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Abstract 

 

Bus connection risk estimation has not been studied well despite its potential impact 

on travellers’ decisions about the choice of transportation mode and loyalty to public 

transportation. We aim to develop a framework to estimate and visualize bus connection 

chance with the use of open bus data. This thesis presents two original models for 

estimation of bus connection risk based on probability distributions. The first model 

refers to Bayesian analysis and beta distribution functions. This model depends on the 

possibility of calculating parameters for all possible bus connections, which is 

problematic since such data are not stored but rather generated during actual planning of 

the itinerary. The second model allows us to calculate distribution parameters for 

arrivals of each feeder bus at the alighting stop and departures of each connecting bus 

from the boarding stop. It is possible to aggregate historical open bus data to the list of 

distribution parameters on a regular basis, which only requires setting automatic jobs of 

preparing and processing data, calculating distribution parameters, and loading them to 

a planning graph of a trip planner. The framework consists of the theoretical description 

and practical application, which makes it useful for transportation systems’ decision-

makers, developers, researchers, and end users. The framework has been applied 

successfully in the city of Tampere, Finland. As a result, the web trip planner with 

estimation of bus connection chance is ready to use by the public. 
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1. Introduction 

 

The interest of transport administrations, city councils and software companies in 

Intelligent Transportation Systems (ITS) has been growing in recent times. ITS belong 

to a class of  applications that inform end users of transportation networks how to travel 

in a safer, more coordinated and intelligent way [ITS action plan and directive, 2010]. 

The subject of this thesis is a trip planning application, which is a part of ITS helping 

users to plan their trips according to their conditions and circumstances. The minimum 

conditions that users are expected to impose on the application during the planning 

stage are origin, destination, date and time of departure or arrival. Additionally, some 

applications offer advanced searching options such as maximal walking distance, 

maximal number of transfers for multi-modal and multi-leg trips, prioritizing modes and 

routes, excluding from the search routes banned by a user etc. Based on the input 

information, a trip planner searches for optimal travel itineraries from origin to 

destination within the desired period in the graph built on the street network and 

vehicles’ schedule information. As a result, an application generates an output with one 

or more alternative routes best fit to the specified conditions. Itineraries usually include 

step by step journey plans with textual detailed instructions and routes plotted on the 

map for a better visualization. 

The current trend in public transport e-service is moving from implementing basic 

features like bus timetables, trip planners, and bus trackers to advanced functionality. 

Advanced functions predict future values related to the journey and estimate reliability 

of a journey through various prediction models based on historical and/or real-time 

traffic data. Consequently, we can divide predictive models into static and dynamic 

ones. The developers of trip planners currently prefer engaging real-time data for 

predicting travel times and arrivals of buses and combining static and dynamic 

approaches wherever possible. In the case of relying on real-time data feeds, data should 

contain, as a minimum, information about real-time location, speed, and pacing the 

schedules by vehicles but this information is not always available. Thus, real-time 

predictions have limitations. Dynamic predictions are possible when the buses we are 

interested in are already on the move, or the segment of the road on which we are 

measuring the speed already has some bus traffic. It limits seriously real-time systems 

since relevant real-time data might be absent. Sometimes there is a requirement to 

estimate the feasibility of the journey or the probability of timely arrival to the 

destination far in advance when real-time data are not available yet. Furthermore, 

current real-time estimation techniques focus on travel time and arrival time [Borole et 

al., 2013; Yu et al., 2011; Alves et al., 2012; Watkins et al., 2011; Chien et al., 2002; 

Mazloumi et al., 2011; Chen et al., 2013; Kumar et al., 2013; Kim and Mahmassani, 
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2015; Hunter et al., 2009], but they do not currently aim at predicting risks related to 

journeys such as a connectivity risk for multi-leg journeys.  

Let us imagine that we are planning a bus trip that involves a transfer at some busy 

area in the city. As long as arrival of a feeder bus at the alighting stop and departure of a 

connecting bus from the boarding stop are timely or correlated, a transfer should be 

successful. However, uncorrelated lateness of buses involved in the itinerary makes the 

whole trip vulnerable. It is especially true if there is congestion in this area, or some 

other circumstances unknown to travellers impact the buses’ fluency. It means that if 

any of two buses do not stick to their schedules, and moreover, a connecting bus can 

depart earlier, the risk of connection failure increases. In case of more than one transfer 

in the route and possible negative delays that also occur according to the recent research 

[Kerminen et al., 2014], the uncertainty is even larger. Negative bus delay means that a 

bus runs ahead of its schedule, which is likely to be the worst case for a traveller 

planning itineraries with changes. There are few bus stops in the city of Tampere where 

a bus driver has to wait for the scheduled departure time. At the majority of bus stops 

negative delay is not checked.  

The next question is related to the amount of time between scheduled arrival of a 

feeder bus and scheduled departure of a connecting bus that we can consider as a safe 

option. One can think that two or three minutes is enough for a change, but as we can 

see in reality, sometimes gaps even larger than five minutes between two buses do not 

ensure a successful connection. A real-time-oriented trip planner can help people 

decrease the uncertainty by giving expected arrival times of the vehicles, but it usually 

does not estimate a connection risk. In addition, it cannot make real-time-based 

predictions much in advance of the trip, e.g. a day before the trip. Thus there is a niche 

for a method for trip planners to predict a bus connection risk for itineraries with 

transfers, regardless of the time gap between planning and actual travelling. 

The objective of this thesis is to review existing models for predictions in the public 

transportation area applicable in trip planning applications. By comparing different 

approaches and studying deeply the problem of connection risk, we aim to develop a 

model for bus connection risk estimation based on open bus data and to implement this 

model in the web trip planner. The main research questions relate to the choice of 

relevant methods to estimate bus connection risk and to the validation of our original 

solution for such estimation. Besides this, the practical part of the thesis has comprised 

searching and studying open bus data sources, data pre-processing and mining methods, 

and building an application for visualization of results. The data description, the way of 

processing data, the model to estimate bus connection risk, and its visualization will 

form the original framework that can be applied by the interested parties in any 

geographic area in the future.   
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2. Predictive models in transportation 

 

The problem of connection risk is a concern of both transportation systems’ users 

and developers. While speculating on a connectivity problem in the transportation 

systems, Ceder [2007] discusses transit connectivity measures. He analyzes qualitative 

measures such as smoothness of transfer, availability of information channels, overall 

connectivity satisfaction, and quantitative measures such as average walking time for a 

connection, average waiting time for a connection, average travel time on a given transit 

mode and path, average scheduled headway, and the variance for each quantitative 

measure. In fact, these connectivity measures omit connectivity risk, although, in our 

opinion, it is a very important consideration for the benefit of all the stakeholders of the 

transportation system. Taking into account connectivity risk, public transport planners 

can produce better timetables, which is especially crucial for long and infrequent routes. 

Having access to connectivity risk information, travellers can leverage between their 

willingness to risk and travel time minimization in the journeys under planning. 

Similar to Ceder, other researchers [Chandra and Quadrifoglio, 2013; Kim and 

Schonfeld, 2014; Muller and Furth, 2009] look into the connectivity problem from the 

perspective of transportation system design and coordination. Thus, Chandra and 

Quadrifoglio [2013] propose an analytical queuing model to find the optimal duration of 

the journey from the terminal, which is the inverse of a weighted sum of waiting and 

riding time. Having solved the scheduling problem with the use of this model, planners 

can optimize the connectivity and enhance the transport system performance in a given 

service area.  

Kim and Schonfeld [2014] have developed a probabilistic optimization model for 

timed transfer coordination of buses. The goal of the model is to help the transportation 

network service manage passenger flows in a more efficient way so that transfer times 

of transit passengers would be reduced. In order to do it, the transportation support 

service should coordinate vehicles for timed transfers and headways based on the 

solutions found by the optimization model. Discovery of the necessary service type, 

vehicle size, headway, fleet size, and a number of zones has been tested successfully in 

the case study. 

Muller and Furth [2009] have shown the positive effect of transfer planning and 

controlling on a traveller’s waiting time. They present the term of buffer time as a 

component of the scheduled transfer time. The scheduled transfer time or the buffer 

time is the difference between the scheduled arrival of a feeder vehicle at the transfer 

stop and the scheduled departure time of a connecting vehicle from the transfer stop. 

The second component of the scheduled transfer time is the scheduled exchange time. 

The scheduled exchange time is the time necessary for going from the alighting stop of 
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a feeder vehicle to the boarding stop of a connecting vehicle. It is important to note that 

the buffer time is a crucial concept for planning the transfer. Increasing the buffer time 

raises the chance of a successful connection but results in a longer waiting time. 

Additionally, Muller and Furth have studied the extent to which the reliability of a 

transfer is improved if general operational control can reduce the deviations of arrivals 

and departures from the timetable.  

However, even though a connectivity problem might be considered at the design 

stage of the transport system, existing trip planners illustrate that there is an 

underestimation of a connectivity problem by the journey planners’ developers. 

Generally trip planners search for itineraries and connections based on planned 

timetables rather than actual bus movements. Underestimation of connectivity problem 

can be explained by the fact that estimating connection risk relates to decision support, 

and in a broader sense, to advanced functionality, which is often postponed until the 

core features are fully implemented. According to the study of Shoshany-Tavory et al. 

[2014], while engineering requirements for trip planners, public transport authorities 

tend to pay less attention to decision support information than to transferability, modes 

of transport coverage, reliability, equity, and policy support. Another explanation might 

be the lack of bus connection risk prediction models that can be applied in journey 

planners with the use of available data and without dropping the application’s 

performance. The reasons for this limitation are, first, the fact that not all cities provide 

access to Global Positioning System (GPS) based bus data, and secondly, the GPS-

originated bus data can constitute “big data”, demanding special methods and 

environments for collecting, preprocessing, and processing. 

Generally speaking, we can divide predictive models in transportation into ones 

using real-time updates and ones relying on historical data. These models are described 

in detail in the following sections of this chapter. The mix of historical-data-based 

methods with real-time data feeds is likely to provide the most accurate results in 

predictions. Nevertheless, a proper method should be selected with the consideration of 

various circumstances and tested wisely when designed for a mobile or web application.  

 

2.1. Static models 

 

Historical-data-based predictive models in transportation employ mainly regression 

analysis and probability distributions [Hans et al., 2015; Tirachini, 2013; Abdelfattah 

and Khan, 1998; Patnaik et al., 2004, Uno et al., 2009; Bian et al., 2015; Baptista et al, 

2011; Tiesyte and Jensen, 2009; ITS Leeds, 2008; Batley and Ibanez, 2012; Lo et al, 

2006; Fu et al., 2014; Syrjärinne et al., 2015; Hans et al., 2015; Grotenhuis et al., 2007; 
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Lian and Chen, 2013; Thanisch et al, 2014; Ng et al., 2011; Kim and Schonfeld, 2014; 

Hunter et al., 2009].  

Regression models aim at investigating a mathematical relationship between a 

dependent variable and one or more independent variables or predictors. More precisely, 

regression analysis helps an analyst answer the question of how the changes of one 

independent variable impact on the dependent variable provided other independent 

variables are fixed. Thus, when a change among independent variables is detected, the 

behavior of the dependent variable can be forecast. Regression models require 

examining relationships between variables and finding a correct set of uncorrelated 

independent variables beforehand. This task demands a sufficient amount of data, a 

sufficient number of candidate variables, and adequate computing facilities. This, in fact, 

limits the application of regression models in bus data predictions. Virtually the most 

serious problem regarding regression analysis in the transportation field is the absence 

of data for many independent variables. The absolute advantage of regression models in 

the bus data predictions is a consideration of as many factors with a possible influence 

on a dependent variable as relevant data can be gathered for the study. It means that, 

provided sufficient data, predictions might consider all possible situations on the road 

that can force a bus to diverge from the schedule.  

Regression models are often built to predict dependent variables such as bus delays, 

arrival times, travel times, and dwell times. Hans et al. [2015] have developed a method 

to predict dwell times by means of regression analysis. The variables included in the 

linear regression model are the number of alighting passengers and the number of 

boarding passengers. The function has been balanced by three coefficients – the average 

individual alighting time, boarding time, and time needed to open and close the doors. 

Even though dwell time might be influenced by various events like change of driver, 

driver breaks, early arrival, control points when departure time at the bus stop is aligned 

with the timetable, cash or card transactions, individual characteristics of passengers, 

passengers asking information, etc., it is hard to collect or simulate relevant data for all 

the factors. Therefore, the parameters noted above were suggested to be sufficient in the 

study. However, we should keep in mind that factors not considered in the model might 

increase significantly the dwell time. 

Similarly, Tirachini [2013] has proposed dwell time estimation by means of 

regression models. Using a regression model similar to the model in the previous study, 

Tirachini has investigated dwell time’s dependence on different fare collection systems, 

bus floor level, age of passengers, and friction between travellers boarding, alighting, 

and standing. Data collection has been organized as field work when an observer 

equipped with a stopwatch recorded data on board of buses in Sydney, Australia on 

weekdays for several months. In this way, the unique data including fare collection 
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techniques and age differentiation – school students, adults, and seniors – have been 

gathered. It has determined the possibility to find the impact of fare collection systems 

and age of passengers on dwell time. Overall, six dwell time regression models have 

been created. The positive effect of efficient fare collection methods, such as using 

prepaid cards and paying outside buses on dwell time, was discovered. Besides this, the 

impact of steps near the doors for alighting passengers was not statistically significant 

although it was proved that the steps make the boarding process slower. As expected, 

senior passengers increase dwell time, but the contribution of that study is not just 

accepting this hypothesis but quantifying dwell time differences caused by travellers’ 

age. 

