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Abstract

The modern information society is entirely dependable on software. The major-

ity of every day solutions that we use, such as mobile devices, home appliances

or vehicles, require software to function. In addition, every business relies on

various software systems and services. The reason for software usage is its versa-

tility, which allows business to rapidly adapt to continuous changes, and flexibly

revise their objectives and approach new opportunities. The adaptation, com-

petitiveness and survival of organizations are dependable on software that they

are using [Boehm, 2006].

Software is purely an intellectual product and considered as one of most labor-

intensive, complex, error-prone and economically challenging technology in his-

tory. Software is often taken for granted and its existence is not acknowledged

until it is malfunctioning [Krasner, 1998].

Without successful software projects there are no working software to serve our

needs. To pursue successful software project trajectory, the ability to develop high

quality solutions in a profitable velocity is essential. Hence, the factors that enable

high and sustainable development productivity require adequate management.

Keywords: software quality, internal quality, technical debt, refactoring, pro-

ductivity
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1 Introduction

1.1 Background to the Research Topic

The modern information society is entirely dependable on software. The major-

ity of every day solutions that we use, such as mobile devices, home appliances

or vehicles, require software to function. In addition, every business relies on

various software systems and services. The reason for software usage is its versa-

tility, which allows business to rapidly adapt to continuous changes, and flexibly

revise their objectives and approach new opportunities. The adaptation, com-

petitiveness and survival of organizations are dependable on software that they

are using [Boehm, 2006].

Software is purely an intellectual product and considered as one of most labor-

intensive, complex, error-prone and economically challenging technology in his-

tory. Software is often taken for granted and its existence is not acknowledged

until it is malfunctioning [Krasner, 1998].

Without successful software projects there are no working software to serve our

needs. To pursue successful software project trajectory, the ability to develop high

quality solutions in a profitable velocity is essential. Hence, the factors that enable

high and sustainable development productivity require adequate management.

1.2 Motivation and Goals for the Research

The culture and literature of “software requirements” systematically fails to ac-

knowledge the majority of critical factors for successful software [Gilb, 2000].

Issues, such as financial budget, delivery deadlines and system performance are

often the main concern in software projects. Hence, many relevant factors con-

cerning quality are neglected. The developers of software and their ability to

produce good quality source code and architecture come into the picture.

This research discusses internal software quality and its impact on developer

productivity, and the phenomenon that causes them to degrade — technical debt.

Technical debt means poor quality source code design and architecture that is

incurred through development team incompetence or intentional business-driven
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decisions. The personal experience concerning technical debt and its extreme

consequences leading to project failure has also been a motivation to discuss this

topic. The research questions that are inspected are the following:

– Is high internal quality essential in software projects? If so, why?

– How to promote productive development?

– How to sustain productive development?

The research literature concerning internal quality, technical debt and produc-

tivity is reviewed and processed. This thesis tries to answer the questions and

process these topics by forming an understanding of the essential parts of devel-

opment productivity.

1.3 Structure of the Thesis

Chapter 2 introduces to agile software development and discusses general chal-

lenges and productivity. Internal software quality and its measurement is intro-

duced in Chapter 3. The main issue concerning internal quality and productivity

called technical debt is discussed in Chapter 4. Technical debt exists in every

software project and affects widely within a project from individual developers to

business. Technical debt types, sources and consequences are discussed. Chap-

ter 5 explains refactoring, which is used for source code quality improvement. In

Chapter 6, the research questions concerning sustainable development productiv-

ity are processed, and in Chapter 7 the thesis is summarized and technical debt

is further discussed.



2 Software Development and Productivity

2.1 Introduction to Agile Software Development

Software engineering process consists of definition, implementation, assessment,

measurement, management, evolution and improvement of a software life-cycle

process [McConnell, 2004]. The purpose is to make the software processes sys-

tematic and increase the probability of project success. Solid solutions are needed

to cope with the dynamic and challenging software industry.

Software evolution consists of all the changes happening from the initial planning

to retirement of a software product [Wagner, 2013]. Today’s development prac-

tices promote incremental production instead of designing everything upfront.

Software source code evolves quite drastically throughout its life-cycle, so any

upfront specifications will be modified several times later on. The direction of

evolution is wrong, if the software is developed short-term benefits in mind. Soft-

ware should always be maintainable, so the consequences of short-term decisions

have to be dealt with later on.

Continuous changes cause various risks in software development. Agile develop-

ment methods respond to continuously changing requirements. These methods

promote, e.g., working software, adaptive planning, close collaboration and soft-

ware prototyping. Customer collaboration is emphasized to minimize risks asso-

ciated with requirements, knowledge and comprehension within a project. The

customer is the most important stakeholder of the project, so regular reporting

and reviewing is essential. Furthermore, customer representatives can provide

useful feedback to the development team to calibrate their understanding and

objectives.

Agile procedures are performed in iterations throughout a project. Each iteration

consists various development phases, and every iteration is a micro-sized project

in a project. Iterations enable adaptive planning and prioritization to address

changing user and customer requirements. Iteration usually takes from a week

to a month, in which time software is incrementally developed towards the final

release. Phases include requirement analysis, planning, software design, software

implementation and software testing. Division to iterations enables management
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to have better control over schedules and workload. Each iteration is meant to

output a working version of the software for the customer to see the progression.

Working software acts as continuously evolving prototype for functional testing

and is a visual assurance of project progression.

Scrum is an agile methodology, that promotes project roles, such as product

owner (PO), Scrum master (SM) and a development team [Schwaber, 2007]. The

PO is accountable for project success to the customer, the SM assures correct

development activities and the development team designs and develops the soft-

ware. The source code of the software is collectively owned and maintained in

Scrum. As agile methods have iterations, in Scrum they are called sprints. At

the end of every sprint, there is a review meeting, in which the Scrum partici-

pants go through the progression and planning, and present them to the PO. In

addition, a retrospective meeting is held by the SM to ensure improvement in

the project process [Shore, 2007]. In Scrum, refactoring is the key practice to

maintain high quality source code [Ktata & Lévesque, 2010]. Refactoring means

source code modification in a way that improves the readability and understand-

ability without altering its functionality. Refactoring is discussed in more detail

in Chapter 5.

Another agile methodology similar to Scrum is Extreme Programming (XP). Per-

formed iterations include, e.g., user stories, iteration planning, development, test-

ing, refactoring and rapid working software versions [Wells, 1999]. XP is heavily

based on frequent testing, so test-driven development (TDD) approach is often

used [Fowler et al., 1999]. TDD means that software tests are written before the

implementations and the implementations are matched against them afterwards.

The tests are called “unit tests”, because they test only a consistent component

in the implemented code. Development velocity is an important metric in XP,

because it is used to monitor the progression. In XP, meetings are held as short

“stand-up” discussions. Collective ownership and knowledge is promoted, thus

collaboration is an important part of XP. Pair programming is promoted, and all

production source code is expected to be a result from pair programming.
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2.2 Challenges in Development

Software development projects are generally a challenge for the management. A

common reason for this is complex software industry specific characteristics, such

as human interaction, high complexity and product versatility [Jørgensen, 1999;

Subramanian et al., 2007]. Software projects have common problems, such as

budget overruns, delivery delays, poor response to user requirements and lack of

management [McLeod & MacDonell, 2011].

Software development is all about customization and solutions in a certain con-

text. When every software project is produced uniquely, it is hard to generate

work-proof operation plans or estimations. Because projects are unique, the esti-

mations have to be based on estimation models, related data history or estimator

expertise. Effort estimation is difficult, because there often are no detailed devel-

oper activity information. Furthermore, the effort also depends on the complexity

of the software requirements. However, software managers and developers con-

tinue making estimations based on their assumptions, although there are various

models to be used [Hihn & Habib-agahi, 1991]. Hence, these kind of estimations

are made without risk analysis or any data for verification. Estimations based on

unreliable assumptions and intuitions are harmful to any project.

Software development projects are considered to have high risks and they also

have a reputation for failure [Savolainen et al., 2012]. Projects often fail because

the risks involved are not identified and managed. One significant factor to affect

the possibility of risks and their consequences is the quality of the project [Ould,

1999]. According to Shihab et al. [2012], only 16.2% of software projects are on

time and budget, and from the rest 52.7% have reduced functionality and 31.1%

are cancelled before completion.

Changes with high risk require additional attention in design, implementation,

testing and reviews. Risks can be identified efficiently using different factors, for

example, amount of code lines and blocks added by changes, bugs related to the

change (bugs in related files and amount of related bug reports) and developer

experience. Developers are reported to be accurate 96.1% of the time when

identifying changes that might introduce bugs, but are less reliable to detect

risky changes [Shihab et al., 2012]. Tomaszewski [2006] states that existing code
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modification has considerably bigger risk to introduce problems compared to new

code in a new class.

As an example of fragility, source code is a very vulnerable element. Even one

undesired character in a source code can crash a whole software system. Majority

of solutions are custom made and are not proven to work, so every line of code

has to be tested and verified. In architecture, poor design can cause major issues

in the future when a software is built on fragile foundation.

Quality and economics are also tightly related fundamental concepts in software

development [Wagner, 2013]. However, according to Krasner [1998], there is

currently no validated economic theory for software quality. Thus, economic

models are rarely used in software industry, because there is lack of common data

in the field [Wagner, 2013]. In turn, research sector is lacking general empirical

knowledge, since the statistics for software costs are not public data. As a result,

forming the required knowledge becomes extremely difficult. Another quality

costing issue is the inability to define a stable measurement unit. This is one of

the reasons why economic models are not generally recommended for software

measurements.

2.3 Development Productivity

Boehm [1981] reports that development productivity is mostly affected by devel-

opers and the way they are organized and managed. Mohapatra & Gupta [2011]

found that productivity is significantly dependent on technology training. Ac-

cording to Yu et al. [1990], the most influential factors in productivity are feature

complexity, requirement completeness and stability, developer experience, devel-

opment environment and tools. Also, architectural decisions are stated to have

varying impact on productivity. Developers that have the most knowledge and

experience in the application domain are most productive [Sommerville, 2010].

Variations in productivity could be explained by developer experience (measured

in KLOC or years) and abstraction level of used programming language [Raza &

Faria, 2014].

A global study shows that it takes more than a year for developers to reach full

productivity in a software project [Mockus & Weiss, 2001]. Mockus [2009] states
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that interactional dimension defines the centrality of a person in the decision-

making process. This means that the more experience a developer has, the higher

he is in the interactional dimension, thus having more impact in production.

Professional programmers do not let good quality source code to degrade [Martin,

2009], hence developers should always deliver good quality source code.

Poor quality process eventually kills productivity, and can make developers to

show their frustration and demand improvements to the process. Developers can

eventually stop caring if the process is not improved. The outcome might be that

concerned employees quit their job and look for more stable working environment

to work in. High quitting rate can degrade the public image of the company and

affect future employment. The organization might lose valuable knowledge with

any leaving employees and regaining an employee with similar knowledge and

experience might be expensive. Modern and high quality practices help to keep

the skilled developers motivated and attract new talented ones.

Productivity consists of two factors which are the product size and development

effort [Tomaszewski, 2006]. The productivity of a developer can be measured in

product units produced over certain unit of effort [Mockus, 2009]. In other words,

measurement tells how much output does a certain input generate. For example,

if full-time developer productivity is measured, the roughly approximated input

efforts (months) are multiplied by salary and additional employment costs. When

productivity is measured, it has to be inspected in context of overall quality of a

software product [IEEE, 1993].

Productivity is usually measured by using function points. Function point analy-

sis (FPA) is functional size measurement of software that is delivered to the cus-

tomer. Software processes and data are measured by identification, classification

and weighting. Function points are calculated from the amount of data manipu-

lated, number of interfaces, amount of user interactions and external inputs and

outputs [Sommerville, 2010]. The alternating complexity between functionality

features are compensated with a complexity factor, which also is considered as

weakness in function point analysis, as it is subjective [Tomaszewski, 2006].

