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Abstract 

In recent years, the mobile application market has challenged developers to develop and release 

quality applications rapidly. This fierce competition requires application development to be 

conducted in an efficient way. Continuous integration (CI) is a software development practice 

which focuses on automation. Applying CI practice into the mobile application development 

properly helps developers have an effective application development. 

By conducting case study on the project Seutuhaku at Observis Oy, the author shows how CI is 

applied to mobile application development. The case study design and the steps of applying are 

discussed in this thesis. 

The results of the case study highlight the advantages of the new development practice when 

compared with the previous development practice. Moreover, issues of applying the new 

development practice such as the vision of project leaders and the commitments of developers are 

listed and discussed. 

It is to be hoped that the results of the case study are able to help other mobile application 

developers pay attention to CI and apply it appropriately.  

 

Keywords and terms: mobile application development, CI, modular applications, build 

automation. 
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1. Introduction 
 

At present, we are entering the mobile era with the booming of the popularity of mobile computing. 

According to a comScore report [COMSCORE, 2013], more than half of all U.S. mobile 

subscribers owned smartphones at the end of 2012. The data indicates the number of smartphones 

subscriber increased 29 percent from 2011, to more than 125 million smartphone subscribers. At 

the same time, there were more than 1 billion smartphone users globally. The report forecast the 

number would jump to 1.75 billion in 2014 [COMSCORE, 2013]. A new era in which consumers 

are always connected has dawned [Adrian Holzer et al., 2011]. Boosted by the boom in 

smartphones and tablet PCs, the market for mobile device applications is set to explode. In 2013, 

Portio Research published a report called “Mobile Applications Futures 2013-2017” [Portio 

Research, 2013]. The report data showed that mobile applications were being used by 1.2 billion 

people worldwide at the end of 2012. This report forecasts the number of mobile application users 

will have around 30 percent growth annually and will reach 4.4 billion users by the end of 2017. 

This tremendous number of application users with their demands has created a huge mobile 

application market globally which has been growing and changing incredibly fast. In 2012, the 

mobile application market generated 12 billion dollars. In the same year, 46 billion applications 

were downloaded, more than the numbers of the previous five years added together. Cumulatively, 

the total download number of over this period reached 83 billion. The number of mobile 

applications currently available on application stores is vast with over 145,000 applications in the 

Windows Phone store and 120,000 BB10 applications in the BlackBerry store. Furthermore, the 

Apple App Store and the Google Play each contains more than 800,000 applications [Portio 

Research, 2013].  

The large mobile application market brings with it opportunities to create new businesses. 

However, this competitive market also brings new challenges for software development. This fast 

changing market challenges developers to develop and release applications in short a time before 

their competitors release similar products. This fierce competition in mobile application market 

requires application development to be conducted in an efficient way and to be powerful enough 

to cope and succeed with challenges in developing such applications. The current challenges in 

mobile application development are listed by Ali Mesbah [2013] as including multiple mobile 



2 
 

  

platforms, support in analyzing and testing applications, frequent updates of platforms, open-

source or closed-source platforms, and handling the high intensity of transferring data. 

In traditional software development models, software integration is the practice of combining 

individual software components or subsystems into a single whole. Software integration starts at 

the end of the development life cycle between component development and integration testing. 

Traditionally, software integration has waited for the completion of the development of all 

components before being initiated. However, this approach takes up large portion of the scheduled 

development timeline and accounts for 40% of development expenditures [Royce, 1999]. Issues in 

software integration results in extending development time and extra expenditures.  

Continuous integration (CI) is one of the common practices in agile software development [InfoQ, 

2012 and focuses on automation. Instead of starting as a large step as in the traditional software 

integration, CI happens more frequently.  Using this practice, software is integrated whenever any 

subcomponents or subsystems have changes. Although, it is fairly standard in server-side software 

development, it has not been yet adopted widely in mobile application developments.  

This thesis aims to show how to apply CI into a mobile application development in an appropriate 

manner as well as to present the issues when applying the practice. Thus, the questions that the 

author want to tackle in this thesis include:  

 Which issues arise when applying CI in mobile application development?  

 How to apply CI effectively in mobile application development? 

Answers to these questions will provide guideline for applying continuous integration practice to 

Observis Oy1. Observis Oy namely needs more efficient mobile application development practice 

in order to be able to develop and succeed in the mobile application of its main product, Seutuhaku. 

Moreover, the guidelines produced are intended to be capable of being applied to other mobile 

application development projects. 

The thesis is composed of five chapters. Chapter 2 presents background knowledge about a 

software development lifecycle which contains more development activities and development 

models. In addition, concepts such as modular programming and software integration, which are 

                                                           
1 Observis Oy: http://observis.fi/en 
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essential parts of this thesis are introduced and discussed. Chapter 3 presents the concept and 

benefits of the continuous integration practice as well as highlight information about the CI tool 

Jenkins2 and the mobile development framework PhoneGap3. Chapter 4 provides essential 

information about mobile application developments and development challenges.  In Chapter 5, 

the case study at Observis Oy is described, containing a detailed process of applying new practice 

in their mobile application development. Chapter 6 sets out the conclusion and further researches 

which are needed to do. 

                                                           
2 Jenkins: http://jenkins-ci.org 
3 PhoneGap: http://phonegap.com 
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2. Background 
  

2.1 Software integration 
 

In general, integration means the process of combining different elements to a single larger unit or 

system. It is often considered an ambiguous term which causes confusion [Kronlöf, 1993]. In the 

context of software development, integration indicates three different processes, i.e., systems 

integration, software integration, and tool integration [Stavridou, 1999, 2–3]. 

Systems integration is the practice of combining the functions of a set of subsystems, including 

software, hardware or both, to produce a single and unified system that satisfies the need of an 

organization. [Kuhn, 1990] 

Tool integration is the practice of combining a set of software development tools to produce a 

single and unified software development environment. [Stavridou, 1999] 

Software integration refers to an integrated whole software in which components that have been 

combined together. When components or subsystems of a software are fully combined, the 

software is integrated. Components may be integrated when they are implemented and tested. 

Software integration is in progress at the time point between the component development phase 

and the integration testing phase in a classical waterfall model. However in an incremental model, 

the components and subsystems are integrated as they are developed into multiple mini-versions 

of the working system. In this model, software integration appears as a repeated step after each 

completion of development and testing of the mini-version of the working system. 

In this thesis, we discuss integration from the software perspective. In a conventional software 

project, the activities of a project progress is in a sequential fashion with steps such as: 

requirements, design, coding, integration and testing, as shown in Figure 1. 
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Figure 1. Conventional Development Process [ROYCE, 1999] 

 

Figure 1 illustrates time versus the progress of a software development process in the waterfall 

model. The process consists of typical sequential activities such as acquiring requirements, design, 

coding, integration and testing. The curve indicates that before the integration activity starts, the 

whole project is on the right schedule. When the integration starts, the development starts to show 

a breakage. The development progress rate fluctuates. After repetitions, the progress is 

accumulates, however the original target date has been crossed and the schedule delayed. The 

process of fixing the design breakage begin. The target release date is moved to another day in the 

future when the design breakage will have been solved. In this figure, Royce [1999] indicates that 

protracted software integration and testing is one of the frequent issues for software projects 

developed using the conventional waterfall model. Integration takes a significant portion of the 

scheduled timeline.  

