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1 Introduction

Consider a columnwise partitioned matrix A D .a1 W : : : W am/ 2 Rn�m (the set of n � m matrices with real
elements). Then the column space of A is defined as

C .A/ D f z 2 Rn
W z D At D a1t1 C � � � C amtm for some t 2 Rm

g:

The notation C .A/? refers to the orthocomplement of C .A/, i.e., the set of vectors which are orthogonal (with
respect to the standard inner product) to every vector of C .A/:

C .A/? D fu 2 Rn
Wu0At D 0 for all t 2 Rm

g:

Thus, because
C .A/? D fu 2 Rn

Wu0At D 0 for all t 2 Rm
g D fu 2 Rn

WA0u D 0 g;

we have

C .A/? D N .A0/ D the null space of A0:

Now A? is defined as a matrix whose column space is C .A?/ D C .A/? D N .A0/. In view of decomposition
Rn D C .A/˚C .A/?; where˚ refers to the direct sum, the rank of A? is rank.A?/ D n� rank.A/: The set of all
matrices A? is denoted as fA?g and hence:

Z 2 fA?g ” (a) A0Z D 0 and (b) rank.Z/ D n � rank.A/: (1)
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We immediately observe that Z 2 fA?g ” A 2 fZ?g: Trivially A? is unique only when A is a nonsingular
square matrix in which case A? D 0. Notice that

A 2 Rn�m
H) A? 2 Rn�s ; where s � n � rank.A/:

In this paper our purpose is to review various features of the ? operation, the “perp-operation”, say, and in
particular, to present several useful applications related to linear statistical models. Results covering the more general
inner products are also considered. We believe that our review provides a useful summary of the ? operation and
thereby increases the insights and appreciation of this, seemingly simple, operation.

2 A? in terms of generalised inverses

The generalised inverses offer a very handy tool for explicit expressions of the A?, and in this section we give a
short tour into such possibilities. Matrix G 2 Rm�n is a generalised inverse of A 2 Rn�m if

AGA D A ; (mp1)

and it is the Moore–Penrose inverse, denoted as AC, if it also satisfies the following three conditions:

(mp2) GAG D G ; (mp3) .AG/0 D AG ; (mp4) .GA/0 D GA :

If G satisfies the condition AGA D A, we may denote G D A�, or G 2 fA�g. As the excellent references for
the generalised inverses, see Ben-Israel & Greville [10] and Rao & Mitra [46]. In particular, for more of about the
Moore (of Moore & Penrose), see Ben-Israel [11].

It is well known that the nullspace N .A/ can be expressed as

N .An�m/ D C .Im � A�A/ ;

where A� can be any generalized inverse of A. Hence we can express C .A/? in terms of A�:

C .A/? D N .A0/ D C ŒIn � .A0/�A0� D C ŒIn � .A�/0A0� : (2)

The last equality above follows from the fact

f.A�/0g D f.A0/�g : (3)

Notice that it is a bit questionable to write .A�/0 D .A0/� because (3) means the equality between two sets.
However, for the (unique) Moore–Penrose inverse we always have .AC/0 D .A0/C: In light of (2), we have, for
example, the following choices for A? (recalling that A 2 Rn�m):

In � .A0/�A0; In � .A�/0A0; In � A.A0A/�A0; (4)

where we have used the fact A.A0A/� 2 f.A0/�g. By replacing .A0/� with .A0/C in (4) and using

.A0/C D .AC/0; .A0/CA0 D AAC;

we get
In � AAC WD In � PA WD QA 2 fA?g : (5)

It can be shown that if G satisfies the conditions (mp1) and (mp3), i.e., G 2 fA�
13
g then AG is unique and

thereby AA�
13
D AAC; and hence In � AA�

13
is one choice for A?.

The notations PA and QA in (5) refer to the orthogonal projectors onto C .A/ (with respect to the standard
inner product) and C .A/?, respectively. Matrix P is defined as the orthogonal projector onto C .A/ if it satisfies the
following conditions:

P D P0 D P2 and C .P/ D C .A/; (6)
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which can be shown to be equivalent to P.A W A?/ D .A W 0/; where .A W A?/ and .A W 0/ denote partitioned
matrices.

The matrix P satisfying (6) is unique and can be written as PA D AAC D AA�
13
D A.A0A/�A0, where the last

expression is invariant for any choice of .A0A/�; this follows from Rao & Mitra [46, Lemma 2.2.4], which says that
for nonnull A and C, the matrix product AB�C is invariant with respect to the choice of the generalized inverse B�

if and only if C .C/ � C .B/ and C .A0/ � C .B0/. Notice that AA� is not necessarily an orthogonal projector: it is
idempotent and it satisfies C .AA�/ D C .A/ but it is not necessarily symmetric.

Below is a summary of some of the expressions for A? with obvious extensions to .A0/? in terms of generalised
inverses.

Theorem 2.1. For A 2 Rn�m, denote QA D In � AAC D In � PA. Then
(a) In � .A0/�A0 2 fA?g ;
(b) In � .A�/0A0 2 fA?g ;
(c) In � PA D QA 2 fA?g ;
(d) In � AA�

13
2 fA?g ;

(e) Im � A�A 2 f.A0/?g ;
(f) Im � A0.AA0/�A D Im � ACA D Im � PA0 D QA0 2 f.A0/?g :

Obviously the orthogonal projector QA D In � AAC is often a convenient choice for A? because it is symmetric
and idempotent.

