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Tutkimuksen tarkoituksena oli tutkia iän, tupakoinnin, koulutusvuosien, sukupuolen, kätisyyden ja 

alkoholinkäytön vaikutusta terveiden henkilöiden aivojen diffuusiotensorikuvauksen tuloksiin eri 

aivoalueilla. 

 

Tutkimuspopulaatio koostui 40 potilaasta, joille tehtiin aivojen diffuusiotensorikuvaus 3 Teslan 

laitteella. Diffuusiotensorikuvauksen muuttujina käytettiin FA- ja ADC-arvoja. ROI-menetelmää 

hyödyntäen määritettiin yhteensä 13 mittauskohtaa molempien aivopuoliskojen sekä corpus 

callosumin alueelle. 

 

Tärkein löydös oli, että ikääntyminen vaikutti laskevasti FA-arvoihin etuaivojen alueella. Lisäksi 

tupakointi laski ADC-arvoja kolmella eri aivoalueella. Muiden tutkittavien tekijöiden suhteen 

tulokset olivat ristiriitaisia.  

 

Tutkimuksen perusteella ikääntymistä ja tupakointia tulee pitää potentiaalisina sekoittavina 

tekijöinä ROI-menetelmään perustuvien diffuusiotensorikuvaustuloksien analysoinnissa. 

Sukupuolen, kätisyyden, alkoholinkäytön ja koulutusvuosien mahdolliset vaikutukset vaativat 

lisätutkimuksia.



ii 

 

  

SISÄLLYS 

 

 

 
Abstract……………………………………………………………………………………………...iii 

Introduction…………………………………………………………………………………………..1 

Material and Methods………………………………………………………………………………...4 

Results………………………………………………………………………………………………..7 

Discussion…………………………………………………………………………………………….9 

Acknowledgements and Author Disclosure Statement……………………………………………..13 

References…………………………………………………………………………………………..14 

Tables…….…………………………………………………………………………………………17 

 

 

 

 

 

 
  



iii 

 

Abstract 

 

Purpose: To investigate the possible confounding effects of age, gender, handedness, smoking, 

alcohol consumption and education on cerebral diffusion tensor imaging (DTI) parameters in a 

generally healthy homogenous sample with no neurological or psychiatric diseases.  

Methods: Forty (n=40) subjects (mean age 40.3 years, SD 12.3) underwent DTI of the brain with 

3T MRI. At enrolment, all the subjects were interviewed with respect to general health, handedness, 

education, history of smoking and alcohol consumption. Studied DTI parameters included: (i) 

fractional anisotropy (FA) and (ii) apparent diffusion coefficient (ADC). Region-of-interest (ROI) -

based measurements were estimated at 13 anatomical locations bilaterally, except for the corpus 

callosum in which the ROIs were placed on the sagittal images. Circular-ROI measurements were 

mainly used. Freehand-ROI method was used with the forceps minor, uncinate fasciculus and 

thalamus. Intra-observer variability and repeatability were assessed for FA and ADC values. 

Results: The most consistent finding was that aging decreased FA values in the frontal brain 

regions. This was apparent in four ROIs. Also, smoking decreased ADC values in three regions. 

However, the regions which were smoking-related had poor intra-observer repeatability. Regarding 

the other confounding factors, the results were discontinuous and no concrete conclusions could be 

drawn from these findings. In general, intra-observer repeatability of the DTI measurement was 

considered relatively good.      

Conclusions: Age and smoking should be noted as considerable confounding factors in ROI-based 

DTI-analysis. More research on the effects of gender, handedness, alcohol consumption and 

education is needed.  
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Introduction 

  

Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique which is used to 

visualized neural white matter tracts. DTI is based on the measures of the random diffusion motion 

of water in living tissues. Because of restricting structures such as cell membranes and myelin, the 

motion of water molecules is anisotropic (=directionally dependent) within neural fibres. The most 

cited quantitative parameters used to describe isotropy are: (i) fractional anisotropy (FA) and (ii) the 

apparent diffusion coefficient (ADC). FA measures the density of white matter and the degree of 

diffusion can be illustrated by ADC. The most commonly used methods for DTI analyses are 

region-of-interest (ROI) analysis and voxel-based analysis (VBA). Besides these, quantitative 

diffusion tractography, an alternative technique to ROI-measurements, can be used to characterize 

white matter tracts (1-4). ROI analysis is observer-dependent and time-consuming, whereas VBA is 

a fully automated and objective method. However, inter-subject registration and image smoothing 

are needed for using VBA. ROI-based method has been available for a longer time and it is 

therefore used in many previous DTI studies, being still the mostly used method in DTI analyses 

(5). The advantages of ROI analysis compared to VBA are: (i) the manual selection of regions, (ii) 

the quantification of the measured parameters and (iii) the individual applicability.  