Observing events on board the buses as made in the study of Tirachini is quite an 

expensive and time-consuming method. The restrictions regarding the amount of data 

and the number of variables might be overcome by simulating data rather than relying 

on bus probe data or observing events on board. Abdelfattah and Khan [1998] have 

illustrated the possibilities of the microsimulation technique in the study of bus delays. 

They have engaged different traffic factors in order to develop a few linear and 

nonlinear regression models for normal traffic conditions and for the situation when one 

lane was nonoperational due to road accidents or repair works. The proposed models 

have been validated by calibration tests and verified by field data.  

Several regression models for bus travel time predictions have been created in the 

study of Patnaik et al. [2004]. The independent variables in the models include such 

factors as route distance, number of stops, dwell times, boarding and alighting 

passengers, time of day, day of week, trip identifier, and weather descriptors such as 

precipitation, visibility, and wind speed. Nevertheless, we should note at this point that 

the selected variables might be highly correlated, especially those related to the 

passenger demand. Therefore, the researchers have built several models to test various 

sets of independent variables separately. As a result, weather factors and weekdays have 

not revealed any significant effect on bus travel time. In contrast, the distance, number 

of stops, time of day, and dwell time have affected bus travel times considerably. 

Finally, Patnaik et al. argue that the models for travel time prediction restricted by trip 

identifier, time, and origin time independent variables are sufficient and reliable. 

The conclusion made in the study of Patnaik et al. [2004], in fact, eases 

development of predictive models for our future research. Having studied dependencies 

between numerous factors, we can exclude unnecessary data from the analysis and 

create a more compact model, which is likely to fit into the memory of the application 

environment. Generally speaking, regression analysis of many variables is less 

frequently used in bus data predictions than probability distribution analysis of one 

variable due to fewer requirements to data and computational power. 
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Probability distributional models rely on studying statistical properties of data, 

checking fitness of data to a standard distribution, and estimating the distribution 

parameters of a variable of interest to be used at the prediction stage. A general 

challenge for probability distributional models applied in bus data predictions is the 

need to know the distribution type of data. However, sometimes data do not seem to 

follow any standard type of distribution. The statistic properties of bus probe data have 

been studied in detail by Uno et al. [2009]. The GPS-based data collected in the city of 

Hirakata, Japan during twelve days in December, 2003 serve as a base for the analysis. 

Uno et al. discovered that the observed travel times conform to the log-normal 

distribution in most cases although not always. Based on the findings, a methodology 

for evaluating travel time variability is proposed with the assumption that travel times 

are log-normally distributed. The methodology includes a detailed description of the 

gathered data, data preprocessing, data processing, and reporting of result to users. 

As in the previous study, Bian et al. [2015] have attempted to describe bus data by 

means of a probabilistic model. The subject of the study is the service time. The service 

time is a sum of dwell time and time that a bus waits to enter and leave the bus stop and 

moves in and out of the bus stop. In fact, Bian et al. add extra time for serving a bus 

stop to the time that a bus spends virtually at the bus stop. Service time helps one 

understand whether a better coordination of a transportation network is needed. The 

need for coordination can be caused by queues and condensed traffic in the area of 

curbside stops that commonly prevail over terminal and bay-like bus stops. The 

proposed model deals with passengers’ arrival distribution and four different scenarios 

for the buses approaching the bus stop. The scenarios include an empty service area, a 

full service area, a single bus in the first berth, and a single bus in the second berth 

provided two berths in bus stop area. Bian et al. have used the Monte Carlo method to 

estimate service time of Poisson, normal and uniform passengers’ arrival distributions. 

The model’s evaluation has shown that the Poisson distribution outperforms the normal 

distribution on most bus lines and has a slight advantage over the uniform distribution. 

Baptista et al. [2011] have studied end-to-end travel time distributions involving 

travel and departure time uncertainties. In the study, each bus included in the 

investigated route has been tracked, and the corresponding delays have been checked 

for each bus stop. Then they have employed tracking information for computing 

conditional probabilities and modeling overall travel times from one point to another 

with possibly several bus transfers. The benefit of the model is the consideration of 

different events such as buses delayed positively or negatively, probabilities of missing 

buses or taking a bus out of the timetable, and dependence on time for all buses on the 

route chosen.  
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A similar approach for travel time estimation is a part of the framework proposed by 

Tiesyte and Jensen [2009]. The bus data gathered in Copenhagen, Denmark have been 

analyzed on a per-route basis with checking points at the bus stops. The trajectory data 

have been studied in order to discover dependencies, to find out the nature of 

dependencies – linear, by direction or by ranking order, and finally, to evaluate various 

types of predictability. Tiesyte and Jensen have classified the predictability according to 

the predicted values, the prediction dynamics, and the input parameters. By the 

predicted values predictability can be numerical or directional. Numerical predictability 

deals with predicting future values of travel times and arrival times, whereas directional 

predictability aims at predicting positive or negative direction of delays. According to 

the prediction dynamics, predictability is divided into static and dynamic evaluations. 

This classification aligns with the classification adopted in this thesis. By the input 

parameters, predictability can be horizontal, vertical, external, and combined. The 

predictability is horizontal if future values of the trajectory based on the real time 

trajectory measurements are predicted. It is vertical if future values of the road segment 

are predicted based on the historical trajectories along the route. The external 

predictability predicts future values based on factors external to the data and not derived 

from the historical travel times (e.g., weather, time of the day, and traffic conditions). At 

last, the combined predictability forecasts future values based on combination of 

vertical, horizontal, and external parameters. 

The unique characteristic of the framework of Tiesyte and Jensen is a complex 

approach for prediction of bus travel times. While similar studies focus mainly on one 

type of predictability, Tiesyte and Jensen have elaborated the framework capable of 

embracing simultaneously numerical, directional, horizontal, vertical and external 

predictability. Besides this, the findings of the case study state that, firstly, the 

predictability of bus trajectory data is generally low, and secondly, static, and vertical 

predictability happen to be more reliable. In other words, according to the study, 

predictions based on historical data have higher accuracy than ones based on real time 

data.  

Travel time distribution can be used not only for calculating the most probable 

travel time and advising travellers at the planning stage but also for estimating the 

reliability of the journey. In the travel reliability literature [ITS Leeds, 2008; Batley and 

Ibanez, 2012], the parameters of travel time distributions, which are assumed to be 

normal as in the many previously discussed studies, are transformed to a reliability ratio. 

In this case the distribution parameters – mean and standard deviation – express the 

expected pay-off and the inherent risk consequently. This method of travel reliability 

estimation is a frequently cited metric in transportation policies. 
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Transportation probabilities can also be estimated with Reliability-based User 

Equilibrium (RUE) models. RUE models relate to the concept of travel time budget, 

which is a sum of mean route travel and a safety margin time depending on a traveller’s 

desired probability of on-time arrival [Lo et al., 2006]. A RUE model is based on 

travellers’ experience in the transportation network. It assumes that all travellers desire 

to minimize their travel time budgets to the level correspondent to the purpose of the 

trip and/or individual readiness to risk a punctual arrival. Fu et al. [2014] have 

introduced a further development of the RUE model. In their study, multi-modal 

networks and, more precisely, travel time distributions consider the use of subway, auto 

and bus, and possible changes between all the three modes. Additionally, the parameter 

of fare structures is included into the model since the final cost of the trip is important 

for a traveller in many cases.  

Apart from multi-modality, the advantage of the model is letting a traveller decide 

on the level of risk of being late due to including a safety margin to the calculations. 

The limitation of the model is the assumption that origin-destination demands, route 

flows, link travel times, and route travel times follow normal distributions even though 

the data have not been studied against the distribution. Fu et al. suggest that other types 

of distributions such as log-normal, Poisson, and truncated normal distributions can be 

adopted in their model. The other limitation is that the model has a static nature and 

relates to the long-term planning at the strategic level, and therefore, all travellers are 

supposed to have a knowledge of the traffic conditions based on their experience, that is 

not always the case. 

Syrjärinne et al. [2015] have studied arrival time distributions with the goal of 

generating data-based bus timetables instead of idealistic ones, which do not take into 

account traffic conditions and trends of bus arrival times at a given time and area. The 

study proposes the statistics on bus arrivals including the earliest observed arrival times 

and the time span of the observed arrival times for bus customers. Practically, printed 

timetables are extended with the estimations of average waiting times for each bus trip 

at each bus stop with the use of different colors indicating three types of arrival 

reliability – up to four-minute waiting time, up to eight-minute waiting time and non-

guaranteed arrival. Such an approach is undoubtedly novel and useful for passengers 

waiting at the bus stops and planning their journeys on the spot. The other interesting 

finding of the study gives freedom to researchers concerning the type of bus arrivals 

data distribution. The study illustrates that bus arrival times in the city of Tampere, 

Finland can be approximated as certain data sample percentiles with either normal or 

log-normal distribution with rather small error bounds even though the example data do 

not follow any standard distribution.   
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In contrast to many studies focusing on only one variable to be predicted, Hans et al. 

[2015] have attempted to construct an overall physical stochastic bus model. Their 

model presents a set of subsidiary models for predicting departure time, dwell time, and 

travel time. The data for the case study have been retrieved from the TriMet system 

containing quality bus data from Portland, Oregon. The other novelties of the study are, 

first, the model basis on analytical distributions rather than on standard distributions 

commonly used for such kinds of predictions, and secondly, including a new parameter 

– a presence of traffic signals on the links – in the travel time function. The analytical 

distribution of the model follows a convolution of both normal and exponential 

distributions, and therefore it is called normal-exponential distribution. The proposed 

model has been tested to reproduce empirical data, which have been further compared 

with the data reproduced by normal, log-normal and Gamma distributions. As a result, 

analytical distribution is more efficient for reproducing bus data than the other 

distributions because the reproduced data fit the model better in many cases with a high 

confidence level. This research highlights that the bus travel times in Portland are not 

normally distributed, which also seems to be important for future studies in bus data 

predictions because it evidences the need to study local data before any model can be 

applied to predict the data in the specific geographical area.   

Despite existing discussions on reliability of travel times and arrivals, the studies on 

bus data probability distributions quite rarely focus on the risk of connection although 

many travellers are rather concerned about timely arrival at the connection stop to be 

able to catch connecting modes. For example, Grotenhuis et al. [2007] have found out in 

the survey that on-board travellers desire mostly that their remaining part of the journey 

go smoothly as planned, and therefore they are concerned to arrive on time at the 

interchanges. It is explained by the simple logic that the events of taking buses on a 

single route are not completely independent, because the connection can never happen if 

the departure of the second bus takes place earlier than the arrival of the first one. It 

means that, from the methodological perspective, independent estimates of two buses 

arriving on time are pointless. That is to say, if the connection time admitted for the 

change exceeds the difference between arrival time of the first bus and departure time of 

the second bus, the probability to follow a planned route comes to zero. As it has been 

stated justly by Lian and Chen [2013], the delay time for each change depends on the 

departure time, which is quite uncertain in reality. Therefore, the models working 

accurately for travel time predictions on a route without transits cannot be generalized 

for transit itineraries. 

Thanisch et al. [2014] have investigated the risk of connection between two buses 

estimated based on Bayesian statistics. The prior distribution of delays of both buses at 

a specific bus stop computed on the data of eighty weekdays has been updated with the 
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ten latest real-time observations to calculate the posterior distribution. Then, they 

suggest using the posterior in the computation of the probability of before-deadline 

arrival. As in the other studies mentioned above, this model considers the arrival of 

buses behind or ahead of schedule, refers to historical and real-time data, and assumes 

that delays follow the normal distribution, but the algorithms for computing probability 

distributions differ. 

Assessment of the probability assumes that data distribution is available and fairly 

accurate, although sufficient data are not always possible to get in order to find the 

distribution. Data might also seem to be stochastic. The study of Ng et al. [2011] 

addresses this problem with a distribution-free travel time model. The model requires 

only the first N moments of the travel time to be known and the travel times to fall to 

bound and known intervals. Semi-analytical probability inequalities enable one to 

calculate quickly upper bounds on the probability, eliminating computationally 

intensive methods. This model is beneficial in case of, first, having data, which do not 

fit commonly known distributions, and second, having performance limitations in the 

data processing environment.  

However, it is not always desirable to operate upper bounds of the uncertainty 

instead of having exact probabilities at disposal. It is especially true if an interval 

between upper bounds happens to be too large, and therefore it leaves the investigated 

uncertainty still highly uncertain. For example, if this model is employed in a journey 

planning application, a user gets upper bounds of travel time for a particular journey 

from A to B instead of exact probability. If the difference between A and B exceeds 

some reasonable interval, the value of such a proposition for a user becomes vague. 

Such recommendations might make travellers feel at sea and, moreover, undermine 

their loyalty to the application and the public transportation system in general. 

