
  

 

 

Analysis of requirements incompleteness using metamodel 
specification 

Ao Li 
 

 

 

 

 

 

 

 

 

                                      University of Tampere 

School of Information Sciences  

                                            Computer Science / Software 

                                          Development M.Sc. thesis 

                                           Supervisor: Zheying Zhang 

                             June 2015 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250138618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i 

 

 

 

University of Tampere 

School of Information Sciences 

Computer Science / Software Development 

Ao Li: Analysis of requirements incompleteness using metamodel 

M.Sc. thesis, 52 pages and 3 index and appendix pages 

June 2015 

 

 

 

Abstract.  

Incompleteness of requirements has been treated as a huge challenge in software 

development projects. Since it is hard to obtain all required information before software 

design and implementation starts, the software modeling process may start with an 

incomplete requirements specification. In order to help analyzing the incompleteness 

in requirements, I propose a metamodel approach for detecting the missing 

requirements that are needed for constructing conceptual models for a software system, 

and implement it in MetaEdit+. The detected missing information in a conceptual 

model is reported in natural language, which is easy to understand. Furthermore, the 

conceptual modelers can identify the potential problems indicated by the report to 

analyze and update the model. The contribution of my thesis is twofold, i.e. analyzing 

the link between business rules and the ER models, and implementing a method to 

automatically detect and show the incompleteness in ER models. 

 

Keywords: Requirements incompleteness, business rules, metamodel, MetaEdit+. 



ii 

 

 

Contents 

 Introduction ............................................................................................................ 1 

 Requirements and uncertainty ................................................................................ 3 

 Requirements ................................................................................................... 3 

 Business rules................................................................................................... 5 

 Uncertainty and incompleteness in requirements ............................................ 7 

 Requirements uncertainty ......................................................................... 7 

 Causes of software requirements uncertainty ........................................... 8 

 Representing requirements uncertainties in requirements models .......... 11 

 Model, metamodel and MetaEdit+ ....................................................................... 14 

 Concept of model and metamodel ................................................................. 14 

 GOPRR metamodeling language ................................................................... 15 

 MetaEdit+ ...................................................................................................... 16 

 Mapping business rules onto software design models .......................................... 20 

 MBRM framework ......................................................................................... 20 

 A Link Model connecting business rules with revised ER model ................. 23 

 Incompleteness in an ER model ........................................................................... 26 

 Infrastructure incompleteness ........................................................................ 26 

 Unclear number of entities ...................................................................... 27 

 Weakness of an entity in the model ........................................................ 27 

 Multiplicity of attribute value ................................................................. 27 

 Type of attribute status............................................................................ 28 

 Unclear relationship’s degree ................................................................. 28 

 Ambiguous relationship’s connectivity .................................................. 29 

 Optionality of the occurrence of an entity in a relationship .................... 29 

 Unsure type of subtype ........................................................................... 29 

 Unsure multiple relationships ................................................................. 30 

 Aggregation hierarchy redundancy ..................................................... 30 

 Structural Incompleteness .............................................................................. 31 

 Redundancy of relationship .................................................................... 31 

 Unclear attribute belonging ..................................................................... 31 



iii 

 

 

 Completed ER metamodel and link model .................................................... 32 

 Detecting and reporting the incompleteness in an ER model using MetaEdit+ ... 34 

 Incomplete property specification on relationships ....................................... 36 

 Incompleteness related with the properties of an entity ................................. 39 

 Incompleteness related to the property of an attribute ................................... 41 

 Discussions ........................................................................................................... 44 

 Classification of incompleteness.................................................................... 44 

 Solutions ........................................................................................................ 45 

 Conclusion ............................................................................................................ 48 

References .................................................................................................................... 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

 

 Introduction 

Requirements are uncertain, and the uncertainties are increasing with fast changing 

markets [Ebert and De Man, 2005]. Requirements uncertainty means that “within a 

software system, requirements are not known until it is practically used” [Parnas, 1979]. 

Uncertainty includes the unclear information on project goals, feasibility, cost, and 

duration of implementing these alternatives, as well as the future changes in 

stakeholders’ goals, business context and technological environments [Letier et al., 

2014]. Uncertain requirements can be caused by many reasons, such as insufficient 

management of changing requirements [Ebert and De Man, 2005], or difficulties to 

predict all of the details required before a project start [Zhang et al., 2014].  

As one of the early symptoms of uncertainty, requirements incompleteness will lead 

to problems from different perspectives, such as insufficient acceptance and satisfaction 

from users, underestimated costs and schedules, ambiguous verification and more 

safety incidents [Wiegers, 1999]. Therefore, detecting incomplete requirements 

becomes an important issue in software development and considerable research effort 

has been put on developing methodologies to improve the completeness, consistency, 

and accuracy of requirements in a requirements engineering (RE) process [check 

examples in Carson, 1998; Zowghi and Gervasi, 2006; Zhang et al., 2014]. 

In a software project, requirements are specified on different abstraction levels. As 

the high abstraction level requirements, business rules are part of rich sources of 

requirements and also a volatile part of a software system [Wan-Kadir and Loucopoulos, 

2003]. In order to explain the link between business rules and the software system 

structure, the Manchester Business Rules Management (MBRM) mapping metamodel 

method has been introduced to connect business rules elicitation with software 

modelling, which will keep traceability on link modeling process and reducing the 

effort on requirements changes management [Wan-Kadir and Loucopoulos, 2003]. 

On the basis of my understanding of requirements incompleteness, I further study 

the techniques which can be used to detect incomplete requirements during the 

conceptual modeling process. Thanish, et al. [2013] presented a way of representing 

some of that incompleteness in the conceptual model. A list of incompleteness problems 

are discussed based on the Enhanced Entity-Relationship (EER) model. According to 

the list of problems, a metamodel approach for detecting the unknown requirements is 

proposed by Zhang et al [2013]. A metamodel defines the components of a conceptual 

model, process, or system. By building a database with the information of metamodel 



2 

 

 

elements, some of the unknown information can be checked automatically by SQL code 

and reported in natural language.  

Based on the MBRM framework and the metamodeling technique, my work is to 

implement and to demonstrate the existing approach in a specific metamodeling tool, 

i.e. MetaEdit+. MetaEdit+ [Kelly et al., 1998] provides an explicit description of 

MetaEdit+ function and architecture as well as definition of GOPRR metamodeling 

language. A link model which links business rules and ER model elements will be 

proposed and analyzed, and metamodeling techniques will be applied to detect and 

capture the incomplete requirements in ER models.  

By using MetaEdit+, one can build different generators to report the incompleteness 

detection and feedback. Based on the generated results, all incomplete information can 

be shown in a report and analyzed with their related business rules. By analyzing the 

results, one can reduce the uncertainties caused by incomplete information on 

requirements and identify the missing business rules. The contribution of my thesis is 

twofold. First, I detected and analyzed the 12 incompleteness problems which are 

provided by Thanish, et al. [2013], by using the metamodeling techniques and generator 

function in MetaEdit+. The approach is demonstrated using an example from a meeting 

scheduling process. Second, I built the link between business rules and ER model 

elements based on the MBRM link model, which shows the traceability of ER model 

incompleteness problems and updates the business rules at the same time. Some of the 

incompleteness can be found and updated in both model and business rules, while some 

incomplete information cannot be captured because of the limitation of the metamodel 

concepts.  

The content of the rest of this thesis is as follows. Chapter 2 introduces the basic 

definitions of business rules and requirements uncertainty, including the relationship 

between the uncertainty and incompleteness, and root causes of incomplete 

requirements. Chapter 3 introduces the concepts of metamodel and the MBRM 

mapping metamodeling methodology in detail, and discusses how this framework is 

applied to deal with incomplete requirements. Introduction of the MetaEdit+ tool and 

the GOPRR metamodeling language will be described in the Chapter 4. Chapter 5 

addresses the possible incompleteness in an ER model in a list, together with examples. 

Chapter 6 presents the implementation in MetaEdit+ about the detection and reporting 

of incomplete requirements. Chapters 7 and 8 includes further discussion and the 

conclusion. 



3 

 

 

 Requirements and uncertainty 

Frederick Brooks [1987] eloquently stated the critical role of requirements in a software 

project as “the hardest single part of building a software system is deciding precisely 

what to build and no other part of the conceptual work is as difficult as establishing the 

detailed technical requirements”. However, requirements uncertainty is an inevitable 

problem in the RE process, and in order to solve this problem, we need to figure out 

what the requirements uncertainty is and what causes the uncertainty. 

 Requirements  

A requirement is a statement of a system service or constraint which is specified for the 

implementation activity in a software development process [Kotonya and Sommerville, 

1998]. The statements can be a functional requirement or a nonfunctional requirement. 

A functional requirement should describe the behavior of a system, like what the system 

is required to operate under a specific circumstance. A non-functional requirement 

specifies the type and property of a system, as well as the constraints of system 

operation and details of computation in the software process [Kotonya and Sommerville, 

1998]. In other words, the requirements contain both the specific conditions to the 

system and properties which make the system suitable and even enjoyable to users 

[Wiegers and Beatty, 2013]. The IEEE standard [IEEE std. 610.12, 1990] defines the 

requirements from both users and system perspectives. For users, a requirement is the 

specification to solve a problem or achieve an objective; while for a system, a 

requirement is to satisfy a contract, standard, specification or other formally imposed 

documents. 

   Requirements are often classified into functional requirements, quality 

requirements and constraints [Pohl and Rupp, 2011]. A quality requirement concerns 

aspects that are not covered by functional requirements, such as performance, 

availability, dependability, scalability, or portability of a system. Requirements of this 

type are frequently classified as non-functional requirements. A constraint is a 

requirement that limits the solution space beyond what is necessary for meeting the 

given functional requirements and quality requirements.  

In addition, there are distinct classifications of requirements from different 

perspectives. For example, a three-level requirements model has been defined in 

[Wiegers and Beatty, 2013]. As shown in Figure 1, requirements can be distinguished 

between three abstraction levels, i.e. business requirements, user requirements, and 

functional requirements. Business requirements specify high-level business objectives 

of an organization. In this level, the reason of implementing the system needs to be 



4 

 

 

found, or in other words, the business benefits which the organization expects to 

achieve is the key point of this part [Wiegers and Beatty, 2013]. The business 

requirements can be written into a project vision and scope document. 

