
Dependence Logic vs. Constraint Satisfaction
Lauri Hella∗1 and Phokion G. Kolaitis†2

1 School of Information Sciences, University of Tampere, Finland
lauri.hella@uta.fi

2 University of California Santa Cruz and IBM Research – Almaden, USA
kolaitis@cs.ucsc.edu

Abstract
During the past decade, dependence logic has emerged as a formalism suitable for expressing and
analyzing notions of dependence and independence that arise in different scientific areas. The
sentences of dependence logic have the same expressive power as those of existential second-order
logic, hence dependence logic captures NP on the class of all finite structures. In this paper, we
identify a natural fragment of universal dependence logic and show that, in a precise sense, it
captures constraint satisfaction. This tight connection between dependence logic and constraint
satisfaction contributes to the descriptive complexity of constraint satisfaction and elucidates the
expressive power of universal dependence logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.1.3 Complexity Measures and
Classes

Keywords and phrases Dependence logic, constraint satisfaction, computational complexity, ex-
pressive power

Digital Object Identifier 10.4230/LIPIcs.CSL.2016.14

1 Introduction

Dependence logic is a formalism for expressing and analyzing notions of dependence and
independence that are encountered across different areas of computer science and mathematics,
from functional dependencies in relational databases to independence in linear algebra and in
probability theory. Even though its origins can be traced back to Henkin quantifiers [10] and
to independence-friendly logic [11], dependence logic was fully developed by Väänänen in his
monograph [17], which became the catalyst for numerous subsequent investigations (see, e.g.,
[6, 7, 8, 13, 14]). The syntax of dependence logic uses dependence atoms as the main building
blocks; these atoms assert that a functional dependency between variables holds, i.e., that a
certain variable is a function of some other variables. The semantics of dependence logic
uses sets of assignments, called teams, instead of single assignments of values to variables. In
terms of expressive power and as regards sentences, dependence logic has the same expressive
power as existential second-order logic [13]. Combined with Fagin’s Theorem [4], this result
implies that, on classes of finite structures, the sentences of dependence logic can express
precisely all decision problems in NP.

Constraint satisfaction comprises a set of algorithmic problems that are ubiquitous in
several different areas of computer science. An influential paper by Feder and Vardi [5]
provided the impetus for an in-depth and still ongoing investigation of the connections

∗ The research of Lauri Hella was partially supported by a Professor Pool’s Grant of the Finnish Cultural
Foundation.

† The research of Phokion Kolaitis was partially supported by NSF Grant IIS-1217869.

© Lauri Hella and Phokion G. Kolaitis;
licensed under Creative Commons License CC-BY

25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
Editors: Jean-Marc Talbot and Laurent Regnier; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250146796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Dependence Logic vs. Constraint Satisfaction

between constraint satisfaction, computational complexity, logic, and universal algebra (see,
e.g., [1, 9]). Feder and Vardi argued convincingly that, in its most general form, constraint
satisfaction can be identified with the Homomorphism Problem: given two relational
structures A and B, is there a homomorphism from A to B? Clearly, the Homomorphism
Problem is NP-complete, since it contains, for example, 3-Satisfiability as a special
case. Moreover, each fixed relational structure B gives rise to the non-uniform constraint
satisfaction problem CSP(B): given a relational structure A, is there a homomorphism from
A to B? The computational complexity of each such problem depends on the structure B.
Feder and Vardi conjectured that the family of all constraint satisfaction problems CSP(B)
exhibits the following dichotomy: for each B, either CSP(B) is NP-complete or CSP(B) is
solvable in polynomial time. This conjecture remains open to date, in spite of concerted
efforts by different groups of researchers that, so far, have established only special cases of it.

Feder and Vardi [5] also investigated the descriptive complexity of constraint satisfaction.
To this effect, they identified a fragment of existential second-order logic, called monadic
monotone strict NP without inequality or, in short, MMSNP, and showed that it captures,
in a precise sense, the family CSP(B) of all non-uniform constraint satisfaction problems.
MMSNP consists of all sentences of existential second order logic that have the following
properties (where it is assumed that all negation symbols occurring in the sentences have been
pushed inward, so that they apply to atomic formulas only): (a) all second-order quantifiers
are monadic; (b) all first-order quantifiers are universal; (c) no inequalities occur in the
formula; (d) all occurrences of relation symbols from the underlying vocabulary are preceded
by the negation symbol. MMSNP captures constraint satisfaction in the following way. First,
it is easy to see that if B is a relational structure, then CSP(B) is expressible in MMSNP.
Second, Feder and Vardi showed that every MMSNP-expressible problem is equivalent to a
CSP(B), for some relational structure B, under polynomial-time reductions (originally, this
equivalence was proved under randomized polynomial-time reductions, which, however, were
subsequently derandomized [15]). Note that Feder and Vardi also showed that if one of the
aforementioned properties (a), (b), (c), (d) defining MMSNP is dropped, then every problem
in NP is equivalent under polynomial-time reductions to a problem in the resulting fragment
of existential second-order logic. Combined with Ladner’s Theorem [16], this implies that
if one of these four properties is dropped, then the resulting fragment can express decision
problems that are neither NP-complete, nor solvable in polynomial time (unless P = NP).

As seen from the preceding discussion, dependence logic captures existential second-order
logic, while constraint satisfaction is captured by a proper fragment of existential second-order
logic. This state of affairs gives rise to the following question: is there a natural fragment of
dependence logic that captures constraint satisfaction? In this paper, we show that this is
indeed the case. In fact, we identify a fragment of a variant of dependence logic consisting of
universal sentences and show that it can capture, in a precise sense, constraint satisfaction.
In what follows in this section, we present a high-level description of our main results.

The building blocks of dependence logic, as developed by Väänänen, are dependence
atoms dep(xxx; y), where xxx is a tuple of variables and y is a single variable. A team (i.e.,
a set of assignments) satisfies such an atom if whenever two assignments in the team
agree on the variables in xxx, they must also agree on the variable y. Here, we introduce a
variant of dependence atoms, which we call uniform dependence atoms; they are expressions
of the form udep(x1, . . . , xn;α1, . . . , αn) with the following semantics: a team T satisfies
udep(x1, . . . , xn;α1, . . . , αn) if there is a unary function f such that for every assignment s
in T , we have that s(αi) = f(s(xi)), for 1 ≤ i ≤ n. Even though uniform dependence atoms
have not been studied in their own right in earlier work on dependence logic, we believe that

L. Hella and Ph. G. Kolaitis 14:3

they are very natural as they express scenarios in which n different observers use sensors or
measuring instruments to collect data in different sites, and then each observer applies the
same function to the data collected to obtain a value. As a concrete example, each xi may
represent a list of temperature values collected at site i at regular intervals of time each day,
while αi may stand for the maximum temperature at site i.

We consider k-valued uniform dependence atoms in which the variables α1, . . . , αn take
values in a domain with k elements, for some fixed k ≥ 1. We define the universal monotone
uniform dependence logic ∀-MUD[k] as the closure under universal quantification of all
quantifier-free formulas that contain all k-valued uniform dependence atoms, all equalities
between k-valued variables and constants, and all negated relational atoms, and are closed
under disjunctions and conjunctions. The semantics of the logic ∀-MUD[k] are given using
teams as in (standard) dependence logic.

Our first main result asserts that every non-uniform constraint satisfaction problem
CSP(B) such that B has a single relation is expressible by a sentence of ∀-MUD[k], where k
is the number of elements in the universe of B. Our second main result asserts that every
sentence of ∀-MUD[k], k ≥ 1, is equivalent to a sentence of MMSNP. Since, as described
earlier, every MMSNP-expressible problem is polynomial-time equivalent to some non-uniform
constraint satisfaction problem [5] and since, as shown in [5] and in [15], every non-uniform
constraint satisfaction problem is polynomial-time equivalent to some non-uniform constraint
satisfaction problem on a structure with a single relation, our two main results imply that
universal monotone uniform dependence logic captures, in a precise sense, all non-uniform
constraint satisfaction problems CSP(B).