In addition to productivity measurement, the results can be used to indicate soft-

ware defect ratio, resource assignment or software scope analysis. Function points

are considered to be the most popular metric for functionality [Sommerville,
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2010]. However, Raza & Faria [2014] list issues with function points, such as

measures based on lines of code (LOC) with inferior economic meaning, measures

dependence on programming language and their lack of counting standards. For

example, programming conventions have alternating impact on LOC metric mea-

surement. Hence, LOC measurement becomes incomparable when two different

programming languages are inspected, because of the differing syntax [Fenton &

Pfleeger, 1998].

According to Sommerville [2010], process quality and project size are important

factors in productivity measurement. Complex software projects are more dif-

ficult to understand and implement, and require additional development effort.

Variations are found between project process phases, which might be caused by

differences in process stability or complexity [Raza & Faria, 2014]. Tomaszewski

[2006] reports shortage of development tools to be a major productivity bottle-

neck in subsequent development.



3 Internal Software Quality

3.1 Introduction to Software Quality

Quality is an abstract concept and cannot be easily understood or measured [Stavri-

noudis & Xenos, 2008]. There is no explicit interpretation of what high quality

means [Wagner, 2013; Krasner, 1998]. In software, quality is the degree to which

a set of quality characteristics fulfill the defined software requirements. When

quality is an ambiguous issue and means different things to different stakehold-

ers, it is suggested that software quality has to be specified in the context of

a project [Krasner, 1998]. Quality evaluation is considered to be an important

measurement for the value of software [Chappell, 2014]. There are at least six

alternative definitions for software quality [ISO, 2010]:

1. The degree to which a system, component or process meets specified re-

quirements.

2. The ability of a product, service, system, component or process to meet

customer or user needs, expectations or requirements.

3. The totality of characteristics of an entity that bear on its ability to satisfy

stated and implied needs.

4. Conformity to user expectations, conformity to user requirements, customer

satisfaction, reliability and level of defects present.

5. The degree to which a set of inherent characteristics fulfill requirements.

6. The degree to which a system, component or process meets customer or

user needs or expectations.

Garvin [1984] mentions that user satisfaction and quality are not necessarily the

same thing. A software product can meet all the requirements, but it still might

not satisfy the user expectations. It might be challenging to justify a good quality

status just by fulfilled requirements or user satisfaction. The user’s workflow

or productivity could be poor, even if the used software meets the functional

requirement specification. Garvin [1984] lists different approaches to quality,

that are relevant at different phases in life-cycle of a product:

Transcendent

High product quality is evaluated by abstract intuition. This approach is
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usually used in customer statements in requirements engineering (RE) when

quality requirements are unknown.

User-based

Focus is on user satisfaction instead of technical requirements. Users can be

satisfied with the affordable value of the software without being concerned

about the quality.

Value-based

The value of the product is more important feature than the quality for

the user. The cheaper the product, the more satisfied the user is. This

approach is similar to user-based approach.

Product-based

The quantity of met requirements defines the quality. Quality can be pre-

cisely measured, but for software some metrics might not exist or are really

difficult to measure.

Process

Defines quality as conformance with the specified software requirements.

Sommerville [2010] notes that high-quality processes usually tend to out-

put high-quality products. ISO 9000 standard suggests to establish quality

management system in companies to ensure the appropriate quality of the

products [ISO, 2005]. The standard is widely used in process approach.

3.1.1 Internal and External Quality

Internal (developer-related) quality is the quality of the source code that pro-

grammers work with on daily basis. It mainly consists of code understandability,

maintainability, testability, efficiency and security [Chappell, 2014]. These qual-

ity attributes affect developers’ productivity. Stavrinoudis & Xenos [2008] state

that software components with low internal measurement score will also have low

external measurement score for quality. Another statement is that when the inter-

nal score is low the external score is not high — only below average at maximum.

High internal quality score does not guarantee high external quality. Fenton’s
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axiom [Fenton & Pfleeger, 1998] states that good internal software structure is

expected to provide good external quality.

External (user-related) quality can be experienced through the usage of a soft-

ware. For the end-users external quality means characteristics, such as usability,

functionality, reliability and security. External quality measurement is generally

very important in software quality management. In addition, good external mea-

surement results contribute to the improvement of the public image of a company.

The external quality discussion is kept minimal in this thesis, because technical

debt are related to internal quality.

3.1.2 Diverging Quality Perspectives

Chappell [2014] defines three aspects of software quality: functional, structural

and process. Functional quality describes how well a software fulfills the desired

functionality. It comprises meeting the specified requirements, allowed amount

of defects, performance and ease of learning and using it. Second aspect, called

structural quality, measures the quality of the source code. Third aspect, process

quality, significantly affects the value received by all stakeholders. Process quality

has attributes such as meeting deadlines and budgets, and a reliable repeatable

development process. Every quality aspect is connected to each other. When

something is changed in one aspect, it affects the others. For example, tightened

schedules for process improvement may increase the amount of defects in the

software and decrease functional software quality.

Chappell [2014] divides software project stakeholders that care about software

quality into three groups: users, development team and sponsors. Each group

considers their own aspect that impacts their work most. However, each aspect

has its own weight in a project and has trade-offs when emphasized. The emphasis

of certain aspects vary depending on project goals and needs.

Users are interested in functional aspect of the software. However, the term

“user” is a bit vague concept in software development process due to different

user types [Stavrinoudis & Xenos, 2008]. Users can be, e.g., end-users, testers,

and even developers. In other words, everyone who is participating in the pro-

duction are users at some level. Development team cares about the structural
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aspect, but also the functional quality to some degree. Well-structured source

code enables developers to work and maintain the software in a desired way.

Team managers require methodologies to enable manageable process and to de-

liver the right software for the sponsors and users. The third group, sponsors,

are interested in all three aspects of quality. Sponsors are usually the business

personnel that fund the development. Their interest should be comprehensive

because they have to know that the project is progressing as planned. Sponsors

pursue to achieve good business value, but they often ignore important technical

issues and focus too much on the business related data [Chappell, 2014].

3.2 Internal Quality Measurement

Software quality is measured for various reasons in organizational perspective. Or-

ganization can create baselines and models of current practices, inspect strengths

and weaknesses, or evaluate the quality of the process or the software. When a

software has a specified requirements with characteristics that are relevant with

the software quality, it becomes possible to measure it [Petrasch, 1999]. Without

quantitive metrics, software quality measurement is subjective, because it is per-

formed through estimator intuition or surveys. Jones [2008] states that quality

has to be measurable when it occurs and predictable before it occurs. Hence,

measurement framework is needed to describe the baselines that are then ana-

lyzed to form an understanding of dependencies between processes and events.

Analysis of this knowledge generates a model that needs evaluation to enable the

creation of model for prediction and instruction.

Software measurements give usable information about the quality of development

and assist in defect prevention. The international quality standards define qual-

ity measurements to enable organizations to achieve appropriate product qual-

ity [ISO, 1997; ISO, 2000]. However, a general problem in measurement is the lack

of guidelines that help to accomplish the right process. The end-product quality

of any software project is heavily connected to measurements that are used to

monitor software quality factors [Stavrinoudis & Xenos, 2008]. Measurement is

important for process (e.g., planning or development), products (e.g., deliverables

or documents) and resources (e.g., personnel or materials) [Scotto et al., 2004].
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Quality measurement is often subjective, hence problematic when not executed

through practices that are well managed [Moses, 2009]. There are also two quality

factor groups concerning all entities: directly and indirectly measurable factors.

Internal quality is measured directly and has objective results. Internal measure-

ments are performed automatically to source code with internal software metrics.

Internal quality measurement is fast, easy and automated process and it could

even be performed on unfinished software projects. Error frequency is considered

to be minimal and the measurement results are objective. However, the results

are low-level information and difficult to be interpreted and utilized in practice.

External quality is measured indirectly and is subjective. External measurements

usually require the software to be finished and evaluated by the users before mea-

surement [Stavrinoudis & Xenos, 2008]. Stavrinoudis & Xenos [2008] list that

heuristic evaluation performed by experts [Nielsen, 1994], performance measure-

ments [Dumas & Redish, 1999; Rubin, 1994] and the user-perceived software

quality measurements [Xenos & Christodoulakis, 1997] are the most common

external quality measurement techniques. The downside of external quality mea-

surement is its high costs [Stavrinoudis & Xenos, 2008].

Quality measurement goals can also be viewed from different perspectives, such as

customer, manager or developer [Sun, 2011]. Bohnet & Döllner [2011] emphasize

the importance of monitoring, management and mitigation of internal quality

during development and maintenance. Maintainable software is better achieved

through these activities due to high non-realizability of internal quality, especially

amongst management. To make the internal measurements worthwhile for any

project, it is important to acknowledge that the costs of internal measurements

are significantly lower compared to external measurements [Stavrinoudis & Xenos,

2008].

3.3 Internal Quality Metrics

Software quality is often measured both qualitatively and quantitatively. Quality

metrics are used when quantified and measurable data is extracted from software.

The purpose of software metrics is to assist software developers to inspect source

code and enable them to improve their practices. To get meaningful results from
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measurement, the targeted source code fragments must be large enough. Specific

software development languages and frameworks require an appropriate set of

metrics to be used for measurements [Stavrinoudis & Xenos, 2008]. Software

quality metrics have been proven to reflect internal software quality and are widely

used in software quality evaluation methods to identify those parts of software

that require re-engineering [Boehm et al., 1976]. Common quality metrics include

the following [Singh, 2013]:

Lines of Code (LOC)

Measures the size of software. Smaller size means better understandability.

Cyclomatic Complexity (CC)

Measures the complexity of class methods. Lower complexity score means

higher quality.

Coupling Between Objects (CBO)

Measures the level of coupling associated with the class that is being mea-

sured. Less coupling means less complexity.

Lack of Cohesion of Methods (LCOM)

Measures the level of encapsulation in a class. Higher cohesion score means

less complexity and higher reusability.

Weighted Methods per Class (WMC)

Measures the sum of complexities in a class that are individually measured

with CC. Lower weight means better maintainability, reusability and less

complexity.

Response For a Class (RFC)

Measures the level of communication that a class has with other classes.

Fewer responses mean less complexity and effort in testing and better un-

derstandability.

Maintainability Index (MI)

Measures the ease of software maintenance through other metrics. Higher

index means higher maintainability and quality.



15

Number of Children (NOC)

Measures the number of children that a class has. More children means

better reusability, but higher complexity and testing effort.

Depth of Inheritance Tree (DIT)

Measures the depth of class inheritance hierarchy. Greater depth means

higher reusability, but also higher complexity.

A definition that has been commonly used to define quality is the density of

post release defects in software, which is indicated by the number of defects per

thousand LOC (KLOC) [Diaz & Sligo, 1997; Fox & Frakes, 1997]. Krishnan &

Kellner [1999] and Gaffney [1984] report that LOC is the most suitable estima-

tor for the amount of errors in code. According to Banker & Slaughter [2000],

data complexity and software volatility are significant predictors for errors. Data

complexity is the number of data elements per unit of application functionality.

Software volatility is the frequency of enhancements per unit of functionality in

certain time frame.

3.4 Quality Models for Evaluation

Metaphors are often used in software design process to aid understanding [Mc-

Connell, 2004]. Using metaphors in this way is called “modeling”. In order to

understand and measure quality, a number of quality models and standards are

specified to help software development organizations to build software with ap-

propriate level of quality. Quality models divide the concept of “quality” into dif-

ferent quality factors (aka characteristics or attributes). These models are mainly

used during requirements analysis as checklists [Wagner, 2013]. Descriptions for

the different quality characteristics are listed in Appendix A. There are multiple

quality models with various characteristics and most of the characteristics will

overlap although they might be named bit differently.

