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Abstract

Prostate Cancer is a lethal disease characterized as progressive and possessing distinct molecular
heterogeneity during its timespan. Vast number of abnormalities has been reported till now with
number of somatic mutations and germline risk factors in addition to rearrangements in the
chromatin. All of them together makes the architecture of prostate genome very complex and hard
to understand. Transcription machinery is central to gene regulation, with a considerable vacuum in
information till date related to abnormalities in the regulatory regions in prostate genome we have
tried to explore the non-coding genome and detect mutations in regulatory regions to find if they

hold any significance in prostate cancer.

Using prostate cancer sample data from the whole genome sequencing study by Berger et al., 2011
which were seven matched normal-tumor genomes, encouraging results were produced by applying
a pipeline of independently selected tools for variant analysis. DNase | hypersensitivity sites
(DNasel HSs) for LNCaP cell lines obtained from The Encyclopedia of DNA Elements (ENCODE)
Consortium were used as markers for regulatory region in the genome and from initial 54679 SNVs
detected across 7 samples, 21 promoter and 621 enhancer mutations were detected overlapping the
DNasel HS peaks. Out of which 4 and 21 mutations in promoters and enhancers respectively were
the finally filtered out whose genes where found relevant directly or indirectly in prostate and other

cancers by performing extensive search in the published literature.

For concrete evidence validation would be the next step as results were mere implications, but our
study is a diligent effort in delineating the intricate genomics involved in prostate cancer outside the

gene coding regions.
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1. Introduction

Prostate Cancer (PCa) is one of major cancers affecting men which is lethal whose rate of incidence
is higher among older men specifically in developed countries where it ranks second in cancer
related deaths (Huang et al., 2014). The disease has characteristics of being progressive, metastatic

and ultimately leading to death of the patient.

With advent of new technologies like Next generation sequencing (NGS) and accumulation of huge
amounts of data, advancements have been made in unraveling the molecular genetics of PCa.
Tomlins et al., 2009 in their study have described PCa as aberrations in tumor suppressors and
promoter oncogenes. In addition to it they have revealed a high complexity of molecular events
such as most common TMPRSS2:ERG and other ETS fusions which was seen consistent with the
followed studies by Jindan Yu et al., 2010 and Berger et al., 2011. Distinct patterns can be seen in
the disease fore example, mutations only specific to a subtype of PCa like SPOP gene occurring
only in ETS negative tumors (Barbieri et al., 2012) divides PCa into two fusion subtypes. Although
most of the PCa subtypes are indolent but there are cases where disease is very aggressive and
evades clinical therapy through different molecular mechanism which all together makes

understanding the PCa very challenging.

Heterogeneity of the disease has been revealed by numerous studies such as by Berger et al., 2011,
Barbieri et al., 2012 and others, which describe the mutational landscape of the PCa genome. Both
studies were emphasized on protein coding genes and argue that the genesis of disease lies in
chromatin and transcription aberrancies. Transcription in itself is a complex phenomenon involving
different regions of genomes which regulate it. Though it can be seen in the studies highlighting
various mutations in the genes and the rearrangements they have left out a part of puzzle which
involves the regulatory regions. As gene regulation is central to its transcription it becomes
important to investigate this aspect of PCa genome. An evidence to this hypothesis can be seen in
study by Huang et al., 2014 where PCa risk allele was located within a functional transcription
factor binding sites (TFBS).

The aim of the research was to focus on the before mentioned aspect and is stressed on to explore
aberrations in regulatory regions of transcription machinery. This would enable us to broaden the

understanding of PCa on a whole genome level. The study has utilized the data from the work done



by Berger et al., 2011 and used the already sequenced genome data to identify regions of interest in

the PCa genome primarily to look for the somatic mutations in the regulatory regions.

The present study with the help of advanced NGS tools and techniques delineate the mutations in
non-coding regions and examines weather it is of any relevance to PCa through establishing a link
to literature. A direct comparison of seven high quality normal-tumor samples (sequenced) was
conducted which provided us with results where mutations in promoters of 4 genes and in
enhancers of 21 genes were found related directly or indirectly to PCa or other cancers.
Furthermore, validation of mutations and their presence in the TFBS as evidence of their
participation in PCa is needed for development of more effective clinical therapies.



