

Timo Niemi and Turkka Näppilä

Conversion of XML‐based Open

Data into Relational Closed Data

UNIVERSITY OF TAMPERE

SCHOOL OF INFORMATION SCIENCES

REPORTS IN INFORMATION SCIENCES 33

TAMPERE 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250135858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF TAMPERE

SCHOOL OF INFORMATION SCIENCES

REPORTS IN INFORMATION SCIENCES 33

DECEMBER 2014

Timo Niemi and Turkka Näppilä

Conversion of XML‐based Open

Data into Relational Closed Data

SCHOOL OF INFORMATION SCIENCES

FIN‐33014 UNIVERSITY OF TAMPERE

ISBN 978‐951‐44‐9699‐8

ISSN‐L 1799‐8158

ISSN 1799‐8158

Conversion of XML-based Open Data
into Relational Closed Data

Timo Niemi and Turkka Näppilä
University of Tampere, School of Information Sciences
Kanslerinrinne 1, 33014 University of Tampere, Finland

Email: firstname.lastname@uta.fi

Abstract

The lack of tools to support situational analytics based on data sources both in Open Data and
in Closed Data is serious problem especially in the enterprise environment. Typically, many
Open Data sources are XML-based or easily convertible to XML, whereas majority of data
sources in Closed Data and existing data analytics tools is based on the relational model. In
order to facilitate this kind of analytics, we introduce an approach and tool which are able to
convert an XML source to part of relational database. The developed conversion tool has
high degree of automation, which makes it possible to offer an easily useable interface for users.
The conversion tool has also great restructuring power, which enables in addition to data-to-
data translations, data-to-metadata and metadata-to-data translations through its pivot and
unpivot operations, respectively.

Keywords: Integration of Open Data and Closed Data; XML; relational model; conversion;
formal specification.

1. Introduction

Any data produced by an organization that can only be used through specific access control
system are Closed Data for the persons who have no permission to use this system.
Organizations belonging to the public or private sectors can also provide data on the Web freely
without any restrictions for their reuse. This kind of publicly available information is called
Open Data. It is typical of Open Data that its publishers provide data sets autonomously and
independently of each other. This, in turn, means that Open Data is highly heterogeneous,
supporting several different data formats, representations, and labels. On the contrary, Closed
Data are represented and modeled in consistent way; i.e., they are well integrated.

Due to the globalization, there is an increasing need to integrate different data sets in Open Data
with each other, different Closed Data controlled by several organizations with each other and
Open Data with Closed Data. The common challenge in these three integration needs is the
capability to manage heterogeneity among available data. Already, applications based on pure
Open Data would require that different data sets in Open Data would be better compatible with
each other, in other words their degree of integration should be higher. For this purpose,

different tools have been developed. For example, the idea in the tool developed in [EDBT+13]
is to avoid the use of several different labels to denote the same concept in collection (corpus)
of data sets in Open Data. This tool checks that the publisher of new data set uses the
acceptable vocabulary defined for the corpus before adding new data set to the corpus of
interest. Another approach to increase the integration degree among Open Data is to use the
same data model for representing all data sets in the corpus at hand. In [VTBL-13], the RDF data
model is proposed for representing structured, irregularly structured and unstructured data
sources in the Linked Open Data cloud.

There are masses of information both in the public (e.g., certain health care information or
national security data) and private (e.g., enterprise-sensitive data) sectors which must be kept
as Closed Data. However, enterprises operating in the global environment have business
partners with which co-operation requires mechanisms to share and integrate Closed Data
between enterprises. In some extent, this has been realized in B2B (business-to-business)
commerce where some standard XML vocabulary is used for exchanging and sharing data on
the Web between enterprises belonging to specific business domain. For example, in
[LMGC+09] XML standards for several business domains are considered. In spite of this,
heterogeneity of data structures and technologies has been recognized as one of the key
reasons, which limit sharing of enterprise-sensitive information between business partners
[RLBP-10]. This induces need to develop novel tools for sharing and integrating Closed Data
controlled by separate organizations.

During the last few years, increasing attention has been paid to how Open Data can be
integrated with Closed Data. We address this issue in the paper. For example, in [RCHa-12]
different possibilities to integrate XBRL (eXtensible Business Reporting Language)-based data
sources with Open Data sources are considered. XBRL is standardized XML-based mark-up
language for representing financial data of enterprises. Of course, it is possible that in future
enterprises will publish their XBRL-based data sources to lager extent as Open Data. Until
now, business analytics have mainly concentrated on utilizing only Closed Data internal to
specific enterprise. For example, popular OLAP (on-line analytical processing) tools (see e.g.
[CDNa-11]) have been used to analyze multi-dimensionally data cubes whose contents have
been collected from operational databases of enterprises, i.e., data cubes typically contain
Closed Data.

However, several authors (see e.g. [VTBL-13, ETBL-13]) have recently recognized that there is
lack of such business intelligence tools, which are able to support situational (or ad hoc)
analytics based on both Closed and Open Data. By using data sources in Open Data together
with data sources in Closed Data, business analytics can be enriched considerably. For example,
it is possible to gain knowledge and insights from new product promotions, competing
products/companies, market situations, consumer sentiment etc. based on data sources in
Open Data.

The combination of Open Data and Closed Data for analytics is complex process consisting of
several different tasks as shown in [BETL-12]. One of the challenges is to find relevant data

sources from Open Data. DrillBeyond [ETBL-12] is system, which allows the use of such
attribute names in SQL queries, which do not appear in the underlying relational database.
Through its IR facility, the system tries to find the relevant contents for these attributes.
Although the user would know the data sets in Open Data, which are relevant to his/her
information need, it is not clear that the user is able to use them. This is because the user is
often unfamiliar with these data sources as opposed to data sources in Closed Data. The idea in
the recent data management trend, called dataspace [FHMa-05, HFMa-06], is to increase
interactively the knowledge of the user about the underlying data sources. In [NäNi-12, MNNK-
14], we have introduced data profiling tools of our XML-based dataspace system in terms of
which the user is able to find out the contents, structures and semantics related to data sources
beforehand unfamiliar to him/her. In this paper, our starting point is that the user masters the
contents, structures and semantics of relevant data sources in Open Data.

In spite of our starting point, there is still one major challenge to be considered. Namely, Open
Data have to be integrated with Closed Data for situational analytics. Often the information
needs based on situational analytics are casual and short-term in nature. Therefore, it is not
meaningful to build full-scale data integration system for this purpose because the building of
this kind of systems is time- and resource-consuming process [BPEF+10]. In this paper, we
propose that the part of data source in Open Data, which is relevant to the situational analytics
case of interest, is extracted from this data source and materialized as structure based on the
data model used in Closed Data. We see that this approach has the following benefits. All data
sources are compatible with each other and they are in the same repository controlled by one
system used to manage Closed Data. In turn, this affords the possibility of utilizing the efficient
storage and processing mechanisms of the data management system of Closed Data as such
without any modification. Likewise, all analytics tools in the Closed Data environment are
available. This kind of approach has been applied in [EWTB+13, ETBL-13] for extracting
relational-style Open Data (e.g. HTML-tables) and converting them into the form processable
in RDBMs. In this paper, we deal also with non-relational-style Open Data.

In our conversion tool, Open Data is based on XML and Closed Data on the relational model.
Generally taken, Open Data contains data sets based on varying formats (relational tables, XML,
RDF, XLS, PDF, text, etc.). However, XML is both leading markup language for documents and
the de facto standard format for exchanging and sharing data on the Web. In addition, an RDF
document of the Semantic Web is an XML document consisting of triples with the fixed
structure. Likewise, many other data formats can be converted into XML in straightforward
way. For example, HTML data sources are easily convertible to XML by eliminating the tags
intended for displaying [NJJä-14]. One indication of the importance of XML among data formats
is that the main relational database systems of IBM, Microsoft and Oracle all support XML
publishing. From the foregoing, we can draw the conclusion that several data sets in Open Data
are XML-based or easily convertible into it. It has been recognized in several contexts (see e.g.
[NCJo-12, HRGa-10]) that today relational databases are used in most enterprise environments
to store and manage data. Likewise, several analytics tools (e.g. OLAP tools) are based on that

the underlying data have been organized relationally. Therefore, our conversion tool produces
relationally organized data from XML-based Open Data

Our conversion approach resembles the data exchange/translation problem where source data
organized according to specific schema (source schema) are reorganized to conform to the
given target schema [FKMP-05]. This transformation is specified declaratively by high-level
formalism, called schema mappings [Kola-05, MHHe-00], which describe the relationship
between the source schema and target schema. Data exchange problem has been widely studied
in the context of relational data (see e.g. [WyRo-05b]), and recently it has been also studied in
the context of XML (see e.g. [ArLi-08, TZWS-13]). Typically, these studies assume that both the
source and target data have been represented based on the same data model whereas in our
conversion tool source data (XML) and target data (relational) are based on different platforms.
Further, the starting point in data exchange research has been that there are the exact schemas
for both source and target data. However, it has been recognized (see e.g. [TaGr-10]) that most
of the existing XML sources have no schema (DTD or XML schema). Therefore, our conversion
tool, unlike existing data exchange tools, is not based on the existence of source and target
schema and schema mappings between them. The only background assumption in our
conversion tool is that the user knows the element and attribute names of the underlying XML
source. By using these names, the user expresses in straightforward way those relational
attribute names of which the target relation consists.

Data mappings in traditional data exchange approaches describe the relationships between
source and target data at the schema level (metadata) which induce the corresponding changes
at the instance level. Data exchange settings involving instance-level data are called data-to-
data translations. However, information of interest in an Open XML data source can be at the
different abstraction level as those data in the Closed Data repository (relational database)
which are needed for situational analytics. Therefore, our conversion tool has to have the
capability both to transform data from the schema level to the instance level (metadata -to-data
translations) and from the instance level to the schema level (data-to-metadata translations).
Data-to-metadata and metadata-to-data translations are needed in advanced data
restructuring. Especially, two data restructuring operations based on these translations, called
pivot and unpivot have been recognized essential in several contexts (e.g. in OLAP [WBBD+03],
database virtualization [TDMS+10] and relational queries [WyRo-05a]). For example, in the
relational model, data (attribute values) in rows of relation are transferred to columns
(attribute names) through pivot operation whereas unpivot is its inverse operation. Our
conversion tool supports data restructuring based on pivot and unpivot operations.

Figure gives an overview on how our conversion approach is used to extract the relevant parts
from XML-based Open Data sources and to represent extracted data as conventional relations
in the underlying relational database. First, the XML RELATION CONVERTER is used to convert
the textual Open XML sources of interest (XML-1, XML-2, …, XML-K to XML relations (denoted
by XML RELATION-1, XML RELATION-2, .., XML RELATION-K), which we can modify freely in
closed environment. It is typical of the XML relation representation (see, [NNJä-09]) that

Figure 1. Conversion of Open XML data sources into closed relational data.

any textual XML source can be converted unambiguously into this form and vice versa. The role
of XML-TO-RELATION CONVERTER is to extract and restructure information in specific XML
relation representation and produce the result in the form that is compatible with the
conventional relations (OLD RELATION-1, OLD RELATION-2, …, OLD RELATION-N in the underlying
relational database. In Figure 1, NEW RELATION-1, NEW RELATION-2, …, NEW RELATION-N are
conventional relations, constructed from XML RELATION-1, XML RELATION-2, .., XML RELATION-
K respectively. The actual ad hoc analytics based on this information is beyond this paper, i.e.,
in this paper we deal with the data integration, which is necessity for this kind of analytics.

The contribution of this paper is to develop XML-TO-RELATION CONVERTER characterized above.
For this conversion tool, we pursue the following specific goals.

 Our conversion process described in Figure is able to convert data in the XML (semi-
structured) platform to the relational database (structured) platform. For example, in the
data exchange settings the platform used in the source and target data typically remains as
the same. Among others, this means that our conversion tool has to have the capability to
generate null values for indicating missing attribute values in the target relation.

 All those features that can be made in the closed environment are excluded from the
conversion tool. For example, information in the result relations NEW RELATION-1, NEW
RELATION-2, …, NEW RELATION-N must often be possible to connect to other relations in the

...
XML RELATION-1 XML RELATION-2 XML RELATION-K

XML RELATION CONVERTER

XML-TO-RELATION CONVERTER

...
NEW RELATION-1 NEW RELATION-2 NEW RELATION-K

...
OLD RELATION-1 OLD RELATION-2 OLD RELATION-N

...

XML-1 XML-2 XML-K

OPEN XML DATA

CLOSED RELATIONAL DATA

CLOSED
ENVIRONMENT

underlying relational database before ad hoc analytics. This can be done by applying SQL in
the closed environment. The conversion tool, in itself, is very complex process. Therefore,
it is not appropriate to include such features in it, which can be done by other tools.

 It must have great restructuring power, i.e., it has to support data-to-data translations,
data-to-metadata translations (pivot and metadata -to-data translations (unpivot).

 The conversion tool is specified precisely and comprehensively. In our formal specification,
the XML relation representation and its attached constructor algebra have central role.
Because our specification defines exactly how the desired target relation is constructed
from given XML source, we can consider it as the abstract implementation of the
conversion tool.

 The conversion tool must have high degree of automation. This means that the tool have
such an analyzing power which is able automatically to find out those structural
relationships through which information pieces are associated semantically with each other
in the underlying XML source. We show that based on the high degree of automation of our
conversion tool it is possible to define straightforward textual interface, which is at high
abstraction level from the viewpoint of the user.