3 Some specific formulas

Suppose that Z is a choice for A?. Then, for a comformable matrix B, we have

ZB 2 fA?g (7)

whenever rank.ZB/ D rank.Z/. According to Marsaglia & Styan [34, Cor. 6.2] (see Theorem 4.1 below),

rank.ZB/ D rank.Z/ � dim C .Z0/ \ C .B/?;

and thereby (7) holds if and only if C .Z0/ \ C .B/? D f0g: Thus we have the following simple result:

Theorem 3.1. Let A 2 Rn�m, and B 2 Rn�q . Then for any A? 2 Rn�n we have

A?B 2 fA?g ” C Œ.A?/0� \ C .B/? D f0g:

In particular, choosing QA as A? yields

QAB 2 fA?g ” C .A W B/ D Rn;

where .A W B/ denotes the partioned n � .mC q/ matrix.

In the next theorem we take a look at the perps of some particular partitioned matrices.

Theorem 3.2. Let A 2 Rn�m, and B 2 Rn�q . Then for any A? we have

(a)

 
A? 0
0 Iq

!
2

8<:
 

An�m

0q�m

!?9=; ;
(b)

 
In

�B0

!
A? 2

8<:
 

An�m Bn�q

0 Iq

!?9=; ;
(c)

 
In

�B0

!
2

8<:
 

Bn�q

Iq

!?9=; :
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Proof. Part (a) is obvious as the orthogonality condition corresponding to (1a) trivially holds and

rank

 
A? 0
0 Iq

!
D n � rank.A/C q:

To prove (b), we observe that

Œ.A?/0 W �.A?/0B�

 
A B
0 Iq

!
D 0 :

Moreover, the rank of
� In

�B0
�
A? is

rank
�
.A?/0 W �.A?/0B

�
D rankŒ.A?/0� D n � rank.A/ ;

while

rank

 
An�m Bn�q

0 Iq

!?
D nC q � rank

 
An�m

0

!
� rank

 
Bn�q

Iq

!
D nC q � rank.A/ � q D n � rank.A/ :

Thus (b) is confirmed. Part (c) can be proved in the corresponding way.

Theorem 3.3. Consider A 2 Rn�m and B 2 Rt�m. Then for any A? and B? we have 
A? 0
0 B?

!
2

8<:
 

A
B

!?9=;
if and only if C .A0/ \ C .B0/ D f0g:

Proof. The orthogonality condition (1a) obviously holds while

rank

 
A? 0
0 B?

!
D nC t � rank.A/ � rank.B/;

rank

 
A
B

!?
D nC t � rank.A/ � rank.B/C dim C .A0/ \ C .B0/:

Thus the proof is completed.

Remark 3.4. It might be a bit tempting to rewrite part (a) of Theorem 3.2 as 
An�m

0q�m

!?
D

 
A? 0
0 Iq

!
: (8)

However, expression like (8) is obviously problematic, and the meaning of the above notation should be clarified.
One interpretation for (8) might be to agree that it means that8<:

 
An�m

0q�m

!?9=; D
( 

A? 0
0 Iq

!)
: (9)

In other words, the sets of matrices are identical. However, the statement (9) is incorrect as can be concluded by
Theorem 3.5 below.

Let us ask the following: which matrices B 2 Rn�p and D 2 Rq�p satisfy the following: 
A? Bn�p

0 Dq�p

!
2

8<:
 

An�m

0q�m

!?9=; ‹
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We first observe that equation  
.A?/0 0

B0 D0

! 
An�m

0q�m

!
D

 
0n�m

0q�m

!
holds if and only if C .B/ � C .A/?. Supposing that C .B/ � C .A/?, then, in view of Marsaglia & Styan [34,
Cor. 19.1], the rank of

�
A? B

0 D

�
is additive on the Schur complement, i.e.,

rank

 
A? B
0 D

!
D rank.D/C rank.A? � BD�0/ D rank.D/C rank.A?/ D rank.D/C n � rank.A/ :

On the other hand, because

rank

 
An�m

0q�m

!?
D nC q � rank.A/ ;

we immediately obtain the following:

Theorem 3.5. Consider A 2 Rn�m, B 2 Rn�p , and D 2 Rq�p . Then the relation 
A? B
0 D

!
2

8<:
 

A
0

!?9=;
holds if and only if C .B/ � C .A/? and D has full row rank.

4 Two rank formulas and a decomposition of orthogonal projector

Two particular rank formulas in terms of the orthocomplement are worth special praising due to their numerous
applications particularly when dealing with linear statistical models: the rank of the product An�aBa�m and the
rank of the partitioned matrix .An�a W Bn�b/.

Theorem 4.1. The rank of the partitioned matrix .An�a W Bn�b/ can be expressed as

rank.A W B/ D rank.A/C rankŒ.A?/0B� D rank.A/C rank.B0A?/ ; (10)

and the rank of the matrix product An�aBa�m is

rank.AB/ D rank.A/ � dim C .A0/ \ C .B/?: (11)

In terms of an arbitrary generalized inverse A�, (10) can be expressed as

rank.A W B/ D rankŒA W .In � AA�/B� D rank.A/C rankŒ.In � AA�/B� D rank.A/C rankŒ.In � PA/B� : (12)

As a reference to (10) and (12) we may mention Marsaglia & Styan [34, Th. 5]. For the references to (11), see,
e.g., Marsaglia & Styan [34, Cor. 6.2], Rao [43, p. 28], and Zyskind & Martin [59, p. 1194]. We may also mention
that O.M. Baksalary & Trenkler [8] provide several expressions for the ranks of a product of two matrices and of a
column-wise partitioned matrix as well as an extensive list of related references.