2. Review of Literature
2.1 Human Genomic Scenario

Nuclear DNA and the mitochondrial DNA together combined are termed as human genome. More
than 99 % of total genetic information is confined to nuclear genome (Strachan T, 1999a). The
double Stranded nuclear DNA combined with histones and non-histone proteins constitutes the
chromosome, which is distributed among 22 pairs of autosomes and two sex chromosomes X and
Y. Human chromosomes are formed of accessible (less condense euchromatic) and inaccessible
(dense heterochromatic) domains. DNA sequencing and identification of exons has revealed that
majority region of the human genome is considered to be non-coding (Lodish H et al., 2000).
Apparently, only 3 percent of human genome represents coding sequences (Strachan T, 1999a). The
remaining non-coding genome does not account for the fact that it is totally non-functional or junk.
Thorough analysis of transcripts and regulatory information are essential for the identification of
genes and regions which regulate them which can help us in working of whole genome (Djebali et
al., 2012; Gerstein et al., 2012; Neph et al., 2012; Thurman et al., 2012).

Functional elements of genome are not only genes coding for proteins, it also includes genes coding
for non-coding RNA and genomic portions taking part in any kind of biochemical pathway be it
protein binding or chromatin structure. It has been found that majority (80.4%) of human genome
assists or is a part of at least one biochemical event whether it is transcript or chromatin associated
(Bernstein et al., 2012). The study done by the Encyclopedia of DNA Elements (ENCODE)
Consortium provides evidence to the fact that this majority non-coding genome cannot be
neglected, most of which lies near regulatory regions of DNA or regions of open chromatin,
transcription start sites, intergenic and intronic.

Human genome is not merely linear sequence of coding (of which 75 % is transcribed at some point
in some cells (Djebali et al., 2012)) and non-coding regions. It is a very intricate architecture of
regulatory networks (proteins binding to DNA), non-coding transcripts, regions of open chromatin
and chromosome modifications in addition to promoters and enhancers working as an organization
resulting in proper functioning and specialization of the cell. Short and tandem repeats, regulatory
factor binding regions and small RNAs, broad histone marks, transcripts (protein coding and non-
protein coding), transposable elements and pseudogenes, segmental duplications and structural
variants, these elements are all parts of non-coding region. Abnormalities whether at single base

level (SNPs or SNVs) or at chromosomal level can result into genetic dysfunction.



2.1.1 Regulation of Gene Expression
Human genome is very highly organized and complexity it’s of regulation is extraordinary.

Transcriptional control can be defined as regulation of protein synthesis by controlling formation of
respective mRNA. The regulation of genes through complex machinery defines the cell type, its
function and phenotype. Gene expression regulation has its significant roots at transcription
initiation. These are mainly proteins binding onto DNA (also non-coding RNAs) or DNA itself
structurally organized to form this machinery. Transcription initiator RNA polymerase has access to
every promoter to which it can bind in absence of enhancer and insulators or repressors. Though
access to promoters is restricted, for transcription to initiate chromatin undergoes many structural
changes. The regulation can be both negative and positive, positive regulation being the dominant
one. Any genome dysregulation can cause aberrant gene expression which lies at the heart of
multiple diseases. Promoters, enhancers, silencers, insulators or repressor and locus-control regions
(LCRs) are the regions or sequences of DNA in genome to which transcription factor bind and

regulate genes (Birney et al., 2007; Maston et al., 2006)(Figure 2.1).

2.1.1.1 Transcription Factors
Human genome contains about 1,700-1,900 transcription factors (TFs) (Vaquerizas et al., 2009).

Out of 20,000-25,000 genes in human genome each of them having distinct expression pattern and
very few of them encodes for TFs, which confers different permutations of same regulatory
elements controlling gene expression given the fact that promoters there are multiple regulatory
elements. Binding sites of transcription factors can be characterized at genome scale by chromatin
immune-precipitation followed by microarray: ChIP—chip or sequencing: ChlP-seq (Birney et al.,
2007; Johnson et al., 2007; Robertson et al., 2007).

