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Abstract 

Here, we describe the use of a biolayer interferometry biosensor for the fast and sensitive 

detection of virus-specific antibodies from human serum samples. Norovirus-like particles and 

norovirus P-particles were used to functionalise the biosensor tip. The detection of antibodies 

directly from serum samples was challenging, but the addition of a metal chelator (DAB) 

combined with an anti-human horseradish peroxidase-tagged antibody enabled enhanced 

detection of virus-specific antibodies in serum dilutions up to 1:100,000. Biolayer interferometry 

provides results faster than an ELISA, with results in as little as 10-20 minutes when using pre-

functionalised sensors. Therefore, biolayer interferometry combined with DAB enhancement 

offers an attractive method for quick and sensitive quantification of biomolecules from 

complicated sample matrices. 
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1. Introduction 

To provide the proper cure and prevent the spreading of diseases, it is important to find the cause 

of an infection promptly and preferably directly from biological material that has undergone 

minimal processing. However, the majority of diagnostic samples currently used, such as serum, 

blood, saliva, stool and urine, are quite difficult to work with. This is partly because these sample 

specimens are viscous, turbid and contain particles that may cause difficulties when applied to 

analysers equipped with narrow capillaries. Additionally, coloured sample materials can cause 

problems if the measurement is based on optical methods. To avoid these challenges, the 

sensitivity of an assay is often increased by labelling the analyte with tags, such as radionuclides, 

enzymes or fluorophores. There are also non-labelled measurement technologies available, such 

as biolayer interferometry (BLI), that are proposed to overcome the above mentioned problems 

caused by difficult sample matrix. 

 

BLI is a label- and fluidics-free, real-time detection and monitoring system based on light intensity 

interference [1-4]. Interference changes between the intensities of the reflected light beams are 

used to measure changes in the molecular layer immobilised on the sensor surface. There are 

several chemistries available for the biofunctionalisation of the sensors, and we chose Ni-NTA 

(nickel-charged nitrilotriacetic acid) sensors for this study. While BLI is a label-free measurement 

system, the measurement signal can be enhanced by the addition of DAB (3,3´-diaminobenzidine) 

which precipitates after oxidation by horseradish peroxidase (HRP) on the sensor surface [5-7]. 

  

Noroviruses (NoV) infect people of all ages and are a major cause of acute epidemic gastroenteritis 

worldwide. It has been estimated that there are over 20 million annual infections in the United 

States alone [8]. Symptoms appear 12 – 48 h after viral infection and are characterised by acute 

onset of nausea, vomiting, abdominal cramps and diarrhoea. Infection can be severe for small 

children, elderly people and immunocompromised persons, leading to hospitalisation to prevent 

severe dehydration. The virus is spread by contaminated food and water and from person to 

person via the faecal-oral pathway and can be further transmitted to food and food contact 

surfaces by virus-contaminated hands [9-10]. Because the biological characterisation of human 

NoV has been hampered by the lack of an appropriate cell culture system and animal model for 

the propagation of the virus, virus-like particles (VLPs) have been used extensively to study NoV 
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structure and stability, host-cell interactions, and as a tool in diagnostic serological assays [10-13]. 

Structural studies have shown that the noroviral capsid is composed almost entirely of the 58 kDa 

VP1 capsid protein [13], which self-assembles into empty capsids called virus-like particles (VLPs) 

when expressed recombinantly in insect cells or in yeast [14]. In this study, we utilised recently 

developed His-tagged VLPs (Koho et al., manuscript submitted), which are based on norovirus 

VLPs described earlier [15]. VLPs are morphologically and antigenically similar to the infectious 

virion [16]. There are 180 copies of VP1 in a NoV particle, and the diameter of the capsid is 

approximately 40 nm [16]. VP1 consists of two domains, the shell (S) domain and the protruding 

(P) domain, and the domains are linked by a short hinge. The P-particles are formed by 12 P-

domain dimers, and the diameter of NoV P-particle is approximately 10-15 nm [17].  