 DTI techniques have been applied to numerous neurological and psychiatric conditions 

including stroke, multiple sclerosis (MS), schizophrenia, various dementias, traumatic brain injury, 

autism and depression. Commonly, increased FA and reduced ADC values relate to the initial phase 

of stroke (6). MS lesions can observe with increased ADC and decreased FA values. MS causes 

also fiber tract loss assessable with tractography (7-9). In neurodegenerative diseases, promising 

results have been achieved when DTI has been used in the early diagnosis of Alzheimer’s disease. 

Studies have found increased ADC in most lobar regions and decreased FA values, particularly in 

sub-regions of the medial temporal lobes which are linked to cognitive impairment (3,10). By using 

DTI, neurodegenerative changes can also be found in patients with Parkinson’s disease, specifically 
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reduced FA values in the substantia nigra (11). Additionally, DTI has been used to explore the 

damage of white matter tracts in patients with traumatic brain injury (12). In schizophrenic patients 

white matter disruptions have been found with DTI in several studies (13-15). 

 Reduced FA values and increased ADC values are related to a damage of the brain 

microstructure. Lower FA values can be attributed to a loss of axons or a damage of myelin sheaths. 

ADC increases when overall diffusion increases. ADC values can also rise during an inflammation 

and swelling. Generally, high FA values are indicators for high white matter “quality” (3). 

 In this study we examined how general systemic and environmental factors affect the brain 

microstructure of healthy adults. Several studies have shown age-related alterations in the structure 

of the human brain. According to these studies, lower FA and higher ADC values are associated 

with healthy aging (16-19). It is proven in many studies that men and women have dissimilarities in 

their brain microstructure (16,20-24). However, the particular gender-related differences between 

the brain regions still remain unclear. Chronic alcohol abuse leads to the damage of brain 

microstructure (25-29). In this study, we wanted to find out more about the effects of moderate 

alcohol consumption on healthy adults. Tobacco smoke toxins and nicotine are thought to be 

detrimental to brain tissue. Still, only little is known about their direct actions on brain 

microstructure. We investigated the effects of smoking on cerebral DTI parameters. Many studies 

have shown differences in DTI parameters between right- and left-handers (30-32). Less is know 

about the effects of education on cerebral white matter. 

   In general, the literature on possible factors affecting cerebral DTI results is relatively sparse 

and reported studies vary considerable in design and characteristics of the study population. 

Confounding factors should be routinely considered when DTI results are interpreted. Therefore 

better understanding of confounding factors is crucial. The aim of our study was to investigate 

whether age, gender, handedness, smoking, alcohol consumption and education have a confounding 

effect on the cerebral DTI parameters in healthy adult population. This was examined by using FA 

and ADC values derived from ROI analysis. Intra-observer repeatability measurements were 
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performed to further support the results. 
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Material and Methods 

  

Subjects. The subjects were recruited among consecutive patients with ankle trauma (fracture or 

distension) in the Emergency Department of Tampere University Hospital. A total of 609 patients 

with ankle injury were screened for inclusion. The aim was to enrol five male and five female 

subjects to each of following age groups: (i) 18-30, (ii) 31-40, (iii) 41-50 and (iv) 51-60 years. The 

inclusion criteria were: (i) age 18-60 years, (ii) being resident of the university hospital district and 

(iii) ankle trauma. Exclusion criteria were: (i) neurological problems, (ii) psychiatric problems, (iii) 

history of traumatic brain injury, (iv) former neurosurgical procedure, (v) problems with hearing or 

vision, (vi) first language other than Finnish, (vii) contraindications to MRI and (viii) refusal to 

participate. Of the final sample of 40 healthy subjects, 20 (50%) were men and 20 (50%) were 

women. Mean ages (SD) were: whole sample 40.4 (12.3), men 39.8 (11.8) and women 41.1 (13.2) 

years. None of the subjects had significant structural abnormalities on conventional MRI 

sequences. Written informed consent was obtained from each participant. Ethics approval for the 

study was obtained from the Ethical Committee of the Pirkanmaa Hospital District.  