 

Figure 1. Relationships among several types of requirements [Wiegers and Beatty, 

2013].  

User requirements elaborate on the business requirements by describing goals or 

tasks of users’ performance and product attributes or characteristics to satisfy the users. 

In this level, what actual users need to get from the help of the product is the main 

question. The user requirements are often documented in use cases and user stories 

[Wiegers and Beatty, 2013]. A use case describes a sequence of interactions between a 

system and an external actor that results in the actor being able to achieve some outcome 

of value [Wiegers, 2014]. Use cases should describe user goals, the user’s view of the 

system and a set of task-related activities. A use case is always written in the form of a 

verb followed by an object. For example, an online bookstore has a use case of update 

customer profile [Cohn, 2010]. Each use case has a corresponding user story which is 

a short, simple description of a feature told from the perspective of the person who 

desires the new capability, usually a user or customer of the system [Cohn, 2010]. With 

the online bookstore example above, the relevant user story of “update customer profile” 

can be stated like as a customer, I want to update my customer profile so that future 

purchases are billed to a new credit card number [Cohn, 2010]. 



5 

 

 

Derived from user requirements, functional requirements represent what the system 

should do under specific conditions [Wiegers and Beatty, 2013]. In this level, 

implementation details have been defined to accomplish both the user requirements and 

business requirements. Besides, system requirements, external interfaces and quality 

attributes provide the necessary addition to functional requirements.  

System requirements describe functions and qualities which the system implements 

or possesses. In addition, system requirements support the rest of development 

activities with the complete information [Pohl and Rupp, 2011]. 

According to Richard Thayer [2002], external interface requirements specify 

hardware, software, or database elements with which a system or component must 

interface. These requirements include the information of user interfaces, software 

interfaces, hardware interfaces, and communication interfaces. The interface can 

describe the connections between software and the universe. For example, a mobile 

application should send the check image to the bank after someone photograph the 

check they are depositing, which states the interface between the mobile application 

and the banking system [Wiegers and Beatty, 2013]. 

A quality attribute pertains to a quality concern that is not covered by functional 

requirements, which is responsible for description of system services and performance 

[Pohl and Rupp, 2011]. General software quality attributes include scalability, security, 

performance, and reliability [Gorton & Ernst, 2014]. An example of a scalability 

requirement for a computer company’s information technology infrastructure is like it 

must be possible to scale the deployment from an initial 100 geographically dispersed 

user desktops to 10,000 without an increase in effort/cost for installation and 

configuration [Gorton & Ernst, 2014]. 

 Business rules 

In Figure 1, the business rules are on the same abstraction level as business 

requirements, and form an important source of requirements. Usually, business rules 

are elicited in the first stage of a requirements engineering process and they have been 

specified by different stakeholders in different ways. In general, business rules are rich 

source of requirements and system must obey the rules [Wiegers and Beatty, 2013]. 

They are used to represent both user requirements and conditions to which the system 

should conform [Wan-Kadir and Loucopoulos, 2003]. From an enterprise perspective, 

business rules are statements of goals, policies, constraints on an enterprise’s way of 

doing business [Rosca et al., 1999] or statements about how the business is done, i.e. 

about guidelines and restrictions with respect to states and processes in an organization 



6 

 

 

[Herbst, 1996]. In detail, Halle [1994] suggests that depending on whom you ask, 

business rules may encompass some or all of relationship verbs, mathematical 

calculations, inference rules, step-by-step instructions, database constraints, business 

goals and policies, and business definitions.  

When a client says that some activity can only be done in some specific condition 

and only by some specific person, it is a business rule. For example, a new client must 

pay 30 percent of the estimated consulting fee and travel expenses in advance in a 

lawyer company [Wiegers and Beatty, 2013]. 

Business rules can be defined in five classes, and they are facts, constraints, action 

enablers, inferences and computations, as shown in Figure 2. 

Facts describe associations or relationships between important business terms 

[Wiegers and Beatty, 2013]. For example, every book in the library should have a 

unique bar code. Unnecessary facts can bog down the business analysis so we should 

pay more attention on those facts which are in scope for the project and make the system 

events more clear [Wiegers and Beatty, 2013]. 

Constraints, as the name suggests, define the specific actions done or inhabited by 

certain people. For instance, a library card applicant must be more than 16 years old. 

Certain business rules use the constraints to restrict the way that the business operates. 

 

Figure 2. A simple business rule taxonomy [Wiegers and Beatty, 2013]. 

An action enabler triggers some activities if specific conditions are true in an “if-

then” form to describe a requirement scenario [Wiegers and Beatty, 2013]. The “if” 

clause acts as an enabler while the “then” clause indicates the follow-up activity. For 

example, if a reader ordered one book from an author who also has many other books, 

system shall recommend them to the user [Wiegers and Beatty, 2013], which stimulates 

impulse purchases after a customer decide to buy a specific product.  

An inference is similar to "if-then" format as an action enabler, but different from 

the action enabler, the “then” clause of an inference simply provides a piece of 

knowledge, not an action to be taken [Wiegers and Beatty, 2013]. For instance, if a 



7 

 

 

reader did not return his/her book in time, then the account is considered as 

“delinquent”.  

A computation transforms existing data into new data by using specific 

mathematical formulas or algorithms. For example, book selling in the bookstore of a 

library may have discounts by 10 percent for orders of 6 to 10 units, by 20 percent for 

orders for orders of 11 to 20 units [Wiegers and Beatty, 2013]. 

However, the common requirements identification and specification process is 

dominated by technical concerns rather than business concerns [Ebert and De Man, 

2005]. In other words, a requirements elicitation process sometimes ignore the 

constraints regarding the business process and many software project problems are 

caused by insufficient identification of business rules. Therefore, an explicit stage 

where business needs are identified by the stakeholders is necessary [Ebert and De Man, 

2005]. Several approaches which focus on business rules elicitation and analysis have 

been proposed, as presented in Chapter 3. 

 Uncertainty and incompleteness in requirements 

Badly written requirements are easily identified in many software requirements 

specifications and no matter how much effort is put on requirement analyzing, 

reviewing, and refining, the requirements are rarely widely accepted by heterogeneous 

groups of stakeholders [Wiegers, 1999]. Various problems are caused by textual 

requirements written in natural language [Sommerville, 2011]. One drawback of natural 

language, i.e. unclearness and the lack of clarity, makes it difficult to specify 

requirements in a precise and unambiguous way, and makes the document wordy and 

difficult to read at the same time. Functional requirements, non-functional requirements, 

and other design information could be unclearly distinguished with natural language, 

which will raise the confusion in requirements analysis. Moreover, several different 

requirements may be expressed together as a single requirement, which forms a risk of 

requirements “amalgamation” [Sommerville, 2011]. Although the importance of 

requirements quality has been recognized by the software development team, some 

common requirements problems still exist in the RE process, i.e. insufficiency in 

requirements completeness and accuracy [Wiegers, 1999].  

 Requirements uncertainty 

As the inability to determine the true state of affairs of a system or things that are not 

known, or known only imprecisely [McManus & Hastings, 2005], uncertainty is a 

common problem in product development. Many different views and numerous 

classifications of uncertainty have been proposed in this area. A product development 



8 

 

 

process uncertainty can be divided into two categories [Chalupnik et al., 2009], i.e. 

exogenous process uncertainty (or external process uncertainty) and the endogenous 

process uncertainty (or internal process uncertainty).  

The exogenous uncertainty indicates the uncertainty in the product development 

process environment, such as the organizational change, the unstable markets, user 

expectations changes, or the evolution of the political and cultural contexts of the 

company [Bstieler, 2005]. 

The endogenous process uncertainty is caused by technology novelty and process 

complexity. Technology novelty has two components: insufficient understanding of 

new product technology and uncertainty on process technology. Process complexity 

reflects the difficulty in understanding the process objectives, the newness of those 

objectives to the company, and the degree of interdependence among product elements 

[Chalupnik et al., 2009]. Both of these uncertainties lead to a complex and competitive 

environment and compliance with various stakeholders and regulatory bodies complex 

and changing requirements [Chalupnik et al., 2009].  

In a software development process, uncertain requirements can be shown as both 

exogenous and endogenous process uncertainty because they always volatile with the 

development of rapid changing market [Ebert and De Man, 2005] and the attitude of 

keep modifying requirements. Moreover, unresolved decisions, insufficient 

understanding among stakeholders, etc., can all lead to uncertainties in requirements 

[Salay et al., 2012]. Since it is not always possible to provide a complete and consistent 

description [Thanish et al., 2013] [Zhang et al., 2014] of requirements before the 

modeling and the coding starts, uncertainty should be admitted, represented and solved 

if it has been detected [Bonarini, 2010]. 

 Causes of software requirements uncertainty 

Five different root causes of requirements uncertainty have been discussed deeply, 

and they are vague product vision and strategy, absence of stakeholders and 

misunderstanding among them, unknown project dependencies, not thoroughly 

evaluated business case and insufficient specification and analysis of requirements 

[Ebert and De Man, 2005], as shown in Figure 3. 

A product vision describes what the product is about and what it ultimately could 

become to achieve the business objectives [Wiegers and Beatty, 2013]. It provides 

contexts for making decisions throughout the product’s life, and gives a common 

direction for all stakeholders in software development. A product strategy describes the 

vision of what a project team tries to accomplish [Ebert and De Man, 2005]. Ambiguous 



9 

 

 

product vision and strategy will lead to difficulties in planning and scheduling 

development activities.  

In some cases, the key stakeholders of a software project are not involved in time, 

and some “untechnical” stakeholders have poor understanding of an application. 

Communicating between end-users and software developers is difficult because they 

must find a common language to exchange information. Developing enough shared 

vocabulary for communication can often take a while in a project which means that 

developers need to guess what the end-users require at the start of requirements part. 

Dependencies are the relationships among tasks which determine the order in which 

activities need to be performed and project dependencies establish the links, and the 

types of links, between all the tasks of a project. One task may have multiple preceding   

tasks and succeeding tasks. Project dependencies also include dependencies between 

projects. Typical project dependencies are deliverables from other projects that one 

project requires in order to reach completion. This ensures that there is no confusion 

going forward. Project dependencies are two-fold, they can be inbound or outbound. 