 

Recombinant NoV antigens are used in this study to evaluate the potential of the BLI biosensor to 

detect NoV antibodies from human serum samples. Our results suggest that BLI can be used with 

clinical samples and it is nearly as sensitive method as ELISA (enzyme-linked immunosorbent 

assay), but provides results in a much shorter time frame. Due to the BLI measurement set-up (the 

sensor tip is dipped into the sample matrix) even difficult-to-process bodily fluids (such as saliva, 

urine, whole blood and stool) can be used as sample materials. We also describe here the 

successful use of DAB enhancement with serum samples in BLI biosensing. Altogether, our study 

suggests that BLI combined with DAB enhancement is a highly potent method for rapid and 

quantitative detection of antibodies in serum samples. 

 

2. Materials and methods 

Interferometry biosensing is based on the measurement of white light interference patterns 

reflected from a reference surface and a biofunctionalised sensor surface. A Fortebio Octet 

RED384 instrument equipped with 16 parallel biosensors (Fortebio, Pall Life Sciences, Menlo Park, 

USA) was used in this study. All reagents were of analytical grade.  

 

2.1. NoV-VLP and P-particles 

The production and purification of the recombinant P-particles is described by Koho et al. [15] and 

the His-tagged VLPs will be described in detail by Koho et al. (manuscript submitted). Briefly, a C-
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terminal polyhistidine tag was added to the GII-4 NoV capsid protein sequence [15] by polymerase 

chain reaction using primers that contained the His-tag sequence. The resulting PCR product was 

cloned under pPH promoter in the baculovirus transfer vector pFastBacTM Dual (Invitrogen, 

Carlsbad, CA), and the correct sequence was confirmed by DNA sequencing. The recombinant 

baculoviruses were generated according to the instructions for the Bac-to-Bac Baculovirus 

Expression System (Invitrogen). The baculoviruses were then used to transfect Spodoptera 

frugiperda insect cells (Sf9; Invitrogen) and the culture was harvested 5-6 days post-infection. The 

expressed VLPs were purified to homogeneity by Ni-NTA metal ion affinity chromatography by 

using HisTrap FF Crude column (GE Healthcare, Uppsala, Sweden) with a linear gradient of 20-300 

mM imidazole in 20 mM NaH2PO4, 500 mM NaCl (pH 7.4). A detailed description of the 

biochemical and biophysical characterisation of VLPs is given in Koho et al. (manuscript 

submitted). 

 

2.2. Serum samples 

Serum samples from NoV-infected patients were collected as a part of the prospective etiological 

study at Tampere University Hospital in 2006-2008 *18+ and stored at −20°C until they were used. 

The study protocol was approved by the appropriate Ethics Committee, and informed consent was 

obtained. 

 

2.3. BLI-measurements 

The Ni-NTA sensor surface (Fortebio, Pall Life Sciences, Menlo Park, USA) was functionalised with 

histidine-tagged NoV-VLPs or NoV P-particles at a concentration of 50 µg/ml in PBS (10 mM 

NaPO3, 150 mM NaCl, pH 7.4). PBS was used as a liquid phase in all of the BLI sensor 

functionalisation steps. The immobilisation of the antigens on the sensor surface was completed 

as follows: 1) the baseline was recorded for 1 minute, 2) NoV-VLPs or NoV P-particles (50 µg/ml in 

PBS) were immobilised on the sensors for 5 minutes, 3) the sensors were washed in PBS for 2 

minutes, and 3) the particles were further amine-coupled with NHS (N-hydroxysuccinimide)–EDC 

(1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride]) treatment for 5 minutes. The 

amine coupling was performed as described by Johnsson et al. [19], with a freshly made solution 
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containing 0.025 M NHS and 0.05 M EDC in distilled water. After the NHS-EDC crosslinking step, 

the sensors were washed in PBS for 2 minutes. 4) Next, to block any remaining unreacted amine-

reactive reagents on the sensor surfaces, the sensor was incubated with 1 M ethanolamine-HCl, 

pH 8.5, for 2 minutes, after which the sensors were washed again for 2 minutes. After this step, 

the pre-functionalised sensors were stored for 1-2 days in 4°C (immersed in the Octet Kinetics 

buffer: 10 mM NaPO3, 150 mM NaCl, 0.02% Tween 20, 0.05% sodium azide, 1 mg/ml BSA, pH 7.4). 