McCall’s Model

McCall’s quality model [McCall et al., 1977] focuses on certain software
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quality factors concerning developers’ priorities and users’ views. The soft-

ware product is viewed from three different perspectives. Revision perspec-

tive measures the ease of modifiability. Transition perspective measures the

ability to adapt to other environments. Operations perspective measures

the characteristics of operation. McCall’s quality model structure is shown

in Figure 3.1.

Boehm’s Model

Boehm’s model [Boehm et al., 1978] is similar to McCall’s model by having a

hierarchical categorization around high-level characteristics. It concentrates

on defining software quality qualitatively by a given set of attributes and

metrics. The structure is described in Figure 3.2.

FURPS Model

Grady [1992] introduced a model called FURPS, which was later extended

by IBM to FURPS+. FURPS stands for functionality, usability, reliability,

performance and supportability. FURPS is also similar to the previously

introduced models but it has not been that popular or used.

Dromey’s Model

Dromey’s model [Dromey, 1995; 1996] focuses on the relationship between

characteristics and sub-characteristics of quality. It attempts to connect

software properties with software quality attributes [Singh & Kannojia,

2013]. The quality model is designed to be dynamic and product based,

that transforms to fit the product context. The model is shown in Fig-

ure 3.3.

ISO 9126

ISO 9126 is a derivation of McCall’s quality model that was introduced in

1992 [Singh & Kannojia, 2013]. ISO 9126 [ISO, 2001] standard is the most

well-known taxonomy for software quality and recognizes the existence of

internal and external quality characteristics. The standard describes quality

as “the totality of features and characteristics of a product or service that

bears on its ability to satisfy given needs” [ISO, 2001]. The hierarchy is

presented in Figure 3.4.
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Figure 3.1 The structure of McCall’s quality model

ISO 25010 (SQuaRE)

ISO 25010 [ISO, 2011] was formed in 2011 and it replaces the ISO 9126

standard. It has eight quality characteristics with sub-characteristics as de-

scribed in Figure 3.5. The quality specification is called “SQuaRE”, which

stands for “Systems and Software Quality Requirements and Evaluation”.

SQuaRE series of standards is the most applicable and long-running stan-

dard to software quality control.
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Figure 3.2 The structure of Boehm’s quality model
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Figure 3.3 The structure of Dromey’s quality model
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Figure 3.4 The structure of ISO 9126 quality model
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Figure 3.5 The structure of ISO 25010 quality model



4 Technical Debt

4.1 Introduction to Technical Debt

Cunningham [1992] introduced a metaphor “technical debt” to describe design

choices and the necessity of refactoring, because design choices have direct im-

pact on software quality. Technical debt specification has been broadened af-

terwards by several authors, such as Fowler [2003], McConnell [2008] and Ster-

ling [2013]. The metaphor has been extended to include architecture and design

by Kerievsky [2004]. Curtis et al. [2012] define technical debt as the cost of fixing

structural quality problems in production code, that organization knows must

be eliminated to control development costs or to avoid operational problems.

Ergin [2013] presents the following type categorization for technical debt:

Strategic Debt

Organization pursues to gain an advantage in the market by releasing the

software product before its competitors.

Tactical Debt

Organization decides to accumulate technical debt and remediate it later,

for example, when an organization aims to meet planned deadlines.

Inadvertent Debt

Organization makes cost savings by hiring unexperienced newcomers to

develop the project. However, newcomers’ lack of development know-how

incurs technical debt to the project.

Unavoidable Debt

Organization is demanded to make changes to developed software, for ex-

ample, by the government.

Incremental Debt

Development team accumulates technical debt in development through poor

development practices (e.g., poor experience, knowledge or motivation).
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Design Debt

Development team takes shortcuts in design or implementation, or design

too much upfront. Solutions usually end up being suboptimal.

Code Quality Debt

Software quality is poor because of the amount of software defects or crashes,

and complex and poorly structured source code.

Testing Debt

Development process lacks automated testing and too much testing is per-

formed after software changes.

Knowledge and Documentation Debt

Development team is lacking in system knowledge and there is a high risk of

extensive debt, for example, if key system personnel leave the organization.

Environmental Debt

Development process, hardware and infrastructure has issues and too many

operational tasks are performed manually.

Different types of debt occur in different phases of development [Rothman, 2006].

Some types are intentional, some unintentional and some are resulting from an-

other debt. Different debt types might need different measures and approaches

for management, because of their varying attributes. In this thesis, the term

“technical debt” is considered to include various types of debt, so the technical

debt is discussed in broader extent.

Technical debt is accumulated when the internal quality of a software is compro-

mised through intentional or unintentional actions. Intentional debt is incurred

through conscious decisions and actions for business reasons. One of the reasons

for intentional technical debt is that it can enable strategic advantages for or-

ganizational goals [Klinger et al., 2011]. Intentional debt consists of requested

changes, refactoring and debugging that are deferred to future release [Snipes et

al., 2012].

Unintentional debt is commonly caused by inexperienced or unskilled individuals

in a development team. Debt also incurs when appropriate design standards and
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practices are neglected. Developers could use poor design practices and methods

on daily basis, so that maintainability decreases over time and affects productivity

of the whole development team. Concerning the impact on internal quality, unin-

tentional debt could be avoided through informative development team feedback

on the decisions related to prioritization strategies [Theodoropoulos et al., 2011].

Unintentional debt is typically more problematic type of debt than intentional

debt and is considered to be a challenge in software industry. Different sources,

motivation and management of technical debt is found to be more complex than

simple tradeoffs made by technical architects [Klinger et al., 2011].

Every software project involves certain level and form of technical debt, which

always has some negative effects [Higgs, 2011]. Gartner1 reports that global

IT debt was $500 milliard in 2010 and potentially rises to $1 billion by 2015.

However, Buschmann [2011] states that it is often beneficial to incur technical

debt and pay it off later and reminds that paying off technical debt does not always

provide the best value. In some cases, it could be beneficial to let the debt retire

with the software, if the software is planned to be a short-term solution.

4.2 Sources of Debt

Klinger et al. [2011] state that rushed production to meet deadlines and decisions

made in other projects that affect the project in question cause debt. In addi-

tion, other debt sources are such as acquisition, new alignment requirements or

changes in the market ecosystem. According to Klinger et al. [2011], management

practices and decisions are often informal, which incurs technical debt. Technical

decisions are made without appropriate analysis concerning their impacts and

risks.

When technical architects make bad design decisions, they cause extensive de-

velopment issues in the future when the architectural foundation lacks flexibility,

functionality or cohesion. Architects are responsible for the implemented techni-

cal features in code-level, but there are numerous stakeholders to ensure project

success concerning testing, brand strategies, legal, marketing and so on [Williams

et al., 2010].

1 http://www.gartner.com/newsroom/id/1439513

http://www.gartner.com/newsroom/id/1439513
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4.2.1 Poor Practices

Occasionally, managers and developers need to make decisions to gain short-term

benefits at the price of decreasing internal quality and long-term concerns such

as maintainability. Source code that has been written by taking shortcuts might

be fast to work with at first, but the shortcuts will slow down the development

process in long-term. It is also risky to later make changes to poorly structured

source code, because one small change can break several other software compo-

nents.

However, the usual reason behind bad software design is the incompetence of an

individual development team member that unintentionally accumulates technical

debt. When the software development is not controlled properly, unintentional

debt can creep in. Unintentional debt, such as spaghetti code, loose user input

validation practices or insufficient unit testing could cause tedious issues. For

example, if faulty input data is allowed and saved into the system, the data

quality decreases and can cause critical issues to the business that is using the

software. Hence, neglecting development process control causes decreased system

accuracy and degrades security [Theodoropoulos et al., 2011].

Lack of refactoring is a common issue that degrades source code quality and lets

technical debt to accumulate. The benefits or costs of refactoring are not usually

quantified, which makes the justification of it difficult when communicating with

management [Zazworka et al., 2011]. Refactoring effort and impact estimation is

difficult in general, so refactoring might be unattractive and easily avoided.

4.2.2 Lack of Collaboration

Software development is social activity that requires collaborative planning, brain-

storming and designing. Solving problems can be difficult, and wrong decisions

and designs are difficult to avoid. Through communication and collaboration,

ideas, designs and mistakes are transformed to solutions, that pushes the project

to go forward.

The decisions that incur technical debt are often made by stakeholders that are

unaware of the consequences of their decisions [Klinger et al., 2011]. The decisions
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always affect some other part of stakeholders. It is common that business, opera-

tional and technical stakeholders have difficulties in communication, that further

cause issues in projects [Williams et al., 2010]. For non-technical stakeholders,

there might be no suitable way to communicate with the technical department

about technical issues. Hence, organizations often lack the global view and com-

munication channels to be able to optimize complex technical debt issues.

According to Theodoropoulos et al. [2011], technology departments are said to be

out-of-sync with the rest of the business in organizations, because of the historical

differences in perspectives. By enabling stakeholders to evaluate and manage

quality issues consistently across the enterprise will also enable more effective

collaboration for meeting common goals.

4.2.3 Technical Ignorance

Business executives, technology leaders, risk managers and end-users have in-

terest in project’s well-being, but are not usually interested in technical issues

or internal quality [Theodoropoulos et al., 2011]. Business partners should al-

ways understand the quality implications of their business decisions. Klinger et

al. [2011] report that decisions are rarely quantified appropriately to be able to

be monetized. Technical debt quantification is difficult, because it is relative to

a defined set of goals, requirements and stakeholders in a project.

4.2.4 Overoptimistic Estimation

Technical debt is often a symptom of objectives that are generated through

overoptimistic estimation. Ktata & Lévesque [2010] report that estimations

done in agile environments are also set as objectives for development (Parkin-

son Law [Ottaviani & McConnell, 2006]). These estimations are performed with

certain error rate percentage but can be far more off than the percentages im-

ply. To emphasize this, Austin [2001] mentions that schedule pressures cause

developers to compromise quality. Over time the technical debt is incurred over

process iterations at high rates and the development becomes very stressful for

the developers.



27

4.2.5 Outdated Technologies

Various technologies and development components keep evolving the same way

as the developed software itself and this means continuous need for adaptation.

Outdated technologies or development components can raise critical development

issues over time. From the development perspective, issues related to outdated

technologies and components can overcomplicate or even block the development

process. Outdated technologies or components cause issues like component in-

compatibility or lack of required features. Compatibility issues require additional

effort and cause additional costs. Technical debt accumulates when outdated

technology causes issues that are solved by taking shortcuts in development to

“save on budget”.

4.2.6 Aggressive Product Growth

When a software organization is facing an aggressive growth scenario, the rapidly

increasing business demand forces the organization to develop new features. When

the growth of the organization is increased aggressively, the technical debt ac-

cumulates in increased pace. Technical debt rapidly decreases maintainability

and development robustness, furthermore making new implementations impossi-

ble [Ramasubbu & Kemerer, 2013]. The opposite to aggressive growth is delayed

growth, in which the software has low utilization level.

4.3 Consequences of Debt

Technical debt affects several quality characteristics of software, that are listed

in Appendix A. Even a short-term negligence on technical debt management can

lead to a point where the development team is mainly dealing with software

defects and no new features are implemented [Snipes et al., 2012]. Development

team members might not be aware of the state of accumulated debt. Furthermore,

this means that they do not know that they cannot actually manage any feature

requests. This scenario is called “Death Spiral”. Death Spiral eventually makes

the development of the software unsustainable. This scheme can cause team

members to quit their job and/or incur major financial issues to organization’s
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business. Technical debt has severe impact on software quality through negative

effect on team’s productivity, collaboration and overall transparency [Ktata &

Lévesque, 2010].