Our results establish a tight connection between constraint satisfaction and a natural
fragment of dependence logic. From the standpoint of constraint satisfaction, they contribute
to the investigation of the descriptive complexity of constraint satisfaction. From the
standpoint of dependence logic, they reveal that a dichotomy theorem for the computational
complexity of the universal fragment of uniform dependence logic is as difficult as a dichotomy
theorem for constraint satisfaction, which, to date, remains an elusive goal.

2 Background and Basic Notions

All structures considered in this paper are finite and relational. Thus, a vocabulary τ is a
finite set of {R1, . . . , Rn} of relation symbols, and the domain dom(A) of each τ -structure
A = (dom(A), RA

1 , . . . , R
A
n) is assumed to be finite. However, to interpret k-valued dependence

atoms, we add k constant symbols to the vocabulary; see Subsection 2.3 below. We will
usually denote dom(A) by A, dom(B) by B, etc. For any integer k ≥ 1, we will use the
notation [k] = {1, . . . , k} throughout.

2.1 Constraint Satisfaction and MMSNP
A homomorphism between two τ -structures A and B is a function h from the universe A
of A to the universe B of B such that for every relation symbol R of τ and every tuple
(a1, . . . , an) of elements of A, if (a1, . . . , an) ∈ RA, then (h(a1), . . . , h(an)) ∈ RB. Every
τ -structure B gives rise to the following constraint satisfaction problem CSP(B):

Given a τ -structure A, is there a homomorphism from A to B?

According to the usual practise, we identify the problem CSP(B) with the class of its positive
instances. Thus, we write A ∈ CSP(B), if the answer to the question above is “yes”.

CSL 2016

14:4 Dependence Logic vs. Constraint Satisfaction

Clearly, each constraint satisfaction problem CSP(B) is in NP. Moreover, numerous
natural computational problems can be viewed as constraint satisfaction problems for a
suitable choice of B. For example, if Kk is the complete graph on k nodes (i.e., Kk is the
k-clique), k ≥ 2, then CSP(Kk) is the k-Colorability problem. Furthermore, several
variants of Satisfiability can be viewed as constraint satisfaction problems. We now give
two such examples.

First, consider a vocabulary τ consisting of four ternary relation symbols R0, R1, R2, R3
and let B be the τ -structure with universe {0, 1} and relations RB

0 = {0, 1}3 \ {(0, 0, 0)},
RB

1 = {0, 1}3 \ {(1, 0, 0)}, RB
2 = {0, 1}3 \ {(1, 1, 0)}, RB

3 = {0, 1}3 \ {(1, 1, 1)}. It is easy to
see that CSP(B) amounts to 3-Sat, where a 3CNF-formula ϕ is encoded as a τ -structure
Aϕ with universe the set of its variables and where the relation RAϕ

i interpreting Ri consists
of the triples of variables occurring in a clause with i negative literals, i = 0, 1, 2, 3.

Next, consider a vocabulary τ consisting of a single ternary relation symbol R and let
B be the τ -structure with universe {0, 1} and relation RB = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
It is easy to see that CSP(B) amounts to Positive 1-in-3 Sat: given a 3CNF-formula
ϕ consisting entirely of positive clauses, is there a truth assignment t such that, for every
clause c of ϕ, the assignment t makes true exactly one of the three variables of c? Here, ϕ
is encoded as a τ -structure Aϕ with universe the set of its variables and where the relation
RAϕ consists of all triples (x, y, z) of variables such that (x ∨ y ∨ z) is a clause of ϕ.

As mentioned in the Introduction, Feder and Vardi [5] conjectured that, for every fixed
τ -structure B, either CSP(B) is NP-complete or CSP(B) is solvable in polynomial time.
Moreover, they showed that, for every τ -structure B, there is a structure B′ over a vocabulary
consisting of a single binary relation such that CSP(B) and CSP(B′) are equivalent via
polynomial-time reductions. Thus, to settle the Feder-Vardi conjecture, it is enough to settle
it for structures with a single binary relation (i.e., for directed graphs).

Every constraint satisfaction problem CSP(B) is expressible by a sentence of existential
second-order logic that also obeys certain syntactic restrictions. For example, as discussed
earlier, CSP(K3), which is the same as 3-Colorability, is expressible by the sentence
∃B∃R∃G∀x∀y θ, where θ is the quantifier-free formula

(B(x) ∨R(x) ∨G(x)) ∧ ¬(B(x) ∧R(x)) ∧ ¬(B(x) ∧G(x))∧¬(R(x) ∧G(x))
∧
(
¬E(x, y) ∨ (¬(B(x) ∧B(y)) ∧ ¬(R(x) ∧R(y))∧¬(G(x) ∧G(y)))

)
.

Similarly, Positive 1-in-3 Sat is expressible by the sentence ∃S∀x∀y∀z η, where η is the
formula

¬R(x, y, z)∨ (S(x)∧¬S(y)∧¬S(z))∨ (¬S(x)∧ S(y)∧¬S(z))∨ (¬S(x)∧¬S(y)∧ S(z)).

The preceding sentences of existential second-order logic obey the following syntactic
restrictions: (a) all second-order quantifiers are monadic; (b) all first-order quantifiers are
universal; (c) no inequalities occur; (d) all occurrences of relation symbols from the underlying
vocabulary τ are preceded by the negation symbol. Taken together, these syntactic restrictions
define the fragment of existential second-order logic known as MMSNP.

MMSNP has strictly higher expressive power than constraint satisfaction, in the sense
that there are problems that are definable by a MMSNP-sentence, but are not expressible as
a CSP(B) problem for any structure B over the same vocabulary. Indeed, as pointed out in
[15], the problem “given a graph, is it triangle-free?” is expressible by the sentence

∀x∀y∀z(¬E(x, y) ∨ ¬E(x, z) ∨ ¬E(y, z)),

L. Hella and Ph. G. Kolaitis 14:5

which is in the first-order part of MMSNP, but there is no graph H such that a graph G is
triangle-free if and only if there is a homomorphism from G to H. Towards a contradiction,
assume that such a graph H exists. Erdös [3] showed that there are graphs of arbitrarily
large girth and chromatic number. It follows that there is a graph G that is triangle-free (i.e.,
G has girth at least 4) and chromatic number bigger than that of H. Thus, G is triangle-free,
but there is no homomorphism from G to H, else we could color G with at most the number
of colors needed to color H.

As mentioned in the Introduction, however, Feder and Vardi [5] showed that every
MMSNP-definable problem is equivalent under polynomial-time reductions to a constraint
satisfaction problem CSP(B), for some structure B over the same vocabulary. Consequently,
establishing a dichotomy theorem for the complexity of model checking MMSNP-sentences is
precisely as hard as affirming the Feder-Vardi dichotomy conjecture for constraint satisfaction.

2.2 Dependence logic
Dependence logic D is the extension of first-order logic augmented with dependence atoms
dep(x1, . . . , xn; y). Since dependence atoms are allowed to occur only positively in formulas
of D, it is natural assume that all formulas are in negation normal form. Thus, we define the
syntax of D by the following grammar:

ϕ :: = x1 = x2 | ¬x1 = x2 | R(x1, . . . , xn) | ¬R(x1, . . . , xn) |
dep(x1, . . . , xn; y) | (ϕ1 ∧ ϕ1) | (ϕ1 ∨ ϕ2) | ∀xϕ | ∃xϕ.

The semantics of D is defined with respect to teams, i.e., sets of assignments, instead of
single assignments. If A is a structure with domain A and V is a set of first-order variables,
then an assignment on A is a function s : V → A. A team on A is a set T of assignments on
some fixed set V = dom(T) of variables. In particular, if V = ∅, then there are two teams
on A with domain V : the empty team ∅, and the team T = {∅} consisting of the empty
assignment ∅ : ∅ → A.

To define the semantics of universal quantification, we use the following notation:
T [A/x] = {s[a/x] | s ∈ T, a ∈ A}, where s[a/x] is the assignment such that it agrees
with s on all y ∈ dom(s) \ {x}, and s[a/x](x) = a.

