo signal and this 

may indicate difficulties in refraining from answering, i.e., inhibition.  

 

In addition to errors, there are evidence that variability in reaction times could relate to 

alternations in behavior. According to a recent study by Antonini et al. (2013),  there is an 

association between observed attention and reaction time variability, i.e., more inattentive you 

are, more variability there is in reaction times. 

 

5.2 Electroencephalogram 
 

5.2.1 The principle of electroencephalogram 
 

Electroencephalogram (EEG) presents electrical activity of the brain that is measured using 

electrodes placed on the scalp. EEG measures the voltage, i.e., it records a potential of the current 

to move between two electrodes (active and reference) and the recorded voltage is a sum of the 

synaptic activity of population of neurons on the cortex (Gazzaniga et al., 2014; Luck, 2005). EEG 

has a high temporal but poor spatial resolution. The overall activity of the brain changes according 

to the mental state (for example exited, relaxed, asleep, deep sleep, epileptic activity) of a person 

and this can be seen in EEG as differences in frequency and amplitude of EEG signal (Gazzaniga et 

al., 2014). EEG can be characterized by the frequency to different wave types: delta (1–3 Hz), theta 

(4–7 Hz), alpha (8–15 Hz), mu (7.5–12.5 Hz), SMR (12.5–15.5 Hz), beta (16–31 Hz), and gamma 

(32–100 Hz). In the current work, especially the alpha waves in the frontal area are of interest.  

 

In EEG recordings, the electrodes are positioned according to general guidelines (International 10–

20 system, The General Assembly of the International Federation of Clinical Neurophysiology) and 

the names of the electrodes reflect their location on the scalp. The name consists of one or two 

capital letters and a number or a small letter z. The capital letters F, C, T, and O represent frontal, 
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central, temporal and occipital lobes, respectively, of which the central lobe is not a 

neuroanatomical entity, but refers to the top central area of the skull. The electrodes on the right 

hemisphere are given even numbers, on the left hemisphere, they are given odd numbers, and in 

the middle, they are given a small letter z.  

 

In this study, EEG was recorded with actiCAP having 64 Ag/AgCl electrodes (Brain Products GmbH, 

Germany). The electrodes in actiCAP are active electrodes that have integrated noise subtraction 

circuit to reduce the noise during the recording and to improve the signal to noise ratio. Electrodes 

also have integrated technology to measure the impedance and indicate it using a led (red, yellow, 

green). (Brain Products GmbH, 2016) 

 

5.2.2 Event related potential  
 

Event-related potential (ERP) is a subtle electrophysiological change evoked by a stimulus and it 

can be observed after averaging the post-stimulus EEG signal over a series of trials. The stimulus 

can be sensory, motor or cognitive event. In addition to studying the differences in ERPs evoked by 

different stimuli, ERPs can be used to study the conduction velocity in nervous system. First ERP 

studies have been performed already in 1930’s (Davis et al., 1939; Davis, 1939) but ERPs became 

more popular in 1960’s. (Luck, 2005) 

 

ERPs have a stereotypic waveform in which different peaks are called components. They are 

named based on their direction (P = positive, N = negative) and order. Most commonly in the x-

axis (potential), the negative values are plotted upward and positive values downward. Sometimes 

the number in the name of the component can refer, not to the order but, to the time elapsed 

after the stimulus, for example N100 (around 100 ms after stimulus) and P300 (around 300 ms 

after stimulus). (Luck, 2005) 

 

The meaning of different ERP component have been studied extensively (Luck, 2005). The 

components can be linked to different cognitive properties, but it has to be noted that the 

properties depend on the modality of the stimulus. The early components are more dependent on 

the modality than the later components. For example, the auditory P1 and visual P1 have different 

neural basis but the corresponding P3s may share neural processes (Luck, 2005). Rather than the 
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stimulus modality the later components including P3 are dependent on the cognitive task 

involved. In this study, the amplitude of visual N1 was of interest.  The increase in N1 amplitude is 

associated with increased attention to visual stimulus(Mangun & Hillyard, 1991; Luck & Ford, 

1998).  The parieto-occipital N1 amplitude has been closely linked with attention, where enhanced 

visual attention is associated with increase in N1 amplitude (Luck & Ford, 1998).  