 

2.2. Dynamic models 

 

As mentioned before, real-time predictions rely on dynamic models built on the 

basis of machine learning algorithms. The most frequently used predictive dynamic 

algorithms relate to the class of Artificial Neural Networks (ANN) [Seema and Sheela, 

2009; Chien et al., 2002;  Mazloumi et al., 2011] and travel patterns [Chen et al., 2013; 

Guardiola et al., 2014; Kumar et al., 2013; Kim and Mahmassani, 2015, Hunter et al., 

2009].  

ANN models belong to the area of machine learning. ANNs are intended to make 

predictions based on large amounts of data and dynamic learning of the system being 

supervised. Seema and Sheela [2009] have developed an ANN model with the use of 

seven-day GPS-based bus data collected in the city of Trivandrum, India in order to 
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predict bus arrival times. The data have been split to a training dataset and a validating 

dataset. The prediction performance has been measured by means of Mean Absolute 

Percentage Error (MAPE), which varies from 17 to 28% in the case study. The accuracy 

obtained in the case study leaves room for improvements of the model in bus arrival 

time predictions, which has been achieved in the following studies.   

An enhanced ANN have been applied in the study of Chien et al. [2002], where 

ANNs integrated with an adaptive algorithm have led to a higher prediction accuracy in 

real time. In the case study, a 4.4-mile segment of one bus line of the New Jersey 

Transit Corporation provides data for the training algorithm. Due to the unavailability of 

GPS-based bus data in the study, the microscopic simulation system CORSIM has 

simulated the data. CORSIM is able to emulate bus operations including bus maneuvers 

and bus interactions with other vehicles competing for the road. Besides this, CORSIM 

is able to emulate passenger arrival distribution, which is impossible in most cases when 

a study is based on real data.  

In the study, the data of the morning peak hours have been simulated and collected 

from twenty-four buses operating on the selected line. As a result of the analysis of the 

collected variables, Chien et al. have selected fifteen potentially explanatory variables. 

The variables affecting bus link travel time are bus travel distance on a link, passenger 

demands at stop, and average values of link volume, link speed, link delay, and queue 

time on a link. The variables with an effect on bus travel times from stop to stop are 

distance between stops; mean and standard deviation of traffic volumes, speeds, and 

delays; number of intersections between stops, and passenger demands at stops. Thus, 

two ANNs – link-based and stop-based – have been trained with different sets of the 

variables listed above in order to predict transit arrival times. Integration of both models 

to an adaptive algorithm has improved the accuracy of prediction. As a result, bus travel 

distance, passenger demands at stop; average link traffic volume, speed and delay in the 

link-based model; distance between stops; passenger demands at stop; mean of traffic 

volumes, delays, and speeds; and number of intersections between stops in the stop-

based model have shown the smallest prediction errors. The evaluation of the proposed 

models illustrates high accuracy of the ANNs enhanced with the adaptive algorithm in 

bus arrival time predictions. 

Mazloumi et al. [2011] have proposed the integrated framework with two ANNs to 

predict the average and variance of travel times. They have collected test data from one 

bus line in Melbourne, Australia about an eight km long route for a six-month period. 

Bus schedule adherence data have been combined with degree-of-saturation data being 

received from inductive loops of the intersections on the route in the latest fifteen 

minutes before the departure of a bus from the point timed. The combination of these 

variables aims at dynamic responding of the predictive model to the changes in the 
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traffic. However, the model combined with real-time data has revealed a minor 

improvement of the predictive accuracy of ANN. To make a conclusion, historical-data-

based models present an easier and fairly reliable option for predicting bus travel time.  

The problem related to applying ANN-based models in web and mobile applications 

is the requirements for the application environment to operate with relatively small 

datasets input for processing and for fast methods of processing. In the studies 

proposing the ANN model for predicting bus journeys only one bus route is usually 

selected as a test bed. The reason for this is that coverage of all the routes of the city 

increases drastically the complexity of ANN. Such heavy computations require 

computing capacities too enormous for web and mobile applications. It leads to the 

conclusion that, if data mining algorithms are used for predictions in transportation, 

firstly, the predicting stage should take far less time than the training stage, secondly, 

the training stage should occur in a powerful computational system separated from end-

user application. A separate computing system can transfer only parameters of the 

model to the productive application.  

Travel patterns present groups of similar travel trajectories measured in temporal 

and spatial dimensions.  Identification of travel patterns yearly, monthly, weekly, daily 

or hourly enables one to impose once found patterns on the real-time traffic situation 

and define behavior of the travel time, arrival time, speed or delay uncertainty according 

to the pattern. Chen et al. [2013] have studied traffic speed patterns for a road link with 

the use of two soft computing models – the Multilayer Feedforward Network (MFN) 

and the Adaptive Network-based Fuzzy Inference System (ANFIS). They have tested 

the models on Beijing’s urban probe vehicles data in order to check the models’ 

robustness to the missing data, which is highly probable with probe data, and the 

models’ generalization capabilities. They have found out that ANFIS offers a better 

model of traffic trends in studied segments than MFN, helps one discover meaningful 

hidden traffic speed patterns, and it is utterly robust to missing data.  

Even though travel patterns are frequently used in dynamic models, they can serve 

as a basis for static models too [Guardiola et al., 2014; Kumar et al., 2013]. Guardiola et 

al. [2014] have researched the daily traffic flow profiles with the use of functional data 

analysis based on historical data. The study proposes to build multivariate flow charts 

based on historical data captured during one or more years. Then these charts can serve 

for monitoring shifts in traffic profiles in the future providing the meaningful 

information for decision-makers, e.g. the need to add extra lanes in the highways. The 

requirement of the model is preprocessing one-year historical data to remove outliers 

and build control charts describing the stable condition. This is the weakness of the 

model since one-year data is a large quantity in comparison with what we needed for 
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other techniques. Furthermore, such a quantity of data is not always available because, 

for example, the timetable changes more frequently.  

Kumar et al. [2013] have analyzed GPS-based bus data separately for each day of 

the week to obtain weekly, daily and time-wise patterns. The analysis has covered one 

route in the city of Chennai with fourteen trips per day during two months. They have 

split the data to 100-meter portions in the final sample for each trip. As a result, they 

have discovered similar travel time patterns for all days except Sunday. The most 

important issue of applying the described frameworks in travel time predictions is their 

dependence on the location, and the need for data-intensive calculations. One should 

investigate travel patterns behavior in specific geographical areas where the predictions 

are going to be carried out.  

Obligatory binding to location has been overcome by Kim and Mahmassani [2015]. 

They have proposed an original trajectory clustering method to discover travel patterns 

in a traffic network. At first, they have identified spatially distinct traffic flow groups 

using trajectory clustering, and then they have investigated each spatial group to 

discover temporal patterns. The framework is supposed to be applicable in any road 

network without the map-matching preprocessing step. Data processing includes 

similarity measurement, trajectory clustering, generation of cluster representative 

subsequences, and classification of trajectories. The trajectory clustering method has 

been tested successfully on actual traffic data collected from New York City, New York. 

A simple experiment has illustrated the possibility of application of the framework in 

the network-level traffic flow pattern analysis and travel time reliability analysis. 

Hunter at al. [2009] have presented a combination of travel time distributions and 

travel pattern methods. GPS data from probe vehicles gathered in San Francisco, 

California have enabled them to build a probabilistic model of travel times through the 

arterial network. Then they have used an expectation maximization algorithm for 

learning the parameters of the probabilistic model. Finally, they have extended the 

model to the unknown parts of the transport network. Hunter at al. have learnt general 

traffic patterns of each day of the week at each time for a transport network and save 

them in a short, summarized form. The transport network has been represented as a 

graph consisting of directed links. Each link is characterized by the set of parameters: 

the length of the link, the number of lanes, the presence of traffic lights, congestion on 

the given and neighbor links. In addition, temporary conditions such as weather or sport 

events are considered as factors able to change a typical behavior or patterns in the link. 

Hunter et al. employed Bayesian inference for building a probabilistic model with the 

assumption that travel times data follow normal or log-normal distribution. The goal of 

the study was to find historical travel patterns for building a real-time model in the 

future. A real-time model is expected to be updated continuously with estimates 
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obtained from real-time incoming data in order to predict traffic conditions. In other 

words, traffic patterns should help one deal with limited streaming data due to the lack 

of probe vehicles or losing connections, which is often the case in gathering real-time 

data. 

A challenge for travel pattern methods is the requirement to process a large dataset 

that can be unavailable. Processing facilities can also be insufficiently powerful. Thus, 

similarly to ANNs, travel pattern methods assume difficulties not only at the analysis 

stage, but also at the storage and retrieval stage when enough disk space and operational 

memory must be allocated for analyzing and predicting applications due to large 

datasets to be input. Therefore, applying such methods in an online trip planner 

challenges the performance. 

The other serious problem of dynamic models is a possible absence of real-time data 

relevant for predictions at the time of a user’s request. That is to say, real-time data ease 

short-term planning better responding to dynamic traffic conditions but these data are 

not applicable for long-term planning. In the case when real-time data cannot serve as a 

base for predictions due to absence of relevant data at the time of trip being planned, 

predictions can use historical data. 

All the models discussed above have the potential to be implemented in web and 

mobile trip planners. The choice of the probability distribution model developed further 

in the thesis is explained by its relative simplicity and reliable results. In addition, a 

compact form of the final data to be loaded into the web server’s memory is the other 

advantage. While traffic patterns require a large amount of data to be processed for each 

user’s request in order to give reliable advice, the distribution parameters are much 

more compact. Keeping in mind that big data cannot be processed fast enough to keep 

the performance of trip planners reasonable for online service, a trip planner’s developer 

has to select a predictive model and design properly a whole system. A few-second 

response time is the basic requirement for online applications. The findings of the 

previously discussed studies [Mazloumi et al., 2011; Tiesyte and Jensen, 2009] that 

historical-data based models suggest the same or even higher accuracy than real-time-

data based models, support our choice of the method related to probability distributions. 

Putting into practice the framework that we propose, it is possible to develop a trip 

planner able to estimate a risk of bus connection online.  
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3. Data 

 

We exploit several sources of open public transportation and map data in this 

thesis. Nowadays many municipalities tend to open public transportation data for 

common usage in order to attract the attention of interested parties to problems and 

areas to be improved in transportation information. At the least, opening data initiates 

the interest of software developers and scientists to apply different methods to the data 

and develop applications to solve existing problems. Consequently, it leads to a rise in 

the willingness of the public to use the product produced in the field in question. Thus, 

opening bus data increases the potential of a larger usage of buses due to the appearance 

of new applications and the elaboration of new methods in transportation planning, 

which improve navigation and travelling. 

The city of Tampere has opened its bus data long ago, and it is currently aiming at 

opening more transportation data. Due to the availability of such data, we are able to 

experiment with different methods and propose models, which can improve the 

transportation situation in Tampere. Thus, in this work, we use a few sources of open 

data. First, real-time bus movement data can be obtained through the Journeys 

Application Programming Interface (API) [Journeys API]. Journeys API allows 

developers and clients to access real-time one-per-second bus location information in 

the region of Tampere via the Representational State (REST) API. Secondly, the latest 

bus timetables and routes are provided on a regular basis by ITS Factory in General 

Transit Feed Specification (GTFS) files [GTFS for Tampere] formatted in accordance 

with the GTFS industrial Google standard. Lastly, Open Street Map [Open Street Map] 

data feeds are essential for applications based on map visualization. 

 

3.1. Journeys API 

The source of the data in Journeys API is derived from GPS trackers installed in all 

the buses operating in the city of Tampere. There are a few APIs distributing these data 

openly, but at the moment of the study we selected the most recent one, Journeys API. 

In general, there are more data items in this API than we require for the purposes of the 

application developed as a part of this thesis. Besides dynamic bus data feeds, the API 

provides static information about routes, lines, journey patterns, journeys, bus stops, and 

municipalities. As far as static data are relatively constant, we poll Journeys API every 

second for only dynamic vehicle activity data to be stored for further analysis. In case of 

the need for static data, we send requests to the API directly during the programs’ 

execution. The raw data that we collect contain the list of elements described in Table I. 
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Table I. Raw bus data 

 

Name Type Meaning 

1 2 3 

Time Time 

stamp 

It is a combined date and time in UTC expressed 

according to ISO 8601 in the format “YYYY-MM-

DDThh:mm:ss.Ms+hh:mm”. It specifies the point of 

time when the vehicle’s activity is monitored. E.g. 

“2014-11-27T14:18:19.020+02:00” is 14:18:19 

November 11, 2014, +02:00 time zone. 

LineRef integer It indicates the line number. A letter in the line number 

is removed if exists. 

DirectionRef integer 

[1, 2] 

On any given bus line, a bus can be travelling in one or 

two directions. The bus company assigns a number, 

“1” or “2”, to each of these directions. E.g. Line 26 has 

Direction 1 from Höytämö to Kaarila and Direction  2 

from Kaarila to Höytämö in the city of Tampere. 

DataFrameRef date It specifies the date in the format “YYYY-MM-DD” 

when the vehicle started from the origin stop. 

Latitude double It specifies the bus’s latitude coordinate in decimal 

degrees at the time of observation. 

Longitude double It specifies the bus’s longitude coordinate in decimal 

degrees at the time of observation. 

OperatorRef string It specifies the name of the bus operator. 

Bearing integer It specifies the azimuth angle of the bus. It is equal to 

zero if the bus is stationary. 

