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Abstract 

Data mining is the process of getting useful information by analyzing different kind of 

data. Predictive data mining is used to predict some property of incoming data for 

example how to classify it. Among many methods that are used for predictive data 

mining the K-nearest neighbor classification is one of the simplest and easy to use 

technique. Due to its simplicity small variations are possible with it for the purpose of 

improving its predictive accuracy.  

The aim of this thesis was to study attribute weighting techniques and to implement and 

test some weighting variants in K-nearest neighbor classification. The HEOM distance 

metric and three values of K (1, 4 and 5) were used in K-nearest neighbor classification. 

Twelve datasets were selected from the UCI Machine Learning Repository for the 

analysis. Chi-square attribute weighting was done in order to implement the two 

weighting variants. One variation was the simple attribute weighting and the other was 

the class-wise attribute weighting. The evaluation was done by using the leave-one-out 

technique. 

The conclusion that can be drawn from the results is that the structure of the dataset 

(the number and the distribution of the classes) and the value of K (the number of 

neighbors) have effect on the unweighted and attribute weighted K-nearest neighbor 

classification. For some datasets weighting is very useful especially for smaller classes, 

but for some datasets it does not give improvements in the result. 
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1. Introduction 

Data mining means to extract useful knowledge from large amounts of data and it is 

one of the fast growing fields in information technology. Some people use data mining 

as a synonym to the term knowledge discovery from data (KDD), while others view 

data mining as an essential step in the KDD process which can be given as [Han and 

Kamber, 2006]: 

 Preprocessing: Because knowledge discovery is often secondary usage of data 

(data have been originally collected for some other purposes), data have to be 

preprocessed (cleaned, integrated, transformed and reduced) before the actual 

data mining step. 

 Data mining: The data are searched for to obtain interesting information or 

knowledge.  

 Postprocessing: Discovered knowledge is evaluated and presented in an 

appropriate manner. 

This thesis also uses the concept of machine learning which is a branch of artificial 

intelligence dealing with the construction of a machine or a system that learns from the 

data given to it. Learning here means that the system ends up a decision making pattern 

by analyzing and observing the data and results given to it and constantly updates this 

pattern whenever new data are presented to it. It is similar to the learning concept in 

human beings who make decisions based on their observations, that’s why it is called 

artificial intelligence. Machine learning is used for many purposes but the main two are 

its common uses in pattern recognition and data mining. 

There are two main purposes or tasks in data mining. In descriptive data mining 

different patterns and models are constructed that describe the data usually to find out 

associations or relations between data elements and their features. Finding values that 

occur frequently together in the given dataset is called as association analysis. One of 

descriptive data mining tasks is called cluster analysis which is partitioning data into 

groups so that the values in one group are similar to each other and are as different as 

possible from the values in other groups. Some application areas of association analysis 

are market basket analysis (which products are bought together), analysis of car crash 

data to find causes of accidents or identification of areas of similar land use in an earth 

observation database. 

However this thesis is based on the second type of data mining called predictive data 

mining in which models that can be used to predict properties of unknown (new) data 

are constructed. Models describe and distinguish classes and give classes for new cases 

which is called classification. Some examples of classification are to give a diagnosis 

suggestion on the basis of the symptoms and test results of a patient and to predict the 

paying capacity of a loan applicant. 
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Classification is the task of assigning each record to one of the several predefined 

categories. Training set is the one whose class labels are known and along with the 

learning algorithm they are used to build a classification model which is applied to the 

test set whose class labels are unknown [Tan et al., 2006]. Each training data consist of 

a number of rows which are called records, tuples or instances. Input for classification 

is a set of records, where each record is characterized by values which are an attribute 

set and one is the special attribute designated as class label. A class label must always 

be discrete. Classification is also defined as the task of learning a target function that 

maps each attribute set to one of the predefined class labels. The target function is also 

called as classification model. Each classification technique employs a learning 

algorithm to identify a model that best fits the relationship between attribute set and 

class label of the input data. However there are some classification algorithms which 

do not make a model, but make the classification decision by comparing the test set 

with the training set each time they perform classification. These algorithms are known 

as instance-based learning algorithms. 

There are many different classification algorithms present like decision tree induction, 

K-nearest neighbor classification, rule-based classifier, naïve Bayesian classifier, 

neural networks and support vector machines. This thesis concerns K-nearest neighbor 

classifiers which are instance-based learning algorithms. 

As we have mentioned before, the data are not often collected originally for data mining 

purpose, so some attributes are irrelevant for classification and some attributes are 

redundant while other attributes are more important. Finding out the important 

attributes and giving them more impact on classification is called attribute weighting. 

One approach is just selecting important attributes and discarding the others while the 

other approach is giving all the attributes weights or ranks from the most important to 

the less important. In the thesis the second approach is used along with its two variants. 

One variant is that the single weights are calculated for every attribute from the whole 

training set and another variant is that different weights are calculated for different 

classes for every attribute, i.e., class-dependent weights are used. In the thesis weights 

were calculated by using the chi-square weight calculation for the Heterogeneous 

Euclidean Overlap Matric (HEOM) to find the nearest neighbor among the instances. 

The main purpose of the thesis was to study attribute weighting in K-NN classification 

of medical datasets. For this purpose twelve datasets related to medical field specifically 

disease diagnosis were used. The aim was to compare both the attribute weighting 

variants to see which one gives better results. 

The outline of the thesis is the following. Chapter 2 explains the K-nearest neighbor 

method and its variations in detail. Chapter 3 describes attribute weighting technique 

used in the K-nearest neighbor classification. Evaluation criteria and methods are 

explained in Chapter 4. Chapter 5 describes the experimental part of the thesis. Chapter 

6 gives the results. Finally, discussion and conclusions are given in Chapter 7. 
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2. K-Nearest neighbor pattern classification 

2.1 Concept 

For classification of data it is extremely important that the nature of data is known 

which is either parametric or non-parametric. Parametric data means that there is some 

kind of statistical distribution between its instances which is known beforehand and 

vice versa, this information is essential because different algorithms and techniques are 

more suitable for different types of data. For parametric data there exist many different 

techniques, but Bayesian analysis will give the optimal result [Cover and Hart, 1967]. 

K-nearest neighbor classification is a classification technique that assumes the class of 

an instance to be the same as the class of the nearest instance. It adopts a similarity 

metric to measure the proximity of an instance to other instances. It is one of the most 

simple non-parametric decision rules. Here the term non-parametric refers to the fact 

that there is no prior knowledge of the statistical distribution of the data. Nearest 

neighbor assumes that instances in the data are independently and identically 

distributed, so the instances which are in close proximity have the same classification 

[Cover and Hart, 1967]. 

K-nearest neighbor classification is one type of instance-based learning methods which 

are sometimes called as lazy learning methods. “K-NN is purely lazy, it simply stores 

the entire training set and postpones all efforts towards inductive generalization until 

classification time”[Wettschereck et al., 1997] Instance-based learning methods are 

defined by their three properties: 

 They store all of the training data during the learning process. 

 Generalization beyond the training data is delayed until a value is predicted for 

a new case because any new query is answered by comparing the new case to 

the training data. 

 From the training data they search for a case that is similar to the new case. 

2.2 K-NN rule 

In K-nearest neighbor classification, each instance is defined by a number of attributes 

and all the instances inside the data are represented by the same number of attributes, 

although there may be some missing attribute values. One of these attributes is called 

the class attribute which contains the class value (label) of the data, whose values are 

predicted for new, unseen instances.  

1-NN rule assumes the value of the immediate neighbor to be the class of the new 

instance. However usually K-NN rule is used which assigns an instance the class which 

is represented mostly in its K neighbors. K can be any number of its neighbors, K= 1, 

2, 3, 4,…,n, where n is the number of cases. 



  

4 

 

The closeness of a neighbor is defined on the basis of attributes defining the new 

instance and the training instances. Training instances whose attribute values are similar 

to that of the new instance are considered as the nearest, but many times the exact 

similar instance is not found, so the nearest instance is the one with least dissimilarity. 

Assume: 

m-dimensional attribute space.  

C classes, numbered 1,2,...,C. 

n training instances, each one expressed as a pair (xi, θi), for 1< i <n where 

a) xi: training instance, expressed by a vector attribute va1ues. 

xi= (xi1,xi2,…, xim) 

b) θi ϵ {1,2,...,C} represents the correct class of the instance xi. 

Let TNN = {(xI,θ1), (x2,θ2),…, (xn, θn)} be the nearest neighbor training set. 

Given an unknown instance x, the decision rule is to decide x is in class 

θj if d(x,xj) < d(x,xi), for 1< i<n, i ≠ j 

where d is some m-dimensional distance metric. 

Figure 1. 1-NN formal definition [Vivencio et al., 2007]. 

Figure 1. describes specifically the 1-NN rule since it uses only one nearest neighbor in 

classification of a new instance, but it can be modified for the K-NN rule which 

considers K nearest instances {il, i2,.., iK} and decides by assuming the most frequent 

class in the set {θi1, θi2, ... θiK}. 

In K-NN a small volume of the space of the attributes is taken and the new case is taken 

as the center of this volume. The radius of this volume is the distance from the new case 

to the Kth nearest neighbor. The estimated probability that this new case belongs to a 

certain class depends upon the relative frequencies of the classes of the training cases 

in this volume. The new case is assigned to the class that has the highest estimated 

probability [Hand et al., 2001].  
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Figure 2. 1-NN, 2-NN and 3-NN. “+” and “-” are cases of positive and negative 

classes and “x” represents the new case. [Tan et al., 2006] 

The basic form of K=1 in Figure 2(a) gives an unstable result because of its high 

variance and sensitiveness which makes it inconsistent to use [Hand et al., 2001], 

therefore larger value of K is used. The value of K that is to be used depends entirely 

upon the data set which is found out using different distribution analysis on the data. 