Transcription factors are the proteins which regulate the transcription of genes by binding to the
gene specific sequences (TFBS). Transcription factors in human genome are responsible for
regulation of hundreds to thousands of downstream genes (Johnson et al., 2007). Not only genes but
TFs also regulates other TFs to form a cross regulatory network. These networks are the
foundations of the biological networks. Any variation in TFBS can affect the binding of the

transcription factor resulting in dysregulation of genes.
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Figure 2.1: Genome architecture, which describes the functional genomic elements that orchestrate the
development and function of a human.
(Adapted: ENCODE Consortium, Bernstein et al., 2012)

2.1.1.2 Promoters

Promoters are the crucial regulatory sites that alter the expression of the nearest gene. “These are
the loci (overlapping transcription start sites) of accurate initiation of transcription mediated by
transcription factors and various chromatin-remodelling and -modifying enzymes” (Cairns, 2009).
Promoters (core promoter and proximal regulatory elements) are cis-elements for trans-acting TFs
on which they bind to form transcription pre-initiation complex, whose catalytic activity is to assist
in accurate positioning of DNA-dependent RNA polymerase (Lenhard et al., 2012). The interaction
between RNA polymerase and promoter sequence defines regulation of transcription initiation.
Promoter sequences can vary considerably which affects the binding affinity of RNA polymerase
thus affecting transcription initiation. Promoters can be of many classes characterized by their
respective functions. It is the core promoter which acts as a binding site for basic transcriptional
machinery and where pre-initiation complex (PIC) is assembled before the transcription start site
(TSS). Other regulatory proteins termed as activators binds to the proximal promoters or TFBS
(<1kb from core promoters) which synergistically act as a regulatory elements. A mutation at any of
these sites can cause aberrant transcription (Maston et al., 2006).



2.1.1.3 Enhancers

Enhancers are also the cis-regulatory elements which increase the transcription of genes. They can
be located up to <1IMb from the promoters. Human genome contains hundreds and thousands of
enhancers scattered across 98% of the genome which is non-protein-coding. Enhancer function is
independent of their orientation and distance from their target promoter (or promoters) (Pennacchio
et al.,, 2013). They are the clusters of close TFBSs which work cooperatively to enhance
transcription (Maston et al., 2006). Enhancers can be found upstream, downstream or in introns
suggesting that the location relative to their genes in cis is highly variable. Individual enhancers
have also been found to regulate more than one gene (Mohrs et al., 2001). Also it is not necessary
that they act on the promoters located in their vicinity, enhancers can also regulate genes located

distantly along the chromosome thus bypassing the nearby genes.

Figure 2.2: A summary of promoter elements and regulatory signals (Adapted: Maston et al., 2006)
Yellow genomic portion is the smaller core promoter just in the vicinity of TSSs.

2.1.1.4 Silencers
Just like enhancers but opposite in their function, Silencers are the negative regulatory elements.

They have a silencing or repressing effect on gene expression and act as binding sites for repressors.

2.1.1.5 Insulators

“Insulators are DNA elements that insulate genes located in one chromatin domain from
promiscuous regulation by enhancers or silencers in neighboring domains” (Raab & Kamakaka,
2010). They block the effect of transcription on nearby gene by binding onto the regulatory
sequence or operator of that gene.



2.1.1.6 Locus Control Regions (LCRs)
LCRs are a composed group of enhancers, silencers, insulators and nuclear matrix or chromosome

scaffold-attachment regions (MARs or SARS), which regulate entire gene cluster or genetic locus
(Maston et al., 2006). The collective activity of all the elements in the region defines the
functionality of LCRs. They are located in the region upstream of their respective gene, but can also

be found within introns.

2.1.1.7 Histone Modification and Open Chromatin Sites
DNA is densely packaged into chromatin and this cell type specific organization affects the access

and activity of many regulatory elements. Structurally chromatin is formed by DNA folding into
nucleosome which is in turn an octamer of histone proteins onto which 147 bp of DNA is wrapped.
“The nucleosome positions along with histone variants and modifications make up the primary
structure of chromatin”(Zhou et al., 2011). DNA in chromatin may remain accessible to DNA-
binding proteins such as TFs and RNA polymerase 1l (RNAPII) or may be further compacted.
Chromatin can also organize into higher-order structures such as nuclear lamina-associated domains
and transcription factories. Aspects of gene and genome regulation are reflected at every level of
organization (Zhou et al., 2011). The main feature of chromatin organization of DNA is whether it
IS transcription active or inactive. Transcriptionally active parts of chromatin are structurally
different from the inactive parts. The compact structure in addition to methylation of cytosine acts a
barrier to protein binding, thus access to open chromatin affects the regulation machinery.