 

5.2.3 Frontal alpha asymmetry  

 
Davidson et al. (1990; 1992) were among first ones to measure and show asymmetrical alpha 

power in frontal lobes and linked it to approach-withdrawal theory of emotional responses.  

Multiple studies using EEG (see, for example, Henriques (1990), Henriques (1991), Davidson 

(1998), Liao (2013), Gollan (2014)) have shown evidence that the activity of the frontal lobes is 

asymmetrical in patients with depression and thus strengthens the association between 

behavioral withdrawal and depression (reviewed in Jesulola et al. (2015)). In their studies on 

depression, they have found that frontal lobe activity is greater on right than left hemisphere. 

Alpha wave activity across the brain area of interest (i.e., alpha power) has been used as a 

measure for the activity on the area  (Jesulola et al., 2015).  The alpha power behaves inversely 

compared to the activity, i.e., the alpha power relatively increases in hypoactivity and decreases in 

hyperactivity (Jesulola et al., 2015). Quraan et al. (2014) have suggested that hemispheric 

asymmetry could be used as a marker for effectiveness of neuromodulatory treatment (deep brain 

stimulation) for depression.  
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ABSTRACT 
Vagus nerve stimulation is used for treating refractory epilepsy and major depression. While the 
impact of this treatment on seizures has been established, its impact on human cognition remains 
equivocal. The goal of this study is to elucidate the immediate effects of vagus nerve stimulation 
on attention, cognition and emotional reactivity in patients with epilepsy. Twenty patients (12 
male and 8 female; 45 ± 13 years old) treated with VNS due to refractory epilepsy participated in 
the study. Subjects performed a computer-based test of executive functions embedded with 
emotional distractors while their brain activity was recorded with electroencephalography. 
Subjects’ cognitive performance, early visual event related potential N1 and frontal alpha 
asymmetry were studied when cyclic vagus nerve stimulation was on and when it was off. We 
found that vagus nerve stimulation improved working memory performance as seen in reduced 
errors on a subtask that relied on working memory, OR = 0.63 (95% CI 0.47-0.85) and increased N1 
amplitude [F(1, 15) = 10.17, p = 0.006]. In addition, vagus nerve stimulation resulted in longer 
reaction time [F(1, 16) = 8.23, p = 0.019] and greater frontal alpha asymmetry [F(1, 16) = 11.79, p = 
0.003] in response to threat-related distractors. This is the first study to show immediate 
improvement in working memory performance in humans with clinically relevant vagus nerve 
stimulation. Furthermore, vagus nerve stimulation had immediate effects on emotional reactivity 
evidenced in behavior and brain physiology.   
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INTRODUCTION 

Pharmacoresistant neurological and psychiatric disorders highlight the importance of novel 

neuromodulation treatments. Vagus nerve stimulation (VNS) is an effective and safe therapy 

(Vonck et al. 2014; Grimonprez, Raedt, Baeken, Boon & Vonck 2015a; Grimonprez et al. 2015b) 

and is reported to be successful in treating pharmacoresistant epilepsy (Penry & Dean 1990). In 

addition to reducing seizures, the reported improvements in mood (Elger, Hoppe, Falkai, Rush & 

Elger 2000; Klinkenberg et al. 2012) and verbal recognition memory following VNS stimulation 

have led to its use in treating other brain disorders, including its clinical use in depression (Rush et 

al. 2000; Marangell et al. 2002) and its experimental use in treating Alzheimer’s disease (Sjogren et 

al. 2002). While there is robust evidence for the therapeutic effect of VNS in reducing seizures 

(Ben-Menachem et al. 1994), the evidence for VNS’s impact on cognition remains equivocal along 

with several methodological limitations (Dodrill & Morris 2001; Sackeim et al. 2001a; Sjogren et al. 

2002; Merrill et al. 2006; McGlone et al. 2008; Klinkenberg et al. 2012). Patients treated with VNS 

due to refractory epilepsy frequently have compromised cognitive functions due to epilepsy or 

antiepileptic drugs, the type of epilepsy and etiology vary, they may have covert seizures and 

double blinded studies may not be possible due sensation of VNS stimulation. To that end, there is 

a need for further studies to better understand potential cognitive and affective effects of VNS 

treatment. 