Figure 2 presents the cost in a conventional process. The cost is the consumption of lifecycle 

resources such as time and money. The table shows the cost for integration and testing is the 

highest. It costs even more than the coding and unit testing. Software integration and testing 

accounts for 40% of development expenditures and is mentioned as a “recurring theme” [ROYCE, 

1999].  
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Figure 2.Expenditures in Conventional Process [ROYCE, 1999] 

 

2.2 Software integration in software development models 

2.2.1 The position of Software integration 

There are many various software development process models, such as the waterfall model, the 

spiral model and the incremental models. They have different development lifecycles. In the 

waterfall model, a software product is developed through one big linear development process. As 

shown in Figure 3, this process starts from planning and ends with the final product. In the spiral 

model, 

 

Figure 3. Waterfall Model [ROYCE, 1999] 
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there are many steps of risk evaluating and product prototyping. After these steps are done, the 

final product is completed after a development process which is similar to the waterfall model as 

shown in Figure 4.  

 

Figure 4. Spiral Model [BOEHM, 1988] 

In an incremental model or an agile model, the development process consists of multiple small 

development lifecycles. In each of these lifecycles, an intermediate version of the software is 

developed, as shown in Figure 5. The software is step-by-step added with new features via these 

intermediate versions. The final product is completed when its features are fully added and 

validated. 

As described, these development process models are different and have different number of total 

development lifecycles. The waterfall model and the spiral model have only one big development 

lifecycle but the incremental model has consists of multiple small development lifecycles. The 

position of the software integration is the same in each lifecycle in every development models. 

After the source code is developed and unit-tested, the next target is to integrate the compiled 
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source code with other related components with proper configurations. At this step, all components 

or subsystems will be configured to work together properly in order to create an operational 

system. 

 

Figure 5. Incremental Model 

 

2.2.2 Activities of Software integration 

Software integration is the practice of combining individually tested software components into an 

integrated whole. There are serial activities in this process. First, software components are 

compiled and configured in order to be able to be combined to a designed sub-systems. This phase 

results in an integrated workable software subsystems. In software developments with the waterfall 

model or the spiral model, the subsystems are configured properly to be integrated into the final 

product for further testing. With incremental models, the result of subsystems’ integration is the 

mini version of the product. This integrated product or the intermediate version is passed to the 

next step of the development life cycle, i.e. testing step. 

 

2.2.3 Issues of Software integration 
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The first issue is how the development process is planned for software integration. If the integration 

process in the development process is planned in details with instructions, the integration of 

software subsystems would be more efficient [RAMAMOORTHY ET AL, 1992]. Decisions made in 

the early stages of software development will have a tremendous impact throughout the 

development process as well as on the final product [RAMAMOORTHY ET AL, 1992]. Therefore, we 

must anticipate and take into account problems in the integration of software products.  

Consistency management is another important issue in systems integration. Frequently, the main 

factor which influences the cost of integration is inconsistencies between different software 

modules. When utilizing reusable components, different design conventions may cause conflicting 

object representation. Many different forms of inconsistency may occur. The most common form 

is the inconsistency between modules or functional interfaces. For example, the module A uses 

wrong a wrong version of their dependent module B. The wrong version and the correct version 

of the module B have only different in the implementation logic which have different results. In 

this case, the module A is able to still integrate with the module B but the operating result of the 

integrated system will be wrong. Moreover, it is hard as well as time-wasted to find this kind of 

issue in the integration.  

2.3 Modular applications 
 

A modular software application, in contrast to one monolithic chunk of tightly-coupled code in 

which every unit may interface directly with any other, is composed of smaller, separated chunks 

of code that are well isolated. [BOUDREAU, 2007] showed that those chunks can then be 

developed by separated teams with their own life cycles and their own schedules. This is the key 

solution to develop and manage complexity of large software.  

Modularity is a mechanism to coordinate the work of many people around the world, the manage 

interdependencies between their parts of the project, and to assemble very complex systems in a 

reasonably reliable way [BOUDREAU, 2007]. Since applications are growing in size and 

functionality, it is necessary to separate them into individual pieces (whether as “components,” 

“modules,” or “plugins”). Each separated piece becomes one element of the modular architecture. 

Each piece should be isolated and should be exported and imported through a well-defined 

interface. 
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However, decomposing an application into distinct dependent libraries creates a new challenge for 

software integration. It requires software integration to be performed in the right way in order to 

ensure independent parts really work together. Versioning, secondary versioning information, 

dependency management are commonly used to solve this challenge [BOUDREAU, 2007]. 

2.3.1 Versioning 

Each piece of a modular application has a version number—usually a set of numbers in Dewey 

decimal format, such as 1.34.8. When a new version is released, it has an increased version number, 

for example the version of a modular application released after the version 1.34.8 could be 1.34.10, 

1.35.1, or 2.0. The other parts of a modular system can then declare their dependencies with a 

specific version. Most components will have some external requirements which are needed in 

order to compile and execute properly. For example, in Java programming, even if the 

dependencies on external libraries are minimized, every program depends on a version of Java 

framework in order to be able to be compiled and executed, i.e. JDK 1.5, JDK 1.6, and JDK 1.7. 

Using such dependency schemas to maintain external dependencies between components in a 

modular system can work only if certain rules are obeyed. The first rule is that if a new version is 

released, all contracts that worked in the previous version will work with the new one as well. This 

is backward compatibility. The second rule is that components need to accurately acquire all 

dependencies need from the underlying systems. For example, when a component change the 

version of one of its dependent module from 1.0 to 2.0, the 2.0 version should be provided and 

loaded when the component is compiled and executed. If the 2.0 version does not exist, the 

compilation and execution should be leaded to show error and to stop.  

2.3.2 Dependency management systems 

Although Versioning and Secondary Versioning Information are the best methods to use with 

modular applications, managing manually versions of thousands of dependent libraries would be 

a nightmare. This is where Dependency Management System comes to help. Dependency 

Management System makes sure all requirements of every piece in the system are satisfied. It can 

check at each piece’s install time that everything in the system remains consistent. Metadata about 

such dependencies is also useful at runtime. Such metadata makes it possible for an application to 

dynamically update its libraries without shutting down. It can also determine if the dependencies 
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of a module it is asked to dynamically load can be satisfied—and if not, it can describe the problem 

to the user.  

However, even using a dependency management system, this is not enough in a large scale 

software development process [BABINET, 2008]. In a large scale process, many teams working 

together on the same release or shared features which usually is the reason causes problems with 

the wrong versioning. High-level of system complexity is another factor brings in in consistent 

versioning. In addition, development conflicts between teams and short, overlapped release cycles 

are also the sources leading to mistakes, issues in managing versioning. 

In this case, CI is one of the key practices used additionally to manage dependencies and address 

the above challenges [BABINET, 2008]. 

2.4 Summary 
 

In this chapter, the background knowledge of software integration was introduced, with a focus on 

its role in software development models. In the last part, the concept of modular applications is 

also mentioned. Properly understanding software integration and the concept of modular 

application is critical for developing successfully a software product in general. However, all the 

issues which we discussed in this chapter such as high-cost, error-prone software integration and 

accurate versioning management, require novel solutions. In the next chapter, the concept of CI 

would be introduced. CI brings us a new way to get rid of problems of software integration and 

module application concepts. 
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3. Continuous integration  
 

3.1 Components of a continuous integration system 
 

According to the background introduction to software integration, the integration phase is 

comprised of activities assembling a set of software components/subsystems to produce a single 

and unified software system. In general, this phase comprises 40% of development expenditures 

and is considered as an “integration nightmare” because of its error-prone and risks [ROYCE, 

1999]. At this point, CI steps in as a practice to help to manage and solve these issues.  