“Specific chromatin configurations may be dictated by DNA sequence, DNA methylation patterns,
transcription factors and other regulatory proteins, and transcriptional activity, and may be
maintained through epigenetic controls that are rooted in the chromatin machinery” (Margueron &
Reinberg, 2010; Zhou et al., 2011). Better understanding of these modifications may provide insight
onto how the genome is regulated in normal and diseased cell type.

2.1.2 Transcriptional Dysregulation and Diseases
Mutations in the regulatory elements of transcription can have an abrupt effect on gene expression.

In addition, mutations in chromatin remodeling factors have been shown to be associated with
cancers (Maston et al., 2006). For example, in “Brahma (Brm) and brahma-related gene-1 (Brgl)
(which are mammalian homologues of SWI/SNF chromatin-remodeling factor subunits, that can
regulate both transcriptional activation and repression) are found to be deleted in numerous cancer

cell lines, leading to the altered expression of genes that influence cell proliferation and metastasis”



(Banine et al., 2005). Another example of mutations in regulatory elements is Bernard-Soulier
syndrome where the proximal promoter of Glycoprotein-lbbeta harbored mutation which changes
the GATA consensus binding site, disrupting GATAL binding to the mutated site and decreases
promoter activity by 84% (Ludlow et al., 1996). In PCa, somatic mutations have been detected in
the transcription factor ATBF1, which impair its function one of which is to inhibit cell proliferation
(Sun et al., 2005). Chromosomal rearrangements (translocations) have also been detected in various
types of cancers, which can result in involvement of regulatory regions causing aberrant gene
expression where enhancer or promoters of one gene may get linked to a proto-oncogene, as seen in
activation of C-MYC gene (the cellular homologue of the avian myelocitic leukemia virus) in
Burkitt’s lymphoma and acute T-cell leukemia respectively where T-cell receptor genes fuse to
cMYC oncogene (Popescu & Zimonjic, 2006).

Most oncogenic and gene fusion products are transcription factors, and the disruption of
transcriptional activity as a result might be critical in cancer types harboring rearrangements and
fusions. Other case of fusion result can be generation of a completely new protein with altered
activity where a transcription factor fuse with another protein, as seen in BCR-ABL fusion
associated with chronic myelogenous leukemia (Saglio & Cilloni, 2004). Interestingly, fusions now
have been associated in PCa, where TMPRSS2 genes fuse with ETS family TFs, which causes
androgen-regulated expression of ERG (a type of ETS family of TFs). But major role or detection

of disrupted transcription regulatory machinery in other parts of PCa genome is still unknown.

2.1.3 Human Genomic Variations
Though major portion of genome is identical in humans, the variations in it make individuals

different from each other. Variations can be seen as a mechanism evolution has made us survive
and adapt. These variations which occur in many forms may be similar in different populations.
They can occur at various levels in genome, structural in form of chromosomal re-arrangements, in
DNA sequences within or outside genes and also at protein level. Nature of variations can vary

from beneficial, innocuous and to deleterious.

2.1.3.1 Mutations
Mutations are the changes in the DNA sequence in which one or more than one base pair has gone

under change. These changes can be random caused because of errors in DNA replication or due to
external factors related to environment. These can be classified as germline or somatic. New
mutations arise in single individuals, in somatic cells or in the germline. If a germline mutation can

be transmitted to the offspring it can spread to other sexual members of the population (Strachan T,



1999b). Mutations can lead to changes in the structure of an encoded protein, in its decrease or
complete loss in its expression. Any change in the DNA sequence affects all copies of the encoded
transcript which in turn affects protein unless repaired by cell repair machinery. The result can be
deleterious to a cell or organism. But, if alterations occur in the sequences of RNA or protein
molecules during their synthesis, they are less damaging because many copies of each RNA and

protein are synthesized. DNA alterations can be both small and large.

Different types of mutations
Point mutations: These involve alteration in a single base pair, and small deletions generally

directly affecting the function of the gene.

Missense: These lead to a change of a single amino acid in the encoded protein sequence.