Several applications of (10) and (11) appear in Puntanen, Styan & Isotalo [39, Ch. 5]. One example concerns
the decomposition of the column space C .X W VX?/, where X 2 Rn�p and V is an n � n (symmetric) nonnegative
definite matrix. Such a situation occurs when we consider the general linear model

y D Xˇ C "; denoted as M D fy;Xˇ;Vg; (13)

where X is a known n � p model matrix, the vector y is an observable n-dimensional random vector, ˇ is a p � 1
vector of unknown parameters, and " is an unobservable vector of random errors with expectation E."/ D 0; and
covariance matrix cov."/ D V. Then we have the following; see, e.g., Rao [45, Lemma 2.1].
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Theorem 4.2. Consider the linear model M D fy;Xˇ;Vg, defined as in (13). Then

C .X W V/ D C .X W VX?/ D C .X/˚ C .VX?/ :

Moreover, if the model is correct, in which case it is called consistent, then the observed (realized) value of the
random vector y satisfies

y 2 C .X W V/ : (14)

For a discussion concerning the consistency concept, see, e.g., Puntanen & Styan [38], J.K. Baksalary, Rao &
Markiewicz [5], Groß [16, p. 314], and Tian et al. [53]. In this paper, we assume that the corresponding consis-
tency holds whatever model we have.

When working with linear models, we often need to consider the orthogonal projector onto the column space of
the partitioned matrix. Then the following theorem appears to be very convenient in various connections; see, e.g.,
Puntanen, Styan & Isotalo [39, Th. 8] and Seber & Lee [50, Appendix B].

Theorem 4.3. The orthogonal projector (with respect to the standard inner product) onto the column space
C .An�a W Bn�b/ can be decomposed as

P.A WB/ D PA C P.In�PA/B D PA C PC .A WB/\C .A/? : (15)

We complete this section by some remarks on the explicit expression for the intersection of C .A/ and C .B/. For a
reference, see Rao & Mitra [46, Complement 7, p. 118].

Theorem 4.4. Consider the matrices An�a and Bn�b and denote QB D In � PB. Then

C .A/ \ C .B/ D C
�
A.A0B?/?

�
D C

�
A.A0QB/

?
�
D C

�
A.Ia � PA0QB/

�
D C

�
AŒIa � .A0QBA/�A0QBA�

�
:

It is obvious that
C .A/ \ C .B/? D C

�
A.A0B/?

�
D C

�
A.Ia � PA0B/

�
:

In particular, if X 2 Rn�p and Vn�n is nonnegative definite, then

C .X/ \ C .V/? D C
�
X.X0V/?

�
D C

�
X.X0VX/?

�
D C

�
XŒIp � .X0VX/�X0VX�

�
;

and in view of C .M/ \ C .V/? D C .X W V/?,

MŒIn � .MVM/�MVM� 2
˚
.X W V/?

	
;

where M D In � PX. Notice also that according to Theorem 4.3 we have P.XWV/ D PX C PMV and thereby

In � P.XWV/ DM � PMV DM.In � PMV/ 2
˚
.X W V/?

	
:

5 Orthocomplement when the inner product matrix is V

5.1 V is positive definite

Consider now the inner product in Rn defined as hx; yiV D x0Vy ; where V is a positive definite symmetric matrix.
The orthocomplement of C .An�m/ with respect to this inner product is

C .A/?V D f y 2 Rn
W z0A0Vy D 0 for all z 2 Rm

g :

By A?V we will denote any matrix whose column space is C .A/?V . Recall that A?I is shortly denoted as A?. We
have

C .A/?V D f y 2 Rn
W A0Vy D 0 g D N .A0V/ D C .VA/? D C .V�1A?/ ;
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where the last equality can be concluded from

A0V � V�1A? D 0 H) C .V�1A?/ � N .A0V/ ;

and
rank.V�1A?/ D rank.A?/ D n � rank.A/ D dim C .VA/?:

Notice that corresponding to (1),

Z 2 fA?V g ” (a) A0VZ D 0 and (b) rank.Z/ D n � rank.A/:

Remark 5.1. Obviously we can write V�1A? 2 fA?V g and V�1A? 2 f.VA/?g. Question: Is it correct to write

fA?V g D f.VA/?g ‹

It is easy to confirm that the answer is positive.

Now we have the following decomposition:

Rn
D C .A/˚ C .A/?V D C .A/˚ C .V�1A?/ ;

and hence every y 2 Rn has a unique representation as a sum

y D AbC V�1A?c D y� C Py ;

for some b and c. The vector y� D Ab is the orthogonal projection of y onto C .A/ along C .A/?V . The orthogonal
projector PAIV is such a matrix which transforms y into its projection y�, i.e., PAIVy D y� D Ab. Its explicit unique
representation is

PAIV D A.A0VA/�A0V:

We may mention that part (a) of Theorem 3.2 holds even if the inner product matrix is V, i.e., 
A?V 0
0 Iq

!
2

8<:
 

An�m

0q�m

!?
V

9=; :
Similarly Theorems 3.3 and 3.5 hold also when all orthocomplements are taken with respect to the inner product
matrix V.

5.2 V is nonnegative definite, possibly singular

Let V be a singular nonnegative definite matrix. Then ht;uiV D t0Vu is a semi-inner product and the corresponding
seminorm (squared) is ktk2V D t0Vt. For a singular nonnegative definite matrix V we can define the matrix A?V again
as any matrix spanning C .A/?V , and so

C .A?V / D C .A/?V D N .A0V/ D C .VA/?:

As noted by Puntanen, Styan & Isotalo [39, §2.5] for (even) a singular V we do have the decomposition

Rn
D C .A/C C .A?V / D C .A/C C .VA/?; (16)

but, however, the above decomposition is not necessarily a direct sum. For any nonnegative definite V we have, on
account of Theorem 4.1,

dim C .VA/? D n � rank.VA/ D Œn � rank.A/�C dim C .A/ \ C .V/?;

which means that (16) becomes a direct sum decomposition if and only if C .A/ \ C .V/? D f0g.
For the characterization of the generalized orthogonal projector, see Mitra & Rao [36]. Some related considera-

tions appear also in Harville [19, §14.12.i], Rao & Rao [47, p. 81], and Tian & Takane [54, 55].
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5.3 Some further considerations

Consider the linear model M D fy;Xˇ;Vg, defined as in (13), and let V be positive definite. Then we have observed
that the following sets are identical:

(a) C .X/?V�1 ; (b) C .VX?/ ; (c) N .X0V�1/ ;

(d) C .V�1X/?; (e) N .PXIV�1/ ; (f) C .In � PXIV�1/ :

For (a), . . . , (f) above, see also Puntanen, Styan & Isotalo [39, §5.13]. When V is singular, the above considerations
become more complicated. A very convenient tool appears to be the following class of matrices:

W D fW 2 Rn�n
WW D VC XUX0; C .W/ D C .X W V/g : (17)

In (17) U can be any p � p matrix as long as C .W/ D C .X W V/ is satisfied. Of course, U can be chosen as 0 if
C .X/ � C .V/ which happens, for example, when V is positive definite. The set W of matrices has an important role
in the theory of linear models. Below are listed some useful equivalent statements concerning W:

C .X/ � C .W/ ; (18a)

C .X W V/ D C .W/ ; (18b)

X0W�X is invariant for any choice of W�; (18c)

C .X0W�X/ D C .X0/ for any choice of W�; (18d)

X.X0W�X/�X0W�X D X for any choices of the generalized inverses involved. (18e)

Moreover, each of these statements is equivalent to C .X/ � C .W0/, and hence to the statements (18b’)–(18e’)
obtained from (18b)–(18e), by setting W0 in place of W. As the references to (18), we may mention J.K. Baksalary,
Puntanen & Styan [4, Th. 2], J.K. Baksalary & Mathew [3, Th. 2], and Harville [19, p. 468].

According to Puntanen, Styan & Isotalo [39, §5.13] the following now holds.

Theorem 5.2. Suppose that X is an n � p matrix, V is an n � n nonnegative definite matrix and W 2W , where W
is defined as in (17). Then

C .VX?/ D C .W�X W In �W�W/?;

where W� is an arbitrary (but fixed) generalized inverse of W. The column space C .VX?/ can be expressed also
as

C .VX?/ D C
�
.W�/0X W In � .W�/0W0

�?
:

Moreover, let V be possibly singular and assume that C .X/ � C .V/. Then

C .VX?/ D C .V�X W In � V�V/? � C .V�X/?;

where the inclusion becomes equality if and only if V is positive definite.

Remark 5.3. It is of interest to note that the perp symbol ? drops down, so to say, very “nicely” when V is positive
definite:

C .VX?/? D C .V�1X/ ;

but when V is singular we have to use a much more complicated rule to drop down the ? symbol:

C .VX?/? D C .W�X W In �W�W/ ;

where W 2W .

Remark 5.4. Let us next prove the following: If W 2W , where W is defined as in (17), then

C .VX?/ D C .W�X/? ” C .X W V/ D Rn: (19)
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We first observe that

C .VX?/ D C .W�X W In �W�W/? D C .W�X/? \ C .In �W�W/? :

Thus we always have C .VX?/ � C .W�X/?; where the equality appears only if dim C .W�X/? D rank.VX?/.
Now we have

rank.VX?/ D rank.W/ � rank.X/ ;

dim C .W�X/? D n � rank.W�X/ D n � rank.X/ ;

from which our claim (19) follows.

For completeness we state the following related result, due to Rao & Mitra [46, p. 140].

Theorem 5.5. Consider the linear model M D fy;Xˇ;Vg and denote W D VCXUX0, where C .W/ D C .X W V/,
and let W� be an arbitrary generalized inverse of W. Then

C .W�X/˚ C .X/? D Rn; C .W�X/? ˚ C .X/ D Rn;

C Œ.W�/0X�˚ C .X/? D Rn; C Œ.W�/0X�? ˚ C .X/ D Rn:

6 Statistical examples

6.1 Centering

We would like to start with a simple but at the same time very important orthocomplement in statistics: the set of
vectors orthogonal to the vector of ones, that is, C .1n/

?, where 1n D .1; 1; : : : ; 1/0 2 Rn. In what follows, we
most of the time drop off the subscript from the vector 1n; from the context its dimension should be obvious. The
orthogonal projector onto C .1n/ is P1 D

1
n

110 WD J and the orthogonal projector onto C .1n/
? is In �

1
n

110 WD C;
C is the centering matrix.

Consider the n � 2 data matrix U partitioned as

U D .x W y/ D

0BBBB@
x1 y1

x2 y2

:::
:::

xn yn

1CCCCA D
0BBBB@

u0
.1/

u0
.2/

:::

u0
.n/

1CCCCA :
Here u.i/ D

�
xi
yi

�
2 R2 represents the i th case or the i th observation in the observation space, and the vectors

x; y 2 Rn represent the two variables in the variable space. Let Nu D
�
Nx
Ny

�
2 R2 denote the mean vector of x- and

y-variables and S the sample covariance matrix:

Nu D 1
n

U01n D
1
n
.u.1/ C u.2/ C � � � C u.n// D

 
Nx

Ny

!
;

S D 1
n�1

U0CU D 1
n�1

nX
iD1

.u.i/ � Nu/.u.i/ � Nu/0:

Now the following theorem is easy to confirm; for details, see, e.g., Puntanen, Styan & Isotalo [39, Ch. 3].

Theorem 6.1. For conformable matrices, the following statements hold:
(a) The vector NNy D Ny1 is the orthogonal projection of the variable vector y onto the column space C .1/: NNy D Ny1 D

Jy D P1y.
(b) The centered variable vector Qy is the orthogonal projection of y onto the column space C .1/?: Qy D y � Jy D

Cy D .In � P1/y:
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(c) Let the variances of the variables x and y be nonzero, i.e., x … C .1/ and y … C .1/. Then the sample correlation
coefficient rxy is the cosine of the angle between the centered variable vectors:

rxy D cos.Cx;Cy/ D cos.Qx; Qy/ D
x0Cy

p
x0Cx � y0Cy

:

(d) y is centered ” y 2 C .1/? D C .C/ D N .10/.