 “CI is a software development practice where members of a team integrate their work frequently, 

usually each person integrates at least daily - leading to multiple integrations per day. Each 

integration is verified by an automated build (including test) to detect integration errors as quickly 

as possible. Many teams find that this approach leads to significantly reduced integration 

problems and allows a team to develop cohesive software more rapidly.” [MARTIN FOWLER, 

2006] 

Instead of having an “integration nightmare” when every software sub-component is implemented 

and integrated in one phase, the principle of CI practice is to have the software built whenever 

there are any changes against the software in order to verify and detect integration errors as quickly 

as possible. Software building is a process of compiling, testing, inspecting and deploying the 

integrated segments of source code in order to verify that the software works as a cohesive unit 

[STEVE MATYAS, 2007]. It is an important phase in the continuous software integration. 

Steve Matyas [2007] depicted a typical work flow in a CI system, as shown in Figure 6. 
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Figure 6.Typical workflow of CI system [STEVE MATYAS, 2007]  

The essential components belonging to a CI system include: 

 Developers 

 Version control repository 

 CI Server 

 Build Scripts 

 Feedback Mechanism 

These components would be introduced in the following text. 

3.1.1 Software developer 

A software developer has responsibility for developing software products. He takes a role in 

researching, designing, implementing and testing a software in different phases of a software 

development process. After researching and designing the target software, a developer would write 

code or in collaboration with other developers in his team to implement and testing his designed 

software. The source code comprises a collection files. New source code would be added or the 

old source code would be updated when the software developer tries to add new features or fixing 
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bugs in the software. The role of a software developer in a CI practice is to commit changes to 

source code as well as receiving feedback from CI system. 

3.1.2 Version control repository  

Any changes to the source code and other documents such as configuration files, images, etc, 

which are documented in the software development process are committed to the version control 

repository. Version control, also known as revision control or source control, is a system that 

records changes to a file or set of files over time so that a developer can recall specific versions 

later [GIT-SCM-2014]. Each change is identified by a unique number or code, named revision 

number.  

In practice, a revision is stored and tracked by using a version control system (VCS). The core of 

a VCS is repository which stores information in the form of a file system tree—a hierarchy of files 

and directories [BEN COLLINS-SUSSMAN ET AL., 2014]. Every developer i.e. a source code 

client, connects to the repository and read or write changes to files in the repository, as shown in 

Figure 7. 

 

Figure 7. A typical client/server system [BEN COLLINS-SUSSMAN ET AL., 2014] 

 

A version control system forms a prerequisite for the practice of CI [STEVE MATYAS, 2007]. 

There are many quality version control systems such as Concurrent Versions System (CVS) 

[GREGOR N. PURDY, 2003], Subversion (SVN) [BEN COLLINS-SUSSMAN ET AL., 2014] 

and Git [TRAVIS SWICEGOOD, 2009], etc. In general, most popular CI systems support all these 

quality version control systems.  

3.1.3 CI Server  
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A CI server acts as a monitor to the repository. It periodically (usually few minutes) polls the 

repository for recent commits. If a change is detected, the CI server retrieves files of the latest 

revision from the repository and trigger a build. When a build is triggered, the build script which 

configured for that build is run on the CI server. After the build script execution completes, the 

build results are published on the dashboard of the CI server. A CI server is not a prerequisite for 

CI practice because we can write our own scripts to make a build manually whenever changes 

occur in the repository [STEVE MATYAS, 2007]. However it provides us benefits of reducing 

number of scripts that a development team need to write. There are many options of choosing a CI 

server on the CI server market, ranging from commercial products to open-source products. They 

are TeamCity4, Bamboo5, Jenkins6, Hudson7, CruiseControl8, etc. 

3.1.4 Build scripts 

The build script is a single script, or a set of scripts, that compile, test, inspect, and deploy software 

[STEVE MATYAS, 2007]. It is independent from CI and run by dedicated build tools. Some 

examples of such tools are Apache Ant9, GNU Make10, MSBuild11, etc. In addition, some building 

tools also provide features like dependency management, and support multiple build script formats 

such as Apache Maven, Gradle. 

3.1.5 Feedback mechanism 

When an integration cycle is trigged by a change to the repository, the software is built. There is a 

need to deliver the result of this build to developers. The result of the feedback consists of the 

status of the reported build. When the build fails, debugging and logging information are included 

into the feedback. A feedback mechanism provides a way to deliver the result or feedback of the 

integration as soon as possible to developers in order to notify the developer to fix the problem as 

soon as it happens with the build. When many changes are submitted to the code repository, there 

                                                           
4 TeamCity: https://www.jetbrains.com/teamcity 
5 Bamboo: https://www.atlassian.com/software/bamboo 
6 Jenkins: https://jenkins-ci.org 
7 Hudson: http://hudson-ci.org 
8 CruiseControl: http://cruisecontrol.sourceforge.net  
9 Apache Ant: http://ant.apache.org 
10 GNU Make: http://www.gnu.org/software/make  
11 MSBuild: https://msdn.microsoft.com/en-us/library/wea2sca5(v=vs.90).aspx 
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would be many builds as well as many rounds of feedback to be delivered to developers. Therefore, 

feedback mechanism have must be chosen carefully to avoid spams. Commonly used feedback 

mechanisms include: Email, RSS, SMS, displays, etc. 

3.1.6 General workflow 

With all essential components of CI system to be explained above, the typical work flow of the CI 

is explained as below:  

1. First, a developer commits code to the version control repository. Meanwhile, the CI server 

on the integration build machine is polling this repository for changes (e.g., every few 

minutes).  

2. Soon after a commit occurs, the CI server detects that changes have occurred in the version 

control repository. The CI server retrieves the latest copy of the code from the repository 

and executes a build script, which integrates the software.  

3. The CI server generates feedback by e-mailing build results to specified project members. 

4. The CI server continues to poll for changes in the version control repository. 

3.2 Benefits of continuous integration  
 

Due to the key principle of CI is “build software at every change”, this practice brings the 

development teams values [STEVE MATYAS, 2007]. First of all, it reduces risks due to the 

continuous feedback from CI make problems be fixed sooner, the status of software is always 

visible.  The automation of the CI system provides big values in reducing repetitive manual 

processes as well as generating deployable software at any time. It provides another benefit: 

enabling better project visibility. Because of the health of the software is always visible, the 

development trends can be predicted in order to make effective decisions in the development. All 

the described benefits would make development teams have greater confidence in the software 

product. 
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3.3  Continuous integration with Jenkins 
 

Jenkins12 is an open source CI server written in Java. It was forked from Sun Microsystems project 

called "Hudson" in 2011 [BAYER ET AL., 2011]. Like the other CI servers, it supports all basic 

features such as VCS monitoring, running build scripts, etc. However, its ease of use and the plugin 

system make it stand out of its competitor. Jenkins has over 800 plugins [APPLE, 2008], and 

provides a variety of features such as the additional feedback mechanism, SSH connection 

supports, etc. It supports various version control systems, authentication methods, notification, 

workflow building, and many more features can be added. Recently, the community support of 

Jenkins is really strong and Jenkins has the fast development pace with the rapid release cycles. 

Build jobs are at the heart of the Jenkins build process. In general, Jenkins build job can be 

considered as a particular task or step in Jenkins build process. A build job may involve simply 

compiling source code and running unit tests. Or build job can be configured to do other related 

tasks, such as running integration tests, measuring code coverage or code quality metrics, 

generating technical documentation, or even deploying an application to a web server. A real 

project usually requires many separate but related build jobs. Build jobs are managed and shown 

in the Jenkins dashboard, as shown in Figure 8. 

                                                           
12 Jenkins: http://jenkins-ci.org 
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Figure 8. Jenkins Dashboard Example 

In Figure 8, build jobs are listed in the center of the dashboard. On the left side of the dashboard 

is the menu which is used to create new build job, change general settings, checking reports, etc. 

In the build job list, each build job’s status is indicated by the icon on the left side of its name. 