When an excessive amount of technical debt accumulates, software development

team will eventually request that the software must be redesigned. Usual re-

sponse to this is to deny the need in order to save resources. In a way or another,

the management must and will agree to redesign to regain appropriate developer

productivity [Martin, 2009]. As a reaction to decreased productivity in a project,

management usually recruits more developers to the project to fix a deficit [Mar-

tin, 2009]. Unfortunately, the effect is the opposite, because the newcomers are

not familiar with the system design. Under heavy pressure, the productivity of

the development team decreases even further.

When software features are deferred, the operability characteristic is affected.

When the users are suffering from decreasing operability, the accuracy of required

functionality is decreasing [Theodoropoulos et al., 2011]. As a result, users are

encouraged or even forced to create workarounds when required features are in-

accurate, unusable or missing. This means that incoherent working habits are

created and the security of the data in the system is compromised.

Poor user input validation risks a whole software system by enabling user to input

erroneous data. Bad data introduces quality defects on processes or systems that

interact with it. The reason for this is the inaccurate or incomplete data that is

not reliable. When a system is generating or utilizing bad data, system integra-

tion becomes very hazardous and could cause wider scale issues to other systems.

Bad data generally decreases software’s functional accuracy and interoperabil-

ity [Theodoropoulos et al., 2011]. From developer’s perspective maintainability

is affected through decreased changeability and testability.

Technical debt has principal and interest costs. Principal costs occur when a

defect is fixed on detection. Interest costs keep accumulating until the defect is

fixed, which is the case when the fixing of a defect is postponed. Interest includes

costs that are caused by additional effort related to technical debt [Snipes et al.,

2012]. In addition to principal and interest costs, technical debt causes risks to

business when critical defects cause unexpected issues in software operation. For

example, if data gets corrupted or fatal system error halts the system execution,
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the required maintenance procedures will incur additional costs.

To define principal costs for technical debt reduction the structural quality has to

be analyzed. Defect severity analysis and high-severity defect fixing prioritization

are needed to estimate costs [Curtis et al., 2012]. The principal cost is estimated

through the number of critical defects, time required to fix each defect and the

cost for fixing a single issue. The time needed to fix an issue consists of analysis,

comprehension, correction planning, side-effect evaluation, fix implementation

and release operations.

Curtis et al. [2012] present an example of principal calculation. The equation

Principal =
n∑

i=1

(vi · fi · ti · ci) (4.1)

is in generalized form, where n is the amount of severity categories, i represents

a violation severity category, vi is the number of violations, fi is the percentage

of violations that must be fixed, ti is the time that fixing a single violation takes

in hours, and the variable ci is the average cost of fixing per hour. Estimates

resulting from Equation 4.1 should be treated as lower bounds [Curtis et al.,

2012]. Estimations also vary broadly and depend on used programming language,

for example. Curtis et al. [2012] calculated an average cost of 3.61 dollars per

line of source code for technical debt existence in their example.



5 Refactoring

5.1 Introduction to Refactoring

The word “refactoring” is formed from word a “factoring” which was used in

structured programming [McConnell, 2004]. Factoring means decomposition of

software to manageable components. Cunningham and Beck were the first ones

to recognize the importance of refactoring [Fowler et al., 1999].

Refactoring is a process that aims to improve the quality of the source code of a

software system without altering the behavior experienced by the users. The goal

is to restructure software source code to be more readable, understandable and

cheaper to maintain. Refactoring process mainly targets to reduce the amount of

source code, but it can also increase it [Fowler et al., 1999]. Also, refactoring is

assumed to improve non-functional quality aspects, e.g., extensibility, modularity,

reusability, complexity, maintainability and efficiency [Mens & Tourwé, 2004].

Refactoring helps to improve developer productivity and reduces produced soft-

ware defects [Mens & Tourwé, 2004; Fowler et al., 1999]. Refactoring is the

key element in the whole process of software development [Fowler et al., 1999].

Improved internal code quality enables developers to be productive with their

daily work. Refactoring can also be used in source code familiarization when new

developers join a project. Getting familiar with the source code usually takes

months, so refactoring is a good way to learn. The role of refactoring becomes

more significant if the source code quality or the documentation is poor.

Refactoring is an alternative to upfront design and is used in modern agile soft-

ware development practices. Fox example, in XP methodology, the working soft-

ware is written quickly and refactored afterwards to meet the quality standards.

Upfront designs will always be changed multiple times throughout a project to

meet the specified requirements [Fowler et al., 1999]. So, the design does not

have to be right the first time. Refactoring can and should be done continuously

during the project to different parts of software, such as source code design and

structure, database structure or documentation. Refactoring decreases the possi-

bility to make mistakes in the code by cleaning up the cluttered and unreadable

code to improve maintainability and therefore enable the developers to do their
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work properly.

5.2 Code Smells

A common problem for software engineers is to discover when and where to apply

source code refactorings [Stroggylos & Spinellis, 2007]. Fowler et al. [1999] state

that this problem is usually handled with human intuition and method called

“Bad Smells” or “Code Smells”. Code smell is a hint that indicates that source

code might be poorly designed and needs to be refactored for appropriate level of

maintainability. Moreover, there are software metrics that can identify areas that

benefit from refactoring and various tools that support the human intuition and

help to refactor [Stroggylos & Spinellis, 2007]. Code smell indicates a possible

refactoring opportunity within or between classes. The following code smells

indicate refactoring opportunities within a class :

Duplicated Code

Code structure has one or more duplicate in the code.

Long Method

A class method is too long.

Large Class

A class has too much responsibilities and can appear as too many instance

variables.

Long Parameter List

A class method has too many parameters.

Switch Statements

Switch statements lead to duplication. Polymorphism should be considered

instead.

Speculative Generality

Obsolete generalization when it is not needed.
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Temporary Field

A field of an instance that is set only in certain circumstances. Fields should

be always used.

Comments

Source code should explain clearly what it does, hence code comments are

meant to explain “why” instead of “what”.

The following code smells indicate refactoring opportunities between classes :

Divergent Change

When a single change requires multiple other changes in a class instead of

targeting one method.

Shotgun Surgery

When making a change somewhere requires a lot of minor changes in many

other classes.

Data Clumps

Some data items existing together in lots of places.

Parallel Inheritance Hierarchies

A case of shotgun surgery, in which a new parallel subclass is required to

be added due to new subclass addition.

Feature Envy

A method that processes more other classes’ features that the one’s it is

located in.

Primitive Obsession

Primitive types are overused in software instead of using small class ob-

jects (e.g., tel. number, zip code or currency).

Lazy Class

A class that should be eliminated, because it is not doing that much in the

software.
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Message Chains

When a method asks for an object for another object, and again for another

object forming a long chain.

Middle Man

A class is delegating many methods of another class.

Alternative Classes with Different Interfaces

Similar functionality between classes.

Inappropriate Intimacy

Classes manipulate others’ features too much.

Data Class

Classes with fields, getters and setters only. Other methods are manipulat-

ing these extensively.

Incomplete Library Class

Too much trust is put on third-party libraries and it may cause troubles

when extending functionality, because the libraries are really technically

unknown for the developer.

Refused Bequest

Subclasses inherit methods and data from parent classes, but rarely use

them.

Code Smells are broadly used to aid the refactoring process [Mens & Tourwé,

2004]. However, very few studies report on the effect of using code smells and

it is not known whether the code smells are effective way to guide refactoring

and improve source code [Zhang et al., 2011]. Zhang et al. [2011] report that

most studies focus either on one or two code smells or all 22 of them. They also

report that “Duplicated Code” smell was the most studied. However, Zazworka

et al. [2011] present that “God Class” (“Large Class”) is the most commonly

appearing code smell and refactoring it requires most modifications compared

to other smells. Monden et al. [2002] found that in some situations “Duplicated

Code” improves reliability. Other authors suggest that every duplication does not
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necessary need refactoring because of this. Some situations require that refac-

toring costs and risks are measured and compared against the expected gains

in maintainability. Zhang et al. [2011] also list that some studies indicate that

“Large Class”, “Large Method” and “Shotgun Surgery” code smells are signif-

icantly associated with software faults of all severity levels. Code smells that

were not associated with any faults were “Data Class”, “Refused Bequest” and

“Feature Envy”.

5.3 Performing Refactoring

Refactoring is applied with short, continuous and controlled bursts during devel-

opment to restructure the source code. Refactoring is a part of every day software

development to ensure cohesive production of good quality code [Fowler et al.,

1999]. Good opportunities to refactor are when performing modifications or main-

tenance, adding new classes, methods or routines, and fixing bugs. Compiler, or

similar, logs are also a good way to get indications of refactoring opportunities.

After a refactoring opportunity is detected, its scale has to be analyzed. The

scale of refactoring can differ widely. For example, renaming a variable is a small

task, restructuring a method is a medium task and architecture redesign is a large

task. The larger the modification scale is, the more risks it involves.

When deciding what to refactor, it is important to target complex components

that usually cause the most problems in the software system. However, this kind

of refactoring is usually avoided because developers tend to hate or fear complex

source code that might end up malfunctioning after the procedure [Fowler et al.,

1999]. Concerning changes that improve code quality, the LeBlanc’s Law states:

“later equals never” [Martin, 2009]. In other words, refactoring is meant to be

performed continuously. There is also a “refactoring rule of three” defined by

Roberts [Fowler et al., 1999]:

“The first time you do something, you just do it. The second time

you do something similar, you wince at the duplication, but you do

the duplicate thing anyway. The third time you do something similar,

you refactor.”
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The quality of software design is improved only when refactoring is used appropri-

ately. In addition to improved internal quality, refactoring decreases the amount

of introduced bugs and makes testing easier [Fowler et al., 1999]. There are tools

to automate refactoring tasks, but they are quite risky to use and can cause un-

expected results. Manual refactoring done by the developer usually brings better

results when the source code is inspected and understood.

Although refactoring increases the software response times, it also makes the soft-

ware performance optimization easier through improved source code readability

and structure. When source code is clean and well-structured the optimization

options are easier to see. However, the optimization process should be done at

the end of the development process in its own phase [Fowler et al., 1999]. Per-

formance optimization is quite similar process to refactoring, but it focuses on

improving the software execution and response times. Developers pay great at-

tention to keep the software performance high while implementing components,

but the lack of effectiveness is caused by messy source code.

5.4 Risks of Refactoring

Programmers often use or claim to use refactoring to improve the internal quality,

but the quality metrics usually indicate that the actions have had the opposite

results [Stroggylos & Spinellis, 2007]. Developers also often state that software

quality is a top priority, but in reality they are driven by schedules. It is common

that project managers depend on schedules and pay attention to development ve-

locity without paying enough attention to the internal quality issues. As Fowler et

al. [1999] state, programmer does not need a permission to refactor. Even though

developers can implement solutions their way, there has to be a cohesive vision

and understanding within the development team. However, refactoring should

not be performed when project schedule is tight and a deadline is approach-

ing [Fowler et al., 1999]. If refactoring is not applied properly it can decrease

understandability instead of improving it [McConnell, 2004]. There is also a high

risk to introduce bugs when source code is modified under pressure.

Whenever refactoring is performed, it is essential to acknowledge that an ongoing

refactoring task must be completed before moving on to the next one. The
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refactored code must also be accessible after refactoring is completed, so it does

not introduce any new issues. Instead, new refactoring opportunities that are

discovered during certain refactoring process should be noted down for future

processing. Any refactoring that is left unfinished is a risk that can introduce

more issues. The risk level of a refactoring task affects how the refactoring is

approached and executed [McConnell, 2004]. To reduce risks, constant testing

and reviewing helps to control the refactoring process and avoid mistakes. Formal

guidelines and developer know-how are also important factors that help to reach

good refactoring results.