 

Previously reported beneficial effects of VNS on human cognition and emotion are thought to 

arise from increased levels of norepinephrine (NE) (Vonck et al. 2014; Grimonprez et al. 2015a; 

Grimonprez et al. 2015b). VNS innervates the nucleus tractus solitaries (Kalia & Sullivan 1982) 

which is connected to the locus coeruleus (LC) (Aston-Jones et al. 1991; Van Bockstaele, Peoples & 

Telegan 1999), the principal site for the brain’s synthesis of NE (Aston-Jones & Cohen 2005). 

However, studies of the chronic effects of VNS provide contradictory evidence for its influence on 

mood (Sackeim et al. 2001b; McGlone et al. 2008) and cognition (Sjogren et al. 2002; Merrill et al. 

2006) with either improvement or no change. Chronic effects of VNS are typically confounded by 

several factors influencing emotion and cognition including medications, seizure frequency, etc. 

Improved cognitive function due to VNS has been found in very specific situations, thus limiting 

the generalizability of the findings. For example improved verbal recognition memory has been 
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shown (Clark, Naritoku, Smith, Browning & Jensen 1999) when low intensity VNS was delivered 

during memory consolidation phase (Clark, Krahl, Smith & Jensen 1995).  

 

In this study, we investigated the immediate effects of VNS on human executive functions by 

comparing the cognitive performance when cyclic VNS stimulation is administered and when it is 

not. The comparison within subjects allows uncovering the immediate and direct effects of VNS on 

human cognition. Subjects performed an experimental computer based visual attention task with 

emotional distractors, i.e. the Executive - Reaction Time (RT) test (Figure 1a), while having their 

electroencephalogram (EEG) recorded. The task is designed to simultaneously engage several 

cognitive control functions including working memory, response inhibition and emotional control. 

The Executive-RT test has been shown to be a sensitive method in revealing alteration in executive 

function performance and emotion-attention interaction due to neuromodulation (Hartikainen et 

al. 2014; Sun et al. 2015; Sun et al. 2016), brain injury (Mäki-Marttunen V. et al. 2015; Mäki-

Marttunen Verónica et al. 2016) and cardiac surgery (Liimatainen et al. 2016). 

 

In addition to behavioral measures we used measures derived from EEG to assess the impact of 

VNS on cognitive and affective brain functions. We examined the impact of VNS on early visual 

evoked potential, i.e. N1. The parieto-occipital N1 amplitude has been closely linked with 

attention, where enhanced visual attention is associated with increase in N1 amplitude (Mangun 

& Hillyard 1991; Luck & Ford 1998). Moreover, we also studied the effect of VNS on threat induced 

frontal alpha asymmetry. Relatively increased right frontal activity, as indicated by increased 

frontal alpha asymmetry has been associated with vigilance to threat (Perez-Edgar, Kujawa, 

Nelson, Cole & Zapp 2013).  

 

In summary, we expected that if VNS has immediate effects on cognitive or emotional brain 

functions, these would be reflected in cognitive performance, emotional interference or frontal 

alpha asymmetry. Furthermore, comparing N1 amplitude to targets when VNS is on to when it is 

off allows evaluating impact of VNS on attentional processes. 
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MATERIALS AND METHODS 

Subjects  

Twenty patients (12 male and 8 female; 45 ± 13 years old) treated with VNS due to refractory 

epilepsy participated in this study, Table 1. VNS Therapy® System (Cyberonics, Inc.) was implanted 

by neurosurgeons at the Tampere University hospital. The implanted VNS device consists of a 

helical bipolar electrode surrounding the left cervical vagus nerve and a programmable pulse 

generator at the upper left chest. The therapeutic goal of VNS is to control seizure frequency and 

improve general well-being. Stimulation parameters used for clinical treatment are adjusted and 

optimized by neurologists from the hospital.  

 

To rule out subjects with severe depression, subjects filled in Beck Depression Inventory (BDI). 

Three subjects were excluded from the data analysis due to poor performance (total error rate 

over 15%). All patients provided their written consent for participation. The study was approved 

by the regional ethical committee of Tampere University Hospital, Tampere, Finland, and 

conducted in accordance with the guidelines set forth in the Declaration of Helsinki governing the 

treatment of human subjects.  
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Table 1. Medical information of the subjects.  
Patient 
 ID 

Age (y)  
at 
Diagnosis 

Types of  
Epilepsy 

Duration of 
Stimulation 

(months) 