Jenkins supports four build statuses, i.e. Stable, Unstable, Successful, Broken. The green ball icon 

show a successful build status, the yellow ball icon shows an unstable status (which means that 

the build job has done successfully, but having unstable build reports). The red ball icon shows a 

failed status. 

A stable build is a build which was built successfully and no publisher reports it as unstable. An 

unstable build is a build which was built successfully and one or more publishers report it unstable. 

For example, if the JUnit publisher is configured and a test fails then the build will be marked 

unstable. A successful build is a build which is successful when the compilation reported no errors. 

A broken build or failed Build, is a build which failed during building. 
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4. Mobile application development 

4.1 Mobile applications 
 

A mobile application (app), is an application software running on smartphones, tablet computers 

and other mobile devices. Applications are usually downloaded from application distribution 

platforms. The first application appeared in 2008 when Apple’s App Store was opened [APPLE, 

2008]. Some applications can be downloaded for free, while others must be paid for. Usually, they 

are downloaded from the platform to a target device, such as an iPhone, a BlackBerry, an Android 

phone or a Windows Phone, but sometimes they can be downloaded to laptops or desktop 

computers. With the booming of smartphones and tablets, mobile applications have been gaining 

more popularity in the consumer market with an incredible fast pace. Portio Research [2013] 

showed there were 1.2 billion people worldwide using mobile applications at the end of 2012. The 

growth rate is forecasted at 29.8 percent each year, and reaches 4.4 billions users by the end of 

2017 [Portio Research, 2013]. Applications generated an impressive 12 billion dollar in full-year 

2012, and in total 46 billion applications were downloaded in the year, taking the cumulative all-

time total downloads since the application game began, to 83 billion.  

Mobile application development is a process to develop application software for low-power 

handheld devices, such as personal digital assistants, enterprise digital assistants or mobile phones. 

On one hand, a mobile application is a software and mobile application development proceeds in 

the same way as other software development processes. On the another hand, because handheld 

devices has specific limitations and diversity on aspects such as limited battery life and processors, 

screen sizes, operating system, etc. mobile application development has specific challenges. In 

addition, the mobile market grows in a fast speed which also create new big challenges for mobile 

application development. 

There are 3 types of mobile applications. The following sub-sections will describe these mobile 

application types in detail. 

 

 



20 
 

  

4.1.1 Native applications 

A native application (native app) is an application program that has been developed for use on a 

particular platform or device. Each mobile platform has its own native programming language. 

The Android platform uses Java. The iOS platform uses Objective-C. The Windows Phone 

platform use, etc, Native applications requires its own development process and its own 

development languages and tools. The most advantages of native applications are performance and 

ability to access device’s hardwares such as the camera, accelerometer, GPS, etc. However, 

supporting multiple platforms requires maintaining multiple code bases and can result in higher 

costs in development, maintenance, pushing out updates, etc. Native applications are needed to 

published and downloaded from platform application stores, such as AppStore13, Play Store14, etc. 

4.1.2 Web-based applications 

Web-based applications or mobile web applications are referred to Internet-enabled applications 

that have specific functionality for mobile devices. They’re accessed through the mobile device’s 

web browser (i.e. on the iPhone, this is Safari by default) and they don’t need to be downloaded 

and installed on the device. Web-based applications are developed in a similar way as the 

traditional web pages development. They use HTML5, CSS3, JavaScript and server-side 

languages or web application frameworks of the developer’s choice. This is the reason why web-

based applications are easy to develop and to support multiple platforms. However, accessing 

device’s hardware are limited due to the usage of mobile device’s web browser. In addition, when 

the mobile device is offline, web-based applications are inaccessible.  

4.1.3 Hybrid applications 

Hybrid apps, like native apps, run on the device, but are written using web development 

technologies (HTML5, CSS and JavaScript). Hybrid applications run inside a native container, 

and leverage the device’s browser engine to render the HTML and process the JavaScript locally. 

A web-to-native abstraction layer enables access to device capabilities that are not accessible in 

Mobile Web applications, such as the accelerometer, camera and local storage. This capability 

                                                           
13 Apple App Store: http://store.apple.com/us 
14 Play Store: https://play.google.com/store?hl=en 
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allows hybrid applications to be able to work as a native application with full access to the device’s 

hardwares. Supporting multiplatform is easier than native applications. There is only one code 

base for each a hybrid application. The source code is written only with HTML5, CSS and 

JavaScript will be compiled and executable in all platforms. However, the development is required 

to use the 3rd party library like PhoneGap15, Titanium16, etc. Another disadvantage is the 

performance of hybrid applications is not as good as native apps. The reason is hybrid applications 

uses javascript and native code are executed much faster than javascript code. 

4.2 Mobile application development process 
 

An application is simply a tool standing between a business and its clients. In one hand, it helps 

clients reach and interact with the business easily. In another hand, it helps business to satisfy its 

clients effectively. This is the reason why discovering and understand the target business is 

required before proceeding to development process. When we look at the end-to-end process of 

developing a mobile app, it comes down to a number of major things – from business discovery 

and development to deployment. 

A mobile application starts by understanding business requirements. It is also considered as the 

idea generation and evaluation step [Zeidler, C. Et Al, 2007]. In order to gain a better perspective 

for the app, application initiatives, target users, and goals are questioned. A research need to be 

done to validate used technologies or concepts before committing to the next phase. 

When requirements are collected and verified by the target business, making a mocking concept 

is the next step. Smartphones and tablets now have their own user experience guidelines and rules, 

i.e. same experience on different display sizes, quality touch interaction, etc. To align them with 

requirements, a proof of concept or an interactive visualization of the application is developed to 

demonstrate the major scenarios, and users interaction with the app. Feedbacks are then collected 

from customers after reviewing. Market research [Zeidler, C. Et Al, 2007] are also included in this 

step in order to gain practical usage experience of potential users of the application. 

                                                           
15 PhoneGap: http://www.phonegap.com 
16 Titanium: http://www.appcelerator.com/titanium 
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In this step, the implementation and testing process is proceeded. User interface design is 

developed to get a good idea of what clients need from the ‘look and feel’ point of view. Mocking 

concept is transformed to real user interface design which designed for many screen sizes with 

many different resolutions. The design is then being reviews by clients. As soon as the design 

starts, mobile developers set their works on building the app. Feedback gained from previous 

phases are used by mobile developers. The number of development iterations depends on how big 

the project is. The release of each iteration is reviewed by clients. Any additional features or 

functionality are needed to review and plan to develop. 

Testers work with checklists, specifications and wireframes created at the earlier stages. The 

applications are tested on many different devices on target mobile platforms such as iOS, Android, 

Blackberry and Windows to ensure user experience, features, and look-and-feel are maintained 

and performed correctly. Once the application is ready and results are approved by clients, the 

application will be finally released it to application stores or application marketplaces.  

4.3 Challenges for mobile application development 
 

ALI MESBAH ET AL [2013] conducted broad interviews and a survey about mobile application 

development challenges from the perspective of mobile application experts and mobile 

development groups. The goal of the study is to gain an understanding of the practices and 

challenges in mobile application development. In this study, 12 experts from 9 different were 

interviewed and the survey was fully completed by 188 respondents companies from 23 countries. 

The study result showed the list of challenges for mobile development. 

4.3.1 Fragmentation rather than unification - multiple mobile platforms challenge 

As it stands, there are four major development targets. They are iOS, Windows Phone, Android 

and Blackberry. Each of the native frameworks comes with certain expectations and a user base. 