Figure 2(b) gives a tie situation in which two neighbors are selected which have 

different class values. This situation is resolved by probability sampling also called 

random selection. Figure 2(c) represents K=3. 

It has been observed that if the training set is large enough K-NN yields good results. 

“In the large training set, this simple rule has a probability of error which is less than 

twice the Bayes probability of error, and hence is less than twice the probability of error 

of any other decision rule, nonparametric or otherwise, based on the infinite sample set” 

[Cover and Hart, 1967]. 

2.3 Proximity measures 

As mentioned above nearest neighbor algorithm calculates the distance between the 

attributes of new instance and previous instances to find out the class. The term 

“distance” here depends entirely on the data, different types of data have different ways 

for finding out the distance. There are many different categorizations of attribute -data.  

 Nominal attributes are categorically discrete data that consist of category names 

only and there is no distance between its values, i.e., they only differ in being similar 

or not (=, ≠). Binary attributes are a special case of nominal attributes.  

 Ordinal attributes have a natural ordering to their values, but we cannot define the 

distance between them for example tall, medium and short are three attribute values 

that define a person’s height but their difference cannot be given in numbers, i.e., 

we can only apply >,<,=,≠ to them. 

 Interval attributes have some real number values and the difference between the 

values is meaningful. For example when measuring the temperature in Celsius there 
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is a meaningful difference in its values, i.e., there exist a distance between its values 

and >,<,=,≠,+,- operations can be performed on them. 

 Ratio attributes are like interval attributes, but the difference is that in ratio 

attributes the value zero “0” is absolute zero, i.e., a characteristic disappears 

meaning the temperature in Kelvin scale or different kinds of counts and 

percentages are example of the ratio scale. Ratios of these values are meaningful. 

Another categorization of attribute-data is between qualitative and quantitative. 

 Qualitative attributes are categorical attributes usually expressed as category names 

by means of natural language. They can have order or no order between their values. 

Nominal and ordinal attribute-data are its two types depending on the ordering in 

its values. 

 Quantitative attributes are expressed as numerical values. They describe the value 

as a measurable quantity, this value can be exactly measured in terms of numbers. 

However all numbers are not measurable like the social security number, therefore 

only measurable attributes are called quantitative attributes. Interval and ratio 

attribute-data are its two types. 

There is another categorization of data. 

 Homogeneous data: Data in which all the attributes are of same type. For example 

all of the attributes are nominal or interval type. 

 Heterogeneous data: Data in which there are different types of attributes. For 

example one attribute is nominal while the other is interval. 

2.3.1 Proximity measures for homogeneous data  

Distance measures are defined by the proximity measures. Similarity measure means 

the more similar cases, the nearer they are to each other Dissimilarity measure means 

the more dissimilar cases, the farther they are from each other. 

A metric is a dissimilarity function that fulfills four conditions [Hand et al., 2001]: 

1. d(x,y) ≥ 0 (for each x and y distances are nonnegative numbers) 

2. d(x,x) = 0 (distance of an object to itself is zero) (also called reflexivity) 

3. d(x,y) = d(y,x) (symmetric) 

4. d(x,y) ≤ d(x,z) + d(z,y) (triangle inequality: going directly from x to y is shorter (or 

equally short) than making a detour over object z.) 
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For a good learning system appropriate distance function is important. Wilson and 

Martinez [Wilson and Martinez, 1997] have listed a variety of distance functions. Here 

x and y are two input instances and m is the number of attributes. 

 Euclidean distance function 

d(x,y) = √∑ (𝑥𝑎 − 𝑦𝑎)2𝑚
𝑎=1   

 

 City-block or Manhattan distance function 

d(x,y) = ∑ |𝑥𝑎 − 𝑦𝑎|𝑚
𝑎=1  

 

 Minkowskian r-distance function  

d(x,y) = √∑ (𝑥𝑎 − 𝑦𝑎)𝑟𝑚
𝑎=1

𝑟
 

 

 Mahalanobis distance function  

d(x,y) = [det V]1/m (x − y)TV−1 (x − y), 

where V is a covariance matrix of A1 to Am 

 

 Canberra distance function  

d(x,y) = ∑
|𝑥𝑎−𝑦𝑎|

|𝑥𝑎+𝑦𝑎|

𝑚
𝑎=1  

 

 Chebychev distance function  

d(x,y) = 𝑚𝑎𝑥𝑎=1
𝑚 |𝑥𝑎 − 𝑦𝑎| 

 

 Quadratic distance function  

d(x,y) = (x − y)T Q(x − y) = ∑ {∑ (𝑥𝑎 − 𝑦𝑎)𝑞𝑎𝑏
𝑚
𝑎=1 }(𝑥𝑏 − 𝑦𝑏)𝑚

𝑏=1 , 

where Q is a problem-specific positive definite m × m weight matrix 

 

 correlation distance function  

d(x,y) = 
∑ (𝑥𝑎−𝑥𝑎)(𝑦𝑎−𝑦𝑎)𝑚

𝑎=1

√∑ (𝑥𝑎−𝑥𝑎)2𝑚
𝑎=1 ∑ (𝑦𝑎−𝑦𝑎)

2𝑚
𝑎=1

 

 chi-square distance function  

d(x,y) = ∑
1

𝑠𝑢𝑚𝑎

𝑚
𝑎=1 (

𝑥𝑎

𝑠𝑖𝑧𝑒𝑥
−

𝑦𝑎

𝑠𝑖𝑧𝑒𝑦
)

2

 

where suma is the sum of all values for attribute a occuring in the training set and sizex 

and sizey are the sums of all values in the instance x and y respectively. 

The above mentioned distance functions work well for quantitative attributes, but they 

do not have the solution for nominal, ordinal or heterogenuous data. 
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2.3.2 Proximity measures for heterogeneous data 

Most of the real world applications including those that are present in UCI Machine 

learning repository have both qualitative and quantitative attributes. For heterogeneous 

datasets, distance functions are used that have the ability to accommodate both types of 

attributes. 

Heterogeneous Euclidean-Overlap Metric (HEOM) was proposed by Wilson and 

Martinez [1997], It is a heterogeneous distance function that uses different distance 

functions on different types of attributes: overlap function is used for nominal attributes 

and normalized Euclidean distance for ordinal and quantitative attributes.   

The distance between two input vectors x and y is given by the equation 

HEOM(x,y) = √∑ 𝑑(𝑥𝑎 , 𝑦𝑎)2𝑚
𝑎=1 , 

where a stands for an attribute and m stands for the total number of attributes 

The distance between two values of input vectors x and y of a given attribute a is given 

by 

𝑑(𝑥𝑎 , 𝑦𝑎) = {

1,          (𝑖𝑓 𝑥𝑎 𝑜𝑟 𝑦𝑎 𝑖𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛)

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (𝑥𝑎 , 𝑦𝑎), (𝑖𝑓 𝑎 𝑖𝑠 𝑛𝑜𝑚𝑖𝑛𝑎𝑙)
𝑟𝑛_𝑑𝑖𝑓𝑓(𝑥𝑎 , 𝑦𝑎)                                                 

 

If any value in the input vectors is unknown then for the attribute a, the maximum 

distance value is returned. 

The overlap function is defined as 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑥𝑎 , 𝑦𝑎) = {
0, (𝑖𝑓 𝑥𝑎 = 𝑦𝑎)
1, (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

 

and the range normalized difference function is defined as 

𝑟𝑛_𝑑𝑖𝑓𝑓(𝑥𝑎 , 𝑦𝑎) =
|𝑥𝑎 − 𝑦𝑎|

𝑟𝑎𝑛𝑔𝑒𝑎
 

The range is used to normalize the attribute values and is defined as 

𝑟𝑎𝑛𝑔𝑒𝑎 =  𝑚𝑎𝑥𝑎 − 𝑚𝑖𝑛𝑎 

where maxa and mina are the maximum and minimum of attribute a taken from the 

training set. 
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As given above, the distance between two input vectors is the square root of the sum of 

the squared distances of all the attributes. 

2.4 Improvements to K-NN 

Many improvements or variations have been proposed in order to improve the 

performance and also reduce the shortcomings of the K-NN approach. 

2.4.1 Density based K-NN classifier (DB-KNN) 

Counting of the neighbors for determining the class of a test instance appears to be 

insufficient [Wang and Bell, 2004], due to the uneven distribution of training set, K-

NN classification results will have relatively large differences. For the instances in 

dense area, its density is clearly higher than the instance in sparse area [Shi et al., 2011]. 

It can easily be understood that the similarity between instances in the areas that are 

densely populated is larger than the similarity between instances in the areas that are 

sparsely populated. K nearest neighbor classification depends upon the number of 

neighbors for the test instance and the density has an effect on this. The instances in the 

dense have more chance of selection than the instances in the sparse area. In short, if 

the decision function used does not consider the data distribution, then this will make 

the instance, the density of the category of which is dense, more likely to be selected. 

In the decision making process, it brings a negative impact on the classification results 

because the prediction of smaller classes is usually not accurate. 

DB- KNN explores the potential of evaluating the neighbors in the K-NN rather than 

merely counting them [Voulgaris and Magoulas, 2008], they provides a new look to the 

K-NN algorithms. Also, the distance is used, making the evaluation of the neighbors 

more refined. In Density based K-NN the distance between test and training instances 

is increased in sparse area and reduced in dense areas because it not only considers the 

density of test instance but also the densities of its K neighbors. 

2.4.2 Variable K-NN classifier (V-KNN) 

From continuous experimentations it has been observed that the values in K nearest 

neighbor classification results heavily depends upon the number of neighbors (K) and 

each data has different K value that is suitable for it. It utilizes the concept of degree of 

certainty (DC) to do this. 

Degree of certainty for one classification of a classifier [Voulgaris and Magoulas, 2008] 

is defined by the formula derived from the certainty factor CF formula in [Aydin and 

Guvenir, 2006]. 