Delay integer It specifies the amount of seconds the bus is delayed 

from its scheduled timetable. It is negative if the bus is 

ahead of its schedule. 

VehicleRef string It identifies uniquely the monitored vehicle. However, 

this field is empty quite often. 

JourneyPatternRef string It indicates the line number with possible letters. 

Generally, line numbers consist of only numbers, but 

sometimes they might contain a letter in the line name 

indicating small differences in the routes in 

comparison to the main route (e.g. 9K). 

OriginShortName string 

[4] 

It specifies the origin stop number where the vehicle 

started the journey. 

DestinationShortName string 

[4] 

It specifies the last stop number in the journey. 

OriginAimedDepartureTime string 

[4] 

It specifies the departure time from the origin bus stop 

in the format “hhmm”. 

Speed double It indicates the vehicle’s current speed in km/h. 

TimeAPI time 

stamp 

It is Epoch Unix time stamp indicating a number of 

seconds from the Epoch start until the current time. 

The time of day is in Universal Time Coordinates, so it 

must be adjusted by two hours to convert to Finnish 

time. 

TimeStorage time 

stamp 

It is Epoch Unix timestamp indicating the number of 

seconds to the moment of receiving the data by the 

server. It can be used together with “TimeAPI” to 

calculate the delay from data generating to data 

receiving. 
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We save real-time data every hour to separate comma-separated values (CSV) files 

in order to collect sufficient historical data for further analysis and experiments. On 

average, the daily data size amounts to about 650 Mb. It is larger on weekdays and 

smaller on Saturdays, Sundays, and public holidays due to a smaller number of buses in 

operation. It can be noticed in Table I that the data only give the location of the specific 

bus at the specific time but not the arrivals or departures at the bus stops. It means that 

the raw data have to be pre-processed before they can be applied in the models for 

arrival times and departure times estimations.  

Furthermore, there are some known issues about real-time bus data in Tampere that 

are highlighted in previous studies [Syrjärinne et al., 2014; Kerminen et al., 2014]. It 

requires data cleaning before the data are going to be analyzed. Data cleaning should 

address properly duplicates, missing data, and erroneous records, which can be caused 

by malfunctioning transmitters, lost connection and other technical problems.  

 

3.2. GTFS 

 

The GTFS standard defines the format for bus timetables and static location 

details on bus routes. The GTFS format lists different properties of a bus transportation 

network in a predefined structure. However, it is the decision of a data provider what 

properties from the full list will be provided. The GTFS data of the city of Tampere are 

open and updated normally twice a year when there are changes in bus timetables 

according to the summer or winter mode. Additionally, when the city of Tampere issues 

new rules on lines and routes, the GTFS files are updated accordingly. The GTFS files 

of Tampere contain data about bus agencies, bus stop locations, routes, stop times, and 

calendar. The full description of GTFS provided by the city of Tampere is presented in 

Table II. A specific bus route characterized by line number and origin departure time is 

uniquely specified by a ten-digit identifier “tripID”.  

There are two problems related to the integration of two sources of data – the 

GTFS and Journeys API’s data – in one application. First, real-time bus data do not 

contain a unique trip identifier “tripID”. Secondly, a line is frequently specified by only 

a number whereas GTFS identifies the same route as a combination of a number and a 

letter. A letter in a line number means that the trip can differ slightly from the basic 

route (e.g. it can include an extra bus stop or a few bus stops or run along different 

streets in one or a few segments). Even though there is a special entity 

“JourneyPatternRef” in Journeys API, which is supposed to present a line as a 

combination of a number and a letter (see Table I), in practice there are very few 

records where the “JourneyPatternRef” element contains a letter. The unique 

identification of the trip in real-time bus data can be provided only by means of a 
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composed key consisting of a line, origin bus stop, destination bus stop and origin 

departure time. Consequently, when one tries to integrate these two sources of data, he 

or she will face trips found in GTFS, which are impossible to relate correctly to real-

time data. 

 

3.3. Data pre-processing 

 

Data cleaning and preprocessing steps require reading the whole data and 

fulfilling different operations such as sorting, ordering, grouping, and searching. Having 

historical data of about 650 Mb per day, we need a powerful computing system capable 

to deal with big data. It is especially true in the case of analysis based on data gathered 

during a long period of time. 

At the cleaning step, we group the data by a composed trip identifier, discussed 

above, and sort them within each group. Then we select only the correct and full records 

related to the trip as an output. At the actual preprocessing step, the real-time data 

should be combined with a sequence of bus stops identified in another interface of 

Journeys API or in GTFS files. Our algorithm searches for the sequences of bus stops 

and bus stops’ coordinates in Journeys API by a composite key consisting of the line, 

origin code, destination code and origin aimed departure time. The request string for 

retrieving these data follows a template: 

http://data.itsfactory.fi/journeys/api/1/journeys/[line]_[origin_aimed_departure_ti

me]_[destination]_[origin],  

where “[line]” is a full line number with letters if they exist, 

“[origin_aimed_departure_time]” is a time in the format “HHmm” when the journey 

starts, “[destination]” is a code of the destination bus stop, and “[origin]” is a code of 

the origin bus stop. The time of the journey start can be found in the GTFS files. We 

should mention at this point that the response to the requests might be empty due to 

technical problems on the provider’s side. For example, there is an empty response for 

line 41 starting at 13:10 from the bus stop 8052 and running to the destination bus stop 

8024. If we attempt the request string 

http://data.itsfactory.fi/journeys/api/1/journeys/41_1310_8052_8024, the response is 

empty even though there are real-time bus movements’ data for this journey. Our 

algorithm discards the whole journey in such cases. 

 

 

 

 

 

http://data.itsfactory.fi/journeys/api/1/journeys/%5bline%5d_%5borigin_aimed_departure_time%5d_%5bdestination%5d_%5borigin
http://data.itsfactory.fi/journeys/api/1/journeys/%5bline%5d_%5borigin_aimed_departure_time%5d_%5bdestination%5d_%5borigin
http://data.itsfactory.fi/journeys/api/1/journeys/41_1310_8052_8024
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Table II. GTFS content provided in the city of Tampere 

 

File name Element Example 

1 2 3 

Agency agency_id JOLI 

agency_name Tampereen joukkoliikenne 

agency_url http://joukkoliikenne.tampere.fi 

agency_timezone Europe/Helsinki 

agency_lang fi 

agency_phone +358356564700 

Calendar service_id TAL_AR_K28_2016 

monday,tuesday,wedn

esday,thursday,friday,

saturday,sunday 

1,1,1,1,1,0,0 

start_date 20150810 

end_date 20160605 

Calendar_dates service_id TAL_AR_K28_2016 

date 20150811 

exception_type 2 

Routes route_id 1A 

route_short_name 1A 

route_long_name Vatiala - Pirkkala 

route_type 3 

Shapes 

 

 

shape_id 1325105147016 

shape_pt_lat 61.49733 

shape_pt_lon 23.76612 

shape_pt_sequence 1 

Stop_times trip_id 4530743642 

arrival_time 11:05:00 

departure_time 11:05:00 

stop_id 0031 

stop_sequence 1 

Stops stop_id 0001 

stop_code 0001 

stop_name Keskustori M 

stop_lat 61.49751 

stop_lon 23.76151 

Transfers from_stop_id 5217 

to_stop_id 5217 

transfer_type 2 

min_transfer_time 1 

Trips route_id 42 

service_id TAL_AR_K28_2016 

trip_id 4530743642 

trip_headsign Tampere 

direction_id 1 

shape_id 1317200319250 

wheelchair_accessible 0 
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After extracting the sequence of bus stops with longitudes and latitudes for each 

journey, we define a fifty-meter radius area around each bus stop to track vehicles in 

these areas. The value of fifty meters for the radius should be adjusted according to 

actual physical traits of bus stops in a city. The radius definition is necessary because in 

practice it is quite difficult to identify the exact time of arrival or departure. First, the 

type of a bus stop should be kept in mind (e.g., curb side, bay- or terminal-like bus 

stops) but most likely there will be no data about the types of all the bus stops in the 

open data source. GTFS does not specify the type of bus stops. Neither Journeys API 

providing bus data in Tampere does it. Second, buses can bunch up, build quite a long 

line near the physical bus stop, and consequently open the doors for boarding and 

alighting quite far from the point that we would assume as a bus stop. It challenges the 

stop area definition and requires defining some area instead of a point as a bus stop. 

Last but not least, even though there are data about bus speed, we cannot consider zero 

speed as a moment when a bus is located at the bus stop. The reason is that buses can 

pass by the bus stop if there are no requests to stop, and, furthermore, they can stop in 

front of the intersections close to the bus stops.  

Bearing in mind these restrictions and experimenting with different radius values, 

the fifty-meter radius is chosen as an optimal value. After radius defining, bus 

positioning data are scanned to look for arrivals and departures for each bus stop found 

in the bus stop sequence for each journey. We consider the minimum time for each trip 

identifier within one bus stop as a vehicle’s arrival time. Similarly, the maximum time 

within a defined area of a bus stop is a vehicle’s departure time. Our algorithm is based 

on the algorithm of offline computation of link travel times proposed by Syrjärinne and 

Nummenmaa [2015]. The input, simplified pseudocode, and description of the functions 

of our preprocessing algorithm for arrival and departure time computations are listed in 

Table III. 

As a result of data cleaning and preprocessing, the raw bus data are cleaned and 

aggregated to the output described in Table IV. The elements “Line” and “Direction” 

are not compulsory but might help one understand better the data. The compulsory 

elements of the output are “Journey Pattern”, “OriginShortName”, 

“DestinationShortName”, and “OriginAimedDepartureTime” serving as a compound 

key for a trip identification. Besides this, “StopCode” is indicating the code of bus 

stops. The calculated values of arrival time “ArrivalTime” and departure time 

“DepartureTime” are necessary for the data analysis. In other words, we summarize the 

data in the form where each trip identifier contains only arrival and departure times at 

and from the bus stops in the sequence determined by the trip’s route. 
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Table III. Preprocessing algorithm for arrivals and departures computations 

 

Input Pseudocode Description of 

functions 

Data is one-

day historical 

bus data 

G = Map(Data) 

for(each g in G) 

   stops = ScanAPI(g) 

  arrivalTimes.add(g.time) 

  for(i=1:length(stops)) 

    s = stops[i] 

   for(j=1:length(g)) 

     d = FindDistance(s.position, g.position) 

     if(d <= Radius) 

        ArrivalTime=min(arrivalTimes[j]) 

       DepartureTime=max(arrivalTimes[j]) 

    endif 

  endfor 

 endfor 

endfor 

 

Map is a “mapper” 

function that groups 

and sorts data 

according to a defined 

key. 

ScanAPI is a function 

to request Journeys API 

for a sequence of bus 

stops with their 

coordinates according 

to a key formed in a 

mapper function. 

FindDistance is a 

function calculating the 

distance in meters 

between two points 

expressed in a pair of 

longitude and latitude. 

 

For the efficiency of data analysis we process raw data on a daily basis in order to 

form an aggregated CSV file with arrival and departure times of the previous day. This 

daily procedure enables us to fulfil fast data analysis since the data are summarized and 

decreased in size significantly. The data can be taken from any period of time, and the 

need to process the same piece of raw data again disappears while data analysis is done. 

The framework we have chosen for data cleaning and preprocessing is the 

MapReduce programming model elaborated by Apache. MapReduce is a programming 

framework for parallel processing of big data in a distributed system. Java libraries of 

MapReduce are used to program the algorithms of preprocessing in Java and execute 

them in the distributed cluster run under Apache Hadoop. The framework’s main 

components are the “mapper” and “reducer” functions. At first, the mapper function 

processes input data sequentially line by line to form pairs of a key and value, which 

can be of any standard or programmed type. Then the data are sorted in an ascending 

order by key. After that, the result of the mapper function is transferred to the reducer 

function which merges all values associated with the same key in a way programmed by 
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a developer. MapReduce offers an easy-to-use and powerful interface for forming key 

and value pairs and coding mapping and reducing algorithms for large datasets.  

 

Table IV. The format of preprocessed data. 

 

Name Type Meaning 
1 2 3 

Line integer It indicates the line number. A letter in 

the line number is removed if exists. 

JourneyPattern string It indicates the line number with 

possible letters (see Table I). 

Direction integer [1, 2] It specifies the direction the bus is 

travelling in (see Table I).  

OriginShortName string [4] It specifies the origin stop number 

where the vehicle started the journey. 

DestinationShortName string [4] It specifies the destination stop number 

where the vehicle is heading to. 

OriginAimedDepartureTime string [4] It specifies the departure time from the 

origin bus stop in the format “hhmm”. 

StopCode string [4] It specifies the code of the bus stop. 

ArrivalTime time stamp It is Epoch Unix timestamp indicating 

the number of seconds to the moment 

when the vehicle appeared first in the 

area of the bus stop. 

DepartureTime time stamp It is Epoch Unix timestamp indicating 

the number of seconds to the moment 

when the vehicle disappeared from the 

area of the bus stop. 

 

The MapReduce program is automatically parallelized in a cluster of many 

machines, which guarantees processing big data quickly. The framework itself solves 

many problems related to parallel programming. Thus, a developer of a program is freed 

from the requirements to partition input data, schedule execution, and manage machines 

failures and inter-communication by a developer. The only requirements left are to 

design keys and values and configure the cluster properly.  