 Clinical Assessment. All the subjects were interviewed by phone. Interview included: (i) 

diagnosed medical conditions, (ii) regular daily medication, (iii) handedness, (iv) years of 

education, (v) smoking history (pack years), and (vi) alcohol consumption according to the Alcohol 

Use Disorders Identification Test (AUDIT) (33). 

 Magnetic Resonance Imaging. The MRI examination of the head was performed with a 3 

Tesla MRI scanner (Siemens Trio, Siemens Medical Solutions, Erlangen, Germany). A 12-channel 

head coil and a 4-channel neck coil were used simultaneously. The MRI protocol included sagittal 

T1-weighted 3D IR-prepared gradient echo, axial T2-weighted turbo spin echo, conventional axial 

and high-resolution sagittal FLAIR (Fluid Attenuation Inversion Recovery), axial T2*-weighted, 

and axial SWI (Susceptibility Weighted Imaging) series. The DTI data were collected by a single-

shot, spin echo-based, and diffusion-weighted echo planar imaging sequence. The parameters for 
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the DTI sequence were TR 5144 ms, TE 92 ms, FOV 230 mm, matrix 128 × 128, 3 averages, 

slice/gap 3.0/0.9 mm, voxel dimension 1.8×1.8×3.0 mm, b-factor 0 and 1000 s/mm2, and 20 

diffusion gradient orientations. A 12-channel head matrix coil was used. Evaluation of the 

conventional MRI scans was performed by a neuroradiologist (A.B.). 

 Diffusion Tensor Analysis. DTI-measurements were performed by a phycisist (U.H.) on a 

workstation using the commercially available software Neuro3D (Siemens Healthcare, Malvern, 

USA).  Circular regions of interest (ROI) (19 mm²) were manually placed on color-coded axial 

fractional anisotropy (FA) maps and automatically transferred on the non-diffusion-weighted b0 

images and ADC maps. The ROIs were placed at the following anatomical locations: i) the cerebral 

peduncle (CP), ii) posterior limb of the internal capsule (PLIC) (anterior and posterior), iii)  

posterior part of the corona radiata (PCR) (anterior and posterior), iv) centrum semiovale (CS) 

(anterior, center and posterior), v) corpus callosum (CC) (genu and splenium), vi) uncinate 

fasciculus (UF), vii) forceps minor (FM) and viii) thalamus. The ROIs were placed taking care to 

avoid border areas, such as areas overlapping with cerebrospinal fluid spaces and neighboring 

tracts. The ROIs were placed bilaterally, with the exception of the corpus callosum, on all locations. 

The ROIs of the corpus callosum were drawn on the midline sagittal images. Median and mean 

values, as well as standard deviations, for FA and ADC were calculated. Additionally, freehand-

ROI method was used with FM, UF and thalamus because of its better repeatability (2). 

 Statistical Analysis. The normality of the variable distributions was tested using the 

Kolmogorov-Smirnov and Shapiro-Wilk tests. Constant variables (age, education years, pack years, 

AUDIT and AUDIT-C), FA and ADC values were analysed with the Pearson (normal distribution) 

and Spearman (skewed distribution) correlation coefficients. Age was grouped into four groups (18-

30, 31-40, 41-50 and 51-60 years), education years into three groups (8-12, 13-15 and over 16 

years), pack years into four groups (non-smokers, 0-9, 10-19 and 20-30 pack years) and both 

AUDIT and AUDIT-C into risk of alcohol (AUDIT, men: ≥8 and women: ≥7 points; AUDIT-C: 

men: ≥4 and women: ≥3 points) and non-risk users. The categorical variables were tested with the 
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Student’s t-test (normal distribution) and the Mann-Whitney U-test (skewed distribution). The intra-

observer repeatability values were assessed using the averages of intra-class correlation coefficients 

(ICCs) with absolute agreement. The ICC values were considered to indicate excellent agreement if 

they were greater than 0.8 and substantial agreement if they were from 0.60 to 0.79 (34). The 

statistical significance level was set to p<0.05 for all analyses. There was no need to control for 

false discovery rates as only one to two statistical tests were used to address an individual 

hypothesis (35). IBM SPSS Statistics 20.0 (IBM Corp. Armonk, NY, USA) was used to perform the 

analyses. 
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Results 

  

Characteristics of the Study Sample and DTI Parameters. Detailed characteristics of the study 

sample are presented in Table 1. The FA and ADC results stratified by age groups are shown in 

Table 2 and 3.  