To define the semantics for existential quantification, we need the notion of a choice
function F : T → A. The idea is that F picks an element F (s) from the domain A of a
structure A for each assignment s in a team T . The element F (s) is then used to interpret
a variable x, thus obtaining the new assignment s[F (s)/x]. We write T [F/x] for the team
{s[F (s)/x] | s ∈ T} obtained from T by making this change to each s ∈ T .

I Definition 1. Let A be a model and T a team on A. The truth relation A, T |= ϕ for
dependence logic is defined as follows.

A, T |= x1 = x2 ⇐⇒ s(x1) = s(x2) for all s ∈ T.
A, T |= ¬x1 = x2 ⇐⇒ s(x1) 6= s(x2) for all s ∈ T.
A, T |= R(x1, . . . , xn) ⇐⇒ (s(x1), . . . , s(xn)) ∈ RA for all s ∈ T.
A, T |= ¬R(x1, . . . , xn) ⇐⇒ (s(x1), . . . , s(xn)) 6∈ RA for all s ∈ T.
A, T |= dep(x1, . . . , xn; y) ⇐⇒ there is a function f : An → A such that

s(y) = f(s(x1), . . . , s(xn)) for all s ∈ T.
A, T |= ϕ ∧ ψ ⇐⇒ A, T |= ϕ and A, T |= ψ.

A, T |= ϕ ∨ ψ ⇐⇒ there are T ′, T ′′ ⊆ T such that T ∪ T ′ = T ′′,

A, T ′ |= ϕ and A, T ′′ |= ψ.

A, T |= ∀xψ ⇐⇒ A, T [A/x] |= ψ.

A, T |= ∃xψ ⇐⇒ there is a function F : T → A s.t. A, T [F/x] |= ψ.

CSL 2016

14:6 Dependence Logic vs. Constraint Satisfaction

The set Fr(ϕ) of free variables of a formula ϕ ∈ D is defined in the standard way. The
formula ϕ is a sentence if Fr(ϕ) = ∅. A sentence ϕ ∈ D is true in a structure A, in symbols
A |= ϕ, if A, {∅} |= ϕ.

Note that in the literature (see, e.g., [17]), the semantics of the dependence atom is
usually stated in the following equivalent form:

A, T |= dep(x1, . . . , xn; y) ⇐⇒ for all s, s′ ∈ T , if s(xi) = s′(xi) for all i ∈ {1, . . . , n},
then s(y) = s′(y).

Note also that, in database terminology, A, T |= dep(x1, . . . , xn; y) means that the team T ,
viewed as an n-ary relation, satisfies the functional dependency x1, . . . , xn → y.

We review here briefly the basic properties of dependence logic. The first property is
that the team semantics for first-order formulas in D (i.e., formulas without dependence
atoms) can be reduced to the standard Tarski semantics. We write A, s |= ϕ if the first-order
formula ϕ is satisfied by the assignment s in the structure A.

I Fact 1 (Flatness, [17]). Let ϕ be a formula of D without dependence atoms, and let A be a
structure and T a team on A. Then A, T |= ϕ if and only if A, s |= ϕ for all s ∈ T .

The second property is that the semantics of every D-formula is downwards closed in the
following sense.

I Fact 2 (Downward closure, [17]). Let ϕ be a formula of D. If T and T ′ are teams on a
structure A such that A, T |= ϕ and T ′ ⊆ T , then A, T ′ |= ϕ.

The formulas ϕ of D also have the desirable property that the truth of ϕ only depends on
the interpretation of its free variables Fr(ϕ). We use here the notation T � V = {s � V | s ∈ T}
for a team T and a set V of variables.

I Fact 3 (Locality, [17]). Let ϕ be a formula of D with Fr(ϕ) = V . If T is a team on a
structure A and T ′ = T � V , then A, T |= ϕ if and only if A, T ′ |= ϕ.

Finally, as mentioned in the Introduction, dependence logic D has the same expressive
power as existential second-order logic Σ1

1.

I Fact 4 (D captures Σ1
1, [17]). For every sentence ϕ of D, there is an equivalent sentence ψ

of Σ1
1; vice versa, for every sentence ψ of Σ1

1, there is an equivalent sentence ϕ of D.

As a consequence of Fact 4 and Fagin’s Theorem [4], dependence logic D captures the
complexity class NP. In particular, this means that NP-complete problems, such as k-
Colorability and k-Sat, k ≥ 3, are expressible in D. Perhaps surprisingly, it turns out
that the model-checking problem of D-formulas can be NP-complete already at the quantifier-
free level. Specifically, Jarmo Kontinen [12] proved that the problem “does a team T on a
structure A (with empty vocabulary) satisfy the formula dep(x; y) ∨ dep(u; v) ∨ dep(u; v)?”
is NP-complete. On the other hand, he proved that the model-checking problem for the
disjunction of any two dependence atoms is in NLOGSPACE.

The complexity of model-checking for quantifier-free formulas of D has been further
investigated by Durand et al. [2]. Extending the ideas of Kontinen [12], they give sufficient
syntactic criteria for the tractability and the NP-completeness of such model-checking
problems. In the present paper, we focus on the relationship between the universal fragment
of dependence logic, constraint satisfaction problems and MMSNP, and unveil a tight
connection.

L. Hella and Ph. G. Kolaitis 14:7

2.3 Logics with k-valued variables
In the next subsection, we will define uniform k-valued dependence atoms. To do this, in
addition to the usual first-order variables, we need a separate supply of k-valued variables.
Furthermore, to interpret the k-valued variables, we will extend structures by a standard
part consisting of the numbers 1, . . . , k. Thus, if A = (A,RA

1 , . . . , R
A
n) is a τ -structure, then

we define A[k] to be the two-sorted structure (A; [k], 1A, . . . , kA). Here [k] is the domain of
the second sort and 1, . . . , k are constant symbols over the second sort such that iA = i for
each i ∈ [k].

We will use the Greek letters α, β, γ, with or without subscripts, as k-valued variables,
while we will use x, y, u, v as ordinary first-order variables. The intuition is that k-valued
variables always range over the second sort [k] of a structure A[k], while the first-order
variables range over the domain A of A. We often use the boldface notation xxx (ααα, or aaa)
for a tuple (x1, . . . , xn) of variables (a tuple (α1, . . . , αn) of k-valued variables, or a tuple
(a1, . . . , an) of elements, respectively). If not explicitly defined, the length n of the tuple will
be clear from the context.

For logics with k-valued variables and team semantics, the notion of a team needs to be
adapted. If A is a structure, and V is a finite set of first-order and k-valued variables, then
an assignment on A[k] with domain V is a function s : V → A ∪ [k] such that s(x) ∈ A for
each first-order variable x ∈ V and s(α) ∈ [k] for each k-valued variable α ∈ V . A team on
A[k] with domain V is a set T of assignments s : V → A ∪ [k].

We will next introduce some useful notation.

I Definition 2. Let T be a team on a structure A[k] with domain V .
If xxx ∈ V n and ααα ∈ V m, then we use the notation RT,xxxααα for the (n + m)-ary relation
{s(xxxααα) | s ∈ T} ⊆ An × [k]m.
In case m = 0, we write simply RT,xxx = {s(xxx) | s ∈ T}. Similarly, in case n = 0, we write
RT,ααα = {s(ααα) | s ∈ T}.
Furthermore, if aaa ∈ An, then T [xxx=aaa] denotes the subteam {s ∈ T | s(xxx) = aaa} ⊆ T .
Similarly, if `̀̀ ∈ [k]m, then T [ααα= `̀̀] denotes the subteam {s ∈ T | s(ααα) = `̀̀} ⊆ T .

Note that, in database terminology, RT,xxxααα is the projection πxxxααα(T) of the team T on the
variables xxxααα, where T is viewed as a relation. Moreover, T [xxx=aaa] is the selection σxxx=aaa(T) of
the team T , where T is viewed as a relation; similarly, T [ααα= `̀̀] is the selection σααα=`̀̀(T).

To simplify the notation, henceforth we will denote the structures A[k] simply by A. This
should not cause any confusion, since it is always clear from the context, whether the symbol
A refers to a usual structure, or the extension of such structure with the second sort [k].