The rest of the paper is organized as follow. In Section 2, we discuss works related to data
exchange, which have similarities and differences with our conversion operation. In this section,
we also discuss how and why our XML relation representation deviates from other
representations proposed for XML. We specify our conversion tool formally and
comprehensively. The essential formal notations and definitions are given in Section 3. In this
section, we also give simple and compact example, which has been used for demonstrating
pivot operation in different contexts. We believe that this simple example helps the reader to
be ensured about the used formalism. In Section 4, we define our conversion tool, which is
based on two main phases. In this section, we also consider in detail how our conversion tool
produces the desired target relation in the context of our simple example. In Section 5, we give
our actual running example, which is larger and more complex than our simple and compact
example. Among others, it contains several such features, which were not demonstrated in the
context of our simple example. Sections and give the discussion and conclusions,
respectively.

2. Related Work

It is typical of most data exchange approaches that both the source and target data are assumed
to be based on the same data model. For example, in [FKMP-05, FKPo-05, Barc-09] source and
target data are based on the relational model whereas in [ArLi-08, TZWS-13] they are based on
XML. In [PVMH+02, HPTa-08] source and target data can be based on the nested relational
model, i.e., data exchange can be performed between flat and regularly structured hierarchical
relations. Although these works are able to handle hierarchical structures they have not been
tailored to handle irregularly structured XML data whose platform differs considerably from
the relational one. In our approach, it is important that Open Data are based genuinely on the
XML platform. Further, the existing data exchange approaches typically deal with data- to-data
translations whereas data-to-metadata and metadata-to data translations are largely ignored
[HPTa-08]. The importance of supporting also data-to-metadata and metadata-to data

translations has been recognized in the data exchange settings based on the nested relational
model [HPTa-08] and XML [TZWS-13].

Pivot and unpivot restructuring operations presuppose capability for data-to-metadata and
metadata-to-data translations, respectively. Although the results of these operations can be
represented as relations, they do not belong to the original relation algebra whose operations
do not transform data between the schema and instance levels. Due to the importance of these
restructuring operations, they have been proposed as an extension of the relation algebra
[WyRo-05a]. Especially the pivot operation deviates considerably from other relational
operations. Unlike, in the context of other relational operations, we do not know priori what
attribute names the result relation of this operation will contain. This is due to the fact that the
different values of given attribute in the relation to be pivoted are used as attribute names in
the result relation, i.e., the attribute names in the result relation can be defined at runtime of
the pivot operation. In [LSSu-96], schemas containing attribute names produced in this way are
called dynamic output schemas. In this paper, we consider the restructuring operations pivot
and unpivot in the context of XML data. Our starting point makes the specification of these
operations still more challenging because XML data are organized hierarchically and, in
addition, they are often irregular and incomplete.

The construction and use of our conversion tool is also different compared to typical data
exchange tools. As discussed in [HPTa-08] typical data exchange framework has three
essential phases. First, the user describes the data exchange case of interest by some visual
interface. Second, from this description and the underlying schemas, mappings between source
and target data are generated. In the third phase, query expressed by some language is
generated from these mappings. The execution of this query constructs and materializes the
target data. In other words, typical data exchange can be characterized as generation-
oriented approach. Instead, our conversion tool does not generate any code, but it is rather an
operation with two parameters at high abstraction level. One of the parameters is an XML
source without any separate schema and another parameter is straightforward description of
the target relation by using the data item names in the XML source at hand.

Unlike the existing data exchange approaches, our conversion tool does not utilize separate
source and target schemas of data, because most XML-based Open Data sources have no
attached schemas (DTD or XML schema) [TaGr-10]. In other words, if we would want to apply
this kind of approach we should develop XML-based schema extraction techniques introduced
in [MACh-03, HNWe-06] in terms of which the schema for schemaless XML data source could
be constructed. In this paper, we show that the conversion of an XML source can purely be
based on its self-descriptiveness property; i.e., in semi-structured XML source schema-level
information (element and attribute names) and instance-level information (values of elements
and attributes) co-exist.

If an XML source contains regularly structured data, then several approaches (see e.g. [FlKo-99,
STZH+99, HJLP+04]) have been proposed to split an XML source to set of conventional
relations. Even in this case some (e.g. order) information is lost and the original XML source

cannot anymore be constructed from these relations. If the XML source contains information
that is incomplete and irregular then the conversion case becomes more difficult from this
further. The conversion between XML and relational data is highly non-trivial due to the
fundamental differences in their modelling principles. XML data are hierarchical, semi-
structured and ordered whereas relational data are flat, structured and unordered. Therefore,
it is very hard, if not practically impossible, to map XML data unambiguously to the
conventional relations [PCSS+04]. Due to this basic mismatch between XML and relational data,
Tan et al. [TZWS-13] discuss why an XML data exchange setting cannot be translated to
relational data exchange setting.

Due to the above reasons, we propose the use of XML relations [NNJä-09] as the intermediate
form between the textual XML source and the conventional relation. Although an XML relation
is not conventional relational database relation, it can be stored efficiently in relational
database system because it is structurally compatible with conventional relations. Next, we
consider some essential differences between an XML relation and conventional relation. For
example, tuples in the XML relation representation can contain information belonging to the
schema level whereas tuples in conventional relational database system contain only
information belonging to the instance level. Likewise, indexes used for indicating locations of
information pieces in the underlying XML source have central role in the XML relation
representation whereas conventional relations do not contain this kind of indexing mechanism.
Due to the considerable difference between XML relations and conventional relations, the
constructor algebra is used for manipulating XML relations whereas conventional relations are
manipulated by the relational algebra.

Since the direct conversion of XML data to the conventional relations, as indicated above, is very
troublesome, we in our approach do it by using the XML relation representation (its detailed
introduction is in Section 3.3.) as an intermediate form. It is typical of the XML relation
representation that any XML source can be converted unambiguously to it and vice versa. On
the other hand, an XML relation is conceptually and mathematically relation, although it
deviates considerably from relations in relational databases. Due to this conceptual
compatibility, it is possible to utilize the efficient storage methods of relational databases. In
the XML relation representation, indices are used to locate unambiguously any information
piece of an XML source. In the paper, we show that because of indices it is possible to analyze
complex structural relationships among XML data. This kind of analyzing capability is crucial
in building the conversion tool with high degree of automation (one of our goals above). The
idea to use indices to locate XML data is not new. Indices used in the XML relations are often
called Dewey numbers. For example, in ORDPATH [NNPC+04] the location of XML data is based
on Dewey numbers. However, in ORDPATH there is one index to denote an attribute/element
occurrence (i.e., an index refers to both attribute/element name and its attached value)
whereas in the XML relation an attribute/element name and its attached value have different
indices. This is necessary because in the restructuring of our conversion tool we have to
transform data between the schema and instance levels.

Our XML relation representation approach also differs from ORDPATH in the sense that we
have defined the constructor algebra for manipulating XML relation representations. The
special feature of our constructor algebra is that its operations are able automatically to index
the result XML relation based on the indices of operand relations. This is very important
feature when constructing complex XML fragments from simpler XML fragments represented
as XML relations. In the paper we show that the XML relation-based result (or Phase in 4.1) of
our conversion tool can be implemented by this algebra. In other words, the purpose of use of
our constructor algebra differs considerably from those XML algebras (see [FFMR+01, LPVe-
00, CCSi-00, JLST-01] whose idea is to extract, select and navigate XML data.

3. Notational Conventions and Definitions

As our goal is to specify the conversion tool generally and exactly, we next introduce some
notational conventions and definitions that are needed for this purpose.

In an XML relation, the order among data item (attribute or element) occurrences is
represented unambiguously based on indices. Therefore, we first introduce how indices are
represented and manipulated. After that, we give our constructor algebra in terms of which
XML relations are manipulated in our conversion operation. The automatic re-indexing
mechanism has central role in the constructor operations. In addition to the XML source, we
need conventions for representing the target relation schema related to the result. In the
context of the target relation schema, we need the expressions for the advanced restructuring
operations, pivot and unpivot which produce such relational attribute names whose
counterparts do not appear as such in the XML source at hand. Finally, we introduce how data
are represented in the result or in the relational database environment.

3.1 Set-Theoretic Notations

In the specification of our conversion operation, we manipulate both sets and power sets (i.e.,
sets consisting of sets). Let S denote set; then {S is power set whose only element is the set
S We need this expression to form power sets. For example, let S1 {a, b}, S2 {a, c} and S3 {b,
c} be sets; then {a, b, c}, whereas { } {{a, b}, {a, c}, {b, c}} In our definitions, we
also need to be able to analyze the type of the set at hand. We use the predicates is_set(S) and
is_powerset(S) to determine whether S is set, whose elements are not sets, or power set,
respectively.

3.2. Indices and Index Manipulation

In addition to set-theoretic notations, we also need formal representations for indices. Our
indexing scheme is based on the Dewey-style structural indices that allow easy access to the
ancestors and descendants of specific data item. An index consists of sequence of positive
integers denoted between angle brackets. For example, 1,2,3,4 is an index with four
components. The length of an index index is denoted by length(index) For example,
length(1,2,3,4) = 4

10

We refer to any two parts of an index index as index = part1 part2 where part1 represents the
components belonging to the first part of index whereas part2 is the index consisting of the
remaining components in index We use the symbol or string (e.g., ind to refer to sub-
index, whereas single letters or integers (e.g., i or 1 refer to atomic index components. Thus,
for example, the expression i applied to the index 1,3,1,4 means that i refers to the first
component of the index (i.e., i = 1 and is the sub-index 3,1,4 Similarly, the expression ind

 j means that ind = 1,3,1 and j = 4 Correspondingly, the expression i, j results in i = 1 j =
3 and = 1,4 These expressions are also utilized for generating new indices. For example, if
I-Set is the index set { 1 , 2 , 2,1 } then the set expression { 1 index | index I-Set} produces
the index set { 1,1 , 1,2 , 1,2,1 } Analogously, if index is the index 1,3,2 then the expression
index 1 means the index 1,3,2,1

The function lcp returns the longest common prefix of two indices. It is defined as follows.

lcp(,) = (3.1)

if = = (): =
= length() > length().

For example, the longest common prefix of the indices 1,2,3,4,5 and 1,2,3,5,4 is lcp(1,2,3,4,5 ,
1,2,3,5,4) = 1,2,3

3.3. XML Relation Representation and Constructor Algebra

The constructor algebra builds the XML relation representation for any textual XML source by
applying its operations, starting from the atomic XML data items (an element name, an attribute
name, and value). The XML relation representation for more complex XML structures are
constructed by combining the XML relation representations of simpler structures. In this case,
the operations of the constructor algebra automatically re-index the XML relation
representations of the simpler structures. Next, we give the formal definition of our constructor
algebra (based on [NNJä-09]).

Definition 1: An XML relation is constructed recursively by finite application of the following
rules:

1. Let v denote the content or single content component such as word (if the content is
string) of an attribute or element. Now v is represented as an XML relation {(v, 'v', 1)}
where the constant 'v' is used to indicate that v belongs to the content of some attribute or
element.

2. An attribute name a is represented as an XML relation {(a, 'a', 1)} Here, the constant 'a'
indicates the type of a that is, it is an attribute name.

3. An element name e is represented as an XML relation {(e, 'e', 1)} with the constant 'e'
expressing that e is an element name.

11

4. If R1 and R2 are two XML relations, then the concatenation constructor R1 R2 constructs an
XML relation

index_transformation(maxfirst(),)

where maxfirst() = |{(, ,) | (, ,) : length() = 1}|

In other words, the function maxfirst expresses the number of those indices in R1 whose
length is (due to our indexing mechanism the cardinality above expresses the maximum
first component among the indices of R1), and index_transformation(,) = {(, , (+

) | (, ,) } It is also worth noting that in the resulting XML relation the
tuples in R1 remain as such whereas the tuples in R2 are re-indexed by summing the integer
j (i.e., the result of maxfirst(R1) with the first components of the indices.

5. Let A be an attribute name as an XML relation (see, Rule 2) and R its content as an XML
relation. The attribute constructor A R constructs the XML relation A {(v, 'v', 1 ind) |
(v, 'v', ind) R} Here, the length of each index in R is incremented by inserting '1' as the first
component.

6. If E represents an element name as an XML relation (see, Rule 3) and R its content with
possible (nested) substructure as an XML relation, then the element constructor E R
constructs an XML relation E {(c, t, 1 ind) | (c, t, ind) R} where t {'e', 'a', 'v'}

To summarize, Rules 1–3 are used to represent the atomic XML data items as XML relations,
whereas Rules 4–6 are used to construct more complex XML structure occurrences. Rule is
used to combine XML data items that are at the same hierarchy level. Rules and are used for
constructing attribute and element occurrences, respectively. The above constructors have the
closure property; that is, both their operands and their results are XML relations. Therefore,
the constructors can be flexibly nested.

The root element comprises all the other elements, attributes, and content components of an
XML source. In the XML relation representation, this element occurrence is associated with the
index 1 We also assume that each XML source has unique name, which is used to refer to
the corresponding XML relation. The XML relation representation for an XML source D can thus
be defined as follows.

Definition 2: The XML relation representation of an XML source D is ternary relation D(C, T,
I) whose tuples have been constructed through Rules 1–6 in Definition 1. In it, the tuple (r, 'e',
1) expresses the name of the root element of D.

Figure shows textual XML source and its XML relation representation.