Typically, the serum analyses were performed using the pre-functionalised sensors within the 

following 1-2 days. The buffer used in these runs was the Octet Kinetics buffer, as recommended 

by the manufacturer. First, the baseline was recorded for 1 minute, then the sensors were placed 

into different dilutions of serum samples for 4 minutes, after which the sensors were washed with 

the Octet Kinetics buffer for 2 minutes. Next, anti-human IgG labelled with HRP (Vector 

laboratories Inc., USA, dilution 1:800 in kinetics buffer) was used to detect the NoV antibodies that 

were bound to the NoV-VLP or NoV P-particle functionalised sensor surfaces. After 5 minutes of 

incubation, the sensors were washed with Octet Kinetics buffer for 3.5 minutes. Subsequently, the 

DAB enhancement was performed by dipping the sensors into 0.05% DAB (3,3´-diaminobenzidine)-

0.015% H202 in PBS for 5 minutes, after which the sensors were washed in Octet Kinetics buffer for 

2.5 minutes. HRP specifically bound on the sensor surfaces oxidise DAB, which precipitates on the 

sensor surface, causing an enhanced BLI signal. 

The temperature of the Octet system was set at 25°C. The stirring speed in all of the measurement 

phases was 1,000 rpm. Black, tilted-bottom 384-well plates (Fortebio, Pall Life Sciences, Menlo 

Park, CA) were used as measurement plates to ensure minimal drift in the measured signal 

between the analysis steps. 

BLI data was analysed with the Octet analysis software version 7.1. The initial velocity of the 

binding reaction was determined by performing a linear regression analysis with Microsoft Excel 

on the 5-30 sec time window from the beginning of the DAB enhancement step. 

 

2.4. Enzyme-linked immunosorbent assay (ELISA) 

ELISAs were used to quantify the NoV antibodies from human serum samples and were performed 

essentially as described in Koho et al. [15] and Tamminen et al. [20]. Briefly, NoV VLPs and Nov P-
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particles were used as coating antigens in enzyme-linked immunosorbent assays (ELISAs) 

conducted with human sera. All assay wells contained 50 µl. The reagents and test samples were 

diluted in 1% skimmed milk in phosphate-buffered saline (PBS)/0.05% Tween 20, and the plates 

were washed with PBS/0.05% Tween 20 between each incubation step. The NoV particles were 

coated on 96-well high binding microtiter plates (Costar, Corning, NY) at 0.5 µg/ml overnight at 

4°C. Serum samples were serially diluted two-fold dilution to obtain a range of 1:100 – 1:102,400 

and were added to plates that had been blocked with 5% skimmed milk in PBS for 1 h at 22°C. Any 

antibodies that bound the NoV particles were then detected with goat anti-human IgG (H+L)-HRP 

(1:30,000) (Invitrogen, USA) for 1 h at + 37°C, followed by 0.4 mg/ml SIGMAFAST™ OPD substrate 

(Sigma, Germany) for 15 minutes at + 22°C and 25 µl of 2 M H2SO4 to stop the reaction. The optical 

density (OD) was measured at 490 nm on a Victor2 1420 Multilabel Counter (Wallac, Perkin Elmer) 

plate reader. Blank wells were incubated with buffer lacking VLPs and data are expressed as the 

average OD of duplicate wells from a single experiment. 

 

2.5. SDS-PAGE analysis 

The His-tagged NoV VLP and P-particle samples were run on a 12% SDS-PAGE gel and subsequently 

visualised by Oriole™ Fluorescent Gel Stain (Bio-Rad, Hercules, CA) or Coomassie brilliant blue, 

respectively. 