𝐷𝐶𝑖 =
max(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒)

∑ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒(𝑐)𝑐´
𝑐=1
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where i denotes the i-th attribute classified, c is the class index, c´ is the number of 

classes and classification score is the score determining the classification output of the 

classifier. 

This approach finds the optimum K value for each classification [Voulgaris and 

Magoulas, 2008]. In this approach an array which contains the best K value for each 

training set instances is made. This array is called as “optimum” K array and is made 

by performing classification for each one of the training case instances based on various 

neighbors. The K value that gives the maximum degree of certainty of each 

classification is found. Therefore, for each training set there corresponds a particular K 

value which is considered the best and is stored in the “optimum” K array.  Afterwards, 

for each test instance, the nearest neighbor is found and its K value is assumed based 

on the “optimum” K array. Then, the K-NN classifier is applied to that test instance, 

using that K value. Accoding to Voulgaris and Magoulas [2008] this is something 

similar to one of the ideas presented in [Khan et al., 2002]. 

2.4.3 Class based K-NN classifier (CB-KNN) 

Many of datasets have the same common problem when it comes to classification that 

is the difference of their class sizes, meaning that one class will have too many instances 

while others (or some) have too few instances. When finding classification based upon 

the K nearest neighbor classification the classes with very few instances are not 

selected. The Class Based KNN (CB-KNN) was developed due to this fact [Voulgaris 

and Magoulas, 2008].  

In this algorithm for every test instance, the K nearest instances of each class are taken. 

The value of K is automatically selected to maximize the degree of certainty of the 

classification, this selection is done by the classifier to decrease the influence of the 

most distance instance. Afterwards, the harmonic mean of the distances of these 

neighbors (the inverse of the mean of the inverses of distances) is calculated (so that it 

is not influenced so much by the most distant instances). Finally, these harmonic means 

are compared and the class yielding the lowest value is chosen for the classification. 

2.4.4 Discernibility K-NN classifier (D-KNN) 

This algorithm is similar in structure to the original K-NN extension of the DB-KNN. 

The aim was to make an algorithm that is quite fast, without losing accuracy [Voulgaris 

and Magoulas, 2008]. 

This algorithm takes into account the distance and discernibility of each neighbor. It 

takes the discernibility of each instance which is measured by taking a radius around 

each instance that is the average distance between this instance and the other instances 

of the same class. After that the instances with the same class and the total instances 

within that radius are divided and the result is called discernibility of that case. By 

dividing the discernibility by the distance, a score is produced, for each one of the 
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neighbors. Then, the scores for each class are averaged to produce one classification 

score for each one of the classes. The class yielding the highest classification score is 

selected for the classification. 

2.4.5 Weighted K-NN classifier (W-KNN) 

A weighted K-NN performs an evaluation on the attributes of the instances. This 

concept is similar to the Density Based K-NN classifier, which performs evaluation on 

the cases. Each attribute is evaluated to obtain a weight value based on how useful this 

attribute is for discerning the classes of the dataset. Just like in the Variable K-NN 

classifier these weights are stored in a vector format with one value for each attribute. 

The weighted K-NN classifier works in the manner that each one of the attributes of the 

training set are evaluated using the Index of Discernibility. The Index of Discernibility 

(ID) is a measure developed for assessing how easily distinguishable the classes of a 

dataset are and evaluating individual attributes by applying it on them. The weights are 

applied to both the training and the testing set when the distances between their cases 

are being calculated. This concept is further elaborated in Chapter 3. 
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3. Attribute selection and weighting 

It has been frequently observed that the classification of data depends more upon some 

attributes than others. Finding those relevant attributes is called attribute selection and 

making a method in which those relevant attributes are given more value is called 

attribute weighting. Here the terms feature and attribute have the same meaning and are 

used as synonyms. 

3.1 Attribute subset selection 

The first task is to select the relevant features which is also called attribute subset 

selection. Attribute subset selection has become extremely important in areas where 

datasets with tens or hundreds of thousands of attributes are available [Guyon and 

Elissef, 2003]. On a simple thought having more attributes should only give us more 

benefits, but the real world provides us with many reasons why this is not generally the 

case [Koller and Sahami, 1996]. Reunanen [2003] observes that there can be many 

reasons for selecting only a subset of attributes:  

(i) It is cheaper to measure only a subset of attributes;  

(ii) By removing irrelevant attributes the prediction accuracy of the classification 

technique can be improved, i.e., to improve the prediction power of the method.  

(iii) If less or few attributes are used, then the predictor which is used usually 

becomes simple and likewise its speed increases, i.e., the method becomes more 

cost effective by using less attributes. 

(iv) It is useful to know the attributes which are relevant, as they can give insight 

into the nature of the prediction problem at hand.  

Therefore, the problem of focusing on the most relevant information in a potentially 

overwhelming quantity of data has become increasingly important for machine learning 

and data mining procedures [Blum and Langley, 1997]. 

One question that comes to the mind is that what does the word “relevant” means. In 

machine learning literature, there exist different meanings of the word relevance. Blum 

and Langley [1997] have given some definitions regarding the word relevance in their 

paper. An attribute is relevant to the target concept if there exists any example in which 

changing the value of attribute affects the classification given by the target concept. In 

this thesis the target concept is the K-NN method. Similarly an attribute is irrelevant, if 

any change does not affect the predicted classification. 

Attribute selection methods can be categorized into four basic steps that determine the 

nature of the heuristic search process. First, one must determine the starting point (or 

points) in the space, which in turn influences the direction of search and the operators 

used to generate successor states. A second decision involves the organization of the 

search. A third issue concerns the strategy used to evaluate alternative subsets of 

attributes. Finally, one must decide some criterion for halting the search. 
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Attribute selection methods can be grouped in two categories: "attribute weighting" and 

"minimum subset selection" algorithms [Liu and Motoda, 1998] based on the outputs 

of the method used. An attribute ranking algorithm defines a score to express the 

relevance of an attribute; a subset selection algorithm tries to identify a subset of 

relevant attributes. Liu and Motoda have explained “minimum subset selection” as 

deciding which attributes to use in describing the concept and deciding how to combine 

those attributes. In this view, it is the selection of relevant attributes, and the elimination 

of irrelevant ones.  

3.2 Attribute subset selection approaches 

3.2.1 Embedded approach 

Embedded approaches perform attribute subset selection as a part of the learning 

procedure and are usually specific to given learning methods. 

Greedy set cover method is a type of embedded method which is explained as follows: 

consider concepts that can be expressed as a disjunction of Boolean features. The 

concepts to be learned are given as classes positive and negative. To find minimum 

relevant attribute subsets begin with a disjunction of zero attributes (which by 

convention outputs “negative” on every example, “negative” is the default class). Then, 

out of those attributes not present in any negative example (“safe” attributes) choose 

the one whose inclusion into the current hypothesis most increases the number of 

correctly classified positive examples (breaking ties arbitrarily). Repeat this until there 

are no more “safe” attributes that would increase the number of correctly classified 

positives cases, and then halt. [Blum and Langley, 1997] 

Quinlan’s ID3 [Quinlan 1983] and C4.5 [Quinlan 1993], and CART [Breiman et al., 

1984] are some of the variations to this set cover method. These methods carry out a 

set cover search and at each stage use an evaluation function to select the attribute that 

has the best ability to discriminate among the classes. Embedded methods are less 

computationally intensive than other methods but are specific to learning methods. 

3.2.2 Filter approach 

Filter methods are used in the preprocessing phase, before the actual learning process. 

They attempt to assess the merits of attributes from the data, ignoring the effects of the 

selected attribute subset on the performance of the learning algorithm. They use general 

characteristics of the training set to select some attributes and exclude others. Thus, 

filtering methods are independent of the algorithm that will use their output, and they 

can be combined with any such algorithm.  

FOCUS algorithm proposed by Almuallim and Dietterich [Almuallim and Dietterich, 

1991] describe a filtering approach to attribute selection that involves a greater degree 

of search through the attribute space. The main function of this algorithm is to search 
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for minimum of attribute combinations that perfectly discriminate among the classes 

i.e. generate pure partitions of the training set in which no instances have different 

classes. This method first looks at single attribute, then combines two attributes, then 

three, and then four and finally it stops when it finds a perfectly discriminating 

combination. It then passes the original training examples that are described using only 

the selected attribute to the actual learning algorithm. This approach assumes that 

attributes are adequate for the classification tasks. Kira and Rendell’s [1992] RELIEF 

algorithm uses ID3 to induce a decision tree from the training data using only the 

selected attributes. Kononenko [Kononenko, 1994] reports two extensions to this 

method that handle more general types of attributes.  

Filter methods easily scale to very high-dimensional datasets, are computationally 

simple and fast, and independent of the classification algorithm. Attribute selection 

needs to be performed only once, and then different classifiers can be evaluated. They 

are often univariate or low-variate. This means that each attribute is considered 

separately, thereby ignoring attribute dependencies, which may lead to worse 

classification performance when compared to other types of attribute selection 

techniques. 

3.2.3 Wrapper approach 

Wrapper methods assess subsets of attributes according to their usefulness to a given 

predictor. The method conducts a search for a good subset using the learning algorithm 

itself as part of the evaluation function. The typical wrapper method searches for the 

same space of attribute subsets as embedded and filter methods, but it evaluates 

alternative sets by running some induction algorithm on the training data and using the 

estimated accuracy of the resulting classifier as its metric. 

Langley and Sage’s [Langley and Sage, 1994] OBLIVION algorithm combines the 

wrapper idea with the simple nearest-neighbor method, which assigns, to new instances, 

the class of the nearest case stored in memory during learning. The attribute -selection 

process effectively alters the distance metric used in these decisions, taking into account 

the attribute judged relevant and ignoring the others. This method carries out a 

backward elimination search through the space of attribute sets, starting with all 

attribute and iteratively removing the one that leads to the greatest improvement in 

estimated accuracy. The system continues this process until the estimated accuracy 

actually declines. Other examples are Race [Moore and Lee, 1994], Beam [Aha and 

Bankert, 1996] and Townsend-Weber & Kibler [Townsend-Weber and Kibler, 1994]. 