BlackBerry is often used in government, whereas the iOS and Android user base is far more 

widespread. Windows Phone hasn’t necessarily hit its stride yet [JETT McWHETHER, SCOTT 

GOWELL, 2012]. iOS, the technology that is running on Apple mobile devices, uses Objective-C 

as the base programming language. The Android framework, on the other hand, is written in Java, 

and can be developed using any Java tool. Like Android, the BlackBerry device framework is also 

written in Java. Windows Phone and its framework sits on top of the Microsoft’s .NET Framework. 
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The language of choice is C#. It also has the limitation that the Microsoft Windows Phone tools 

run only on Windows [JETT McWHETHER, SCOTT GOWELL, 2012. 

The result from [ALI MESBAH ET AL., 2013] showed that 76% of their survey participants agree 

the existence of multiple mobile platforms as a challenge for developing mobile applications and 

more than half of the participants mentioned that mobile platforms are moving toward 

fragmentation rather than unification: 

o Fragmentation across platforms: Each mobile platform has differences with the 

user interface, user experience, Human Computer Interaction (HCI) standards, user 

expectations, user interaction metaphors, programming languages, API/SDK, and 

supported tools. 

o Fragmentation within the same platform: devices on the same platform exist with 

different properties such as memory, CPU speed, and graphical resolutions, 

operating system level. Android devices is the clear example for this kind of 

fragmentation. The diverse versions is the cause of Android fragmentation. 

Frequent upgrades or enhancements in Android operation system makes the 

problem much more serious. OS fragmentation problem has been resolved as a 

result of reduction of old version devices, updated Android adjustment and ensured 

goggle’s update as well [Hyung Kil Ham et. Al., 2011] 

The device fragmentation causes challenge for not only development but also for testing [ALI 

MESBAH ET AL., 2013] because developers need to test their applications against different OS 

versions and screen sizes to ensure that their application works. 

4.3.2 Challenges in monitoring, analysis and testing support 

When testing a standard PC application, a test engineer does not have to test it to make sure it runs 

as well on a Dell as an HP as a Lenovo. The PC industry has standardized the hardware to an extent 

that there isn’t a concern. Similarly, there used to be dramatic differences across Internet browsers 

so testers had to code in a certain way and customize for different platforms. With mobile, 

however, there is a much broader variety of mobile devices. While there may be two dominant 

operating systems – iOS and Android™ –there are far more device types and form factors on which 

mobile applications must run. For testers, there isn’t an assurance that an application that runs as 
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intended on an iPad® will run the same way as on a Samsung Galaxy S III. An application running 

perfectly on iOS 6 cannot promise to will also run flawlessly on iOS 7. The application must be 

tested in each instance [Mobile Labs, 2013]. 

One of main challenges is native mobile applications is lacking automated testing support tools. 

Also, current tools and emulators do not support important features for mobile testing such as 

mobility, location services, sensors, or different gestures and input [ALI MESBAH ET AL., 2013]. 

Mobile web applications are particularly challenging to test. Not only do they have many of the 

same issues found in testing web applications, but they have the added issues associated with 

transmission through gateways and the telephone network [ANTHONY I. WASSERMAN, 2010]. 

4.3.3 Challenges in designing and implementing 

The interviews and survey of the study also showed mobile application developing experts have 

been struggling with the challenge in designing and implementing [ALI MESBAH ET AL., 2013]: 

• Open/Closed Development Platforms 

The closed source platforms such as iOS and Windows, do not have enough API but 

developers can not add them by their own. When a developer has a problem with the API, 

she cannot do anything but reporting the bug and waiting for companies to fix that bug in 

the API. A developer will have to find ways to work around the project or needs to wait 

until new API is released. However, Android is an open source platform, developers can 

change the code but sometimes API does not stick to standards. When problem occurs in 

the API, a developer does not need to wait for next API release. She just need to download 

the source code of the platform and fix the API or add new API herself. At this point, the 

API does not stick to any predefined standards if that developer does not want to follow in 

her modified code.  

 

 

• Data Intensive App 

Mobile applications are different to traditional application due to they are designed to be 

used intensively when people moves. They have the need to use applications to update 
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information anywhere they go. However, there are variety of network connection type 

supported in mobile devices, i.e. 3G, WIFI, and Bluetooth, etc. They are used and switched 

regularly when a user moves. Applications are needed to design to handle this issue 

carefully. In addition, the storage of mobile phone has limitation comparing to PCs or 

Laptops, operations such as saving or caching data on the mobile application need to be 

performed effectively. Therefore, too much data relied on network connection or offline 

caching is challenging when developing apps.  

• Keeping Up with Frequent Changes 

One type of challenge mentioned by many developers is there are more and more  

languages and APIs for the various platforms. Remaining up to date with highly frequent 

changes within each software development kit (SDK) is hard. It requires developers to 

change their code-base faster in order to provide their user quality apps.  

In this chapter, the mobile application development was described in order to understand the 

general view of types of mobile applications as well as the current development challenges. This 

understanding along with the knowledge of CI process gained in Chapter 3 would be together 

applied in the case study in the next chapter. Chapter 5 would content the detail about how concepts 

and knowledge are combined in a real-life project in order to make better mobile application 

development process. 
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5. Case study 

In this chapter, the case study is introduced in detail in order to show the way to improve mobile 

application development process by applying concepts and knowledge if the CI practice. 

5.1 Introduction to the case 

Observis Oy is a company specialized in developing solutions for smart application services. The 

company provides software solutions targeting for web applications and mobile applications. Most 

of the applications were developed by using Java. For mobile application development, the 

company uses PhoneGap framework17 as a cross-platform mobile solution for releasing application 

for three main platforms: IOS, Android and Windows. Because of the desire to provide quality 

applications for customers and to get better revenue, Observis Oy has always been looking for new 

ways of improving their software development practice to develop quality applications in shorter 

time and with less working resources. 

After 4 months working as summer trainee in Observis Oy in 2012, the author had chances to 

experience with the company’s software development practice. The author participated in 

developing a multi-platform mobile application for the Jurassic Rock18 event in Mikkeli. This 

application is a map-based application which has the client-server architecture. The team 

developed this application from the scratch.  

The product was delivered successfully to the client. The project and the development practice was 

reviewed by the author. The following issues were identified for discussion. 

 Issues in integrating dependent modules 

A mobile application consists of many smaller modules. The way to develop and manage 

these modules affects the overall performance of the project development. In the Jurassic 

Rock project, Apache Maven19 was used as the dependency management tool and build 

tool to let developers share dependent modules. Although every module was applied to use 

Apache Maven, the development process was not effective. Modules were developed 

                                                           
17 Phonegap: http://www.phonegap.com 
18 Jurassic Rock: http://www.jurassicrock.fi/site/ 
 
19 Apache Maven: http://maven.apache.org/ 
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separately by developers. Steps such as compiling code, running tests, and deploying 

workable artifacts to Maven repository are handled manually by every developer. Another 

big issue was, in order to have the latest artifact of module being developed by other 

developers, a developer had to download source code, compile and build the artifact 

himself. Alternatively, he can ask other developers to do for him. Module versioning results 

in inconsistent which caused difficulty in module integration. These issues caused wasting 

a lot of development time and high error-prone for integrating dependent modules.  

 Issues in integrating mobile applications and server systems 

The project used PhoneGap as the cross-platform mobile development framework. The 

application is designed with client-server architecture. However, the application on each 

platform requires to be built separately. The build was performed manually. The 

configuration for the application to run against the production server or the development 

server was also changed frequently and manually for each request from the project client. 

The ask-for-new-build issue happened regularly throughout the project. When new build 

is asked, developers manually compile, change proper configurations and build the 

application. This manual process not only takes long time to complete but also is error-

prone. Meanwhile, the status of the application is not always visible to developers and 

project managers. The server modules were also handled manually.  