In the thesis experiments, we deployed the Hadoop MapReduce system under the 

Cloudera platform distribution on a distributed cluster of one master machine and two 

slaves. The master is an eight-core machine with 80 Gb of disk space. The remaining 

two machines operate as slaves (or data nodes in terms of Hadoop). Every slave 
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operates with twelve cores and 7.2 Tb disk space.  Historical bus data are saved hourly 

as CSV files to the Hadoop Distributed File System (HDFS) of the cluster. Storing data 

in HDFS is a requirement of MapReduce framework for input data. It creates the only 

data input point and enables a MapReduce program access data from any machine in the 

cluster. 

For the timely update of the content of our final application, our cluster executes 

programs for data cleaning and processing on a daily basis to find arrival and departure 

times for each trip identifier and each bus stop in the sequence for the route of the trip as 

was discussed above. Fig. 1 illustrates the logic and key-value design of the MapReduce 

task doing data preprocessing. This MapReduce program runs automatically every night 

at 3 a.m. to process the raw data of the previous day.  

Hadoop allows a developer to gather all statistics of MapReduce jobs, which have 

ever been run in the cluster. According to the statistics, the running time of the 

preprocessing task is six minutes on average. As a result of the proposed design, bus 

data in a set of twenty four files with an overall size of around 650 Mb are shrunk to one 

file with a size around 5Mb every day. Expressing the result as the amount of data that 

has to be analyzed further, we get around 130 times less data at the analysis stage than 

we would have without cleaning and preprocessing. Although the initial amount of data 

is not very large, we use data processing because it is more scalable. This is especially 

important if data gathered during a large period of time in a big city are needed for the 

analysis. All in all, the larger the period of history we want to include to the 

calculations, the more sensitive to the data size a program will be. 
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Figure 1. The MapReduce task for getting arrival and departure times data. 
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4. Methods 

 

We have compared different models and methods most frequently used in 

predictions for transportation area in Chapter 2. The comparison of the models revealed 

the fact that, despite the popularity of dynamic models and predictions based on real-

time models, static models are easier to implement in applications. The advantage of 

static models is the opportunity to process historical data in advance in a separate 

system, thereby avoiding adverse effect on the performance of the end user application. 

Furthermore, it was established that methods belonging to static models are as reliable 

and accurate as, and in many cases even more accurate than, methods associated with 

dynamic models. Therefore we decided to construct our framework for bus connection 

prediction on the historical-data-based methods. In this chapter we present two original 

frameworks, which are expressed through probability distributions. Both frameworks 

are original and novel for transportation systems although their cores are based on well-

known statistical methods.  

  

4.1. Bayesian binomial distribution 

 

It is common for a scientific hypothesis to be expressed in terms of a probability 

distribution to which the conformance of observable data can be measured. The distinct 

characteristics of the particular distribution are defined by the parameters, which 

determine the shape of a probability distribution curve. As is typically the case, the 

values of these parameters are our unknown variables. Previous knowledge about 

parameters is expressed in Bayesian analysis as the prior distribution or, simply, the 

prior. Knowing the prior and observing new data, Bayesian analysis enables us to build 

a new probability distribution, called the posterior distribution or the posterior, which 

can be used for prediction of future values of observable data. 

A connection between two buses may or may not be successful. This simple 

statement allows us to deal with binomial data expressing mutually exclusive events.  

Bayesian analysis for binomial data is mathematically convenient to perform based on 

the beta density function [Kruschke, 2011; Penttinen and Piche, 2010]. Transformation 

of data from a nominal form to a binomial one gives us freedom in connection risk 

estimation since binomial data do not require knowledge about the distribution type of 

the original data. Furthermore, the beta distribution function describing binomial data is 

quite easy to compute. 
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4.1.1. Bayesian binomial analysis 

 

In order to present our framework for bus connection estimation in detail, we take 

one itinerary with an interchange proposed by the journey planner of Tampere [Tampere 

Journey Planner] as an example. In the study of Syrjärinne et al. [2014] on bus 

movements in Tampere, the risk of delay was shown to rise during rush hours on 

weekdays, especially for long routes. It determines our choice of the itinerary, which 

includes two long route lines and a transfer in the city centre. The itinerary goes from 

the West of the city to the East and requires a change from line 26 to line 27 at the bus 

stop Tipotie, which is located almost in the very centre of the city. The arrival times of 

lines 26 and 27 at this bus stop are scheduled consequently at 08:13 and 08:16. Both 

lines cross the city from the North-West to the South-East via its central part, and this 

morning hour is subject to traffic congestions. Fig. 2 illustrates the density curves of 

arrival times and departure times of the vehicles in question at Tipotie in March 2015. 

The algorithm for density estimation in this figure computes Gaussian kernel density 

estimates with the given observations of arrival times. 

 

 

Figure 2. Arrival times of line 26 scheduled at 8:13 and departure times of line 27 

scheduled at 8:16 on weekdays of March 2015 

 

The change bus stop is the same for both lines, so that one-minute minimum 

transfer time between arrival of line 26 and departure of line 27 should be sufficient for 

successful connection. According to the timetable, there is a three-minute gap between 

the vehicles’ arrivals. Hence, a user has a two-minute freedom for the interchange.  The 

itinerary’s timetables are identical for each weekday but different timetables are in force 
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at the weekend. Furthermore, traffic congestion and delays are usually more severe on 

weekdays, which could affect the probability of buses diverging from their schedules. 

Therefore, the data for the analysis have been captured during weekdays in March 2015 

and have consisted of twenty records corresponding to twenty weekdays (Table V). 

Although there are twenty two weekdays in March 2015, the relevant data for the bus 

stop and the lines in question are missing on March 16th and 24th for some technical 

reason. These historical data become available after gathering raw bus data and pre-

processing them according to the algorithm described in the previous chapter. 

 

Table V. Weekday connections at the bus stop Tipotie from line 26 scheduled at 

8:13 to line 27 scheduled at 8:16 on weekdays of March 2015. 

 

Date 
Arrival time of 

line 26 

Departure time 

of line 27 
Delta 

a
 (s) 

Successful 

connection 
b
 

1 2 3 4 5 

02.03.2015 08:15:30 08:16:40 70 + 

03.03.2015 08:14:11 08:17:23 192 + 

04.03.2015 08:14:42 08:17:39 177 + 

05.03.2015 08:13:31 08:16:38 187 + 

06.03.2015 08:14:38 08:15:39 61 + 

09.03.2015 08:14:05 08:15:13 68 + 

10.03.2015 08:16:05 08:16:32 27 - 

11.03.2015 08:14:24 08:16:40 136 + 

    12.03.2015 08:15:01 08:17:05 124 + 

13.03.2015 08:13:17 08:17:22 245 + 

17.03.2015 08:14:50 08:19:29 279 + 

18.03.2015 08:15:33 08:18:32 179 + 

19.03.2015 08:14:19 08:15:54 95 + 

20.03.2015 08:14:42 08:16:16 94 + 

23.03.2015 08:14:46 08:17:19 153 + 

25.03.2015 08:14:33 08:17:03 150 + 

26.03.2015 08:12:48 08:16:21 213 + 

27.03.2015 08:13:19 08:16:54 215 + 

30.03.2015 08:14:52 08:17:06 134 + 

31.03.2015 08:15:03 08:16:27 84 + 
a
 Delta is a difference in seconds between departure time of the second line and arrival time of 

first line. 
b
 Connection is successful if the difference between delta and the sixty-second limit for the 

change has a positive value. 

 

After definition of the scope of observable data, we need to set the prior for the 

Bayesian inference. Having experience in taking buses in Tampere and considering 

findings of the studies made on bus data in Tampere [Kerminen et al., 2014; Syrjärinne 

et al., 2014; Syrjärinne et al., 2015] previously, we are aware of the probability that 

buses can fall behind or get ahead of their schedule in Tampere. On the other hand, this 
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itinerary has been suggested by the journey planner of Tampere and it has a sufficient 

interchange freedom of two minutes. Taking into consideration this information, let us 

assume that this connection is quite likely to succeed. For example, 80% probability of 

success can be a good guess.  

The beta distribution characterized by two shape parameters α and β can be used as 

the conjugate prior distribution for binomial probabilities in Bayesian statistics 

[Kruschke, 2011; Owen, 2008]. When used in Bayesian analysis, α may be considered 

as the prior number of successes and β may be considered as the prior number of 

failures. Thus, expressing our belief in 80% successful connection as the parameters of 

binomial distribution, we say that we should have sixteen successful connections out of 

twenty cases within twenty weekdays of one month. 

Based on the defined prior and the observed data for twenty weekdays in March on 

the itinerary in question, we evaluate the probability density function (Fig. 3). All in all, 

the Bayesian analysis requires several steps – assumption of the prior belief over 

possible probabilities of the successful connection, transformation of observed arrival 

times’ and departure times’ data to a binomial form, and inferring the posterior 

distribution of our beliefs using the Bayes’ rule. 

Fig. 3 shows the three steps of the analysis with the use of the equations (1)-(3). 

First, we define the parameters of the prior density function (1). Believing in 80% 

success of bus connection during one month or 20 weekdays, we set the parameters α 

and β equal to 16 and 4. It forms the beta distribution B(Θ|16, 4). Second, we define the 

likelihood function (2) using the observed data. In the experiment we have the number 

of successful connections z equal to 19, and the overall number of records in the 

observed data N equal to 20. Third, we define posterior density function (3). In the 

experiment the posterior function follows beta distribution B(Θ|35, 5). As a result of 

calculations, the expected probability of connection in this route is 87.5%, which is the 

posterior mean (4). The frequentist probability (5) of this connection is 95%. 
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Figure 3. The prior (a), the likelihood (b) and the posterior (c) curves for the 

connection at Tipotie in March 2015 

 

Bayesian analysis presents a higher stability of a probability of a variable when it is 

computed with a small amount of observed data. Without a doubt, a good guess about 
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the prior results in a better stability and coherence of a predicted value to the reality. 

Unlike the frequentist probability, which produces results close to reality only when 

computed with lots of data, Bayesian distribution should be able to update the prior and 

achieve a reasonable accuracy of prediction based on just a few new records. We also 

estimate the frequentist probability and the beta distribution on bus data captured during 

the first week of March in order to check this hypothesis and compare both approaches. 

The expected probability based on one-week data is 84%, which is closer to the 

previously computed probability (87.4%) than the frequentist probability (100%) to the 

previous value (95%). This evidences less dependence of the Bayesian probability on 

the data and the amount of data than of the frequentist probability. 

In general, the investigated journey is relatively safe in terms of connection because 

the chance of a traveller catching the second bus is quite high. The fact that the posterior 

expected probability in our example is far less than the frequentist probability 

demonstrates a value of the Bayesian approach. The difference in resulting values 

reveals the benefit of the Bayesian analysis when a small quantity of data can help one 

anticipate the future situation. Thus, if we obtain less data than we analyzed in the 

example, the chance of getting the 100% frequentist probability increases because it is 

very likely to pick up randomly only a successful connection in the route in question. 

Nevertheless, the 100% probability of a successful connection does not describe the real 

situation with this route correctly, because we did face one case of failure during the 

month. Thus, should we believe that we can make this journey if we get the 100% 

frequentist probability? We guess we should not. In contrast to a single value of the 

frequentist probability, the posterior curve specifies the probability density function 

with the Highest Density Interval (HDI) that brings meaningful probability distribution 

for the risk estimation. Thus, the 95% HDI limiting the posterior curve in Fig. 3 defines 

the most probable success of the connection from 77% to 97% with 95%-confidence 

based on the data from March 2015. This continuous representation of the risk can bring 

added value for travellers who want to match the probable risk and their own 

willingness to take a risk in advance. While applying this framework, a researcher can 

choose between a single probability or continuous probability representations to report a 

forecast risk to users. 

 

4.1.2. Validation factors 

 

We can use different validation factors in order to measure how well the prior fits 

the data observed and how well the predicted value is in line with the real situation. 

Gelman et al. [1996] make the point that all models are generally wrong, but some 
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models can fit specific aspects of a problem reasonably well. A model validated by a 

number of factors will be preferred among others.  

As the first validation factor, we assess the Bayes factor [Kass and Raftery, 1995]. 

The Bayes factor is a practical tool of applied statistics representing the weighted total 

probability of the new data across all possible parameter values weighted by its prior 

probability (6). 

)2|(

)1|(

MDP

MDP
K   (6) 

where P(D | M1) is the likelihood of the data D given the model M1, and P(D | M2) 

is the likelihood of the data D given the model M2. If K>1, then M1 is more strongly 

supported by the data than M2. If K>3, then the evidence in favour of M1 is substantial. 

If K>10, then the evidence in favour of M1 is very strong. Generally speaking, the 

greater the value K is, the more strongly the model M1 is supported by the data.  

In our case, M1 is a model with a defined prior, while M2 is a model with an 

unknown prior. The likelihood of M1 can be calculated according to the binomial distribution 

(2) where probability relates to the prior distribution. Again, we need to make a guess 

about the prior distribution. We remember that we have set the parameters α and β equal 

to 16 and 4 yielding the mean of 0.8. The alternative hypothesis, or M2, relates to the 

belief that the probability of success is not equal to 80%. In order to calculate the Bayes 

factor, we have employed the proportionBF function of the “BayesFactor” R package 

[BayesFactor] suitable for binomial data. Thus, the Bayes factor for the data in our 

example with 19 successful connections out of 20 is equal to 1.91, which favours the 

null hypothesis about 80% prior belief although the Bayes factor value 1.91 is quite 

small to support this hypothesis strongly. In fact, smaller prior expectations about 

successful connections would produce a better model for the observed data.  