Wrapper method interacts between attribute subset search and model selection, and 

have the ability to take into account attribute dependencies, but they have higher risk 

of overfitting than filter techniques and are computationally very intensive, especially 

if building the classifier has a high computational cost. 
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3.3 Attribute weighting 

Attribute weighting (as shortly described at the end of Chapter 2) assesses the 

importance (or relevance) of each attribute with respect to the output by using a 

univariate measure. Univariate means that the measurement is carried out for a single 

variable or value. Attribute weighting is mostly used because of its simplicity, 

scalability and good empirical success [Guyon and Elissef, 2003]. Variable ranking 

makes use of a scoring function that is computed from the attributes. The scoring 

function is produced in an increasing order. Examples are correlation technique and 

chi-square statistical test. 

Some types of attributes ranking algorithms follow the idea of continuous weighting in 

which training instances lead to a simultaneous change in all attribute ranking values 

[Blum and Langley, 1997]. Examples are Perceptron updating rule [Minsky and Papert, 

1969], which adds or subtracts weights on a linear threshold unit in response to errors 

on training instances, the least-mean squares algorithm [Widrow and Hoff, 1960], back 

propagation [Rumelhart et al., 1986] and Littlestone’s [Limestone, 1988] WINNOW. 

3.3.1 Pearson’s correlation technique 

Nowadays most commonly used method is called Pearson’s correlation technique 

𝑅(𝑖) =  
∑ (𝑥𝑘,𝑖 −  �̅�𝑖)(𝑦𝑘 − �̅�)𝑛

𝑘=1

√∑ (𝑥𝑘,𝑖 − �̅�)2 ∑ (𝑦𝑘 − �̅�)2𝑛
𝑘=1

𝑛
𝑘=1

 

To understand this equation consider a set of n instances {𝑥𝑘, 𝑦𝑘} (k = 1,..n) consisting 

of m input (known) 𝑥𝑘,𝑖 (i = 1,..m) and one output(unknown, class) 𝑦𝑐 attribute. 

Attribute ranking for Pearson’s coefficient makes use of a scoring function R(i) 

computed from the values 𝑥𝑘,𝑖 and 𝑦𝑘 , (k = 1,..m). Using this method as an attribute 

weighting criterion enforces a weighting according to goodness of linear fit of 

individual attribute [Guyon and Elissef, 2003]. Each attribute is judged individually and 

its value is calculated by computing with the class attribute. These values are saved in 

the form of a vector whose length is the total number of input attributes. 

3.3.2 Chi-square test statistic 

Another method for attribute weighting is called chi-square weighting which is used in 

the thesis given by [Liu and Motoda, 1998] and finds the value by calculating chi-square 

distance between each input attribute and class attribute. 

The motivation for using chi-square as a mutual information measure in an attribute 

weighting task is due to the ability of this measure in ranking attributes [Witten and 

Frank, 2000]. Chi-square is designed to work for categorical data and it does not work 
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for quantitative data. It should also be known that the data should not be in the 

percentage form, only the frequency or count of data is needed. 

One way of explaining the chi-square is that it checks the null hypothesis which states 

that there is no association between attributes. Based on this null hypothesis a model is 

created that distributed the data in categories assuming that there is no association 

between attributes. The test is based on comparing the actual distribution of the data 

and expected distribution of the data. A contingency table is needed to calculate chi-

square. 

Table1. Contingency table 

Variable Y Variable X  

1 2 … c Totals 

1 n11 n12 … n1c n1. 

2 n21 n22 … n2c n2. 

… … … … … … 

r nr1 nr2 … nrc nr. 

Totals n.1 n.2 … n.c n 

The observed frequency for the cell cij is nij. The expected frequency for the cell cij is 

eij 

eij = 
𝑛𝑖.𝑛.𝑗

𝑛
 

The chi-square test statistics is calculated as (x2) =∑ ∑
(𝑛𝑖𝑗−𝑒𝑖𝑗)2

𝑒𝑖𝑗

𝑐
𝑗=1

𝑟
𝑖=1  

From the equation we can see that the cells that contribute most to the chi-square value 

are the ones whose actual and expected counts are very different. The greater value 

represents that the attributes are related. 

3.3.3 Sequential and normalized weighting 

Although weight values can directly be used but there also exist many criteria for 

defining a weight vector. Mainly two criteria are used [Vivencio et al., 2007]. The first 

criterion, called Sequential Weighting (SW), defines a weight vector simply by ranking 

attribute, i.e., the attributes having the lowest score have their weights set to 1, those 
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with the second lowest-scored attributes have their weight set to 2 and so on. The 

process goes on until weights are assigned to the highest scored attributes. In datasets 

where all attributes have different scores, the highest scored attribute will have its 

weight set to number of attributes. The second criterion, called Normalized Weighting 

(NW), normalizes weights in the interval [0, 10]. According to this criterion, attributes 

with the highest score have their weights set to 10. The other attributes have their 

weights linearly established according to their score. 

Attribute ranking method uses a vector that contains the weights or values 

corresponding to each attribute. These methods require the evaluation of each attribute 

using a specific distance metric, for identifying its degree of relevance (DR). The DR 

is then used to sort the attributes into a list called "ranked list of attribute" [Vivencio et 

al., 2007]. 
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Attribute Ranking Algorithm 

Input: dataset, distance measure; 

Output: ranked list of attribute 

List: ordered attribute list; 

DR: degree of relevance function; 

D_R: vector with the degree of relevance of each attribute 

 

begin 

List ← emptylist; 

for each attribute f do 

begin 

D_R[f] ← 

DR (f, dist_measure, dataset); /*degree of relevance */ 

List ← (f, DR[f]); 

endfor; 

order (List, DR); 

end. 

Figure 3. Attribute ranking algorithm [Vivencio et al., 2007]. 

3.3.4 Attribute weighted nearest neighbor 

Attribute weighted nearest neighbor method can be classified as a mutual information 

approach for assigning attribute weights [Witten and Frank, 2005]. Therefore the chi-

square statistical score between the values of attributes is used to assign the weights. 

This method works in three steps. First, the chi-square score between each attribute and 

the class must be defined using the whole dataset; second, based on a weighting 

criterion, a vector containing the weights of each attribute is created and third, the 

weights of each attribute are used in the K-NN classification task. The following figure 

4 shows the second and third step, first step has been shown in the figure 3 above. 
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Chi-Square attribute weighting algorithm 

Input: dataset described by attributes plus class, criterion; 

Output: Weight Vector (V) 

Chi: vector with the X score for each attribute; 

V: weight vector; 

begin 

for each attribute f do 

Chi[f] ← chi (class, f, dataset); 

V ← create_vector (criterion, Chi); 

end. 

Figure 4. Chi-Square attribute weighting algorithm [Vivencio et al., 2007]. 
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4. Evaluation 

4.1 Evaluation methods 

There are many evaluation methods for classifiers presented over the years and in 

different perspectives, a classifier here means any method or algorithm that is used to 

classify the datasets. One way of differentiating evaluation methods is that by which 

factors the classifiers are being evaluated. In the objective evaluation performance 

measures are used to evaluate the performance of the classifiers, for example accuracy, 

true positive rate etc. In the subjective evaluation domain experts evaluate the classifier 

and the classifier should be intelligent and reasonable from their point of view. 

Another two types of evaluation are descriptive and predictive [Hand et al., 2001] 

 In the descriptive evaluation performance measures are calculated from the 

training instance to see how well the generated classifier labels the training 

instances, the training set is the one whose class labels are known and along 

with the learning algorithm are used to build a classification model. The 

disadvantage of this method is that if the same instance is used in the model 

construction and evaluation then the result will be overoptimistic. 

 In the predictive evaluation the classifier training is done from the training set 

and the evaluation is done by a test instance or instances (on which the classifier 

has not been trained but whose class labels are known). Example methods are 

holdout method, cross validation method, etc. 

4.1.1 Holdout method 

One of the methods is called the holdout method. In this method the original data set is 

partitioned into two parts, the training set and test set [Han and Kamber, 2006]. The 

sets can be set as 50-50 or 2/3-1/3 for the training and test sets depending on the choice 

of the analyst. The data are randomly divided into the training and test sets, the 

classification model is induced from the training set and evaluated on the test sets. 

Random subsampling is a version in which the above method is repeated many times 

and a performance measure (e.g. the accuracy) is calculated as the average of the 

measures obtained in each iteration. Sampling means selecting a subset of individuals 

from the whole dataset. The holdout method is usually employed with large datasets, 

datasets having a large number of instances, probably around thousands of instances or 

more. 

4.1.2 Cross-validation method 

In the cross-validation each record is used for the same number of times for training but 

only once for testing. As an example two partitions of the data set are made and one 

partition is used for training and the other for testing and next time vice versa is done. 

This is called two-fold cross-validation. This can be generalized by partitioning the 
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dataset into k equal sized subsets. During each run one subset is used for testing while 

others are used for training. This process is repeated until each subset is tested once. 

This method is called k-fold cross-validation [Han and Kamber, 2006]. For example, 

we make k1 to k5 subsets. 

 First make the subset k2, k3, k4 and k5 as the training set and k1 as the testing set. 

 Then use k1, k3, k4 and k5 as the training set and k2 as the testing set. 

 The process is repeated until all sets have become test sets one time. 

Performance measures can be calculated in two ways either as the average of measures 

calculated in each iteration or on the basis of the overall number of correct 

classifications from all iterations. The cross-validation can be repeated with different 

divisions of subsets to acquire good knowledge about the dataset. Usually 10-fold cross 

validation is used as it has been tested and validated [Han and Kamber, 2006]. The 

cross-validation method is used with moderate datasets having instances around 

hundreds or more. 