2.4 Uniform k-valued dependence atoms
We are now ready to define the uniform k-valued dependence atoms, which we will use in the
rest of the paper. These atoms differ from the standard dependence atoms in two ways: first,
they are k-valued; second, the functional dependence is generated by a single unary function.

I Definition 3. If xxx = (x1, . . . , xn) is an n-tuple of first-order variables and ααα = (α1, . . . , αn)
is an n-tuple of k-valued variables, then udep[k](xxx;ααα) is an atomic formula with the semantics

A, T |= udep[k](xxx;ααα) ⇐⇒ there is a function f : A→ [k] such that
s(αi) = f(s(xi)), for all i ∈ [n] and s ∈ T .

Note that in the case n = 1, the uniform k-valued dependence atom udep[k](x;α) is
equivalent with the k-valued version dep[k](x;α) of the ordinary dependence atom dep(x; y).

CSL 2016

14:8 Dependence Logic vs. Constraint Satisfaction

The semantics of universal and existential quantification of k-valued variables can be
defined in the same way as for quantification of first-order variables by defining T [[k]/α] =
{s[i/α] | s ∈ T, i ∈ [k]}, and T [G/α] = {s[G(s)/α] | s ∈ T} for a choice function G : T → [k].
However, we will not consider existential quantification in this paper, as our main focus is on
a quantifier-free fragment of the full logic with uniform k-valued dependence atoms, and its
closure with respect to universal quantifiers.

I Definition 4. The quantifier-free monotone dependence logic with uniform k-valued de-
pendence atoms, QF-MUD[k], is defined by the following grammar:

ϕ :: = α = i | ¬R(xxx) | udep[k](xxx;ααα) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2), where i ∈ [k].

Universal monotone dependence logic with uniform k-valued dependence atoms, ∀-MUD[k], is
the extension of QF-MUD[k] defined by the grammar

ϕ :: = ψ | ∀xϕ | ∀αϕ, where ψ ∈ QF-MUD[k].

The union of ∀-MUD[k] over all k ≥ 1 is denoted by ∀-MUD[ω]. Similarly, QF-MUD[ω] is the
union of QF-MUD[k] over all k ≥ 1.

Thus, analogously to MMSNP, the logics QF-MUD[k] and ∀-MUD[k] admit no inequalities
and only negative occurrences of relation symbols in the vocabulary. Note that there is no need
to include equalities of the form α = β, since they can be expressed as

∨
i∈[k](α = i ∧ β = i).

Furthermore, inequalities between k-valued variables are also expressible: α 6= β is equivalent
to
∨
i∈[k]

(
α = i ∧

∨
j∈[k],j 6=i β = j

)
.

For the sake of completeness, we state here the definition of the semantics of ∀-MUD[k].

I Definition 5. Let A be a structure and T a team on A. The truth relation A, T |= ϕ for
universal monotone uniform k-valued dependence logic is defined as follows.

A, T |= α = i ⇐⇒ s(α) = i for all s ∈ T.
A, T |= ¬R(xxx) ⇐⇒ (s(x1), . . . , s(xn)) 6∈ RA for all s ∈ T.
A, T |= udep[k](xxx;ααα) ⇐⇒ there is a function f : A→ [k] such that

s(αi) = f(s(xi)) for all i ∈ [n] and s ∈ T.
A, T |= ϕ ∧ ψ ⇐⇒ A, T |= ϕ and A, T |= ψ.

A, T |= ϕ ∨ ψ ⇐⇒ there are T ′, T ′′ ⊆ T such that T ′ ∪ T ′′ = T,

A, T ′ |= ϕ and A, T ′′ |= ψ.

A, T |= ∀xϕ ⇐⇒ A, T [A/x] |= ϕ.

A, T |= ∀αϕ ⇐⇒ A, T [[k]/α] |= ϕ.

Since dependence logic has the same expressive power as existential second-order logic,
it is clear that uniform k-valued dependence atoms are definable in D (in the setting with
k-valued variables). Indeed, it is straightforward to check that udep[k](x1, . . . , xn;α1, . . . , αn)
is equivalent to the formula

∀y∃β
(
dep[k](y;β) ∧

∧
i∈[n]

(y = xi → β = αi)
)
.

Note however, that this formula violates the syntactic restrictions of ∀-MUD[k] in two different
ways: it contains existential quantification of a k-valued variable and inequalities between
first-order variables.

As in the case of dependence logic D, a formula ϕ of ∀-MUD[k] is a sentence, if the set
Fr(ϕ) of its free variables is empty. Furthermore, a sentence ϕ is true in a structure A, in
symbols A |= ϕ, if A, {∅} |= ϕ.

L. Hella and Ph. G. Kolaitis 14:9

Clearly any ∀-MUD[k]-sentence ϕ is equivalent to a sentence of the form ∀xxx∀αααψ, where
ψ is a QF-MUD[k]-formula. As a matter of fact, we can assume without loss of generality
that ϕ is the universal closure of ψ, i.e., the tuple xxxααα is repetition-free and consists of the
free variables of ψ. Using the truth conditions for universal quantification of first-order
and k-valued variables repeatedly, we obtain the following simple connection between the
semantics of ϕ and ψ:

A |= ϕ if and only if A, F |= ψ, where F is the team consisting of all assignments
s : V → A ∪ [k] with V = Fr(ψ).

We will call F the full team (on A with domain V) in the sequel. If there is need to emphasize
the domain V of F , we denote the full team by FV .

The full team has a special role in the semantics of QF-MUD[k] also in another way. It is
straightforward to verify that Facts 2 and 3 (see Subsection 2.2) remain true for ∀-MUD[k].
Specifically, for every formula ψ ∈ QF-MUD[k], the following statements are true:
1. if A, T |= ψ and T ′ ⊆ T , then A, T ′ |= ψ.
2. if T ′ = T � Fr(ψ), then A, T |= ψ if and only if A, T ′ |= ψ.
Thus, to decide whether a formula is satisfied by every team in a given structure, it suffices
to check whether it is satisfied by the full team.

We summarize the two observations concerning the full team in the following lemma.

I Lemma 6. Let ψ be a QF-MUD[k]-formula with xxx and ααα as its free variables. Then the
following statements are equivalent:
1. A |= ∀xxx∀αααψ.
2. A, F |= ψ.
3. A, T |= ψ, for every team T on A with Fr(ψ) ⊆ dom(T)

3 From Constraint Satisfaction to Dependence Logic

Our aim in this section is to prove that every constraint satisfaction problem CSP(B) is
captured by a sentence of ∀-MUD[ω]. To do this, we will prove that CSP(B) is definable
in ∀-MUD[ω], assuming that B is of the form (B,RB), i.e., B has only one relation. This
suffices, since as mentioned in Subsection 2.1, every constraint satisfaction problem CSP(B)
is equivalent, via polynomial-time reductions, to a CSP(B′) in which B′ is a structure with
a single binary relation.

We start by observing that the truth of a [k]-valued uniform dependence atom on a given
structure A and a given team T implies the existence of a homomorphism between the two
structures (A,RT,xxx) and ([k], RT,ααα).

I Lemma 7. If A, T |= udep[k](xxx;ααα), then (A,RT,xxx) ∈ CSP([k], RT,ααα).

Proof. Assume that A, T |= udep[k](xxx;ααα). Then there is a function f : A→ [k] such that
f(s(xi)) = s(αi) for all i ∈ [n] and s ∈ T .

This condition implies that f is a homomorphism from (A,RT,xxx) to ([k], RT,ααα). Indeed, if
aaa = (a1, . . . , an) ∈ RT,xxx, then there exists s ∈ T such that s(xi) = ai for all i ∈ [n]. But then
also s(αi) = f(ai) holds for all i ∈ [n], whence (f(a1), . . . , f(an)) ∈ RT,ααα. J

Note that the converse implication of Lemma 7 is not true. As an example, consider
the team T = {s, s′}, where s(x1) = s′(x1), s(x2) = s′(x2), s(α1) = s(α2) = 1 and
s′(α1) = s′(α2) = 2. Then the function h : A → [k] such that h(a) = 1 for all a ∈ A, is
a homomorphism (A,RT,x1x2) → ([k], RT,α1α2), but clearly A, T 6|= udep[k](x1, x2;α1, α2).
Thus, uniform dependence atoms are different from homomorphism atoms.