Inbound dependencies are relationships that several projects deliver production 

environment to one project while outbound dependencies represent one project deliver 

production environment to other projects for their progress [Shiv and Doraiswamy, 

2012]. Without clarity on the inbound and outbound dependencies, it will create 

considerable delivery challenges and have a huge impact on the business benefits. 

A business case contains the reasoning for initiating a project or task, it describes 

the benefits, costs and impact, plus a calculation of the financial case. It is, however, 

difficult to capture all the factors at the first stage of a project. 

Many requirements specifications are incomplete in that they only specify what the 

system shall do under normal conditions and thereby fail to specify what the system 

shall do under exceptional conditions. This incompleteness forces the developers to 

guess stakeholders’ intentions or to let these requirements fall through the cracks 

completely. [Firesmith, 2005] 

The root causes lead to uncertainties in software development. There are four early 

project symptoms showing the requirements uncertainty, as discussed below. 

The conflict of interest is a set of circumstances that creates a risk that professional 

judgment or actions regarding a primary interest will be unduly influenced by a 

secondary interest [Ebert and De Man, 2005]. This conflict can appear between clients, 

users and modelers, which will drive to an unclear propriety requirements distribution. 



10 

 

 

 

Figure 3. Causes of requirements uncertainty [Ebert and De Man, 2005] 

Requirements dependency is the relationship between requirements and plays a role 

as the basis for change propagation analysis. Different dependency types can reflect the 

complex relationships between requirements at both structural and semantic levels 

[Zhang et al., 2013]. Unexpected dependencies between requirements increase the 

difficulties in understanding the requirements and influence many software engineering 

activities such as architecture design [Khan et al. 2008], product release planning 

[Carlshamre and Regnell, 2000] and change impact analysis.  

If the analysis of business cases is not done sufficiently, and the vision and scope 

are not clearly specified, then the same easily happens to the product features and 

requirements. Consequently, it is very hard to accurately estimate the cost of product 

implementation at the requirements analysis stage, which will lead to an unclear 

decision on dealing with these requirements. 

Incompleteness in requirements can be missing and vague information in 

requirements analysis models, individual requirement statements, and metadata 

describing individual requirements [Firesmith, 2005]. Requirements can be represented 

in graphical models, text and mathematical specifications. An incomplete requirements 

model fails in assigning proper value to every needed element of this model. For 

example, a use case model represents the behavior of a system by specifying systems 

external actors, the use cases, and relationships of actors and use cases [Firesmith, 

2005]. It becomes incomplete if the value of a use case’s attributes (e.g. the use case 

name, its goals, preconditions, etc.) is not properly specified. An individual requirement 

is incomplete if it fails to contain all necessary information to avoid ambiguity 



11 

 

 

[Firesmith, 2005]. For example，many functional requirements are incomplete because 

they only specify what the system will perform in normal conditions rather than in 

exceptional conditions, which will lead to developers guessing the stakeholders 

intentions or else they let these requirements fall through the cracks completely 

[Firesmith, 2005]. A requirement’s metadata is data about associated project-unique 

identifier, priority, and status which can describe or characterize the requirements. 

Some typical types of requirements metadata may be found to be missing, such as 

categorization, criticality to customers and users, estimated cost range, frequency of 

execution, implementation status, etc. [Firesmith, 2005]. 

 Representing requirements uncertainties in requirements models 

Requirements uncertainty can be represented as annotations in a requirements 

document or in graphical models. In this thesis, we focus on how the uncertainties are 

identified and represented in models. Models are used to help with requirements 

elicitation, recording current understanding, communication, requirements 

development, and exploration of alternative high-level designs in the RE process 

[Salay et al., 2012]. During the process of creating models, it is common to uncover 

uncertainty over the contents and structure of the model. Since the modeling process 

often implicitly involves identifying model uncertainties and then resolving them 

through further elicitation or decision making, it is necessary to express uncertainty in 

RE models explicitly, and to capture such uncertainty for reducing the risks in making 

decisions and eliciting information as part of the modeling process. 

 

Figure 4. An early RE diagram with annotated uncertainty for the meeting scheduler 

example. [Salay et al., 2012] 



12 

 

 

A computer-based meeting scheduler application [Salay et al., 2012] is used as an 

example to illustrate how uncertainty is presented in a requirement model. The 

application supports the setting up of meetings in a company. For each meeting request, 

the meeting scheduler will help to determine a meeting date and location for effective 

participation. The system would fix a meeting date and location that meets the meeting 

participants’ need. All potential participants’ information will be collected by the 

meeting initiator about their availability to meet during a date range includes the 

exclusion dates and preference dates. Then, the meeting scheduler comes up with a 

proposed date. The date must not be one of the exclusion dates, and should ideally 

belong to as many preference sets as possible. Participants would agree to a meeting 

date once an acceptable date has been found [Yu, 1997]. 

Figure 4 shows the process of scheduling a meeting by using i* modeling 

framework [Salay et al., 2012]. The i* model focuses on the early-phase of 

requirements engineering activities, such as how the intended system would meet 

organizational goals, why the system is needed, what alternatives might exist, what the 

implications of the alternatives are for various stakeholders, and how the stakeholders’ 

interests and concerns might be addressed [Yu, 1997], while most other RE modeling 

techniques stress on later phase on the completeness, consistency and automated 

verification of requirements [Yu, 1997].  

The central component of i* framework is the actor, and one actor will achieve its 

goals by depending on other actors. In Figure 4, there are three actors which are 

represented in circles, i.e. meeting initiator, meeting participant and meeting scheduler. 

Intentional elements, such as goals, tasks, resources and softgoals, appear not only as 

external dependencies, but also be linked by means-ends relationships and task-

decompositions. On the meeting initiator side, the main task is to organize meeting. 

This task shall fulfill several goals, and include several subtasks. Softgoals are used to 

filter the subtasks. For example, quick and low effort scheduler ways will be chosen for 

the meeting organization. Meeting be scheduled is the goal of the main task, and it will 

be achieved by two subtasks. One is the let scheduler schedule meeting and the other 

one is about the ways to organize meeting. The former one has a goal-dependency with 

the actor of meeting scheduler, while an uncertainty appears with the latter task. It is 

about the unknown set of other ways to organize meetings and shown in a rectangular 

in the lower left corner in Figure 4. The subtask of organize a meeting is determining 

meeting date. But there is not a particular description on the actor who will perform this 

task, which forms an uncertainty in the process. Organizing a meeting has an unknown 

goal-dependency with the main task performed by the actor meeting participant - 

participating in meeting, which need a further check about what exactly this 



13 

 

 

dependency is. Participating in a meeting also can include hierarchically with two 

subtasks and two goals. One task is to attend meetings, and another one is to provide 

details for meeting schedulers. The vague specification of the meeting details will 

impact on further meeting scheduling. Besides, the two goals of participating meetings 

are picking up a convenient dates and agreeable meeting date, which are probably 

mixed concepts if there is no further explanation. A subtask of picking up a convenient 

meeting date is to decide convenient dates, which may be unnecessary and deleted later. 

At last, there is an unknown when we want to add more content into this model, which 

is shown in the rectangular in the lower right corner in Figure 4.    

According to Salay et al. [2012], all these uncertainties can be divided into three 

classes. The first kind of uncertainty is caused by the gap of domain knowledge among 

the modelers. Domain knowledge is knowledge about the operation of target system. 

Each stakeholder has his/her own education background and may result in different 

perceptions of the domain [Kotonya and Sommerville, 1998]. It is also the reason why 

communication between end-users and software developers is difficult. This will lead 

to one of the early project symptoms, which is about the benefit of individual 

requirements unclear. Therefore, all stakeholders need to find a common language for 

communication. Developing enough shared vocabulary to communicate can often take 

a while and that is the reason why uncertainty happens. For example, the modelers may 

quickly have questions like what are the other options of meetings organization quickly. 

The second type of uncertainty is caused by stakeholders’ disagreements, such as 

whether the meeting initiator or participants has the responsibility of picking up the 

meeting dates? This kind of uncertainty is related with the conflict of interests between 

stakeholders. The last kind of uncertainty is the continuous change of model details and 

the modelers’ attitude of adding details later. It brings the incompleteness requirements 

into the development process.  

In summary, incompleteness is treated as a symptom of uncertainty. Looking back to 

Figure 2, we can see that the uncertainty in requirements will lead to changing 

requirements and insufficient functionality, and the final result will be a delay in the 

whole software development process and it will lead to the software “instability”, [Ebert 

and De Man, 2005] which results in many consequential problems such as late delivery, 

over-run budget, poor quality, etc. In a word, the most important thing at the 

requirements engineering stage is how to extract the right requirements and how to deal 

with the changing requirements [Ebert and De Man, 2005]. This thesis intends to find 

a way to detect incompleteness in requirements and to elicit the missing requirements 

using the metamodeling technique. 



14 

 

 

 Model, metamodel and MetaEdit+ 

After specifying requirements, models are constructed to represent the software system 

from different perspectives. For example, an ER diagram specifies the entities of a 

software system and their static structure; a use case diagram specifies the interaction 

between users and the system, as well as the behaviors the system possesses. Each 

model has its own metamodel which specifies the basic elements, relationships and 

attributes for the model. In this chapter, the concepts of a model and its metamodel are 

presented, together with an introduction of the metamodeling tool MetaEdit+. 

 Concept of model and metamodel 

A model is a simplified representation or an abstraction of a certain reality [Bézivin, 

2005]. A model usually focuses on one particular aspect to specify a problem domain 

and to represent the design of a system, such as the static data and their structure, the 

expected behavior of a system and its interactions with users, the possible functions a 

system provides, etc. Therefore, a system is usually described by many different models, 

and each model captures a specific aspect. 

Modeling in software engineering is the process of creating a model for a system 

by applying formal modeling techniques, and this process allows one to deal with the 

world in an easier manner, avoiding the complexity, danger and irreversibility of reality 

[Rothenberg, 1989]. 

A metamodel is a conceptual model of a modelling technique [Brinkkemper, 1990]. 

It captures essential properties and features of a model, and includes syntax and 

semantics about how the models and programs mean and behave in both textual and 

graphical way [Sammut and Willans, 2008]. As shown in Figure 5, a metamodel 

provides explanation and definition of relationships between the different components 

of the applied model itself. A model is an abstraction of phenomena in the real world 

while a metamodel is another abstraction, highlighting properties of the related model 

[metamodel.net, 2014]. A model conforms to its metamodel in the same way that a 

computer program conforms to the grammar of the programming language in which it 

is written. In summary, a metamodel can be seen as a model’s model. 