4.1.3 Leave-one-out validation 

The leave-one-out validation is a special case of cross-validation method [Han and 

Kamber, 2006] in which each instance is used once as the test case and all other 

instances are used as the training set. If a dataset contains n instances then n -1 instances 

are used for training set and nth instance for the test case. For this reason the leave-one-

out method is also called as n-fold cross validation. This method utilizes the utmost 

training instances but due to its expensive nature it is usually applied to small datasets. 

4.1.4 Bootstrap method 

Another method for the evaluation is called bootstrap method [Han and Kamber, 2006]. 

This method samples the given training instances uniformly with replacement which 

means that each time an instance is selected it is equally likely to be selected again and 

added back to the training set. In sampling with replacement, the same instance is 

allowed to be selected more than once. There exist several bootstrap methods of which 

a commonly used one is the .632 bootstrap. In .632 method n is for the number of cases. 

The data set of n cases is sampled n times, with replacement, which results in a bootstrap 

sample or training set of n samples. In this sample some of the original instances will 

occur very likely more than once. The instances not occurring in the training set form 

the test set on average, 63.2% of the original instances will end up in the bootstrap, and 

the remaining 36.8% will form the test set. 
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4.2 Evaluation measures 

4.2.1 Total accuracy and error rate 

Accuracy is evaluated on the basis of records correctly or incorrectly predicted. A 

confusion matrix is constructed. A simple confusion matrix also called binary confusion 

matrix is given in Table2. 

Table 2. Confusion matrix for 2 classes 

 Predicted Class 

Class = 0 Class = 1 

Actual Class Class = 0 f00 f01 

Class = 1 f10 f11 

In the confusion matrix f00 means the number of records of the class 0 predicted in the 

class 0, f01 means the number of records of the class 0 predicted in the class 1, f10 means 

the number of records of the class 1 predicted in the class 0 and f11 means the number 

of records of the class 1 predicted in the class 1. 

It is evident from the matrix that the correct predictions are f00 + f11 and the incorrect 

predictions are f01 + f10. The accuracy is calculated as 

accuracy = correct predictions / total predictions  

                = (f00 + f11) / (f00 + f10 + f01 + f11). 

Similarly, the error rate is calculated as 

error rate = incorrect predictions / total predictions  

                = (f10 + f10) / (f00 + f10 + f01 + f11). 

This confusion matrix is for datasets having only two classification values. For datasets 

having more than two classification values this matrix can be modified, although the 

concept remains the same. A confusion matrix for a C-class classification tasks is given 

in table 3. 
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Table 3. Confusion matrix for n-classes 

 Predicted Class 

class 1 class 2 … class n 

Actual 

Class 

class 1 f11 f12 … f1C 

class 2 f21 f22 … f2C 

… … … … … 

class C fC1 fC2 … fCC 

In the confusion matrix, f11 is the c number of cases whose actual class is class1 and the 

predicted class is class1 and f12 is the number of cases whose actual class is class1 and 

the predicted class is class2 

The accuracy is calculated as the percentage 

accuracy = 100
(𝑓11+𝑓22+⋯+𝑓𝐶𝐶)

𝑛
  

where n is the total number of predictions  

4.2.2 Class-wise accuracy 

Another evaluation that is important is called class-wise accuracy, i.e., the proportion 

or percentage of correct predictions for instances of each class. It is important because 

it shows how much effect a particular class has on the overall accuracy and it simplifies 

the calculation of overall accuracy. 

Let us assume that there are 100 cases present in a dataset which are described in the 

following way 

 94 class A instances  

 3 class B instances  

 3 class C instances  

The total accuracy found out after calculation is 94% which is a very good result. 

However only the class A instances are correctly predicted and the other classes are 

not, which makes this result misleading. 

For class 1 the classwise accuracy is 100(f11/f11+f12+…+f1C). This will give the 

percentage of instances correctly classified from class 1. 

Generalizing, 
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ACCc = 100
𝑡𝑛𝑐

𝑛𝑐
, 

where ACCc is class-wise accuracy for the class c, tnc is the number of correctly 

classified cases in the class c and nc is the total number of cases in the class c. 

From the above formula, the overall accuracy can be given by 

ACC = 100
∑ 𝑡𝑛𝑐

𝐶
𝑐=1

∑ 𝑛𝑐
𝐶
𝑐=1

 

where c is the class and C is the total number of classes. 
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5. Implementation of the experimental part 

5.1 Datasets 

Twelve different datasets from the UCI Machine learning repository were selected for 

the calculations. The UCI Machine Learning Repository is a collection of databases, 

domain theories, and data generators that are used by the machine learning community 

for the empirical analysis of machine learning algorithms [UCI, 2014]. The default task 

for the datasets was classification and they belonged to the medical field. Details of the 

datasets are as follows. 

Audiology 

 221 cases 

 19 classes: class attribute – “Diseases” 

Class “1” – “cochlear_age” (57 cases), 

Class “2” – “cochlear_age_and_noise” (22 cases), 

Class “3” – “cochlear_noise_and_heredity” (2 cases), 

Class “4” – “cochlear_poss_noise” (20 cases), 

Class “5” – “cochlear_unknown” (48 cases), 

Class “6” – “conductive_discontinuity” (2 cases), 

Class “7” – “conductive_fixation” (6 cases), 

Class “8” – “mixed_cochlear_age_fixation” (2 cases), 

Class “9” – “mixed_cochlear_age_otitis_media” (4 cases), 

Class “10” – “mixed_cochlear_age_s_om” (2 cases), 

Class “11” – “mixed_cochlear_unk_discontinuity” (2 cases), 

Class “12” – “mixed_cochlear_unk_fixation” (9 cases), 

Class “13” – “mixed_cochlear_unk_ser_om” (3 cases), 

Class “14” – “mixed_poss_noise_om” (2 cases), 

Class “15” – “normal_ear” (22 cases), 

Class “16” – “otitis_media” (4 cases), 

Class “17” – “possible_brainstem_disorder” (4 cases), 

Class “18” – “possible_menieres” (8 cases), 

Class “19” – “retrocochlear_unknown” (2 cases) 

 70 attributes 

 62 nominal and 8 ordinal attributes 

 

Balance Scale 

 625 cases 

 3 classes : class attribute – “Balance Scale” 

Class “B” – “Balanced” (49 cases), 

Class “L” – “Tip to left” (288 cases), 

Class “R” – “Tip to Right” (288 cases) 

 4 attributes 

 4 ordinal attributes 
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Breast cancer 

 286 cases 

 2 classes: 

Class “1” – “no-recurrence-events” (201 cases), 

Class “2” – “recurrence-events” (85 cases) 

 9 attributes 

 5 nominal, 2 interval and 2 ratio attributes 

 

Bupa 

 345 cases 

 2 classes: class attribute – “Liver Disorder from excessive alcohol 

consumption” 

Class “1” – “Yes” (145 cases),  

Class “2” – “No” (200 cases) 

 6 attributes 

 6 nominal attributes. 

 

Contraceptive method choice 

 1473 cases 

 3 classes : class attribute – “contraceptive method used” 

Class “1” – “not used” (629 cases), 

Class “2” – “long term” (333 cases), 

Class “3” – “short term” (511 cases) 

 9 attributes 

 5 ordinal and 4 interval attributes 

 

Dermatology 

 366 cases 

 6 classes: class attribute – “Eryhemato-Squamous Disease” 

Class “1” – “psoriasis” (32 cases), 

Class “2” – “seboreic dermatitis” (123 cases), 

Class “3” – “lichen planus” (32 cases), 

Class “4” – “pityriasis rosea” (123 cases), 

Class “5” – “cronic dermatitis” (32 cases), 

Class “6” – “pityriasis rubra pilaris” (123 cases) 

 34 attributes 

 33 ordinal and 1 interval attributes 
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Heart disease 

 303 case 

 5 classes: class attribute – “angiographic disease status” 

“Diameter narrowing” means blockade/narrowing in the blood vessels in 

diameters that effects the blood flow. 

Class “0” – “< 50% diameter narrowing” (164 cases),  

Class “1” – “< 60%  &  > 50% diameter narrowing” (55 cases),  

Class “2” – “< 70%  &  > 60% diameter narrowing” (36 cases),  

Class “3” – “< 80%  &  > 70% diameter narrowing” (35 cases),  

Class “4” – “> 80% diameter narrowing” (13 cases) 

 75 attributes of which only 14 are used 

 Original attributes are of different types but they have been converted into 

ordinal form. 

 

Hepatitis 

 155 cases 

 2 classes: class attribute – “status” 

Class “1” – “live” (32 cases), 

Class “2” – “die” (123 cases) 

 19 attributes 

 13 nominal , 5 ordinal and 1 interval attributes 

  

Indian liver patient 

 583 cases 

 2 classes: class attribute – “liver patients” 

Class “1” – “yes” (416 cases), 

Class “2” – “No” (167 cases) 

 10 attributes 

 1 nominal, 7 ordinal, 1 interval and 1 ratio attributes  

 

Pima Indian Diabetes 

 768 cases 

 2 classes: class attribute – “Diabetes” 

Class “0” – “negative” (500 cases), 

Class “1” – “positive” (268 cases) 

 8 attributes 

 7 interval and 1 ratio attributes  

 

Post-Operative 

 90 cases 

 3 classes: class attribute – “Discharge decision” 

Class “I” – “patient sent to Intensive Care Unit” (2 cases), 
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Class “S” – “patient prepared to go home” (24 cases), 

Class “A” – “patient sent to general hospital floor” (364 cases), 

 8 attributes 

 7 ordinal and 1 ratio attributes 

  

Spectf 

 267 cases 

 2 classes: class attribute – “Spectf Heart Disease” 

Class “0” – “negative” (55 cases), 

Class “1” – “positive” (212 cases) 

 44 attributes 

 44 ratio attributes  

 

5.2 K-NN impementation 

The UCI Machine Learning Repository datasets were given as CSV (comma separated 

values) text files. CSV means that the attribute values in the text file were separated by 

a comma “,”. Another text file was also given which contains the details about the 

datasets, for example the number of attributes, values of all the attributes (for 

calculating range), types of attribute values (nominal, ordinal etc.), missing values (how 

they are indicated by), the class attribute etc. 