 

2.6. Electron microscopy 

The primary morphology and size of the NoV VLPs were characterised by examining 3% uranyl 

acetate-stained samples by transmission electron microscopy (TEM, JEOL JEM-1400). 

 

2.7. Dynamic light scattering 

The hydrodynamic diameters of the NoV VLPs and P-particles were calculated as averages of six 

consecutive measurements, each containing 16 × 10 second readings, performed at 25°C on a 

Zetasizer Nano ZS dynamic light scattering instrument (Malvern Instruments Ltd., Worcestershire, 

UK). Predetermined viscosity and refractive index values were also used. 
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3. Results and discussion 

Proper immobilisation and presentation of antigens on the biosensor surface is critical for the 

sensitive detection of antibodies. Given that a previous study indicated that NoV VLPs are more 

potent immunogens than P-particles, we were initially interested in comparing the antigenicity of 

these oligomeric protein complexes [20]. We have recently developed His-tagged NoV VLPs (Koho 

et al., manuscript submitted), which are comparable to the conventional NoV VLPs described by 

Koho et al. [15] in terms of their antigenicity. His-tagged NoV VLPs are thus as potent as 

conventional VLPs and could potentially be a tool for various methods involving the metal-binding 

characteristics of histidines. Recombinantly expressed VP1 capsid proteins (58 kDa, Fig. 1B) self-

assemble into VLPs. Here we utilised recently developed His-tagged VLPs (Fig. 1B) [15]. The NoV 

particle capsid, which is composed of 180 copies of VP1, has a diameter of 40 nm [17], which we 

confirmed here with dynamic light scattering and TEM (Fig. 1A and 1C). P-particles (Fig. 1D and 1E) 

were produced by expressing the recombinant capsid protein fragment corresponding to the P-

domain in E. coli (Fig. 1F). The orientation of VP1 is similar in P-particles and in VLPs, resulting in 

similar surface antigenic structures to NoV [17]. 

Fig.1. 

Histidine-tagged NoV-VLPs (referred to hereafter as NoV-VLPs) or NoV P-particles were 

immobilised on BLI Ni-NTA sensors (Fig. 2A) and used to detect NoV-specific antibodies from 

human serum samples (Fig. 2B). The workflow of the measurement and the corresponding BLI 

curves are shown in Fig. 2. After determining the binding response directly from serum samples, 

anti-human IgG conjugated to HRP was applied on the biosensors. This made it possible to further 

enhance the binding signal with DAB, a metal chelator. 

Fig.2. 

The aim of this study was to evaluate whether BLI could be used for fast and reliable detection of 

an analyte from serum samples. NoV cases are typically diagnosed by real-time RT-PCR (reverse 

transcriptase polymerase chain reaction) [21] on material from the infective source, such as water, 

food or stool samples, but diagnosis based on antibodies has largely been used after the acute 

phase of disease [22]. BLI is a robust technology, and the instrumentation allows the use of 

heterogeneous and complex sample materials (whole blood, serum, urine and saliva) and is simple 
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to set up. Therefore, BLI may offer a reasonable alternative to traditional methods in the analysis 

of clinical samples. 

 

3.1. Norovirus antibody detection directly from the serum 

We first assessed the capability of BLI to detect the norovirus antibodies directly from the serum 

samples. The analysis was performed on 7 NoV positive serum samples. A serum sample from a 

patient lacking a NoV-specific IgG titre by an ELISA was chosen as a negative control. In this 

context, it is noteworthy that due to the high incidence of norovirus infection from early infancy, it 

is difficult to obtain access to completely NoV-negative serum samples. After immobilisation of the 