Nonsense: These lead to formation of stop codon resulting in unfinished encoded protein and

premature termination of translation.

Frameshift: These cause change in the reading frame by insertion or deletion of any number

nucleotides but three.
Silent: Mutation which do not cause change in the phenotype.

Synonymous: Mutation(substitution) which causes no change in resulting amino acid or generates
an amino acid with similar properties as before but can affect transcription, mRNA transport,
splicing and translation.

2.1.3.2 Chromosomal re-arrangements

These are the alterations involving large chunks of DNA. Chromosomal rearrangements encompass

several different classes of events: deletions, duplications, inversions and translocations. Each of
these events can be caused by breakage of DNA double helices in the genome at two different
locations, followed by a rejoining of the broken ends to produce a new chromosomal arrangement
of genes, different from the gene order of the chromosomes before breakage. There are two general
types of rearrangements, balanced and imbalanced. Balanced rearrangements only changes the gene
order rather than resulting in any loss or gain of genomic material. “The two simple classes of
balanced rearrangements are inversions and reciprocal translocations in which no chromosomal
material is gained or lost” (Griffiths AJF et al., 1999). Phenotypic abnormalities can be caused if
the rearrangement involves deletion or duplication of very large segment of DNA.



2.1.3.3 Polymorphism
Polymorphism is the phenomenon of the existence of two or more variants (alleles, phenotypes,

sequence variants, chromosomal structure variants) at significant frequencies in the population.
These are differences in the DNA which is not a mutation. These are the variations which can be
common in different types of populations. Single nucleotide polymorphism (SNPs) is the most
common form of variation which occur once every 1000s base pairs of nucleotides. If 1% of the
population has same variation, it is called as a SNP otherwise it is a mutation. These can be found

spread across all the genome, within coding and non-coding regions.

2.1.3.4 Copy number variations (CNVs)

Copy number variations (CNVs) are as important as component of genomic diversity as single
nucleotide polymorphisms (SNPs). “Redon et al. (2006) defined a CNV as a DNA segment of one
kilobase (Kb) or larger” that is present at a variable copy number in comparison with a reference

genome (Clancy S, 2008). They can or cannot have an effect on the phenotype.

2.2 Chromatin Accessibility in Human Genome

DNA in human genome is densely packed with histones and non-histone proteins to form the
chromatin. Most essential role in chromatin structure is of the histone proteins. The DNA together
combined with histones is so compact and complex that it makes it inaccessible for regulatory
proteins to interact with DNA sequences. Direct interaction of DNA with protein with regulatory
rules needs chromatin to accommodate these proteins, so chromatin modifies its structure
accordingly. The most common entity of chromatin is nucleosome which is a 147 bp octamer of
DNA wound on 4 pairs of histones. The repeated units of nucleosomes form the basic structure of
chromatin. In this packed structure of DNA with histones a portion of histone protrudes from the
nucleosome core octamer which is vulnerable to chemical interaction known as histone acetylation
which is important for genetic function. Other types of chemical interaction of tails of core histones
is with methyl and phosphate groups which all together combined termed as histone modifications.
These modifications can influence chromatin structure and can have a significant impact on cellular
activity (Brown TA, 2002).

10



Figure 2.3: Structure of chromatin in human genome. DNA is inaccessible for regulatory proteins
for interaction, thus chromatin uncoiling must take place before assembling of proteins (TFs
and RNA polymerase) for transcription. (Adapted: Scott Freeman 2011)

Before transcription the compact structure of chromatin in the neighborhood of genes is disrupted

(histone acetylation) at nearby promoters and enhancers which give rise to a short stretch of DNA

(hypersensitive sites) which have a property of unusually sensitive to nucleases and chemical

probes (Felsenfeld et al., 1996). These DNase | hypersensitive sites (DNase | HSs) in chromatin can

be regarded as markers of regions of gene regulation are used to map regulatory DNA regions.

2.2.1 DNAsel HSs as Markers for Regulatory Regions
DNase hypersensitive sites encompass all the cis-regulatory elements of which it overlies directly

and it is maximal at core region of regulatory occupancy (Thurman et al., 2012). The precise
delineation of regulatory sites by DNasel has made genome wide mapping of DHSs followed by
NGS methods an exemplary way of discovering and cataloguing regulatory region of DNA. DHSs
are flanked by nucleosomes, thus along the genome the density of DNasel cleavage can be seen as a
quantitative continuous measure of chromatin accessibility as function of genome position. Those
flanked regions can also be termed as peaks as the density will be considerably higher than the
occupied flanking regions.