 The Relations between FA Values and Possible Confounding Factors. A significant negative 

correlation between FA and age was found in the right FM (r=0.39; p=0.01), left FM (r=0.41; 

p=0.01), right UF (r=0.33; p=0.04), left UF (r=0.41; p=0.01) and splenium of CC (r=0.32; p=0.05). 

In addition, the analysis showed significant differences between the age groups in the right FM 

(p=0.05), left UF (p=0.02) and left CP (p=0.03). The absolute FA values of the age groups are 

represented in table 2. FA values showed differences between the pack-year groups in the left 

anterior PCR (p=0.02) and both right (p=0.01) and left posterior PCR (p=0.01). In these brain 

regions the FA values of the heavy smokers (20-30 pack years) (n=3) were higher than the non-

smokers (n=23). The same differences were not evident between the non-smokers and moderate 

smokers (0-9 and 10-19 pack years). The risk users of alcohol (according to AUDIT) (n=10) 

exhibited lower FA values than the non-risk users (n=30) in the left posterior PCR (p=0.02; d=0.06) 

and right thalamus (p=0.03; d=0.17), but higher values in the right FM (p=0.03; d=0.20). Lower FA 

values in the right thalamus (p=0.01; d=0.28) and higher FA values in the right FM (p=0.01; 

d=0.05) were also found in the analysis of the AUDIT-C. Apart from this, the AUDIT-C analysis 

showed also elevated FA values in the right posterior CS (p=0.03; d=0.37) of the risk users (n=12) 

compared to the non-risk users (n=28). We found significantly higher FA values in the left posterior 

PLIC (p=0.04) and left anterior CS (p=0.05) of the left-handers (n=1) compared to the right-handers 

(n=39). Significant correlations or differences between FA values and gender or education years 

were not found. 

 The Relations between ADC Values and Possible Confounding Factors. ADC values of the 

women (n=20) were higher than the values of the men (n=20) in the left central CS (p=0.01). In 
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other brain regions no gender differences were found. A positive correlation between ADC values 

and education was discovered in the splenium of CC (r=0.32; p=0.05). Additionally, the analysis of 

categorical variables showed significant differences in the splenium of CC between the education 

groups (p=0.01). The group with over 16 years of education (n=11) had higher ADC values 

(ADC=0.79) than the group of 8-12 years (ADC=0.75) (n=12) and 13-15 years (ADC=0.72) (n=17) 

studied. The correlation analyses revealed a significant negative correlation between ADC and pack 

years in the right anterior CS (rs=0.37; p=0.02). ADC values of the heavy smokers were 

significantly lower than the non-smokers in three brain regions: the left anterior PCR (p=0.05), left 

posterior PCR (p=0.03) and right anterior CS (p=0.03). The risk users of alcohol had significantly 

lower ADC values than the non-risk users in the right anterior PCR (p=0.05; d=0.37) and left 

anterior CS (p=0.01; d=0.15). In the analysis of AUDIT-C lower ADC values among the risk users 

were also discovered in the left anterior CS (p=0.02; d=0.12). Significant correlations or differences 

between ADC values and age or handedness were not found. 

 Repeatability and variation of the DTI measurements. Repeatability [the intra-class 

correlation coefficient (ICC)] and variation [the coefficient of variation (CV) percent] results are 

shown in Table 4. The average ICC for FA was 0.75 and for ADC 0.78. The ICC results for FA 

were above 0.80 in 8 of 24 regions. For ADC, the corresponding results were 11 of 24. The best 

ICC for FA values was in the left UF (0.97) and for ADC values in the left thalamus (0.97). The CV 

percentage for FA was below 10% in 14 of 24 regions. For ADC, the CV percentage was below 

10% in 23 of 24 regions. The highest variation for FA was in the right anterior CS (20.3%) and for 

ADC in the left anterior PCR (13.3%). For FA, the lowest variation was found in the genu of CC 

