

A system of topic mining and dynamic tracking for social texts.

Cong Zhang

University of Tampere

School of Information Sciences

Computer Science

M.Sc. thesis

Supervisor: Jyrki Nummenmaa

January 2017

 i

University of Tampere

School of Information Sciences

Computer Science

Cong Zhang: A system of topic mining and dynamic tracking for social texts

M.Sc. thesis, 71 pages, 1 appendix and index pages

January 2017

A massive amount of information is stored as text in the real world. Classifying the texts

according to topics is an approach for people to extract useful information. Social medias

generate a mass of texts every day. Topic mining and tracking on social texts are

beneficial to both humanity and IT areas.

Although ready-made algorithms for topic mining and evolution tracking exist, existing

methods are mostly aimed at static data and only to the mining phase of the topics. There

is a lack of a general and entire solution covering all phases of topic mining and tracking

of social texts.

This thesis aims to develop an entire and coherent system which can receive social texts

from real-time data streams, mine topics from texts and track topic evolution over time.

It is based on the existing algorithms. Tests were conducted after the development,

including coverage of LDA for social texts, performance of system and presentation of

system in the real environment.

According to the experiment results, the system operated smoothly in the real

environment. The existing algorithms are effective to social texts. The system

successfully covered the whole process of topic mining for social texts as expected.

However, there is still room for system improvement. Since the system is a prototype,

there may be a need to change it based on requirements of the real application if the

system is put into practice and a lot of real tests should be performed in order to guarantee

it is functioning well.

Key words and terms: social, platform, text, topic, mining, evolution, tracking, system,

prototype, development, Twitter, test.

 ii

Table of Contents

1. Introduction ... 1

2. Literature and theory ... 4

2.1. Social text and its features ... 4

2.1.1. Timely and rapid information dissemination 4

2.1.2. Vast amount of data ... 4

2.1.3. Extensive content ... 5

2.2. Algorithms of topic mining .. 5

2.2.1. Overview .. 5

2.2.2. LDA .. 6

2.3. Algorithms of evolution tracking ... 11

2.3.1. Overview .. 11

2.3.2. Topic evolution method based on association filter 12

2.4. General process of data mining:... 15

3. Design .. 17

3.1. Overview of design .. 17

3.2. Related Technology ... 17

3.2.1. Java EE Web Application .. 18

3.2.2. Restful Webservice .. 19

3.2.3. Node.js ... 20

3.2.4. Mallet Toolkit ... 20

3.2.5. Interface design model ... 20

3.3. Architecture of system ... 21

3.4. Modules of function ... 25

3.4.1. Text receive .. 25

3.4.2. Management of mining task ... 26

3.4.3. Execution of a task ... 30

3.4.4. Other modules .. 33

4. Implementation .. 34

4.1. Text Receiver ... 34

4.1.1. Express framework ... 34

4.1.2. Input and Output of interface ... 34

4.2. Management of Mining Task ... 35

4.2.1. Related technology ... 35

4.2.2. Front-End UI pages .. 36

4.2.3. Class Diagram .. 39

4.3. Task execution process .. 41

4.3.1. Quartz framework .. 41

4.3.2. Process component ... 41

 iii

4.3.3. Text preprocessing ... 43

4.3.4. Topic mining .. 44

4.3.5. Topic evolution tracking .. 45

4.4. Result presentation ... 46

4.4.1. D3 framework .. 46

4.4.2. Result visualization of mining and evolution tracking 46

4.5. Exception View .. 47

5. Test and Evaluation ... 49

5.1. Test environment ... 49

5.2. Test runs and results ... 49

5.2.1. Topic coverage test .. 49

5.2.2. System test ... 52

5.2.3. Performance ... 55

6. Evaluation and discussion ... 58

6.1. Evaluation of system .. 58

6.2. Discussion of system development .. 60

6.3. Limitation and improvement .. 61

7. Conclusions ... 63

References .. 65

Appendix 1 ... 71

 iv

Acknowledgements

Firstly, my respect and honest appreciation belong to my supervisor Mr. Jyrki

Nummenmaa from the University of Tampere, who guided me and gave me corrections

through the process of this master thesis.

I would also like to thank Yichi Zhang and Libin Tan, who were involved in the test of

the system for this thesis. Without their passionate participation, the test could not have

been successfully conducted.

Finally, I must express my very profound gratitude to my parents for providing me with

unfailing support and continuous encouragement throughout my years of study. This

accomplishment would not have been possible without them. Thank you.

 1

1. Introduction

A massive of information that people obtain are stored as text in the real world. The

information is from multiple data sources, such as news articles, thesis papers, books,

digital libraries, email and documents from web pages [Han and Kamber, 2006]. With

the fast growth of digital text in the cyberspace, the need to automatically acquire useful

information from text data becomes a significant issue. Text mining, which is also called

Knowledge Discovery in Text, is exactly a way of analysing and categorizing texts by

applying technology of data mining to natural language texts.

A useful approach of text mining is to classify the documents by topics. Effective

classification of text information via topics is beneficial to readers who intend to search

for archives in which they are interested. The use of text categorization via topics also

includes news classification, Web page classification, intelligent recommendation of

personalized news, spam mail filter, etc [Luo and Li, 2014]. Therefore, today's

technology-oriented world has a need to classify texts by topic quickly and accurately.

The concept of topic detection and tracking was put forward by Defense Advanced

Research Projects Agency of USA at the earliest in 1996, which aimed at discovering

different news data streams automatically without manual work. Nowadays, the

application of topic detection and tracking is not limited to original news medias but

extended to cyber medias in large quantities. The basic tasks of topic detection and

tracking are to identify topics from samples, detect new emerging topics and track

evolution of old topics. Meanwhile, the popularity of topic is also considered in this area,

which is usually evaluated by some measures, such as user attention, participation and

timeliness.

Topic detection and tracking are to a large extent based on topic modelling. Topic models

can be regarded as a mathematical probabilistic formalism underlying part of the topic

mining technology. It has drawn extensive attention by mining latent information

effectively. Topic modelling can represent documents with a smaller effective

dimensionality by modelling the generative process of documents, word co-occurrence

statistics, extracting semantics-similar topics [Xu and Wang, 2011]. Among all of them,

LDA [Blei, Ng and Jordan, 2003] is a popular hierarchical probabilistic model which

regards that texts are formed by topics with certain probability distribution and topics are

formed by words with certain probability distribution. LDA model is able to detect

meaningful information and specify semantic content in text data [Griffiths and Steyvers,

2004].

 2

In real application areas, most of the text data change with time. As a result, text topics

vary from different time periods. Therefore, evolution models based on topic models have

been proposed to discover topic evolution and trends. Many methods of topic evolution

detection are also based on LDA. There are also some practical systems to demonstrate

topic evolution visually, such as Text-flow graph [Cui et al., 2011]. In general, topic

mining and evolution have drawn more and more attention and they have been applied

widely in research areas.

In the last decade, social platforms become popular with incredible speed and play more

and more important roles in the life of the public. Social Web-based applications, known

as social networking websites create opportunities to establish interaction among people

leading to mutual learning and sharing of valuable knowledge, such as chat, comments,

and discussion boards [Sorensen, 2009]. At the same time, the social network is a carrier

of massive text information. According to the statistics of Twitter, 500 million Tweets

are sent per day by 140 million active users. As a platform for creating lightweight blogs,

Tumblr has 110 million users and creates more than 10 million blogs every day. Facebook,

the biggest social network site over the world, generates 4.7 billion texts per day. As to

Sina Weibo, which is a major social media like Twitter in China, it also generates above

100 million tweets per day.

Texts created from social websites or platforms can be regarded as social text. Social

texts are meaningful to many areas from view of big data analysis. Many commercial

organizations use the social media data to understand the needs and behaviour of their

customers [Thiel and Kötter, 2012]. Topics about entertainment and leisure will be

propagated and spread, such as new fashions [Zhou, 2013]. Social medias provide a direct

communication channel between the public and governments. Public figures gain more

popularity and level of interest. They have more influence by social medias. Social

network will have powerful broadcast ability when emergencies happen, usually faster

than traditional medias [Hu, 2014]. Nevertheless, social medias and the content created

in them are affecting minds, behaviours and life of people, even the society’s culture,

gradually. Therefore, methods of text mining from social media have drawn attention of

scholars and specialists in both humanities and IT areas.

Even though algorithms of topic mining, evolution tracking are ready-made, existing

methods mostly aim at static data mining. The data are largely from history data. There

is a lack of dynamic tracking and monitoring which is able to address real-time data

stream, such as new topic detection, extinction of old topics and evolution of topics.

Meanwhile, the focus of existing research is only on the mining phase of text topics.

There is a lack of a general and entire solution from the start of receiving data to the key

 3

phase of mining, then to the tracking of topic evolution. Therefore, there is a requirement

to propose a general system covering the entire process. In addition, the system needs to

have potential to be adapted to different topic models and algorithms because there is a

need to improve and change it to apply to various situations.

In general, existing algorithms are effective in mining and grouping of topics, but there

is more room for timely and dynamic mining of text topics and also lack of practical work

on comprehensive solutions.

This thesis aims at creating an entire and coherent system which receives social text from

real-time data stream, mine topics from texts and track topic evolution over time.

Algorithms of topic mining and evolution tracking will be chosen from existing research

achievements. Then, tests will be conducted to validate functions of the system. Finally,

the system will be evaluated based on its applicability, followed by final discussions.

 4

2. Literature and theory

This chapter describes the current situation of related research and introduces theory and

algorithms for topic mining and evolution tracking. A general process for data mining

systems will also be presented.

2.1. Social text and its features

As mentioned previously, social texts can be regarded as texts generated from social

platforms. Therefore, features of social texts are highly related to social network

platforms. 4A (Anytime, Anywhere, Anyone, Anything) can be a concise summary for

dissemination features of social medias [Liu, 2010]. According to research resources

about social media, three main features of social texts can be concluded.

2.1.1. Timely and rapid information dissemination

The most significant feature of social texts is their fast dissemination [Mai, 2012]. Most

of social networks have limitations on character amount. Short texts can be generated

very quickly by users. Meanwhile, users can access social network to send texts anywhere

and anytime by mobile applications. Users can receive the latest information if they

follow other accounts and comments can be seen by authors at the first moment.

Due to the timeliness of social texts they can be used to predict the progress of emergency

situations. Savage regarded that twitter is a reflection of social fact events and detection

of social groups can be done by it [Savage, 2011]. Social networks have features of

medias. Moreover, their abilities of fast dissemination and timeliness can be more

powerful than in traditional medias. To put it precisely, social texts are carriers for

dissemination of information.

2.1.2. Vast amount of data

The amount of Internet users over the world has massively increased in the last decade.

According to report by eMarketer, the amount of global Internet users is over 3 billion

by the end of 2015 [Ren, 2015]. On average an Internet user has 3.8 social network

accounts. The data they generated are also growing explosively. A significant part of

them are in text format.