12

<StockTicker>
 <tuple>
 <Time> 0900 </Time>
 <Company> MSFT </Company>
 <Price> 27.20 </Price>
 </tuple>
 <tuple>
 <Time> 0900 </Time>
 <Company> IBM </Company>
 <Price>120.00</Price>
 </tuple>
 <tuple>
 <Time> 0905 </Time>
 <Company> MSFT </Company>
 <Price> 27.30 </Price>
 </tuple>
</StockTicker>

C T I
StockTicker ’e’

tuple ’e’ 1,1
Time ’e’ 1,1,1
0900 ’v’ 1,1,1,1

Company ’e’ 1,1,2
MSFT ’v’ 1,1,2,1
Price ’e’ 1,1,3
27.20 ’v’ 1,1,1,3
tuple ’e’ 1,2
Time ’e’ 1,2,1
0900 ’v’ 1,2,1,1

Company ’e’ 1,2,2
IBM ’v’ 1,2,2,1
Price ’e’ 1,2,3

120.00 ’v’ 1,2,1,3
tuple ’e’ 1,3
Time ’e’ 1,3,1
0905 ’v’ 1,3,1,1

Company ’e’ 1,3,2
MSFT ’v’ 1,3,2,1
Price ’e’ 1,3,3
27.30 ’v’ 1,3,1,3

Figure 2. textual XML source and its XML relation representation.

For our conversion operation, we need to extend the concatenation constructor (Rule of
Definition 1) to also cover the situation, in which the operands may be empty sets or power sets
whose elements are XML relations. We denote this extension of the concatenation operation by
<> and define it as follows.

<> =

, if
, if
, if is_set(is_set()

{ | }, if is_set(is_powerset()
{ | }, if is_powerset(is_set()

{ | }, if is_powerset(is_powerset()

(3.2)

It is worth noting that the above operation is able to concatenate each possible combination
between XML relations in its operands.

3.4. Functions and Predicates for Analyzing XML Structures

XML sources are commonly visualized as ordered trees, consisting of nodes and the edges
between them. This means that in traversing an XML source we need to analyze its nodes. The
XML relation representation and its indexing mechanism greatly facilitate this kind of analyzing.
Next, we define some functions and predicates for this purpose.

13

In the tree visualization of an XML source, node is leaf if it has only value as its child (i.e.,
no other data item names). The predicate leaf(index) is true if the index index is associated with

data item name that is leaf in the XML relation X-Rel at hand. It is defined as follows.

leaf() = true, if (, _ ,) - (,'v', 1) -
false, otherwise. (3.3)

For example, in the context of the sample XML relation in Figure leaf(1, 1, 2) = true (the index
1, 1, 2 is associated with the data item name Company), whereas leaf(1, 2) = false since data

item name tuple with the index 1, 2 has other data item names as its children.

If data item name with the index index is not leaf, then the indices of its children in the XML
relation X-Rel can be retrieved by the function children(index) which is defined as follows:

children() = (_ , ,) - : {'e','a'} . (3.4)

In the context of our sample XML relation, children(1, 2) = { 1, 2, 1 1, 2, 2 1, 2, 3 } This
means that the tuple element with the index 1, 2 has three children: the data item names Time
Company and Price associated with the above indices.

The children of data item can be similar or dissimilar with each other with respect to their
information contents. In XML, the similar data item occurrences are typically organized by
using the same data item names and structures in them. Consequently, when all the children of

data item have the same name they can be assumed to represent similar information. In
gathering information about the children of data item, we have to know whether they
represent similar information. For this, we define the predicate similar(I-Set) where I-Set is set
of indices, as follows:

similar(I-Set) = true, if |{ | - : (, _ ,) - }| = 1
false, otherwise. (3.5)

In our example, similar({ 1, 1 , 1, 2 , 1, 3 }) = true since all these indices are associated with
the data item name tuple Instead, similar({ 1, 1, 1 , 1, 1, 2 , 1, 1, 3 }) = false meaning that the
children of the tuple data item with the index 1, 1 are not similar with each other.

The data item occurrences at the same hierarchical level in the XML structure are called siblings,
which also means that they depend immediately on the same data item occurrence. This
information can be utilized in retrieving siblings. Due to our indexing mechanism, the indices
associated with siblings differ only in their last index component. We define the function
next_sibling(I-Set) to retrieve the smallest index in the ascending document order from the index
set I-Set as follows:

next_sibling(-) = if < : - . (3.6)

14

Thus, in our sample XML relation next_sibling(1, 1, 1 , 1, 1, 2 , 1, 1, 3) returns the index 1, 1,
1

Intuitively, based on our indexing mechanism, the closest occurrences of the data item n1 with
the data item n2 are the ones whose indices share the longest common prefix. The function
closest(index, n) returns the index of an occurrence of the data item name n that is closest to the
data item occurrence with the index index It is defined as follows.

closest(,) = , (3.7)

if (, _,) X-Rel (, _ ,) - : length lcp(,) >
length lcp(,) .

In our sample XML relation, closest(1, 1, 3 , Time) = 1, 1, 1 In other words, the closest
occurrence of the Time data item with respect to the (Price data item occurrence with the index
1, 1, 3 is the one with the index 1, 1, 1 It is worth noting that the function closest is able to

obtain the closest data item regardless of the hierarchical level at hand.

3.5. Formalism for the Conventional Relational Databases

Although an XML relation is mathematically relation which is able to represent an XML source
relationally it is not such relation notion on which relational database systems are based. For
example, in the conventional relational database system tuple consists only of information
belonging to the instance level (i.e., attribute values), whereas tuple in the XML relation can
contain information which can belong either to the schema or instance level. Likewise, the
index-based location information plays an essential role in the XML relation expression,
whereas relation of conventional relational database lacks this kind of information.
Therefore, our conversion operation contains phase in which an XML relation organized
according to the given target schema is converted into conventional, relation processable in
the relational database environment. For this, we need the formalism introduced in this section.

According to Ullman [Ullm-88], relational tuples can be viewed as mappings from attributes’
names to values belonging to the domains of the attributes. An alternative to represent this kind
of mappings is to give attribute name–attribute value pairs. Here, an attribute name (denoted
by a-name and its value (denoted by value are represented as the term a-name(value) Based
on this convention, relational tuple is represented as (a-name1(value1), a-name2(value2), … , a-
namek(valuek)) where a-name1, a-name2, … , a-namek are attribute names and value1, value2, … ,
valuek are their values in tuple, respectively. In our formalism, the tuple can also be empty,
which is denoted by

In our conversion operation, we will construct relational tuple by concatenating attribute
name–attribute value pairs with each other. For this, we need the tuple concatenation operation
concatenate(tuple1,tuple2) defined as follows:

15

concatenate((name1(value1), name2(value2), …, namek(valuek)), (name1’(value1’), name2’(value2’),
…, namek’(valuek’)) = (name1(value1), name2(value2), …, namek(valuek), name1’(value1’),
name2’(value2’), …, namek’(valuek’)).

(3.8)

The empty tuple behaves in the concatenate operation as follows: concatenate(, tuple) =
concatenate(tuple,) = tuple For example, concatenate((Time(0900), Company(IBM)),
(Price(120.00)),) = (Time(0900), Company(IBM), Price(120.00))

4. Formal Definition of the Conversion Operation

4.1. Formal Representation of the Relational Target Schema

Our goal is to provide the user with powerful conversion operation that is straightforward to
use. In the following, we will show that this operation needs only two kinds of information as
its input: the existing XML source and the relational target schema. The operation produces the
result relation organized according to the given relational target schema. The starting point of
the use of our operation is that the user knows the data item names (i.e., attribute and element
names) in the XML source at hand. This is important because we use these data item names as
such in relational attribute names of the result relation. Of course, we could rename the data
item names in the target relation in the context of the operation. There are two reasons for
avoiding renaming. First, it would make our operation more complicate to use because, due to
the renaming, we should add the schema mapping facility similar to data exchange (see, [Kola-
05]). Second, the renaming of relational attributes can be done quite simply in the relational
database system once the target relation has been constructed.

In our operation, the target schema contains both those attribute names which are extracted as
such from the underlying XML source and expressions for constructing new attribute names
through pivoting and unpivoting. Generally taken, relational target schema is represented as

term RN(A1, A2, …, An) where RN is the name of the target relation and each Ai (1 i n is
either relational attribute name, which has the corresponding data item name in the XML
source, or an expression for generating new attribute names for the target relation. In the
context of target relation, we use the following predicates to test the type of specific Ai

 The predicate basic(Ai) is true, if Ai has the corresponding data item name in the XML
source. In other cases, it is false.

 The predicate pivot(Ai) is true, if Ai is pivot expression for generating new attribute
names based on the values of specific data item name. In other cases, it is false.

 The predicate unpivot(Ai) is true, if Ai is an unpivot expression for generating two new
attribute names whose values are defined in the expression. In other cases, it is false.

It is obvious that the above predicates are exclusive; i.e., only one of the above predicates can
be true in the context of any Ai

16

<StockTicker>
 <tuple>
 <Time> 0900 </Time>
 <Company> MSFT </Company>
 <Price> 27.20 </Price>
 </tuple>
 <tuple>
 <Time> 0900 </Time>
 <Company> IBM </Company>
 <Price>120.00</Price>
 </tuple>
 <tuple>
 <Time> 0905 </Time>
 <Company> MSFT </Company>
 <Price> 27.30 </Price>
 </tuple>
</StockTicker>

Result
Time MSFT IBM
0900 27.20 null
0900 null 120.00
0905 27.30 null

Figure 3. XML-to-relation conversion with pivot.

4.1.1 Pivot

As recognized in [HPTa-08], we cannot determine priori the attribute names obtained by
pivoting. This kind of schema is sometimes called dynamic output schema [LSSu-96]. It is
typical of pivoting that the related attribute names are generated at run-time. This means that
we need such an expression that is able to generate these attribute names when processing our
conversion operation. In addition to the names of the source (in our case an XML document)
and target (in our case relation) depositories, in textual pivot specification (see. e.g.
[TDMS+10]) we need to express both the source data item name (denoted by N holding the
values that will be pivoted to form new attribute names in the result and the source data item
name (denoted by V whose values are used as the values of pivoted (generated) attributes.
Based on these notations the pivot operation is expressed by the notation N(V) in our target
schema; i.e., if some Ai in the target schema has been expressed in this way, then the predicate
pivot(Ai) is true. The source data item names N and V may have several occurrences in the
underlying XML source. Therefore, in pivoting it is important to be able to connect the
semantically related values of V to the values of N in the XML source at hand. For this purpose,
we can use our function closest defined in Formula 3.7.

In what follows, we will illustrate the specification of our conversion operation through the
XML-to-relation conversion depicted in Figure 3. It is based on the example used in [HPTa-08].
It is obvious that this conversion involves pivoting. Hence, the related target schema is of the
form Result(Time, Company(Price)) where Result is the name of the target relation, Time is basic
attribute name, and Company(Price) is pivot expression indicating set of attribute names that
will be generated at run-time based on the distinct values of the Company data items (an XML
element). The thus generated attributes will be populated with the values of the semantically
related Price source data items. We shall later refer to the above target schema as STS1

17

Let TS be target schema RN(A1, A2, …, An) then the predicate r_name(TS) gives the relation
name (RN and the function e_set(TS) yields the set {A1, A2, …, An} In the context of the target
schema STS1 r_name(STS1) = Result and e_set(STS1) = {Time, Company(Price)} If Ai is pivot
expression in target schema TS (i.e. Ai e_set(TS): pivot(Ai) = true), then the predicate gen(Ai)
gives the source data item name whose values will be pivoted to form the new attribute names
in the target relation. Similarly, the predicate inst(Ai) gives the source data item name whose
values are used as values of the generated attribute names. For example, in the context of STS1
the predicate gen(Company(Price)) gives Company and the predicate inst(Company(Price)) gives
Price

4.1.2 Unpivot

Unpivot is kind of an inverse operation to pivot in the sense that it transfers information from
the schema level (i.e., metadata) to the instance level. Let Ai be an unpivot expression (i.e.,
unpivot(Ai) is true); then Ai contains the following information:

(a) those source data item names that will be represented as the values of specific new
attribute in the target relation, and

(b) the new attribute name in the target relation that contains the values related to the source
data item names expressed in A

In our conversion operation, an unpivot expression is represented as term Attr([DN1,DN2, … ,
DNn], B) In this expression, Attr is an attribute in the target relation whose values will be the
data item names DN1, DN2, …, DNn in the XML source at hand. On the other hand, B is an attribute
in the target relation whose values will be the values of the data items DN1, DN2, …, DNn In other
words, Attr and B are new metadata items not appearing in the original XML source. If there is
an unpivot expression Ai = Attr([DN1, DN2, … , DNn], B) in the target relation TS (i.e., Ai e_set(TS):
unpivot(Ai) = true) such that source data item name DN appears in [DN1, DN2, … , DNn] then the
predicate to_be_unpivoted(DN) is true. The predicate a-name(DN) yields the target attribute
name whose value DN will be (i.e., a-name(DN) Attr and the predicate v-name(DN) yields the
target attribute name whose values the values of DN will be (i.e., v-name(DN) B). Finally, the
predicate new_attributes expresses the two new attribute names that are generated to the
result relation through unpivoting (i.e., new_attributes(Ai) = {Attr, B}).