(2.8%) and in the splenium of CC (2.8%). The lowest variation for ADC was in the left thalamus 

(1.2%). 
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Discussion 

  

The present study aimed to investigate the effects of possible confounding factor on DTI parameters 

derived from ROI-analysis in a generally healthy homogenous sample with no neurological or 

psychiatric diseases. Confounding factors included age, gender, handedness, smoking, alcohol 

consumption and education. The most consistent finding was that aging decreased FA values in the 

frontal brain regions. This was apparent in the right FM, left FM, right UF, left UF and splenium of 

CC. Also, smoking decreased ADC values in three regions. Unfortunately, the regions which were 

smoking-related had poor intra-observer repeatability. Regarding the other confounding factors, the 

results were discontinuous and no concrete conclusions could be drawn from these findings. In 

general, intra-observer repeatability of the DTI measurement was considered relatively good.      

 We found a significant negative correlation between FA and age in the right FM, left FM, 

right UF, left UF and splenium of CC. Respectively, the analysis also showed non-linear significant 

differences between the age groups in the right FM, left UF and left CP. Kochunov et al. observed 

that the anterior part of CC is more vulnerable to age-related decline than the posterior part (17). 

Many other studies have also indicated that age-related changes are most likely to happen first in 

the frontal areas of the brain (18,19). Hsu et al. had 145 participants, aged 30-80 years, recruited 

from a health screening program. Both ROI and VBA methods were used. They reported a positive 

correlation between FA and age in the posterior CC, CR, posterior capsula interna and superior 

longitudinal fasciculus (16). Yoon and colleagues used only ROI analysis and the participants of 

their study were 58 healthy volunteers with an age range of 22-78 years. They showed a trend of 

increased ADC and decreased FA values with advanced aging. Significant decrease in FA was 

found in numerous regions (hippocampus, temporal and frontal lobes, CS, anterior and posterior 

cingulum, anterior limbs of internal capsule and genu of CC) (19). 

 Increased FA values in men compared to women are found in many studies (16,21,23,24). 

Contrary to this, no gender-related differences in FA values were observed in our study. For 
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example, Pal et al. reported higher FA values among men in the caudate nucleus, genu and 

splenium of CC, PLIC and anterior limb of the internal capsula by using ROI analysis. The study 

population consisted of 57 women and 85 men (age: 10-52 years) (24). By using VBA-based 

method, Inano et al. investigated gender effects on FA, axial diffusivity and radial diffusivity. 

Significantly higher FA values were seen in men compared to women in many regions, for example 

in the splenium of CC, PLIC, CP and bilateral corona radiata. Participants in this study were 857 

healthy volunteers, 310 women and 547 men, with an age range of 24.9-84.8 years (mean age 56.1 ± 

9.9 years) (21). On the other hand, women had higher FA values in the CC according to Kanaan et 

al. (22). The groups of Pal and Inano found no significant gender differences in MD values. In our 

material, women had higher ADC values in the left central CS compared to men. No similar results 

in this particular region have been recently reported. Whereas, Lebel et al. showed higher MD 

values in women in the corticospinal tract, cingulum and superior longitudinal fasciculus (23).  

 FA values of the heavy smokers were higher than those of the non-smokers in the left anterior 

PCR and both right and left posterior PCR. The heavy smokers had also lower ADC values 

compared to non-smokers in the left anterior PCR, left posterior PCR and right anterior CS. 

Additionally, a significant negative correlation between ADC and pack years was found only in the 

right anterior CS. Although significant group differences were found in relation to smoking, the 

association to DTI parameters was non-linear. Therefore, no clear dose-dependence between DTI 

markers and smoking could be concluded. It is well documented that gray matter volume and 

density in smokers are smaller than in non-smokers. Three DTI studies have demonstrated reduced 

gray matter density in the lateral prefrontal cerebral cortex (36-38). The findings of gray matter 

volume or density in other brain regions are mixed. Yu et al. found increased white matter density 

in the putamen and cingulate cortex among smokers by using VBA. Their results were based on the 

data of 16 cigarette smokers and 16 matched healthy non-smoking controls (39). Moreover, Paul 

and co-authors reported higher FA values in smokers (n=10) compared to non-smokers (n=10) in 

the CC by using ROI analysis (40). 
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 We found that the risk users of alcohol had lower FA values than the non-risk users in the left 

posterior PCR and right thalamus, but higher values in the right FM and right posterior CS. Lower 