With trend of Web 2.0, the top-down way of content post is gradually replaced by the

bottom-up way [Cui, 2013]. Actually, the information generated by websites is replaced

by UGC (User-Generated Content). Nowadays, over 10 thousand tweet-like items of text

 5

information are generated in one second and that will absolutely grow in the future [Xie,

2013]. Especially, there are frequent peaks of data amount when emergencies happen

[Cui, 2013]. Low threshold and high speed of posting social texts lead to people being

flooded in massive information [Hu, 2014].

2.1.3. Extensive content

Social networks have an all-inclusive breadth of content. Similarly, social texts have

extensive contents. Every user posts different information due to their various works,

hobbies and life environment. Most people find resources they need either on their own

or by communicating with others. Therefore, the social network becomes an important

database and information source [Zhou, 2013]. Due to popularity and extensive coverage

of users, social networks have also turned into a type of public information exchange

platform [Ren, 2015]. Thus, the content of social text also naturally has quite equivalent

diversity.

2.2. Algorithms of topic mining

2.2.1. Overview

The topic mining of text have attracted much attention from researchers in recent years.

Many achievements have been done, mainly in the areas of application and improvement

of existing algorithms. Among the most popular algorithms are PLSA, LDA, LCSCS,

HMETIS, Multi Topic Distribution Model, etc.

Probabilistic Latent Semantic Analysis (PLSA) is a technique from the category of topic

models. PLSA was developed in 1999 by Thomas Hofmann [Hofmann, 1999] and it was

initially used for text-based applications (such as indexing, retrieval, clustering). Usage

of it shortly spread in other fields: such as computer vision [Lienhart, Romberg and

Horster, 2009] [Monay and Gatica-Perez, 2004] [Sivic, Russell, Efros, Zis-serman and

Freeman, 2005] or audio processing [Hoffman, Blei and Cook, 2009].

The LDA (Latent Dirichlet Allocation) is a type of algorithms being used in the text topic

mining frequently. Created as a variant of PLSA, it is an effective tool directed at

modeling huge document corpora, introduced by Blei in 2003. PLSA can be seen as a

frequentist statistical approach while LDA is based on a Bayesian approach. In both

PLSA and LDA, the aim is to convert a text document to a vector containing words and

frequencies, ignoring the order of the words, and to represent the content of the vector as

a mixture of topics [Zhao and Zhang, 2012]. It is able to facilitate the transformation from

text information to digital information [Zhao and Zhang, 2012], which contributes to

 6

analysing text similarity. Several applications of the LDA approach have been done,

including applications to blogs [Nallapati and Cohen, 2008], academic documents [Wang

and Land, 2011], short texts and advertisements [Wei, 2006].

In addition, the paper by Chris Clifton, Robert Cooley and Jason Rennie presents a novel

method for identifying related items based on traditional data mining techniques. In the

paper, frequent itemsets and HMETIS clustering are applied successfully in identifying

topics in collections of news articles. The frequent itemsets are generated from the groups

of items, followed by clusters formed with a hyper-graph partitioning scheme [Clifton,

Cooley and Rennie, 2004].

Besides fundamental algorithms for text mining, there have been already some useful

studies on improved topic searching and diverse variants.

In the paper by Zheng and Han, Multi Topic Distribution Model was introduced to mine

topics. According to features of tweets, their model not only efficiently discover topics,

but also is able to indicate which topics are interesting to a user and which topics are hot

issues of the Twitter community [Zheng and Han, 2013]. An article, by Wang, Peng and

Wang, makes the similarity calculated between texts by the linear combination of TF–

IDF model and LDA model, which enables more accurate cluster analysis [Wang, Peng

and Wang, 2014].

The paper by Qin, Dai and Li presented a data mining system for hot topics on the web

based on the scale-free topology of the complex network [Qin, Dai and Li, 2006]. A paper,

by Li, Dai, Lai and Dai, presents a statistic approach for hot topic detection in Chinese

web forum by longest common segmented consecutive subsequence (LCSCS) and other

techniques to overcome the basic obstacles of Chinese web data-mining: new words, non-

standard syntax and Chinese word segmentation [Li, Dai, Lai and Dai, 2011]. The time

and space complexity of the algorithm is acceptable.

2.2.2. LDA

LDA (Latent Dirichlet Allocation) is a mainstream algorithm in the area of text topic

mining, first introduced by Blei in 2003 firstly. It originates from PLSA but produces

lower perplexity and suffers less from overfitting [Blei, Ng and Jordan, 2003] [Minka

and Lafferty, 2002]. Although PLSA has good performance on known training

documents, LDA is better able to handle previously unseen documents [Gimpel, 2006].

Furthermore, for mining results, the model of LDA has better consistency and the running

 7

speed of LDA is faster than PLSA [Kakkonen, Myller and Sutinen, 2006]. It has been

widely applied to topic mining process.

The LDA model is described in two parts. One is how the topic model represent

documents. The other one is the way to solve topics in documents.

In the topic model, a topic represents a set of words which is related to this topic. A topic

can be expressed as a probability distribution over possible words that can be used while

talking about that topic, so that the order or words is not assumed to matter, but some of

the words have bigger probability to occur in the topic than others. In each topic, the top

words that have high probability to occur will be different: sometimes, topics are

summarized by listing their (unordered) high-probability top words as below.

Figure 2.1. Topic constitution by words

As a result, texts that discuss some particular topics will have a higher probability to

contain top words from those topics. Firstly, the topic model describes how to generate

texts. The process can be stated as below. In the original version of LDA [Blei, Ng and

Jordan, 2003], the word “document” is used to represent “text”.

 Pick one topic from a given probability distribution over possible topics

 Pick one word from the word-distribution of the selected topic, and add the word to

the document.

Thus, a document can be generated by repeating the process above. The probability that

a particular word is generated into a document can be represented as conditional

probability below.

 8

p(word | document) = ∑ 𝑝(𝑤𝑜𝑟𝑑 | 𝑡𝑜𝑝𝑖𝑐𝑖) 𝑝(𝑡𝑜𝑝𝑖𝑐𝑖 | 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)

𝑖=1 𝑡𝑜 𝑛

𝑡𝑜𝑝𝑖𝑐𝑖

where topic is the i:th topic in a set of n available topics. It also can be represented as a

matrix form as

Figure 2.2. The matrix expression of topic model

The Document-Word matrix on the left side of equation represents probability of every

word emerging in every document; the Topic-Word matrix represents probability of

every word emerging in every topic; the Document-Topic matrix represents probability

of every topic emerging in every document.

Assume that there are a batch of documents, we can easily fetch the Document-Word

matrix on the left side of equation by word segmentation, counting frequency of words.

Thus, the topic model can solve these two matrixes on the right side by learning and

training upon the matrix on the left side.

LDA is a hierarchical Bayesian model with three levels. It allows documents to contain

multiple topics. We assume the following generative process for each document w in a

corpus D [Blei, Ng and Jordan, 2003]:

 Choose random variable θ ∼ Dirichlet distribution p is a topic vector (θ | α); θ is a

vector of topic probabilities for the document. α is a vector parameter for p(θ).

 For each word wn in the document, where n goes from 1 to the number of words N

in the document:

a) Choose a topic zn ∼ Multinomial distribution p(z | θ); θ is the parameter of

p(z | θ).

b) Choose a word wn from p(wn | zn, β), a multinomial probability conditional on

the topic zn. β is a matrix parameter for p(w | z), which represents word

probability distribution in every topic.

 9

Here α is a parameter of the Dirichlet distribution (prior over topic proportions) and β is

a parameter of the multinomial word choice distribution. The process can be described

as graph below:

Figure 2.3. Graphical model representation of LDA. The boxes are “plates”

representing replicates. The outer plate represents documents, while the inner plate

represents the repeated choice of topics and words within a document. [Blei, Ng and

Jordan, 2003]

Therefore, the joint probability of the whole process of LDA can be represented as below:

p(θ, 𝐳, 𝐰 | 𝛼, 𝛽) = 𝑝(𝜃 | 𝛼) ∏ 𝑝(𝑧𝑛 | 𝜃) 𝑝(𝑤𝑛 | 𝑧𝑛, 𝛽

𝑁

𝑛=1

)

We can interpret the equation in accordance with the graph in Figure 2.4.

 10

Figure 2.4. Comparison of LDA process graph and joint probability [Huagong, 2012]

The three layers of LDA are represented as above:

 Corpus-level (red): α and β are corpus-level parameters which are unique for the

whole generating process.

 Document-level (orange): θ is a document-level parameter. Each of document w has

one θ which means there are different probability of topics for every document.

 Word-level (green): z and w are word-level parameters. z is generated on the basis

of θ. w is generated on the basis of z and β. A word belongs to one topic at most.

The process of LDA generating documents is presented as above. However, documents

are usually ready-made in the practical application situation. What we want to detect is

topics in documents. Therefore, the actual algorithms of detecting topics are the reverse

process of LDA. The key parameters we want to know are α and β. As previously

mentioned, α is a vector parameter for p(θ) which generates topic vectors; β is a matrix

parameter which represents p (w | z), word probability distribution in every topic

In Figure 2.3 and 2.4, words achieved from documents (w in grey circle) is an explicit

variable. θ and z are regarded as latent variables. In practice, the variational inference (E-

M) algorithm [Blei, Ng and Jordan, 2003] and Gibbs sampling [Steyvers and Griffths,

2006] are usual methods to solve α and β by the way of learning process upon ready-

made documents. Which method suits better depends on the specific topic model.

Advantages and disadvantages of both two methods are discussed in the article of

 11

Asuncion, et al [Asuncion, Welling, Smyth and Teh, 2009]. The matrices Φ and Θ in

Figure 2.2 can be solved by given α and β. Thus, topics can be extracted from documents.

2.3. Algorithms of evolution tracking

2.3.1. Overview

Although the studies directly related to evolution tracking are not so abundant as topic

mining, some articles and resources exist. For example, Shan summarizes three methods

in LDA-based topic evolution detection according to the time sequence: joining the time

to LDA model, post-discretizing or pre-discretizing methods [Shan and Li, 2010].

Elshamy analysed topic evolution model by time continuity and online progress support

[Elshamy, 2013].

In order to solve the topic evolution problem, the paper by Hu and Chen uses an approach

of dynamic topic modelling based on LDA [Hu and Chen, 2014]. The sets of text are split

by the time and extracted to topics. Thus, the analysis of evolution can be conducted in

this way. An improved online LDA(IOLDA) model was presented based on OLDA in

order to solve the problem of topic mixing and untimely detection of new topics in the

traditional OLDA. Meanwhile, a new method was introduced to evaluate topic intensity

[He, et al., 2015]. These proposed methods are proved to be efficient for analysing topic

evolution online.

Qin presented a simple but effective algorithm to detect topic evolution in terms of the

birth, extinction, development, merge and split of topics within the literature in a certain

field [Qin and Le, 2015]. The method divides time periods in accordance with publication

dates of literatures. LDA model is applied to extract topics from each time window

automatically. By topic association filter rules, evolution relationships are detected

between topics in adjacent time windows. Different types of topic evolution could be

detected with high accuracy according to the result.