Metamodelling is the process of the conceptualization of a modelling technique 

[Brinkkemper, 1990]. It is the construction of a collection of concepts (e.g. things, terms, 

etc.) within a certain domain. It typically involves studying the output and input 

relationships and then fitting right metamodels to represent that behavior. 

Metamodeling is also defined as a process of generating the specific metamodels, which 



15 

 

 

is the analysis, construction and development of the frames, rules, constraints, models 

and theories applicable and useful for modeling a predefined class of problems 

[metamodel.net, 2014]. A metamodeling language is used to specify the abstract syntax 

of models. 

 

Figure 5. Relationship between metamodel, model and system [Génova, 2009]. 

 GOPRR metamodeling language 

MetaEdit+ is used as the metamodeling tool in this thesis work. It provides solutions to 

the detection and analysis of requirements incompleteness, with its specific generators. 

GOPRR, as the metamodeling language which is used by MetaEdit+, stands for five 

main elements used in the metamodeling process, and they are Graph, Object, Property, 

Role and Relationship [Tolvanen et al., 2007]. 

The O in GOPRR represents objects, which are the main parts of the model design. 

They are elements that connect together and are often reused. Objects are represented 

as rectangles in the metamodel. Figure 6 shows a graphical representation of the 

metamodel of an Entity-Relationship (ER) Model. In the ER metamodel, there are three 

main objects, i.e. Entity, Relationship and Attribute. The AbstractER is an abstraction 

object while the Note is the object to add additional text anywhere in the graphs. 

The first R in GOPRR represents a Relationship, which defines objects’ 

connections. In other words, a relationship is the basis to form a binding between 

objects. It is represented as a diamond in the metamodeling. In Figure 6, there are three 

relationships, and the name of them are in relationship, Supertype-subtype and Attribute 

of.   

The second R in GOPRR represents Roles, which links an object with a relationship 

in a metamodel. It specifies how the connected object joins the relationship with another 



16 

 

 

object(s). Therefore, in a binary relationship, there are always two roles connecting the 

relationship with two joined objects. The Roles are shown as circles in the metamodel. 

For example, in Figure 6, the roles in the relationship Supertype-subtype are 

generalization and specialization. 

 

Figure 6. The original graphical representation of the metamodel of ER diagram in 

MetaEdit+ 

The G in GOPRR represents the Graph, as the graph shown in Figure 6. It consists 

of instances of all other types of elements to form a specification of one modeling 

language. A separate metamodel can be made with all details of each language. 

Integration between languages can be specified in a metamodel for several graph types. 

At last, the P in GOPRR represents Property. Logically, a property defines the 

attributes of the instances of the other four elements in the GOPRR metamodeling 

language, i.e. instances of an object type, relationship type, role types, and the graph. A 

property can be set up with different data types, such as string, text, number, Boolean, 

etc. For example, the properties of the ER metamodel graph will be the graph’s Name, 

Status and Description. Name and Status are in the string type while the Description is 

the text type property, 

 MetaEdit+ 

CASE (computer-aided software engineering) is the use of a computer-assisted method 

to organize and control the development of software, especially in large, complex 



17 

 

 

projects involving many software components and people. As a CASE tool, MetaEdit+ 

can help in analyzing, designing and implementing in the process of software 

development [Kelly and Lyytine, 2005]. 

The architecture of MetaEdit+ is given in Figure 7 [Kelly and Lyytinen, 2005]. The 

core of this environment is the MetaEngine, which operates the conceptual data through 

a well-defined service protocol [Smolander and Kari, 1993], or in other words, handles 

the implementation of conceptual data modeling. The software uses the MetaEngine to 

access and operate the data from the repository, and after the obtaining process, the data 

of model or metamodel can be operated by different tools in MetaEdit+ [Kelly and 

Lyytinen, 2005]. 

   Model editing tools, i.e. the diagram editor, the matrix editor, and the table editor, 

are used to create, modify and delete model instances or their parts. In addition, these 

tools can be used to view the model instances from different representational 

viewpoints, which can derive new information from existing design information as well.  

   Browsers are used for retrieving design objects and their instances from the 

repository for reuse and review. They are also used for linking design objects for 

“traceability” and “memorization” [Kelly and Lyytinen, 2005], annotating model 

instances, finding specific locations in the design space, or maintaining conversations 

about design issues.  

 

Figure 7. MetaEdit+ Architecture [Kelly and Lyytinen, 2005] 

MetaEdit+ provides a generator and report function, i.e. the report and code 



18 

 

 

generation, to show expected results in a report format. The Generator Editor is an 

interactive development environment for creating, editing and managing generators. It 

allows users to view, edit and run available generators, and to create new generators for 

specific needs. After the detection of generator, the required information will be shown 

in the report and the report has its own editor for editing the details of report. 

Method management tools are used for method specification, management and 

retrieval, and also the tools to construct the individual elements into an integrated 

method (model). MetaEdit+ Workbench contains specific tools for creating and 

maintaining each of the GOPPRR elements, i.e. Graph Tool, Object Tool, Relationship 

Tool, Role Tool and Property Tool. As shown in Figure 8, by using the Graph Tool, we 

can modify the objects, relationships and roles by their own tools. For example, the 

Object [GOPRR] in the objects bar can be edited by the Object Tool with its name, 

ancestor, properties and descriptions, which is shown as the top right corner in Figure 

8. The Property Tool allows developers to edit the property’s name, widget, datatype, 

default value, value regex and description. In a similar way, Relationship Tool and Role 

Tool can do the modification to their related elements. Besides, MetaEdit+ provides 

Symbol Editor (in the red rectangle in Figure 8) and Icon Editor (in the blue rectangle 

in Figure 8) to edit the elements symbol in the metamodeling process and show them 

with icon in the elements bar. 

 

Figure 8. Method management tools used in MetaEdit+ 



19 

 

 

MetaEdit+ versions without the API provide only a proprietary binary format for 

import and export. The API product adds support for import and export in XML format. 

The main function of this format is to enable exchange of data between MetaEdit+ and 

other programs. 



20 

 

 

 Mapping business rules onto software design models 

By using metamodeling specification, we can create models with complete elements 

and correct structure. Other model information can be obtained from the different types 

of requirements. With the increasing interest on business rules, there is a trend to create 

a dedicated rule-centric modeling framework and methodology to link business rules to 

realistic software model design [Wan-Kadir and Loucopoulos, 2003]. 

 MBRM framework 

A Manchester Business Rules Management (MBRM) approach has been introduced to 

relate the given business rules to the specification of software designs elements [Wan-

Kadir and Loucopoulos, 2003]. The MBRM framework has two main components, i.e. 

the MBPM mapping metamodel and its related architectural components, as shown in 

Figure 9. 

 

Figure 9. The structure of the MBRM mapping [Wan-Kadir and Loucopoulos, 2003] 

On the metamodel level, the business rule model captures and specifies business 

rules structures and semantics, while the relationship between business rules and 

metamodel of software design elements is defined by a link model [Wan-Kadir and 

Loucopoulos, 2003]. Based on the business rules taxonomy introduced in Figure 2, this 

business rules model classified them in different layers. As shown in Figure 10, the 

business rules are grouped into three main types, i.e. constrains, actions assertion and 

derivation.  

A constraint rule checks the result of execution of business event on a subject. A 

subject can be a term, which can be a word or a phrase that is related to the business, or 

a fact. One constraint can be divided into a mandatory constraint or a guideline. A 



21 

 

 

business event will be denied when it violates the mandatory constraint and there will 

be a warning to users if it violates the guideline rules [Yu, 1997].  

 

Figure 10. Business rules metamodel [Wan-Kadir and Loucopoulos, 2003]. 

An action assertion specifies the action that should be activated on the occurrence 

of a certain event or on satisfaction of a certain condition. It can be divided into three 

different types i.e. enablers, copiers, and triggers. An enabler rule enables or disables a 

rule, operation, process, or procedure according to certain conditions. It also creates 

and deletes data under specified conditions. Copier is concerned with the use of existing 

data or value, for example, using a certain value to set the initial value of an object’s 

attributes or to determine the way on how to present existing data. When a given 

condition is true or on the occurrence of a certain event, the trigger will cause operation, 

process, procedure, or rule to be executed [Yu, 1997].  

A derivation generates a new fact based on the existing terms and facts. It can be 

divided into two types. Computation derives a new value by using a mathematical 

calculation while inference uses logical deduction or induction [Wan-Kadir and 

Loucopoulos, 2003] to derive a new fact. Inference rule is also used to represent the 

permission such as the user policy for data security. The definition of business rules can 

be one or more rule templates for later use and other business process. 

In the conceptual modeling level, a business rule metamodel is created to separate 

syntax and semantics for modeling business rules and to increase the understanding and 

maintainability of business rules specification [Wan-Kadir and Loucopoulos, 2008]. It 

provides an excellent classification from the functional aspect of business rules and 

helps to revise the raw business rules [Wan-Kadir and Loucopoulos, 2003].  



22 

 

 

A link model is specified to link business rules with the design elements. As can be 

seen in Figure 11, every business rule is associated with the RuleImplemention in the 

Link model. The RuleLink class is inherited from the RuleImplemention. 

DesingElementID is an attribute of the RuleLink class, which shows which object is 

linked by the specific business rule. Both isAutomated and isAutoChanged are Boolean 

values. The former one returns the true value if the rule is implemented in the design 

element whilst the latter returns the true value if the software design can be 

automatically changed according to the changes of business rule using the supplied 

methods [Wan-Kadir and Loucopoulos, 2003]. The RuleLink class indicates the 

software implementation of business rules. 

 

Figure 11. The Link model [Wan-Kadir and Loucopoulos, 2003] 

Besides, the MBRM framework presents the traceability link between business 

rules and their implementation in the design model. The traceability link is defined on 

the metamodel level, and connects the constructs specified in both the metamodel of 

business rules and the one of software design models. Different types of business rules 

are linked to the different design elements. Figure 12 shows an example of the link 

model on the architectural component level. There are two business rules to describe 

the process of patient registration and the linked object is the class Patient. The first one 

is a constraint, i.e. a patient must have registration number. The Rule link object is 

defined as the rlOBJ1 in this diagram. It has identified attributes such as id, description 

and ruled, and the related attribute of designElementid is Patient(), which means this 

attribute will show the information of patient’s registration number. The second 

business rule provides a calculation of the registration number, i.e. a patient registration 



23 

 

 

number is computed as the largest patient registration number + 1, which is defined by 

the attribute of getRegNo(). 