Figure describes conversion case involving unpivoting. (The case is conceptually the inverse
of the conversion case depicted in Figure 3.) In this conversion case, we have the target schema
Result2(Time, Company([MSFT,IBM]), Price)) where Company([MSFT,IBM]), Price) is an unpivot
expression. Based on this schema, both to_be_unpivoted(MSFT) and to_be_unpivoted(IBM) are
true. Further, the predicates a-name(MSFT) and a-name(IBM) yield Company and the predicates
v-name(MSFT) and v-name(IBM) yield Price The predicate new_attributes(Company([MSFT,IBM]),
Price)) yields the set {Company, Price}

18

<Result>
 <tuple>
 <Time> 0900 </Time>
 <MSFT> 27.20 </MSFT>
 </tuple>
 <tuple>
 <Time> 0900 </Time>
 <IBM> 120.00</IBM>
 </tuple>
 <tuple>
 <Time> 0905 </Time>
 <MSFT> 27.30 </MSFT>
 </tuple>
</Result>

Result2

Time Company Price
0900 MSFT 27.20
0900 IBM 120.00
0905 MSFT 27.30

Figure 4. XML-to-relation conversion with unpivot.

4.2. Phase I: The Construction of the Intermediate Form

Recall from Section that we first convert the textual XML sources retrieved from the Open
Data environment into the corresponding XML relations. In the first phase of our conversion
operation, we extract and restructure the relevant information from these XML relations and
produce the intermediate form consisting of information expressed in the relational target
schema at hand. The intermediate form is set consisting of elements which themselves are
XML relations. Each element contains all semantically related information that is needed for
constructing tuple of the result relation; i.e. the number of XML relations in the intermediate
form is the same than the number of tuples (rows) in the result relation. In the second phase of
our conversion operation, conventional relation that is processable in relational databases is
constructed. Next, we define these two phases in detail and we assume that the reader knows
the formalisms and functions introduced above.

In the tree visualization of an XML source, the leaf nodes provide the information content from
which the result relation is constructed. All the other nodes are element name occurrences that
group hierarchically the information in the leaves. In this paper, we call these nodes non-leaf
nodes. Typically, in an XML source there are several nodes (attribute or element name
occurrences) labeled identically. Therefore, it is important to find out what leaf nodes are
associated semantically with each other in the closest way. Let l be leaf node, then the leaf
node occurrence with specific name (say a is related semantically to l if this leaf node
occurrence has the lowest common ancestor with l among all nodes with name a We can use
the function closest defined in Formula 3.7 to obtain the leaf node occurrence with specific
name that is semantically related to given leaf node. It is worth noting that in XML the leaf
nodes may lie at the different hierarchical levels. In an XML relation, the length of the index
attached to leaf node expresses its hierarchical level. Further, if ind is the index of leaf node
(an attribute or element name) in an XML relation, then the index ind 1 expresses its value.
Since leaf nodes do not contain any substructures, there is only one index whose prefix is ind

19

The role of the first phase in our conversion operation is to select, flatten and restructure the
information in the XML source into the intermediate form. Let A and B be two data item names
whose occurrences are leaf nodes such that A is at higher hierarchical level than B In this case,
in constructing the intermediate form we have to duplicate an occurrence of A for each
occurrence of B that is semantically associated with it. We can implement this duplication
through the generalized concatenation operation of the constructor algebra introduced in
Section 3.3. Through duplication, we flatten information in the XML source. This is necessary
because the relational model is based on non-hierarchical (flat) structures. In this context, we
have also to restructure (through pivoting or unpivoting) existing XML data for the result
relation.

In our conversion operation, the first phase is carried out by the function extract&restructure(X-
Rel, TS, I-Set) where X-Rel is the XML relation representation of an XML source, TS is target
schema organized according to Section 4.1, and I-Set is set consisting of the indices of the data
item name occurrences are to be traversed next in the underlying XML source. Initially, I-Set
has the value { 1 } i.e. the traversal of an XML source starts from its root.

The function extract&restructure is defined recursively so that every node in the tree
visualization of the XML source at hand is traversed. As explained above, special interest is in
the cases where leaf node is met in the traversal of an XML tree. Typically, we make from each
leaf node separate XML relation, which is connected to other separate XML relations related
to other leaf nodes by the generalized concatenation operation. It is worth noting that the
concatenation operation produces larger XML relation in which information of separate XML
relations is automatically re-indexed. Before the formal definition of the function, we informally
consider those different cases of which the traversal of an XML source consists.

CASE 1: If non-leaf node is met, then we have to traverse all its children recursively. In this
case, the set I-Set consists only of one index. For example, the traversal of the root of an XML
source represents this case.

CASE 2: If leaf node is met, we have four options for its manipulation. First, if the leaf node at
hand does not appear in the target schema, then it is not taken into the intermediate form.
This is indicated so that the function yields the empty set as the result. It is worth noting
that the generalized concatenation operation defined in Formula 3.2 is able to handle empty
sets as its arguments; i.e. this kind of leaf nodes are ignored when concatenating leaf nodes.

CASE 3: Here, the situation is similar to CASE except that the leaf node at hand appears in the
target schema; i.e. it is taken into the intermediate form. By the constructor algebra, we
make from this leaf node and its value separate XML relation, which is connected to other
extracted and/or restructured information in constructing the intermediate form.

CASE 4: This case concerns the situation where the encountered leaf node is participated in
pivot expression in the target schema TS so that its value is used as an attribute name in the
result relation. In this case, such separate XML relation is constructed, in which the value
of the encountered leaf node appears as an element name and whose value is the value of

20

the data item expressed in the target schema, which is associated semantically with the
encountered leaf node.

CASE 5: This case is related to situation where the encountered leaf node has to be unpivoted.
This means that two pieces of new information must be constructed for the intermediate
form. We have to construct both the XML relation, where the encountered leaf node appears
as the value of the relational attribute expressed in the target schema, and the XML relation,
where the value of the encountered leaf node appears as the value of the relational attribute
expressed in the target schema. The concatenation of these two XML relations contains the
unpivoted information related to encountered leaf node.

CASE 6: In the traversal of the XML source, we have the situation where we are dealing with
substructures depending on specific node (these substructures are drawn from CASE 1).
If these substructures (I-Set contains the indices from which the substructures start) have
been labeled identically (i.e., similar(I-Set) = true then they can be safely assumed to contain
similar information. This means that we have to traverse each substructure and extract the
needed information from them. The extracted information per each substructure is
represented as its own XML relation. Through union, we express the total information
extracted from these substructures. However, each constructed XML relation must be
represented as its own element in the result of the union. This is because the semantic
relationships among extracted data must be preserved. In other words, power set, whose
elements are XML relations, is produced. Through the generalized concatenation operation,
each constructed XML relation is connected to the other extracted and/or restructured
information.

CASE 7: This case differs from CASE in the respect that substructures depending on specific
node are not similar with each other (i.e. similar(I-Set) = false). In this case, we traverse each
substructure, extract the relevant information from them, and concatenate this information
together. Substructures are dealt with in the order given by the function next_sibling
(defined in Formula 3.6). Finally, I-Set contains only one index that is treated based on the
means of CASE to CASE 5.

The formal definition of the function extract&restructure is given in Formula 4.1. (The functions
leaf children e-set basic inst gen a-name v-name to_be_unpivoted similar and next_sibling
applied in this formula were defined in the previous sections.)

21

extract&restructure(X-Rel, TS, I-Set) =
extract&restructure X-Rel TS children(index) ,

if I-Set ={ } leaf() = false // CASE 1

,
if I-Set ={ } leaf() = true { | (, _,)} e_set() // CASE 2

{(,'e', 1)} {(,'v', 1)}
where (,'v', 1) X-Rel,

if I-Set ={ } leaf() = true
{ | (, _,)} e_set(basic() = true // CASE 3

{(,'e', 1)} {(,'v', 1)}
where (,_,) X-Rel (,'v', 1) X-Rel

(inst(), _,) X-Rel closest(, ()) = ´
(,'v', 1) X-Rel,

if I-Set ={ } leaf() = true
e_set(): pivot() = true gen() = //

{(a-name(), 'e' 1)} {(,'v', 1)} <> {(v-name(), 'e' 1)} {(,'v', 1)}
where (c,_,) X-Rel (v,_, 1) X-Rel,

if I-Set = { } leaf() = true to_be_unpivoted() = true //

{extract&restructure(X-Rel TS { })},I-Set
if |I-Set| > 1 similar(I-Set) = true //

extract&restructure(X-Rel TS { }) <> extract&restructure(X-Rel TS I-Set { })
where next_sibling(I-Set) = ,

if |I-Set| > 1 similar(I-Set) = false //

(4.1)

The function extract&restructure(X-Rel, TS, I-Set) produces the intermediate form represented
as the set {XML-Rel1, XML-Rel2, … , XML-Reln} where each element XML-Reli (1 i n is an XML
relation of the form {(e1, ‘e’, 1), (v1, ‘v’, 1,1), (e2, ‘e’, 2), (v2, ‘v’, 2,1), …, (ek, ‘e’ k), (vk, ‘v’,
k,1)} Each ej (1 j k is an XML element name, which appears as relational attribute in the

result relation to be constructed, and vj is its value. An XML relation XML-Reli in the intermediate
form contains semantically related information for constructing one tuple (row) for the result
relation.

It is possible that an XML relation XML-Reli does not contain information for all attributes of the
result relation. There are two basic reasons for that. First, data in XML sources are often
incomplete and their structure may be irregular. For example, when traversing an XML tree we

22

extract&restructure(StockTicker, STS1, { 1 })

 CASE 1

extract&restructure(StockTicker, STS1, { 1,1 , 1,2 , 1,3 })

 CASE 1

extract&restructure(StockTicker, STS1, { 1,1,1 , 1,1,2 , 1,1,3 })

 CASE 3

extract&restructure(StockTicker, STS1, { 1,1,1 })

 CASE 6

extract&restructure(StockTicker, STS1, { 1,1 })

 CASE 4

{(Time, ‘e’, 1), (0900, ‘v’, 1,1)}

 CASE X

extract&restructure(StockTicker, STS1, { 1,2 }) extract&restructure(StockTicker, STS1, { 1,3 })

extract&restructure(StockTicker, STS1, { 1,1,2 }) extract&restructure(StockTicker, STS1, { 1,1,3 })

{(‘MSFT’, ‘e’, 1), (‘27.20’, ‘v’, 1,1)}

 CASE 2

 CASE 7

// Branching Point 1

// Branching Point 1.1

Figure 5. The (partial) evaluation tree related to Phase of Example 1.

may meet node (CASE above) whose children have been labeled identically (and thus
supposedly contain similar information) but some specific piece of information may appear in
the context of some child whereas it is missing from some other child. Second, the values of
leaf node used in the pivoting may differ. This means that generated data item name will
appear only in some XML relations of the intermediate form.

Example 1. In order to ensure that the reader has interpreted the above formulas and
definitions correctly, we next provide the detailed evaluation of the Phase of the XML-to-
relation conversion represented in Figure 3. It is worth recalling that this simple example has
been used in several contexts dealing with pivot and unpivot operations, and we therefore
believe it helps also to proportion our approach to other approaches proposed for these
operations. This sample conversion is based on the XML relation representation of the
StockTicker XML source given in Figure 2. As we recall from Section 4.1, the related target
schema is Result(Time, Company(Price)) (STS1 for short), the predicate r_name(STS1) = Result and
the function e_set(STS1) = {Time, Company(Price)} The (partial) evaluation tree is given in Figure
5.

The evaluation starts from the root node (with the index 1), and hence the first function call
is extract&restructure(StockTicker, Result(Time, Company(Price)), { 1 }) This matches CASE 1,
since the cardinality of I-Set (i.e., { 1 } is one and the associated data item is non-leaf node.
Next, we proceed to consider the tuple elements that are the children to the root node (i.e., I-Set
= { 1,1 , 1,2 , 1,3 }). This matches CASE 6, since the cardinality of I-Set is greater than one and
the function similar(I-Set) returns true (see, Formula 3.5). Now, the evaluation splits into three
branches, one for each tuple element. Let us call this Branching Point 1.

For the first tuple element, the function call is now extract&restructure(StockTicker, Result(Time,
Company(Price)), { 1,1 }) Here, we face again CASE 1, because the tuple element related to the
index 1,1 is non-leaf node. We therefore proceed to consider its children (i.e., I-Set = { 1,1,1 ,
1,1,2 , 1,1,3 }). In this case, the cardinality of I-Set is greater than one but the function similar(I-

23

Set) returns false It means that we have CASE at hand. The evaluation splits again into three
branches that are traversed in the order given by the function next_sibling (defined in Formula
3.6); we refer to this as Branching Point 1.1.

For the Time element related to the index 1,1,1 the evaluation matches CASE 3, since the
cardinality of I-Set (i.e., { 1,1,1 } is one, the associated data item is leaf node, and the data
item’s name is member of the set {Time, Company(Price)} yielded by the function e_set(STS1)
and it has corresponding data item name in the XML source (basic(Time) = true). In this case,
the function extract&restructure(StockTicker, Result(Time, Company(Price)), { 1,1,1 } yields the
set {(‘Time’, ‘e’, 1), (‘0900’, ‘v’, 1,1)} which we get by extracting and re-indexing the original
Time element and its value. The evaluation reverts to Branching Point 1.1.

Next, we consider the Company element related to the index 1,1,2 In this case, the cardinality
of I-Set (i.e., { 1,1,2 } is one, the associated data item is leaf node, and the data item name
Company matches the pivot expression Company(Price) in the target schema. In other words, we
have CASE 4. Now, the function call extract&restructure(StockTicker, Result(Time,
Company(Price)), { 1,1,2 } yields the tuple {(‘MSFT’, ‘e’, 1), (‘27.20’, ‘v’, 1,1)} This tuple is
formed by turning the value of the Company element (MSFT into an element ((‘MSFT’, ‘e’, 1)
and making the value of the Price element closest to the Company element as the value of this
newly formed element. The evaluation reverts again to Branching Point 1.1.