CSL 2016

14:10 Dependence Logic vs. Constraint Satisfaction

For each positive integer n, let τn be a vocabulary consisting of a single n-ary relation
symbol R. Let B = ([k], RB) be a τn-structure, where RB 6= ∅. The crucial step in the proof
that CSP(B) is expressible in ∀-MUD[k], is the following. Assume that A is a τn-structure
and T is a team on A such that aaa `̀̀ ∈ RT,xxxααα for all aaa ∈ RA and `̀̀ ∈ RB and RT,ααα ⊆ RB. We
define a formula θRB ∈ QF-MUD[k] that is true in a subteam T ′ of T if and only if for each
aaa ∈ RA, RT ′[xxx=aaa],ααα contains all except exactly one of the tuples `̀̀ ∈ RB. If the complement
T ′′ = T \T ′ of T ′ satisfies the dependence atom udep[k](xxx;ααα), it follows then from Lemma 7,
that there is a homomorphism A→ B. Conversely, if there is a homomorphism A→ B, then
T can be divided into subteams T ′ and T ′′ that satisfy θRB and udep[k](xxx;ααα), respectively.
The precise statement and proof of this equivalence is given in Lemma 9, below.

Before defining θRB , we introduce some useful auxiliary formulas. If y and β are variables,
we let χ1(y, β) := udep[k](y;β), and define recursively χr+1(y, β) := (χr(y, β) ∨ χ1(y, β)).
Thus, χr(y, β) is the disjunction of r copies of the dependence atom udep[k](y;β) with itself.
Furthermore, define χ0(y, β) to be a formula that is always false (e.g., β = 1 ∧ β = 2). It is
easy to show, by induction on r, that

A, T |= χr(y, β) if and only if |RT [y= a],β | ≤ r, for every a ∈ RT,y.

Next, for each nonempty relation S ⊆ [k]n, we define a formula θS by induction on the
arity n of S:
1. For n = 1, we let θS := χs−1(x1, α1), where s = |S|.
2. Let S be a nonempty n-ary relation on [k], n > 1. Then there is a unique set I ⊆ [k] and

unique nonempty relations S` ⊆ [k]n−1, ` ∈ I, such that S =
⋃
`∈I S` × {`}. We define

θS := χm−1(xn, αn) ∨
∨
`∈I

(αn = ` ∧ θS`
), where m = |I|.

To illustrate the preceding notions, consider the structure B = ({0, 1}, RB), where
RB = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. As mentioned in Section 2.1, the constraint satisfaction
problem CSP(B) amounts to the satisfiability problem Positive 1-in-3 Sat. We are
interested in computing the formula θRB . Clearly, RB = {(0, 1), (1, 0)}×{0}∪{(0, 0)}×{1}.
Thus, by taking I = {0, 1}, S0 = {(0, 1), (1, 0)}, and S1 = {(0, 0)}, we have that

θRB := χ1(x3, α3) ∨ (α3 = 0 ∧ θS0) ∨ (α3 = 1 ∧ θS1).

We leave it to the reader to verify that, after unraveling further the definitions and eliminating
disjuncts containing formulas that are always false, we have that

θRB := udep[2](x3;α3) ∨ (α3 = 0 ∧ udep[2](x2;α2)).

I Lemma 8. Let S ⊆ [k]n be a nonempty relation, and let T be a team on a structure
A.
1. If A, T |= θS, then for every aaa ∈ RT,xxx, we have that S \RT [xxx=aaa],ααα 6= ∅.
2. If RT,ααα ⊆ S and f : A→ [k] is a function such that (f(a1), . . . , f(an)) ∈ S \ RT [xxx=aaa],ααα

for all aaa ∈ RT,xxx, then A, T |= θS.

Proof. Both claims are proved by induction on n.
1. If n = 1 and A, T |= θS , then by the definition of θS and the observation above,
|RT [x1 = a],α1 | ≤ |S| − 1 for all a ∈ RT,x1 . Thus, S \RT [x1 = a],α1 6= ∅ for all a ∈ RT,x1 .
Assume then that S =

⋃
`∈I S` × {`} is a nonempty n-ary relation on [k], and the claim

is true for the relations S` ⊆ [k]n−1, ` ∈ I. If A, T |= θS , then there are subsets T0 and
T`, ` ∈ I, such that

L. Hella and Ph. G. Kolaitis 14:11

T = T0 ∪
⋃
`∈I T`;

A, T0 |= χm−1(xn, αn) for m = |I|;
A, T` |= αn = ` ∧ θS`

for each ` ∈ I.
Let aaa ∈ RT,xxx. By the second clause above, |RT0[xn = an],αn

| < |I|, whence there exists
` ∈ I such that ` 6∈ RT0[xn = an],αn

. Since A, T` |= θS`
, by induction hypothesis there

exists a tuple `̀̀∗ ∈ S` \RT`[xxx∗ =aaa∗],ααα∗ , where aaa∗ = (a1, . . . , an−1), xxx∗ = (x1, . . . , xn−1) and
ααα∗ = (α1, . . . , αn−1).
Consider now the tuple `̀̀ = `̀̀∗`. Since `̀̀∗ ∈ S` and S` × {`} ⊆ S, we have `̀̀ ∈ S.
On the other hand, `̀̀ 6∈ RT0[xxx=aaa],ααα, since ` 6∈ RT0[xn = an],αn

. Furthermore, A, Tj |=
αn = j, whence `̀̀ 6∈ RTj [xxx=aaa],ααα for all j ∈ I \ {`}. Finally, `̀̀ 6∈ RT`[xxx=aaa],ααα, since
`̀̀∗ ∈ S` \RT`[xxx∗ =aaa∗],ααα∗ . Thus, we conclude that `̀̀ 6∈ RT [xxx=aaa],ααα, as T = T0 ∪

⋃
`∈I T`.

2. Assume that RT,ααα ⊆ S and f : A→ [k] is a function satisfying the condition

(f(a1), . . . , f(an)) ∈ S \RT [xxx=aaa],ααα for all aaa ∈ RT,xxx.

If n = 1, this implies that RT [x1 = a1],α1 ⊆ RT,α1 \ {f(a1)} ⊆ S \ {f(a1)}, whence
|RT [x1 = a1],α1 | ≤ |S| − 1 for all a1 ∈ RT,x1 . Thus, A, T |= θS in the case n = 1.
Assume then that S =

⋃
`∈I S`×{`} is a nonempty n-ary relation on [k], and the claim is

true for the relations S` ⊆ [k]n−1, ` ∈ I. We define subteams T0 and T`, ` ∈ I, as follows:
T0 := {s ∈ T | s(αn) 6= f(s(xn))}, and
T` := {s ∈ T | s(αn) = f(s(xn)) = `}, for ` ∈ I.

It is clear from these definitions that T = T0 ∪
⋃
`∈I T`.

Since RT0[xn = an],αn
⊆ RT,αn

\ {f(an)} ⊆ I \ {f(an)}, we have |RT0[xn = an],αn
| ≤ |I| − 1,

and hence A, T0 |= χm−1(xn, αn) for m = |I|. Furthermore, it follows from the definition
of T` that A, T` |= αn = ` for each ` ∈ I.
It remains to prove that A, T` |= θS`

for each ` ∈ I. Assume for this purpose that
aaa∗ ∈ RT`,xxx∗ , where xxx∗ is the initial segment (x1, . . . , xn−1) of xxx. Then there is an
extension aaa of aaa∗ by an n-th component an such that aaa ∈ RT`,xxx. By the assumption
on f , we have (f(a1), . . . , f(an)) ∈ S \RT [xxx=aaa],ααα ⊆ S \RT`[xxx=aaa],ααα. On the other hand,
by the definition of T`, we have f(an) = ` ∈ RT`[xn = an],αn

, whence it must be the case
that (f(a1), . . . , f(an−1)) ∈ S` \RT`[xxx∗ =aaa∗],ααα∗ . Since this holds for every aaa∗ ∈ RT`,xxx∗ , it
follows from the induction hypothesis that A, T` |= θS`

. J

We can now define a formula ηB of QF-MUD[k] with free variables x1, . . . , xn, α1, . . . , αn
that expresses CSP(B) on teams that satisfy the two conditions mentioned in the discussion
after Lemma 7. The formula is defined as follows:

ηB := θRB ∨ udep[k](x1, . . . , xn;α1, . . . , αn).