 

Figure 12. Part of examples of rule link objects [Wan-Kadir and Loucopoulos, 2003]. 

 A Link Model connecting business rules with revised ER model 

In a similar way, when replacing the class diagram with another software design model, 

e.g. Entity Relationship model, the links connect the business rules with different ER 

model elements. Accordingly, business rules describing associations or relationships 

between business terms shall be put into force when defining entities, relationships and 

attributes for a project; while other business rules putting constraints or conditions onto 

a software system behavior might lack enough connection with the elements in an ER 

model. 

An ER model specifies a static structure of a software system by representing 

entities and their relationships. The elements in its metamodel include entities, 

relationships, and attributes labelling entities and relationships. In addition to the basic 

ER model, some extensions, which are based on the Enhanced Entity Relationship 

(EER) model [Fidalgo et al., 2012], are taken into account in the thesis. These 

extensions reflex more precise concepts and their properties, and include concepts of 

the weakness of entities, supertype and subtype entities (along with the concept of 

specialization and generalization relationships), and the concept of aggregation. These 

are represented in Figure 13, i.e. a graphical representation of the extended ER 

metamodel using the GOPRR metamodeling language.  

As shown in Figure 13, in addition to the metamodel presented in Figure 6, we 

include extensions such as the Aggregation relationship, isWeak property on the Entity 

and isOverlapping property on the Supertype-subtype relationship. The isWeak 

property is a Boolean value, which means if the value is true, the entity would be a 

weak entity in the model. In a similar way, the isOverlapping is also a Boolean property, 

which specifies an overlapping relationship between supertype and subtype entities 

when this value is true. At last, we add the Aggregation relationship between entities, 

with the role of low-level entities collection and its high-level entity. Besides, some 



24 

 

 

basic properties are already in the basic metamodel. Each role between a relationship 

and an entity has the Cardinality property, which records the values of connective 

between entities, such as one-to-one, one-to-many, many-to-many. One of the property 

in attribute is Constraint, which specifies the information of unique value and primary 

key of an attribute. 

As introduced in the prior section, there are three categories of business rules. In 

the following paragraphs, we further study how the different categories of business 

rules are implies in an ER model. 

 

Figure 13. The revised ER metamodel 

A constraint rule could consists of several facts, which is a statement that asserts a 

relationship between entities in a model. The information of relationship includes the 

cardinality in a relationship, type of relationships, such as generalization, specialization, 

or aggregation. 

A derivation provides a piece of knowledge in an “if-then” clause which is related 

with some basic entities and their own attributes in a model. For example, the weakness 

of entities can be checked in this part. 

An action assertion specifies the actions which should be activated on the 

occurrence of a certain event or on satisfaction of a certain condition. However, these 

kinds of business rules are more useful in a State Transform diagram, rather than in the 

ER diagram. 

 



25 

 

 

Table 1. Link between business rules and ER diagram elements 

Table 1 shows the major link between business rules and ER models, and this link 

model can simplify the check process. When a metamodel construct is not property 

specified in the concrete instance model, it is natural to note that business rules and 

their elaborated requirements might be missing, which leads to difficulties in specifying 

the model elements and requires a further check. 

Business rules Related ER diagram elements 

Constraint property of subtype and supertype 

(overlapping) entities, cardinality in a 

both relationship part and entity part, 

aggregation 

Derivation weakness of an entity, constraints of an 

attribute (primary key, unique values) 

Action Assertion - 



26 

 

 

 Incompleteness in an ER model 

The business rule model defines and refines business rules and these business rule 

elements are implied in the software design models. The traceability links are 

represented in the link model in the MBRM framework. Vice versa, it is possible that 

any missing information in a design model can be traced back to the unclear/incomplete 

specification of business rules. Some specific metamodeling techniques can be used to 

detect the missing information in design model, and these incompleteness identified by 

modelers can imply the missing information about requirements (business rules), and 

notify the development team to elicit the omissions in requirements [Zhang et al., 2014].  

In order to analyze the incomplete requirements, a list of questions are generated 

[Zhang et al., 2014] [Thanish et al., 2013] to be used as examples based on the EER 

model [Fidalgo et al., 2012], and in my thesis, all the incompleteness will represented 

with the ER model based on the revised ER metamodel. These incompleteness 

problems are unclear number of entities, weakness of an entity in the model, 

multiplicity of attribute value, type of attribute status (identifier or a part of a composite 

identifier), unclear relationship’s degree, ambiguous relationship’s connectivity, 

optionality of the occurrence of an entity in a relationship, unsure type of subtype 

(overlapping or disjoint), unsure multiple relationships (inclusive or exclusive), 

aggregation hierarchy redundancy, redundancy of relationship and unclear attribute 

belonging (to a relationship or an entity). Meanwhile, representation of these types of 

incompleteness in the modeling process is also provided in [Thanish et al., 2013]. 

 Infrastructure incompleteness 

All the questions can be divided into two aspects of EER diagram, i.e. structure and 

infrastructure. The structure comprises the shapes and lines in the ER diagram, 

whereas the infrastructure comprises the information concerning the various 

constructs which make up the structure [Thanish et al., 2013]. In terms of the EER 

metamodel which is described before, the structural items in an EER diagram 

correspond to the objects, whereas the infrastructure items in an EER diagram 

correspond to their properties. 

For each category of incompleteness, we provide a general scenario and a specific 

example in order to explain how the specific kind of incompleteness can arise in 

practice, how it can be incorporated into the EER diagram convention. 

 

 



27 

 

 

 Unclear number of entities 

Sometimes, it is difficult to decide whether an object should be represented as one entity 

or two entities in a relationship [Thanish et al., 2003]. For example, in a company, if a 

person has more than one employment, then such a person may have more than one 

employee ID. Therefore, it may be necessary to create more than one entity to describe 

the construction, which is shown as Figure 14. The dashed-line entity may appear if a 

person can be more than one employment. 

 

Figure 14. One or two entity [Thanish et al., 2013] 

 Weakness of an entity in the model 

A weak entity cannot be uniquely identified by its attributes along [Connolly and Begg, 

2009]. For example, in a company, we have the entity of employee and their dependents 

(like their parents). When a person leaves the company, both the employee and 

dependent entities (maybe with other entities) will be removed. Therefore, the 

dependent could be a weak entity and a bigger dashed outline will be added as a symbol, 

which is shown in Figure 15. 

 

Figure 15. Weak entity Dependent [Thanish et al., 2013] 

 Multiplicity of attribute value 

This incompleteness focus on whether an attribute is a multivalued attribute or not. 

Suppose that a company would like details of all degrees held by employees. However, 

it seems that the only information available might be the highest degree. If it is possible 

to obtain all degrees then the attribute is multi-valued. Otherwise, the attribute is single-

valued. 



28 

 

 

 

Figure 16. Table of staff hobbies in a company [Thanish et al., 2013] 

In this case, the potentially multi-valued attribute is modeled with an underline and 

linked with an extra dashed line. 

 Type of attribute status 

A particular attribute is known to be an identifier, but sometimes it may be impossible 

to determine whether it is actually a part of a composite identifier. 

For example, two persons’ social security numbers the same if they come from different 

countries. Therefore, the country should be one part of the composite identifier. In ER 

model, the concept of identifier is much similar with the concept of primary key in a 

physical database design, which is shown as Figure 17. The other primary key’s 

underline and outline are both dashed. 

 

Figure 17. Identifier or part of a Composite Identifier? [Thanish et al., 2003] 

 Unclear relationship’s degree 

Degree of a relationship is the number of participating entity types in a relationship 

[Connolly and Begg, 2009]. In other words, the degree indicates the number of entity 

types involved in a relationship. For example, a relationship of degree two is a binary 

relationship while the degree three is a ternary relationship. All the ternary relationships 

will be marked as the complex relationship with dashed outline as shown in Figure 18.  

 

Figure 18. Degree of a relationship [Thanish et al., 2013] 

 



29 

 

 

 Ambiguous relationship’s connectivity 

The connectivity of a relationship (also known as cardinality) is the number of 

occurrences in one entity which are associated (or linked) to the number of occurrences 

in another, such as one to one, one to many and many to many. Sometimes, the number 

of connectivity of two entities is not easy to be determined at the early stage of 

requirements engineering. For example, in a company, if there is no business rule that 

for each department there must exist an employee who manages the department then 

the connectivity will be the missing information shown in Figure 19. 

 

Figure 19. Connectivity of a relationship [Thanish et al., 2003] 

 Optionality of the occurrence of an entity in a relationship 

Sometimes it is not easy to determine whether an entity’s occurrence in a relationship 

is mandatory or optional. In other word, it may be impossible to decide whether an 

entity will appear in a relationship. For example, it might be unclear whether there will 

be an employee to manage a department, and the optional occurrence entity is drawn 

with a circle which is shown as Figure 20. 

 

Figure 20. Optionality of the Occurrence of an Entity Instance in a Relationship 

[Thanish et al., 2003] 

 Unsure type of subtype 

In a database, generalization is a “bottom-up approach” in which several lower level 

entities composite a higher level entity [Connolly and Begg, 2009]. For example, in a 

vehicle generalization hierarchy, the subtype entities of the supertype entity Vehicle 

could be Trucks and Boats. Analysis has not yet determined whether an amphibious 

vehicle is to be classifed as a truck or a boat or both or neither (i.e. a separate entity 

class). Thus is not known whether the subtypes are overlapping or disjoint [Thanish et 

al., 2003]. The mark o/d will be represented in the physical database design when this 

situation happens, which is shown as Figure 21. 



30 

 

 

 

Figure 21. Subtypes overlapping or disjoint [Thanish et al., 2003] 

 Unsure multiple relationships 

In an exclusive subtype relationship, each instance in the supertype can relate to one 

and only one subtype. For example, each employee in a company can get trained by a 

coach or is allocated to a mentor. However, there may be a business rule defining 

circumstances where an employee has both a coach and a mentor. This situation is 

shown as Figure 22. 