Three versions of the K-NN program were made. In the first version, attribute weighting 

was not applied, but the basic K-nearest neighbor classification was done. In the second 

version, a simple weight addition was applied where the weights were calculated from 

the training instances for every attribute. In the third version, the class-wise weight 

addition was applied in which different weights were calculated for each class in a class 

versus others manner for every attribute from the training instances. 

The data file was converted into a two-dimensional array where each instance was 

represented by a row and each attribute of that instance was represented by a column 

of that row. For the calculation purpose the values of the whole dataset were converted 

into a numeric form. The string values were mapped into a discrete numeric form like 

1, 2,…,etc. and the class attribute was saved in another array and was removed from 

the dataset because the predicted class was to be found out by using the K-nearest 

neighbor algorithm. 

The leave-one-out validation technique was applied to the K-NN variants, one row was 

considered as a test instance and all others as training instances. This was repeated for 

each row. The distance between the test instance and each instance in the training set 

was calculated by using the Heterogeneous Euclidean Overlap Metric (HEOM) 

distance measure. For the second and third versions of K-NN weights based on the chi-

square statistic were multiplied by the distance measure to give the new distance value. 
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The chi-square weights were calculated for each attribute from the whole training set 

and these values were saved in a weight array. Since the chi-square test is only 

applicable for qualitative values, discretization was done to convert quantitative values 

into qualitative values. Class-wise weights were implemented by calculating the chi-

square weights from the training instances in a class versus the other classes manner for 

every attribute, so the number of weight vector was equal to the number of classes and 

the weight array in this case was two-dimensional. The weight value that would be 

multiplied by the distance measure would be determined by the class the training 

instance belonged to. 

The nearest instance to the test instance was the one which has the lowest distance 

value. Since K-NN involves taking more than one nearest neighbor, different numbers 

of neighbors were taken: K=1 where only the nearest one was taken, K=4 where four 

neighbors were taken in order to observe the behavior of even number of neighbors and 

K=5 taking five neighbors. 

The class values of the neighboring instances were observed and the class that appeared 

the most times was taken as the predicted class of the test case. For K=1 the single 

neighbors class was taken as the predicted value. In the case of a tie between the class 

values appearing most a random selection was done between those values. This process 

was repeated for all the instances in the dataset, the predicted class values of all the 

instances were calculated. 

By using a confusion matrix, the overall accuracy and class-wise accuracies were 

calculated. 
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6. Results 

6.1 Individual dataset results 

The classification results for the Audiology data are given in Table 5. It can be observed 

that for all values of K (1, 4 and 5), the best results for all the classes were distributed 

between all the versions with version 2(weighted K-NN) having the majority of the best 

results, and also the best results for overall accuracy for all values of K (73.7% – 

81.9%). version 1 also has best results for many classes. 

The classification result for the balance scale are given in Table 6. It can be seen that 

version 1 (unweighted K-NN) produces the best results for the two majority classes 

(54.9% - 97.9%) and total accuracy (55.7% – 71.4%), for all value of K (1,4 and 5) with 

the exception of one majority class value when K=1(44.4) which comes from version 2 

(weighted K-NN). K=5 produced the best total accuracy result (71.4%) and it can be 

seen that total accuracy increases with increasing value of K. Another interesting fact 

for this dataset is that version 3 (class-wise K-NN) produces the best result for the 

minority class for all values of K (100%) while other two versions were unable to 

correctly classify this class. But version 3 was unable to classify the other two classes 

at all (0%). 

The classification results for the Breast Cancer data are given in Table 7. It can be 

observed that the version 1 (basic or unweighted K-NN) produces the best results (89.5, 

91.1 and 95.5%) for the majority class (class “1”) with all the values of K (1, 4 and 5 

respectively), but the weighted versions 2 and 3 produce better results (44.7 and 28.2) 

for the minority class (class “2”). Since the dataset contains only 2 classes, the results 

for the weighted versions 2 and 3 are usually the same but there can be small differences 

because of the involvement of the random selection in the tie situations. For K=4, the 

probability to have tie situations is greater than for K=1 or K=5, and accordingly there 

is a greater difference in the results of 4-NN. 

The classification results for the Bupa data are given in Table 8. From these results it 

can be observed that version 1 (unweighted K-NN) produces best results for the 

majority class (68.5% - 69.5%) for all values of K (1, 4 and 5) and for the minority class 

for K=4 and K=5, and the best total accuracy for all values of K. 

The classification results for the Contraceptive Method Choice data are given in Table 

9. It can be seen that the version 3 (class-wise weighted K-NN) produces the best results 

for the minority class (class “2”) (39.3 – 43.8 %) and also for class “3” (47.9 – 61.1%) 

for all the values K (K=1, 4 and 5). The Total accuracy is best for the version 1 

(unweighted K-NN) (47.0%). This is due to the majority class (class“1”) which 

constitute the biggest part in the total accuracy (50.4 – 52.3%), K=4 produces the best 

result for the total accuracy. K=4 produces the best results for the majority class 

(class“1”) and also for the minority class (class“2”). 

The classification results for the Dermatology data are given in Table 10. It can be 

observed that version 2 (weighted K-NN) produces the best results (96.4% - 99.1%) for 
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the majority class (class “1”) for all values of K (1, 4 and 5) and also for many of the 

other classes (“2”, “4”,“5” and “6”) and the best overall accuracy (97%) when K=5, 

Version 1 (unweighted K-NN) produces the best overall accuracy (92.9% - 95.6%) for 

K=1 and K=4. Version 3 (class-wise K-NN) produces the best results for the third 

biggest class (class “2”) for K=1 and K=4. 

The classification results for the Heart Disease data are given in Table 11. It has been 

observed that the version 2 (weighted K-NN) produces the best results in most cases for 

all the classes. Version 2 produces the best results for minority class (class “4”) (7.7 – 

23.1%) for all values of K and majority class for K=1 (82.3%). The Version 2 also 

produces the best total accuracy for K=1 (56.4%) and K=4 (59.1%) while the version 1 

(unweighted K-NN) produces the best total accuracy for K=5 (59.7%). Version 1 gives 

best results for the majority class (class“0”) for K=4 (88.4%) and K=5 (92.1%). K=5 

gives best total accuracy and best result for majority class while K=1 gives best minority 

class (class“4”). A unique pattern in these results is of the second biggest class 

(class“1”) whose results in version 3 (class-wise weighted) (56.6 – 72.7%) are by far 

greater than the versions 1 (30.9 – 34.5%) and 2 (12.7 – 29.1%) for all values of K. 

The classification results for the Hepatitis data are given in Table 12. It can be observed 

that the version 1 (unweighted K-NN) produces the best results for the majority class 

(class “2”) with K=4 (93.5%) and K=5 (94.3%) but for K=1 version 2 (weighted K-NN) 

produces the best accuracy (90.2%). Version 1 also produces the best results for the 

minority class (class “1”) and the total accuracy for all values of K. K=1 gives the best 

result for minority class (50%) while K=5 gives best result for the majority class (class 

“2”) (94.3%) and the total accuracy (83.9%). 

The classification results for the Indian Liver Patient data are given in Table 13. It can 

be observed that the version 3 (class-wise K-NN) produces the best results for the 

majority class (class “1”) (75.2 – 79.6%), the minority class (class “2”) (28.7 – 53.3%) 

and the total accuracy (65.0 – 69%) for all values of K, although version 2 (weighted 

K-NN) also gives the best results for K=1 and K=5 because there are only 2 classes but 

for K=4 version 3 gives the best results due to tie situations. K=5 gives the best result 

for the majority class (class “1”) while K=1 gives best result for minority class (class 

“2”) and the total accuracy.   

The classification results for the Pima Indian Diabetes data are given in Table 14. It can 

be seen that version 2 (weighted K-NN) and version 3 (class-wise K-NN) produces best 

results for the minority class (class “1”) for all values of K (1, 4 and 5) and produced 

the best total accuracy (75.4%) when K=5. Since, there are two classes, the results of 

version 2 and version 3 are the same. Version 1 (unweighted K-NN) produces the best 

results for the majority class (class “0”) and total accuracy for K=1 and K=4. 

The classification results for the Post-Operative Patient data are given in Table 15. It 

can be observed that version 2 (weighted K-NN) produces the best results (75% - 

90.6%) for the majority class (class “A”) and best total accuracy (57.8% - 68.9%) for 

all values of K (1, 4 and 5). Version 3 (class-wise K-NN) produces the best results 

(33.3% - 50%) for the second smallest class (class “S”). 
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The classification results for the Spectf data are given in Table 16. It can be observed 

that version 2 (weighted K-NN) produces the best results for majority class (class “1”) 

(79.2% - 85.4%), for minority class (class “0”) (38.2% - 43.6%) and total accuracy 

(70.8% - 76%) for all values of K (1, 4 and 5). Version 3 (class-wise weighting) shares 

the same results for K=1 and K=5. 
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Table 5. The K-NN classification results for the Audiology data from five times repeated leave-one-out. 