The second validation factor of the model relates to the Posterior Predictive 

Assessment (PPA) [Kruschke, 2011, Gelman et al., 1996]. This method enables one to 

assess model fitness by measuring the discrepancy between the data and the posterior 

probability. Given a particular parameter value theta, we generate several new data sets 

using that value theta. Then, for each generated data set, we measure a discrepancy 

between the data and the parameter value theta. In our case, the parameter theta is the 

probability of successful connection. We simulate datasets with 20 connection attempts, 

and the discrepancy measure is the absolute difference between the expected amount of 

successful connections attempts and the amount of successful connections 

in the dataset. We measure the discrepancy for our observed data and compute the 

frequency, with which the generated-data-discrepancies equal or exceed the observed-

data-discrepancy. This is called an estimate of the posterior predictive p-value. 
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Thus, we generated 10,000 datasets given the parameter value theta equal to random 

generation for the beta distribution with parameters corresponding to the posterior α and 

β. Then we calculated the posterior predictive p-value meaning that the amount of 

successful connections in the generated samples equals or exceeds 19 cases from 20 as 

in the observed data. As a result, the posterior predictive p-value equal to 0.33 is not 

large, however, it exceeds the significance level of 5%. In other words, the PPA test 

validated the current model. Fig.4 illustrates the frequency histogram of the test 

simulation. This output was highly expected since our prior belief does not differ 

considerably from the observed data. However, an overly pessimistic or, in contrast, 

overly optimistic belief in the success might cause far greater divergence between the 

posterior and the observed data, and hence, the frequency of the observed data can be 

too small in the simulation.  

 

 
Figure 4. The PPA result for one-month data 

 

All things considered, predictions on successful connections based on the prior 

belief in 80% of success have been validated by both the Bayes factor and the PPA 

characterizing the model positively. Although the values of both validation factors are 

quite modest, they are higher than the minimum values necessary for the null hypothesis 

acceptance. The process of validation can involve comparison of results obtained 

through the use of various input data and the prior belief. Thus, setting the prior 

correctly and varying the number of observations, we receive an opportunity to produce 

a better model. However, if validation factors have shown acceptable values in the first 

attempt, the model may be considered to be sufficiently good. 
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4.1.3. Case study 

We have conducted a case study to test the proposed model and discover a minimal 

size of datasets for the analysis. Keeping in mind the goal to implement the model in a 

web or mobile application, we aim to minimize the quantity of data necessary for 

predictions. On the other hand, the data should be sufficient to make accurate 

predictions. 

The case study involves picking up several itineraries with transfers, predicting the 

chance of connection for each itinerary, and validating the result. Table VI shows six 

bus routes selected for the case study. All the routes cross the centre of the city. All the 

connections take place during the 8 a.m. weekday rush hour in the areas close to the 

centre. This selection makes likely including connections with a different level of risk 

into the analysis.  

We select four-week data from 02.03.2015 to 29.03.2015 and twelve-week data 

from 02.03.2015 to 24.05.2015 at the first stage of the analysis. The testing period 

comprises four days from 25.05.2015 to 28.05.2015 to estimate the posterior parameters 

at the second stage of the analysis. All in all, we analyze two datasets at the first stage 

(twelve and four weeks) and three datasets at the second stage (one day, two days, and 

four days) for each route. Although the number of weekdays in the week apart from 

holidays is constant, the number of available cases is not always equivalent to the 

number of weekdays in the chosen periods. The reason is that randomly missing signals 

from running buses due to technical issues with GPS-transmitters or Internet 

connections result in missing data.  

Since bus stops can be located on different sides of the road or even in different 

streets, we have to consider a walking time between bus stops if a connection does not 

happen at the same bus stop. A walking time depends on the distance between bus 

stops, the need to cross a road or roads and to wait for a green pedestrian signal at the 

crossroad, and the average speed of a traveller. We agree with a default walking time 

proposed for each studied route by Tampere Public Transport Journey Planner 

[Tampere Journey Planner]. As a result, transfer time presents a sum of walking time 

between bus stops at the transfer and one-minute safety gap necessary to align a feeder 

vehicle and board a connecting vehicle. It means that the case study connections 

occurring at the same bus stop require one-minute transfer time, and ones involving 

different bus stops require a two-minute transfer. 

The analysis includes twelve datasets at the first stage (Table VII) and thirty four 

datasets at the second stage (Table VIII). As we described above, the prerequisites to the 

analysis are selecting the routes with transfers, transforming a connection expressed as 

arrival and departure times to a binomial form, and defining the prior. These data enable 

us to estimate the posterior parameters, which can be stored and used subsequently as a 
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basis for the predictions based on the latest data as we have done at the second stage of 

the analysis. Thus, we can conduct the second stage using the posterior parameters α 

and β as the new prior. After we finish the Bayesian inference, we validate the models 

with the use of the Bayes factor and the PPA. The posterior predictive p-value serves as 

an estimate of the PPA test with the generation of 10,000 samples. 

 

Table VI. Case study routes. 

 
Parameters 

of 

connections 

Route numbers 

1 2 3 4 5 6 

Origin Epilä Mediapoli

s 

Tesoma Pyynikki Vihilahti Varala 

Destination Keskisen

katu 

Rauhanie

mi 

Valkama TTY Tieteenkat

u 

Virolaine

n 

Feeder line 26 17 8 25 21 25 

Connecting 

line 

9 2 26 20 4 5 

Change bus 

stop for a 

feeder 

vehicle 

Keskusto

ri H 

(0012) 

Keskustori 

F (0010) 

Tuulensuu F 

(0017) 

Itsenäisyyde

nkatu 16 

(0516) 

Linja-

autoasema 

(0522) 

Keskusto

ri F 

(0010) 

Change bus 

stop for a 

connecting 

vehicle 

Keskusto

ri O 

(0007) 

Keskustori 

F (0010) 

Tuulensuu F 

(0017) 

Itsenäisyyde

nkatu 16 

(0516) 

Linja-

autoasema 

(0522) 

Keskusto

ri I 

(0042) 

Scheduled 

arrival time 

of a feeder 

vehicle 

08:20 08:33 08:15 08:28 08:13 08:42 

Scheduled 

departure 

time of a 

connecting 

vehicle 

08:23 08:35 08:18 08:31 08:18 08:50 

Minimum 

transfer time 

(min) 

2 1 1 1 1 2 

Connection 

freedom
a 

(min) 

1 1 2 2 4 6 

Transfer 

time
b
 (min) 

2 1 1 1 2 1 

a
 Connection freedom is the difference between arrival time of a feeder vehicle, departure time 

of a connecting vehicle, and a transfer time. 
b 
Transfer time is a one-minute gap plus walking time between bus stops in minutes. 
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Table VII. The first stage of the analysis. 
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1 2 3 4 5 6 7 8 9 10 11 

1 12 0.8 46 32 0.70 0.73 (48, 18) (0.620; 0.831) 1.20 0.70 

4 14 10 0.71 0.76 (26, 8) (0.623; 0.898s) 0.71 0.75 

2 12 0.8 44 25 0.57 0.64 (41, 23) (0.523; 0.755) 63.53 0.81 

4 18 9 0.50 0.66 (25, 13) (0.508; 0.803) 9.29 0.91 

3 12 0.8 49 46 0.94 0.90 (62, 7) (0.827; 0.963) 9.15 0.34 

4 18 17 0.94 0.87 (33, 5) (0.761; 0.964) 1.56 0.36 

4 12 0.8 48 46 0.96 0.91 (62, 6) (0.844; 0.972) 24.61 0.28 

4 17 16 0.94 0.86 (32, 5) (0.755; 0.963) 1.42 0.35 

5 12 0.8 48 33 0.69 0.72 (49, 19) (0.614; 0.824) 1.51 0.71 

4 17 15 0.88 0.84 (31, 6) (0.719; 0.946) 0.80 0.50 

6 12 0.8 46 46 1.00 0.94 (62, 4) (0.882; 0.988) 424.21 0.11 

4 17 17 1.00 0.89 (33, 4) (0.793; 0.978) 3.71 0.20 
a
 Route number refers to the header of Table VI. 

 

The analysis reveals a few interesting findings. The model including only the first 

stage has already been validated for most of the cases. According to P-values in the 

PPA, in all cases the data does not deviate significantly from the predictions of the fitted 

model and, thus, the model has been able to fit the variation in the data. The values are 

largest for routes 1, 2, and 5, meaning that for those routes the model is able to predict 

success rates close to the observed data and/or variability large enough to contain the 

observed data. Interestingly, p-values are higher for smaller observable datasets in four 

routes out of six. In contrast, the Bayes factor is always higher and consequently more 

positive for larger datasets for all the routes. The Bayes factor obtained for four-week 

observed data of the first and fifth routes does not support our model. When it comes to 

the probabilities, as it was expected, the posterior mean and the frequentist probability 

are closer when we get larger datasets of observed data in all the cases. However, the 

differences between the posterior means calculated for a smaller and a larger dataset 

within one route and the same differences between the frequentist probabilities did not 

reveal any consistency although we hoped that the posterior mean would be more 

stable. 
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Table VIII. The second stage of the analysis. 
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1 2 3 4 5 6 7 8 9 10 

1 (48, 18) 4 4 1.00 0.74 (52, 18) (0.640; 0.842) 1.12 0.32 

2 2 1.00 0.74 (50, 18) (0.630; 0.837) 0.98 0.53 

1 1 1.00 0.73 (49, 18) (0.625; 0.834) 0.96 0.73 

(26, 8) 4 4 1.00 0.79 (30, 8) (0.660; 0.910) 1.06 0.41 

2 2 1.00 0.78 (28, 8) (0.642; 0.904) 0.96 0.61 

1 1 1.00 0.77 (27, 8) (0.633; 0.901) 0.96 0.77 

2 (41, 23) - - - - - - - - 

2 0 0.00 0.62 (41, 25) (0.505; 0.736) 1.36 1.00 

1 0 0.00 0.63 (41, 24) (0.514; 0.746) 1.05 1.00 

(25, 13) - - - - - - - - 

2 0 0.00 0.63 (25, 15) (0.476; 0.770) 1.40 1.00 

1 0 0.00 0.64 (25, 14) (0.492; 0.786) 1.06 1.00 

3 (62, 7) 4 4 1.00 0.90 (66, 7) (0.836; 0.966) 0.95 0.68 

2 2 1.00 0.90 (64, 7) (0.832; 0.964) 0.95 0.81 

1 1 1.00 0.90 (63, 7) (0.829: 0.964) 0.97 0.90 

(33, 5) 4 4 1.00 0.88 (37, 5) (0.783; 0.968) 0.96 0.61 

2 2 1.00 0.88 (35, 5) (0.773; 0.966) 0.95 0.78 

1 1 1.00 0.87 (34, 5) (0.767; 0.965) 0.97 0.87 

4 (62, 6) 4 4 1.00 0.92 (66, 6) (0.852; 0.974) 0.94 0.71 

2 2 1.00 0.91 (64, 6) (0.848; 0.973) 0.95 0.83 

1 1 1.00 0.91 (63, 6) (0.846; 0.973) 0.97 0.92 

(32, 5) 4 4 1.00 0.88 (36, 5) (0.778; 0.967) 0.96 0.61 

2 2 1.00 0.87 (34, 5) (0.767; 0.965) 0.95 0.77 

1 1 1.00 0.87 (33, 5) (0.761; 0.964) 0.96 0.87 

5 (49, 19) 4 4 1.00 0.74 (53, 19) (0.634; 0.835) 1.13 0.30 

2 2 1.00 0.73 (51, 19) (0.624; 0.829) 0.98 0.53 

1 1 1.00 0.72 (50, 19) (0.619; 0.827) 0.96 0.72 

(31, 6) 4 4 1.00 0.85 (35, 6) (0.746; 0.952) 0.98 0.55 

2 2 1.00 0.85 (33, 6) (0.733; 0.949) 0.95 0.72 

1 1 1.00 0.84 (32, 6) (0.726; 0.947) 0.96 0.84 

6 (62, 4) 3 3 1.00 0.94 (65, 4) (0.887; 0.989) 0.95 0.84 

2 2 1.00 0.94 (64, 4) (0.885; 0.989) 0.96 0.89 

1 1 1.00 0.94 (63, 4) (0.884; 0.989) 0.98 0.94 

(33, 4) 3 3 1.00 0.90 (36, 4) (0.808; 0.980) 0.95 0.73 

2 2 1.00 0.90 (35, 4) (0.803; 0.979) 0.95 0.81 

1 1 1.00 0.90 (34, 4) (0.798; 0.979) 0.97 0.90 
a
 Route number refers to the header of Table VI. 

b
 Prior comes from the posterior mean calculated at the first stage. 