ENCODE project consortium have done extensive work to collect the information regarding most
aspects of human genome. Majority (97.4 %) of DNasel HSs encompass the elements was
validated by comparing to the validated regulated elements already located (Thurman et al., 2012).
Thus confirming DNasel HSs as markers for regulatory DNA. Not only marking of the regulatory
regions, a change in DHSs dynamics can also be used as a predictor for cell type TF binding. DHSs
encompass variety of regions that are related to many TFs but also as in their study He et al., 2012

have shown quantitative DNasel dynamics can be used to predict TF binding, where AR and ESR1
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are shown to have highly predictive binding in PCa and breast cancer respectively. He et al.,
outlined three major factors describing DHS. First in accordance with other studies, stating majority
of DHS occurs in nucleosome free regions. Second, a new finding of DHS frequently arise due to
TF binding and those regions not necessarily being nucleosome free and finally DHS can change
with removal of cofactors thus depending on binding of transcription factors . As two different TFs
which were central to their study, both AR and ESR1 having distinct interaction modes with
chromatin suggests DHS dynamics can be used a general approach for predicting cell type specific
cis-regulatory elements (He et al., 2012). Though high throughput genome wide detection of DHSs
can be done to detect the regulatory elements but DHSs only gives an implication of a functional
regulatory element, to determine if the site is an actual binding site for the protein to regulate a
different powerful technique of chromatin immunoprecipitation emerged as an advantage. Also, this
technique and detect an actual binding site but they do not demonstrate the functionality of the

element in regulation of a target gene (Maston et al., 2006).

2.2.2 Collection and Annotation of Functional Elements of Human Genome
With advent of state of art techniques like ChIP-seq (Landt et al., 2012), DNase-seq (Song &

Crawford, 2010) various research groups (more importantly ENCODE project consortium) have
accumulated vast amount of data for transcription factor binding sequences, TFs and other cis-
regulatory elements in different cell types. For example Thurman et al., 2012 under the umbrella
(ENCODE, Birney et al., 2007) of annotating all the functional elements in human genome, have
identified over 2.9 million DHSs through genome wide profiling in 125 diverse cell type and
tissues. The findings by Thurman et al. were quite intriguing as they quantified and compared
DNase | data from ENCODE common cell cline K562 with ChIP-seq signals from 42 TFs from
ENCODE ChlIP-seq to reveal the parallels between ChIP signals and DNase sensitivity across the
genome. With many number of TFs shown to bound hypersensitive site as in case of beta-globin
locus, the correlation between ChlP-seq signal and nuclease sensitivity at hypersensitive site Il was
explained by interaction between DNA bound proteins to other interactive protein which increased
the likelihood of accessibility of chromatin (Thurman et al., 2012). These finding were consistent
with one of the findings in study done by He et al., 2012.

With extensive resources available due to ENCODE, like active regulatory elements identified as
open chromatin in multiple cell types (which has revealed novel relationships between chromatin
accessibility and transcription) has widen the scope of analyzing cell selective gene regulation and
recognize patterns of regulation also from distal elements (Thurman et al., 2012). Additionally,

“genetic variations in regulatory elements are a key driver of evolution and disease” (Amit et al.,
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2009; Nicolae et al., 2010; Wray, 2007). The information regarding the location of the functional
gene regulatory elements in the genome can have a major impact in characterizing non-coding

variants.