 Issues in testing and previewing app 

The application server is required to enable the application to run properly. However, the 

application server is located at developer machines which were not always on and not able 

to be reached from outside the office. There was no development server so that in this case 

production server was the only option for testing the application which was so risky. The 

issues in building the application also raised the difficulty to test and preview the 

application by clients. There was not used to have a daily-build version in the project but a 

weekly build version.  

After identifying the issues the company had in the Jurassic Rock project, the author proposed to 

apply CI practice to improve the efficiency in mobile application development practice. The target 

of the CI application is firstly to provide software build automation to remove the issues in 
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integration. Better version management is added and guaranteed. Automated testing, such as unit 

tests and acceptance tests, is provided for mobile application’s service and client side. Integration 

application server is supported for better acceptance tests and application preview. Finally, 

automated deployment makes the release process easy. 

5.2 Case study design 

The case study was approved by Observis Oy to be applied in the company’s next project, i.e. 

Mappini. Mappini is the product designed to help citizens and travelers to find area services 

conveniently from one location via web interface or mobile application. All services of an area are 

gathered into the Mappini service, especially the groups of travel service. Mappini obtains user 

feedback and reports from user data, which allows for the area to develop its services according to 

citizens’ and travelers’ needs. The Mappini project has much bigger workload than the Jurassic 

Rock Application project due to many features, complicated application user experience and 

intensive server communication. However it has the same project developing time which is 4 

months.  

The whole development process was systematically reviewed and analyzed. For each development 

process task in the last project, the author counted the number of steps needed to be performed in 

order to have the task completed. These statistic data was then recorded. For example: the task 

“Deploying artifact to Maven repository” required 4 steps, i.e. compile code, run test, deploy 

artifact to Maven repository and commit code to SVN 

The similar statistic data would be recorded for the new development process where CI is applied. 

Eventually, these statistic data would be compared together in order to achieve the quantitative 

information about how these development processes are different. 

The plan for applying CI practice into the Mappini project wat set. It comprises three phases, as 

below. 

 Setting up a CI environment 

In this step, the author collaborated with other developers to transform the old code base 

to the new architecture using the CI practice. In the new code base, all hard-coded 

configurations are removed and separated to external files. The new code modules are 
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designed to followed the new architecture which helps developers to add new modules and 

to run unit tests. A testing server is also added. 

 Setting up an integration server 

After all code modules were migrated to use new architecture, the author setups the Jenkins 

integration server. After this step, all code modules are step-by-step configured to integrate 

with Jenkins. During integrating time, other developers would be received help from the 

author to get knowledge to work properly with Jenkins. The completion of this step also 

means CI is fully applied. 

 Finalizing case study 

The new statistic data would be collected and the result of the case study is analyzed. 

5.3 Implementing Process  

5.3.1 Setting up a continuous integration environment 

Apache Maven (Maven) is a project management tool which encompasses a project object model, 

a set of standards, a project lifecycle, a dependency management system, and logic for executing 

plugin goals at defined phases in a lifecycle. Maven is a popular open source build tool for 

enterprise Java projects, designed to take much of the hard work out of the build process. Maven 

uses a declarative approach, where the project structure and contents are described, rather than the 

task-based approach used in traditional make files. In addition to providing build capabilities, 

Maven can also run reports, generate a web site, and facilitate communication among members of 

a working team. Because Java is the main programming language used across projects in the 

company, Maven is used intensively to gain convenience and productivity in building and 

managing project modules. 
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Figure 9 Architecture of Seutuhaku App 

In this phase, the old code modules were migrated with the new architecture. The new modules 

are initially designed to use the new architecture. Figure 9 presents the architecture of the 

Seutuhaku App. At the client side, the mobile application was developed with Java language using 

Google Web Toolkit20 (GWT) framework. The Gwt project is compiled to Html and JavaScript 

files which are the input for PhoneGap framework to build a mobile application package for mobile 

platforms such as Windows Phone, Android, and Apple IOS. These multi-platform mobile 

applications shared the same compiled code to communicate to the server side which was 

developed by using Liferay’s Java -Portal. Both the client side and the server side were developed 

using Java language, and they share common dependent modules for communication. Client side 

modules and server side modules need to be mavenized in order to make modules to be easily built 

and shared across the project. This setup was also the foundation to apply CI into the project’s 

development practice in next step.  

Also, the test server was setup. The environment where the test server was configured to use, was 

almost identical to the production. The database was installed and populated with all data except 

sensitive data from the production server. All server side modules were installed and deployed to 

the test server. The target of the test server is to act as test object of the integration test and 

acceptant test performed by testing engineers.  

                                                           
20 GWT: http://www.gwtproject.org 
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5.3.2 Setting up an integration server 

At this point, the CI environment was setup successfully. Project modules was configured to work 

with Maven and their source code was committed and stored remotely on the company’s version 

control system: Apache Subversion. The integration server was then installed and planned to be 

configured. The integration server that the company uses is Jenkins. For each project module, the 

following 2 steps were performed to create a complete build job. They are creating a build job and 

configuring a build job. 

A new build is created by selecting the “New Job’ link on the Jenkins dashboard. Figure 5 shows 

in details all options Jenkins offers to create a new build job. There is an option for creating  a 

build job for Maven project or multi-configuration project. In Observis Oy, a build job is usually 

created with a free-style-project option which offers the most flexibility in configuration or copy-

from-exist-job option which is really fast to create a new job for modules being similar to each 

other. 

 

Figure 10. Creating new build job 
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After the build job is created, configurations should be done for the build job in order to make it 

workable such as VCS configurations, build trigger configuration, configuring build environment, 

build script configuration, configuring post build. 

 VCS Configurations 

Because each build job is dedicated for a single project module, the module VCS should 

be specified in order to know where to download the latest source code of a module. Figure 

11 shows the build-job repository URL was configured to use the relating SVN repository. 

The Check-out strategy was set to “Always check out a fresh copy”, which means to delete 

everything used previously before retrieve code. This action ensures the code is always be 

the latest code from the repository. 

 

Figure 11. VCS Configurations 

 Build trigger configuration 

Specifying the way to trigger a new build for the job. There are options such as building 

after other projects are built, building periodically or poll the VCS with interval time to 

detect change then triggering a build, as shown in Figure 12. In Observis Oy, a polling-

every-5-minutes method is chosen for every build job. It helps to regularly short-time check 

and trigger build whenever having new changes to the source code. 
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Figure 12. Build trigger configuration 

  

 Configuring build environment 

Each project module has its own predefined configurations such as database connection 

string, remote server link, etc. These files are created and stored in Jenkins. And these 

configurations change for different working environment such as a test environment or a 

production environment, etc. Figure 13 shows the setup for the server endpoint 

configuration in the MisetMobile module. The author created serverConfig.js 

configuration file which contains predefined hosts for the mobile application to 

communicate. When the build run, this configuration file would copy to or replace the 

configured target file path. Eventually, when the build is successful, the artifact of the build 

would contains the correct host configurations. In future, the host of the test environment 

or production environment are changed, we just need to use Jenkins update serverConfig.js 

configuration file. This action is easier and more secure than to store and update every 

sensitive server information directly in the code repository. 
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Figure 13. Configuring build environment 

 Build script configuration 

Specifying scripts to be executed whenever a build is triggered. Because almost every 

module was mavenized, build scripts are quite simple. Addition scripts can be added here 

for actions doing after the previous scripts succeeded, such as copy and deploy artifacts to 

test web server, etc (Figure 14).  