 

The second stage of the analysis involved a variety of the prior parameters specific 

to each route since they were estimated before with the use of larger datasets. The aim 

of the second stage is to check whether it is legitimate to make predictions based on the 
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latest data covering from one to four days. The estimation revealed the fact that our 

approach based on Bayesian distribution requires more than four days of data to 

produce reliable results. Thus, the Bayes factor calculated for the majority of the 

datasets is smaller than one. It means that the specific connection probability comes a 

range of similar values. The PPA showed quite high p-values for all the cases, 

especially for one- and two-observed-day data. This may be because the inferred model 

allows enough variation around the estimated connection probability to contain the data, 

even if the probability does not match the data perfectly. Nevertheless, we must 

consider both validation factors when estimating the ability of the model to predict the 

future values sufficiently well. 

Apart from the validation process, let us review the probabilities calculated with the 

different approaches and their dynamic when the size of the testing datasets becomes 

smaller.  At the second stage of the analysis in this case study, we have N or zero 

successes from N cases due to very small datasets, which consequently leads to the 

extreme frequentist probabilities. Thus, the frequentist probability for all the routes 

except the second one is equal to 100%, and for the second route it is 0% (Table VIII). 

We cannot consider this result as credible because the figures available from larger 

datasets at the first stage provide the 100% frequentist probability only for the sixth 

route, and no route has the 0% frequentist probability given one- or three-month data. 

However, the expected probability in the Bayesian inference varies from the minimum 

2% for the second route to the maximum 10% for the fifth route. The 2-10% variability 

of the connection risk is not enormous and therefore might still represent useful 

information for the user. The same cannot be said about the 0-100% variability, which 

we obtained with the frequentist approach. The dynamic of the expected probability 

within one route based on Bayesian inference is very low in the case study, thereby 

establishing the stability of the Bayesian probabilities regardless the size of observed 

data. 

In conclusion, we provide some recommendations about applications of the 

proposed framework. If delays due to traffic congestion in the city are relatively light, 

the analysis can start with the 80% prior and capturing one-month bus movements’ data. 

If the result of the validation process does not seem satisfactory, the iterative process of 

the prior and the size of dataset changes should be initiated. After a good prior and size 

of data for estimation of the posterior are discovered, we can store the distribution 

parameters in order to use them for the risk re-estimation daily or weekly based on the 

latest data. However, when it comes to the amount of the latest data sufficient for 

reliable predictions, we must take more than one-week data, and preferably, as much 

data as can be processed quickly for online services. The validation process that we 

have performed in the case study indicates that even four-day data is not enough. This 
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sensitivity of the framework to the size of data is highly undesirable for real-time 

applications and services, since the size of data in the analysis cannot be minimized 

safely. 

Besides this, as long as we need to store the distribution parameters, we need to 

know all possible transfers in the city in advance at the initial stage of the analysis. This 

requirement can be hard to fulfil because a general approach of trip planners is to plan 

itineraries based on a graph pre-built with road map, bus routing, and scheduling static 

data. Thus, trip planners generate itineraries and consequently transfers in real-time but 

do not store transfer information anywhere. If there is a way to generate all transfers, the 

framework is recommended to be implemented in online journey planners. The risk 

connection prediction feature is original and able to move trip planning services to a 

new quality level when feasibility of a bus route is evaluated on actual data rather than 

static timetables or user’s experience.  

 

4.2. Cumulative distribution function 

 

As a consequence of the previously discussed methods having serious limitations 

for implementation in trip planner applications, we have developed an alternative 

approach at estimates a connection chance based on parameters of two distributions 

rather than one. If the beta distribution function requires data in a binomial form, other 

standard distributions like normal or log-normal distributions deal with nominal data. 

Thus, if we know the distribution type of the bus arrival times and bus departure times 

in the city of Tampere, we can estimate a chance of a bus connection relying only on the 

distribution parameters of arrival times and departure times. We assume that 

distributions of arrival time of a feeder bus and departure time of a connecting bus are 

uncorrelated.  

Without a doubt, bus delays, arrival times, departure times, dwell times, and travel 

times data within the same geographical location might follow different types of 

distribution. The difference in the data characteristics refers to the local conditions of 

the transportation network. Numerous external factors such as different congestion 

levels on road segments, number of boarding passengers, rush hours, day of the week, 

and weather conditions might impact on the transportation network performance and, 

consequently, on adherence of buses to their timetables. 

The task of discovering the distribution type of data can be quite difficult. First, a 

researcher needs a lot of data available to execute functions of checking the fitness of 

data to standard distributions. These functions frequently have requirements on the 

minimum number of values in the input dataset, which can start from 100 and even 

more. Second, a researcher should design the experiment appropriately to separate data 
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to meaningful clusters. For example, if we deal with bus arrival and departure times, we 

need to study the data separately for different time and space coordinates. Thus, buses 

tend to be delayed more in the central areas of the city and during rush hours. On the 

other hand, there can be few bus stops in the route that are operating as the control 

points where a driver stops to align with the timetable if a bus runs ahead of the 

timetable. Besides this, the frequencies of delays and timely arrivals might differ on 

weekdays and weekends because road network’s load and passengers plans are naturally 

different on weekdays and weekends. Ideally, each bus stop and each trip identifier 

should form its own data cluster when the data distribution is checked. In this case we 

can face a situation when data in different clusters fit better with different distribution 

types.  

The problem of distribution type identifications can be clearly seen in Fig. 3 

illustrating density curves of arrival times and departure times of specific vehicles at the 

bus stop. The shapes of the curves are not normal. Apparently, these curves do not 

resemble any standard distribution curve at all.  

Nevertheless, if we cannot say that the observable data always follow some specific 

distribution, we can resort to approximations. Syrjärinne et al. [2015] discovered that, 

although bus arrival times in the city of Tampere do not strictly follow any standard 

distribution, both normal distribution and log-normal distribution approximated datasets 

sufficiently well. This finding allows us to treat bus arrival times in Tampere as 

normally distributed. The common logic also leads us to an assumption that departure 

times should have more or less the same nature as arrival times since the time that buses 

spend within the area of the bus stops is usually minimal. There are few exceptions, so 

called control points, where buses have to wait if they run ahead of the schedule. The 

normal distribution assumption is more beneficial than log-normal or another 

distribution since the data do not require any transformation, and normal distribution 

parameters, which are mean and variance, are easy to compute. 

In order to estimate the probability of a connection, we operate with arrival times of 

a feeder bus at the alighting stop and departure times of a connecting bus from the 

boarding bus stop. Let us assume that each trip identified by a specific line, origin, 

destination, and origin aimed departure time has unique distribution parameters for each 

bus stop in its route. When we split the data to such clusters, we are able to analyze 

separately all the location and time coordinates in the area of our interest. Hence, 

knowing the parameters of distribution of arrival and departure times for each trip 

identifier and each bus stop code, and the scheduled transfer time for the connection bus 

stops, we can estimate the probability of a connection. We suppose that a connection 

will be successful if the difference between the distribution of departure times from the 
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boarding stop of a connecting vehicle D2 and the distribution of arrival times at the 

alighting stop of a feeder vehicle D1  is larger than the scheduled transfer time T (7). 

TDD  12  (7) 

Then the probability of a successful connection or the inequality (7) can be 

expressed through the cumulative distribution function. If M1 and V1 are mean and 

variance of distribution D1, M2 and V2 are mean and variance of distribution D2, then 

we can transform the inequality (7) to the equation (8), which defines the probability of 

a successful connection. 

),,(1)( 211212 VVMMTpnormTDDP   (8) 

In the equation (8) pnorm is the cumulative normal distribution function. Pnorm 

function evaluates the tail area of the standardized normal curve from minus infinity to 

T. We apply the algorithm of pnorm estimation proposed by Hill [1973].  

In other words, having processed data beforehand and stored only M and V 

parameters for each trip identifier and each bus stop, we can calculate the distribution 

function in real time when users send requests to the application. The heavy 

computations related to the data cleaning and pre-processing discussed in chapter 3 are 

still necessary, but the actual estimation of a connection chance becomes easy and 

possible to be done in real time. Such an approach gives us an opportunity to skip 

intensive real-time calculations and transfer the heaviest burden of big data processing 

from an online journey planner, which is sensitive to data size, to a separate processing 

module which can handle a large amount of data. All things considered, this method 

overcomes the limitation of the Bayesian beta distribution, but it should still achieve 

accurate results provided the statistical properties of the data being studied properly and 

expressed correctly in the cumulative distribution function.   

 

4.3. Comparison of the methods 

 

An important question is how we can compare the accuracy of all the methods 

discussed above. Whereas the Bayesian analysis provides a number of validation factors 

of the models, the frequentist probability and cumulative distribution function estimate 

the frequency and difference between probability distributions, which are accurate by 

design. The basis for the comparison will refer to finding the range or difference 

between connection chances predicted for the same journey and bus stop by each 

method. Thus, we need to estimate the probabilities obtained from each method and the 

same datasets. We also have to assess the posterior mean as a resulting value in 

Bayesian inference since the other two methods present the predicted variable in a 

nominal single value rather than a range.  
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We prefer to use the same routes that we have investigated in the case study in 

section 4.1.3 for the ease of the case study description. Taking the same routes as a base 

of the methods’ comparison allows us to engage already prepared and studied data and 

to describe the case study briefly since the data necessary for the analysis have already 

been described. Furthermore, we have already predicted the probabilities of these 

connections calculated with the use of the datasets of different sizes and periods, 

therefore any extreme values obtained in the current case study can be compared with 

the previous case study.  

The input parameters for the functions are as follows. We select 60-day observable 

data for predicting a chance of connection by each method. In fact, there will be far less 

cases due to various timetables on Saturdays, Sundays, and missing data. As long as we 

do not know beforehand how many cases we can obtain from the observable data, we 

need to select a number of days that we will scan in order to find the necessary routes 

and connections. For the Bayesian analysis, we set the prior to 80% (check section 4.1.1 

for details). For the cumulative distribution function we set minimum transfer time 

defined for each connection in Table VI. The data are to be cleaned and pre-processed 

according to the algorithm explained in chapter 3 before we can use them at the 

processing step. 

Table XI presents the results of calculations. Fig 5. makes the differences between 

chances of connections predicted by the three different methods visible. As we can 

observe, the differences between predicted values are not large in most cases. The 

normal distributions difference is closer to the frequentist probability for the first, 

second, third and sixth routes. However, it is closer to the posterior mean for the fifth 

route.  We can also see the outstandingly odd prediction made by the cumulative 

distribution function for the fourth route. Having 34 successful connections from 36 

cases in the observable dataset, we obtain only 81% of a successful connection chance 

predicted by the cumulative distribution function, whereas the first two methods are 

apparently more optimistic. The reason for such a big difference might lay in the 

relatively large standard deviations in comparison to the sum of means of arrival and 

departure times for this route.  

All in all, as far as the predicted values for most cases do not differ drastically, we 

can conclude that all the methods have the capability to predict the chance of a bus 

connection. The question is what method is better for implementing in a mobile or web 

trip planner sensitive to the size of data and complexity of calculations. As we discussed 

in the previous chapters, the first two methods require us to know in advance all the 

possible connections that can be proposed by a trip planner. It is a strict limitation for 

the application development. If we do not store the information about the successful 

connections in our historical datasets, we will have to process large batches of historical 
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data to predict the chance of connection for each user’s request when the actual trip 

planning is happening. Here we face a dilemma as to whether big data should or should 

not be processed in real time. In our opinion, a real time application should not handle 

such workloads because application performance and response time are extremely 

crucial for end users. Having numerous fast-responding trip planners at their disposal, 

users will not be willing to use a new slow trip planner. Thus, our application will not 

be able to compete with existing trip planners regardless of whether it has original and 

useful predictive functionality. All things considered, we believe that the cumulative 

distribution function is the best-among-the-discussed methods that can be integrated 

into a trip planner to enable it to predict a chance of a bus connection without a loss of 

performance. 

 

Table XI. Comparison of connection chances predicted by the three methods based 

on 60-day data from March-April 2015. 

 

Route 

number 
a
 

Observed data Predicted chance of connection (%) 

Number of 

cases 

Number of 

successful 

connections 

The 

frequentist 

probability 

The 

posterior 

mean 

The normal 

distributions 

difference 
1 2 3 4 5 6 

1 33 23 70 74 69 

2 31 17 56 65 53 

3 36 34 94 89 94 

4 36 34 94 89 81 

5 36 23 64 70 70 

6 33 33 100 92 100 
a
 Route number refers to the header of Table VI. 

 

 

Figure 5. The probabilities of successful bus connections. 
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4.4. Implementation of bus connection risk estimation in the trip planner 

 

The probability of a bus connection estimated as a cumulative distribution function 

seems to be the best option among the methods discussed in the previous sections. 

Therefore, we selected this method for implementation of the web trip planner in order 

to visualize the predicting capability of a bus connection risk. 

We integrated the method of risk estimation based on the cumulative distribution 

function and the assumption that arrival times and departure times of buses in the city of 

Tampere follow the normal distribution into the open source trip planner [Open Trip 

Planner]. Open Trip Planner is an open source platform for multi-modal and multi-

agency trip planning. It relies on open data in open standard file formats, making it easy 

to deploy in any city for which the GTFS and Open Street Map data are available. 