BDI  
score 

Medication 

V01 25 Multifocal 6 5 Levetiracetam, Oxcarbazepine, 
Zonisamide 

V02 22 Temporal  5 15 Escitalopram, Lamotrigine,  
Lacosamide, Zonisamide  

V03 17 Frontal 100 0 Levetiracetam, Oxcarbazepine, 
Lacosamide, Zonisamide 

V04* 3 Multifocal 104 8 Valproic Acid, Vigabatrin,  
Topiramate, Olanzapine  

V05 9 Parietal  82 14 Lamotrigine, Zonisamide,  
V06  5 Temporal 4 11 Escitalopram, Clobazam,  

Carbamazepine, Lacosamide  
V07* 25 Multifocal 99 0 Quetiapine, Lamotrigine, 

Mirtazapine, Quetiapine, 
Lacosamide, Zonisamide 

V08 1 Multifocal 108 0 Perampanel, Lacosamide 
V09 8 Temporal 4 6 Valproic Acid, Levetiracetam,  

Lamotrigine, Zonisamide 
V10 1 Temporal 52 4 Pregabalin, Lacosamide, 

Eslicarbazepine acetate 
V11e 19 Temporal 86 7 Carbamazepine, Zonisamide 
V12* 2 Multifocal 109 19 Gabapentin, Lacosamide 
V13 16 Multifocal  51 17 Clobazam, Lamotrigine, 

Zonisamide  
V14 13 Fronto-

temporal  
61 4 Carbamazepine, Lacosamide, 

Pregabalin, Perampanel 
V15 9 Multifocal 38 10 Topiramate, Valproic Acid,  

Clobazam 
V16 18 Fronto-

temporal  
4 0 Carbamazepine, Clobazam 

V17 46 Temporal 63 4 Oxcarbazepine  
V18 20 Fronto-parietal 2 18 Lamotrigine, Valproic Acid, 

Perampanel, Clobazam  
V19 27 Multifocal 5 10 Levetiracetam, Oxcarbazepine 
V20 50 Unknown 130 16 Oxcarbazepine, Clonazepam, 

Levetiracetam, Gabitril 

* = subjects excluded in all data analysis; e = excluded in the event-related potential data analysis; 
BDI = Beck Depression Inventory. 
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Experimental design 

The Executive-RT test 

Subjects performed a computer-based Executive-RT test (Figure 1A) as described in our previous 

studies (Hartikainen et al. 2014; Sun et al. 2015). The participants had to store the orientation of 

the triangle in their working memory and press the corresponding button after the Go signal while 

withholding from responding after a NoGo signal. The Go or NoGo signals were alternated so that 

in half of the trials a green traffic light was a Go signal and in half of the trials red light was a Go 

signal.  

 

 

Figure 1. The experimental design. A) The Executive-RT test. At the onset of each trial a triangle 
was presented pointing either up or down, and relying on their working memory subjects needed 
to report the orientation of the previously presented triangle by pressing one of two buttons in 
case of a Go-signal, the traffic light, presented at 300 ms. The color of the traffic light was a Go or 
a NoGo signal indicating weather subject was supposed to respond or withhold from responding. 
In the middle of the traffic light an irrelevant emotional or emotionally neutral line-drawing was 
presented. This distractor was either a spider-like shape conveying negative threat-related 
information or an emotionally neutral non-threatening figure as a control. The elements 
composing the distractors were identical to one another and only the configuration of the figure 
differed. This allows for efficient control of low-level visual attributes such as color, brightness, 
contrast, etc. (Vuilleumier & Schwartz 2001) The duration of one trial was two seconds. B). The 
stimulation protocol. VNS status (ON and OFF) was counter balanced, with 10 subjects beginning 
the task with cyclic VNS ON and the remaining 10 beginning the task with VNS OFF. Each VNS 
status started with a four-minute resting state and then four blocks of behavioral testing, where 
each block of test contained 64 two-second trials. 

 

Within the test, orientations of the triangles, sequence of Go/NoGo signals and types of 

distractors were all randomized. The behavioral test was presented and data collected with 

Presentation software (Neurobehavioral System, Inc. Berkeley, CA, USA). The patients were 

required to respond as fast and accurately as possible and only RTs of correct response were 

included in the analysis. Behavioral outcome of the Executive-RT test includes reaction times to 
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different stimuli and three error types, i.e. incorrect button presses (in Go trials), misses (no 

button press in Go trials) and commission errors (any button press in NoGo trials). In general, 

incorrect button presses in Go trials reflect lapses in working memory performance, a miss 

signifying a failure to initiate a response within given time and commission error in NoGo trials a 

failure in response inhibition.  