 

Figure 14. Build script configuration 
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 Configuring post build 

This is an important configuration because whenever a build succeeds, there is a need to 

gather build artifacts, or trigger other build jobs belonging to a build chain. For example, 

Figure 4 shows the PhoneGap module is depend on the Mobile Gwt Module in order to 

create mobile application packages for different platform. Therefore, developers in 

Observis Oy created a build job for Mobile Gwt Module and another build job for Android 

PhoneGap module (Figure 15). The one of post build actions of the Mobile Gwt Module is 

that whenever the build is successful, it would trigger to build the Android PhoneGap 

module. In this case, Android PhoneGap module is triggered and already configured to 

retrieved compiled Html and Javascript files from the latest successful Mobile Gwt Module 

build to create an Android Application package to deploy it to Test Server for testing and 

reviewing. This is one of many build chains the company configured in their Jenkins.  

Another configuration in this session is to specify the feedback method whenever a build 

fails.  

 

Figure 15. Configuring post build 

After all the modules have their build jobs created and configured properly in Jenkins, the CI 

workflow of the Seutuhaku Application development is depicted in Figure 16. The company’s 
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developers write and commit their source code to the center Subversion server. Jenkins build jobs 

were configured to poll the Subversion server to check changes for every 5 minutes. If a build job 

detects a change occurring against their SVN repository then a build is triggered. If the build fails, 

an email notification would be sent to the one who made the changes as well as other registered 

developers who has responsible to fix or manage the issue. If the build is successful, post actions 

would be executed right after. The build job which was created for a mavenized project module 

would deploy new version of a snapshot library (Jar file) to Maven Repository for other build jobs 

in the current build chain referring to or developers to download and use in their development. A 

build chain would be triggered if it was defined. If build job is for another module type, it would 

be depend on the configuration to do further. For example, a build job for Android PhoneGap 

module would create an Android package (apk) and then deploy it to Test Server so everyone in 

the company or registered clients can download and use for testing and previewing the latest 

version. A build job for a web module would create an Web Package (War File). The package is 

then automatically deployed to the Test Server. This automation makes testers always have the 

latest version of web application to test and mobile applications have the latest version of web 

application APIs to communicate to. These continuous updates make the mobile application and 

web application have their status be always visible for the developers, tests, project managers and 

clients. Eventually, when build jobs are stable and ready for releasing to production environment, 

a release-to-production build job would be triggered manually by the project manager to copy and 

deploy all stable configured packages to production server. 
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Figure 16. CI workflow at Observis Oy 
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5.4 Results of the continuous integration application 

5.4.1 The continuous integration practice in the case study  

The application of CI practice into the development of the Seutuhaku Application pivoted the 

manual development process to the automated development process. The new development 

practice cut off significant steps in most common development tasks. A comparison of the 

development practice before and after applying CI is given in the tables below.  

 

Before After 
Process 

Improvement 

 

Compiling code, running tests, and 

deploying workable artifacts to 

Maven repository are handled 

manually by developers.  

 

4 Steps:  

1. Compile code  

2. Running test 

3. Build and deploying artifact to 

maven 

4. Committing code to SVN 

 

 

SVN repository is automatically checked 

frequently to trigger related build job to do 

compiling, running tests and deploying 

workable artifacts to Maven repository. 

 

Only 1 Step: 

1. Commit code to SVN 

 

 

Remove 3 

steps   

Review 

 

The automation process removes all the previous manual steps such as compiling, testing, building 

and deploying. Therefore, developers are more productive and more focus on developing code and 

teamwork.  
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Before After 
Process 

Improvement 

 

Latest artifact of modules being 

developed by other developers, 

developers had to download source 

code then compiling and building 

artifact themselves or to ask other 

developers to do for them 

 

3 Steps: 

1. Checkout or update latest 

code 

2. Compile code  

3. Build the artifact to use 

 

 

Latest artifacts are now automatically 

deployed to Maven repository so 

developers can download and use in their 

development whenever they need. 

 

 

 

1 Step: 

1. Download latest artifacts from 

maven repository to use 

 

Remove 2 

steps   

Review 

 

New module artifacts are automatically deployed and are available for all developers after each 

successful build. The new process enable developers to have a better teamwork and to save developing 

time. 
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Before After 
Process 

Improvement 

 

PhoneGap modules needed to be built 

manually whenever occurring 

changes in their dependent modules. 

 

 

4 Steps: 

1. Update changed code of 

dependent module to SVN 

2. Build artifact to maven repo 

3. Rebuild PhoneGap module 

4. Achieve PhoneGap artifact 

 

 

The automated build chain designed for 

PhoneGap modules enabling PhoneGap 

modules built whenever occurring changes 

in their dependent modules. 

 

2 Steps: 

1. Update changed code of dependent 

module to svn  

2. archieve PhoneGap artifact from 

Jenkins  

 

 

Remove 2 

steps   

Review 

 

Manual building steps for PhoneGap modules are removed. Instead, the new fully automation process 

help developers to not spend any affords on doing these things. 
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Before After 
Process 

Improvement 

 

The PhoneGap applications needed to 

be built manually for each 

configurations for different 

environments. The artifacts are sent 

manually to each user group (tester, 

client …).  

 

2 x (N configuration) Steps: 

1. Build the PhoneGap 

application manually a 

configuration  

2. Send the artifact to related 

user group. 

 

PhoneGap applications’ build jobs are 

created for multiple configurations. 

Artifacts are uploaded to specific location 

for (tester, client …) 

 

 

 

2 Steps: 

1. Jenkins automatically builds the 

PhoneGap application for all 

configurations and uploads 

artifacts to specific locations 

2. User groups download their 

interested artifact from Jenkins or 

deployed link 

 

Remove N-1 

steps   

Review 

 

Without any affords from developers, artifacts of the application with different configurations are 

deployed automatically to specific locations whenever having changes from developers. All user 

groups of the application can easily access and use the latest version of the application whenever they 

want.   
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Before After 
Process 

Improvement 

 

The ask-for-new-build issue 

happened regularly throughout the 

project. The status of the application 

is not always visible to developers as 

well as project managers.  

 

 

4 Steps:  

1. Ask new build  

2. Download latest code 

3. Build artifact  

4. Send artifact to requested 

person 

 

 

 

 

The latest version of the mobile application 

is always built and deployed to Test Server 

whenever it has changes. The application 

status is now always visible to developers 

as well as project managers, clients. 

 

1 Step: 

1. Project manager download latest 

artifacts from Jenkins 

 

Remove 3 

steps   

Review 

 

The ask-for-new-build issue are removed completely but the status of the application are always 

visible for everyone in the project via the CI’s feedback mechanisms: email, the Jenkins dashboard.  
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Before After 
Process 

Improvement 

 

Module versioning was handled 

inconsistently between developers 

causing difficulty in module 

integration. 

 

 

 

5 Steps: 

1. Develop A commits code with 

conflict version to SVN  

2. Develop B updates latest code 

from SVN 

3. Develop B runs test 

4. Develop B reports module 

versioning is conflict 

5. Develop A receives report and 

fix bug 

 

 

 

Module versioning is now forced to be 

consistent due to designing build chains. In 

a build chain, a module needs to have 

correct version in order to not break the 

build chain. 

 

2 Steps 

1. Develop A commits code with 

conflict version to SVN  

2. Jenkins build chain fails and send 

report back to Developer A 

3. Develop A receives report and fix 

bug 

 

 

Remove 2 

steps   

Review 

 

The inconsistent-versioning issues are now handled effectively due to Jenkins building chains. 

Developers react and fix the issues faster whenever they receive reports or alerts from Jenkins 

feedback mechanisms. 
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Before After 
Process 

Improvement 

 

Manually deployment to the 

production server 

 

N + 4 Steps: 

1. Build N requires modules to 

get deployable artifacts  

2. Upload artifacts to server  

3. Turn off servers  

4. Place new deployment 

5. Restart server  

 

 

 

 

Auto deployment to the production server 

 

 

1 Steps: 

1. Start production-deployment task 

in Jenkins. All modules build tasks 

will be run. When artifacts are 

created, the build script is 

automatically executed to deploy 

artifacts to server.  