I Lemma 9. Let A be a τn-structure and let T be a team on A such that RA ×RB ⊆ RT,xxxααα
and RT,ααα ⊆ RB. Then the following statements are equivalent:
1. A ∈ CSP(B).
2. A, T |= ηB.

Proof. Assume first that h is a homomorphism from A to B. We define two subteams T ′′
and T ′ of T as follows:

T ′′ := {s ∈ T | s(αi) = h(s(xi)) for all i ∈ [n]} and T ′ = T \ T ′′.

Clearly, (h(a1), . . . , h(an)) ∈ RB \ RT ′[xxx=aaa],ααα, for all aaa ∈ RT ′,xxx, whence by Lemma 8.2,
A, T ′ |= θRB . Furthermore, A, T ′′ |= udep[k](xxx;ααα) by the definition of T ′′. Thus, A, T |= ηB.

CSL 2016

14:12 Dependence Logic vs. Constraint Satisfaction

For the other direction, assume that A, T |= ηB. Then there are subteams T ′ and T ′′ of
T such that T = T ′ ∪ T ′′, A, T ′ |= θB, and A, T ′′ |= udep[k](xxx;ααα). By Lemma 7, there is a
homomorphism h : (A,RT ′′,xxx)→ ([k], RT ′′,ααα). Since T ′′ ⊆ T , we have RT ′′,ααα ⊆ RT,ααα ⊆ RB.
Furthermore, by Lemma 8.1, RB \RT ′[xxx=aaa],ααα 6= ∅, for every aaa ∈ RT,xxx. On the other hand,
by the assumption RA×RB ⊆ RT,xxxααα, we have RB \RT [xxx=aaa],ααα = ∅, for each aaa ∈ RT,xxx. Thus,
RT ′′[xxx=aaa],ααα 6= ∅, for every aaa ∈ RT,xxx, whence RA ⊆ RT,xxx = RT ′′,xxx. As RT ′′,ααα ⊆ RB and
RA ⊆ RT ′′,xxx, we conclude that h is a homomorphism A→ B. J

We observe next that for each τn-structure B = ([k], RB), the properties RT,ααα ⊆ RB and
RT,ααα ∩RB = ∅ of teams are definable in QF-MUD[k]. Indeed, if

ψB :=
∨

`̀̀∈RB

(∧
i∈[n]

αi = `i
)

and νB :=
∨

`̀̀ 6∈RB

(∧
i∈[n]

αi = `i
)
,

then clearly for any structure A and team T on A, A, T |= ψB if and only if RT,ααα ⊆ RB, and
A, T |= νB if and only if RT,ααα ∩RB = ∅.

I Theorem 10 (∀-MUD[ω] captures CSP). Let B = ([k], RB) be a τn-structure. There is a
sentence ϕB ∈ ∀-MUD[k] such that for every τn-structure A, the following statements are
equivalent:
1. A ∈ CSP(B).
2. A |= ϕB.

Proof. Let ξB be the QF-MUD[k]-formula

(ηB ∧ ψB) ∨ ¬R(x1, . . . , xn) ∨ νB.

We define ϕB to be the universal closure ∀x1 . . . ∀xn∀α1 . . . ∀αnξB of the formula ξB. By
Lemma 6, it suffices to prove that A ∈ CSP(B) holds if and only if A, F |= ξB, where F is
the full team on A with domain {x1, . . . , xn, α1, . . . , αn}.

Assume first that A ∈ CSP(B). Let T ′ be the set of all assignments s ∈ F such that
s(xxx) 6∈ RA, and let T ′′ be the set of all assignments s ∈ F such that s(ααα) 6∈ RB. Then
A, T ′ |= ¬R(x1, . . . , xn) and A, T ′′ |= νB. Furthermore, RA ×RB ⊆ RT,xxxααα and RT,ααα ⊆ RB,
for T = F \ (T ′∪T ′′). Thus, T satisfies the conditions of Lemma 9, whence A, T |= ηB. Since
RT,ααα ⊆ RB, we also have A, T |= ψB. Since F = T ∪ T ′ ∪ T ′′, we conclude that A, F |= ξB.

For the other direction, assume that A, F |= ξB. Then there are subteams T, T ′ and T ′′
of F such that

F = T ∪ T ′ ∪ T ′′;
A, T |= ηB ∧ ψB;
A, T ′ |= ¬R(x1, . . . , xn);
A, T ′′ |= νB.

If s ∈ F is an assignment such that s(xxx) ∈ RA and s(ααα) ∈ RB, then it is not possible
that s ∈ T ′ or s ∈ T ′′, whence necessarily s ∈ T . Thus, we see that RA × RB ⊆ RT,xxxααα.
Furthermore, since A, T |= ψB, we have RT,ααα ⊆ RB. Hence, T satisfies the conditions of
Lemma 9, and consequently A ∈ CSP(B). J

We note that the size of the sentence ϕB defining CSP(B) is polynomial in the size of B.
In fact, it is not hard to show that the size of ϕB is O(n · kn+1), where n is the arity of RB.

We illustrate the preceding theorem by considering again the structure B = ({0, 1}, RB),
where RB = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. In this case, we have that

ϕB := ∀x1∀x2∀x3∀α1∀α2∀α3
(
(ηB ∧ ψB) ∨ ¬R(x1, x2, x3) ∨ νB

)
,

where

L. Hella and Ph. G. Kolaitis 14:13

ηB := udep[2](x3;α3) ∨ (α3 = 0 ∧ udep[2](x2; a2)) ∨ udep[2](x1, x2, x3;α1, α2, α3)
ψB := (α1 = 1∧α2 = 0∧α3 = 0)∨(α1 = 0∧α2 = 1∧α3 = 0)∨(α1 = 0∧α2 = 0∧α3 = 1)
νB := (α1 = 1 ∧ α2 = 1 ∧ α3 = 1) ∨ (α1 = 0 ∧ α2 = 0 ∧ α3 = 0) ∨
(α1 = 1 ∧ α2 = 1 ∧ α3 = 0) ∨ (α1 = 1 ∧ α2 = 0 ∧ α3 = 1) ∨ (α1 = 0 ∧ α2 = 1 ∧ α3 = 1).

4 From Dependence Logic to MMSNP

In this section, we prove that MMSNP is at least as expressive as ∀-MUD[ω]. In the proof
of this result, we will make use of the extension of MMSNP with k-valued variables. This
logic, denoted MMSNP[k], is obtained from MMSNP by adding equalities of the form α = i,
i ∈ [k], and universal quantification of k-valued variables. As in the case of ∀-MUD[k], there
is no need to add equalities of the form α = β, since they are definable.

We will use the logic MMSNP[k] only as an intermediate step in translating formulas of
∀-MUD[k] to equivalent sentences of MMSNP. The following lemma, which has a straightfor-
ward proof, tells that the k-valued variables in any MMSNP[k]-sentence can be eliminated to
obtain an equivalent MMSNP-sentence.

I Lemma 11. For every sentence ϕ ∈ MMSNP[k], there is a sentence ψ ∈ MMSNP such
that, for every structure A, we have that A |= ϕ if and only if A |= ψ.

We make next the simple observation that uniform dependence atoms are expressible in
existential monadic second-order logic. Indeed, the function f : A→ [k] in the semantics of
udep[k] can be replaced with a k-tuple of unary relations: A, T |= udep[k](xxx;ααα) if and only
if there are PA

1 , . . . , P
A
k ⊆ A such that

1. A =
⋃
j∈[k] P

A
j and PA

i ∩ PA
j = ∅ for i 6= j, and

2. s(xi) ∈ PA
s(αi) for all i ∈ [n] and s ∈ T .