There are also some practical systems to demonstrate topic evolution visually, such as

Text-flow graph [Cui, et al., 2011] which is a coherent visualization for conveying

complex relationships of topic evolution. In this way, the topic mining, evolution and

visualization can communicate with each other to help users refine analysis results and

gain insights into the data. D-VITA, a novel interactive visual text analysis system based

on dynamic topic modelling is designed to support users exploring and interacting with

large numbers of documents [Gunnemann, 2013]. This is a relatively complete system

which can extract topics hidden in the documents and highlight the evolution of selected

 12

topics. However, as a disadvantage it only works on prepared and ready-made data. It

lacks the ability to process data dynamically.

2.3.2. Topic evolution method based on association filter

The way introduced in the paper of Qin [Qin and Le, 2015] is simple, effective and easy

to implement. Meanwhile, it is also based on LDA model. In experiments it has shown

advantages over four common baseline methods of detecting topic association [Qin and

Le, 2015]. It can analyse topic evolution by distinguishing whether there is strong

association between topics. The original method in the paper is mainly used in topic

evolution tracking within books and within literature collections. However, it can be

introduced to other fields. Hereon, we choose it as the method we implement in the

system.

Figure 2.5. Framework of topic evolution [Qin and Le, 2015]

The basic idea of the method can be illustrated as above. It includes several steps:

1. Divide documents by same time intervals. Documents will be classified by creation

time. Then, for each interval a LDA model is trained to detect the topics in those

documents.

2. Calculate similarity between topics in two groups of adjacent time intervals. In

particular, every topic 𝑇i
𝑡 in the previous time interval t and every topic 𝑇𝑗

𝑡+1 in the

 13

next time interval t+1 will be computed an association similarity, and this is repeated

for all intervals t.

3. Filter to discover significant topic associations.

4. Infer and judge types of evolution relations according to time sequence. Finally,

results will be presented.

The topic can be expressed as a vector of probabilities over words. Every dimension of a

topic vector is a word. The value of a dimension is a probability that a particular keyword

will be generated into a document when the topic is chosen. For instances, a topic can be

represented as:

T = {(𝑤1, 𝑝1), (𝑤2, 𝑝2), … (𝑤𝑖, 𝑝𝑖), … (𝑤𝑛, 𝑝𝑛)}

where wi is a word and pi is its probability in the topic. Topic evolution includes both

continuity and changes of content. This means topics between two adjacent time intervals

have varying amounts of similarity in terms of their content. We can calculate the

similarity to measure the continuity and build topic associations. Since different topics

are represented as vectors of probabilities over the same set of possible words, cosine

similarity is a practical and easy way to calculate the similarity:

𝑆𝑖𝑚(𝑇𝑖
𝑡, 𝑇𝑗

𝑡+1) =
𝑇𝑖

𝑡 ∙ 𝑇𝑗
𝑡+1

√𝑇𝑖
𝑡2

× √𝑇𝑗
𝑡+12

Post topic: for a topic Ti
t in time interval t, rank topics in next time interval t+1 by

similarity to Ti
t descending. If there is a topic Tj

t+1 holding maximal similarity, we refer

to Tj
t+1 as the post topic of Ti

t.

Prior topic: for a topic Tj
t+1 in time interval t+1, rank topics in previous time interval t

by similarity to Tj
t+1 descending. If there is a topic Ti

t holding maximal similarity, we

refer to Ti
t as the prior topic of Tj

t+1.

In order to improve accuracy of topic evolution analysis, the method adopts three filter

rules to remove invalid topic association.

1. Set a minimal threshold of similarity ε. If topic similarity Sim(Ti
t, Tj

t+1) < ε, then

this association between two topics is invalid.

2. Assume that a topic Tj
t+1 in time t+1 is the post topic of Ti

t in time t. Rank all topics

in time t by the similarity to Tj
t+1 in a descending way. If there are any topic in time

 14

t which meet the conditions that its similarity to Tj
t+1 is higher than Ti

t and its post

topic is not Tj
t+1, then the association between Ti

t and Tj
t+1 is invalid.

3. Set a minimal proportion threshold μ. Assume that Tj
t+1 is a topic in time t+1. Rank

all topics in time t by the similarity to Tj
t+1 in a descending way. The maximal

similarity is M. For any topic Tr
t in time t, if Sim(Tr

t, 𝑇j
𝑡+1) < 𝜇 × M, then the

association between Tr
t and Tj

t+1 is invalid.

After inference and judgement of topic associations filtered, results of topic evolution

can be concluded as five types:

1. Creation (if there is no prior topic for 𝑇𝑖
𝑡, this topic is created at time t.)

2. Extinction (if there is no post topic for 𝑇𝑖
𝑡, this topic is extinct from t+1.)

3. Inheritance (𝑇𝑖
𝑡 is the prior topic of Tj

t+1; Tj
t+1 is the post topic of 𝑇𝑖

𝑡. This can be

regarded as continuity of same topics.)

4. Merge (there are several topics having the same post topic Tj
t+1. Tj

t+1 is merged from

topics in last time interval.)

 15

5. Split (there are several topics having the same prior topic 𝑇𝑖
𝑡. These topics are splited

from the same topic.)

The end results can be presented as example below:

Figure 2.6. A sample of topic evolution relations [Qin and Le, 2015]

2.4. General process of data mining:

Data mining is the process of discovering interesting patterns and knowledge from large

amounts of data [Han and Kamber, 2006]. The data sources can include databases, data

warehouses, the Web, other information repositories, or data that are streamed into the

system dynamically [Han and Kamber, 2006]. In practice, data mining usually refers to

the entire process of data analysis which include some general steps: data selection, data

cleaning and preparation, data mining, visualization of the results, and how to evaluate

patterns discovered.

 16

Figure 2.7. General process of data mining [Indarto, 2013]

The image above describes several general steps of data mining:

1. Data selection:

Data are retrieved from the database;

Multiple data sources may be combined.

2. Data cleaning and preprocessing:

Noise or inconsistent data are removed;

Missing data fields are handled;

Time sequence information is handled.

3. Data transformation

Useful features of data are found;

Data are transformed and consolidated into forms appropriate for mining.

4. Data mining

The essential process where intelligent methods are applied to extract data patterns.

5. Pattern evaluation

The truly interesting patterns representing knowledge are identified.

6. Knowledge presentation

The visualization of mined knowledge is represented to users

These steps are universal for most of data mining processes. Different applications of

data mining may contain all or part of the steps according to practical need.

 17

3. Design

This chapter describes design thoughts and related technology used. Architecture of

system will be illustrated. Then, specific function design and modules will be drawn in

accordance with system requirements.

3.1. Overview of design

As mentioned in Section 2, there is lack of a ready-made system which covers the aims

of receiving real time data, topic mining and topic evolution tracking entirely at the

moment. What we focus on is to create a complete and coherent system satisfying the

above aims. The system can benefit commercial organizations, government organizations

or media workers by helping them understand text information from social platforms and

track popular trends the public are interested in, especially hot topics being discussed in

social network.

According to requirements above and features of social text we mentioned in Section 2.1,

fundamental demands for the system design should include:

1. Receiving social media text and storing them continuously and dynamically.

2. Preprocessing raw text for the mining task in the next step, such as removing stop-

words and meaningless symbols.

3. Mining topics from social texts, based on existing algorithms.

4. Tracing topic evolution, including topic creation, elimination, merge, and split,

which are mainly aimed at data divided into time periods.

5. Managing and monitoring mining processes which are configurable and working

automatically. For instance, time-scheduled processes for mining topics and

tracking their evolution.

6. Presenting results visually. So user can view the result as graphs and charts.

7. Core mining and tracking functions can be extended in order to consider existing

different algorithms.

3.2. Related Technology

On the basis of requirements we mentioned above, several common technologies are

chosen to support development of the system.

 18

3.2.1. Java EE Web Application

Java is a type of programming language being applied in many areas since its creation in

the 1990s. It is well known for being Object-Oriented, platform independent and

architecture neutral. There are a large number of third-party frameworks, libraries,

toolkits based on Java. Most of data mining and machine learning platforms are

implemented by Java or have their Java versions, which helps us to develop a system

based on these toolkits.

Java Platform, Enterprise Edition (Java EE) is the standard in community-driven

enterprise software [Java EE, 2016]. It provides a technical standards and interface for

enterprise application development. Java EE is developed with contributions from

industry experts, commercial and open source organizations, Java User Groups, and

countless individuals [Java EE, 2016].

Figure 3.1. C/S and B/S Layer Architecture of Java EE

Java EE has two types of layered architectures, B/S and C/S. Nowadays, most of Java EE

applications are B/S structure. Advantages of B/S structure are that it is cross-platform

and distributed. Users have no need to install client programs and can easily access

applications anywhere with the browser. The end results of text mining should be

 19

presented to users using graphics. HTML and Javascript are applied in a wide range of

GUIs in B/S systems, which is the base of visual presentation of topic mining results.

Storing text data is an indispensible precondition for text mining. Therefore, a database

is necessary for the system. Java has native support to database operations. JDBC (Java

Database Connectivity) is in common use for applications accessing databases. Nearly

all types of databases are supported by JDBC. Some useful big data tools are also based

on Java, such as the Hadoop framework, which is famous for having an essential role in

big data processing nowadays.

3.2.2. Restful Webservice

The system needs an interface running continuously to receive text data from other

applications collecting social texts, which means we need a relatively common and easy-

to-use interface standard. Meanwhile, inner subsystems of the whole system also need a

common communication mechanism. Webservices are a practical choice.

Webservices are platform independent, low coupling and self-describing. They are based

on HTTP protocol to transfer data and could be described by XML. Webservices enable

programs running on different machines or domains to transfer data without any other

third-party software, which provides a common mechanism for integration between

various heterogeneous systems.

Restful Webservices is one mainstream of Webservices. They directly use stateless HTTP

protocol for transferring and adopting default HTTP methods (Get, Post, Put, Delete) to

operate resources. They are independent of programming languages. Deployment and

maintenance are very convenient.

Figure 3.2. Sample of typical REST Webservice invoke operation [Rodriguez, 2008]

 20

A typical invoking process of REST Webservice is shown above. A Client requests to

get resource from a Webservice server and a server responses with XML data. Requests

and Responses are transferred by HTTP.

3.2.3. Node.js

The system needs to accept text data continuously. Therefore, the interface of receiving

social text data should be running continuously. Meanwhile, the amount of data being

received may increase sharply at a time when some critical social events happen. Thus,

the interface program is required to undertake high load. Node.js is a proper solution for

it.

Node.js is an open-source and cross-platform JavaScript running environment which can

be used for server and web applications. Nowadays, it has been widely used to build data-

intensive applications because it is convenient to develop quick responding and easy to

extend web applications. Due to it being based on JavaScript, its event mechanism

reduces complexity of development and improve performance at the same time. Node.js

can optimize throughput and scaling of an application. These features make it useful in

real-time programs and it is also the first choice to build a REST Webservice program.