 

Figure 22. Exclusion Constraint: Exclusive or Inclusive [Thanish et al., 2003] 

 Aggregation hierarchy redundancy 

Aggregation is a different supertype-subtype abstraction with generalization. 

Generalization shows an “is-a” relationship between subtype and supertype entities, 

while aggregation shows a “has-a” relationship. For example, in Figure 23, each 

product comprises a hardware component and a software component. However, with 

the business rules change, the hardware component and the software component may 

have to be sold separately as different products, which is shown as Figure 23. A 

potential change to the business affects whether it is appropriate to model some entity 

classes as being a part of an aggregation hierarchy [Thanish et al., 2003]. 



31 

 

 

 

Figure 23. Completeness or Incompleteness of an Aggregation Hierarchy [Thanish et 

al., 2003] 

 Structural Incompleteness 

In this section, there are two modeling scenarios provided for incompleteness at the 

structural level which can be associated with the conceptual modeling process. 

 Redundancy of relationship 

Suppose there will be a relationship Manages_Emp from the Employee entity class to 

itself and the relationships Manages and Works_In between the Employee and 

Department entity classes. The Manages_Emp may be redundant when it has the same 

meaning as the Manages relationship from Employee to Department, which is shown 

in Figure 24. The redundant relationship is dashed in the modeling process. 

 

Figure 24. Relationship redundancy [Thanish et al., 2003] 

 Unclear attribute belonging 

Sometimes, it is difficult to decide whether an attribute belongs to a relationship or an 

entity. For example, the date of an employee start to manage a department could be an 

attribute on either relationship Manages or entity Department, which is shown as Figure 

25. 



32 

 

 

 

Figure 25. Attribute of a Relationship or an Entity [Thanish et al., 2003] 

 Completed ER metamodel and link model 

According to the incompleteness list above, we add some necessary properties to the 

ER metamodel to make it capable for a more complete ER modeling process, such as 

the isOptional for optional entities, isRedundant for the unnecessary relationships, and 

the revised ER metamodel is shown as Figure 26. 

 

Figure 26. A revised ER metamodel 

Moreover, based on the new metamodel, I link the incompleteness with the related 

element’s property, and a revised link model is produced as shown in Table 2.  



33 

 

 

 

Business 
rule types 

Category of Incompleteness in an ER 
model 

Related property in metamodel

Constraint 5.1.5 relationship degree String and number commands
5.1.6 connective in relationship Roles. Entity_part. Cardinality
5.1.8 overlapping or disjoint 

hierarchy 
Supertype-Subtype. 

isOverlapping 
5.1.9 exclusive or inclusive hierarchy - 
5.1.10 aggregation hierarchy Aggregation 
5.2.1 relationship redundancy Relationship. isRedundant 

Derivation 5.1.7 
(5.1.1) 

optional entity (number of 
entity) 

Entity. isOptional 

5.1.2 weak entity Entity. isWeak 
5.1.3 multi-valued attribute ERAttribute. Constraint 
5.1.4 composite identifier ERAttribute. Constraint 
5.2.2 attribute belonging ERAttribute. Constraint 

Action 
Assertion 

- - - 

Table 2. Revised link model 



34 

 

 

 Detecting and reporting the incompleteness in an ER model using 

MetaEdit+ 

In order to demonstrate my approach of detecting the incomplete information using 

metamodel specifications, an excerpt of the ER model specifying the meeting 

scheduling application (as presented in Section 2.3.3) has been constructed in 

MetaEdit+, as shown in Figure 27.  

In the model, there are two main entities, i.e. Employee and Meeting. An Employee 

works in this organization, and has attributes such as the Name, the Nationality, and the 

Security Number. In addition, an Employee supports his/her own Dependents. An 

Employee has three sets of sub-entities, i.e. the Initiator, the Scheduler and the 

Participant. An Initiator is responsible for organizing the meetings while a Scheduler 

decides the necessary Items of a meeting, such as the meeting room, time, and other 

details. Participants can Propose the date of a meeting and Attend in a meeting on a 

specific date. These three entities connect to the Employee through a supertype-subtype 

relationship. Each Meeting has items documenting the details such as meeting room, 

time, etc. and attributes such as the Title, and MeetingID. 

 

Figure 27. ER model of meeting scheduling process 

Some unknowns discussed in section 2.3.3 have an impact on the ER models. They 

are given as following. 

 The unknown of what or how many details there will be is a missing 

information in the entity Item and its related relationship Decide.  



35 

 

 

 The unknown dependencies between different roles of employee would be 

represented by the disjoint or overlapping relationship between the subtype 

entities of the Employee.  

 The unknown set of other ways to organize meetings is the shown as an 

attribute of the relationship organize. It is unclear if this attribute has 

multiple values or not.  

Known and unknown are two statuses of knowledge perceived and processed by 

individuals [Zhang et al., 2014]. The knowledge transfer in the RE process is started 

with the stakeholders, who possess a body of knowledge about the expected software 

or system, and requirements analysis transform that knowledge into requirements to the 

project team. The knowledge in the process can be distinguished between for states, 

and they are known-known (KK), known-unknown (KU), unknown-known (UK), 

unknown-unknown (UU). KKs refer to requirements which can be elicited from 

stakeholders clearly and explicitly. KUs refer to the knowledge which is realized by the 

requirements analyst but has not been able to elicit from the stakeholders. A missing 

business rule can be the simplest reason of a KU. UKs refer to knowledge that 

stakeholders has possessed, but requirements analyst is unaware. UUs refer to the 

knowledge which analyst is unaware of, and is not possessed by the stakeholders 

[Zhang et al., 2014]. In this case, for example, the unknown of how many details there 

will be is a missing information which can be marked as “1 or more”. Since the modeler 

is aware of the unknown, it will be defined as a modeler’s KU. 

Except for the KUs which have been identified above, some other unclearness and 

missing information can be identified in the modeling process, as given below. 

 The modeler is wondering if there is such a case that when an employee dies 

in the service of the company, the dependents continue to be supported by 

the company. As such a derivation rule is not explicitly written in the 

requirements document, the confusion about whether the entity dependent 

should be a weak entity or not exists. 

 The modeler is wondering if the Participants are responsible for providing 

information of the Date in a meeting scheduling process. As such a 

derivation rule is not explicitly written in the requirements document, the 

confusion about whether the entity Date should be optional or not in the 

relationship exists. 

 The modeler is wondering if the attribute way is an attribute of the 

relationship organize or be an attribute of other entities. As such a derivation 



36 

 

 

rule is not explicitly written in the requirements document, the confusion 

about the attribute belonging will exist. 

 The modeler was wondering if two employees from different countries may 

have the same Security Number, which means that a composite primary key 

is necessary for the entity Employee. As such a derivation rule is not 

explicitly written in the requirements document, the confusion about 

whether the Security Number should be one part of the primary key of the 

entity Employee or not exists. 

 The Item is an aggregation of three entities, i.e. Detail, Room, and Time. The 

modeler was wondering if there is need to un-bundle these three entities. As 

such a constraint rule is not explicitly written in, there may be confusion on 

the whether if there is redundancy in this aggregation relationship or not 

exists.  

The completeness of an ER model can be analyzed based on its metamodel 

specification. Some of the above mentioned unknowns can be easily detected and 

reported. In MetaEdit+, the Generate and Edit Generator tool can be used for such a 

purpose. Based on the identified incompleteness in an ER model [Zhang et al., 2014] 

[Thanish et al., 2013], different generators can be created to report the possible missing 

information in an ER model.  

All the incompleteness problems can be classified with the missing information in 

different ER elements and their related business rules, which is introduced in the link 

model before. 

  Incomplete property specification on relationships 

Constraint can imply how an entity joins into a relationship with another entity. The 

implication is partly reflected in the properties of a relationship, such as the unclear 

cardinality of roles in a relationship, incomplete information in relationships between 

supertype/subtype entities, redundant relationship degree, and redundancy of 

relationships. 

Since it is not easy to obtain all the connectivity information before modeling 

process, we can add one question mark or leave a blank to the proper place when the 

property value is unknown at the start of a project. As shown in Figure 27, the number 

of how many details can be provided by an employee is unknown, which means the 

cardinality of Provide relationship on Detail side is unknown. 



37 

 

 

Before modeling, we can use the Symbol Editor in the Role Tool to highlight the 

missing information in the ER model. As shown in Figure 28, we can add a judge 

condition for the Cardinality, and a red outline will be shown at the role Entity part 

when the value of Cardinality is a “?” mark while the Entity part will be filled with gray 

when the value of Cardinality is a Null. 

The code that detects and sends the feedback about the unknown value of 

cardinality is shown in Figure 29. 

   

Figure 28. Symbol Editor of the Entity part      Figure 29. Code of cardinality 

detection 

Figure 30 shows the generated report. All the unknown cardinality and its relevant 

entity are highlighted in the report. 

 

Figure 30. Result of Cardinality detection 

Generalization and specialization are the basic concept in the original ER 

metamodel, but there is still a concept to constrain the relationships between the 



38 

 

 

supertype and subtype entities, i.e. disjoint or overlapping. A Boolean property about 

whether the subtype entities are overlapping or not is associated with the relationship 

Supertype-subtype. Here we can use the Symbol Editor to add the condition to detect 

the value of isOverlapping, as shown in Figure 31. When the value is true, an ‘O’ will 

be represented in the Subtype-supertype relationship whichs refer to an overlapping 

hierarchy; otherwise, a ‘D’ will be shown in the relationship as a symbol of a disjoint 

hierarchy. 

At the same time, coding provides a detection to every subtype and supertype entity 

and capture their properties whether they are overlapping or disjoint. The code is shown 

as Figure 32. 

       

Figure 31. Symbol Editor of the        Figure 32. Code of overlapping             

Supertype-subtype relationship     or disjoint relationship detection 

   And the detecting result is given in Figure 33. 

 

 Figure 33. Overlapping or disjoint between subtype entities 

Different from the overlapping and disjoint hierarchy, the inclusive or exclusive 

option is difficult to represent in the modeling process. Therefore, there is no solutions 

on the inclusive and exclusive detection by MetaEdit+. 