Both of these conditions can be expressed by first-order formulas:
1. A =

⋃
j∈[k] P

A
j and PA

i ∩ PA
j = ∅ for i 6= j if and only if (A, (PA

j)j∈[k]) |= ∀y θ, where

θ :=
∨
j∈[k]

Pj(y) ∧
∧

1≤i<j≤k
¬(Pi(y) ∧ Pj(y)).

2. s(xi) ∈ PA
s(αi) for all i ∈ [n] and s ∈ T if and only if (A, (PA

j)j∈[k]), s |= ρk,n for all s ∈ T ,
where

ρk,n :=
∧

i∈[n],j∈[k]

(Pj(xi)↔ αi = j).

Thus, A, T |= udep[k](xxx;ααα) if and only if A, s |= ∃P1 . . . ∃Pk(∀y θ ∧ ρk,n) for all s ∈ T . In
the next lemma, we formulate the definition of udep[k](xxx;ααα) by a sentence of MMSNP[k].
To do this, we need to replace the team T with the corresponding relation RT,xxxααα.

I Lemma 12. Let A be a structure and T a team on A such that the domain of T is
V = {x1, . . . , xn, α1, . . . , αn}. Then the following statements are equivalent:
1. A, T |= udep[k](xxx;ααα).
2. (A, RT,xxxααα) |= ∃P1 . . . ∃Pk∀xxx∀y∀ααα(R(xxxααα)→ θ ∧ ρk,n).

CSL 2016

14:14 Dependence Logic vs. Constraint Satisfaction

Proof. Using the preceding observations, we get the following chain of equivalences:

A, T |= udep[k](xxx;ααα) ⇐⇒ there are PA
1 , . . . , P

A
k ⊆ A such that, for all s ∈ T,

(A, (PA
j)j∈[k]), s |= ∀y θ ∧ ρk,n

⇐⇒ there are PA
1 , . . . , P

A
k ⊆ A such that, for all s′ ∈ FV ∪{y},

(A, (PA
j)j∈[k], RT,xxxααα), s′ |= R(xxxααα)→ θ ∧ ρk,n

⇐⇒ (A, RT,xxxααα) |= ∃P1 . . . ∃Pk∀xxx∀y∀ααα(R(xxxααα)→ θ ∧ ρk,n). J

Our next aim is to show that the translation of uniform dependence atoms to MMSNP[k]
given in Lemma 12 can be extended to arbitrary formulas of QF-MUD[k]. The number of
existentially quantified unary relations in the translation of a formula ψ depends on the
number of occurrences of dependence atoms in ψ. We denote this number by]dep(ψ).

I Lemma 13. Let ψ be a formula of QF-MUD[k] with Fr(ψ) = {x1, . . . , xn, α1, . . . , αm} and
]dep(ψ) = `. There is a quantifier-free formula ψ+ with Fr(ψ+) = Fr(ψ) ∪ {y1, . . . , y`} and
with free unary second-order variables P1, . . . , Pk` such that for every structure A and every
team T on A with Fr(ψ) ⊆ dom(T), we have that the following statements are equivalent:
1. A, T |= ψ.
2. (A, RT,xxxααα) |= ∃P1 . . . ∃Pk`∀xxx∀yyy∀ααα(R(xxxααα)→ ψ+).

Proof. The claimed equivalence is proved by induction on the formula ψ.
If ψ is a negated atomic formula ¬S(xxx), then m = ` = 0, and we have

A, T |= ψ ⇐⇒ A, s |= ψ for every assignment s ∈ T
⇐⇒ (A, RT,xxx), s |= R(xxx)→ ψ for every assignment s ∈ Fdom(T)

⇐⇒ (A, RT,xxx), s |= ∀xxx(R(xxx)→ ψ).

Thus, we simply let ψ+ := ψ in this case.
If ψ is an equality α1 = j, we define ψ+ := ψ. Then n = ` = 0, m = 1 and in the same way
as in the previous case, we see that A, T |= ψ ⇐⇒ (A, RT,α1), s |= ∀α1(R(α1)→ ψ+).
If ψ is a uniform dependence atom udep[k](xxx;ααα), we define ψ+ = θ ∧ ρk,n; the claimed
equivalence follows from Lemma 12.
Let ψ = π∨σ. Then ` =]dep(ψ) = `′+`′′, where `′ =]dep(π) and `′′ =]dep(σ). Let σ+

∗ be
the formula obtained from σ+ by replacing each relation variable Pj with Pk`′+j , j ∈ [k`′′],
and replacing each first-order variable yj with y`′+j , j ∈ [`′′]. Put ψ+ := π+ ∨ σ+

∗ .
Assume first that A, T |= ψ. Then there are subteams T ′ and T ′′ of T such that
T = T ′ ∪ T ′′, A, T ′ |= π and A, T ′′ |= σ. Let uuu and βββ be tuples that list those of the
variables in {x1, . . . , xn, α1, . . . , αm} that occur in π, and similarly let the tuples vvv and γγγ
list the variables occurring in σ. By induction hypothesis, we have

(A, RT ′,uuuβββ) |= ∃P1 . . . ∃Pk`′∀uuu∀yyy′∀βββ(R(uuuβββ)→ π+),

where yyy′ = (y1, . . . , y`′). Similarly, changing the bound variables and using the induction
hypothesis, we get (A, RT ′′,vvvγγγ) |= ∃Pk`′+1 . . . ∃Pk`∀vvv∀yyy′′∀γγγ(R(vvvγγγ) → σ+

∗), where yyy′′ =
(y`′+1, . . . , y`). Thus, there are relations PA

1 , . . . , P
A
k` ⊆ A such that

(A, (PA
j)j∈[k`]), s |= π+ for every assignment s ∈ T ′[A`/yyy], and

(A, (PA
j)j∈[k`]), s |= σ+

∗ for every assignment s ∈ T ′′[A`/yyy].
Since T = T ′ ∪ T ′′, it follows that (A, (PA

j)j∈[k`]), s |= π+ ∨ σ+
∗ for all assignments

s ∈ T [A`/yyy]. Thus, we see that (A, RT,xxxααα) |= ∃P1 . . . ∃Pk`∀xxx∀yyy∀ααα(R(xxxααα)→ (π+ ∨ σ+
∗)).

L. Hella and Ph. G. Kolaitis 14:15

For the other direction, assume that there are relations PA
1 , . . . , P

A
k` ⊆ A such that

(A, (PA
j)j∈[k`], RT,xxxααα) |= ∀xxx∀yyy∀ααα(R(xxxααα)→ (π+ ∨ σ+

∗)).

Then (A, (PA
j)j∈[k`]), s |= π+ ∨ σ+

∗ for every assignment s ∈ T [A`/yyy]. Let T ′ and T ′′ be
the subteams
T ′ := {s ∈ T | (A, (PA

j)j∈[k`]), s |= ∀yyy′π+} and
T ′′ := {s ∈ T | (A, (PA

j)j∈[k`]), s |= ∀yyy′′σ+
∗ },

where yyy′ and yyy′′ are as above. By the definition of T ′, we have

(A, (PA
j)j∈[k`′], RT ′,uuuβββ) |= ∀uuu∀yyy′∀βββ(R(uuuβββ)→ π+).

Universal quantification can be restricted here to those first-order and k-valued variables
that occur in π+. Similarly, it suffices to consider relation variables Pj occurring in π+.
From the induction hypothesis, it follows that A, T ′ |= π. In the same way, we see that

(A, (PA
k`′+j)j∈[k`′′], RT ′′,vvvγγγ) |= ∀vvv∀yyy′′∀γγγ(R(vvvγγγ)→ σ+

∗).

Replacing each relation variable Pk`′+j by Pj and each first-order variable y`′+j by yj
and using the induction hypothesis, we see that A, T ′′ |= σ. Finally, it is clear that
T = T ′ ∪ T ′′, whence we get A, T |= ψ.
If ψ = π ∧ σ, we define ψ+ := π+ ∧ σ+

∗ . This case is handled as the preceding one. J

We now have all the technical machinery needed to prove the main result of this section.