ADC values among the risk users compared to the non-risk users were found in the right anterior 

PCR and left anterior CS. Chronic alcohol abuse leads to reduced white and gray matter volume 

(25-29). However, little is known about the effects of moderate alcohol consumption. McQueeny et 

al. studied white matter integrity among adolescent binge drinkers (n=14) compared to controls 

(n=14) without a history of a binge drinking episodes. They found lower FA values in 18 white 

matter areas, including the CC, CR and limbic projection fibres, relative to controls by using tract-

based spatial statistics (41). Pfefferbaum et al. concluded that chronic alcohol consumption leads to 

the demyelination of white matter tracts (29). Their earlier studies also showed that the CC is very 

vulnerable to alcohol (27,28).  

 To our knowledge, only few studies have examined cerebral DTI metrics in relation to 

education. Piras et al. reported a negative correlation between MD values and education in the 

bilateral hippocampi, right caudate, bilateral thalami and bilateral putamen, but it is unclear if the 

relationship was mediated by age. The study population was consisted of 150 healthy subjects (age 

between 18 and 65 years) (42). Teipel and co-authors reported that higher white matter integrity 

was associated with more years of education among 18 healthy controls (mean age 66.2 years) in 

the medial temporal lobe areas, fusiform gyrus, insula, superior temporal gyrus and lingual gyrus 

(43). In our study, the most educated subjects (16 years or more) had the highest ADC values in the 

splenium of CC compared to the other groups. Moreover, a positive correlation between ADC and 

education was discovered in the same brain region. None of the previous studies have observed 

similar results. Generally, higher ADC is indicative of neuron loss. Therefore, our result seems 

contradictional and is left without a logical explanation.   

 Left cerebral hemisphere plays a dominant role among right-handers and it has been well 

demonstrated, for instance, by comparing the sizes of the hemispheres (32) and FA values of white 

matter between precentral gyri (30). According to Powell and his colleagues, right-handers have 



12 

 

greater leftward FA asymmetry than left-handers. However, the left-handers showed also leftward 

asymmetry in many white matter regions (31). By using ROI analysis, Westerhausen et al. 

discovered that left-handedness was related to higher anisotropy and lower diffusion in the CC (32). 

This can be related to an idea that left-handers have a more symmetrical brain than right-handers. 

We found significantly higher FA values in the left posterior PLIC and left anterior CS of the left-

handers compared to the right-handers. The group of left-handers consisted of only one subject, so 

no concrete conclusion can be drawn from these findings. 

 Intra-class correlation analysis revealed that the best repeatability for both FA and ADC 

values was in the UF, FM, thalamus and CC. ADC values had better overall repeatability and lower 

variation than FA values. The low ICC values were found for FA in the CS and the variation was 

highest for FA in the PCR and CS. 

 The main limitation of our study was the low statistical power in some subgroup analysis due 

to the small sample sizes. In addition, strict exclusion criteria limit the generalizability of the 

results. Also, our sample only included patients with moderate alcohol consumption (AUDIT≤10). 

If the AUDIT score exceeded 10 points, the patient’s alcohol consumption habits were considered 

generally detrimental and the patient was excluded from the study. Thus, the study design did not 

entitle us to examine the effects of heavy alcohol usage.   

 Despite the aforementioned limitations, the current study has several strengths. First, we 

minimized the effects neurological and psychiatric diseases on DTI parameters by applying 

thorough exclusion criteria and patient screening. Second, the performed data collection was 

inclusive and detailed. Third, the DTI measurement protocol included the majority of the brain 

regions studied in DTI literature.  

 In conclusion, age and smoking should be noted as considerable confounding factor in ROI-

based DTI-analysis. More research on the effects of gender, handedness, alcohol consumption and 

education is needed. Replication of this study design using other DTI methods (e.g., tract-based 

spatial statictics, tractography) is encouraged.    
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Table 1. Detailed characteristics of the study sample  

      

  Mean SD Median Range 

      

Age (years)  40.43 12.34 41.65 38.50 

      

Education years 14.14 2.84 14.00 13.00 

      

Pack years 5.08 8.54 0.00 30.00 

      

AUDIT (0-40p)  4.80 2.92 5.00 11.00 

      

AUDIT-C (0-12p) 4.20 2.32 4.00 9.00 
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Table 2. FA values by region of interest and stratified by age. 0 ≤ FA ≤ 1. 