In this branch, we have still the element Price related to the index 1,1,3 to consider. It matches
CASE 2, since the cardinality of I-Set (i.e., { 1,1,3 } is one and the associated data item is leaf
node but the last condition, the associated data item name is part of the set e_set(STS1) = {Time,
Company(Price)} fails. In this case, the function call extract&restructure(StockTicker, Result(Time,
Company(Price)), { 1,1,3 } yields an empty set, and the evaluation reverts to Branching Point 1.1.

When all the branches from Branching Point 1.1 have now been traversed, we concatenate the
results obtained through them by the operation <> and get the set {(Time, ‘e’, 1), (0900, ‘v’,
1,1), (MSFT, ‘e’, 2), (27.20, ‘v’, 2,1)} Next, the evaluation reverts to Branching Point 1, where

we have still two branches to traverse. However, since the evaluation in them is analogous to
that of Branching Point 1.1 above, we leave their detailed consideration to the reader. It is here
sufficient to say that the branch rooted by the index 1,2 yields the set {(Time, ‘e’, 1), (0900,
‘v’, 1,1), (IBM, ‘e’, 2), (120.00, ‘v’, 2,1)} and the branch rooted by the index 1,3 the set
{(Time’, ‘e’, 1), (0905, ‘v’, 1,1), (MSFT, ‘e’, 1), (27.30, ‘v’, 1,1)} Now, all the branches leading
to Branching Point have been traversed, and the evaluation can be completed by unionizing
their results. By doing this, we get the set {{(Time, ‘e’, 1), (0900, ‘v’, 1,1), (MSFT, ‘e’, 2), (27.20,
‘v’, 2,1)}, {(Time, ‘e’, 1), (0900, ‘v’, 1,1), (IBM, ‘e’, 2), (120.00, ‘v’, 2,1)}, {(Time’, ‘e’, 1),
(0905, ‘v’, 1,1), (MSFT, ‘e’, 2), (27.30, ‘v’, 2,1)}}, which is also the intermediate form based on
which the final target relation is constructed. Henceforth, we denote the above intermediate
form by IF1

24

4.3. Phase II: The Construction of the Target Relation from the Intermediate Form

It is impossible to construct target relation without knowing the exact relational attributes it
contains. As explained in Section 4.1, only part of attribute names can be specified explicitly
in the target schema, whereas the attribute names generated by the pivot operation become
known only at run-time. We see this as one of the main reasons why its textual expression and
combination with other relational operations have proven so difficult. Next, we show that based
on our XML relation representation it is possible to resolve which attribute names will be
generated based on each pivot expression. This is because we are able to find out all different
values of the data item, which are used as attribute names in the target relation. As mentioned
above, all the generated attribute names do not have values in all tuples (rows) in the result
relation.

The attribute names in the target schema are expressed explicitly or implicitly. One explicit way
is to use source data item name as such as an attribute name. Another way is to give two new
attribute names in the context of each unpivot expression. As explained above, the implicit way
is related to pivot expressions. The function target_attribute_names(X-Rel, TS) gives the set of
relational attribute names, which can be inferred from the underlying XML source X-Rel and
target schema TS It is defined as follows.

 target_attribute_names(X-Rel,)
= { | e_set(): basic() = true } //

new_attributes() where = { | e_set(): unpivot()

= true } //
{ | e_set(): pivot() = true (gen(), _,)

X-Rel (,'v', 1) X-Rel} //

(4.2)

In CASE above, the set contains those attribute names which appear as the identical data item
names in the XML source. In CASE 2, each unpivot expression gives two new attribute names
which do not appear in the XML source (the predicate new_attributes was introduced in Section
4.1). In CASE 3, the set contains the attribute names that will be generated at run-time based
on all the pivot expressions in the target schema TS

In the context of Example 1, the function target_attribute_names gives the set {Time, MSFT, IBM}
i.e. CASE and CASE are applied. Once the set of attributes in the target relation has been
obtained, we need to construct tuples so that one relational tuple is constructed from one XML
relation in the intermediate form. This means essentially two things. First, we have to represent
attributes as name–value pairs in relational tuple (see, Section 3.5), whereas their connection
is represented based on indices in the corresponding XML relation. Second, it is possible that
an XML relation does not contain information for specific attributes, in which case the attribute

25

to_relational_tuple(R1, A,)

to_relational_tuple(R1, A, ((Time(0900), MSFT(27.20), IBM(null)))

A = {IBM}

(A) = IBM CASE 3

((Time(0900), MSFT(27.20), IBM(null)))

A =

 CASE 1

to_relational_tuple(R1, A, (Time(0900))

A = {Time, MSFT, IBM}

(A) = Time CASE 2

to_relational_tuple(R1, A, ((Time(0900), MSFT(27.20)))

A = {MSFT, IBM}

(A) = MSFT CASE 2

Figure 6. The evaluation tree related to Phase II of Example 1.

values are assigned to null indicating the missing information. The function
to_relational_tuple(X-Rel, A, tuple) instantiates recursively from the XML relation X-Rel each
relational attribute in A one by one. The argument tuple expands as the instantiation of
attributes proceeds. When the function is initially invoked, the argument tuple is the empty
tuple and, in the end, all attributes in A have been instantiated. Because we represent
relational tuple based on attribute name–attribute value pairs, the order among these pairs is
unimportant. Therefore, in the construction of tuple we apply the selection function to
obtain undeterministically one attribute name from the set A Based on the notations and
functions introduced above, the function to_relational_tuple is defined as follows.

to_relational_tuple(X-Rel, ,) =
,

if // CASE 1

to_relational_tuple(X-Rel, { ()}, concatenate((),)
where () = ,

if (, e ,) X-Rel (,'v', 1) X-Rel // CASE 2

to_relational_tuple(X-Rel, { ()}, concatenate((),)
where () = ,

if (, e ,) X-Rel // CASE 3

(4.3)

Let us now consider how single relational tuple is evaluated from the XML relation {(Time, ‘e’,
1), (0900, ‘v’, 1,1), (MSFT, ‘e’, 2), (27.20, ‘v’, 2,1)} of the intermediate form IF1 constructed

in Example 1. In this context, A = {Time, MSFT, IBM} The evaluation tree related to the the above

26

XML relation, denoted by R1 is shown in Figure 6. The remaining two XML relations in the
intermediate form IF1 are treated in an analogous way.

By applying the functions target_attribute_names and to_relational_tuple in the context of the
result of Phase (i.e., the intermediate form), we can define Phase II of our conversion operation.
It constructs the target relation organized according to the given target schema TS from the
intermediate form IF which, in turn, has been constructed from the underlying XML source X-
Rel in Phase I. Phase II is implemented by the function intermediate_to_target(X-Rel IF, TS) and
is defined as follows

intermediate_to_target(X-Rel, ,) = {to_relational_tuple(,)} (4.4)

where = target_attribute_names(X-Rel,).

In the context of Example 1, Phase II can be implemented by the function
intermediate_to_target(StockTicker, IF1, Result(Time, Company(Price))). The evaluation of this
function gives the set

{(Time(0900), MSFT(27.20), IBM(null)),
(Time(0900), MSFT(null), IBM(120.00)),
(Time(0905), MSFT(27.30), IBM(null))}.

This set expresses the tuples of which the sample target relation Result (= r_set(Result(Time,
Company(Price)))) consists; i.e., the desired target relation has been constructed. The tabular
visualization of this target relation was given in Figure 3.

The combination of Phases and II contains the processing mechanism that is needed to
construct target relation from the information in the XML source at hand. This processing
mechanism includes complex data restructuring, such as pivoting and unpivoting, which are
beyond the conventional relational operations. The whole conversion process based on the
relation representation of an XML source denoted by X-Rel and given target schema denoted
by TS can be implemented by the function conversion(X-Rel, TS), which is defined as follows

conversion(X-Rel,) = intermediate_to_target(X-Rel, ,) (4.5)

where IF extract&restrusture(X-Rel, TS, { 1 })

5. Sample Evaluation

In the previous section, we defined our conversion tool and demonstrated its use in the context
of simple and well-structured XML source. We borrowed our example from [HPTa-08] where
it was used to demonstrate pivot and unpivot operations in relational databases. In this paper,
we represented the source information as XML. We believe that this compact example suffices
to show the processing principles of our conversion tool. However, in this section we provide

27

more comprehensive example that further illuminates the capability of our tool to treat both
pivot and unpivot operations at the same time.

Example 2. Appendix shows the IndustryStatistics XML source containing information on
industry sectors in the USA and in Finland (denoted by FI). The elements names Textile Forest
and IT stand for industry sectors, whereas their values express the profit produced by them (in
an unspecified time period). The element Number expresses the total number of enterprises
belonging to specific sector. The costs are given per personnel category, which are Mgmt (for
Management), Admin (for Administration), Worker and Expert

Although the sample XML source is an artificial one, it contains aspects typical of Open Data.
For example, the number of enterprises is expressed only for the Textile sector in the USA and
for the Forest sector in Finland. Further, different industry sectors have different personnel
categories. Likewise, in the source the USA has tree industry sectors (Textile Forest and IT),
while Finland has only two (Forest and IT). In other words, the fragments of the IndustryStatistics
XML source do not contain regular information.

Let us now assume that we want to form such relation (table) expressing the profits of
industry sectors, costs per personnel category, and the number of enterprises belonging to
specific industry sector in specific country. In our conversion tool, this relation can be
constructed by applying the function conversion(IndustryStatistics, Result(Name, Sector([Textile,
Forest, IT], Profit), Number, Type(Cost)))) In the context of the given target schema (STS2 for
short), r_name(STS2) = Result and e_set(STS2) = {Name, Sector([Textile, Forest, IT], Profit), Number,
Type(Cost)} The evaluation of the above function starts by constructing first the intermediate
form based on the function extract&restructure defined in Formula 4.1. Its (partial) evaluation
tree is shown in Appendix B. The evaluation goes as follows.

The first function call, extract&restructure(IndustryStatistics, STS2, { 1 }) matches CASE 1, since
I-Set consists of the index of the root node which is non-leaf node. The evaluation next
proceeds to consider the children of the root node, i.e., the Country elements with the indices
1,1 and 1,2 This time we face CASE 6, since the cardinality of I-Set (= { 1,1 1,2 } is greater

than one and the function similar({ 1,1 , 1,2 }) yields true The evaluation splits now into two
branches. Since we will later return to this point of evaluation, we call it Branching Point 1.

Let us take closer look at the branch rooted by (Country, ’e’, 1,1) Here, the evaluation first
matches CASE as I-Set { 1,1 } and (Country, ’e’, 1,1) is non-leaf node, and we proceed to
its children (Name, ’a’, 1,1,1) and (Sectors, ’e’, 1,1,2). The first child matches CASE 3, and the
XML relation {(Name, ’e’, 1) (USA, ’v’, 1,1) is constructed. The second child, on the other
hand, matches CASE and the evaluation proceeds to its children, the three SectorInfo elements
with the indices 1,1,2,1 1,1,2,2 and 1,1,2,3 Here, we face CASE 6. Since the evaluation now
splits into three branches and we will later return to this point, we call this Branching Point 1.1.

28

Let us now consider the evaluation related to the SectorInfo element with the index 1,1,2,1
The element matches CASE 1, and the evaluation proceeds to its children. Its first child,
(Textile, ’e’, 1,1,2,1,1) matches CASE 5, since the cardinality of I-Set is one, the element at hand
is leaf node, and the predicate to_be_unpivot(Textile) is true. In this case, the predicate a-
name(Textile) yields Sector and the predicate v-name(Textile) yields Profit Once these values are
assigned to the relevant places in Formula 4.1 (CASE 5), we are able to construct the XML
relation {(Sector, ’e’, 1), (Textile, ’v’, 1,1), (Profit, ’e’, 2), (27, ’v’, 2,1)} by concatenating the
XML relations {(Sector, ’e’, 1), (Textile, ’v’, 1,1)} and {(Profit, ’e’, 1), (27, ’v’, 1,1)} Next, the
evaluation backtracks to consider the remaining children of the SectorInfo element with the
index 1,1,2,1

Next, it is the turn of the element (Number, ’e’, 1,1,2,1,2) that matches CASE 3, and the XML
relation {(Number, ’e’, 1) (120, ’v’, 1,1) is constructed. We then proceed to (Categories, ’e’,
1,1,2,1,3) which satisfies CASE 1, and progress to its children, the three Category elements

with the indices 1,1,2,1,3,1 1,1,2,1,3,2 and 1,1,2,1,3,3 They each match CASE 1, and the
evaluation moves on to their respective children. Let us now consider the evaluation related to
the children of the Category element with the index 1,1,2,1,3,1 Its first child, the element
(Type, ’e’, 1,1,2,1,3,1,1) matches CASE 4, as the cardinality of I-Set is one, the element at hand
is leaf node, and it participates in pivot expression in the target schema TS, so that its value
is used as an attribute name in the result relation. In other words, the value of the Type element
(Mgmt is pivoted as an attribute name in the target relational schema, and the value of the Cost
element that is most closely associated with it is assigned as its value (in this case, the value 3
of the Cost element with the index 1,1,2,1,3,1,2). As result, the XML relation {(Mgmt, ’e’, 1),
(3, ’v’, 1,1)} is constructed. The evaluation next proceeds to element (Cost, ’e’, 1,1,2,1,3,1,2)
The element matches CASE 2, meaning that it does not appear at the target relational schema
(although its value occurs in the result relation), and an empty XML relation is returned. Now
the evaluation reverts to consider the remaining two children. Their evaluation is analogous to
the evaluation related to the Category element with the index 1,1,2,1,3,1 resulting in the
construction of the XML relations {(Admin, ’e’, 1), (5, ’v’, 1,1)} and {(Worker, ’e’, 1), (25, ’v’,
1,1)}