Kernighan & Plauger [1978] state that bad quality source code should never be

patched or documented — it should be rewritten. When a system-wide refactor-

ing is planned, it is essential that the effects of individual refactoring operations

are monitored [Fowler et al., 1999]. There is a huge risk that some partial refac-

torings cause a defect that cripples the system operation. Checklists can be used

to help to keep track of the refactoring steps. If refactoring modifications does

not work as they are supposed to, there must be the ability to revert the changes.

Refactoring source code to more readable form usually incurs software perfor-

mance loss as a tradeoff [Fowler et al., 1999]. Although, performance issues are

often located in small segments of the code. There are just a few segments that

cause the majority of performance loss in software. It is also good to acknowl-

edge that most part of the source code is rarely executed, implying that the time

spent optimizing these fractions of the code is expensive. Ron Jeffries, an XP

development methodology professional, stated that performance should always

be measured instead of guessed or estimated [Fowler et al., 1999].

Databases could also be affected by refactoring. Business software systems are

often coupled tightly with their databases, which makes database architecture

changes challenging. Changes to database structures require data migration,

that is time-consuming task to accomplish. However, layers can be implemented

between databases and the actual object models to achieve flexibility. Higher

flexibility always means higher complexity [Fowler et al., 1999], and thus, more

written code.

Refactoring should not be done in a software system if there is no access to

published application programming interfaces (API) [Fowler et al., 1999]. For
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example, when a method is renamed, it means that every other software that

uses the method has to be modified to use the new method name when calling

the method. The solution to enable the refactoring in this kind of situation is

to leave the legacy functionality available and mark them as deprecated. The

refactored functionality is then implemented in parallel. This way the interface

users have time to react to these changes and adapt to use the new refactored

version of the function.



6 Enabling Sustainable Productivity

6.1 Motivation for Internal Quality Investment

This section summarizes some points to answer our first research question: “Is

high internal quality essential in software projects? If so, why?”. It is often said

that quality cannot be justified to be essential in every project, hence this topic is

quite difficult to answer, but there are some fundamental points to any software

project to meet that quality promotes.

6.1.1 Project Success

The simplest and most foundational requirement for any project is success. To be

able to measure when a project meets its requirements, there has to be specified

and agreed scope for it. Project scope is an agreement and understanding be-

tween the customer and the development. Then the time and cost constraints are

estimated for the project from the specified scope. Project success requires that

the defined scope is comprehensive, because inadequate scope definition means

inaccurate estimations, and furthermore incorrect costs and schedule. Therefore,

comprehensive project scope is a foundational requirement for project success.

The quality of a project is the quality of the used process and the people in-

volved [Fenton et al., 2004; Fenton et al., 2008]. Generally, project success

is all about the correctness and quality of a software product [Sarigiannidis &

Chatzoglou, 2013]. According to Krishnan et al. [2000], people quality alone

strongly estimates the resulting software quality. Hence, establishing a good qual-

ity process for development and training for personnel are fundamental drivers

for success. High process and people quality also decrease risks and promote suc-

cess [Ould, 1999]. However, project success does not depend solely on successful

development, because it is heavily affected by, e.g., brand strategies, legal and

marketing [Williams et al., 2010].

Various quality factors are significant for success in software development and

require great attention in any project. This means that the internal quality of

software is an important issue when it affects the development productivity sig-
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nificantly. Relevant quality factors are often neglected in culture and literature of

software requirements [Gilb, 2000] and internal quality issues often leave without

required attention [Stroggylos & Spinellis, 2007]. Business stakeholders concen-

trate more on the irrelevant quality aspects in general [Theodoropoulos et al.,

2011]. However, high internal quality does not guarantee high external qual-

ity [Stavrinoudis & Xenos, 2008]. Hence, internal quality improvement cannot be

unambiguously proven to generate good external quality.

Development success depends heavily on architectural design, since the complex-

ity and size of software is increasing [Chen et al., 2010]. Flexible architecture

makes maintenance easier, but increases complexity and code base, which makes

maintenance more expensive [Fowler et al., 1999]. Harter & Slaughter [2000]

state that source code complexity decreases software quality, but Gaffney [1984]

reports that complexity does not affect defects significantly. Complexity affects

development because it makes source code much harder to understand and often

harder to read because of complicated logic and structure (more written code). As

software reuse decreases the code base [Boehm, 1988], it becomes an interesting

topic for future software development and research.

6.1.2 Staying on Budget and Schedule

Any software project requires accurate estimations to stay on budget and sched-

ule. Software projects being very dynamic with all the changing requirements,

estimations are difficult to perform. According to Popli & Chauhan [2014], there

are currently no common mathematical formula to accurately calculate these esti-

mations. Jørgensen [2004] reports expert estimation to be a dominant strategy in

software project effort estimation. There are no substantial evidence supporting

the superiority of estimations that are performed using models over the expert

estimates. When performing informal estimations, it might be familiar to end up

estimating what the management wants to hear, instead of having the courage to

provide more realistic estimates. The accuracy of estimation is critical, because

given estimates are often set as objectives for the project [Ktata & Lévesque,

2010].

For cost estimation, the inaccuracy of initial estimation can be up to 4 times the

calculated estimation [Boehm, 1981]. The cost of software can increase due to
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various reasons, such as poor project planning, changing requirements, develop-

ment issues and changes or assumptions that are too optimistic. Ramasubbu &

Balan [2012] summarize some root problems for cost estimation, including missing

required information and lack of experience with the used tools. Missing infor-

mation introduces issues when there are no data to input to required calculation

variables in initial phases of a project. Estimations made with lacking estimation

tool experience usually result in low quality estimates. Therefore, accurate esti-

mations are a critical part of business because they enable to adjust the project

goals. If costs or required effort are projected to be higher than planned, the

project features or budget can be adjusted accordingly.

Costs related to software defect fixing are a major part of software costing. Ac-

cording to Glass [2001], around 40% of software project costs are caused by soft-

ware defect detection and removal. The earlier a defect is detected and fixed, the

fewer it costs to the business [McConnell, 2004]. Good quality software design de-

creases additional costs, because it prevents re-engineering [Stroggylos & Spinel-

lis, 2007]. Re-engineering also decreases productivity, so it should be avoided

by utilizing risk management, prototyping, incremental development and modern

programming practices [Boehm, 1988]. However, quality control is an expensive

investment itself, but it is a key element to optimize productivity, schedules and

customer satisfaction [Sun, 2011]. When software costs are understood and con-

trolled, it inevitably requires an organization to understand and control various

aspects of software quality [Boehm, 1988].

Costs of defect fixing are divided into six categories, that are investigation, mod-

ification, workaround, customer support, patching and validation [Snipes et al.,

2012]. Snipes et al. [2012] report that investigation cost estimate is between 50–

70% of the cost of fixing a defect. Modification costs are estimated to be less,

from 10% to 15% of the total defect fixing cost. Validation costs are estimated

to be 20–30%, but they usually spread across all cost categories. It is shown that

defect investigation is approximately over half of the fixing costs. This means

that good internal quality decreases project costs. Software defects has to be de-

tected and fixed as early as possible in development process, because it prevents

fixing cost escalation [McConnell, 2004]. Snipes et al. [2012] report that there are

no findings that deferring a defect would increase or decrease overall costs, but

patch requested by a customer on a deferred defect incurs even higher costs.
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The problem with small organizations is the lack of realistic knowledge on costs,

because there are no established budget or monitoring for software quality [Porter

& Rayner, 1992; Plunkett & Dale, 1983]. According to Krasner [1998], cost of

quality models are rarely used, which could mean the preference of informality.

However, according to Jørgensen [2004], there is no proof that cost models are

better than subjective estimation. The problem with the usage of economic mod-

els is the lack of common data in software industry [Wagner, 2013]. Hence, it is

difficult generate estimates when there is no data for estimations to be based on.

As quality control is an expensive investment [Sun, 2011], it is possibly the most

common single reason for informal quality control in small organizations.

6.2 Foundations for Productive Development

This section presents certain foundational elements concerning the process and

people quality to answer the research question: “How to promote productive de-

velopment?”. Productivity is affected by many factors from individuals to the

process, allowing many ways to improve productivity.

Process quality is an important entity to enable productive working environment,

and the need for software process improvement has been identified [Chrissis et

al., 2003]. Process improvement increases the product quality [Banker & Slaugh-

ter, 2000; Sun, 2011] and business value [Chrissis et al., 2003; McFeeley, 1996].

Process improvement might sometimes mean changing the whole process, instead

of modifying the existing one. For example, the problem might be that the de-

velopment methodologies that are used in a project, are not dynamic enough

to be able to manage the continuous changes. Processes can be measured for

size, effort, schedule and cost under successful performance. The measurements

include data concerning the time, size and defects in a process. The process of

any project should always be specified to meet organization’s business goals and

intents [Singh & Kannojia, 2013].

Raza & Faria [2014] note that individuals and teams can be helped through

methodologies, such as Team Software Process (TSP) and Personal Software

Process (PSP) to improve performance and production of virtually defect free

software without overrunning budget or schedules [Humphrey, 2005; Davis &
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Mullaney, 2003; Rombach et al., 2008]. In PSP, productivity is measured as “size”

units per hour (LOC per hour). It is also measured per process phase, because

it is valuable to know which phase are the problematic ones and require more

attention. The important part of TSP and PSP is the measurement framework

consisting of four measures: effort, schedule, size and defects [Pomeroy-Huff et

al., 2009]. It has methods for improving process, project management and quality

management. Software development processes that intensively use metrics and

quantitive methods can generate vast amount of data to be analyzed [Burton

& Humphrey, 2006]. This data aids in identification of performance problems,

determination of root causes and generation of improvement actions.

PSP has a suggested measure called Process Quality Index (PQI) which takes five

different components into account: design to code ratio, design review to design

ratio, code review to code ratio, defect density in compilation and defect density

in unit test. Design to code ratio is design quality in time ratio. Design review

to design ratio is design review quality in time ratio. Code review to code ratio

is code review quality in time ratio. Defect density in compilation is the code

quality in defects per KLOC. Defect density in unit test is the software quality

in defects per KLOC. Raza & Faria [2014] report that too small design to code

ratio usually relates to a lack of thoroughness or even total absence of the design

artifacts produced, such as important design views or coverage of requirements.

6.2.1 Quality Assurance Program

Quality assurance (QA) consists of various techniques and plans for management

to promote high quality process and products. Quality and risks are analyzed

by reviewing plans, procedures, software (requirements, design, documentation),

schedules and reports. There are several approaches to improve software quality,

such as Capability Maturity Model (CMM) [Jalote, 2000], total quality manage-

ment (TQM) and Six Sigma [Pyzdek & Keller, 2003]. Different approaches aid

quality management in given situations by identifying available improvement op-

portunities. Sun [2011] notes that software quality should be controlled in every

step through the life-cycle of a project all the way to the maintenance phase,

because each project phase affects the final software quality. For example, a

defect that is identified in testing phase could have been occurred much earlier
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in the requirement specification phase. Hence, quality control promotes correct

requirement specification.

The main benefit of quality control is to establish clear and formal quality delivery,

but as a downside it involves high bureaucracy and lots of documentation [Wag-

ner, 2013]. However, the decision to save project budget on quality control causes

the software quality to decrease. Gilb [2000] mentions feedback as single and most

powerful principle to drive quality and promote success. He also points out that

methods using feedback provide good project control and practical information.

Jones [2008] presented five steps to software quality control for medium and large

enterprises:

1. Software quality metric program establishment.

2. Tangible executive software performance goal establishment.

3. Software quality assurance establishment (defect prevention and removal).

4. Leading-edge corporate culture development for formal quality programs.

5. Software strength and weakness identification.

Software industry has lot of uncertainty and successful projects require good man-

agement of risks that are involved. Shihab et al. [2012] sum that risk management

has proven its successful functionality and raised interest among researchers and

industry [Freimut et al., 2001; Miccolis et al., 2001]. The interest has made the

industry and related researchers more active in risk management.