NoV VLPs or NoV P-particles on the Ni-NTA sensors, they were covalently cross-linked via NHS-EDC 

to avoid leakage of the immobilised antigens from the Ni-NTA sensor surface. However, when 

comparative experiments without crosslinking (Fig. 2B) were performed, we found that 

crosslinking is not absolutely necessary step and reasonably stable sensors were obtained even 

without crosslinking. This finding was especially true in the case of VLP, which has more His-tags 

per particle, resulting in strong avidity. Therefore, if a fast analysis is the main priority, the 

crosslinking-step could be omitted. However, covalent crosslinking may be essential if one is 

wished to use pre-functionalised sensors and enable a more sensitive detection due to a better 

baseline reading. Importantly, if using commercially available stabilised DAB solutions, the sensors 

may need to be covalently functionalised due to the presence of chelating agents, such as EDTA 

(ethylene diamine tetra-acetic acid), which chelates the Ni2+ ions and thus may strip the His-tagged 

molecules away from the Ni-NTA sensor surface. 

Fig. 3A shows that reliable label-free detection of NoV antibodies directly from serum samples is 

not possible. There is virtually no difference in the BLI responses measured for the NoV-negative 

or -positive serum samples (the samples selected based on the ELISAs). We also found no 

difference between the sensors functionalised with P-particles or NoV VLPs. However, after DAB 

enhancement, there was a marked increase in the BLI signal (Fig. 3B). The positive serum samples 

gave clearly detectable signals with serum dilutions up to 1:100,000, while the negative serum 

showed negligible responses after DAB enhancement (Fig. 3B and 3C). 

Fig. 3. 
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The sensors functionalised with P-particles showed higher background responses compared with 

VLP-functionalised sensors (Fig. 3A), which was most obvious at higher dilutions (1:10,000 and 

1:100,000). The same phenomenon was observed after DAB amplification (Fig. 3C), where 

negative serum showed a higher signal with the P-particle-functionalised sensor compared with 

the VLP-functionalised sensor. This could reflect differences in the structural features of the P-

particles, which is an artificial assembly of capsid protein fragments and thus may be more prone 

to cause nonspecific binding. 

 

3.2. Sensitivity and dynamic range of BLI versus ELISA 

The sensitivity of the BLI assay with DAB enhancement was next compared to that of an ELISA by 

analysing two NoV-positive serum samples and one negative serum sample (Fig. 4). We observed 

essentially no response with the negative serum sample up to a 1:100 dilution when analysed with 

BLI (Fig. 4B and 4E). The standard deviation between parallel samples was low and therefore, both 

NoV-positive samples showed a clear difference from the negative sample with dilutions in the 

range of 1:100 to 1:10,000 in the case of the NoV VLP-functionalised sensor (Fig. 4B). In the case of 

the P-particle-functionalised sensors, the negative serum had a slightly higher response and 

therefore serum dilutions in the range of 1:100 to 1:1,000 clearly exhibited a higher signal 

compared to the negative control (Fig. 4E). 

An ELISA indicated saturation of the signal with serum dilutions in the range of 1:100 to 1:1,000 

(Fig. 4A and 4D). In contrast, our BLI-based assay enabled sampling of 1:100 diluted samples with a 

predictable signal (Fig. 4B and 4E), as clearly observed in the log-log plot (Fig. 4C and 4F). 

Therefore, we can claim that BLI has a broad dynamic range and performs better than an ELISA at 

low sample dilutions. In practice, this means that a quantitative measurement of antibody 

concentrations can be performed with the BLI assay with a few or just one dilution of each sample, 

while a quantitative ELISA would require assaying several samples to avoid signal saturation. 

Fig. 4. 

3.3. Correlation between an ELISA and the BLI assay 

Next, we were eager to determine whether the BLI assay provided results comparable to an ELISA 

with a larger set of serum samples. Therefore, 7 NoV-positive serum samples and one negative 
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serum sample were analysed in parallel with both methods. A serum dilution of 1:3,200 was 

selected as a representative measure of an ELISA signal because it did not cause signal saturation 

with any of the serum samples. We found relatively good correlation between the results with the 

P-particle based assay when the BLI response measured with a serum dilution of 1:100 was 

compared to the ELISA results (R2=0.81) (Fig. S1). In the case of NoV VLP-particles, the correlation 

was not as high (R2=0.60). We observed no significant differences in the correlation between the 

ELISA and BLI assay when 1:100 and 1:1,000–diluted samples were used in the BLI assay. However, 

further diluting the samples (to 1:10,000) led to a dramatic drop in the correlation in the P-

particle-based assays (Fig. S1), indicating that the most reliable quantification was obtained with 

BLI conducted on moderately diluted samples. 