The evaluation related to the SectorInfo element with the index 1,1,2,1 is now complete, and
we backtrack to Branching Point 1.1. As result, we have constructed set consisting of three
XML relations: {{(Sector, ’e’, 1), (Textile, ’v’, 1,1), (Profit, ’e’, 2), (27, ’v’, 2,1), (Number, ’e’,
3), (120, ’v’, 3,1), (Mgmt, ’e’, 4), (3, ’v’, 4,1)}}, {(Sector, ’e’, 1), (Textile, ’v’, 1,1), (Profit, ’e’,
2), (27, ’v’, 2,1), (Number, ’e’, 3), (120, ’v’, 3,1), (Admin, ’e’, 4), (5, ’v’, 4,1)}},{(Sector, ’e’,
1), (Textile, ’v’, 1,1), (Profit, ’e’, 2), (27, ’v’, 2,1), (Number, ’e’, 3), (120, ’v’, 3,1), (Worker, ’e’,
4), (25, ’v’, 4,1)}} The evaluation related to the remaining two branches, rooted by

(SectorInfo, ’e’, 1,1,2,2) and (SectorInfo, ’e’, 1,1,2,3) is analogous to the case above. The
evaluation related to the index 1,1,2,2 produces the set:

{{(Sector, ’e’, 1), (Forest, ’v’, 1,1), (Profit, ’e’, 2), (20, ’v’, 2,1), (Mgmt, ’e’, 3), (2, ’v’, 3,1)}},

29

{(Sector, ’e’, 1), (Forest, ’v’, 1,1), (Profit, ’e’, 2), (20, ’v’, 2,1), (Worker, ’e’, 3), (25, ’v’, 3,1)}}}.

Similarly, the evaluation of the index 1,1,2,3 produces the set:

{{(Sector, ’e’, 1), (IT, ’v’, 1,1), (Profit, ’e’, 2), (200, ’v’, 2,1), (Mgmt, ’e’, 3), (10, ’v’, 3,1)}},
{(Sector, ’e’, 1), (IT, ’v’, 1,1), (Profit, ’e’, 2), (200, ’v’, 2,1), (Admin, ’e’, 3), (30, ’v’, 3,1)}},
{(Sector, ’e’, 1), (IT, ’v’, 1,1), (Profit, ’e’, 2), (200, ’v’, 2,1), (Expert, ’e’, 3), (50, ’v’, 3,1)}}}.
The evaluation related to Branching Point 1.1 is complete when we unionize the above three
sets. The evaluation then reverts to Branching Point with the concatenation of the XML
relation {(Name, ’e’, 1) (USA, ’v’, 1,1)} with each member of the above set (they are XML
relations). For example, the concatenation of the XML relation {(Name, ’e’, 1) (USA, ’v’, 1,1)}
with the XML relation {(Sector, ’e’, 1), (Textile, ’v’, 1,1), (Profit, ’e’, 2), (27, ’v’, 2,1),
{(Number, ’e’, 3), (120, ’v’, 3,1), (Mgmt, ’e’, 4), (3, ’v’, 4,1)} produces the following new XML
relation:

{(Name, ’e’, 1) (USA, ’v’, 1,1), (Sector, ’e’, 2), (Textile, ’v’, 2,1), (Profit, ’e’, 3), (27, ’v’, 3,1),
(Number, ’e’, 4), (120, ’v’, 4,1), (Mgmt, ’e’, 5), (3, ’v’, 5,1)}.

Now, the evaluation related to the branch rooted by (Country, ’e’, 1,1) is complete. We have
still the branch rooted by (Country, ’e’, 1,2) to consider, but since its evaluation is analogous
to the above we leave it to the reader. The evaluation of the function
extract&restructure(IndustryStatistics, STS2, { 1 }) produces the set consisting of the following
XML relations:

{{(Name, ’e’, 1) (USA, ’v’, 1,1), (Sector, ’e’, 2), (Textile, ’v’, 2,1), (Profit, ’e’, 3), (27, ’v’, 3,1),
(Number, ’e’, 4), (120, ’v’, 4,1), (Mgmt, ’e’, 5), (3, ’v’, 5,1)},
{(Name, ’e’, 1) (USA, ’v’, 1,1), (Sector, ’e’, 2), (Textile, ’v’, 2,1), (Profit, ’e’, 3), (27, ’v’, 3,1),
(Number, ’e’, 4), (120, ’v’, 4,1), (Admin, ’e’, 5), (5, ’v’, 5,1)},
{(Name, ’e’, 1) (USA, ’v’, 1,1), (Sector, ’e’, 2), (Textile, ’v’, 2,1), (Profit, ’e’, 3), (27, ’v’, 3,1),
(Number, ’e’, 4), (120, ’v’, 4,1), (Worker, ’e’, 5), (25, ’v’, 5,1)},
{(Name, ’e’, 1) (USA, ’v’, 1,1), (Sector, ’e’, 2), (Forest, ’v’, 2,1), (Profit, ’e’, 3), (20, ’v’, 3,1),
(Mgmt, ’e’, 4), (2, ’v’, 4,1)},
{(Name, ’e’, 1) (USA, ’v’, 1,1), (Sector, ’e’, 2), (Forest, ’v’, 2,1), (Profit, ’e’, 3), (20, ’v’, 3,1),
(Worker, ’e’, 4), (25, ’v’, 4,1)},
{(Name, ’e’, 1) (USA, ’v’, 1,1), (Sector, ’e’, 2), (IT, ’v’, 2,1), (Profit, ’e’, 3), (200, ’v’, 3,1),
(Mgmt, ’e’, 4), (10, ’v’, 4,1)},
{(Name, ’e’, 1) (USA, ’v’, 1,1), (Sector, ’e’, 2), (IT, ’v’, 2,1), (Profit, ’e’, 3), (200, ’v’, 3,1),
(Admin, ’e’, 4), (30, ’v’, 4,1)},
{(Name, ’e’, 1) (USA, ’v’, 1,1), (Sector, ’e’, 2), (IT, ’v’, 2,1), (Profit, ’e’, 3), (200, ’v’, 3,1),
(Expert, ’e’, 4), (50, ’v’, 4,1)},
{(Name, ’e’, 1) (FI, ’v’, 1,1), (Sector, ’e’, 2), (Forest, ’v’, 2,1), (Profit, ’e’, 3), (22, ’v’, 3,1),
(Number, ’e’, 4), (4, ’v’, 4,1), (Mgmt, ’e’, 5), (3, ’v’, 5,1)},

30

to_relational_tuple(R1, A,)

to_relational_tuple(R1, A, (Name(USA), Sector(Textile), Profit(27)))

A = {Profit, Number, Mgmt, Admin, Worker, Expert}

(A) = Pro t CASE 2

to_relational_tuple(R1, A, (Name(USA), Sector(Textile), Profit(27), Number(120)))

A = {Number, Mgmt, Admin, Worker, Expert}

(A) = Number CASE 2

to_relational_tuple(R1, A, (Name(USA), Sector(Textile), Profit(27), Number(120), Mgmt(3)))

A = {Mgmt, Admin, Worker, Expert}

(A) = Mgmt CASE 2

to_relational_tuple(R1, A, (Name(USA)))

A = {Name, Sector, Profit, Number, Mgmt, Admin, Worker, Expert}

(A) = Name CASE 2

to_relational_tuple(R1, A, (Name(USA), Sector(Textile)))

A = {Sector, Profit, Number, Mgmt, Admin, Worker, Expert}

(A) = Sector CASE 2

to_relational_tuple(R1, A, (Name(USA), Sector(Textile), Profit(27), Number(120), Mgmt(3), Admin(null)))

A = {Admin, Worker, Expert}

(A) = Admin CASE 3

(Name(USA), Sector(Textile), Profit(27), Number(120), Mgmt(3), Admin(null), Worker(null), Expert(null))

A =

 CASE 1

to_relational_tuple(R1, A, (Name(USA), Sector(Textile), Profit(27), Number(120), Mgmt(3), Admin(null), Worker(null)))

A = {Worker, Expert}

(A) = Worker CASE 3

to_relational_tuple(R1, A, (Name(USA), Sector(Textile), Profit(27), Number(120), Mgmt(3), Admin(null), Worker(null), Expert(null)))

A = {Expert}

(A) = Expert CASE 3

Figure 7. An evaluation tree related to Phase II of Example 2.

{(Name, ’e’, 1) (FI, ’v’, 1,1), (Sector, ’e’, 2), (Forest, ’v’, 2,1), (Profit, ’e’, 3), (22, ’v’, 3,1),
(Number, ’e’, 4), (4, ’v’, 4,1), (Worker, ’e’, 5), (30, ’v’, 5,1)},
{(Name, ’e’, 1) (FI, ’v’, 1,1), (Sector, ’e’, 2), (IT, ’v’, 2,1), (Profit, ’e’, 3), (80, ’v’, 3,1),
(Mgmt, ’e’, 4), (8, ’v’, 4,1)},
{(Name, ’e’, 1) (FI, ’v’, 1,1), (Sector, ’e’, 2), (IT, ’v’, 2,1), (Profit, ’e’, 3), (80, ’v’, 3,1),
(Admin, ’e’, 4), (15, ’v’, 4,1)},
{(Name, ’e’, 1) (FI, ’v’, 1,1), (Sector, ’e’, 2), (IT, ’v’, 2,1), (Profit, ’e’, 3), (80, ’v’, 3,1),
(Expert, ’e’, 4), (20, ’v’, 4,1)}}.

The set consisting of the above XML relations is the intermediate form, denoted by IF2 This is
also the output of Phase of our conversion operation.

31

Phase II constructs the desired target relation from the intermediate form IF2 by the function
intermediate_to_target(IndustryStatistics, IF2, STS2) It, in turn, applies the function
to_relational_tuple to each XML relation in the intermediate form and unionizes the resulting
tuples. Figure shows the evaluation tree for the XML relation {(Name, ’e’, 1) (USA, ’v’, 1,1),
(Sector, ’e’, 2), (Textile, ’v’, 2,1), (Profit, ’e’, 3), (27, ’v’, 3,1), (Number, ’e’, 4), (120, ’v’, 4,1),
(Mgmt, ’e’, 5), (3, ’v’, 5,1)} denoted by R1 In our example, the auxiliary function
target_attribute_names produces the set {Name, Sector, Profit, Number, Mgmt, Admin, Worker,
Expert} denoted by A

The remaining XML relations in the intermediate form IF2 are evaluated in an analogous fashion.
The evaluation of all the XML relations in IF2 produces the set:

{(Name(USA), Sector(Textile), Profit(27), Number(120), Mgmt(3), Admin(null), Worker(null),
Expert(null)),
(Name(USA), Sector(Textile), Profit(27), Number(120), Mgmt(null), Admin(5), Worker(null),
Expert(null)),
(Name(USA), Sector(Textile), Profit(27), Number(120), Mgmt(null), Admin(null), Worker(25),
Expert(null)),
(Name(USA), Sector(Forest), Profit(20), Number(null), Mgmt(2), Admin(null), Worker(null),
Expert(null)),
(Name(USA), Sector(Forest), Profit(20), Number(null), Mgmt(null), Admin(null), Worker(25),
Expert(null)),
(Name(USA), Sector(IT), Profit(200), Number(null), Mgmt(null), Admin(null), Worker(null),
Expert(null)),
(Name(USA), Sector(IT), Profit(200), Number(null), Mgmt(10), Admin(null), Worker(null),
Expert(null)),
(Name(USA), Sector(IT), Profit(200), Number(null), Mgmt(null), Admin(30), Worker(null),
Expert(50)),
(Name(FI), Sector(Forest), Profit(22), Number(4), Mgmt(3), Admin(null), Worker(null), Expert(null)),
(Name(FI), Sector(Forest), Profit(22), Number(4), Mgmt(null), Admin(null), Worker(null), Expert(30)),
(Name(FI), Sector(IT), Profit(80), Number(null), Mgmt(8), Admin(null), Worker(null), Expert(null)),
(Name(FI), Sector(IT), Profit(80), Number(null), Mgmt(null), Admin(15), Worker(null), Expert(null)),
(Name(FI), Sector(IT), Profit(80), Number(null), Mgmt(null), Admin(null), Worker(null), Expert(20))}.

Figure represents the result of Example as typical tabular visualization. This table can be
made even more compact through some post-processing (e.g., representing the contents of
several rows in one row) in relational database environments.