Next we shortly consider a typical n � p model matrix X partitioned as X D .1 W x1 W : : : W xk/ D .1 W X0/, and so
p D kC1. The sample covariance matrix of the x-variables is Sxx D

1
n�1

X0
0

CX0 and the sample correlation matrix
is Rxx D Œdiag.Sxx/�

�1=2SxxŒdiag.Sxx/�
�1=2: While calculating the correlations, we assume that all x-variables

have nonzero variances, that is, the matrix diag.Txx/ is positive definite, or in other words: xi … C .1/; i D 1; : : : ; k:
Theorem 4.1 implies then the following result:

Theorem 6.2. The rank of the model matrix X D .1 W X0/ can be expressed as

rank.X/ D 1C rank.X0/ � dim C .1/ \ C .X0/ D rank.1 W CX0/ D 1C rank.CX0/ D 1C rank.Sxx/ ;

and thereby

rank.Sxx/ D rank.X/ � 1 D rank.CX0/ D rank.X0/ � dim C .1/ \ C .X0/ :

If all x-variables have nonzero variances, i.e., the correlation matrix Rxx is properly defined, then rank.Rxx/ D

rank.Sxx/. Moreover, the following statements are equivalent:

(a) det.Sxx/ ¤ 0; (b) rank.X/ D k C 1; (c) rank.X0/ D k and 1 … C .X0/:

For the rank of of the sample covariance matrix, see Trenkler [56]. As regards the geometry and linear models, the
reader may take a look at Margolis [31], Herr [22], and Seber [49].

6.2 Estimability in a simple ANOVA

Following Puntanen, Styan & Isotalo [39, §1.2], consider a simple analysis-of-variance (ANOVA) model

A W y D

0BBBB@
1n1

1n1
0 : : : 0

1n2
0 1n2

: : : 0
:::

:::
:::
: : :

:::

1ng
0 0 : : : 1ng

1CCCCA
0BBBBBB@
�

�1

�2

:::

�g

1CCCCCCAC " D Xˇ C " D .1n W X0/

 
�

�

!
C " ;

where n D n1 C � � � C ng . As the rank of the n � .g C 1/ model matrix X is g we know that ˇ is not estimable
under A . Which parametric functions of ˇ are estimable?

We recall that K0ˇ is estimable if it has an unbiased linear estimator, say Ay with property E.Ay/ D AXˇ
D K0ˇ for all ˇ 2 Rp , i.e., AX D K0. Hence the parametric function k0ˇ is estimable under A if and only if

k 2 C .X0/ D C

 
10n
X0

0

!
D C

 
10g
Ig

!
: (20)

In view of part (c) of Theorem 3.2, one choice for
�

10g
Ig

�?
is
�
�1
1g

�
, i.e.,

 
�1

1g

!
WD u 2

8<:
 

10g
Ig

!?9=; :
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Hence, according to (20), the parametric function k0ˇ is estimable if and only if

k 2

 
C

 
10g
Ig

!?!?
D C .u/?;

i.e.,

k0u D 0; where u D

 
�1

1g

!
: (21)

We can also study the estimability of a parametric function of �1; : : : ; �g (dropping off the parameter �); denote this
function as `0�. Then

.0; `0/

 
�

�

!
D `0� ;

and on account of (21), the estimability condition for `0� becomes `01g D 0.

6.3 Best linear unbiased estimator, BLUE

An unbiased linear estimator Gy for Xˇ is defined to be the best linear unbiased estimator, BLUE, for Xˇ under the
model M D fy;Xˇ;Vg if cov.Gy/ �L cov.Ly/ for all LWLX D X; where “�L” refers to the Löwner partial order-
ing. In other words, Gy has the smallest covariance matrix in the Löwner sense among all linear unbiased estimators.
The following theorem gives the “fundamental BLUE equation”; see, e.g., Rao [40], Zyskind [58], J.K. Baksalary
[1], and O.M. Baksalary & Trenkler [6, 7].

Theorem 6.3. Consider the general linear model M D fy;Xˇ;Vg, defined as in (13). Then the estimator Gy is the
BLUE for Xˇ if and only if G satisfies the equation

G.X W VX?/ D .X W 0/ : (22)

Notice also that even though G in (22) may not be unique, the numerical observed value of Gy is unique (with
probability 1) once the random vector y has obtained its value in the space C .X W VX?/. The set of matrices G
satisfying (22) is sometimes denoted as fPXjVX?g.

Remark 6.4. At this point we may take a liberty to make a short side trip to the notation PAjB in the spirit of
Rao [45] and Kala [25]. Supposing that C .A/ and C .B/ are (virtually) disjoint, then y 2 C .A W B/ has a unique
representation as a sum y D yA C yB , where yA 2 C .A/, yB 2 C .B/. A matrix P which transforms every
y 2 C .A W B/ into its projection yA is called a projector onto C .A/ along C .B/. It appears that the projector
P WD PAjB onto C .A/ along C .B/ may be defined by the equation

PAjB.A W B/ D .A W 0/ :

Kala [25, Lemma 2.5] proved that if C .A/ \ C .B/ D f0g D C .C/ \ C .D/, then

fPCjD g � fPAjB g ” C .A/ � C .C/ and C .B/ � C .D/ :

Moreover, Rao [45] showed that

.PVAjA? C PA?jVA/z D z ; .PVA?jA C PAjVA?/y D y ; PAjVA?y D .In � P0A?IV/y ;

hold for all z 2 C .A? W VA/ D C .A? W V/ and y 2 C .A W VA?/ D C .A W V/.

We shall use the short notation
H D PX ; M D In �H ;

and thereby the ordinary least squares estimator .OLSE/ of Xˇ is Hy; we will denote Hy D X Ǒ, where Ǒ is any
solution to X0Xˇ D X0y. If X has full column rank then ˇ is estimable and its OLSE is Ǒ D .X0X/�1X0y D XCy.