In software bug prediction future bug appearance is predicted based on code

and historical metrics [Shihab et al., 2012]. Although statistical fault prediction

models outperform human estimation, software industry still relies on subjective

predictions made by human experts [Tomaszewski, 2006].

6.2.2 Quality Cost Control

Companies often promote quality as the central customer value and describe

it as an critical factor for success in achieving competitiveness [Schiffauerova &

Thomson, 2006]. However, organizations do not usually have a realistic knowledge

on their costs, for example, how much profits they are losing because of low

internal quality. In addition, Tatikonda & Tatikonda [1996] and Morse [1993] state

that only few managers measure the results of quality improvement activities.
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The reduction of costs that improve quality, is only possible if the costs are iden-

tified and measured. This means that the cost of quality (CoQ) management is

essential. CoQ is usually understood as the sum of conformance (poor quality

prevention costs) and non-conformance (costs caused by poor quality) costs [Ma-

chowski & Dale, 1998]. The goal of a CoQ model is to find a level of quality that

minimizes the total cost of quality. CoQ models are useful in understanding the

economic trade-offs involved in delivering good quality software. Many examples

confirm that quality improvement and cost measurement reduces quality costs

considerably [Schiffauerova & Thomson, 2006]. Schiffauerova & Thomson [2006]

list that detailed metrics in CoQ include the following:

– Asset and material costs.

– Preventive labor costs.

– Appraisal labor costs.

– Cost of defects per hundred pieces.

– Late delivery costs.

– Percentage of repeat sales.

– Time between service calls.

– Number of non-conforming calls.

– Number of complaints received.

There are various cost models for software quality, such as P-A-F (prevention-

appraisal-failure) [Slaughter et al., 1998; Knox, 1993; Krasner, 1998], Crosby’s

model [Crosby, 1979], process cost model [Ross, 1977] and ABC (activity based

costing) model [Cooper & Kaplan, 1988]. Most CoQ models are based on the

P-A-F classification [Plunkett & Dale, 1987; Machowski & Dale, 1998; Sandoval-

Chávez & Beruvides, 1998]. For decisions related to costs, there is COCOMO

(Constructive Cost Model) that is a popular cost estimation model originally pub-

lished by Boehm [1981]. It was originally published as COCOMO 81, but it was

later revised by Boehm et al. [1995] and published as COCOMO II. COCOMO

II is used in decision making concerning, say, project budgets and schedules or

tradeoffs among software cost, features, quality and schedule.

CoQ models are designed to prevent poor quality, but they are rarely used [Kras-

ner, 1998], because they do not have much appreciation in organizations. Since

formal methods are rarely used, other approaches are considered for cost mea-

surements.
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6.2.3 Testing

In programming, the majority of time is spent debugging defects instead of imple-

menting new features [Fowler et al., 1999]. Continuous testing is an effective way

to manage bugs by giving useful information for debugging procedures. Software

testing is a verification process in which the behavior of the program is tested

with a set of test cases against the expected behavior [McConnell, 2004]. Testing

is an essential part of development to reduce unnecessary risks and costs related

to quality.

Unit testing means that software components are tested to meet the technical

requirements. Tests are written before the implementation to correspond with

the required functionality. When a test passes, it indicates that the unit works as

intended, because the requirements that the unit test defines are filled [Fowler et

al., 1999]. Manual testing is inefficient, since time spent manually evaluating the

source code might take multiple times more effort compared to automated testing.

Automated testing either approves or rejects the tested component source code

and gives only a status statement as an output to programmer.

Since unit testing evaluates the internal quality, functional testing is used in QA

to test the external quality of the software. Functional testing is performed to

assure that the quality that users experience is on appropriate level. These tests

are not meant to be used during active development when agile methods and high

productivity are required.

6.2.4 Technical Reviews

To enable any process to work adequately, active communication between and

within stakeholders and customer/user feedback are central elements. In software

development, review meetings, such as source code reviews, are a good way to

sustain comprehensive technical understanding between development team mem-

bers [Fowler et al., 1999]. Different team members complement each other’s

understanding concerning technical implementations and visions because of their

varying specializations.

According to Kemerer & Paulk [2009], the recommended rate for individual re-
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views are 200 or less LOC per hour. This helps to identify two-thirds of the defects

in design reviews and more than half in code reviews [Raza & Faria, 2014]. Re-

views help in issue inspection from multiple perspectives and help avoiding design

and implementation flaws.

6.2.5 People Quality

Boehm [1988] reports that the performance of people are a key matter in pro-

ductivity improvement. Hence, management, staffing, incentives and working

environment are significant factors in productivity. Pragmatic programmer is

an easy adopter and a fast adapter, which means that one has an instinct for

technologies and techniques [Hunt & Thomas, 1999]. Being pragmatic helps also

being experimental and getting experience from multiple areas to increase confi-

dence and adaptability. With confidence it is easier to be critical thinker and face

challenges. Also, being realistic aids to avoid absurd goals that cause unnecessary

pressure for development and decrease productivity. Learning new technologies

and methods is important for managers and developers to maintain good level of

know-how and ability to adapt to environmental changes.

6.3 Improving Internal Quality

This section continues to answer the research question “How to promote produc-

tive development?” and presents source code related elements. The main focus in

development is often required to be in the customer-related work. Good design,

comprehensibility and reuse are top issues now and in the future.

6.3.1 Software Architecture

Architecture in a physical built object means “unifying or coherent form or struc-

ture” [Dictionary, 2014]. In software development the “building materials” con-

sist of programming language constructs and the operating environment they are

executed in. In addition, there are abstract concepts which represent certain

building components and their arrangement. The ability to read and understand

the source code of a software is comparable to reading a description of a building
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instead of viewing the building itself [Baragry & Reed, 1998]. In other words,

software does not have a physical representation to be viewed or touched.

Software development starts with conceptual model construction of the imple-

mented system. The model includes structural and logical arrangement of ab-

stract high-level concepts. Conceptual model is created to aid the vision of the

solution and how it should work. The model shows structural concepts and re-

lationships that are needed in the actual implementation. This creation process

involves many problems, such as requirement definition, transformation to imple-

mentation and the operation as an explanatory theory [Baragry & Reed, 1998].

In addition, architects have differing levels of education, known design methods

and experience which have an effect on how architectural concepts are designed.

Generally, there is no design that would be unambiguously right because some

concepts suit better to certain situations than others.

The term “architecture” is over-used in software engineering and its meaning is

scattered. Clements & Northrop [1996] describe reasons why practitioner commu-

nity has not been able to define software architecture requirements in a consensus.

Methodological biases in architecture are found to be a common problem. They

also acknowledge that the whole field is still quite new, and the study of software

architecture is following the practice instead of leading it. Poor foundations, such

as undefined and ambiguous terms, also increase confusion.

Stroggylos & Spinellis [2007] point out that the software design is the most influ-

ential factor for software quality, because it could evolve with fewer effort and cost.

The success of software development depends heavily on the architectural design,

because of the increasing size and complexity of software [Chen et al., 2010]. Ar-

chitectural styles and patterns are key elements to achieve better designs. The

styles and patterns exploit the existing system design knowledge to provide sim-

plified software designs that make design reuse easier. Software architecture also

evolves over time. For example, variations in requirements, technology, environ-

ment or distribution cause architectural changes. Static evolution happens in

the software specification phase and dynamic evolution happens in software run-

time. The dynamic evolution involves high risk, because of its complexity and

difficulty [Chen et al., 2010].
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6.3.2 Software Maintainability

Programming, debugging and testing covers 30–50% of a software project [Mc-

Connell, 2004], so high internal quality is important for optimal maintainability.

Maintenance might exceed 60% of the development costs being the most labori-

ous phase in development [Bell et al., 1992]. Developers also spend more effort on

software debugging than new feature development [Fowler et al., 1999]. Hence,

the quality of source code becomes even more significant factor to prevent budget

overruns and project failures. Software architecture is often required to be flexible

to promote reuse and be able to respond to changing requirements. Flexibility

makes changes easier to perform, but the maintenance becomes more expensive,

because of increased code base and complexity.

Old technologies, poor architecture design or other legacy systems could prevent

system scaling, new features or modern development practices. Software rewrite

could be the only option to regain appropriate internal quality. Rewrite usu-

ally comes into question, when refactoring cannot be performed incrementally in

smaller parts. When a software is rewritten, it is important to keep the internal

quality high to prevent yet another redesign demand in the future [Martin, 2009].

Software comprehension is a relevant part of maintenance [Roehm et al., 2012].

On average the time needed for comprehension is half of the time developers spend

on maintenance [Fjeldstad & Hamlen, 1983]. However, Roehm et al. [2012] report

developers usually avoid comprehension to save time and mental effort. Source

code is often duplicated and modified to their needs to complete a task at hand.

Developer experience and conformed standards are found to aid in new source

code familiarization and modern comprehension tools are rarely utilized [Roehm

et al., 2012].

6.3.3 Development Frameworks and Libraries

As Boehm [1988] states, software productivity can be improved through soft-

ware component reuse, because it decreases the size of code base. There are

vast amount of different development frameworks and libraries available. Avail-

able frameworks and libraries are utilized in development to promote source code

reuse, standardization and quality. Reusing existing components enables soft-
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ware development to concentrate on the actual project implementation, when

the framework has already been established and can just be used.

Available development technologies affect productivity, hence technological changes

can be used to improve productivity [Sommerville, 2010]. However, productivity

usually decreases when technological changes are executed in a project, but is

improved above the original level when the new technologies are in operation and

mastered.

Framework development requires significant effort in a software project when it

is implemented from scratch. Framework developers usually promote good ar-

chitectural decisions and designs to be able to provide developers the right tools

in the right way. Whether an organization decides to refactor poor legacy ar-

chitecture or build a new framework to improve current internal quality, both

will require significant amount of resources. Framework development decreases

development productivity, because the development effort increases without in-

creasing the actual software product size. Developer competence affects the most

on source code delivery rate, but lack of common source code libraries signifi-

cantly decrease the delivered functionality [Tomaszewski, 2006]. The benefits of

using existing third-party frameworks include the following:

– Organizations can hire developers that are familiar with the used frame-

work.

– Resources required to develop, maintain and test a good quality framework

are saved, when the work is outsourced to the framework developer.

– Risks and issues are outsourced to the framework developer.

– Extensive support due to large user community.

– Standardizations (code and file structures, naming conventions and other

foundational practices), security and design quality are evolved through

extensive framework developer and user community contribution.

6.3.4 Development Tools

There are multiple tools available for development to improve management and

productivity. Integrated development environments (IDE) offer tools for syntax

checking, automated refactoring, testing, version control and so on. Microsoft Vi-
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sual Studio1, Jetbrains IDEA2 and Oracle NetBeans3 are few examples of these.

There are multiple development-related tools available online these days, for

example, project management tools (e.g., Atlassian JIRA4, Microsoft Project5

or JetBrains YouTrack6), software hosting and version control (e.g., GitHub7,

SourceForge8 or Google Code9) or design diagramming (e.g., Lucidchart10 or

Gliffy11).

6.4 Managing Technical Debt for Sustainability

In this section, the research question “How to sustain productive development?”

is answered through technical debt management. Technical debt management is

suggested as the solution to sustain productivity in software development through

high internal quality administration.

Technical debt is managed to provide a good foundation for project trajectory.