We then asked whether BLI combined with DAB might be suitable for the quantification of the 

antibodies. Therefore, the initial velocity of the DAB enhancement reaction was determined from 

the data. Fig. 5 shows the initial rate plotted against the reciprocal of the dilution factor. 

Presenting the data in this manner reveals a strong concentration dependent response. Serum2 

gave the highest binding rates, while negative serum showed basically no correlation between the 

initial reaction velocity and the sample concentration. P-particle-functionalised sensors showed 

higher initial velocities compared to NoV VLP functionalised sensors, which again may reflect the 

differences in the chemical structure of the antigens. Therefore, we conclude that the initial 

velocities obtained during the DAB enhancement step can be used as a reliable method to 

determine the concentration of the analyte. The good correlation between sample concentration and 

the initial rate of DAB enhancement reaction can be further visualized by plotting the results using a log-log 

plot (insets in Fig. 5). 

Fig. 5. 

Another way to evaluate the sensitivity of BLI is to determine the limit of detection (LOD). By using 

the reading for a negative serum sample, we obtained a LOD as follows: LOD = response of a 

negative control sample + 3 x standard deviation. The measured responses were then plotted with 

the determined LODs (Fig. 6). This analysis illustrates that a BLI assay conducted with VLP-

functionalised sensors can distinguish between negative and positive samples in all dilutions used 

(1:100, 1:1,000, 1:10,000), while the P-particle-functionalised sensors performed less reliably; a 

serum dilution of 1:100 was the only condition that yielded a signal above the LOD for all the NoV-
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positive serum samples. Typically, the dilution range in immunoassays in clinical setting is within 

1:2 to 1:100 000 [23]. However, this is highly dependent on the analyte of interest, on the stage of 

the disease as well as on the method used. Therefore, the range of sample dilutions studied here 

is reasonable concerning clinical applications. 

Fig. 6. 

There are NoV antibody-based lateral flow tests available for fast diagnosis, and they are used 

mainly for rapid screening of stool samples [24]. Stool samples are preferred due to the high virus 

content. Enzyme immunoassays for NoV have also been developed, and the commercial kits 

available are based on immobilising several different antibodies against various NoV genogroups, 

as reviewed by Vinje [25]. However, the most accurate and genotype-specific NoV analysis are 

real-time PCR assays conducted in clinical research laboratories with the required facilities and 

trained personnel [26]. Norovirus detection has also been performed with aptamers [27], and 

magnetic beads have been used successfully especially for rising the analyte concentration [28]. 

However, besides the ELISA and PCR-methods, there are only a few non-labelled measurement 

technologies available suitable for clinical samples. Surface plasmon resonance (SPR) is non-

labelled and very sensitive technique, which has been demonstrated also with serum samples [29], 

but is not suitable as such for routine clinical analysis with difficult sample matrix and multiple 

sample specimens. In a recent article by Khare et al. [30], detection of gastro-intestinal pathogen 

was compared with two analysers based on multiplexed PCR reactions. This analysis revealed that 

both PCR-based multiplex panels demonstrated high sensitivity and noroviruses were among the 

most commonly detected pathogens. The BLI assay could also be multiplexed and the analysis 

time per sample seems to be faster with BLI compared with the multiplexed-PCR assays, where 

the time per run is 1-3.5 hrs [30].  

Our results suggest that BLI could be suitable for rapid diagnostics of viral (and other) infections 

from various biological samples. For example, this methodology could be implemented at airports 

for rapid screening of infectious diseases, which has been widely discussed lately due to the recent 

outbreak of ebolavirus. 