44 A. Markiewicz, S. Puntanen

Characterizing the equality of the OLSE and the BLUE of Xˇ has received a lot of attention in the statistical
literature, the major breakthroughs being made by Rao [40], Zyskind [58], and Kruskal [27]; for a review, see
Puntanen & Styan [37], and for some special remarks, Markiewicz, Puntanen & Styan [33], and O.M. Baksalary,
Trenkler & Liski [9].

Theorem 6.3 gives immediately several equivalent characterizations for the OLSE and the BLUE to be equal,
some of them are collected in Theorem 6.5. Notice that then the equality between OLSE and BLUE occurs with
probability 1 but in what follows, we drop off the phrase “with probability 1”.

Theorem 6.5. Consider the general linear model M D fy;Xˇ;Vg. Then OLSE.Xˇ/ D BLUE.Xˇ/ if and only if
any one of the following five equivalent conditions holds:
(a) HV D VH, (b) HVM D 0, (c) C .VX/ � C .X/,
(d) C .X/ has a basis comprising a set of r D rank.X/ orthonormal eigenvectors of V,
(e) V D aIn CHN1HCMN2M for some a 2 R, and matrices N1 and N2 such that V is nonnegative definite.

Using, for example, Rao & Mitra [46, p. 24] and Ben-Israel & Greville [10, p. 52], we obtain the following.

Theorem 6.6. The general solution for G satisfying G.X W VX?/ D .X W 0/ can be expressed, for example, in the
following ways:
(a) G1 D .X W 0/.X W VX?/� C F1QW ,
(b) G2 D X.X0W�X/�X0W� C F2QW ,
(c) G3 D In � VX?Œ.X?/0VX?��.X?/0 C F3QW ,
(d) G4 D H �HVX?Œ.X?/0VX?��.X?/0 C F4QW ,
where F1 : : : ;F4 are arbitrary matrices, QW D In � PW, and W 2W , where W is defined as in (17).

In view of the consistency condition (14), we have y 2 C .W/ and hence the terms Fi QWy disappear with probabi-
lity 1. We observe, for example, that

BLUE.Xˇ/ D Hy �HVM.MVM/�My D OLSE.Xˇ/ �HVM.MVM/�My ;

or, denoting shortly X Q̌ D BLUE.Xˇ/ and X Ǒ D OLSE.Xˇ/,

X Ǒ � X Q̌ D HVM.MVM/�My :

It is easy to confirm that

cov.X Q̌/ D HVH �HVM.MVM/�MVH D cov.X Ǒ/ �HVM.MVM/�MVH : (23)

When X has full column rank and V is positive definite, then Ǒ D .X0X/�1X0y and Q̌ D .X0V�1X/�1X0V�1y
while the corresponding covariance matrices are

cov. Ǒ/ D .X0X/�1X0VX.X0X/�1; cov. Q̌/ D .X0V�1X/�1: (24)

On the other hand, in light of (23) we have

cov. Q̌/ D cov. Ǒ/ � .X0X/�1X0VM.MVM/�MVX.X0X/�1: (25)

It is interesting to note that in (25) the covariance matrix V need not be positive definite. If V is positive definite,
then combining (24) and (25) yields the following:

Theorem 6.7. Consider the linear model M D fy;Xˇ;Vg, where X has full column rank and V is positive definite.
Then

cov. Q̌/ D .X0V�1X/�1
D .X0X/�1ŒX0VX � X0VM.MVM/�MVX�.X0X/�1

D cov. Ǒ/ � XCVM.MVM/�MV.XC/0; (26)

and

cov.X Q̌/ D X.X0V�1X/�1X0 D HVH �HVM.MVM/�MVH :
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Among the first places where (26) occurs are the papers by Khatri [26, Lemma 1], Rao [40, Lemmas 2a, 2b, 2c], and
Rao [43, p. 77]. Theorem 6.7 offers a convenient way to express the so-called Watson efficiency, see Watson [57,
p. 330], as

� D
jcov. Q̌/j

jcov. Ǒ/j
D
jX0VX � X0VM.MVM/�MVXj � jX0Xj�2

jX0VXj � jX0Xj�2
D
jX0VX � X0VM.MVM/�MVXj

jX0VXj

D jIp � .X0VX/�1X0VM.MVM/�MVXj :

Above j�j refers to the determinant. For related considerations, see Puntanen, Styan & Isotalo [39, §10.7–10.8] and
the references therein.

In this context we may briefly say a couple of words about the matrix product

PM WDM.MVM/�M ;

which appears in several formulas above. If V is positive definite and V1=2 is its positive definite symmetric square
root, and Z is a matrix having full column rank with the property C .Z/ D C .M/, then we obviously have

PM DM.MVM/�M D V�1=2PV1=2ZV�1=2
D Z.Z0VZ/�1Z0;

which is clearly unique. In general, the matrix PM is not necessarily unique with respect to the choice of .MVM/�.
Moreover, for positive definite V we have

PM DM.MVM/�M D .MVM/C D V�1
� V�1X.X0V�1X/�X0V�1;

and if HPVM D 0 then, see Isotalo, Puntanen & Styan [24, Th. 2.1],

PV PMPV D PVM.MVM/�MPV D VC � VCX.X0VCX/�X0VC:

The matrix PM is very handy in many connections related to linear model M D fy;Xˇ;Vg. For example, the
ordinary, unweighted sum of squares of errors SSE is defined as

SSE D SSE.I/ D min
ˇ
ky � Xˇk2 D y0My ;

while the weighted SSE is (when V is positive definite)

SSE.V/ D min
ˇ
ky � Xˇk2V�1 D ky � PXIV�1 yk2V�1 D y0ŒV�1

� V�1X.X0V�1X/�X0V�1�y

D y0M.MVM/�My D y0 PMy :

In the general case, the weighted SSE can be defined as

SSE.V/ D .y � X Q̌/0W�.y � X Q̌/ ;

where W D VC XUX0, with C .W/ D C .X W V/. Then, again,

SSE.V/ D .y � X Q̌/0W�.y � X Q̌/ D y0 PMy :

For further properties of PM, see Puntanen, Styan & Isotalo [39, Ch. 15] and Isotalo, Puntanen & Styan [24]. Some
related considerations appear also in Markiewicz [32, pp. 415–416], LaMotte [28, pp. 323–324], and Searle, Casella
& McCulloch [48, pp. 451–452].