3.2.4. Mallet Toolkit

Text topic models have relatively mature theories since they were proposed in the late of

1990s. It has many implementation of different programming languages so far. Basing

on existing toolkits will vastly increase our developing efficiency.

MALLET is an open source Java-based toolkit for statistical natural language processing,

which includes text classification, clustering, topic modelling, information extraction,

and other machine learning applications for text. It is developed by University of

Massachusetts and it has become a relatively popular text mining tool in recent years.

The MALLET topic modelling toolkit contains efficient, sampling-based

implementations of Latent Dirichlet Allocation, Pachinko Allocation, and Hierarchical

LDA [McCallum and Kachites, 2002]. The MALLET topic model package includes an

extremely fast and highly scalable implementation of Gibbs sampling, an efficient

method for document-topic models [McCallum and Kachites, 2002].

3.2.5. Interface design model

Topic mining is a mature area as we mentioned in Section 3.2.4. There are several

mainstream algorithms we have used, such as LDA and PLSA. There are also improved

 21

versions of these algorithms, such as the LF-LDA which uses training corpus to improve

accuracy and DMM which aims at short text [Nguyen, Billingsley, Du and Johnson,

2015]. These algorithms have their features to work in different situations. They are able

to extend scope of application of our system. The design model should be considered to

be fit for it and make the system extendable.

Interface Design Model is a design model packaging concrete service providers. A

problem that invokers often face is to use a service provided by another instance, but we

are not able to determine which class the instance belong to. The common solution is to

abstract the instance to an interface which can be called Service Provider. Thus, the

invoker can use the interface instance to get service. The degree of the system coupling

will be reduced because invoker class does not rely on any concrete service provider.

Meanwhile, the independence of the interface enables changing the concrete service

providers.

Figure 3.3. Interface Design Model

A sample diagram shown above presents that the invoker only need to interact with topic

mining service interface, concrete classes of mining algorithms can be chosen by different

situations or option parameters. As to our system, there are three main processes, text

preprocessing, topic mining and evolution tracking. Every process should be extendable.

For example, there may be requirements to deal with text from different language in text

preprocessing. Technology of removing stop-words are different between English and

Chinese. Besides, the topic mining process can have diverse algorithms to support various

types of texts, such as short text and long text. These situations demand system design

considering scalability, maintainability and possibility of the secondary development.

3.3. Architecture of system

According to targets of the system and technology standards we mentioned before, a brief

diagram of module layer is shown as below.

 22

Figure 3.4. Diagram of system module layer

 23

 24

The whole system contains three subsystems, console, text mining core and text

Webservice interface.

The main function of Text Receiver is to receive social texts from other sources. The

sources can be some sort of web crawlers which crawl texts from pages of social websites

or from social platform API, such as Twitter API [Twitter, 2016]. The Text Interface will

be running continuously and uninterruptedly, which can insure receiving any text from

any sources around the clock. The only need to send text data is to adhere to the format

of REST Webservice of Text Interface.

Console consists functions for mining task management, visual presentation of results

and exception monitoring in mining and evolution tracking process. The Mining Core

module undertakes mining and tracking tasks. The interface of Mining Core receives

commands from Console and creates tasks of text mining and tracking. The task

scheduler is responsible of running tasks of mining and tracking regularly. The mining

function is based on LDA algorithm mentioned in Section 2.2.2 and the evolution

tracking function is based on algorithm mentioned in Section 2.3.2.

Results of topic mining and tracking will be persisted in database. The Console will also

access these data and present them in graphic ways. In addition, any errors or exceptions

that happened in mining or tracking processes will be recorded in database. There is a

view in Console to check the information.

 25

Figure 3.5. Diagram of system tasks

Three subsystem have each own duty and communicate with each other by Webservice

interface. The blue dashed line areas mean different domains. Three subsystems will run

in separated server domains because their tasks are relatively independent. Text interface

only undertakes functions of receiving social text and persistence in database directly,

which has no relationship with the others. Meanwhile, text mining and evolution tracking

are highly resource-consuming tasks. They may affect other functions working if they

run in the same server.

3.4. Modules of function

Functions of the system mainly include text receiving, text preprocessing, topic mining

and evolution tracking. After that, users can view results by visualization module. In this

section, we present main functions of the system by program flow diagrams.

3.4.1. Text receive

The task of text receiving is conducted in Text Receiver which is implemented in Node.js.

It will be running as an independent server. Text Receiver receives social texts from other

 26

programs invoking. Then, abnormal characters will be removed, such as £ (pound),

$ (dollar) and some character emotes. Later, raw texts will be stored in database and

prepared for next step process.

Figure 3.6. Flow diagram of social text receive via interface.

3.4.2. Management of mining task

Execution of mining text topics and tracking evolution is performed by the mining and

tracking task (hereafter referred to as task). A task can have four types of status: non-

started, running, stopped and completed. The status of a task is non-started before running

the first time. Once a task is created and running normally, the work of topic mining and

tracking will be executed at regular times set by user. A task can be stopped when running.

Results of mining and tracking will still be saved after a task is stopped.

The diagram below illustrates relationships between task, topic and evolution:

 27

Figure 3.7. Diagram of task, topic and evolution relations.

Normally, start time and end time will be set for the task. In the time period of a running

task, the work of topic mining and tracking will be executed at the same time gap. The

same number of topics will be generated in every time of execution. Every topic contains

a certain number of key words of which number is set by users. Mined texts come from

raw texts collected in this time period. At the same time, topic evolution relations will be

tracked between now and the prior period.

Create new mining task:

Users create a new task with Console. Input parameters mainly include number of topics

in mining, number of key words, time gap of mining, and other related parameters.

Creation command will be sent to the Mining Core subsystem. Mining Core will set a

time schedule for the task. Once task has started, it is under monitoring. The first time of

running the task is after the first time gap.

After Mining Core returns successful results, Console will persist the task in the database.

The exception information will be shown if there is any error.

 28

Figure 3.8. Flow Diagram of Create New Task

Stop mining task:

Stop command will be sent to Mining Core after users choose to stop a task. The schedule

of the task will be stopped and never be restarted. The task status will be changed to

Stopped after Mining Core returns a result. Topics which have been generated will be

saved. Users can still view results of the past.

 29

Figure 3.9. Flow Diagram of Stop Task

Delete mining task:

Delete command will be sent to Mining Core after a user choose to delete a task. Mining

Core will stop the schedule of the task. Then, result will be returned to Console. After

that, the task will be deleted and the related topics and evolution relations will also be

deleted. All information about this task will be purged. This operation is unrecoverable.

 30

Figure 3.10. Flow Diagram of Delete Task

3.4.3. Execution of a task

The execution of a task of topic mining and tracking is conducted every time gap. The

whole execution includes three main parts: text preprocessing, text topic mining and topic

evolution tracking, which is similar to general data mining process mentioned in Section

2.4.

Firstly, the text preprocessing will be conducted in order to transform raw texts into

formats we need for mining. Hereon, word segmentation and stop-word removing are

executed in a sequence.

 31

Word segmentation and identifying word boundaries in continuous speech or text, is a

fundamental problem in Natural Language Processing (NLP) [Chen, Xu and Chang,

2011]. Simply, word segmentation will split a complete sentence into words, which is

fundamental to text mining as LDA is a model presenting text by set of unordered words.

For English, this process can be implemented by identifying spaces easily. There are

many ready-made libraries for word segmentation of other languages.

Sometimes, extremely common words appear to be of little value in text mining. These

words are called stop-words. Existence of stop-words will largely interfere results of text

mining. They need to be excluded from the vocabulary entirely. A common way to

remove stop-words is using stop-list to filter them before mining process.

Figure 3.11. An example list of 25 common English stop-words [Manning, Raghavan

and Schütze, 2008]

After text preprocessing, raw texts are transformed into texts which consist of unordered

single words and have no stop-words. These texts will be persisted in a database and used

in the next step.

Secondly, topic mining will run right after the preprocessing. LDA algorithm is the base

of mining as mentioned in Section 2.2.2. Mallet will be used as a ready-made library of

text mining. Topics being generated will be saved in database, organized by time

sequence and provided to usage in next step of evolution tracking.

Finally, evolution tracking will be operated between current topics and topics of the prior

period according to the algorithm mentioned in Section 2.3.2. If there are topics mined in

the prior period, evolution tracking will be conducted. Evolution relationships will also

be recorded in the database.

 32

Figure 3.12. Flow Diagram of execution of Mining and Tracking Task

 33

3.4.4. Other modules

Visual presentation:

Results of topic mining and tracking will be presented by a graph or a diagram. Topics

will be shown as nodes and there are lines between previous and next topics to indicate

evolution relations. Meanwhile, there is way to show heat of topics by adjusting the size

of node. Users can access a view in Console to see results.

Exception monitoring:

Error or exception in every task will be recorded in database. All of raw exception

information, occurrence time and stack information will be saved. Users can monitor

exceptions happened from Console view.

 34

4. Implementation

This chapter describes inner logics of each module and technology details. Meanwhile,

frameworks and tools used in the system are introduced. User interfaces and running

results are shown as well.

4.1. Text Receiver

Text receiver is responsible to receiving social texts from various data sources. For

examples, web crawlers of news medias or invokers of social platform API can be

adopted to achieve raw texts and send texts to Text Receiver. Text Receiver is an

independent interface which is deployed on server and running around all the time.

Invoke and result return of interface are operated by REST Webservice. Format of

message transported is XML which is common and widely popular in data transmission.

4.1.1. Express framework

Express is a simple and flexible development framework based on Node.js. It extends

basic functions of Node.js and, meanwhile, provides a series of powerful features to help

users create various web and mobile apps. For example, request and response component

for HTTP, route control and template parsing. These common features in web

development enable users to construct a complete web app quickly.

With the help of Express framework, we can create a Text Receiver interface fast without

support of other web containers or servers.

4.1.2. Input and Output of interface

Input message contains four parts: title, text, textCreatetime and tag. Among them, title

is not a compulsory XML node. It can be created by invoker of interface to identify each

piece of text. Text node is the main part of input message. Generally, it is raw text from

social media. The third node is creation time of this social text, which is important to

timely execution of mining task. Commonly, it can be acquired from social platform APIs.

The last node is used to specify data used by every task. All of raw texts being received

will be stored in the same table. Tags indicate which data is used by which mining tasks.

A mining task has tag attribute which enables it to collect raw texts with same tag for

topic mining.

<?xml version="1.0" encoding="utf-8"?>

<message>

 35

 <title>ForbesTech</title>

 <text>This new iOS feature means never unlocking your phone to text again

https://t.co/IroSqcdvaV https://t.co/97BZum1jUH</text>

 <textCreatetime>2016-09-18 14:12:00</textCreatetime>

 <tag>unique_twitter_source</tag>

</message>

After receiving the requests of texts, a basic process will be conducted to ensure that the

text can be stored in database, removing pound, dollar or other abnormal characters.