6. Discussion

During the last years, it has been noticed in enterprises and other organizations that it is not
sufficient to analyze only Closed Data, i.e., data in databases controlled by them. Due to the

32

Result
Name Sector Profit Number Mgmt Admin Worker Expert
USA Textile 27 120 3 null null null
USA Textile 27 120 null 5 Null null
USA Textile 27 120 null null 25 null
USA Forest 20 null 2 null null null
USA Forest 20 null null null 25 null
USA IT 200 null 10 null null null
USA IT 200 null null 30 null null
USA IT 200 null null null null 50

FI Forest 22 4 3 null null null
FI Forest 22 4 null null 30 null
FI IT 80 null 8 null null null
FI IT 80 null null 15 null null
FI IT 80 null null null null 20

Figure 8. Tabular visualization of the result of Example 2.

market situations in different countries/areas, competitors, consumer sentiment etc.). By
combining this kind of information with data internal to the enterprise, business analytics can
be enriched considerably. We see that the main reason for the lack of tools capable for analyzing
Open and Closed Data together is that Open Data and Closed Data are based on different data
formats. In this paper, we introduce an approach and give conversion tool in terms of which
Open Data of interest can be transferred to part of Closed Data so that all data are represented
based on the same data format used in the closed environment. After conversion, it is possible
through tools (e.g. query languages) available in the closed environment to organize underlying
data into such structures that support subsequent data analysis. The actual data analysis is
beyond this paper.

There are several different data formats both for Open Data and for Closed Data. Our starting
point and limitation for the developed conversion tool is that Open Data are assumed to be
based on XML and Closed Data on the relational model. As discussed above, many data sources
in Open Data are either XML-based or easily convertible into XML whereas the majority of
enterprises is used relational databases to store and manipulate internal data. We believe that
the developed conversion tool can be utilized in many practical analyzing cases related to
combination of Open and Closed Data because many analytics tools presuppose that the
underlying data have been organized relationally. The use of our conversion tool presupposes
that the user knows XML data sources to be converted. It is not clear that the user masters the
data sources in Open Data intended for ad hoc analytics similarly with data sources in Closed
Data. The idea of the novel data management trend, called dataspaces, is to increase
incrementally the user’s knowledge about the underlying data that are beforehand unknown to
the user. In [NäNi-12, MNNK-14], we have developed an XML-based dataspace system, which,
among others, helps the user to find out the contents, structures and semantics of beforehand
unknown XML sources. Thus, we can assume that, at least after the use of our XML-based
dataspace system, the user knows in detail the XML data sources to be converted. As explained
above, in our conversion tool the user uses the names of the XML data items (i.e., attribute or
element names) as the attribute names of the target relation. Therefore, the user must know in

33

globalization, there is often need to combine Closed Data internal to specific organization
with Open Data that is freely available on the Web. For example, one of the greatest
shortcomings in business intelligence is that there are no tools for ad hoc analytics based on
data sources in Open Data and Closed Data [VTBL-13, ETBL-13]. From the viewpoint of
specific enterprise, Open Data may contain critical information (e.g. on changes in trends, detail
the information contents and semantics of XML sources.

It is typical of the data exchange approach that it is based on schema mappings between the
underlying source and target schema. In it, the target data are materialized by realizing the
corresponding changes at the instance level. In the conventional data exchange approach, the
source and target schemas are based on the same data model. From the viewpoint of our
contribution, the closest work of the data exchange approach has been represented in
[PVMH+02, HPTa-08], in which restructuring between flat and regularly structured
hierarchical relations can be specified based on the nested relational model. In our conversion
approach, it is however important that the platform of stored data also changes, i.e., textual
XML data format is transformed into tabular (relational) format. Unlike in the data exchange
approach, we do not require that the XML source to be converted have an attached schema (e.g.
DTD). In the paper, we show that by utilizing the self-description property of semi-structured
XML data in the context of the XML relation representation it is possible to analyze structural
relationships among XML data without any separate schema. Our conversion tool analyzes
automatically, on behalf of the user, the structural relationships among data of the XML source
at hand. Therefore, the use of our conversion tool is very declarative. The data restructuring
facility is also an essential part of the conversion tool. In the paper, we show that the
constructor algebra developed for manipulating the XML relation representation is expressive
enough to perform demanding data restructuring including data-to-metadata and metadata-to-
data translations.

In our approach, the XML relation representation has an essential role as an intermediate form
in constructing the desired target relation from textual XML source. This is due to the
following facts. First, any textual XML source can be converted unambiguously, i.e., without
losing any information, into the XML relation representation that is structurally compatible
with the conventional relation in spite of their fundamental differences. Among others, this
means that we can utilize the efficient storing methods of RDBMSs as such although XML
relations have to be manipulated by the constructor algebra instead of the relational algebra
intended to manipulate conventional relations. Second, in the paper we show how information
based on the XML relation representation can be transformed into the conventional relation
representation.

We have developed an XML-based dataspace system [NäNi-12] based on the XML relation
representation. Its prototype has been implemented on top of PostgreSQL relational database
system. We have implemented the bidirectional conversion tool between the textual and XML
relation representations, and by using this tool we convert any textual XML source into its
corresponding XML relation which is stored under the PostgreSQL relational database system.
In our prototype, the constructor algebra has been implemented as user-defined SQL functions

34

written in C. This algebra has been applied in implementing our RXQL query language in [NMNi-
11], which has central role in manipulating the heterogeneity factors among XML sources. It
is possible that the same data in an Open XML source and in the available relational database
are represented in different way. For example, the names of persons can expressed in the
order last name–first name in an Open XML source, whereas they are represented in the
opposite order in the underlying relational database. Likewise, the values in Open Data and
Closed Data can be based on the different units of measurement (e.g. monetary units). In the
conversion tool specified in this paper, we did not pay any attention to that the values can be
represented in heterogeneous way among Open and Closed Data. Of course, we have to
remove this kind of heterogeneity before data can be utilized in the closed environment. In
[MNNK-14], we have implemented dataspace system with user-friendly interface, which
also contains visual primitives for removing heterogeneity related to representations of values.
In future, our aim is to implement and extend the conversion tool of this paper so that by
utilizing our dataspace system it is also capable to represent values of data in uniform way
with Closed Data.

7. Conclusions

Combining XML-based Open Data and relational Closed Data is needed in many contexts. In this
paper, we introduce and specify conversion tool that is able to construct relation of
relational database (Closed Data) from desired data items of an XML data source in Open Data.

user-friendly interface of the tool presupposes high degree of automation, which, in turn,
requires great analyzing power. In the paper, we show that the XML relation representation
developed by us affords the possibility of analyzing contents and structural relationships
among XML data sources without user interactions. We also show how the XML relation
representation can be used as an intermediate form in changing the textual XML format into
the relational (tabular) format. Our conversion tool has also to have great restructuring power
because, in addition to restructuring of hierarchical XML data to flat relational data, it is often
necessary to transfer data at the instance level to data at the schema level (so called data-to-
metadata translations) and vice versa (so called metadata-to-data translations). In our tool this
kind of translations can be made through pivot and unpivot restructuring operations. We show
that the needed great restructuring power can be implemented by the constructor algebra
attached to the XML relation representation.

References

[ArLi-08] Marcelo Arenas, Leonid Libkin. XML data exchange: Consistency and query answering. Journal
of the ACM 2008; 55(2).

[Barc-09] Pablo Barceló. Logical foundations of relational data exchange. SIGMOD Record 2009; 38(1):
49-58.

[BETL-12] Katrin Braunschweig, Julian Eberius, Maik Thiele, Wolfgang Lehner. OPEN: Enabling non-
expert users to extract, integrate, and analyze Open Data. Datenbank-Spektrum 2012; 12(2): 121-
130.

35

[BPEF+10] Khalid Belhajjame, Norman W. Paton, Suzanne M. Embury, Alvaro A. A. Fernandes, Cornelia
Hedeler. Feedback-based annotation, selection and refinement of schema mappings for dataspaces.
In: Proceedings of the 13th International Conference on Extending Database Technology, 2010: 573-
584.

[CCSi-00] Vassilis Christophides, Sophie Cluet, Jérôme Siméon. On wrapping query languages and
efficient XML integration. In: Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, 2000: 141-152.

[CDNa-11] Surajit Chaudhuri, Umeshwar Dayal, Vivek R. Narasayya. An overview of business
intelligence technology. Communications of the ACM 2011; 54(8): 88-98.

[EDBT+13] Julian Eberius, Patrick Damme, Katrin Braunschweig, Maik Thiele and Wolfgang Lehner.
Publish-Time Data Integration for Open Data Platforms. In: Proceedings of the 2nd International
Workshop on Open Data, 2013.

[ETBL-12] Julian Eberius, Maik Thiele, Katrin Braunschweig, Wolfgang Lehner. DrillBeyond: Enabling
business analysts to explore the Web of Open Data. Proceedings of the VLDB Endowment 2012;
5(12): 1978-1981.

[ETBL-13] Julian Eberius, Maik Thiele, Katrin Braunschweig, Wolfgang Lehner. DrillBeyond: Open-
world SQL queries using Web tables. In: Proceedings of the 15. Fachtagung des GI-Fachbereichs
"Datenbanken und Informationssysteme", 2013: 523-526.

[EWTB+13] Julian Eberius, Christoper Werner, Maik Thiele, Katrin Braunschweig, Lars Dannecker,
Wolfgang Lehner. DeExcelerator: framework for extracting relational data from partially
structured documents. In: Proceedings of the 22nd ACM International Conference on Information
and Knowledge Management, 2013: 2477-2480.

[FFMR+01] Peter Fankhauser, Mary Fernández, Ashok Malhotra, Michael Rys, Jérôme Siméon, Philip
Wadler. The XML Query Algebra. Available at http://www.w3.org/TR/query-algebra/ (2001;
accessed October 31, 2014).

[FHMa-05] Michael J. Franklin, Alon Y. Halevy, David Maier. From databases to dataspaces: new
abstraction for information management. SIGMOD Record 2005; 34(4): 27-33.

[FKMP-05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, Lucian Popa. Data exchange: Semantics and
query answering. Theoretical Computer Science 2005; 336(1): 89-124.

[FKPo-05] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa. Data exchange: getting to the core. ACM
Transactions on Database Systems 2005; 30(1): 174-210.

[FlKo-99] Daniela Florescu, Donald Kossmann. Storing and Querying XML Data using an RDMBS. IEEE
Data Engineering Bulletin 1999; 22(3): 27-34.

[HFMa-06] Alon Y. Halevy, Michael J. Franklin, David Maier. Principles of dataspace systems. In:
Proceedings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, 2006: 1-9.

[HJLP+04] Alan Halverson, Vanja Josifovski, Guy M. Lohman, Hamid Pirahesh, Mathias Mörschel, ROX:
Relational over XML. In: Proceedings of the 30th International Conference on Very Large Data Bases,
2004: 264-275.

[HNWe-06] Jan Hegewald, Felix Naumann, Melanie Weis. XStruct: Efficient schema extraction from
multiple and large XML documents. In: Proceedings of the 22nd International Conference on Data
Engineering Workshops, 2006: 81.

[HPTa-08] Mauricio A. Hernández, Paolo Papotti, Wang Chiew Tan. Data exchange with data-metadata
translations. Proceedings of the VLDB Endowment 2008; 1(1): 260-273.

[HRGa-10] Matthias Hert, Gerald Reif, Harald Gall. Updating relational data via SPARQL/update. In:
Proceedings of the 2010 EDBT/ICDT Workshops, 2010.

36

[JLST-01] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava, Keith Thompson. TAX: tree algebra
for XML. In: Proceedings of the 8th International Workshop on Database Programming Languages,
2001: 149-164.

[Kola-05] Phokion G. Kolaitis. Schema mappings, data exchange, and metadata management. In:
Proceedings of the 24th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, 2005: 61-75.

[LMGC+09] Fenareti Lampathaki, Spiros Mouzakitis, George Gionis, Yannis Charalabidis, Dimitris
Askounis. Business to business interoperability: current review of XML data integration standards.
Computer Standards Interfaces 2009; 31(6): 1045-1055.

[LPVe-00] Bertram Ludäscher, Yannis Papakonstantinou, Pavel Velikhov. Navigation-driven evaluation
of virtual mediated views. In: Proceedings of the 7th International Conference on Extending
Database Technology, 2000: 150-165.

[LSSu-96] Laks V. S. Lakshmanan, Fereidoon Sadri, Iyer N. Subramanian. SchemaSQL: language for
interoperability in relational multi-database systems. In: Proceedings of 22th International
Conference on Very Large Data Bases, 1996: 239-250.

[MACh-03] Jun-Ki Min, Jae-Yong Ahn, Chin-Wan Chung. Efficient extraction of schemas for XML
documents. Information Processing Letters 2003; 85(1): 7-12.

[MHHe-00] Renée J. Miller, Laura M. Haas, Mauricio A. Hernández. Schema mapping as query discovery.
In: Proceedings of 26th International Conference on Very Large Data Bases, 2000: 77-88.

[MNNK-14] Katja Moilanen, Timo Niemi, Turkka Näppilä, Mikko Kuru. visual XML dataspace approach
for satisfying ad hoc information needs. Journal of the Association for Information Science and
Technology 2014; 17 pages (accepted for publication).

[NCJo-12] Raghunath Nambiar, Ramesh Chitor, Ashok Joshi. Data management: look back and look
ahead. In: Proceedings of the 1st and 2nd Workshops on Big Data Benchmarking, 2012 (LNCS 8163):
11-19.

[NJJä-14] Timo Niemi, Marko Junkkari, Kalervo Järvelin. Concept-based query language approach to
enterprise information systems. Enterprise Information systems 2014; 8(1): 26-66.

[NMMi-11] Turkka Näppilä, Katja Moilanen, Timo Niemi. query language for selecting, harmonizing,
and aggregating heterogeneous XML data. International Journal of Web Information Systems 2011;
7(1): 62-99.