 

4. Conclusions 
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BLI is a robust technology and could replace ELISA in many situations but especially when rapid 

quantitative analysis is required. BLI combined with DAB enhancement offers high dynamic range 

but is slightly less sensitive compared with an ELISA. With pre-functionalised sensors, the method 

of detecting antibodies from serum samples described here could be performed in 10-20 minutes, 

which is appealing in situations where rapid decisions are needed. The BLI sensor is 

straightforward to operate and does not require extensively trained personnel. 
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Figure captions 

Fig. 1. Antigens used in the biofunctionalisation of the BLI sensor. a) Transmission electron 

microscopy image of a negatively stained His-tagged NoV VLP. b) SDS-PAGE showing the 58 kDa 

VP1 capsid protein corresponding to the NoV VLP shown in (a). c) Dynamic light scattering analysis 

of the NoV VLP sample showing the size distribution of the particles (average diameter ~40 nm). d) 

Transmission electron microscopy image of negatively stained NoV P-particles. Three individual 

particles are indicated by arrowheads. Figure (d) is partially adapted from Tamminen et al., 2012 

and is used with permission from the publisher. e) SDS-PAGE analysis showing the 35 kDa protein 

fragment corresponding to the P-domain of the NoV capsid protein. f) Dynamic light scattering of 

the NoV P-particles showing the size distribution of the particles (average diameter ~15 nm). 

Fig. 2. a) Schematic representation of the BLI detection principle utilising NoV-VLP or NoV P-

particles as immobilised antigens. The molecular events taking place on the sensor head are 

shown. In the first stage, the Ni-NTA sensors were functionalised either with His-tagged P-particles 

or with NoV-VLPs. During the second stage, the NoV antibodies in the serum samples were bound 

onto the sensor surfaces. Finally, the signal was enhanced in the third stage with DAB, which is 

oxidised by HRP (horse radish peroxidase)–conjugated anti-human antibodies to form a metal 

precipitate on the sensor surface. b) An example BLI sensorgrams corresponding to a NoV-positive 

serum sample. Note that this measurement does not involve covalent coupling of the antigen, 

which is reflected by the “leakage” of the P-particle from the sensor surface. The red curve 

corresponds to the NoV P-particle-functionalised sensor and the dashed blue curve to the NoV-

VLP-functionalised sensor. 

Fig. 3. Detection of NoV antibodies from serum with BLI. a) BLI responses with NoV-negative (open 

symbols) and NoV-positive (filled symbols) serum samples with sensors functionalised with NoV 

VLPs (▲) or with P-particles (●). b) BLI responses after the DAB enhancement with the same 

sensors and samples. c) The data presented in (b) graphed on a logarithmic Y-axis. The values 

represent the maximum BLI sensor response after a 4 (a) or 5 (b-c) minutes incubation, prior to 

sensor washing. 
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Fig. 4. Comparison of the BLI assay and ELISA for detection of NoV antibodies from human serum 

samples using a-c) NoV VLP as an antigen or d-f) P-particle as an antigen. The filled triangle (▲) 

and filled circle (●) symbols represent the NoV positive samples, while dash-marks (─) represent 

the NoV negative sample. a,d) The ELISA responses. b,e) The BLI responses on a linear-logarithmic 

scale. c,f) The BLI responses plotted on a logarithmic y-axis. The BLI values depicted represent the 

BLI signal after a 5 minutes incubation in the DAB solution. 

Fig. 5. Initial velocities obtained from the DAB-enhancement phase velocity plotted against the 

reciprocal of the dilution factor. The sensors were functionalised with NoV VLPs (a) or with NoV P- 

particles (b). The values obtained with Serum2 (∆), Serum1 (○) and Serum0 (●) samples are shown. 

The insets depict the same data plotted on a logarithmic scale. The R2 values are shown next to 

each curve. The standard deviations are also shown, but were typically so small (less than 5%) that 

they are obscured by the symbols. 

Fig. 6. BLI and ELISA responses for 7 positive and one negative (marked with ∆) serum samples at 

different dilutions. The LOD value determined for the BLI measurements is marked with a dash (−). 
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