Successful output will be sent back to invokers if text has been stored into database

successfully. A sample is shown below.

<?xml version="1.0" encoding="utf-8"?>

<message>

 <result>success</result>

 <info>created successfully!</info>

</message>

If there are any errors or exceptions occurs, the value of the result node will be fail and

error info will be recorded in the info node. A sample output is shown below.

<?xml version="1.0" encoding="utf-8"?>

<message>

 <result>fail</result>

 <info>specific error info or stack trace info</info>

</message>

4.2. Management of Mining Task

As mentioned in Section 3.4.2, the task is the core part of topic mining and evolution

tracking in this system. User need to have interfaces to manage and monitor mining tasks

conveniently, viewing results as well. The function of Console in the system is basically

around the management (CRUD of task) and result visualization. Here we show the UI

implementation of task management and related technology we adopt.

4.2.1. Related technology

MySQL:

 36

MySQL is a famous and relatively popular relation database, member of Oracle, which

is widely applied into various types of websites, small or personal apps. With it maturing

gradually, more and more large websites have adopted it as database, such as Wiki,

Facebook. MySQL has features of small size, fast execution speed and open-source and

its community version is free for all developers. Therefore, it has been welcome broadly

by personal or small companies since it reduces development cost largely.

Spring:

Spring is an open-source Java framework which is found by Pivotal Software. It aims at

reducing complexity of enterprise application development. It provides light-weight IOC

(Inversion of Control) and AOP (Aspect Oriented Programming) features which benefit

any Java program development. Spring is committed to blend exist framework and

provide many built-in support for web development, such as JDBC DAO, MVC

framework and general transaction management.

Freemarker:

FreeMarker is a free Java-based Template Engine, originally focusing on dynamic web

page generation with MVC software architecture. It's become a general purpose template

engine so far, with no dependency on servlets or HTTP or HTML. It is also often used

for generating source code, configuration files or e-mails. It is often used in cooperation

with MVC framework, Structs, Spring, etc. Templates are written in the FreeMarker

Template Language (FTL), which is a simple, specialized language (not a full-blown

programming language like PHP) [Freemarker, 2016]. Freemarker is easy to learn and

has good performance. Meanwhile, its built-in functions are powerful to developers to

use conveniently.

Bootstrap:

Bootstrap is a popular Front-End framework based on HTML, CSS, JavaScript. It is often

used to develop web apps rapidly. Mobile-friendly and supporting most of browsers are

big features of it. It provides unique layout and web components for fitting browsers in

different device platforms. Meanwhile, Bootstrap is open-source and convenient to be

customised. There are many extensions of Bootstrap being created since it is a very hot

project in Github. In addition, its compatibility to JQuery is also perfect.

4.2.2. Front-End UI pages

The system provides a main view for management of tasks, which is also the main

interface of this system. Dashboard style is adopted to present the whole main interface.

 37

The list of tasks shows basic information of a task, such as task name, data tag (mentioned

in Section 4.1, used to collect corresponding data), time interval, start and end time. If a

task has not been executed yet, status should be not-started. If a task has been executed

once, but not completed, status should be running. Stopped status means this task has

been stopped ever. Completed status will be shown if the task has executed all required

time of mining process.

There are some entrances for other functions in the main view, including buttons for topic

tracking result presentation, exception report, stopping and deleting tasks. Side bar menu

provides navigation of the whole system, which links Dashboard, Creating A New Task

and System Settings.

Figure 4.1. Main page of the system

The page for creating new tasks is shown in Figure 4.2. Since the system aims at

collecting dynamic data from real-time data stream and mining and tracking process will

make process progress with time passing, start and end time should be future time. Total

number of execution of certain task will be decided by time length between start time and

end time, along with a time interval set by user.

Topic number defines number of mined topics in each of task execution process. Key

word number means how many key words are contained in one topic. Alpha and beta are

specific parameters for LDA topic model. They have been introduced in Section 2.2.2.

Data tag is a compulsory parameter for collecting respective texts, which should be same

with that in the message format (Section 4.1).

 38

As mentioned in Section 3.4.3, the execution process of a task consists of three parts:

preprocessing, topic mining and topic evolution tracking. The three parts of a process can

be configured and extended due to the system supporting secondary development for not

only LDA but various types of topic models. The system allows different algorithms or

the methods to implement three parts of task execution. Specific implementations for

each of the parts are integrated in source code and respective options will be configured

in web page. Among them, the mining component is necessary because topic mining is

the necessary part to be executed. The detailed implementation of three processes will be

explained in Section 4.3.

After filling the form for a new task, a request will be sent to the Mining Core (Section

3.3). The new tasks will be shown in the list of main page if the creation has been

successful by Mining Core.

Figure 4.2. The page for creating a new task

The user can choose to stop execution of a task from the main page. After doing so, the

execution of task will be stopped forever and the status of task will be changed but data,

including topics and evolution relations, will not be deleted. User still can view tracking

 39

results. A stop request will be sent to the Mining Core subsystem. Results will be returned

after Mining Core has completely stopped the task.

Figure 4.3. Stop a task and warning

If a task has been deleted, all data related to this task will be removed and is not

recoverable, except raw texts that the task uses for mining which need to be cleared from

database level manually. The delete request also will be sent to the Mining Core

subsystem.

Figure 4.4. Delete a task and warning

4.2.3. Class Diagram

Structure of classes in Mining Core which handle requests of task management are shown

in Figure 4.5. The design of the classes adopts Interface model. MiningTaskService is an

interface which provides method definitions for managing tasks for invoking.

 40

MiningTaskServiceImpl is the actual implementation class of MiningTaskService

interface.

The addMiningTask method responds to requests of creating a new task. After receiving

a request, the method invokes a checkDuplTask method to check whether there is a task

with the same name. If so, an exception is thrown. Otherwise, a new task information

will be created in database by doCreateSingleMiningTask method. After that,

scheduleJob method will be invoked to schedule a new and timely job by Quartz

framework.

The stopMiningTask method is responsible to handle requests for stopping tasks. After

receiving a request, the timing job which has been scheduled in the Quartz framework

will be deleted. If there is a job running currently, the job will be interrupted. Finally, the

status of task will be changed by updateMiningTaskStatus method.

The deleteMiningTask method responds to requests for deleting task. After a request

received, the timing job will be interrupted and deleted as stopping task operation. Then,

topics and evolution relations which have been mined will be deleted. Finally,

information of the task will be purged.

Figure 4.5. Class diagram of MiningTaskService

 41

4.3. Task execution process

4.3.1. Quartz framework

Quartz is a richly featured, open source job scheduling library by OpenSymphony. It can

be integrated within virtually any Java application - from the smallest stand-alone

application to the largest e-commerce system [Quartz, 2016]. As a job scheduling system,

Quartz not only can be integrated into other systems but it can also be running alone. It

has light-weight and flexible features which enable users to use it by simple installation

and configuration. Quartz has fault tolerance and persistence of scheduled job. Jobs can

be resumed even after server crash or restart.

4.3.2. Process component

As we mentioned in Section 3.2.5, the Interface design model will be adopted to enable

the system extensible and support secondary development of different topic algorithms.

Therefore, the whole mining executing process is divided into three parts described by

three interfaces. There are three interfaces shown in Figure 4.6.

The first one is PreprocessComponent which contains an interface method definition of

preprocessing. The method allows two input parameters: MiningTask, representing Java

bean of mining task, and rawTextList which is a List value containing RawText Java

bean. The method processes incoming raw text list and returns a text list being

preprocessed.

The second one is called MiningComponent which is a method definition for topic mining.

It allows two incoming parameters: the MiningTask bean and a text list. The output value

is a list of topics.

The third one is TrackingComponent which defines a method for topic evolution tracking.

The incoming parameters are mining task bean list of topics in prior time intervals and

list of topics in post time intervals. It returns a list of calculated topic evolution relations.

 42

Figure 4.6. Three interfaces of process component

QuartzMiningJob is a class for undertaking task execution, which implements a Job

interface in Quartz library. A class implementing the Job interface can be run by the

Quartz framework automatically according to the schedule set by the user. The Execute

method in the QuartzMiningJob will be run when a task is triggered on time. The method

covers the whole process of text preprocessing, topic mining and evolution tracking.

MiningTaskService is used to achieve information about the mining task. Three interface

components, preprocessing, mining and tracking, will be invoked in a sequence. Results

return by every steps will be stored in a database, including a list of text preprocessed, a

list of topics and a list of topic evolution relationships.

 43

Figure 4.7. Class diagram of QuartzMiningJob

4.3.3. Text preprocessing

The real implementation class of PreprocessComponent is

EnglishTwitterPreprocessService since we only adopt English as a language for text

mining, which means we only handle English texts in this system. The implementation

class processes raw texts by word segmentation and removing stop-words (Section 3.4.3).

Firstly, split texts are retrieved from database according to time and data tag. Secondly,

text is spilt into single words by blank space or punctuation. Then stop-words will be

removed according to a stop-word list integrated in the source code. Stop-words includes

common English vocabularies (pronoun, preposition, etc.) and common media

vocabularies, such as media name, press name and vocabularies about news report. If text

is totally made of stop-words, it will be ignored. Finally, a list of processed texts will be

returned.

 44

Figure 4.8. Preprocessing interface and implementation

4.3.4. Topic mining

MiningComponent is implemented by UsttmpDefaultTopicMiningService class. The

internal logic is the LDA topic model. Firstly, preprocessed texts will be retrieved from

data according to time and data. Then, texts will be sent into USTTMPTopicModel class

via format transition. Here, the main parameters are topic number in every time interval,

number of key words in each of topics and time of texts collected in this time of task

execution, all of which are acquired from the mining task. Finally, topics mined will be

returned after a series of operations of iteration, regression and calculation.

 45

Figure 4.9. Mining interface and implementation

Here we create USTTMPTopicModel class based on ParallelTopicModel which is a class

in Mallet library. It provides basic and original LDA methods for text mining.

USTTMPTopicModel is instantiated by choosing three parameters: number of topics in

one-time interval, alpha and beta. The last two are specific parameters for LDA model,

which have an impact on end results of topic mining to some degree.

Figure 4.10. Core class of LDA algorithm and extension

4.3.5. Topic evolution tracking

TrackingComponent is implemented by AssociationFilterEvolutionService class based

on algorithm in Section 2.3.2. Firstly, prior topics and post topics in the time interval of

current task execution will be retrieved. Then, associations will be built pairwise between

prior topics and post topics. After that, topic associations will be filtered by three levels

of rules according to Section 2.3.2. Valid topic evolution relations will be returned in the

end.

 46

Figure 4.11. Tracking interface and implementation

4.4. Result presentation

4.4.1. D3 framework

D3.js is a data visualization JavaScript library. Compatible with W3C standard, D3.js

widely supports HTML, SVG, and CSS. It shields differences between browsers and

enables developers to make cool diagrams with simple code. With the help of D3.js tool,

we are able to transit result data of text mining to a diagram easily on a web page.