 

The stimulation protocol  

During the experiment, VNS ON refers to VNS cycling with stimulation on for 30 seconds and off 

for 48 seconds, ensuring two duty cycles with stimulation in each ON block of behavioral testing. 

When stimulation was turned ON the output current was set to 1.5-1.75 mA depending on the 

subjects’ tolerance. If the subjects’ clinical tolerance was higher than 1.75 mA, we use 1.75 mA. If 

their clinical tolerance was lower than 1.75 mA, we used their clinically used current. This 

approach, i.e. the current is the same to subject’s clinical setting or less, ensured that subjects 

would not have inconvenience during the experiment which could affect their performance. When 

VNS was OFF the current was set to 0 mA. The stimulation frequency was 30 Hz and pulse width 

250 µs. Every time when VNS stimulator status was changed there was a resting period before the 

test was continued to allow for sensory habituation (Figure 1B). In light of the potential sensory 

reactions due to VNS, the study is not eligible for blind design.  

 

Analysis of EEG 

EEG was recorded during the Executive-RT test with actiCAP Ag/AgCl electrodes and the 64-

channel QuickAmp amplifier (Brain Products GmbH, Gilching, Germany) and digitized at 500 Hz 

sampling rate. Impedance of all electrodes was kept below 5 kΩ during the recording. Offline EEG 

data was analyzed with Brain Vision Analyzer2 software (Brain Products GmbH, Germany). Initial 

processing of EEG data included down sampling to 250 Hz and ocular movement correction using 

the ICA (Independent Component Analysis) ocular correction function, where one or two ICA 

components representing ocular movement artifact were removed.  

In the analysis of parietal-occipital N1 potential, EEG signal was re-referenced to linked earlobe 

reference. EEG signal was band-pass filtered at 0.1-30 Hz and segmented into 1000 ms segments 

starting 200 ms before the onset of each trial. Segments were baseline-corrected and then 

subjected for artifact rejection where any segment with amplitude exceeding ± 80 µV was 

rejected. The remaining segments were averaged to yield the ERP (event-related potential) 
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waveform. N1 was defined as the negative peak detected between 150 and 250 ms after trial 

onset. Peak amplitude of N1 component was exported for statistical analysis. For the analysis of 

N1 amplitude, one more subject was excluded due to epileptiform activity leading to excessive 

artifacts and unidentifiable ERPs. 

 

In the analysis of frontal alpha asymmetry, EEG signal was re-referenced to Cz electrode. After 

band-pass filtering at 3-30 Hz, EEG signal was segmented into 2000 ms segments starting from the 

onset of each trial. Then the segments were subjected for artifact rejection where any segment 

with amplitude exceeding ± 80 µV was rejected. The remaining segments were applied Fast 

Fourier transform (FFT) to calculate the power spectrum (µV2/Hz) which was averaged. Finally, the 

alpha (8-13 Hz) power was analyzed at EEG electrodes F3 and F4 typically used for assessing 

effects related to affect and motivation (Davidson 1995). Alpha power was log-transformed and 

the asymmetry was calculated by subtracting the log-transformed alpha power at F4 by those at 

F3.  

 

Statistical analysis 

RTs, ERPs and the frontal alpha asymmetry were analyzed using repeated measure ANOVA. In the 

analysis of reaction time, VNS status (ON vs. OFF) and emotional valance (negative vs. neutral) 

were used as factors. In the analysis of N1 amplitude and the frontal alpha asymmetry, VNS status, 

emotional valence, and response types (Go vs. NoGo) were used as factors. The parieto-occipital 

region of interest covered electrodes P1, Pz, P2, PO1, POz, PO2, O1, Oz and O2. Interaction effect 

was followed by further post hoc analysis.   

 

All data analyzed with repeated measure ANOVA were checked for normality and transformed if 

necessary. RTs were skewed to the right and thus log-transformed. N1 amplitudes were normally 

distributed and did not need transformation. Frontal alpha asymmetry data were not normally 

distributed and were transformed by subtracting personal mean from each data point, thus 

shifting the personal mean of all subjects to zero.  