 

  
Whole 

sample 18-30 years 31-40 years 41-50 years 51-60 years 

            

  Mean SD Mean SD Mean SD Mean SD Mean SD 

            

CP right 0.80 0.54 0.82 0.04 0.77 0.06 0.81 0.06 0.80 0.05 

 left 0.80 0.06 0.84 0.04 0.77 0.05 0.81 0.04 0.78 0.07 

            

Anterior PLIC right 0.70 0.43 0.72 0.03 0.70 0.04 0.69 0.04 0.70 0.06 

 left 0.70 0.45 0.71 0.04 0.72 0.05 0.69 0.04 0.70 0.05 

            

Posterior PLIC right 0.70 0.04 0.73 0.03 0.69 0.03 0.70 0.03 0.69 0.05 

 left 0.71 0.05 0.73 0.06 0.71 0.04 0.71 0.03 0.68 0.04 

            

Anterior PCR right 0.45 0.07 0.46 0.05 0.42 0.08 0.46 0.06 0.45 0.07 

 left 0.51 0.09 0.52 0.09 0.46 0.09 0.57 0.10 0.49 0.08 

            

Posterior PCR right 0.52 0.07 0.54 0.07 0.49 0.07 0.53 0.06 0.52 0.08 

 left 0.55 0.07 0.55 0.06 0.54 0.05 0.55 0.08 0.55 0.07 

            

Anterior CS right 0.63 0.08 0.62 0.09 0.65 0.07 0.60 0.07 0.63 0.08 

 left 0.61 0.08 0.63 0.09 0.60 0.08 0.61 0.07 0.59 0.09 

            

Central CS right 0.59 0.10 0.65 0.07 0.57 0.10 0.61 0.07 0.53 0.12 

 left 0.61 0.09 0.61 0.07 0.65 0.10 0.57 0.10 0.61 0.08 

            

Posterior CS right 0.57 0.06 0.56 0.07 0.58 0.06 0.54 0.07 0.59 0.04 

 left 0.56 0.06 0.58 0.06 0.55 0.05 0.56 0.07 0.57 0.06 

            

UF right 0.56 0.06 0.60 0.06 0.55 0.05 0.55 0.07 0.53 0.05 

 left 0.56 0.06 0.60 0.07 0.56 0.05 0.53 0.05 0.53 0.06 

            

FM right 0.51 0.07 0.55 0.07 0.51 0.06 0.47 0.06 0.50 0.07 

 left 0.48 0.05 0.52 0.05 0.49 0.03 0.47 0.06 0.46 0.06 

            

Thalamus right 0.32 0.03 0.32 0.03 0.31 0.03 0.33 0.02 0.32 0.02 

 left 0.32 0.03 0.32 0.05 0.31 0.03 0.33 0.02 0.31 0.02 

            

Genu of CC  0.82 0.05 0.85 0.03 0.81 0.06 0.80 0.05 0.82 0.04 

            

Splenium of CC  0.86 0.04 0.88 0.04 0.87 0.03 0.85 0.04 0.85 0.05 
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Table 3. ADC values by region of interest and stratified by age. ADCx10-3mm2/s. 

  
Whole 

sample 18-30 years 31-40 years 41-50 years 51-60 years 

            

  Mean SD Mean SD Mean SD Mean SD Mean SD 

            

CP right 0.77 0.07 0.79 0.07 0.77 0.07 0.74 0.08 0.77 0.06 

 left 0.74 0.06 0.75 0.03 0.76 0.05 0.71 0.05 0.73 0.09 

            

Anterior PLIC right 0.72 0.04 0.71 0.03 0.72 0.04 0.71 0.03 0.72 0.06 

 left 0.70 0.04 0.71 0.04 0.70 0.04 0.70 0.04 0.69 0.03 

            

Posterior PLIC right 0.72 0.03 0.72 0.03 0.72 0.01 0.71 0.03 0.73 0.03 

 left 0.70 0.03 0.72 0.03 0.71 0.02 0.70 0.02 0.70 0.04 

            

Anterior PCR right 0.69 0.05 0.68 0.04 0.70 0.02 0.68 0.06 0.71 0.05 

 left 0.65 0.08 0.63 0.08 0.68 0.04 0.64 0.12 0.65 0.08 

            