Management practices include examination and establishment of debt estima-

tion model, bad programming practices, debt tolerance levels and debt moni-

toring [Letouzey & Ilkiewicz, 2012]. When technical debt management aims to

aid decision-making, the debt measurement must be comparable and monetiz-

able [Brown et al., 2010]. If technical debt is not measured, managers need to

make decisions based on their experience [Guo et al., 2011].

Krishna & Basu [2012] divide different debt reduction techniques into three sec-

tions: identification, classification and reduction. Firstly, insufficient documen-

1 http://www.visualstudio.com

2 https://www.jetbrains.com/idea

3 https://www.netbeans.org

4 https://www.atlassian.com/software/jira

5 http://office.microsoft.com/en-001/project

6 https://www.jetbrains.com/youtrack

7 https://github.com

8 http://sourceforge.net

9 https://code.google.com

10 https://www.lucidchart.com

11 http://www.gliffy.com

http://www.visualstudio.com
https://www.jetbrains.com/idea
https://www.netbeans.org
https://www.atlassian.com/software/jira
http://office.microsoft.com/en-001/project
https://www.jetbrains.com/youtrack
https://github.com
http://sourceforge.net
https://code.google.com
https://www.lucidchart.com
http://www.gliffy.com
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tation or code quality and coverage is identified. Then the identified debt is

classified as knowingly or unknowingly, short-term or long-term, reckless, strate-

gic or non-strategic and four grades of debt12. Lastly, the technical debt is reduced

by refactoring, TDD, source code reviews and audits, pair programming, contin-

uous integration, best practices and standards, and evolutionary design. TDD

is considered very beneficial for ongoing technical debt reduction according to

TDD experiments [Krishna, 2011], but it is reported that effective remediation

methods are still missing. Krishna & Basu [2012] identify thirteen steps for debt

management:

1. Identify and define a “living budget” that is the minimum production effort

(includes estimation and planning of code reviews and refactorings) that has

to be made to meet the deadlines.

2. Make sure to have time to understand why poor quality code is poor.

3. Identify the need to over-anticipate and eliminate it to prevent unnecessarily

complex code design.

4. Base designs on knowledge instead of assumptions.

5. Communicate and exercise pair programming.

6. Avoid the urge to please others — design the best way you can.

7. Follow standards and best practices.

8. Refactor one part at a time.

9. Utilize spare work time for debt reduction.

10. Keep yourself organized: estimate, monitor, empower others and prioritize.

11. Increase productivity and measure it in quality, not in quantity.

12. Learn and apply different refactoring techniques.

13. Keep learning constantly.

For technical debt management, there is a method called SQALE (Software Qual-

ity Assessment Based on Life-cycle Expectations) [Letouzey & Ilkiewicz, 2012].

SQALE provides guidelines for technical debt estimation and refactoring plan-

ning. To be able to estimate technical debt, organization is required to define

programming guidelines to represent a quality model, which is a contract in the

development team. The model includes requirements concerning architecture and

structure, implementation, naming conventions, legacy code management rules

and presentation. Also, there should be training for the non-technical stakehold-

12 http://madebymany.com/blog/the-four-grades-of-technical-debt

http://madebymany.com/blog/the-four-grades-of-technical-debt


52

ers to share knowledge concerning technical debt and SQALE.

In SQALE, each software requirement must associate with remediation func-

tion, which turns the amount of noncompliances to technical debt remediation

cost [Letouzey & Ilkiewicz, 2012]. The remediation costs for all the noncompli-

ances are the actual technical debt. If technical debt is accepted, non-remediation

costs are incurred. In SQALE the debt is called SQALE quality index (SQI). The

SQALE method has eight quality characteristics: testability, reliability, change-

ability, efficiency, security, maintainability, portability and reusability. Testability

is the base for all the other characteristics, because untestable code makes quality

assurance very difficult.

6.4.1 Debt Visualization

Monitoring any health condition is beneficial and in many situations the criti-

cal thing to do. Monitoring software health is equally important to functional

requirement conformance or meeting development milestone deadlines. Further-

more, technical debt might be misunderstood collectively, cause delays to the

project and compromise the software quality. When the state of internal quality

is monitored, the organization can react to technical debt. Technical debt is hard

to be removed completely, but it is not advised to do so. In contrast, a vast

amount of debt can lead to failure or increased costs through additional effort

and rework [Krishna & Basu, 2012]. However, technical debt’s incurring costs

(interest cost) are hard to be measured or estimated [Zazworka et al., 2013].

To visualize technical debt, dashboards are a good way to make the information

available. Dashboards also enable transparent communication within the organi-

zation. Power [2013] explains that technical debt often projects to feature velocity

in a project that is seen by business stakeholders. The problem is that they might

not know the real reason for the decrease and do not see where developers are

actually investing their time — which might be the technical debt. When debt is

being tracked continuously, development team is able to compare planned effort

investments to actual investments. Power [2013] reminds that even entire release

cycle could be spent solely on debt reduction. Technical debt measurement should

be a highly automated process to avoid additional employee workload.
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Snipes et al. [2012] make a rhetoric question: “Is a policy that drives the product

towards zero debt the best for all stakeholders?” Ramasubbu & Kemerer [2013]

report that the tradeoffs in technical debt are not fully studied to reveal the facts

concerning the benefits and disadvantages of having technical debt. As a key

obstacle they suggested to model the evolutionary nature of the technical debt

accumulation. This would take into account the benefits and costs of technical

debt that is gained through the life-cycle of a software system.

6.4.2 Decision Making

Business competition decreases the value of existing software. Hence, companies

have to add more value to their software products by developing new features.

However, when an organization wants to improve the business value through

software quality, there are many details it has to investigate. These details include

current quality status and costs related to quality. After various details are

investigated, the organization can evaluate production costs, benchmarks and

standards. Also, economic trade-offs and poor quality costs become visible and

assist in future decision making [Krasner, 1998]. Therefore, software organizations

need to understand how much technical debt they have and how much debt

reduction they can afford [Power, 2013]. Snipes et al. [2012] list the following

factors for decision-making concerning deferral of defects in order of importance:

1. Defect severity.

2. Existence of a workaround.

3. Fix urgency specified by the customer.

4. Implementation effort.

5. Risk of fix proposal.

6. Testing scope.

Fowler et al. [1999] state that there are no exact guidelines for the decision mak-

ing concerning the verdict between refactoring current software and a fresh start.

However, the decision is easier when refactoring software to separate components,

since the problem area is narrowed down and different parts can be refactored

separately. In general, a component or a software could be rebuilt from scratch

if the development has become unsustainable or if the current software cannot

be transformed to meet new visions and objectives. Reasons for unsustainable
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development could be, for example, high software defect count or foundational ar-

chitecture design flaws. Making changes to already malfunctioning code is always

risky, because the modifications could cause even more defects. The majority of

source code should always be defect-free [Fowler et al., 1999].

6.4.3 Debt Remediation

Developers play an important role in technical debt remediation as being key

stakeholders in software projects [Krishna & Basu, 2012]. The most experienced

and skilled developers are not usually interested in dealing with technical debt,

because they tend to promote high quality practices in the first place. When

technical debt is addressed and reduced, there is always a risk that it results

in more issues that there was before the refactoring. This is why source code

modification is unattractive in general, because modifications involve high risks

compared to new implementations [Tomaszewski, 2006].

Refactoring is a key strategy to improve quality, enable testing and decrease

defects [Ktata & Lévesque, 2010; McConnell, 2004; Fowler et al., 1999; Mens

& Tourwé, 2004]. The cardinal rule in software evolution is that evolution

should improve the source code quality and the key strategy to achieve this is

to refactor continuously [McConnell, 2004]. Software architects’ are responsible

to provide guidance for refactoring decision-making, re-engineering and rewrit-

ing [Buschmann, 2011]. Pragmatic architects often make their decisions based on

business questions to be able to evaluate when and how to reduce technical debt

through refactoring. When every software requires refactoring because of itera-

tive development, the easiest way to refactor and save resources is to integrate

refactoring in the development process and do it systematically [Veerraju et al.,

2010].



7 Conclusion

7.1 Summary

Modern information society cannot function without reliable software. However,

software development projects are very complex and have high risks. Inaccurate

specification/estimation, budget overruns, delivery delays and lack of manage-

ment are common issues to struggle with. Roughly 84% of software projects fail

and about half of them has reduced functionality while around one third are

cancelled before completion. The general issue in software development is that

the internal software quality issues are often neglected, although programming,

debugging and testing forms 30–50% of a software project. The correctness and

the quality of software form the success.

There are at least two foundational requirements for any project — project suc-

cess and staying on budget. Comprehensive scope is an essential requirement to

promote accurate estimation. One major problem with estimation in software

projects is the lack of public data in the industry. The root problems in cost

estimation include missing required variable information and lack of estimation

tool experience.

The end-product quality of any software project is heavily connected to quality

measurements. However, lack of budget and monitoring for quality is a common

issue in small organizations. The major issue for the lack of quality measurement

might be the expensiveness of quality control. However, poor quality accumulates

costs as well, which can rise even higher than the costs of quality promotion. Since

the quality of people is a significant factor in productivity, technological training

becomes considerable option for small organizations with limited resources.

High internal quality means readable and understandable source code and ar-

chitecture, that improves software maintainability (analyzability, modifiability,

modularity, reusability, testability). High maintainability enables developers to

do their work appropriately — to be productive. Development productivity is

mostly affected by the developer competence, but software requirement complex-

ity, training, available technologies and tools, and the overall process quality also

have significant impact on it.
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Good internal software structure is expected to provide good external quality as

well [Fenton & Pfleeger, 1998]. Internal software quality should be improved,

since low internal quality score results in external quality score that is below

the average at maximum [Stavrinoudis & Xenos, 2008]. High quality prevents

inadequate functionality or validation that cause significant problems to software

systems due to generation of unreliable data.

Internal software quality is decreased by technical debt which is the cost of fixing

structural problems in production code. Gartner1 reports the IT (technical) debt

to be $500 milliard in 2010 and potentially rising to $1 billion by 2015. Unin-

tentional debt is a challenge in software development and is mainly accumulated

by incompetent individuals. Technology training can be used to decrease the

debt accumulation related to incompetence. Training enables developers to fol-

low standards and design better architecture for solid software foundation. This

is beneficial for cost minimization because re-engineering poor architecture later

in a project incurs high costs.

Intentional debt is accumulated through postponed change requests, refactoring

and debugging, hence intentional debt should be avoided by appropriate priori-

tization — by choosing the software health over new features. This requires that

the business stakeholders understand the technical aspects and vice versa, thus

close collaboration and active communication are foundational requirements. The

health of the software, as in internal quality, is important since the majority of

development is defect fixing and maintenance. The earlier and easier any defects

are fixed in software, the less they accumulate costs to business during a project.

Improvements in defect detection and removal are likely to have a significant im-

pact on development productivity, as they are almost half of the software project

costs.

Organization has to know the state of technical debt and how much reduction it

can afford. Technical debt is reduced, e.g., by refactoring, test-driven develop-

ment, reviews and audits, standards and evolutionary design. As a checklist for

debt management, Krishna & Basu [2012] identify thirteen steps to go through.

Technical debt should be thought and inspected the same way as financial debt

and make it more visible and meaningful for management. Debt has to be identi-

1 http://www.gartner.com/newsroom/id/1439513

http://www.gartner.com/newsroom/id/1439513
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fied, measured and visualized, so it can be remediated by refactoring in software

projects.

The refactoring benefits and costs are usually not quantified, so it is difficult to

justify it to be mandatory in general. Software comprehension being half the time

spent on maintenance, internal quality becomes significant factor in additional

cost minimization. High internal quality means better productivity, and better

productivity means lower costs. Thus, refactoring should be a major concern

in development, since internal quality directly affects the business. To sustain

productive development and prevent project failures, continuous refactoring to

reduce technical debt is required.