What about if we require that every representation of the BLUE under M1 D fy;Xˇ;V1g continues to be
BLUE under M2 D fy;Xˇ;V2g? The answer is given in Theorem 6.8. For the proof and related discussion, see,
e.g., J.K. Baksalary & Mathew [2, Th. 3], Mitra & Moore [35, Th. 4.1–4.2], Rao [41, Lemma 5], Rao [42, Th. 5.2,
Th. 5.5], Rao [44, p. 289], Tian [52], Tian & Takane [54, 55], and Hauke, Markiewicz & Puntanen [21].

Theorem 6.8. Consider the linear models M1 D fy;Xˇ;V1g and M2 D fy;Xˇ;V2g. Then every representation
of the BLUE for Xˇ under M1 remains the BLUE for Xˇ under M2 if and only if any of the following equivalent
conditions hold:
(a) C .V2X?/ � C .V1X?/,
(b) V2 D aV1 C XN1X0 C V1X?N2.X?/0V1, for some a 2 R, and matrices N1 and N2 such that V2 is nonne-

gative definite.
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6.4 The reduced model

Let us consider the partitioned linear model M12 D fy;X1ˇ1 C X2ˇ2; Ing, where X D .X1 W X2/ has full
column rank, X1 2 Rn�p1 , X2 2 Rn�p2 , p D p1 C p2. In light of the projector decomposition (15), we have
H D P.X1 WX2/ D PX1

C PM1X2
; where M1 D In � PX1

and thereby

Hy D X1
Ǒ

1 C X2
Ǒ

2 D PX1
yC PM1X2

y : (27)

Premultiplying (27) by M1 gives

M1X2
Ǒ

2 D PM1X2
y DM1X2.X02M1X2/

�1X02M1y : (28)

In view of (11), rank.M1X2/ D rank.X2/ D p2, and hence the left-most M1X2 can be cancelled from (28) and
thus we obtain

Ǒ
2 D .X

0
2M1X2/

�1X02M1y WD Ǒ
2.M12/: (29)

Premultiplying the model M12 by the orthogonal projector M1 yields the reduced model

M12�1 D fM1y; M1X2ˇ2; M1g :

Taking a look at the models, we can immediately make an important conclusion: the OLS estimators of ˇ2 under the
models M12 and M12�1 coincide:

Ǒ
2.M12/ D Ǒ

2.M12�1/ D .X02M1X2/
�1X02M1y: (30)

The equality (30) is the result that Davidson & MacKinnon [14, §2.4] call the Frisch–Waugh–Lovell theorem; see
Frisch & Waugh [15], Lovell [29, 30].

Let us take a quick look at the more general case when the partitioned linear model is M12 D fy; X1ˇ1 C

X2ˇ2; Vg. Premultiplying M12 by the orthogonal projector M1 yields the reduced model

M12�1 D fM1y; M1X2ˇ2; M1VM1g :

What about the BLUE of M1X2ˇ2 in the reduced model M12�1? Let us denote

fBLUE.M1X2ˇ2 jM12/ g D fAy W Ay is BLUE for M1X2ˇ2 g :

Before proceeding we notice that K0
2
ˇ2 is estimable under M12 if and only if there exists a matrix L such that

L.X1 W X2/ D .0 W K2/, i.e., see Groß & Puntanen [17, Lemma 1],

C .K2/ � C .X02X?1 / D C .X02M1/:

Moreover, it is easy to confirm that K0
2
ˇ2 is estimable under M12 if and only if K0

2
ˇ2 is estimable under M12�1.

Then we can formulate the generalized Frisch–Waugh–Lovell theorem as follows; see, e.g., Groß & Puntanen [17,
Th. 4].

Theorem 6.9. Every representation of the BLUE of M1X2ˇ2 under M12 D fy;X1ˇ1 C X2ˇ2;Vg remains the
BLUE under M12�1 D fM1y; M1X2ˇ2; M1VM1g and vice versa, i.e., the sets of the BLUEs coincide:

fBLUE.M1X2ˇ2 jM12/ g D fBLUE.M1X2ˇ2 jM12�1/ g :

In other words: Let K0
2
ˇ2 be an arbitrary estimable parametric function under M12. Then every representation of

the BLUE of K0
2
ˇ2 under M12 remains the BLUE under M12�1 and vice versa.

Let X D .X1 W X2/ have full column rank, and C .X/ � C .V/, but V is possibly singular. Then it appears that
corresponding to (29) we have

Q̌
2.M12/ D .X02 PM1X2/

�1X02 PM1y ;

where PM1 DM1.M1VM1/
�M1 D V�1 � V�1X1.X01V�1X1/

�X0
1

V�1.
For further references related to the Frisch–Waugh–Lovell theorem, see for example, Bhimasankaram & Sen-

gupta [12, Th. 6.1], Sengupta & Jammalamadaka [51, §7.10], and Groß & Puntanen [18].
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6.5 Best linear unbiased predictor, BLUP

Let yf denote a q � 1 unobservable random vector containing new future observations. The new observations are
assumed to follow the linear model yf D Xf ˇ C "f , where Xf is a known q � p matrix, ˇ is the same vector of
unknown parameters as in M D fy;Xˇ;Vg, and "f is a q-dimensional random error vector associated with new
observations. Then

E

 
y

yf

!
D

 
Xˇ

Xf ˇ

!
D

 
X

Xf

!
ˇ ; cov

 
y

yf

!
D

 
V V12

V21 V22

!
:

For brevity, we denote

Mf D

( 
y

yf

!
;

 
X

Xf

!
ˇ;

 
V V12

V21 V22

!)
: (31)

The linear predictor By is said to be unbiased for yf if E.yf � By/ D 0 for all ˇ 2 Rp . This is equivalent to
BX D Xf . Now a linear unbiased predictor By is the best linear unbiased predictor, BLUP, for yf , if the Löwner
ordering cov.yf � By/ �L cov.yf � Fy/ holds for all F such that Fy is an unbiased linear predictor for yf .