Posterior PCR right 0.73 0.05 0.70 0.06 0.74 0.04 0.75 0.05 0.74 0.04 

 left 0.71 0.05 0.71 0.03 0.73 0.04 0.70 0.05 0.70 0.06 

            

Anterior CS right 0.72 0.04 0.71 0.05 0.73 0.03 0.72 0.06 0.71 0.03 

 left 0.72 0.05 0.72 0.05 0.72 0.03 0.70 0.05 0.72 0.05 

            

Central CS right 0.73 0.04 0.73 0.04 0.72 0.04 0.73 0.05 0.72 0.03 

 left 0.71 0.05 0.69 0.05 0.71 0.03 0.71 0.07 0.72 0.03 

            

Posterior CS right 0.73 0.04 0.73 0.03 0.73 0.03 0.74 0.04 0.74 0.06 

 left 0.72 0.05 0.69 0.04 0.74 0.04 0.71 0.06 0.73 0.05 

            

UF right 0.79 0.04 0.77 0.04 0.80 0.04 0.79 0.04 0.79 0.05 

 left 0.79 0.04 0.77 0.03 0.80 0.03 0.79 0.04 0.80 0.05 

            

FM right 0.76 0.03 0.74 0.04 0.77 0.03 0.77 0.03 0.77 0.03 

 left 0.77 0.04 0.76 0.04 0.77 0.03 0.78 0.03 0.79 0.04 

            

Thalamus right 0.77 0.04 0.79 0.07 0.76 0.03 0.76 0.04 0.77 0.03 

 left 0.76 0.03 0.76 0.02 0.75 0.03 0.75 0.03 0.76 0.03 

            

Genu of CC  0.77 0.05 0.76 0.05 0.78 0.04 0.78 0.05 0.76 0.03 

            

Splenium of CC  0.75 0.06 0.75 0.06 0.77 0.08 0.74 0.06 0.74 0.04 
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Table 4. Intra-class correlation and variation coefficients of FA and ADC measurements. ADCx10-

3mm2/s; 0 ≤ FA ≤ 1. 

   FA  ADC 

          

   ICC p CV (%)  ICC p CV (%) 

CP right  0.73 < 0.001 6.2  0.63 0.002 9.0 

 left  0.67 < 0.001 6.9  0.75 < 0.001 6.7 

          

Anterior PLIC right  0.88 < 0.001 3.8  0.81 < 0.001 4.2 

 left  0.77 < 0.001 5.9  0.78 < 0.001 4.2 

          

Posterior PLIC right  0.73 < 0.001 4.8  0.83 < 0.001 3.0 

 left  0.75 < 0.001 5.9  0.65 0.001 3.9 

          

Anterior PCR right  0.69 < 0.001 14.6  0.85 < 0.001 5.6 

 left  0.76 < 0.001 15.5  0.58 0.004 13.3 

          

Posterior PCR right  0.64 0.001 15.9  0.77 < 0.001 5.3 

 left  0.79 < 0.001 11.9  0.62 0.001 6.4 

          

Anterior CS right  0.40 0.028 20.3  0.82 < 0.001 4.7 

 left  0.68 < 0.001 14.2  0.61 0.003 6.7 

          

Central CS right  0.59 < 0.001 18.0  0.70 < 0.001 5.9 

 left  0.58 0.001 17.4  0.64 < 0.001 7.8 

          

Posterior CS right  0.62 0.001 14.1  0.73 < 0.001 4.9 

 left  0.45 0.019 13.1  0.71 < 0.001 6.0 

          

UF right  0.94 < 0.001 5.1  0.91 < 0.001 3.3 

 left  0.97 < 0.001 4.5  0.93 < 0.001 2.4 

          

FM right  0.88 < 0.001 8.0  0.81 < 0.001 3.5 

 left  0.88 < 0.001 8.3  0.92 < 0.001 2.9 

          

Thalamus right  0.76 < 0.001 7.0  0.79 < 0.001 4.1 

 left  0.88 < 0.001 6.5  0.97 < 0.001 1.2 

          

Genu of CC   0.94 < 0.001 2.8  0.94 < 0.001 2.8 

          

Splenium of CC   0.92 < 0.001 2.8  0.93 < 0.001 4.0 

 