7.2 Discussion

7.2.1 Technical Debt and Small Organizations

Software startup-companies often struggle with the lack of resources. So, how

they should manage technical debt? When software quality is generated from

the process and people involved in it, there is a question which one to invest in.

Process improvement can be expensive because of the extensive quality control

activities. However, certain parts of good quality process could be adopted as

beneficial but reasonably cheap, such as internal quality measurement and vi-

sualization, and defect prevention with appropriate testing process. These two

decreases costs by making the internal quality issues visible for the development

and minimizing the defects.

The other option would be to invest in people quality. This means that more

competent and expensive developers are hired in the first place, or less skilled

programmers are trained to follow standards and use advanced technologies. In-

vesting in people might be a best option for starting software companies to be

able to kickstart their development in high velocity and maintain it.

However, there might be a third option to increase the project success probability

much higher and to handle the high quality internally. The third option is to keep

the project size small and make the requirements as simple and manageable as

possible. In other words, the product and the business model have to be planned
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carefully. This way the risks and the need to cut corners are decreased, when

“there is time to concentrate on every quality”.

Software that is built short-term benefits in mind might also be a good journey

of lessons for the development team to brainstorm how the business visions can

be transformed into working foundations. When the development paths are ex-

amined the issues and good decisions are learned. This knowledge could be used

in the next software version, which would be rebuilt from scratch. However, this

might be more difficult than expected. The initial release cannot be too large to

enable maintainable and simple re-engineering.

7.2.2 Is the Technical Debt Phenomenon Only a Lack of Competence?

The reasons for debt (incompetence and inadequate process) culminate in one

major factor — incompetence of individuals. Hence, the incompetence seems to

be the root cause for debt, does this mean that technical debt is just mistakes

instead of any “intentional decisions” to gain any advantages on anything. Is

the inaccurate estimation the root cause for the whole phenomenon of technical

debt, or is it just a collection of mistakes? In other words, is the majority of

projects unmanageable in the first place? This could mean that when software

requirements are engineered, there could be foundational mistakes to make, such

as:

– Specified project size is too large to be manageable.

– Absurd initial deadline which is not rejected.

– Software requirements are too complex for a single project.

– Lack of competence in the project team to be able to meet objectives.

– Inaccurate estimation on anything.

The issue with technical debt becomes a bit more absurd, when it is compared to

another field of industry. As an analog comparison, would a building constructor

cut corners to meet external requirements and compromise the safety or maintain-

ability of the building? As a conclusion, it would make a lot of sense to integrate

the quality management and sustainable productivity improvement as part of

software development. Thus, this area needs more research and a development

of a framework to address the need for easy and affordable management.
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7.3 Future Research

As continuous increase in complexity is an issue for future software develop-

ment and management, the management of complexity should be researched.

The relation between source code complexity and productivity can be researched

to estimate how the increasing complexity affects the development productivity.

Software reuse and its innovation can be a huge topic in the future to decrease

risks and consequences related to complex and large software modification.

Quality is tradable attribute [Fowler, 2011] and it depends on the context of the

project [Krasner, 1998; Fenton & Pfleeger, 1998], so it is difficult to justify its

essentiality. Also, the benefits or costs of refactoring are not usually quantified,

hence the key points for justification are required. This topic requires further re-

search and a generation of a model that could quantify the importance of quality

to aid decision-making or prove the internal quality and productivity improve-

ment as mandatory activity in software projects.
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 Lukasz Radliński, & Paul Krause. On the effectiveness of early life cycle defect

prediction with bayesian nets. Empirical Software Engineering, 13(5):499–537,

2008.

[Fjeldstad & Hamlen, 1983] Richard K Fjeldstad & William T Hamlen. Appli-

cation program maintenance study: Report to our respondents. Proceedings

Guide, 48, 1983.

[Fowler et al., 1999] Martin Fowler, Kent Beck, John Brant, William Opdyke, &

Don Roberts. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, 1999.

[Fowler, 2003] Martin Fowler. Technical debt. http://martinfowler.com/

bliki/TechnicalDebt.html, 2003. [Online; accessed July 1., 2014].

[Fowler, 2011] Martin Fowler. Tradable quality hypothesis. http:

//martinfowler.com/bliki/TradableQualityHypothesis.html, February

2011. [Online; accessed August 19., 2014].

[Fox & Frakes, 1997] Christopher Fox & William Frakes. The quality approach:

is it delivering? Communications of the ACM, 40(6):24–29, 1997.

[Freimut et al., 2001] Bernd Freimut, Susanne Hartkopf, Peter Kaiser, Jyrki

Kontio, & Werner Kobitzsch. An industrial case study of implementing

software risk management. ACM SIGSOFT Software Engineering Notes,

26(5):277–287, 2001.

[Gaffney, 1984] John E Gaffney. Estimating the number of faults in code. IEEE

Transactions on Software Engineering, (4):459–464, 1984.

[Garvin, 1984] David A. Garvin. What does “product quality” really mean? MIT

Sloan Management Review, 26(1):25–43, October 1984.

http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TradableQualityHypothesis.html
http://martinfowler.com/bliki/TradableQualityHypothesis.html


64

[Gilb, 2000] Tom Gilb. The ten most powerful principles for quality in (soft-

ware and) software organizations for dependable systems. Computer Safety,

Reliability and Security, pages 1–13, 2000.

[Glass, 2001] Robert L Glass. Frequently forgotten fundamental facts about soft-

ware engineering. IEEE Software, 18(3):112–112, 2001.

[Grady, 1992] Robert B Grady. Practical Software Metrics for Project Manage-

ment and Process Improvement. Prentice-Hall, 1992.

[Guo et al., 2011] Yuepu Guo, Carolyn Seaman, Rebeka Gomes, Antonio Caval-

canti, Graziela Tonin, Fabio QB Da Silva, André Luis M Santos, & Clauirton
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plementing a measurement program for scrum teams: What do agile developers

really need and want? In Proceedings of the Third C* Conference on Computer

Science and Software Engineering, pages 101–107. ACM, 2010.

http://www.scrumalliance.org/community/articles/2011/may/my-experiments-with-tdd
http://www.scrumalliance.org/community/articles/2011/may/my-experiments-with-tdd


67

[Letouzey & Ilkiewicz, 2012] Jean-Louis Letouzey & Michel Ilkiewicz. Managing

technical debt with the sqale method. IEEE Software, 29(6):44–51, 2012.

[Machowski & Dale, 1998] Francis Machowski & Barrie G Dale. Quality costing:

An examination of knowledge, attitudes, and perceptions. Quality Management

Journal, 5(3), 1998.

[Martin, 2009] Robert C. Martin. Clean Code: A Handbook of Agile Software

Craftsmanship. Prentice Hall, 2009.

[McCall et al., 1977] Jim A McCall, Paul K Richards, & Gene F Walters. Factors

in software quality. General Electric, National Technical Information Service,

1977.

[McConnell, 2004] Steve McConnell. Code Complete: A Practical Handbook of

Software Construction. Microsoft Press, 2004.

[McConnell, 2008] Steve McConnell. Managing technical debt. Construx Soft-

ware Builders, 2008.

[McFeeley, 1996] Bob McFeeley. Ideal: A user’s guide for software process im-

provement. Technical report, DTIC Document, 1996.

[McLeod & MacDonell, 2011] Laurie McLeod & Stephen G MacDonell. Factors

that affect software systems development project outcomes: A survey of re-

search. ACM Computing Surveys, 43(4):24, 2011.
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A Descriptions for Software Quality Character-

istics

Accessibility

Degree to which a wide range of software characteristics and capabilities

can be used to achieve goals.

Accountability

Ability to trace the actions of an entity uniquely to the entity.

Accuracy

Level of accuracy of computations and control.

Adaptability

Ability to adapt to different hardware, software and environments.

Analyzability

Ability to identify causes for defects, impacts of planned changes and parts

to be modified when applying a change, in a software.

Appropriateness recognizability

Degree to which users can recognize if a software is suitable for their needs.

Authenticity

Ability to identify and prove a resource as the one claimed.

Availability

Degree to which a software or component accessible and operational.

Capacity

Degree to which the maximum limits of a software parameter meet require-

ments.

Clarity

Definitions and descriptions are explicit and have enough details. The lan-

guage is understandable.
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Coexistence

Degree to which a software can operate efficiently while sharing a com-

mon environment and resources with other software, without impacting

any other software.

Compatibility

Software can be used with different hardware configurations and among

other software without problems. For developers compatibility means the

ability to change components or services with minimal effort.

Confidentiality

Ability to protect the data to be only accessed by the approved users.

Correctness, Functional correctness

Degree to which a software provides the correct results with the needed

precision. Correctness is usually measured by “defects per thousand lines

of code”.

Documentation

There is a documentation that provides clear references and information

that matches the implemented software functionality.

Economy

Ability to release the software to customer with less or equal costs than

defined budget.

Efficiency

Software performs in an efficient way using as few computing resources and

source code as possible.

Fault tolerance

Degree to which a software or component is operational when hardware or

software faults occur.

Flexibility

Amount of effort required to modify the components of an operational soft-

ware.
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Functional appropriateness

Degree to which the functions facilitate the accomplishment of specified

tasks and objectives.

Functional completeness

Degree to which the software functions cover the specified tasks and user

objectives.

Functionality, Functional suitability

Level of satisfaction of specified software functionality expected by the user.

Generality

Extent of software component (re-)usage.

Installability

Ease of installation/uninstallation of a software to a specified environment.

Integrity

Level of protection against harmful or erroneous actions performed against

functions or data.

Interoperability

Ability to function, coexist and cooperate with other systems.

Learnability

Degree to which a software can be used to learn the usage of the software.

Measurement concerns effectiveness, efficiency, freedom from risk and sat-

isfaction in a specified context of use.

Maintainability

Ability to maintain a software properly it is important that the source code

is comprehensible and well-structured for flexibility for changes.

Maturity

Degree to which a software or component meets reliability requirements and

expectations.
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Modifiability

Ability to make modifications to software source code.

Modularity

Level of well-structured architecture concerning components, in a way that

making changes to certain components require minimal changes in other

components.

Non-repudiation

Ability to prove that actions or events have taken place so they cannot be

repudiated afterwards.

Operability

Degree to which a software has attributes that ease the operation and con-

trol.

Performance, Performance efficiency

Ability to respond and perform actions at runtime.

Portability

Dependency of a certain platform.

Productivity

Level of efficiency in the software’s development process.

Recoverability

Ability to recover the state and data from interruption or failure of a soft-

ware.

Reliability

Frequency of availability and degree of specified or expected operation of

the software.

Repairability

Ability to fix a malfunctioning system and continue operation.

Replaceability

Ability to be replaced by another software in specified environment.
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Resilience

Tolerance for occurring errors. Similar to reliability.

Resource utilization

Degree to which the amounts and types of resources used by a software

meet requirements when performing its functions.

Reusability

Extent of reusable components in a software for e.g. future use in other

projects.

Robustness

Level of fluent operation in different situations e.g. error-handling, crashes

and calculations.

Security

Protection level against malicious attackers when the software is in opera-

tion. Consists of software and hardware, covering the whole environment.

Testability

Ease, effectiveness and success of testing established for a software or com-

ponent.

Time behaviour

Degree to which the response, processing times and throughput rates of

software meet set requirements when performing its functions.

Timeliness

The ability to release the software to customer before or at the time when

it is defined.

Understandability

Level of well-structured source code that can be understood.

Usability

Usability describes how straightforward and intuitive a software is to use.

The functional suitability, reliability and performance are tightly related to

usability.
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User error protection

Degree to which a software protects users from making errors.

User interface aesthetics

Degree to which the usage of a user interface is satisfying.

Validity

Level of congruency with the specified product qualities.

Visibility, Transparency

Level of available information about the software project.
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