The following theorem characterizes the BLUP; see, e.g., Christensen [13, p. 294], and Isotalo & Puntanen [23,
p. 1015].

Theorem 6.10. Consider the linear model Mf (with new unobserved future observations), defined as in (31), where
C .X0

f
/ � C .X0/. The linear predictor By is the best linear unbiased predictor (BLUP) for yf if and only if B

satisfies the equation
B.X W VX?/ D .Xf W V21X?/:

The linear mixed model L , say, can be specified as

y D Xˇ C Z
 C "; i.e., L D fy;Xˇ C Z
;D;Rg; (32)

where ˇ is a vector of fixed parameters and 
 a vector of random ones, with the known covariance matrices cov."/ D
R and cov.
/ D D, and expectations E."/ D 0, E.
/ D 0. We assume that the random effect 
 and error term " are
uncorrelated and thereby cov.y/ D ZDZ0 C R D ˙ , say. Taking 
 as the “new observation” it is easy to conclude,
in view of Theorem 6.10, that the following holds.

Theorem 6.11. Consider the linear mixed model L , defined as in (32). The the linear predictor Ay is the BLUP
of 
 under the mixed model L if and only if

A.X W ˙X?/ D .0 W DZ0X?/ :

6.6 Stochastic restrictions

Let us consider the fixed effects partitioned model

F W y D Xˇ C Z
 C " ; cov.y/ D cov."/ D R ;

where both ˇ and 
 are fixed (but unknown) coefficients, and supplement F with the stochastic restrictions
y0 D 
 C "0, where cov."0/ D D: This supplement can be expressed as the partitioned model:

F� D fy�; X��; V�g D

( 
y

y0

!
;

 
X Z
0 Iq

! 
ˇ




!
;

 
R 0
0 D

!)
:

We will need the matrix X?� for which, according to part (b) of Theorem 3.2, one choice is
� In

�Z0
�
M; where

M D In � PX, and so we have

V�X?� D

 
R 0
0 D

! 
In

�Z0

!
M D

 
RM
�DZ0M

!
: (33)
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Now the estimator By� is the BLUE for X�� under the model F� if and only if B satisfies the equation

B.X� W V�X?� / D .X� W 0/ : (34)

Substituting (33) into (34) yields  
B11 B12

B21 B22

! 
X Z RM
0 Iq �DZ0M

!
D

 
X Z 0
0 Iq 0

!
: (35)

Using (35) Haslett & Puntanen [20, Th. 1] show that all properties of BLUEs and BLUPs in mixed model L can be
considered using the augmented model F�, where both ˇ and 
 are fixed parameters. Using the connection between
the mixed model L the augmented model F�, the following result follows from Theorem 6.8 immediately.

Theorem 6.12. Consider two mixed models: Li D fy;Xˇ C Z
;Di ; Ri g ; and denote ˙ i D ZDi Z0 C Ri and
V�i D

� Ri 0
0 Di

�
; i D 1; 2: Then every representation of the BLUE for Xˇ under L1 remains the BLUE for Xˇ

under L2 and every representation of the BLUP for 
 under L1 remains the BLUP for 
 under L2 if and only if
any of the following equivalent conditions holds:
(a) Every representation of the BLUE for X�� under F�1 remains the BLUE for X�� under F�2.
(b) C .V�2X?� / � C .V�1X?� /.

(c) C

 
R2M

D2Z0M

!
� C

 
R1M

D1Z0M

!
:

(d) C

 
˙ 2M

D2Z0M

!
� C

 
˙ 1M

D1Z0M

!
:

(e) The matrix V�2 can be expressed as

V�2 D aV�1 C X�N1X0� C V�1X?� N2.X?� /
0V�1

for some a 2 R and matrices N1 and N2 such that V�2 is nonnegative definite.
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[5] Baksalary J.K., Rao C.R., Markiewicz A., A study of the influence of the “natural restrictions” on estimation problems in the singu-
lar Gauss–Markov model, J. Statist. Plann. Inference, 1992, 31, 335–351

[6] Baksalary O.M., Trenkler G., A projector oriented approach to the best linear unbiased estimator, Statist. Papers, 2009, 50,
721–733

[7] Baksalary O.M., Trenkler G., Between OLSE and BLUE, Aust. N. Z. J. Stat., 2011, 53, 289–303
[8] Baksalary O.M., Trenkler G., Rank formulae from the perspective of orthogonal projectors, Linear Multilinear Algebra, 2011, 59,

607–625
[9] Baksalary O.M., Trenkler G., Liski E.P., Let us do the twist again. Statist. Papers, 2013, 54, 1109–1119
[10] Ben-Israel A., Greville T.N.E., Generalized inverses: theory and applications, 2nd Ed., Springer, New York, 2003
[11] Ben-Israel A., The Moore of the Moore–Penrose inverse, Electron. J. Linear Algebra, 9, 150–157, 2002
[12] Bhimasankaram P., Sengupta D., The linear zero functions approach to linear models, Sankhyā B, 1996, 58, 338–351
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