39 

 

 

Aggregation can be also detected by the generator and the result will be shown as 

Figure 34 to remind the modeler to check if there is a need to un-bundle the entities in 

the aggregation relationship.  

  

 Figure 34. The result of aggregation redundancy detection 

Some types of incompleteness are directly related to the properties of relationships. 

Since some relationship cannot be determined at the start of a project, a redundant 

property can be added to the relationships which may be not necessary in the model. 

Also we can use the Symbol Editor here to add a condition with the isRedundant 

property, and highlight the relationship which modelers are suspicious of the 

redundancy. The highlighted relationship is presented in a red dashed outline, as shown 

in Figure 35. The report is given in Figure 36. 

     

Figure 35. Symbol Editor on the      Figure 36. Redundant relationship detection 

Relationship 

At last, MetaEdit+ also provides string and number commands functions to count 

how many entities are related to one relationship, which means that is possible to know 

whether a relationship is binary or ternary. Since all the relationships in this example is 

binary, the generation process is leaved out here. 

   Incompleteness related with the properties of an entity 



40 

 

 

As discussed in the previous section, the derivation business rules have an impact on 

the specification of entities and their attributes, such as the weakness of an entity, 

optional of an entity, multi-valued attributes and number of identifier of an entity. In 

this section, we demonstrate how such confusion can be detected and reported. 

Since the weakness ER diagram has been extended with a Boolean property isWeak, 

the modelers can choose the weakness property when creating an entity in the modeling 

process, and create a highlight effect (e.g. add a red dashed outline on the weak entity) 

by using the Symbol Editor, which is shown as Figure 37. This highlight method 

imitates the modeling process introduced in Section 5.1.2. 

The code is given in Figure 38.  

               

Figure 37. Symbol Editor on the Entity      Figure 38. Code of weakness of entity 

detection 

By this generator, each entity will be checked by this function, and all weak entities 

will be shown in a question format as shown in Figure 39. 

 

Figure 39. Result generated by isWeak function 

In a similar way, the definition if an entity is optional or mandatory is also added to 

the Entity with the property isOptional. Also, by using the Symbol Editor, entities can 

be added with a circle mark when their isOptional value is true. 



41 

 

 

The result of optional entities detection is shown as Figure 40. 

 

Figure 40. Result of optional entities check 

These incomplete requirements about numbers of entities are similar with the 

optionality of the occurrence of an entity in a relationship. Therefore, I leave out the 

solution on this incompleteness problem. 

 Incompleteness related to the property of an attribute 

As for the attribute, most of the information, such as the values and primary key, 

can be described in the property Constraint. The constraints can be NULL, NOT NULL, 

NOT NULL UNIQUE, NOT NULL PRIMARY KEY, as shown in Figure 41. NOT 

NULL indicates that the value of this attribute cannot be null. NOT NULL UNIQUE 

means there is only one value of this attribute which is opposite of a multi-valued 

attribute. The NOT NULL PRIMARY KEY options defines that one entity is identified 

by only this attribute. A blank content of this value means there are no constraints on 

this attribute which is also a signal that the constraints may be unclear at the start of 

modeling process.  

 

Figure 41. Constraints of an attribute 



42 

 

 

All the NOT NULL and NULL constraints will be treated as a feature of multi-

valued attribute and marked with an dashed outline by using the Symbol Editor, which 

is shown as Figure 42. The generator will look through the model with necessary 

information and the code to detect each constraint is in Figure 43. 

          

Figure 42. Symbol Editor with the Attribute       Figure 43. Code of multi-valued 

attributes detection 

The detecting result is shown as Figure 44. 

 

Figure 44. Result of the multivalued attribute generation 

In a similar way, the attribute belonging problems can also be detect by the same 

code with a few changes. The result is shown as Figure 45. 

 

Figure 45. Result of attribute belonging detection 



43 

 

 

Besides, we add an underline mark by using Symbol Editor when the Constraint of 

an attribute is NOT NULL COMPOSITE PK, which shows the primary key attributes 

for all the entities, and we can add a underline on each of PK attribute by Symbol Editor. 

This constraint can also be used to detect the composite primary key of an entity and 

the result is shown as Figure 46. 

 

Figure 46. Result of the composite identifier in the model 



44 

 

 

 Discussions 

This section discusses the generated reports, and further classifies the reports into 

different groups to analyze the unknowns and to suggest the follow-up actions. 

 Classification of incompleteness 

Since some missing information can be identified and represented during the modeling 

process, while some other unclear information like model redundancy is hard to detect 

on the basis of the metamodel specifications, I divided the automatically generated 

reports into three categories, i.e. detected missing information, suspicious issues, and 

unsolved (unshown) problems, as shown in Table 3.  

Detected missing information 

connective in a relationship 

relationship redundancy 

 optional entity (number of entities) 

  

Suspicious issues 

overlapping or disjoint hierarchy 

aggregation hierarchy 

 weak entity 

multi-valued attribute 

attribute belonging 

 composite identifier 

  

Unshown problem relationship degree 

Unsolved problem exclusive or inclusive of relationships 

Table 3. Classification of Incompleteness 

As seen in the Table 3, we captured the missing information on optional (number 

of) entities, relationship cardinality and redundancy. The weakness entities, amount of 

attributes values, number of attributes identifiers, attribute belonging, aggregation 

hierarchy and supertype-subtype relationship (disjoint or overlapping) are marked as 

suspicious issues rather than incomplete problems, because we cannot determine 

whether the information is missing or not when we found it. Because of the limitation 

of the example, the incompleteness in relationship degree has not been shown. At last, 



45 

 

 

the exclusive or inclusive of relationships cannot be detected and solved by MetaEdit+. 

 Solutions 

By including the unknown issues into the graphical symbol definition in the Symbol 

Editor in the metamodeling process, all the missing information can be highlighted in 

the model as shown in Figure 47 with red color. For example, the ambiguous 

relationship connectivity is focused by the rectangle outline of the question mark. The 

optional entity Date has a circle on its left as a mark of the unnecessary entity, and the 

redundant relationship Propose is shown with a dashed outline in the model. As for 

model verification performance [Carson, 2002], modelers can locate the 

incompleteness quickly in the modeling process with these highlighted symbols. 

 

Figure 47. Meeting Scheduling ER model with Incompleteness highlight 

Meanwhile, most of the suspicious issues are highlighted on the ER model, such as 

the dashed outline of the weak entity Dependent and multi-valued attribute Way, yellow 

background relationship Aggregation with dashed line, O/D on the supertype-subtype 

and underline on the PK attribute of several entities. However, not all the suspicious 

issues discussed in literature can be shown directly in the ER model. For example, the 

attribute belonging problem is not represented directly in the model. Therefore, we need 

to generate a report to show this suspicious incompleteness in an easy-understand way 

after the modeling process. 

Generally, all the unclear or unsure information is caused by the lack reality 

perceived from requirements engineers in the problem domain. When perceived 

information is incomplete, the modeler may construct an improper relationship between 

objects or assign an improper attribute to an object. With the metamodeling 

specification, incompleteness detection and report by MetaEdit+, the missing 



46 

 

 

information and suspicious issues will be generated in natural language and sent back 

to the requirements analysts. Based on the results, requirements analysts will produce 

a check on the related business rules which is provided by the ER elements link model. 

Some of the missing information and suspicious issues may be clarified by checking 

the business rules, while others can capture the incompleteness in the requirements and 

a discussion among the stakeholders will be hold to perfect the business rules. For 

example, after we detect that Dependent is a weak entity by the metamodel specification 

process, the result will be sent to the requirements analysts for a check on the Derivation 

type of business rules. The key words are Employee, Dependent and related information 

about leaving or accident about one Employee. If we find some business rules about an 

Employee leaving the company and his/her dependent information will be removed, the 

Dependent is weak, and otherwise it will not be a weak entity. If we cannot find such 

information, there could be some incompleteness in the business rules and a further 

discussion is needed to modify both the requirements and the model later. 

Meanwhile, with the string and number commands counting functions, degree of a 

relationship can be detected on the basis of the metamodel specified in this thesis and 

defined as the unshown problem because of the limitation of the example. However, 

the exclusive or inclusive relationships cannot be detected neither because it is too 

complicated to add the isExclusive or isInclusive property to the ER metamodel nor 

models. It is not the disability of MetaEdit+ but the limitation of ER metamodel in the 

definition and representation aspect.  

Solutions on the unsolved problem are threefold. Firstly, improving the quality of 

requirements at the elicitation stage by writing excellent requirements. Normalizing the 

requirements writing style, documenting the appropriate details and avoiding ambiguity 

can improve the requirements and decrease the incompleteness [Wiegers and Beatty, 

2013]. Secondly, increasing the communications with the stakeholders. One of the most 

important part in software development cycle is to focus on the feedback from the 

modelers and increase the discussion among the stakeholders. Communication is not 

simply a matter of putting requirements on paper and tossing them over a wall. It 

involves ongoing collaboration with the team to ensure that they understand the 

information you are communicating [Wiegers and Beatty, 2013]. Thirdly, a software 

development model with communication at all levels of system hierarchy is appropriate 

way to minimize the risk of all possible problems. 

Traditional software development models, such as waterfall development model, 

suggests a systematic, sequential approach to software development that begins with 

customer specification of requirements, and requires modelers to plan and schedule all 



47 

 

 

of the process activities before starting work on them [Pressman, 2007]. However, it is 

often difficult for the customer to state all requirements explicitly before a project starts. 

Therefore, waterfall developments model has difficulty accommodating the natural 

uncertainty that exists at the beginning of many projects [Pressman, 2007].  

Nowadays, software work is fast paced and subjected to a never-ending stream of 

changes. The traditional development models are often inappropriate for such work. 

Therefore, models which can start with unclear requirements and focus on the 

communications in the development cycle are seen as the solutions, e.g. agile 

development model. 

Agile development model encourages rapid and flexible response to change by 

short timeboxed iterations with adaptive and evolutionary refinement of plans and goals 

[Larman, 2004], and one of the key issues which is stressed by the agile philosophy is 

communication and collaboration between team members and practitioners. As one of 

the most widely used agile process, Extreme Programming (XP) sets the 

communication and feedback as one of its core value, and the best way of 

communication is face-to-face and avoid formal specification. Another agile 

development model is Scrum model, which emphasizes the use of a set of software 

process patterns that have process patterns that have proven effective for projects with 

tight timelines, changing requirements, and business criticality. Each process pattern 

defines a set of development tasks and allows the Scrum team to construct a process 

that is adapted to the needs of the project. In practice, Scrum development model 

advocates the project team to working in a common project room and self-directed 

teams [Larman, 2004]. Continuous discussion and communication on the software 

development is kept through a daily stand-up meeting [Larman, 2004]. 