 

Errors were analyzed using generalized mixed effects logistic regression model. Separate models 

were made for each error type predicting probability to make an error of a given type using 

subject, VNS status and emotional valence as predictors. Subject was a random effect, while VNS 
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status and emotional valence were fixed effects. Trial outcomes were dichotomized into either 

“error” or “other” classes. In the incorrect button press model “error” class included incorrect 

button presses and “other” class included correct and missing button presses. In the missing 

response model “error” included missing button presses and “other” class included correct and 

incorrect button presses. In the commission error model “error” class included any button presses 

during NoGo trials and “other” class included no response cases which were correct responses in 

NoGo trials. 

 

All statistical analysis was done using R statistics (version 3.1.1., the R-foundation for Statistical 

Computing). Repeated measure ANOVA was done using ez package (version 4.2-2) and regression 

analysis using lme4 package (version 1.1-10). 

RESULTS 

VNS, working memory and visual attention  

Subjects were required to hold the orientation of the triangle in working memory and indicate the 

orientation of the triangle by pressing the correct button after a Go signal. Analysis of incorrect 

button presses revealed a main effect of VNS status, where cyclic VNS ON reduced the probability 

of making such errors, OR = 0.63 (95% CI 0.47-0.85) (Figure 2A). In addition to improved cognitive 

performance, increase in N1 event-related brain potential amplitude to targets over the parieto-

occipital region was observed, F (1, 15) = 10.17, p = 0.006, η2
G = 0.01 (Figure 2B & 2C). VNS status 

had no effect on other error types. Emotional valence of the distractor had no effect on any errors.  

 

VNS and emotional reactivity 

Analysis of RTs revealed an interaction between VNS status and emotional valence, F(1, 16) = 5.15, 

p = 0.04. Post hoc analysis revealed that cyclic VNS ON led to increased RTs only when there were 

negative threat-related distractors, F(1, 16) = 8.23, p = 0.01, η2
G = 0.004 (Figure 3A).  VNS status 

had no effect on RTs in the context of neutral distractors, F(1, 16) = 0.48, p = 0.50.  

 

We also investigated the impact of VNS on the task-related frontal alpha asymmetry in the context 

of negative threat-related and neutral non-threat related distractor. There was a main effect of 

VNS status, F(1, 16) = 7.37, p = 0.02, η2
G = 0.17, where VNS increased frontal alpha asymmetry 
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(cyclic VNS ON -0.082 ± 0.33, VNS OFF -0.055 ± 0.35). There was also an interaction between VNS 

status and emotional valence, F(1, 16) = 7.13, p = 0.02. Post hoc analysis revealed that cyclic VNS 

ON increased frontal alpha asymmetry only when there were negative threat-related distractors, 

F(1, 16) = 11.79, p = 0.003, η2
G = 0.35. (Figure 3B). VNS status did not affect frontal alpha 

asymmetry with neutral non-threatening distractors, F(1, 16) = 0.54, p = 0.47. 

 

 

Figure 2. VNS improved working memory performance and enhanced visual attention. A) When 
cyclic VNS was ON, subjects made fewer errors in a subtask that depended on working memory 
performance, i.e. in responding weather previously presented triangle was up or down. Also, VNS 
increased parieto-occipital N1 amplitude. B) Grand average ERPs over the parieto-occipital brain 
region (covering electrodes P1, Pz, P2, PO1, POz, PO2, O1, Oz and O2). C) VNS Difference 
waveform VNS ON - VNS OFF illustrates the topography of the increased negativity during N1 time 
window (150-250 ms) due to VNS. ** = p < 0.01.  
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Figure 3. VNS increased threat-related behavioral and brain responses. A) In trials with 
emotionally negative threat-related distractors, VNS increased reaction times compared to when 
VNS was turned off. VNS status had no effect on reaction times in trials with neutral distractors. B) 
VNS increased frontal alpha asymmetry when there were emotionally negative threat-related 
distractors but not when there were neutral distractors. Error bar indicates Fisher’s Least 
Significant Difference.  
 

DISCUSSION 

To our knowledge this is the first study to show immediate improvement of working memory 

performance with VNS stimulation in humans. Subjects made less errors on a subtask that relied 

on working memory when cyclic VNS was turned on in comparison to when it was turned off. 