D3 allows you to bind arbitrary data to a Document Object Model (DOM), and then apply

data-driven transformations to the document. For example, you can use D3 to generate

an HTML table from an array of numbers. Or, you can use the same data to create an

interactive SVG bar chart with smooth transitions and interaction. With minimal

overhead, D3 is extremely fast, supporting large datasets and dynamic behaviour for

interaction and animation. [D3.js, 2016]

4.4.2. Result visualization of mining and evolution tracking

A user can view the result of mining and evolution tracking of a task from main view of

the system. Data is visualized as diagram so that user can view results intuitively. The

diagram below shows a sample result of topic mining and evolution tracking of social

texts from Twitter.

 47

Figure 4.12. General view of mining and tracking results

Vertical bars represent topics mined in a period of time interval. Texts on diagram show

basic information of current task. Labels at the top of diagram show task execution time.

Length of bar indicates heat of topic. Longer bar means higher appearing probability of

topic in this group of topics. White box attached to topic bar shows all of key words that

topic contains. Bigger font of words and deeper colour mean higher weight of a word in

the group of key words. The user can adjust the position of a topic bar in vertical direction

for better viewing effect. Links between topic bars represent topic evolution relations

between topics. Relations can be inheritance, extinction, merge and split as mentioned in

Section 2.3.2.

4.5. Exception View

Whatever exceptions happen in the process of task execution will be logged into database,

including critical information. Users can access exception logs of a task from the main

view of the system. The table below shows the view of exception logs of a task. The list

shows the occurrence time of logging, the type of log (exception or critical info) and

specific information, such as a stack trace or a system error report.

 48

Figure 4.13. List of exceptions in the task process

 49

5. Test and Evaluation

This chapter describes testing of the system. The effectiveness of LDA for social texts

and the real running result of system will be validated. Therefore, some tests will be

conducted, including coverage of LDA for social texts, performance of the system and

presentation of the system functions in a real environment. Hereon, social texts from

Twitter are chosen as the data source.

5.1. Test environment

The platform of the test is on a laptop computer. The hardware and software environment

are described below.

CPU Intel(R) Core(TM) i3-3110M CPU @ 2.40GHz (2 cores)

Graphics Card Intel GMA HD 3000

Memory 8 GB

Harddisk 500 GB, 5400RPM

Figure 5.1 Hardware environment of the system

Operation system Ubuntu 14.04.1

Runtime environment Java 1.8.0_101

Node.js 0.10.25

Web Server Glassfish 4.1

Tomcat 8.0.36

Development framework Spring 4.2.5

Express 4.13.4

Figure 5.2 Software environment of the system

The system is Java-based. The Console of the system is continuously running on a

Tomcat server. Mining Core is running on Glassfish. Text Receiver interface is running

in the environment of Node.js.

5.2. Test runs and results

5.2.1. Topic coverage test

Social texts cover all aspects of our life, entertainment, sport, politic, etc. Topic coverage

test aims to validating LDA effectiveness for social texts using extensive contents in

social networks.

 50

We collected 20 categories of news texts in different fields from Twitter. Every category

contains 300 – 600 pieces of tweet. All data have been preprocessed, including removing

abnormal characters, punctuations, stop-words and word segmentation.

Figure 5.3. Preset categories of topics

After preparation of test data, three test persons were invited to attend the test. They were

asked to do a few evaluations against mining results. They needed to judge whether topics

mined can be categorized in those 20 categories above. The basic principle of the test is

their subjective judgements. They are encouraged to distinguish topics by first impression

as real viewers of social network.

There were four guidelines for test persons to judge topics but they didn’t need to obey

these rules very strictly. Subjective first feeling is fundamental.

1. If the test person considers two or more categories covered in a topic, then this topic is invalid.

2. If the test person considers there are many noise words or stop-words occurring in a topic,

then this topic is invalid.

3. The test person observes the first half of key words which hold higher weight relatively. If

the test person can judge which category it belongs to, then the topic can be categorized even

though there is noise data in the last half of key words.

4. If the test person can not judge a category of a topic by the first half of key words, then the

whole key words are observed. If the test person still can not judge it, then this topic is invalid.

 51

After recognition, if and only if a topic can be categorized in one single category among

those 20 categories, we call the topic a recognized topic. Otherwise, the topic is an

invalid topic.

In one-time task execution, we assume that the number of recognized categories (one

topic covers it at least) is c; the number of invalid topics is u and the total number of

topics mined is m. So coverage and validity ratio can be expressed as below.

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
c

20

𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =
m − u

m

Tests are conducted by four different groups of parameters which includes topic number

in one task and number of key words contained in a topic. Raw test results, coverage and

validity ratio are shown as below.

Figure 5.4. Test results of 20 topics and 10 key words

Figure 5.5. Test results of 30 topics and 10 key words

 52

Figure 5.6. Test results of 20 topics and 20 key words

Figure 5.7. Test results of 30 topics and 20 key words

The average coverages and average validity ratios are in the table below.

 20 topics –

10 key words

20 topics –

20 key words

30 topics –

10 key words

30 topics –

20 key words

Average

Coverage

80.83% 81.67% 95.56% 95.56%

Average

Validity Ratio

83.33% 85.83% 80.00% 79.44%

Figure 5.8. Comparison of average coverages and average validity ratios in 4 groups of

parameters

According to Figure 5.8, we can see both coverage and validity are nearly above 80%. It

is definitely acceptable since most of preset categories are covered by mining results.

Meanwhile, increasing the number of topics in tasks will significantly raise coverage but

validity ratio will decrease to small extent. The number of key words has no obvious

effect on results. It also implies that a few of high-weight key words might be meaningful

enough to viewers.

5.2.2. System test

The system test will validate three main parts of the system using a real data stream,

including receiving social text, topic mining and evolution tracking. It tests whether the

system operate well entirely as expectation.

For a data source of real social texts, an independent web crawler will be adopted. It is

running continuously, collecting and sending news texts of a whole day to Text Receiver

interface by the mid-night of everyday. The crawler gets news from above 100 medias’

 53

Twitter accounts. The language of texts is English. Most of them are from British,

American and Chinese news medias.

Two mining tasks are created and their running results are observed. The parameters of

every task are shown below. One task executed every three days and the other one

executed per week. The LDA parameters, α and β, are set to 5.00 and 0.01.

Figure 5.9. List of two mining tasks

The two tasks ran smoothly more than one month. Finally, the two tasks were completed

successfully. Results are presented below.

Figure 5.10. General view of the task of Twitter tracking per 3 days

 54

Figure 5.11. General view of the task of Twitter tracking per week

As the diagrams show, the tasks executed every time interval, mined topics from tweet

texts and tracked evolution relations. There are obviously more topic evolution

relationships in the first time interval. An important factor is the Rio Olympic Games

being held in the middle of August. Therefore, many topics about the Olympic Games

are mined and evolution relations are complex and massive. This result fits with a realistic

situation. Meanwhile, five types of evolution relations have been detected as mentioned

in Section 2.3.2

Figure 5.12. Inheritance of topics

In Figure 5.12, topics about US Election were always being talked and kept relatively

high heat among all topics. The US Election topics are inherited by similar topics and

continue along with timeline.

Figure 5.13. Creation and extinction of topics

 55

In Figure 5.13, a topic about Florida hurricane is created at Sep 3rd and became extinct at

Sep 6th because of no post topic was following it.

Figure 5.14. A split of topics

In Figure 5.14, a topic about the Rio Olympic Games was split into two topics. One

focused on basketball teams and medals. The other one followed the final ceremony and

the career of athlete Usain Bolt.

Figure 5.15. A merge of topics

In Figure 5.15, two topics about Clinton and Trump’s policies in election merged into

one topic about election campaign.

5.2.3. Performance

A vast number of social texts emerging in cyberspace require efficiency. A performance

test will measure response speeds of the system under different levels of load. It is an

essential standard of system applicability. We divided it into four parts, response speeds

of text receiving, preprocessing, topic mining and evolution tracking. Test results are

shown below.

 56

Figure 5.16. Average time of receiving a tweet

Figure 5.17. Diagram of average time of receiving a tweet

As Figure 5.17 shows, number of tweets being received by the interface is increasing

from 372 to 11871. The average time for receiving per tweet was stable between 78ms

and 86ms. The speed is acceptable because the main program functionality for receiving

texts is a database operation and performance of test server was limited.

Figure 5.18. Average time (per tweet) of each process of mining task

Figure 5.19. Diagram of average time of preprocessing

 57

Figure 5.20. Average mining times

Figure 5.21. Average evolution tracking times

Figure 5.22. Average complete task times

Average processing times per tweet in the entire mining task and three sub-processes are

shown in Figures 5.19 – 5.22. We can see that the preprocessing time accounts for the

most part of the entire time and the evolution tracking is the least part. The average time

per tweet for the entire process is around 60ms. So the system can approximately handle

10000 tweets in 10 minutes. Meanwhile, average processing times significantly decrease

with the growth of number of texts. It fits with general performance regulations of

common systems. It’s fairly a good result, considering the limited computation power of

the test platform.

 58

6. Evaluation and discussion

6.1. Evaluation of system

A vast amount of social texts are available in the cyberspace. The amount of data is

constantly increasing. We urgently need some tools to extract information from massive

social data. Text mining is a relatively new and exciting way to solve the information

overload problem by using techniques of data mining. Text mining involves the

preprocessing of document collections, the storage of the intermediate representations,

the techniques to analyse these intermediate representations, such as distribution analysis,

clustering, trend analysis, and association rules, and visualization of the results [Feldman

and Sanger, 2006].

Creating an entire and applicable system to mine text topics in social networks is

beneficial to helping cyber users or media workers to extract useful information quickly

and conveniently. The system has covered several main parts of text mining, including

text collection, topic mining, evolution trend tracking and visualization. It helps users to

detect occurrences and evolution trends of social topics. Thus, it will be beneficial to

understanding effects of social medias on the public.

Algorithms are the core of solving topic mining and tracking and information extraction.

Making use of existing algorithms to implement mining and tracking functions is a

essential part of the system. By manual identification, test results of the system have been

recognized by real viewers successfully. LDA topic mining has been proven to be

effective for social texts.

Human-centric text mining emphasizes the centrality of user interactivity to the

knowledge discovery process [Feldman and Sanger, 2006]. As a consequence, text

mining systems need to provide users with a range of graphical approaches for interacting

with data [Feldman and Sanger, 2006]. This demands designers of text mining systems

to create more sophisticated visualization approaches to facilitate user interactivity.

By diagrams in Section 5.2.2, we can see that mined topics and detected evolution

relations are very meaningful to humans. Evolution tracking explicitly reveals

associations between prior topics and post topics. Meanwhile, length of the bar, font size

and color of the word show heats of topics and weights of key words in a user friendly

manner. These illustrate that the system is helpful to people to track trends of social texts.