Besides a REST API for journey planning, it includes a map-based Java script client, 

which we deployed in the web server with a port number 65303 [Tampere Open Trip 

Planner]. Open Trip Planner creates travel time contour visualizations based on input 

parameters about the origin, destination, travel mode, and time. This trip planner is 

relatively simple to deploy in order to get basic trip planner’s functionality for a chosen 

geographical area in the web application. It also offers a good support for developers 

and a set of technical documentation with version control. 

The stable version 0.11 of Open Trip Planner served as a base for our trip planner. 

The planning graph has been built based on the latest GTFS files downloaded from the 

file repository of ITS Factory [GTFS for Tampere] and the OSM file for the region of 

Tampere [Open Street Map]. In fact, the graph is rebuilt and updated with the latest 

distribution data on a daily basis, although new GTFS files are integrated into the graph 

in general twice a year when the bus timetables change. 

In addition to Open Trip Planner, we employed MapReduce framework, which is 

described in detail in chapter 3, for calculating the distribution parameters of arrival 

times and departure times for every unique journey and bus stop in the route of the 

journey. MapReduce environment is chosen for two reasons. First, the task of 

calculating distribution parameters requires a lot of data to be processed. Second, this 

task should be repeated automatically on a daily basis with a minimum workload of a 

web server where the trip planner application runs. MapReduce can efficiently handle 

big data to aggregate them to quite small datasets which can be added to the trip 

planner’s graph without performance loss. Because the response time in web 

applications is critical in keeping users loyal, real-time processing of big data is not a 

good choice. The reasonable solution is to process all data in advance in a different 

system and transfer only the summarized data to a web application. If necessary, this 

summarized result can be updated from time to time with the latest real-time data. 
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Our program processes daily the latest sixty files with arrival and departure times, 

which are equal to sixty-day data, in order to calculate the normal distribution 

parameters for each trip identifier and each bus stop. Data processing is done regularly 

by the MapReduce task described in Fig. 6. The running time of the task takes up to two 

minutes, less at the weekend or during holidays. As a result, the data of around 300 Mb 

are converted to one file of around 5Mb. The number of days from which data are 

selected as input of the MapReduce task might vary according to the local conditions. 

Thus, if the seasons in the area are clearly distinct, the weather conditions impact 

frequently on traffic fluency. Then it makes sense to adjust the period of data needed for 

the analysis to the time of more or less similar weather conditions. Consequently, the 

period of data can also vary during the year. We figured out experimentally that one or 

two months of historical data were sufficient to make credible bus connection 

predictions in the Tampere region. 

The parameters of our MapReduce program can be easily adjusted through the 

configuration file. This file contains information about the paths to files in the local 

machine as well as in HDFS. Additionally, the number of days for estimating 

distribution parameters and the starting date to form the arrival times’ file can be 

changed. If necessary, new parameters such as data distribution type may be added to 

the configuration file with minimum correction of the algorithm, making deployment of 

the proposed system possible and rather easy in a new cluster and new geographical 

area. We plan to distribute the code openly. 

The only issue that has not been fully resolved in our trip planner concerns the 

relationships between different sources of data described in chapter 3. As long as GTFS 

files serve as a base for building the planning graph, each unique trip in the graph 

receives a separate 10-digit identifier. However, Journeys API does not contain this 

identifier. That is why the proposed framework includes an extra stage in order to 

integrate GPS-based bus data distribution parameters into the graph. At this stage, our 

algorithm searches for a trip identifier for each unique set of line, direction, origin stop, 

destination stop, and origin aimed departure time in the specific GTFS files. Once 

discovered, a trip identifier is added to the original file with the distribution parameters. 

The insurmountable problem of this operation is that Journeys API does not provide 

letters for a few lines, which are identified as a compound of a number and letter in 

GTFS data. Thus, sometimes the trip planner is unable to find distribution parameters 

for a journey. In this case, the trip planner outputs an “undetermined” chance of 

connection for an itinerary. 
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Figure 6. MapReduce task for getting distribution parameters data. 

 

We changed several classes and functions in the original code of Open Trip Planner 

in order to add risk estimation functionality. The majority of changes affected core 

modules of graph loading and trip planning. The front-end Java script modules 

underwent minor changes to enable visualizing new information for the trip summary 

section in the “Itineraries” widget. One example of the framework in action is illustrated 
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in Fig. 7, which is to be interpreted as follows. If an itinerary consists of one or more 

transfers, the cumulative distribution function (8) estimates the probability of a bus 

connection or connections with the minimum transfer time depending on the walking 

distance between transfer bus stops. The current version of Tampere Open Trip Planner 

calculates the difference between distribution of arrivals times, but a coming version 

will use the distribution of departure times as described in section 4.2 and the equation 

(8). The new function of connection chance estimation is original in trip planning since 

currently no existing trip planner provides such information yet. 

 

 

Figure 7. An example of a bus connection chance estimation in the application. 

 

The response time for a user’s request does not show a great difference in 

comparison to the response time before the trip planner’s code changing. The response 

time rose by a maximum of 0.1 s. All in all, the proposed framework for bus connection 

risk estimation influences quite little on overall performance and usability of the 

application. We consider the connection risk prediction feature as highly beneficial for 

end users of the trip planner: the new information brings value to end users while 

changes do not have any drawbacks. 

The general idea is to make the whole system work automatically. There are several 

steps of execution (Table X) necessary for data gathering, cleaning, pre-processing, and 

processing, and finally feeding the trip planner with the relevant summarized data. After 

all the steps are done, the trip planner becomes capable of consulting end users about a 

bus connection risk. The first two steps relate to gathering date on real-time bus 
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movements via Journeys API and copying these data as hourly CSV files to the HDFS 

of the distributed cluster. The third step includes data cleaning and pre-processing. 

Thus, the previous day’s raw data are processed to form a CSV file with arrival times 

and departure times for each unique journey every night at the least intense time of the 

cluster and web server. After this step, the distribution parameters are recalculated to 

consider the new file with the pre-processed data. The fifth step refers to finding 

matches between GTFS-based trip identifiers and GPS-based pre-processed records 

when the new file with distribution parameters and graph-compatible trip identifiers is 

formed. Last but not least, the trip planner graph is reloaded into the web server 

memory with the use of freshly calculated distribution parameters. 

 

Table X. Updating trip planner graph’s steps. 

 

# Task Regularity 

Number 

of input 

files 

Average 

input 

data size 

(Mb) 

Average 

output 

data size 

(Mb) 

Average 

running 

time 

(min) 
1 2 3 4 5 6 7 

1 Capturing real-time 

bus movements data 

from Journeys API 

once per 

second 

- - - -  

2 Copying real-time bus 

movements data to 

HDFS 

once per 

hour 

- - 27 0.05 

3 Estimating arrival 

times for each trip and 

each bus stop 

once per 

day 

24 650 5 7 

4 Calculating 

distribution 

parameters of arrival 

times data 

once per 

day 

60 300 5 2 

5 Finding a trip 

identifier in GTFS 

files for each trip 

once per 

day 

1 5 19 2 

6 Updating the trip 

planner graph with the 

new distribution 

parameters 

once per 

day 

1 19 - 2  

 

To sum up, the aim of making the system work automatically can be easily achieved 

if one executes the described steps as jobs on the cluster and web server. The only 

manual work necessary for the proper operation relates to copying new GTFS files to 

the cluster repository when the bus schedule changes. The calendar file of GTFS and 

changes of routes and timetables create the need to keep the planning graph nodes up-



55 
 

to-date any time. Otherwise, the graph will not contain new dates, routes, or timetables 

to be able to generate relevant itineraries. Bus timetables of Tampere usually change 

twice a year to switch between a regular schedule and a special summer schedule when 

fewer buses are running in the routes. At the time of writing this thesis, Tampere Open 

Trip Planner’s graph used the autumn 2015’s GTFS files. 
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5. Conclusions and discussion 

 

Estimation of bus connection risk is novel and original in the transportation field. So 

far there is no existing trip planner providing predictions on a bus connection. However, 

as shown in this thesis, it is possible to create such a trip planner with the use of open 

data. Following the framework described in the present study, one can build his or her 

own trip planner application provided the map and bus data are open for the city of 

interest. Thus, bus connection chance estimation integrated into a trip planner will make 

travellers better informed and offer them a tool for a more intelligent use of a 

transportation network.  

This thesis has reviewed different methods and models widely used in 

transportation for predicting future values of different public transportation variables. In 

our opinion, the best classification of the models should be based on the nature of data 

and processing algorithms. Thus, static models engage historical static datasets and 

algorithms that can handle large and unchanging data. In contrast, dynamic models rely 

on real-time small data updates and algorithms, whose testing phase takes far less time 

than a training phase. In this way, an algorithm builds a model with the use of large 

historical datasets beforehand. Once constructed, a model is updated with small portions 

of real-time data, which enables it to correct the model behavior depending on the 

changes of observable variables.  

Although the accuracy of dynamic models seems in principle to be higher than that 

of static models, previous studies have illustrated that static models can outperform 

dynamic models in terms of accuracy. Furthermore, if talking about connectivity risk, 

users are usually interested in the connection risk of a planned journey before they start 

travelling. For example, when it is highly crucial to arrive at the destination in time, 

planning should take place in advance in order to compare different alternative routes 

and choose the most reliable one. Thus, if a user is planning far before the actual trip 

starts, the real-time situation in the transportation network is not very valuable for the 

prediction. All things considered, static models produce sufficiently good predictions of 

a bus connection chance.   

The majority of models describes or predicts arrival times, travel times, and dwell 

times, whereas the probability of a bus connection is not so well-studied. This thesis has 

attempted to fill the gap between the knowledge of the connectivity risk and the need 

for bus connection estimations in end-users’ applications. In order to do this, this study 

has elaborated two original frameworks. The first framework is based on the Bayesian 

analysis. The second framework incorporates the cumulative distribution function. 

Having compared the frequentist probability, Bayesian inferring, and the cumulative 

distribution function, this study has discovered that all three methods produced quite 
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close predictions for the routes of the case study. Without a doubt, it is very difficult to 

conclude which method provides the most accurate result. A positive sign is that the 

difference between the values predicted by all the three methods is not enormous. The 

predicted chances of bus connections stay close and seem sensible for most routes. 

Perhaps, future work can focus on some better measures of how different approaches 

can be compared. The testing in this thesis concentrates in how well the models describe 

the data. With enough data and few parameters, this may be close to testing for how 

well the method generalizes. Proper testing for how well the methods described here 

generalize is not a minor task and it is left out of this thesis. 

In general, the frequentist probability is not stable when the datasets are small. 

Besides being sensitive to the size of observed data, both the frequentist probability and 

Bayesian analysis methods require knowledge of all possible transfers in advance in 

order to be able to save the parameters of the transfers for real-time users’ requests in a 

trip planner. The framework based on the cumulative distribution function does not 

need this information since the prediction can be made in real time requests as the 

difference between arrival times distribution and departure times distribution. In other 

words, the heavy calculations of distribution parameters can be fulfilled in a separate 

system, and only a small set of distribution parameters for each journey and each bus 

stop has to be loaded to a web server’s memory where the trip planner runs. 

Our recommendation is to use the bus connection risk estimation framework based 

on the cumulative distribution function as the best one for implementation in 

applications. As a part of the thesis work, we deployed an open source trip planner for 

the city of Tampere and integrated the function of connection chance estimation for 

visualization purposes. Arrival time and departure time data in the city of Tampere are 

considered normally distributed. Therefore, the program calculates the normal 

distribution parameters of bus arrivals and departures as the key components of the 

predictive method.   

The work on deploying the system comprises several steps. The first step is to 

gather GPS-originated data on bus movements in real time by polling Journeys API 

once per second. Then the MapReduce program should process raw data in the 

distributed cluster. Data pre-processing includes cleaning the data, finding arrival and 

departure times and discarding unnecessary data. Then the second MapReduce program 

calculates the distribution parameters. The parameters of the program can be easily 

adjusted to one’s needs through the configuration file. Then the newly calculated 

parameters should be loaded into the planning graph of the trip planner. The idea is to 

reload the graph every night in order to update the distribution parameters based on the 

latest sixty-day bus data. The whole system can work automatically due to the 

scheduled jobs unless a new bus schedule is issued. The overall running time for 
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calculating parameters and loading them to the web application is thirteen minutes on 

average. Downtime of the trip planner does not exceed two minutes. In any case, it can 

be done during the quiet hours of the night; therefore the downtime of the application 

should not be critical for end users.  

All in all, an efficient framework proposed in this thesis opens a new horizon for 

trip planning applications. The application developed as a part of this thesis has 

received a national level award in the Open Finland Challenge 2015 competition, which 

took place in Helsinki. Our trip planner with estimation of bus connection chance has 

been recognized as a novel and original solution for the future development of ITS. So 

far, web and mobile trip planners have focused on journey planning linked to static 

timetables. The predictions in existing applications have covered bus arrival times but 

not the probabilities of connections. However, even such predictions are possible 

provided that relevant bus data are available. Otherwise, only the user’s experience 

about specific bus lines and time can help guess if the trip can be successful. Trip 

planners with connection risk estimation will enable consulting travellers about trip 

feasibility and to increase their loyalty to public transport in general. The recommended 

framework consists of a theoretical description and practical application which makes 

the study very useful not only for researchers, but also for transportation system 

decision-makers, software developers, and bus users. The framework can be utilized to 

build the same service by anyone in any city where map and bus data are open. 
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