I Theorem 14 (∀-MUD[ω] is contained in MMSNP). For every sentence ϕ ∈ ∀-MUD[ω] there
is a sentence ϕ∗ ∈ MMSNP such that the following statements are equivalent:
1. A |= ϕ.
2. A |= ϕ∗.

Proof. By Lemma 11, it suffices to prove the claimed equivalence for a sentence ϕ∗ of
MMSNP[k]. Let ψ be a formula of QF-MUD[k] such that ϕ is (equivalent to) its uni-
versal closure ∀x1 . . . ∀xn∀α1 . . . ∀αmψ, and let F be the full team on A with domain
{x1, . . . , xn, α1, . . . , αm}. By applying Lemma 13, we obtain a quantifier-free formula ψ+

such that

A, F |= ψ ⇐⇒ (A, RF,xxxααα) |= ∃P1 . . . ∃Pk`∀xxx∀yyy∀ααα(R(xxxααα)→ ψ+).

Since F is the full team, (A, RF,xxxααα), s |= R(xxxααα) holds for all assignments s. Hence, the
implication R(xxxααα)→ ψ+ can be replaced by its right-hand side ψ+, and the relation RF,xxxααα
can be omitted in the equivalence above. Thus, using Lemma 6, we obtain the equivalence

A |= ϕ ⇐⇒ A |= ∃P1 . . . ∃Pk`∀xxx∀yyy∀αααψ+.

From the definition of ψ+, we see that the sentence ∃P1 . . . ∃Pk`∀xxx∀yyy∀αααψ+ is in MMSNP[k].
Thus, the claimed equivalence holds for ϕ∗ := ∃P1 . . . ∃Pk`∀xxx∀yyy∀αααψ+. J

We note that the size of the MMSNP[k]-sentence ϕ∗ is polynomial in the size of the
∀-MUD[ω]-sentence ϕ. In fact, it is not hard to show that the size of ϕ∗ is O(nk3|ϕ|).

Given a sentence ϕ ∈ ∀-MUD[ω], we denote its model-checking problem “given a structure
A, does A |= ϕ hold?” byMC(ϕ). Using the polynomial-time equivalence of MMSNP and
CSP, we obtain the following corollary to Theorems 10 and 14.

I Corollary 15. If ϕ is a sentence of ∀-MUD[ω], thenMC(ϕ) is polynomial-time equivalent
to CSP(B), for some structure B; vice versa, if B is a structure, then CSP(B) is polynomial-
time equivalent toMC(ϕ), for some sentence ϕ of ∀-MUD[ω].

CSL 2016

14:16 Dependence Logic vs. Constraint Satisfaction

5 Concluding Remarks

In this paper, we established a tight connection between dependence logic and constraint
satisfaction. Since dependence logic has the same expressive power as existential second-order
logic, it is expected that constraint satisfaction problems can be expressed in dependence logic.
We believe, however, that the connection established in this paper is a priori unexpected, since
we showed that a simple fragment of universal dependence logic captures, in a precise sense,
the family of constraint satisfaction problems CSP(B), where B is a relational structure.
Our results contribute to the descriptive complexity of constraint satisfaction and also shed
new light on quantifier-free and universal dependence logic.

The connection between universal dependence logic and constraint satisfaction is es-
tablished by using MMSNP as a bridge and also the result by Feder and Vardi [5] that
MMSNP captures constraint satisfaction via polynomial-time reductions. Specifically, we
showed that every constraint satisfaction problem CSP(B), in which B has only one relation,
is definable by a ∀-MUD[ω]-sentence, and every ∀-MUD[ω]-sentence is equivalent to some
MMSNP-sentence. A natural question that arises from these results is whether every MMSNP-
sentence is equivalent to some ∀-MUD[ω]-sentence or, in other words, whether MMSNP and
∀-MUD[ω] have the same expressive power. A related question is to identify other natural
fragments of dependence logic that capture important fragments of existential second-order
logic, such as strict existential second-order logic (i.e., the fragment of existential second-order
logic in which all first-order quantifiers are universal).

Acknowledgements. A part of the research reported here was carried out while Lauri Hella
was visiting the University of California Santa Cruz.

References
1 Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors. Complexity of Con-

straints – An Overview of Current Research Themes [Result of a Dagstuhl Seminar], volume
5250 of Lecture Notes in Computer Science. Springer, 2008.

2 Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen. Tract-
ability frontier of data complexity in team semantics. In Proceedings Sixth International
Symposium on Games, Automata, Logics and Formal Verification, GandALF 2015, Genoa,
Italy, 21-22nd September 2015., pages 73–85, 2015.

3 Paul Erdös. Graph theory and probability. Canadian J. of Mathematics, 11:34–38, 1959.
4 Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In

Richard Karp, editor, Complexity of Computation, number 7 in SIAM-AMS Proceedings,
pages 43–73. SIAM-AMS, 1974.

5 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998.

6 P. Galliani. Inclusion and exclusion dependencies in team semantics – on some logics of
imperfect information. Ann. Pure Appl. Logic, 163(1):68–84, 2012.

7 Pietro Galliani and Lauri Hella. Inclusion logic and fixed point logic. In Computer Science
Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy, number 23 in
LIPIcs, pages 281–295. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2013. doi:
10.4230/LIPIcs.CSL.2013.281.

8 Erich Grädel and Jouko A. Väänänen. Dependence and independence. Studia Logica,
101(2):399–410, 2013. doi:10.1007/s11225-013-9479-2.

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.281
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.281
http://dx.doi.org/10.1007/s11225-013-9479-2

L. Hella and Ph. G. Kolaitis 14:17

9 Johan Håstad, Andrei A. Krokhin, and Dániel Marx. The constraint satisfaction problem:
Complexity and approximability (Dagstuhl Seminar 12451). Dagstuhl Reports, 2(11):1–19,
2012.

10 Leon Henkin. Some remarks on infinitely long formulas. In Infinitistic Methods. Pergamon
Press, 1961.

11 Jaakko Hintikka and Gabriel Sandu. Informational independence as a semantical phe-
nomenon. In J. E. Fenstad et al., editor, Logic, Methodology and the Philosophy of Science
VIII, pages 571–89. North-Holland, 1989.

12 Jarmo Kontinen. Coherence and computational complexity of quantifier-free dependence
logic formulas. Studia Logica, 101(2):267–291, 2013. doi:10.1007/s11225-013-9481-8.

13 Juha Kontinen and Jouko A. Väänänen. On definability in dependence logic. Journal of Lo-
gic, Language and Information, 18(3):317–332, 2009. doi:10.1007/s10849-009-9082-0.

14 Juha Kontinen and Jouko A. Väänänen. Axiomatizing first-order consequences in depend-
ence logic. Ann. Pure Appl. Logic, 164(11):1101–1117, 2013. doi:10.1016/j.apal.2013.
05.006.

15 Gábor Kun and Jaroslav Nesetril. Forbidden lifts (NP and CSP for combinatorialists). Eur.
J. Comb., 29(4):930–945, 2008.

16 Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–
171, 1975.

17 Jouko A. Väänänen. Dependence Logic – A New Approach to Independence Friendly Logic,
volume 70 of London Mathematical Society student texts. Cambridge University Press, 2007.
URL: http://www.cambridge.org/de/knowledge/isbn/item1164246/.

CSL 2016

http://dx.doi.org/10.1007/s11225-013-9481-8
http://dx.doi.org/10.1007/s10849-009-9082-0
http://dx.doi.org/10.1016/j.apal.2013.05.006
http://dx.doi.org/10.1016/j.apal.2013.05.006
http://www.cambridge.org/de/knowledge/isbn/item1164246/

	Introduction
	Background and Basic Notions
	Constraint Satisfaction and MMSNP
	Dependence logic
	Logics with k-valued variables
	Uniform k-valued dependence atoms

	From Constraint Satisfaction to Dependence Logic
	From Dependence Logic to MMSNP
	Concluding Remarks