 

Remove 

(N+3) steps   

Review 

 

The one-click deployment to the production server saves deploying time as well as reducing error-

prone issues from manual deploying steps. 
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Before After 
Process 

Improvement 

 

Development server is located at 

developer machines which were not 

always on and not able to be reached 

by the application from the outside of 

the workplace. There was no 

integration test server so that in this 

case production server was the only 

option for testing the app. 

 

 

 

 

 

The new Test Server allows testing from 

outside. 

 

Allow 

testing the 

application 

from the 

outside of 

the 

workplace 

Review 

 

The application are able to be tested outside the workplace. Moreover, the usage of the new test server 

make testing the application be safer without any impacts to the production server. 

 

Before After 
Process 

Improvement 

There was not used to have a daily-

build version but weekly build 

version 

New version is built whenever occurring 

changes and stored on Jenkins. It is also 

deployed to Test Server as latest version 

for testing. 

More 

frequency in 

testing app 

Review 

 

The newest version of the application are always available to everyone in the project whenever having 

changes. The new process allows to test the application more effectively. 
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Distracted steps found in previous development process are now replaced by automation from 

Jenkins. Issues in integrating dependent modules are resolved by the help from the CI process. 

Code modules are now always automatically compiled and tested whenever developers commit 

code changes to repository. The successful builds also automatically deploy new artifacts to Maven 

repository. Developers can use the latest development library or dependencies immediately. In the 

new process, code module misversioning would result in failed builds in Jenkins. This 

improvement make module versioning more consistent. Developers will receive feedback right 

after any build job fails. They can take actions to fix and resolve the failures in a swift manner.   

Issues in integrating mobile applications and server systems are improved. Applications for each 

platform are now built with automation. Configurations are not hardcoded but managed with 

Jenkins with separated configuration files. There are configurations defined for different 

environments which satisfy the needs Application testers as well as the project client. The ask-for-

new-build issue is removed completed, replaced by Jenkins automation.  

Testing and previewing application are also more efficient with automated application build jobs 

and up-to-date integration testing server. Now the application always has the latest development 

package and is available and downloadable for application testers, project client. This development 

application package is always in synced with latest updates from application developers. Testing 

and previewing application is much convenient due to the integration testing server. Now 

application tests and project client or others can immediately test or review the latest development 

application with ease with no need to wait for end-of-day build or weekly build.  

5.4.2 The CI practice in the mobile application development 

The challenges of mobile application development were taken into account and tackled. With the 

help of CI process and the hybrid-application development, the issue on multiple mobile platforms 

are improve dramatically. Automated build for Android platform was in used, iOS was in 

development and Windows Phone were the next step. Because testing and previewing application 

are also more efficient, tackling with the testing challenge is already improved.  

However monitoring and analysis challenge are not yet touched in this case study. Because of the 

usage of hybrid development, challenge on designing and implementing such as Open/Closed 



47 
 

  

Development Platforms, Data Intensive Application and Keeping Up with Frequent Changes are 

not taken into account.  

The new process helps developers to remove distraction in development process and focus more 

on engineering by removing many manual steps from development process. The more productivity 

results in allowing the company delivered the quality application to their client within deadline 

although this project is much bigger and the project schedule is tighter.  

5.5 Issues in applying continuous integration 

Throughout the process of applying CI practice into the company’s mobile development, the 

following issues were raised and worth noticing:  

 Developers are required to quickly study and gain knowledge about new technologies  

Because the short time for applying, developers are required to have quick pace in learning 

the new technologies. In the case study, CI engineers had to get knowledge about Jenkins 

and its numerous plugins to figure out which were fit to the current project needs. Also, 

skills for writing automated build scripts for multiple mobile platforms and operating 

systems were urgent when configuring Jenkins. If possible, there is a need for dedicated 

developers working for CI in the development team. 

 The project modules should be designed for Continuous-Integration-oriented 

The new development practice requires the project modules should be designed for easy to 

write build job when they are integrated into integration server. In the case study, all 

modules was designed in order to expose all their configurations to files instead of hard-

coded into the code. This design allowed easily to exchange different configurations for 

different environments when creating build jobs. In addition, big modules were divided 

into smaller modules, allowed to made configuration easier and to be reused.  

 Developers’ commitment to the new development practice is critical 

The commitment of developers is very important. The new development practice required 

developers to change their habits in the development tasks. Source code should be 

committed to SVN whenever the bug is fixed or problem is resolved. The module design 
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guidelines need to be followed and committed by developers in order to have good 

implementation which is Continuous-Integration-oriented. Moreover, developers are 

required to quickly fix bug causing a build job failed. This is definitely more stressful and 

more work for developers to follow in the beginning but after the new development practice 

becomes their habit, the performance would be improved and the long term advantages 

would be beneficial for not only the developer himself but the whole development team. 

 Heavier responsibility for project manager 

In the new development practice, project manager has to make sure all the problem 

happening against integration server to be removed as soon as possible. New development 

policy is needed and managed by project manager in order to make developers follow new 

development practice and the workflow is passed through with as few issues as possible. 

 A vision in software development is required from company leaders 

The vision for better software development should be kept in mind of business leaders. 

Business leaders need to have mindset in productive development and have efforts in 

investing time and resources in experimenting new development practice. In the case study, 

the company leaders encouraged developers to develop new improvements for their 

development practice to gain more productivity, to have better quality products.  

  



49 
 

  

6. Conclusion 

 
6.1 Project retrospect 

The results of the case study definitely showed the big benefits of the CI after it is applied in to 

mobile application development. The old development practice with manual, high error-prone 

developing stages such as compiling, integrating, testing, and deploying, is now replaced by 

automated development practice. At the heart of the new practice, CI plays the vital role – 

connecting, communicating and cooperating all components of the development system such as 

Subversion, Maven repository, testing servers, production servers. It helped developers to get rid 

of many manual, boring, wasted-time operations to focus more on developing products. Business 

managers now have clear and deep view about the in-developing product status in order to make 

faster and more precise decisions. The whole development becomes to be more productive and 

effective. 

Despite of huge advantages which CI brings to the business, applying it successfully and 

completely is still challenging. From the case study, all issues the author collected indicate that 

more affords are required from the whole business pyramid in order to have successful 

implementation of CI: 

 Visionary and practical mindset from business leaders 

 New management style from project leaders 

 High commitment and more skills from developers 

In addition, the case study had some limitations. First, the mobile application type was hybrid 

application type which is developed by using cross-platform mobile application framework. This 

is considered easier and simpler than developing native mobile application or web-based 

application. For example, instead of sharing the same code base, a native mobile application has 

different code base for different target mobile platform. This difficulty would be a challenge for 

applying CI practice. Second, the case study focused only on test automation for the mobile 

application on aspect of using unit-tests and module-integration tests such as testing 

communication between client module and server module. Automated UI tests for mobile 
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application by using CI was not implemented yet. This is also another challenge. Another 

limitation was the scale of the environment which is applied. Observis Oy is a small company with 

small group of developers which is relatively easy for applying new practice. Bigger applying 

scale would be bigger challenge with many other unknown issues.  

6.2 Future work  

After CI was applied to the mobile application development in Observis Oy, the feedback from 

the company technical leader was positive about the benefits of the work to the development 

practice of the company. With the success of the Seutuhaku project, the company is continuing to 

utilize this practice for next coming projects. Continuous delivery is the next practice that the 

company is targeting to for even more effective development. The author hopes CI and mobile 

application development would be used widely together in the further as well as there would be 

more researches or case studies on different mobile application type and various environments for 

more throughout helpful understandings about applying CI into mobile application development.  
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