Therefore, agile development model is suitable for this incompleteness detection 

and results generation methodology. 



48 

 

 

 Conclusion 

Inspired by the MBRM framework, we present an approach to capturing and reporting 

requirements incompleteness through a metamodeling-based detection process.  

By using the metamodel specification, we can build generator in MetaEdit+ to 

detect and report the incompleteness in an ER model. The generated report can be 

divided into two groups, i.e. missing information and suspicious issues. All the results 

will be sent to the requirements analysts for a further check on business rules. Some of 

the unclear information can be clarified by checking, while others can show up the 

incompleteness in business rules. Discussions and communications will be raised 

among stakeholders to improve the related requirements. 

Because of the limitation of the example and metamodel representation, some of 

the incompleteness cannot be shown or detected by the MetaEdit+. There are three ways 

to decrease the possibility of the undetected incompleteness, i.e. improve the quality of 

requirements specification, increase the discussion among project members, and apply 

appropriate development models with more focus on communications. 

In summary, the contribution of my thesis is twofold. Firstly, with the help of 

Symbol Editor, modelers can capture and locate the missing information and suspicious 

issues in the ER model, and by using the automated detection and report function, all 

the incompleteness problems can be sent to the requirements analysts in the report 

format as feedbacks. Secondly, in my thesis, the metamodeling detecting process is 

applied to the ER model, and the basic theory based on the MBRM framework can be 

also used on other modeling method, such as Class Diagram, State Transform Diagram. 

Moreover, the limitation of metamodeling representation on polishing of the MetaEdit+ 

generators form the new direction of future work of my thesis. 



49 

 

 

References 

[Ebert and De Man, 2005] Christof Ebert and Jozef De Man: Requirements uncertainty: 

Influencing factors and concrete improvements. ICSE’05, May 15-21, 2005 

[Parnas, 1979] Parnas, D.L.: Designing Software for Ease of Extension and Contraction. 

IEEE Trans. On Software Engineering. Vol.5, No.2, 1979 

[Zhang et al., 2014] Zheying Zhang, Peter Thanisch, Jyrki Nummenmaa, Jing Ma: 

Using a metamodel to detect missing requirements, 20th International Conference, 

ICIST 2014: 248-259 

[Wiegers, 1999] Karl E. Wiegers, Writing quality requirements. Software Development, 

May 1999. 

[Carson, 1998] Ronald S. Carson, Requirements Completeness: A Deterministic 

Approach, Incose International Symposium, 1998, 8(1): 738-746 

[Zowghi & Gervasi, 2006] The Three Cs of Requirements: Consistency, Completeness, 

and Correctness, 8th International Workshop on Requirements Engineering: 

Foundation for Software Quality, 2006 

[Wan-Kadir and Loucopoulos, 2003] W.M.N. Wan-Kadir, Pericles Loucopoulos, 

Relating evolving business rules to software design. Department of Computation, 

University of Manchester Institute of Science and Technology (UMIST),P.O. Box 

88, Manchester M60 1QD, UK, Available online 27 November 2003 

[Thanish et al., 2013] Peter Thanisch, Tapio Niemi, Jyrki Nummenmaa, Zheying Zhang, 

Marko Niinimäki, Pertti Saariluoma, Incompleteness in conceptual data 

modelling. Communications in Computer and Information Science Volume 403, 

2013, pp 159-172 

[Kelly and Lyytine, 2005] Steven Kelly and Kalle Lyytinen, MetaEdit+: A fully 

configurable Multi-User and Multi-Tool CASE and CAME environment, 

Department of Computer Science and Information Systems, University of 

Jyv~iskyla, 2005 

[Kotonya and Sommerville, 1998] Gerald Kontonya and Ian Sommerville, 

Requirements Engineering: Process and Techniques. Wiley, 1998. 

[Wiegers and Beatty, 2013] Karl Wiegers and Joy Beatty, Software Requirements. 3rd 

Edition, Best practices by Microsoft, 2013. 



50 

 

 

[IEEE std. 610.12, 1990] Institute of Electrical and Electronics Engineers: IEEE 

Standard Glossary of Software Engineering Terminology (IEEE std. 610.12-

1990). IEEE Computer Society, New York, 1990. 

[Pohl and Rupp, 2011] Klaus Pohl and Chris Rupp, Requirements Engineering 

Fundamentals: A Study Guide for the Certified Professional for Requirements 

Engineering Exam, 1st Edition, 2011. 

[Cohn, 2010] Mike Cohn, Succeeding with Agile: Software development using Scrum. 

Upper Saddle River, NJ: Addison-Wesley, 2010. 

[Gorton & Ernst, 2014] Neil A. Ernst, Ian Gorton, Using AI to model quality attribute 

tradeoffs. AIRE 2014: 51-52 

[Rosca et al., 1999] Rosca, Greenspan, Feblowitz, and Wild, A decision support 

methodology in support of the business rules lifecycle. Paperpresented at the 

International Symposium on Requirements Engineering (ISRE’97), Annapolis, 

MD. 

[Herbst, 1996] Herbst, Business rules in system analysis: A meta-model and repository 

system. Information Systems, 21(2), 147-166. 

[Halle, 1994] Halle, Back to business rule basics. Database Programming and Design 

(October 1994), 15-18. 

[Sommerville, 2011] Ian Sommervile, Software Engineering. 9th Edition, Addison-

Wesley, 2013. 

[McManus & Hastings, 2005] McManus, H. L. and Hastings, D. E., "A Framework for 

Understanding Uncertainty and its Mitigation and Exploitation in Complex 

Systems," IEEE Engineering Management Review, Vol. 34, No. 3, Third Quarter 

2006, pp. 81-94. (Originally published in the proceedings of the Fifteenth Annual 

International Symposium of the INCOSE, Rochester, NY, and July, 2005. 

[Chalupnik et al., 2009] Marek J. Chalupnik, David C. Wynn and P. John Clarkso, 

Approaches to mitigate the impact of uncertainty in development processes, 

International conference on Engineering Design, ICED'09, 24-27, August, 2009. 

[Bstieler, 2005] Bstieler, L. The moderating effect of environmental uncertainty on new 

Product Development and time efficiency. Journal of Product Innovation 

Management, 22(3), 267-284, 2005. 



51 

 

 

[Salay et al., 2012] Rick Salay, Marsha Chechik, and Jennifer Horkoff, Managing 

requirements uncertainty with Partial Models. University of Toronto, Dept. of 

Computer Science, Report 2012. 

[Bonarini, 2010] Andrea Bonarini, Uncertainty management – Knowledge engineering 

course. Politecnico Di Milano, Dept. of Electronics, 2010-2011. 

[Shiv and Doraiswamy, 2012] Premi Shiv, Premanand Doraiswamy, 50 Top IT Project 

Management Challenges, IT Governance Ltd, 2012 

[Zhang et al., 2013] He Zhang, Juan Li, Liming Zhu, Ross Jeeryb, Yan Liud, Qing 

Wangc, Mingshu Lic, Investigating Dependencies in Software Requirements for 

Change Propagation Analysis, Preprint submitted to Information and Software 

Technology, June 17, 2013. 

[Firesmith, 2005] Are Your Requirements Complete? Journal of Object Technology 

4(1): 27-44 (2005) 

[Khan et al. 2008] S. S. Khan, P. Greenwood, A. Garcia, and A. Rashid, On the impact 

of evolving requirements-architecture dependencies: An exploratory study. In 

Proceedding of 20th International Conference on Advanced Information Systems 

Engineering (CAiSE'08), volume LNCS 5074, pages 243-257, 

Montpellier,France, Jun. 2008. 

[Carlshamre and Regnell, 2000] P. Carlshamre and B. Regnell. Requirements lifecycle 

management and release planning in market-driven requirements engineering 

processes. In Proceedings of 11th International Workshop on Database and 

Expert Systems Applications (DEXA'00), IEEE, pages 961-965, London, UK, 

Sept. 2000. 

[Yu, 1997] Eric S. K. Yu, Towards Modelling and Reasoning Support for Early-Phase 

Requirements Engineering, Faculty of Information Studies, University of Toronto 

Toronto, Ontario, Canada M5S 3G6, 1997 

[Bézivin, 2005] Jean Bézivin, On the unification power of models. Software and 

Systems Modeling 4(2): 171–188, May 2005. 

[Rothenberg, 1989] Jeff Rothenberg, The nature of modeling. Prepared for: Defense 

Advanced Research Projects Agency, November 1989. 



52 

 

 

[Génova, 2009] Gonzalo Génova, Modeling and metamodeling in Model Driven 

Development - What is a metamodel: the OMG’s metamodeling infrastructure, 

Knowledge Reuse Group, Universidad Carlos III de Madrid, Warsaw, May 14-

15th, 2009. 

[Brinkkemper, 1990] Formalisation of information systems modeling. Brinkkemper, 

JN., 1990 

[metamodel.net, 2014] metamodel.net, What is metamodel.  Available at: 

http://metamodel.net/ (Accessed: 2014). 

[Tolvanen et al., 2007] Juha-Pekka Tolvanen, Risto Pohjonen, Steven Kelly, Advanced 

Tooling for Domain-Specific Modeling: MetaEdit+, 2008. 

[Fidalgo et al., 2012] Robson Do Nascimento Fidalgo, Elvis Maranhão De Souza, 

Sergio España, Jaelson Brelaz De Castro1and Oscar Pastor, EERMM: a 

metamodel for the Enhanced Entity-Relationship Model. In: Proc. of 31st 

International Conference, Lecture Notes in Conceptual Modeling (2012), 

Springer, p515. 

[Carson, 2002] John S. Carson: Model Verification and Validation, Proceeding of the 

2002 Winter Simulation Conference, 2002 

[Pressman, 2007] Software Engineering: A Practitioner's Approach, International 

version, 2007 

[Larman, 2004] Craig Larman: Agile and Iterative Development: A Manager's Guide, 

Addison-Wesley Professional, 2004 