Improved working memory performance lay the foundation for better cognitive performance in 

general. The current results provide evidence for the beneficial cognitive effects of VNS in 

treatment of epilepsy patients whose cognitive performance may be otherwise compromised due 

to epilepsy or the antiepileptic drugs. However, the patients analyzed in the current study were 

able to perform a rather demanding cognitive task, tapping into attention and executive function, 

at a high level indicating relatively intact cognition. Three of the subjects with poor performance 

suggesting compromised cognitive functioning were excluded from the analysis. Thus, with results 

obtained from patients with good cognitive performance, these results are probably not limited to 

only patients with epilepsy but may be generalizable to other subjects as well. 

 

VNS increased early visual N1 amplitude similar to what is seen with increased level of attention 

(Mangun & Hillyard 1991; Luck & Ford 1998). Our findings suggest that attentional mechanisms 

might contribute to improved working memory performance due to VNS. Attention allows for 
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selecting information for further processing while working memory allows for information to be 

kept in an accessible state. Attention and working memory are interacting constructs and tightly 

intertwined, attention providing the basis for selecting what information will be encoded in 

working memory (Awh, Vogel & Oh 2006). Along with this electrophysiological attention-related 

brain response, the performance of the subjects improved in a task where subjects were supposed 

to indicate the orientation of a previously presented triangle by a corresponding button press. 

Greater N1 in response to triangles, whose orientation was maintained in working memory, 

suggests deeper processing and better fidelity of information encoding into working memory. In 

other words, improved selective attention allows for better working memory performance. 

General level of attention and performance remained unchanged with no other performance 

measures showing impact of VNS such as reaction times, missing responses or commission errors. 

With improved general attention or higher arousal levels, one might expect speeded reaction 

times or overall improvement in performance. However, specific improvement of working 

memory performance along with electrophysiological marker suggesting greater attention to 

targets encoded into working memory was observed due to VNS.  

 

Besides the cognitive modulation of VNS, emotional effects were observed. When VNS was on, 

task-irrelevant threat-related distractors slowed reaction times and increased frontal alpha 

asymmetry in comparison to when stimulation was turned off. There seemed to be an increased 

vigilance to threat-related stimuli as an immediate effect of VNS stimulation. Weather emotional 

distractors have an impact on performance and on brain responses depends on several factors 

including task and subject-related factors (Hartikainen, Ogawa, Soltani & Knight 2007; Hartikainen, 

Siiskonen & Ogawa 2012; Mäki-Marttunen V. et al. 2014). Subject-related factors include mood 

with depression and anxiety typically increasing attention allocation to threat (MacLeod & 

Mathews 1988; Dalgleish & Watts 1990; Bishop 2008). Increased attention allocation to threat is 

also seen in patient groups with predisposition to depression such as mild head injury (Mäki-

Marttunen V. et al. 2015), patients with orbitofrontal injury (Mäki-Marttunen Verónica et al. 2016) 

and epilepsy patients treated with deep brain stimulation (Hartikainen et al. 2014; Sun et al. 

2015). In the current study fourteen subjects had no or minimal depression and six subjects had 

mild depression. Thus, as most subject did not suffer from depression it is unlikely to have a 

significant impact on the current findings. Furthermore, when comparing immediate effects of 

cyclic VNS stimulation, the mood can be controlled for as it is likely to remain relatively stable over 
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the short time periods of stimulation on and off and thus should cancel out in within subject 

design.   

 

The increased vigilance to threat as seen in greater impact of threat-related distractors on 

behavior and brain responses may seem paradoxical to the use of VNS in treatment of depression. 

Greater attention to threat is a hallmark of anxiety (Kindt & Van Den Hout 2001). Meanwhile, both 

depression and anxiety are linked with dysregulation of NE (Goddard et al. 2010) and VNS is 

thought to modulate NE levels in the brain (Roosevelt, Smith, Clough, Jensen & Browning 2006). 

NE is known to have both anxiolytic and anxiogenic effects depending on several factors including 

the time course (Goddard et al. 2010). Thus, the time course of NE release and VNS stimulation, 

whether short term or chronic, is likely to be critical on the neuromodulatory impact of VNS on 

emotional responses and mood. While the relationship between the immediate effects of VNS 

observed in the current study and the mechanism of VNS alleviating depression remain 

speculatory, the observed effects may provide objective biomarkers of VNS’s effect on emotion 

system that could be used in future studies linking effects of VNS on emotional processes and 

mood. 