Progress has been made steadily by researchers in the field of information retrieval. As

to the field of topic mining, many useful algorithms have been created and put into

 59

practice within approximate in a decade, from TF-IDF [Salton and McGill, 1986], PLSI

[Hofmann, 1999] to the important LDA model [Blei, Ng and Jordan, 2003]. In addition,

there are many improved versions of basic algorithms for different application targets.

Therefore, there is a need to handle requirements of different algorithms.

The system does not implement several topic mining algorithms but it provides the

support of development by adopting the Interface design pattern. Developers can make

implementations of the three process components (Section 4.3.2) so as to construct

concrete algorithms and enable users to choose respective options in the web page by

configurations.

In the performance test (Section 5.2.3), mining and tracking processes are very fast in

real tests. The largest consumption of resources comes from accessing and writing the

database. Average process times significantly decrease in Figure 5.19-5.22 with the

growth of number of texts. It fits with general performance regulations of common

systems and the times became stable after a period of running. It obviously means that

database has become the bottleneck and affected further improvement of execution

efficiency.

Although the computer for deployment has no high performance, system test still

performs favourable effects. All tasks can run successfully and smoothly around the time.

For mining tasks with relatively longer intervals, there were no performance issues in

tests. More frequent tasks have not been adopted to test the ability of system handling

high load.

There are some systems to mine topics and demonstrate the evolution visually. For

example, D-VITA, which is mentioned in Section 1, is a system to support users

exploring and interacting with numbers of documents. It can extract topics hidden in the

texts and highlight the evolution of selected topics. However, it only works on prepared

and ready-made data. The main difference between this system and other similar systems

is the ability to handle dynamic data. This feature is significant to receive real-time texts

from social platforms so the system is able to react with changes of hot topics discussed

timely. In comparison with common systems of public opinion monitoring, this system

mines topics unbiasedly and discovers topic evolution from general aspects. Systems of

public opinion monitoring aim at certain topics (set by users usually) so as to monitor or

censor contents people focus on.

In general, the system operates well and smoothly in a real environment. Existing

algorithms have been demonstrated to be effective for social texts. The system

 60

successfully covers the whole process of social text mining, including receiving real-time

texts, topic mining and continuous evolution tracking as expected. Meanwhile, an

applicable user interface is provided for control and viewing results.

6.2. Discussion of system development

The system development includes several stages, including initial technology validation,

architecture design, iterative development and detail improvement. The main process of

development lasted approximately 4 months.

Firstly, LDA algorithm in Mallet library (Section 3.2.4) had been validated preliminarily

on some sample data. Then, the system architecture design was drawn according to

system goals and social text features, in combination with writer’s developing experience

as well.

For the development of the system, iterative model [Larman and Basili, 2003] was

adopted. Frameworks of each system were constructed. After assuring they worked and

communicated well, Console was developed first. When user interface had been built,

the development continued to Mining Core. After testing core functions of topic mining

and evolution tracking successfully, the Text Receiver interface was constructed

continuously. Finally, details were improved and bugs were fixed.

The system architecture is Java-based because Java is a popular language being applied

in many areas widely and there is a favourable software ecosystem built on it. It means

that there are various perfect frameworks and tools developed using Java to help

developers to build their applications, including most of data mining platforms’, language

processing tools’ and mining algorithms’ implementation. Considering the convenience

from users’ aspect, B/S application is easy to use. Users do not need to install client

software on local computers and just operate the system directly by browsers. Therefore,

Java EE, which is one of the most popular B/S architectures, will facilitate the system

development. In addition, Java provides native support to multiple threads, which

benefits parallel running of multiple mining tasks.

One of the key parts of the system is integration of algorithms and the system. Although

Mallet library already has a ready-made LDA algorithm, the data format of it was not

compatible with our system. Mallet only can handle static text files in local computers

and output text files as well. So there was a demand to transfer the data format to what

we need. The source code of Mallet was investigated and core classes of LDA were

extracted. After packaging core classes, we used them in our system.

 61

The other key part was the visualization of results. A friendly and concise diagram will

benefit user viewing of mining results. The core of this part is a transition from data to

diagrams. As HTML5 and JavaScript become more and more popular and powerful,

gorgeous diagrams or graphics could be implemented on the web pages. So we chose the

D3 (Section 4.4.1) as our diagram framework.

The idea of diagrams for topic tracking is inspired by the Sankey Diagram [Bostock,

2012]. However, links between bars are weight-fixed here. The length of bars is used to

represent heats of topics. The box containing key words is from common tag clouds. In

addition, the layout of the diagram has been optimized to make bars connected to links

more concentrated so that users can view results distinguishingly. However, the way of

adjusting layouts is not perfect due to time limitation. There are still some links crossing.

For the text interface, its inner logic is relatively simple but there are always demands of

high concurrency load on it in real application. Thus, Node.js provides a fine approach to

handle these problems with lower resource costs. Meanwhile, from the writer’s actual

perception, Node.js is easy to learn and development efficiency can be enhanced by its

JavaScript features. Node.js has been widely used to build data-intensive applications so

far because it is convenient to develop quick-responding and easy-extending web

application.

Inner communication in the system is via Webservice interfaces. Three sub systems adopt

general interfaces and the same message format. Considering the possibility of frequent

interaction and monitoring, using unified interfaces is beneficial to lower difficulty and

complexity of development.

6.3. Limitation and improvement

In the test, the coverage of LDA is above 80% and the validity ratio is also in the range

we can accept. There is still room for improvement. Many duplicated topics in time

intervals will make the results of evolution tracking messy to viewers.

As mentioned before, there are various versions of topic mining algorithms. Evolution

tracking methods are also keeping advance with the times. Meanwhile, there are demands

for the preprocessing of different languages. All of these can be completed by

implementing three process component interfaces. We can expect better algorithm

performance and more specific preprocessing to languages by development from other

researchers.

 62

Although performance figures are acceptable, there is need to improve the performance

of the database. In the whole system, the most time-consuming part is the preprocessing

because it contains most database operations. As we know, we are in the time of big data.

In practice, the number of texts is to be analysed by millions, even billions. How to

improve DB performance is a big issue in data-intensive systems. According to real

situations, some common DB optimization technologies can be adopted, such as database

sharding, using database procedures, database clusters, etc. Some distributed storage

systems can also be considered, such as Hadoop.

In the test of the system, we only used default parameters or experience settings. Whether

and how they have effects on results have not been validated sufficiently. Meanwhile, we

only tested the system for the time up to one month. Therefore, there are more evaluations

and longer time tests required in the real environment.

In addition, the system is a prototype so far and there may be a need to change with new

requirements. There are also some bugs and some details to be elaborated if we want to

put the system into wider practice.

 63

7. Conclusions

This thesis presents an entire and coherent system which conducts topic mining and

evolution tracking for dynamic social texts. The system functions include receiving texts

from real-time data stream, mining topics, tracking topic evolution timely and

visualization of results. Algorithms for topic mining and evolution tracking are chosen

from existing research achievements. The thesis also demonstrates the processes of

design and development of the system. Tests were conducted to validate functions of the

system. Finally, evaluation and discussion were drawn according to test results.

In the last decade, social platforms developed with incredible speed and they play more

and more important roles in the life of the public. Mining the meaning of text on social

media draws attentions in both humanities and IT areas. Text topic mining is a useful

approach to discover information from a massive amount of texts. In general, existing

algorithms are effective in mining of topics, but there is more room for timely and

dynamic mining of text topic and also lack of applicable work on entire solution.

Some literature has been presented about the social network, social texts and data mining

process. So far, LDA (Latent Dirichlet Allocation) is a mainstream algorithm in the area

of text topic mining, raised by Blei in 2003. It has been widely applied to topic mining

process in various fields. Topic evolution method based on association filter by Qin [Qin

and Le, 2015] is a new type of simple, effective topic tracking method and it is easy to

implement. It is based on the LDA model. It shows obviously advantages over former

ways. Hereon, we chose these two as the methods we integrated in the system.

The system is based on Java EE and B/S architectures. The whole system contains three

subsystems, Console, Mining Core and Text Receiver interface. Each of them runs in an

independent domain and perform their own functions. The mining task is the core of the

system organization. It runs timely and continuously to execute each process of topic

mining. Results of topic mining and tracking are persisted in database. Users can access

these data and visualize them. Any errors or exceptions happened in mining or tracking

processes will be recorded in database. The development achievement has been shown in

this thesis, including user interfaces, related frameworks, class diagrams and running

results. In addition, the system also supports the secondary development of each process

and adopts some technologies, such as Node.js, Mallet, Restful Webservice, etc.

Tests were conducted after the system development. Topic coverage, system functions

and performance tests are included. Test results indicated that LDA is effective to topic

mining of social texts but there is still room for improvement. Results of evolution

 64

tracking algorithm are meaningful to viewers. The performance figures are acceptable.

There is a need to improve performance of the database, especially in the preprocessing.

In general, the system operated well and smoothly in a real environment. It successfully

covered the whole process of social text mining, including receiving real-time texts, topic

mining and continuous evolution tracking as expected. In addition, an applicable user

interface is provided for control and for viewing the results. However, there is still room

for system improvement and sophistication, since the system is a prototype. There is a

need to change with real requirements if the system is put into practice and a lot of real

tests should be performed in order to guarantee it is functioning well.

 65

References

[Asuncion, Welling, Smyth and Teh, 2009] Asuncion, M. Welling, P. Smyth, and Y. Teh,

On smoothing and inference for topic models. In: Proc. of the Twenty-Fifth

Conference on Uncertainty in Artificial Intelligence, 2009.

[Blei, Ng and Jordan, 2003] David M. Blei, Andrew Y. Ng and Michael I. Jordan, Latent

Dirichlet Allocation. Journal of Machine Learning Research, 3, 2003, 993-1022.

[Bostock, 2012] Mike Bostock, Sankey Diagrams. Available at

https://bost.ocks.org/mike/sankey/

[Chen, Xu and Chang, 2011] Songjian Chen, Yabo Xu and Huiyou Chang, A Simple and

Effective Unsupervised Word Segmentation Approach, Proceedings of the Twenty-

Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco,

California, USA, August 7-11, 2011

[Clifton, Cooley and Rennie, 2004] Chris Clifton, Robert Cooley, Jason Rennie, TopCat:

Data Mining for Topic Identification in a Text Corpus. IEEE Transactions on

Knowledge and Data Engineering, 16(8), 2004, 949-964.

[Cui, 2013] Anqi Cui, Study on Public Sentiment Analysis of Events in Microblogs, 2013

[Cui, Li, Shi, Song, Gao, Tong and Qu, 2011] Weiwei Cui, Shixia Liu, Li Tan, Conglei

Shi, Yangqiu Song, Zekai J. Gao, Xin Tong and Huamin Qu, TextFlow: Towards

Better Understanding of Evolving Topics in Text. IEEE Transactions On

Visualization And Computer Graphics, 17, 2011, 2412-2421.