  Version 1 Basic K-NN Version 2 Weighted K-NN Version 3 Class-wise K-NN 

Class 

Name 

Total 

Number of 

Cases 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

K=1 

1 57 53 93 55 96.5 52 91.2 

2 22 16 72.7 21 95.4 12 54.6 

3 2 2 100 1 50 1 50 

4 20 11 55 13 65 17 85 

5 48 38 79.2 40 83.3 44 91.7 

6 2 2 100 2 100 1 50 

7 6 6 100 5 83.3 5 83.3 

8 2 0 0 0 0 1 50 

9 4 0 0 1 25 1 25 

10 2 0 0 0 0 0 0 

11 2 1 50 2 100 1 50 

12 9 8 88.9 9 100 5 55.5 

13 3 3 100 3 100 2 66.7 

14 2 2 100 2 100 2 100 

15 22 21 95.4 18 81.8 12 54.6 

16 4 0 0 0 0 0 0 

17 4 4 100 4 100 2 50 
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18 8 4 50 5 62.5 2 25 

19 2 0 0 0 0 0 0 

Total Accuracy 77.4 81.9 72.4 

K=4 

1 57 55 96.5 53 93 53 92.3 

2 22 13 59.1 16 72.7 14 63.6 

3 2 0 0 0 0 0 0 

4 20 9 45 11 55 14 70 

5 48 40 83.3 43 89.5 42 87.5 

6 2 0 0 0 0 1 50 

7 6 6 100 3 50 5 83.3 

8 2 0 0 0 0 0 0 

9 4 0 0 3 75 1 25 

10 2 0 0 0 0 0 0 

11 2 0 0 0 0 0 0 

12 9 8 88.9 9 100 5 55.6 

13 3 2 66.7 2 66.7 0 0 

14 2 0 0 1 50 0 0 

15 22 20 90.9 16 72.7 12 54.6 

16 4 0 0 0 0 1 25 

17 4 1 25 2 50 0 0 

18 8 1 12.5 3 37.5 0 0 
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19 2 0 0 0 0 0 0 

Total Accuracy 70.1 74.7 67 

K=5 

1 57 54 94.7 54 94.7 51 89.5 

2 22 12 54.5 17 77.3 15 68.2 

3 2 0 0 0 0 0 0 

4 20 10 50 10 50 14 70 

5 48 36 75 42 87.5 45 93.8 

6 2 0 0 0 0 0 0 

7 6 6 100 5 83.3 5 83.3 

8 2 0 0 0 0 0 0 

9 4 0 0 2 50 1 25 

10 2 0 0 0 0 0 0 

11 2 0 0 0 0 0 0 

12 9 7 77.8 9 100 5 55.6 

13 3 3 100 3 100 0 0 

14 2 0 0 0 0 0 0 

15 22 19 86.4 17 77.3 11 50 

16 4 0 0 0 0 0 0 

17 4 1 25 2 50 0 0 

18 8 1 12.5 1 12.5 0 0 

19 2 0 0 0 0 0 0 

Total Accuracy 67.4 73.3 66.5 
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Table 6. The K-NN classification results for the Balance scale data from 5 times repeated leave-one-out. 

  Version 1 Basic K-NN Version 2 Weighted K-NN Version 3 Class-wise K-NN 

Class 

Name 

Total 

Number of 

Cases 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

K=1 

B 49 0 0 0 0 49 100 

L 288 68 23.6 128 44.4 0 0 

R 288 280 97.2 124 43.2 0 0 

Total Accuracy 55.7 40.3 7.8 

K=4 

B 49 0 0 0 0 49 100 

L 288 158 54.9 127 44.1 0 0 

R 288 277 96.2 128 44.4 0 0 

Total Accuracy 69.6 40.80 7.8 

K=5 

B 49 0 0 0 0 49 100 

L 288 164 56.9 121 42 0 0 

R 288 282 97.9 118 41 0 0 

Total Accuracy 71.4 38.2 7.8 
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Table 7. The K-NN classification results for the Breast Cancer data from five times repeated leave-one-out. 

  Version 1 (Basic K-NN) Version 2 (Weighted K-NN) Version 3 (Class-wise 

weighted K-NN) 

Class 

Name 

Total 

Number of 

Cases 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

K=1 

1 201 180 89.5 164 81.6 163 81.1 

2 85 26 30.6 38 44.7 38 44.7 

Total Accuracy 72.0 70.6 70.3 

K=4 

1 201 183 91.0 163 81.1 162 80.6 

2 85 23 27.1 24 28.2 22 25.9 

Total Accuracy 72.0 66.4 64.3 

K=5 

1 201 192 95.5 166 82.6 165 82.1 

2 85 20 23.5 19 22.3 19 22.4 

Total Accuracy 74.1 64.7 64.3 
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Table 8. The K-NN classification results for the Bupa data from 5 times repeated leave-one-out. 

  Version 1 Basic K-NN Version 2 Weighted K-NN Version 3 Class-wise K-NN 

Class 

Name 

Total 

Number of 

Cases 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

K=1 

1 145 78 53.8 80 55.2 80 55.2 

2 200 139 69.5 136 68 136 68 

Total Accuracy 62.9 62.6 62.6 

K=4 

1 145 78 53.8 76 52.4 76 52.4 

2 200 137 68.5 127 63.5 127 63.5 

Total Accuracy 62.3 58.8 58.8 

K=5 

1 145 72 49.7 71 49 71 49 

2 200 139 69.5 135 67.5 135 67.5 

Total Accuracy 61.2 59.7 59.7 
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Table 9. The K-NN classification results for the Contraceptive Method Choice data from 5 times repeated leave-one-out. 

  Version 1 (Basic K-NN) Version 2 (Weighted K-NN) Version 3 (Class-wise weighted 

K-NN) 

Class 

Name 

Total 

Number of 

Cases 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

K=1 

1 629 323 51.4 309 49.1 213 33.9 

2 333 117 35.1 119 35.7 131 39.3 

3 511 210 41.1 209 40.9 245 47.9 

Total Accuracy 44.1 43.2 40 

K=4 

1 629 329 52.3 301 47.8 159 25.3 

2 333 133 39.9 130 39.0 146 43.8 

3 511 231 45.2 222 43.4 305 59.7 

Total Accuracy 47.0 44.3 41.4 

K=5 

1 629 317 50.4 306 48.6 141 22.4 

2 333 129 38.7 118 35.4 135 40.5 

3 511 241 47.2 234 45.8 312 61.1 

Total Accuracy 46.6 44.7 39.9 
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Table 10. The K-NN classification results for the Dermatology data from 5 times repeated leave-one-out. 

  Version 1 Basic  K-NN Version 2 Weighted K-NN Version 3 Class-wise K-NN 

Class 

Name 

Total 

Number of 

Cases 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

K=1 

1 112 108 96.4 108 96.4 16 14.3 

2 61 48 78.7 51 83.6 51 83.6 

3 72 71 98.6 66 91.7 14 19.4 

4 49 44 89.8 46 93.9 43 87.8 

5 52 51 98.1 52 100 43 82.7 

6 20 18 90 16 80 13 65 

Total Accuracy 92.9 92.6 49.2 

K=4 

1 112 109 97.3 110 98.2 5 4.5 

2 61 53 86.9 54 88.5 58 95.1 

3 72 72 100 71 98.6 9 12.5 

4 49 46 93.9 42 85.7 40 81.6 

5 52 50 96.2 52 100 43 82.7 

6 20 20 100 20 100 7 35 

Total Accuracy 95.6 95.4 44.3 

K=5 

1 112 109 97.3 111 99.1 3 2.7 

2 61 55 90.2 56 91.8 55 90.2 

3 72 72 100 71 98.6 6 8.3 

4 49 49 100 45 91.8 42 85.7 

5 52 50 96.2 52 100 41 78.8 

6 20 18 90 20 100 7 35 

Total Accuracy 96.4 97 42.1 
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Table 11. The K-NN classification results for the Heart Disease data from 5 times repeated leave-one-out. 

  Version 1 (Basic K-NN) Version 2 (Weighted K-NN) Version 3 (Class-wise weighted 

K-NN) 

Class 

Name 

Total 

Number of 

Cases 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

K=1 

0 164 131 79.9 135 82.3 82 50 

1 55 19 34.6 16 29.1 31 56.6 

2 36 8 22.2 10 27.8 7 19.4 

3 35 6 17.1 7 20 6 17.1 

4 13 3 23.1 3 23.1 3 23.1 

Total Accuracy 55.1 56.4 42.6 

K=4 

0 164 145 88.4 143 87.2 64 39.0 

1 55 17 30.9 15 27.3 36 65.4 

2 36 3 8.3 8 22.2 5 13.9 

3 35 8 22.9 10 28.6 3 8.6 

4 13 1 7.7 3 23.1 1 7.7 

Total Accuracy 57.4 59.1 36 

K=5 

0 164 151 92.1 143 87.2 60 36.6 

1 55 18 30.9 7 12.7 40 72.7 

2 36 4 11.1 11 30.6 3 8.3 

3 35 7 20 6 17.1 2 5.7 

4 13 1 7.7 1 7.7 0 0 

Total Accuracy 59.7 56.4 34.6 
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Table 12. The K-NN classification results for the Hepatitis data from 5 times repeated leave-one-out. 

  Version 1 (Basic  K-NN) Version 2 (Weighted K-NN) Version 3 (Class-wise weighted 

K-NN) 

Class 

Name 

Total 

Number of 

Cases 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

K=1 

1 32 16 50 14 43.8 14 43.8 

2 123 109 88.6 111 90.2 111 90.2 

Total Accuracy 80.6 80.6 80.6 

K=4 

1 32 15 46.9 13 40.6  12 37.5 

2 123 115 93.5 114 92.7 115 93.5 

Total Accuracy 83.9 81.9 81.9 

K=5 

1 32 14 43.8 10 31.2 10 31.2 

2 123 116 94.3 115 93.5 115 93.5 

Total Accuracy 83.9 80.6 80.6 
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Table 13. The K-NN classification results for the Indian Liver Patient data from 5 times repeated leave-one-out. 