 

The current study shows that VNS has instant and direct effects on human cognitive and affective 

brain functions. These immediate effects on human working memory performance and brain’s 

affective responses are probably linked to increased brain level of NE due to VNS (Vonck et al. 

2014). It has been previously shown that VNS stimulation activates neurons in the LC and increases 

NE levels in neocortex, hippocampus, amygdala and other parts of the brain with efferent 

projections from LC (Hassert, Miyashita & Williams 2004; Raedt et al. 2011). According to the 

adaptive gain theory by Aston-Jones et al (2005), LC is normally driven by the utility assessment 

function processed in the orbitofrontal cortex and the anterior cingulate cortex which have direct 

connections to LC. The outcome of the utility assessment drives phasic firing of LC neurons 

increasing its instantaneous norepinephrine production, thus improving task performance (Aston-

Jones & Cohen 2005). In rats’ brains, high-density VNS (1 mA) leads to transient increase of NE in 

both cortical and limbic brain areas in comparison to the baseline NE level, i.e. the level of NE 

when VNS was off (Roosevelt et al. 2006). Increased NE level in hippocampus is reported to 

facilitate long-term potentiation which facilitates memory formation (O'Dell, Connor, Guglietta & 

Nguyen 2015). NE is also implicated in arousal related emotional memory and working memory 
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functions (Chamberlain, Muller, Blackwell, Robbins & Sahakian 2006). In line with our current 

findings of VNS improving working memory, moderate levels of NE may improve cognitive 

functions dependent on prefrontal networks such as working memory (Chamberlain et al. 2006). 

Increased NE level has been linked with increase in the amygdala activation while processing 

emotional pictures (Chamberlain et al. 2006; van Stegeren 2008). Increased amygdala activation 

may be one of the mechanisms of increased vigilance to threat due to VNS as observed in the 

current study.  

 

Compared to previous studies, the current study on immediate effects of VNS on human executive 

functions holds methodological merits. Firstly, immediate comparison between stimulation ON 

and OFF allowed for controlling potential confounding factors including chronic effects of 

medication or alterations in seizure burden. Therefore, any observed difference can be attributed 

to the immediate and direct effect of VNS on cognitive and affective brain functions. Secondly, we 

used a relatively sensitive behavioral task, i.e. the Executive-RT test, which mimics everyday 

situations and engages several executive functions including working memory and emotional 

control (Hartikainen et al. 2010). Combination of EEG measurement and a computer based 

cognitive test with rapid presentation of stimuli along with challenging task allows for good control 

over general level of attention making it feasible to repeat the test over several cycles of 

stimulation on and off, thus providing a sensitive and reliable method for assessing the immediate 

effects of neuromodulation on brain functions (Hartikainen et al. 2014; Sun et al. 2015; Sun et al. 

2016). Third, using clinically relevant VNS parameters in the current study extends the impact of 

the current findings beyond theoretical interest. In contrary, previous findings reporting the 

immediate beneficial effects of VNS on cognition used relatively lower current not commonly used 

in clinical treatment (Clark et al. 1999) or timing of VNS was linked to a specific phase of cognitive 

task, for example memory consolidation phase, which in real life setting is not feasible (Clark et al. 

1995). Furthermore, although subjects were not completely blinded to VNS settings, any 

modulatory effect between ON and OFF conditions reflects the real-life effects of VNS. With 

vulnerable cognitive functions in these patients and with other treatments such as antiepileptic 

drugs frequently associated with compromised cognitive functions, evidence for positive effect of 

VNS on cognition is of significant clinical importance. It is also noteworthy, that these cognitive 

benefits are immediate to the stimulation and can be dissociated from the long-term chronic 

effects depending on multiple factors and often linked with plasticity.   
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In conclusion, we found that VNS has immediate and direct beneficial effects on human cognition. 

The use of clinically relevant VNS settings in this study extends the impact of these findings 

beyond theoretical interest. VNS increased early visual brain responses similar to enhanced 

attention and improved working memory performance. In addition to showing immediate 

beneficial effects of VNS on cognition in epilepsy patients, whose cognition may be slightly 

compromised due to antiepileptic drugs or the brain pathology related to epilepsy, beneficial 

effect of VNS on cognition might not be limited to patients with epilepsy. To that end, these 

findings call for future research on the potential benefit of VNS on cognitive enhancement or as a 

clinical intervention in cognitive dysfunction or attentional deficits in other patient groups.  
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