[D3.js, 2016] Mike Bostock. Data-Driven Documents. Available at

https://d3js.org

[Elshamy, 2013] Wesam Samy Elshamy, Continuous-time Infinite Dynamic Topic

Models, 2013.

[Feldman and Sanger, 2006] Ronen Feldman and James Sanger, Text Mining Handbook:

Advanced Approaches in Analyzing Unstructured Data. Cambridge University

Press, New York, NY, USA, 2006.

https://bost.ocks.org/mike/sankey/
https://d3js.org/

 66

[Freemarker, 2016] Apache software foundation. What is Freemarker. Available at

http://freemarker.org

[Gimpel, 2006] Kevin Gimpel, Modeling Topics, 2006

[Griffiths and Steyvers, 2004] Thomas L. Griffiths and Mark Steyvers, Finding Scientific

Topics. Proceedings of the National Academy of Sciences, 101(S1), 2004, 5228-

5235.

[Gunnemann, 2013] Nikou Gunnemann, D-VITA: A Visual Interactive Text Analysis

System Using Dynamic Topic Mining, 2013.

[Han and Kamber, 2006] J. Han and M. Kamber, Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers, 2006.

[He, Chen, Du and Jiang, 2015] Jianyun He, Xingshu Chen, Min Du and Hao Jiang,

Topic evolution analysis based on improved online LDA model. Journal of Central

South University (Science and Technology), 46(2), 2015, 547-553.

[Hoffman, Blei and Cook, 2009] Matthew D. Hoffman, David M. Blei, and Perry R.

Cook. Finding latent sources in recorded music with a shift-invariant hdp. In: Proc.

of International Conference on Dig- ital Audio Effects (DAFx), 2009.

[Hofmann, 1999] Thomas Hofmann, Probabilistic latent semantic indexing. In: Proc. of

the 22nd annual international ACM SIGIR conference on Research and

development in information retrieval, New York, 1999, 50–57.

[Hu and Chen, 2014] Jiming Hu, Guo Chen, Mining and Evolution of Content Topics

Based on Dynamic LDA. Library and Information Service, 58(2), 2014, 138-142.

[Hu, 2014] Xuan Hu, Research on the Analysis of Microblog Information Based on Text

Clustering, 2014.

[Huagong, 2012] Huagong, Brief introduction to LDA topic model. Available As:

http://blog.csdn.net/huagong_adu/article/details/7937616

[Indarto, 2013] Eko Indarto, Data mining, 2013. Available at

http://recommender-systems.readthedocs.io/en/latest/datamining.html#lit6

http://freemarker.org/
http://blog.csdn.net/huagong_adu/article/details/7937616
http://recommender-systems.readthedocs.io/en/latest/datamining.html#lit

 67

[Java EE, 2016] Oracle Inc. Java EE at a Glance. Available at

http://www.oracle.com/technetwork/java/javaee/overview/index.html.

[Kakkonen, Myller and Sutinen, 2006] Tuomo Kakkonen, Niko Myller, and Erkki

Sutinen, Applying latent dirichlet allocation to automatic essay grading, In

Proceedings of the 5th international conference on Advances in Natural Language

Processing (FinTAL'06), Tapio Salakoski, Filip Ginter, Sampo Pyysalo, and Tapio

Pahikkala (Eds.), Springer-Verlag, Berlin, Heidelberg, 110-120, 2006.

[Larman and Basili, 2003] Craig Larman and Victor R. Basili, Iterative and Incremental

Development: A Brief History. Computer 36, 6, June, 2003, 47-56.

[Li, Dai, Lai and Dai, 2011] Xiaoyu Li, Guanzhong Dai, Shuang Lai and Hang Dai, Hot

Topic Detection in Chinese Web Forum Using Statistics Approach. In: Proc. of

Signal Processing, Communications and Computing (ICSPCC), 2011 IEEE

International Conference on Date of Conference, Xi'an, 14-16 Sept. 2011, 1-4.

[Lienhart, Romberg and Horster, 2009] Rainer Lienhart, Stefan Romberg and Eva

Horster, Multilayer PLSA for multimodal image retrieval. In: Proc. of the ACM

International Conference on Image and Video Retrieval, New York, 2009, 91-98.

[Liu, 2010] Xingliang Liu, Dissemination Mechanism of Weibo and Thinking of future

development. News and Writing, 3, 2010, 43-46.

[Luo and Li, 2014] Le Luo and Li Li, Defining and Evaluating Classification Algorithm

for High-Dimensional Data Based on Latent Topics, 2014.

[Mai, 2012] Yihua Mai, Chinese Microblog Oriented Social Network Analysis and

Application, 2012.

[Manning, Raghavan and Schütze, 2008] Christopher D. Manning, Prabhakar Raghavan

and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University

Press. 2008.

[McCallum and Kachites, 2002] McCallum, Andrew Kachites, MALLET: A Machine

Learning for Language Toolkit, 2002. Available at

 http://mallet.cs.umass.edu

http://www.oracle.com/technetwork/java/javaee/overview/index.html

 68

[Minka and Lafferty, 2002] Thomas Minka and John Lafferty, Expectation-propagation

for the generative aspect model, In Proceedings of the Eighteenth conference on

Uncertainty in artificial intelligence (UAI'02), Adnan Darwiche and Nir Friedman

(Eds.). Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, 352-359, 2002.

[Monay and Gatica-Perez, 2004] Florent Monay and Daniel Gatica-Perez. PLSA-based

image auto-annotation: constraining the latent space. In: Proc. of the 12th annual

ACM international conference on Multimedia, New York, NY, USA, 2004, 348–

351.

[Nallapati and Cohen, 2008] Nallapati R, Cohen W. Link-pLSA-LDA : A new

unsupervised model for topics and influence of blogs, May 23, 2008. Available as:

http://videolectures.net/icwsm08_nallapati_plsa

[Nguyen, Billingsley, Du and Johnson, 2015] Dat Quoc Nguyen, Richard Billingsley,

Lan Du and Mark Johnson, Transactions of the Association for Computational

Linguistics, 3, 2015.

[Qin and Le, 2015] Xiaohui Qin and Xiaoqiu Le, Topic Evolution Research on a Certain

Field Based on LDA Topic Association Filter. New Technology of Library and

Information Service, 31(3), 2015, 18-25.

[Qin, Dai and Li, 2006] Sen Qin, Guanzhong Dai, Yanling Li, Design and

Implementation of Web Hot-Topic Talk Mining Based On Scale-Free Network. In:

Proc. of International Conference on Machine Learning and Cybernetics, Dalian,

China, 13-16 Aug, 2006, 1184-1189.

[Quartz, 2016] Terracotta, Inc. What is the Quartz Job Scheduling Library. Available at

http://www.quartz-scheduler.org

[Ren, 2015] Tiangong Ren, Research on Retweet Predicting Based on Social Network,

2015.

[Rodriguez, 2008] WSO2 Inc. Webservice based on REST. Available at

https://www.ibm.com/developerworks/cn/webservices/ws-restful/

[Salton and McGill, 1986] Gerard Salton and Michael J. McGill, Introduction to Modern

Information Retrieval, 1986.

http://videolectures.net/icwsm08_nallapati_plsa
http://www.quartz-scheduler.org/
https://www.ibm.com/developerworks/cn/webservices/ws-restful/

 69

[Savage, 2011] N. Savage, Twitter as medium and message. Communications of the

ACM, 54(3), 2011, 8-20.

[Shan and Li, 2010] Bin Shan and Fang Li, A Survey of Topic Evolution Based on LDA.

Journal of Chinese Information Processing, 24(6), 2010, 43-49.

[Sivic, Russell, Efros, Zis-serman and Freeman, 2005] J. Sivic, B. C. Russell, A. A. Efros,

A. Zis-serman and W. T. Freeman, Discovering object categories in image

collections. In: Proc. of the International Conference on Computer Vision, 2005.

[Sorensen, 2009] L. Sorensen, User managed trust in social networking comparing

facebook, myspace and linkdin. In: Proc. of 1st International Conference on

Wireless Communication, Vehicular Technology, Information Theory and

Aerospace & Electronic System Technology, (Wireless VITAE 09), Denmark, 427-

431.

[Steyvers and Griffths, 2006] M. Steyvers and T. Griffths, Probabilistic topic models. In:

T. Landauer, D. McNamara, S. Dennis, and W. Kintsch (eds.), Latent Semantic

Analysis: A Road to Meaning. Laurence Erlbaum, 2006.

[Thiel and Kötter, 2012] Killian Thiel and Tobias Kötter, Creating Usable Customer

Intelligence from Social Media Data: Network Analytics meets Text Mining.

Bisociative Knowledge Discovery, 4, 2012, 263-284.

[Twitter, 2016] Twitter Inc. REST APIs. Available at

https://dev.twitter.com/rest/public

[Wang and Land, 2011] Han Wang and Bo Lang. Online N gram-enhanced Topic Model

for Academic Retrieval. In: Proc. of Digital Information Management (ICDIM),

Sixth International Conference on Date of Conference, 2011, 137-142.

[Wang, Peng and Wang, 2014] Shaopeng Wang, Yan Peng and Jie Wang, Research of

the text clustering based on LDA using in network public opinion analysis. Journal

Of Shandong University(Natural Science), 49(09), 2014, 129-134.

[Wei, 2006] X. Wei and W. B. Croft, LDA-based document models for ad hoc retrieval.

In: Proc. of SIGIR '06 Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information retrieval, 178-185.

https://dev.twitter.com/rest/public

 70

[Xie, 2013] Ming Xie, Social Media at the Age of Big Data. China Media Report

Overseas, 9(2), 2013, 11.

[Xu and Wang, 2011] Ge Xu and Houfeng Wang. The Development of Topic in Natural

Language Processing. Chinese Journal of Computers, 34(8), 2011, 1423-1436.

[Zhao and Zhang, 2012] Xubin Zhao and Changkuan Zhang, Topic Community Mining

in Blogsphere Based on LDA. Computer & Digital Engineering, 11, 2012.

[Zheng and Han, 2013] Lei Zheng and Kai Han, Multi Topic Distribution Model for

Topic Discovery in Twitter. In: Proc. of Semantic Computing (ICSC), 2013 IEEE

Seventh International Conference on Date of Conference: 16-18 Sept. 2013, 420-

425.

[Zhou, 2013] Erchong, Zhou, Blog Hot Topic Detection And Its Analysis On Public

Opinion, 2013.

 71

Appendix 1

URLs of source codes:

Common library of the system:

https://github.com/zhangcong2711/usttmp_common.git

Console:

https://github.com/zhangcong2711/usttmp_console.git

Text Mining Core:

https://github.com/zhangcong2711/usttmp_dmcore.git

Text Receiver interface:

https://github.com/zhangcong2711/usttmp_textreceiver.git

SQL script:

https://github.com/zhangcong2711/usttmp_common/blob/master/src/Dump20160

722.sql

https://github.com/zhangcong2711/usttmp_dmcore.git