  Version 1 (Basic K-NN) Version 2 (Weighted K-NN) Version 3 (Class-wise weighted 

K-NN) 

Class 

Name 

Total 

Number of 

Cases 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

K=1 

1 416 300 72.1 313 75.2 313 75.2 

2 167 78 46.7 89 53.3 89 53.3 

Total Accuracy 64.8 69 69 

K=4 

1 416 318 76.4 314 75.5 321 77.2 

2 167 58 34.7 55 32.9 59 35.3 

Total Accuracy 64.5 63.3 65.2 

K=5 

1 416 328 78.8 331 79.6 331 79.6 

2 167 44 26.4 48 28.7 48 28.7 

Total Accuracy 63.8 65.0 65.0 
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Table 14. The K-NN classification results for the Pima Indian Diabetes data from 5 times repeated leave-one-out. 

  Version 1 Basic K-NN Version 2 Weighted K-NN Version 3 Class-wise K-NN 

Class 

Name 

Total 

Number of 

Cases 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

K=1 

0 500 398 79.6 391 78.2 391 78.2 

1 268 141 52.6 147 54.8 147 54.8 

Total Accuracy 70.2 70.0 70.0 

K=4 

0 500 411 82.2 403 80.6 403 80.6 

1 268 138 51.5 143 53.4 143 53.4 

Total Accuracy 71.5 71.1 71.1 

K=5 

0 500 416 83.2 424 84.8 424 84.8 

1 268 149 55.6 155 57.8 155 57.8 

Total Accuracy 73.6 75.4 75.4 
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Table 15. The K-NN classification results for the Post-Operative Patient data from 5 times repeated leave-one-out. 

  Version 1 Basic K-NN Version 2 Weighted K-NN Version 3 Class-wise K-NN 

Class 

Name 

Total 

Number of 

Cases 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

K=1 

A 64 45 70.3 48 75 40 62.5 

I 2 0 0 0 0 0 0 

S 24 1 4.2 4 16.7 8 33.3 

Total Accuracy 51.1 57.8 53.3 

K=4 

A 64 55 85.9 58 90.6 41 64.1 

I 2 0 0 0 0 0 0 

S 24 1 4.2 4 16.7 12 50 

Total Accuracy 62.2 68.9 58.9 

K=5 

A 64 57 89.1 58 90.6 38 59.4 

I 2 0 0 0 0 0 0 

S 24 0 0 2 8.3 9 37.5 

Total Accuracy 63.3 66.7 52.2 
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Table 16. The K-NN classification results for the Spectf data from 5 times repeated leave-one-out. 

  Version 1 Basic K-NN Version 2 Weighted K-NN Version 3 Class-wise K-NN 

Class 

Name 

Total 

Number of 

Cases 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

Correctly 

Predicted 

Cases 

Class 

Accuracy 

(%) 

K=1 

0 55 20 36.4 21 38.2 21 38.2 

1 212 153 72.2 168 79.2 168 79.2 

Total Accuracy 64.8 70.8 70.8 

K=4 

0 55 21 38.2 24 43.6 20 36.4 

1 212 170 80.2 171 80.7 170 80.2 

Total Accuracy 71.5 73 71.2 

K=5 

0 55 12 21.8 55 40 55 40 

1 212 180 84.9 212 85.4 212 85.4 

Total Accuracy 71.9 76 76 
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6.2 Combined Result 

For comparison all the results of datasets have been combined into Table 17. In table 

17 accuracies and median true positive rates (TPR) are given. Median TPR, also called 

as sensitivity, is calculated by means of the class-wise accuracies, it is the median of 

the accuracies of the classes. It can be observed that out of 12 datasets the version 1 

(Basic K-NN) has the best total accuracy and median TPR for 6 of them (Balance scale, 

Breast Cancer, Bupa, Contraceptive Method Choice, Dermatology, Hepatitis) for all 

values of K except for K=1 for Breast Cancer data, K=1 for Balance scale and K=5 

Dermatology. The version 2 (weighted K-NN) has best accuracy and median TPR for 

audiology (K=4), Heart Disease (K=1 and K=4), Indian Liver Patient (with all K-

values), Pima Indian Diabetes (K=5), Indian Liver Patient dataset and Pima Indian 

dataset have only two classes, so the differences between version 2 and 3 are because 

of random choices in the tie situations. Version 2 also has best accuracy and median 

TPR for spectf (with all K-values), the Post-Operative data for all values of K and the 

best median TPR for Dermatology (K=4 and K=5). Heart Disease for K=1 and K=4, for 

Audiology K=1 and K=5 version 1 had best accuracies, for Post-Operative version 3 

has best median TPR for all values of K. The version 3 (Class-wise weighted K-NN) 

has the best median TPR for Post-operative for all values of K. It can also be observed 

that the value of accuracy increases with K=5 in 8 (Balance Scale, Breast Cancer, 

Contraceptive Method Choice, Dermatology, Heart Disease, Hepatitis, Pima Indian, 

Spectf) out of 12 datasets. 
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Table 17. Combined K-NN classification results of 12 dataset with total accuracy and 

median true positive rate (TPR) 

DATASET K Version 1 (Basic K-NN) Version 2 (weighted K-

NN) 

Version 3 (Class-wise 

weighted K-NN) 

Accuracy True 

positive 

rate 

Accuracy TPR Accuracy TPR 

Audiology 1 77.4 79.2 70.6 83.3 72.4 50 

4 70.1 12.5 74.7 50 67 25 

5 67.4 12.5 64.7 50 66.5 0 

Balance scale 1 55.7 23.6 40.3 43.2 7.8 0 

4 69.6 54.9 40.8 44.1 7.8 0 

5 71.4 56.9 38.2 42 7.8 0 

Breast 

Cancer 

1 72.0 60.1 70.6 63.1 70.3 62.9 

4 72.0 59.0 66.4 54.7 64.3 53.2 

5 74.1 59.5 64.7 52.5 64.3 52.2 

Bupa 1 62.9 61.6 62.6 61.6 62.6 61.6 

4 62.3 61.1 58.8 58 58.8 58 

5 61.2 59.6 59.7 58.2 59.7 58.2 

Contraceptive 

Method 

Choice 

1 44.1 41.1 43.2 40.9 40 39.3 

4 47.0 45.2 44.3 43.4 41.4 43.8 

5 46.6 47.2 44.7 45.8 39.9 40.5 

Dermatology 1 92.9 93.2 92.6 92.8 49.2 73.85 
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4 95.6 96.8 95.4 98.4 44.3 58.3 

5 96.4 96.8 97 98.8 42.1 56.9 

Heart Disease 1 55.1 23.1 56.4 27.8 42.6 23.1 

4 57.4 22.9 59.1 27.3 36 13.9 

5 59.7 20 56.4 17.1 34.6 8.3 

Hepatitis 1 80.6 69.3 80.6 67 80.6 67 

4 83.9 70.2 81.9 66.5 81.9 65.5 

5 83.9 69.0 80.6 62.4 80.6 62.4 

Indian Liver 

Patient 

1 64.8 59.4 69 64.3 69 64.3 

4 64.5 55.6 63.3 54.2 65.2 56.2 

5 63.8 52.6 65.0 54.2 65.0 54.2 

Pima Indian 

Diabetes 

1 70.2 66.1 70 66.5 70 66.5 

4 71.5 66.8 71.1 67 71.1 67 

5 73.6 69.4 75.4 71.3 75.4 71.3 

Post-

Operative 

1 51.1 4.2 57.8 16.7 53.3 33.3 

4 62.2 4.2 68.9 16.7 58.9 50 

5 63.3 0 66.7 8.3 52.2 37.5 

Spectf 1 64.8 54.3 70.8 58.7 70.8 58.7 

4 71.5 59.2 73 62.2 71.2 58.3 

5 71.9 53.4 76 62.7 76 62.7 
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7. Discussion and conclusion 

The main purpose of this thesis was to study the effects of attribute weighting on K- 

nearest neighbor classification. In addition to the attribute weighting, there are many 

factors within the K-nearest neighbor algorithm, for example the number of neighbors 

K and the distance measure used to find nearest neighbors. In the thesis, three values of 

K (1,4,5) were considered and the Heterogeneous Euclidean-Overlap Metric (HEOM) 

was used. The reason for using this distance measure was the fact that the HEOM 

method is used to calculate the distance of both qualitative and quantitative attributes. 

When doing attribute weighting in the K nearest neighbor classification, the weighting 

technique naturally plays a significant role in classification results as well as the 

approach used to implement this weighting technique. In the thesis the chi-square 

weighting technique was implemented by using the chi-square test statistics. Two 

variations of variable weighting were implemented, one was the normal weighting in 

which a single weight was calculated for every attribute while the other was the class-

wise weighting in which different weights were calculated for different classes for every 

attribute. 

After the evaluation of the results there are some points that can be derived from them. 

It was seen that there was a significant difference in their results. Usually K=5 gave the 

best results but not in all cases. Also weighting had advantageous results for many 

datasets. Similarly class-wise weighting was also very useful particularly in recognizing 

the smaller classes and improving the rate of accuracy for these smaller classes. 

Although the total accuracy in many cases was greater in the unweighted (without 

weights) method due to the fact that the bigger classes are easily predicted in the 

unweighted method, the weighting is, however useful for smaller classes and so 

possibly improves the median true positive rate. 

The limitations of the thesis were that only twelve datasets were used evaluate the 

attribute weighting effect on the K-nearest neighbor algorithm. Out of these twelve, six 

datasets had only two classes, so the effects of class-wise attribute weighting cannot be 

generalized. More tests are needed with other datasets. 

The future work could be to find the reasons why class-wise attribute weighting could 

not correctly classify the majority class but it correctly recognizes the minority class in 

some datasets, also to alter properties of the K-nearest neighbor algorithm which have 

been given above. The classification can be done by taking more and higher values of 

K so that the most suitable value of K could be found out which may increase the correct 

classification rate or by the finding best K using the variable K-NN method as explained 

in Chapter 2. Similarly, the distance measure could be changed to some distance 

measure other than HEOM which can calculate the distance for both the qualitative and 

quantitative attributes. Lastly, some other attribute weighting technique or other 

attribute selection approach could be used. 
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