[NNJä-09] Timo Niemi, Turkka Näppilä, Kalervo Järvelin. relational data harmonization approach to
XML. Journal of Information Science 2009; 35(5): 571-601.

[NNPC+04] Patrick E. O'Neil, Elizabeth J. O'Neil, Shankar Pal, Istvan Cseri, Gideon Schaller, Nigel
Westbury. ORDPATHs: Insert-friendly XML node labels. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2004: 903-908.

[NäNi-12] Turkka Näppilä, Timo Niemi. An approach for developing schemaless XML dataspace
profiling system. Journal of Information Science 2012; 38(3): 234-257.

[PCSS+04] Shankar Pal, Istvan Cseri, Gideon Schaller, Oliver Seeliger, Leo Giakoumakis, Vasili Vasili
Zolotov. Indexing XML data stored in relational database. In: Proceedings of the 30th International
Conference on Very Large Data Bases, 2004: 1134-1145.

[PVMH+02] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Mauricio A. Hernández, Ronald Fagin.
Translating Web data. In: Proceedings of 28th International Conference on Very Large Data Bases,
2002: 598-609.

[RCHa-12] Seán O'Riain, Edward Curry, Andreas Harth. XBRL and open data for global financial
ecosystems: linked data approach. International journal of Accounting Information Systems 2012;
13: 141-162.

37

[RLBP-10] Vatcharaphun Rajsiri, Jean-Pierre Lorré, Frédérick Bénaben, Hervé Pingaud. Knowledge-
based system for collaborative process specification. Computers in Industry 2010; 61(2): 161-175.

[STZH+99] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. DeWitt, Jeffrey F.
Naughton. Relational databases for querying XML documents: Limitations and opportunities. In:
Proceedings of 25th International Conference on Very Large Data Bases, 1999: 302-314.

[TaGr-10] Andrea Tagarelli, Sergio Greco. Semantic clustering of XML documents. ACM Transactions on
Information Systems 2010; 28(1): Article 3.

[TDMS+10] James F. Terwilliger, Lois M. L. Delcambre, David Maier, Jeremy Steinhauer, Scott Britell.
Updatable and evolvable transforms for virtual databases. Proceedings of the VLDB Endowment
2010; 3(1): 309-319.

[TZWS-13] Zijing Tan, Liyong Zhang, Wei Wang, Baile Shi. XML data exchange with target constraints.
Information Processing and Management 2013; 49(2): 465-483.

[Ullm-88] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I. Computer
Science Press: 1988.

[WBBD+03] Andrew Witkowski, Srikanth Bellamkonda, Tolga Bozkaya, Gregory Dorman, Nathan
Folkert, Abhinav Gupta, Lei Sheng, Sankar Subramanian. Spreadsheets in RDBMS for OLAP. In:
Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, 2003: 52-
63.

[VTBL-13] Elena Vasilyeva, Maik Thiele, Christof Bornhövd, Wolfgang Lehner. Leveraging flexible data
management with graph databases. In: Proceedings of the 1st International Workshop on Graph
Data Management Experiences and Systems, 2013.

[WyRo-05a] Catharine M. Wyss, Edward L. Robertson. formal characterization of PIVOT/UNPIVOT. In:
Proceedings of the 14th ACM International Conference on Information and Knowledge Management,
2005: 602-608.

[WyRo-05b] Catharine M. Wyss, Edward L. Robertson. Relational languages for metadata integration.
ACM Transactions on Database Systems 2005; 30(2): 624-660.

38

Appendix A

<IndustryStatistics>
 <Country Name="USA">
 <Sectors>
 <SectorInfo>
 <Textile>27</Textile>
 <Number>120</Number>
 <Categories>
 <Category>
 <Type>Mgmt</Type>
 <Cost>3</Cost>
 </Category>
 <Category>
 <Type>Admin</Type>
 <Cost>5</Cost>
 </Category>
 <Category>
 <Type>Worker</Type>
 <Cost>25</Cost>
 </Category>
 </Categories>
 </SectorInfo>
 <SectorInfo>
 <Forest>20</Forest>
 <Categories>
 <Category>
 <Type>Mgmt</Type>
 <Cost>2</Cost>
 </Category>
 <Category>
 <Type>Worker</Type>
 <Cost>25</Cost>
 </Category>
 </Categories>
 </SectorInfo>
 <SectorInfo>
 <IT>200</IT>
 <Categories>
 <Category>
 <Type>Mgmt</Type>
 <Cost>10</Cost>
 </Category>
 <Category>
 <Type>Admin</Type>
 <Cost>30</Cost>
 </Category>
 <Category>
 <Type>Expert</Type>
 <Cost>50</Cost>
 </Category>

 </Categories>
 </SectorInfo>
 </Sectors>
 </Country>
 <Country Name="FI">
 <Sectors>
 <SectorInfo>
 <Forest>22</Forest>
 <Number>4</Number>
 <Categories>
 <Category>
 <Type>Mgmt</Type>
 <Cost>3</Cost>
 </Category>
 <Category>
 <Type>Worker</Type>
 <Cost>30</Cost>
 </Category>
 </Categories>
 </SectorInfo>
 <SectorInfo>
 <IT>80</IT>
 <Categories>
 <Category>
 <Type>Mgmt</Type>
 <Cost>8</Cost>
 </Category>
 <Category>
 <Type>Admin</Type>
 <Cost>15</Cost>
 </Category>
 <Category>
 <Type>Expert</Type>
 <Cost>20</Cost>
 </Category>
 </Categories>
 </SectorInfo>
 </Sectors>
 </Country>
</IndustryStatistics>

Figure A1. The IndustryStatistics sample XML document.

39

C T I

IndustryStatistics ’e’
Country ’e’ 1,1
Name ’a’ 1,1,1
USA ’v’ 1,1,1,1

Sectors ’e’ 1,1,2
SectorInfo ’e’ 1,1,2,1

Textile ’e’ 1,1,2,1,1
27 ’v’ 1,1,2,1,1,1

Number ’e’ 1,1,2,1,2
120 ’v’ 1,1,2,1,2,1

Categories ’e’ 1,1,2,1,3
Category ’e’ 1,1,2,1,3,1

Type ’e’ 1,1,2,1,3,1,1
Mgmt ’v’ 1,1,2,1,3,1,1,1
Cost ’e’ 1,1,2,1,3,1,2

3 ’v’ 1,1,2,1,3,1,2,1
Category ’e’ 1,1,2,1,3,2

Type ’e’ 1,1,2,1,3,2,1
Admin ’v’ 1,1,2,1,3,2,1,1

Cost ’e’ 1,1,2,1,3,2,2
5 ’v’ 1,1,2,1,3,2,2,1

Category ’e’ 1,1,2,1,3,3
Type ’e’ 1,1,2,1,3,3,1

Worker ’v’ 1,1,2,1,3,3,1,1
Cost ’e’ 1,1,2,1,3,3,2
25 ’v’ 1,1,2,1,3,3,2,1

SectorInfo ’e’ 1,1,2,2
Forest ’e’ 1,1,2,2,1

20 ’v’ 1,1,2,2,1,1
Categories ’e’ 1,1,2,2,2
Category ’e’ 1,1,2,2,2,1

Type ’e’ 1,1,2,2,2,1,1
Mgmt ’v’ 1,1,2,2,2,1,1,1
Cost ’e’ 1,1,2,2,2,1,2

2 ’v’ 1,1,2,2,2,1,2,1
Category ’e’ 1,1,2,2,2,2

Type ’e’ 1,1,2,2,2,2,1
Worker ’v’ 1,1,2,2,2,2,1,1

Cost ’e’ 1,1,2,2,2,2,2
25 ’v’ 1,1,2,2,2,2,2,1

SectorInfo ’e’ 1,1,2,3
IT ’e’ 1,1,2,3,1

200 ’v’ 1,1,2,3,1,1
Categories ’e’ 1,1,2,3,2
Category ’e’ 1,1,2,3,2,1

Type ’e’ 1,1,2,3,2,1,1
Mgmt ’v’ 1,1,2,3,2,1,1,1
Cost ’e’ 1,1,2,3,2,1,2
10 ’v’ 1,1,2,3,2,1,2,1

Category ’e’ 1,1,2,3,2,2

C T I
(Continued)

Type ’e’ 1,1,2,3,2,2,1
Admin ’v’ 1,1,2,3,2,2,1,1

Cost ’e’ 1,1,2,3,2,2,2
30 ’v’ 1,1,2,3,2,2,2,1

Category ’e’ 1,1,2,3,2,3
Type ’e’ 1,1,2,3,2,3,1

Expert ’v’ 1,1,2,3,2,3,1,1
Cost ’e’ 1,1,2,3,2,3,2
50 ’v’ 1,1,2,3,2,3,2,1

Country ’e’ 1,2
Name ’a’ 1,2,1

FI ’v’ 1,2,1,1
Sectors ’e’ 1,2,2

SectorInfo ’e’ 1,2,2,1
Forest ’e’ 1,2,2,1,1

22 ’v’ 1,2,2,1,1,1
Number ’e’ 1,2,2,1,2

4 ’v’ 1,2,2,1,2,1
Categories ’e’ 1,2,2,1,3
Category ’e’ 1,2,2,1,3,1

Type ’e’ 1,2,2,1,3,1,1
Mgmt ’v’ 1,2,2,1,3,1,1,1
Cost ’e’ 1,2,2,1,3,1,2

3 ’v’ 1,2,2,1,3,1,2,1
Category ’e’ 1,2,2,1,3,2

Type ’e’ 1,2,2,1,3,2,1
Worker ’v’ 1,2,2,1,3,2,1,1

Cost ’e’ 1,2,2,1,3,2,2
30 ’v’ 1,2,2,1,3,2,2,1

SectorInfo ’e’ 1,2,2,2
IT ’e’ 1,2,2,2,1
80 ’v’ 1,2,2,2,1,1

Categories ’e’ 1,2,2,2,2
Category ’e’ 1,2,2,2,2,1

Type ’e’ 1,2,2,2,2,1,1
Mgmt ’v’ 1,2,2,2,2,1,1,1
Cost ’e’ 1,2,2,2,2,1,2

8 ’v’ 1,2,2,2,2,1,2,1
Category ’e’ 1,2,2,2,2,2

Type ’e’ 1,2,2,2,2,2,1
Admin ’v’ 1,2,2,2,2,2,1,1

Cost ’e’ 1,2,2,2,2,2,2
15 ’v’ 1,2,2,2,2,2,2,1

Category ’e’ 1,2,2,2,2,3
Type ’e’ 1,2,2,2,2,3,1

Expert ’v’ 1,2,2,2,2,3,1,1
Cost ’e’ 1,2,2,2,2,3,2
20 ’v’ 1,2,2,2,2,3,2,1

Figure A2. The XML relation representation of the XML document in Figure A1.

40

Appendix B

Figure B1. The (partial) evaluation tree related to Phase of Example 3.

extract&restructure(IndustryStatistics, STS2, { 1 })

 CASE 1

extract&restructure(IndustryStatistics, STS2, { 1,1 , 1,2 })

 CASE 1

extract&restructure(IndustryStatistics, STS2, { 1,1,1 , 1,1,2 })

 CASE 3

extract&restructure(IndustryStatistics, STS2, { 1,1,1 })

 CASE 6

extract&restructure(IndustryStatistics, STS2, { 1,1 }) extract&restructure(IndustryStatistics, STS2, { 1,2 })

extract&restructure(IndustryStatistics, STS2, { 1,1,2 })

 CASE 1

extract&restructure(IndustryStatistics, STS2, { 1,1,2,1 , 1,1,2,2 , 1,1,2,3 })

extract&restructure(IndustryStatistics, STS2, { 1,1,2,1 }) extract&restructure(IndustryStatistics, STS2, { 1,1,2,2 }) extract&restructure(IndustryStatistics, STS2, { 1,1,2,3 })

 CASE 6

extract&restructure(IndustryStatistics, STS2, { 1,1,2,1,1 , 1,1,2,1,2 , 1,1,2,1,3 })

 CASE 1

extract&restructure(IndustryStatistics, STS2, { 1,1,2,1,1 }) extract&restructure(IndustryStatistics, STS2, { 1,1,2,1,2 }) extract&restructure(IndustryStatistics, STS2, { 1,1,2,1,3 })

{(Sector, ’e’, 1), (Textile, ’v’, 1,1), (Profit, ’e’, 2), (27, ’v’, 2,1)}

 CASE 5 CASE 3 CASE 1

{(Name, 'e', 1), (USA, 'v', 1,1)}

{(Number, ’e’, 1) (120, ’v’, 1,1)} extract&restructure(IndustryStatistics, STS2, { 1,1,2,1,3,1 , 1,1,2,1,3,2 , 1,1,2,1,3,3 })

extract&restructure(IndustryStatistics, STS2, { 1,1,2,1,3,1 }) extract&restructure(IndustryStatistics, STS2, { 1,1,2,1,3,2 }) extract&restructure(IndustryStatistics, STS2, { 1,1,2,1,3,3 })

 CASE 1

extract&restructure(IndustryStatistics, STS2, { 1,1,2,1,3,1,1 , 1,1,2,1,3,1,2 })

extract&restructure(IndustryStatistics, STS2, { 1,1,2,1,3,1,2 })extract&restructure(IndustryStatistics, STS2, { 1,1,2,1,3,1,1 })

{(Mgmt, 'e', 1), (3, 'v', 1,1)}

 CASE 4

 CASE X

 CASE X

 CASE X

 CASE X

 CASE 2

// Branching Point 1

// Branching Point 1.1