2.3 Prostate Cancer — An Overview of Genomic Complexity

In the developed world PCa is the most common non-skin cancer among men. Major risk factors
include age, ethnicity, diet and heredity (Understanding Prostate Cancer). “The prostate sits in the
pelvis, surrounded by the rectum posteriorly and the bladder superiorly” (Oh WK et al., 2003). It is
a fluid secreting gland which secretes 30 % of the sperm and the prostatic secretion facilitates the
sperms movement during ejaculation (Guyton & Hall, 2006). Many factors have been associated
with the genesis of PCa. Progression of PCa into metastasis generally results patient’s death. PCa
can have long time span of disease progression, varying from localized PCa to developing into a
lethal aggressive disease. Recent whole genome studies have revealed that germline SNPs are
associated with increase in the risk of PCa, also somatic mutations in addition to chromosomal
rearrangements and recurrent gene fusions, which all together makes it a multi-factoral cancer. PCa
genomic alterations scenario is however incomplete (Berger et al., 2011), with limited therapeutic
treatments available there is a critical need to understand the genetic underpinnings lying at the
heart of PCa and develop new strategies to reveal novel therapeutic targets. As Barbieri et al.
describe it in their review it has a variable clinical course, and moreover molecular heterogeneity

makes it a disease with unpredictable behavior (Barbieri & Tomlins, 2014).

To understand the molecular heterogeneity of prostate cancer whole genome studies as well
exome sequencing studies have been performed utilizing NGS platforms. Recent technological
advancements have enabled us in characterization of somatic mutations in large number of tumor
samples through massively parallel high throughput sequencing of DNA (Watson et al., 2013). As
evident from studies on other types of cancers “Large-scale cancer genome characterization projects
studying glioblastoma, lung, colon, pancreas and breast cancers have provided critical new insights
into the molecular classification of cancers and have the potential to identify new therapeutic
targets” (Cancer Genome Atlas Research Network, 2008; Ding et al., 2008; Jones et al., 2008;
Parsons et al., 2008; Sjoblom et al., 2006; Weir et al., 2007; Wood et al., 2007). Similarly, with
sequencing of whole genome of tumor samples complete map of carcinogenesis of PCa can be

generated which can provide new insights into genome variation. Additionally clinical and
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biological heterogeneity of PCa makes it difficult to accurately predict tumor aggressiveness, thus
affordable NGS techniques enables us to characterize unrevealed genomic features (Wu et al.,
2012).

2.3.1 Chromosomal rearrangements involving gene fusions
A number of variations, gene fusions and aberrant expression of genes which are common to PCa

have been detected in PCa genome (Witte, 2009). Along with many genomic alterations between
androgen regulated genes and ETS transcription factors, the most common gene fusion occurs
between transmembrane protease serine 2 gene (TMPRSS2), which is androgen regulated and E
twenty-six (ETS) transcription factors. The fusion TMPRSS2-ERG (One of the ETS transcription
factors) has been observed in approximately 50% of the tumors studied (Kumar-Sinha et al., 2008;
Tomlins et al., 2005, 2007).

Various studies have revealed that there is complex pattern of balanced rearrangements involved in
the arousal of oncogenic gene fusions. Berger et al. (2011) have found range of rearrangements per
genome in their samples of the study. They have stated three genes disrupted from rearrangements
were ZNF407, CHD1 and PTEN other than chromosomal rearrangements involving TMPRSS2 and
ERG. Balanced rearrangements as identified in the study have closed chained patterns which
suggest variation resulting in interaction between multiple genomic regions is driven by
localization. E26 oncogene homolog gene v-ets erythroblastosis virus (ERG) and the ETS variant 1
gene (ETV1) are the two ETS transcription factors mostly involved in recurrent gene fusions. It has
been revealed that the fusion occurs between 5° UTR of the prostate specific androgen induced
TMPRSS2 and the respective ETS gene (Tomlins et al., 2005). Benign prostate tissues were devoid
of these fusions or they were not detected, and the fusions to ERG or ETV1 were only seen when
they were overexpressed. Novel 5’ and 3’ fusion partners have been identified by various studies.
They include fusion with ETS variant 4 gene (ETV4) and the ETS variant 5 gene (ETV5) (Helgeson
et al., 2008; Tomlins et al., 2006). Not all PCa cell lines acquire ETS gene fusions, thus they can be
characterized as ETS fusion positive and ETS fusion negative subclasses. Both cell lines have found
to have distinct transcription profiles (Arber et al., 2000; Bohlander, 2005; Iwamoto et al., 2000;
Trojanowska, 2000) suggesting they are different diseases. Though it has been indicated in studies
there are numerous 3’ partners for TMPRSS2, 5” fusion partners for ETV1 have also been identified
other than TMPRSS2 which are 5° UTRs from SLC45A3, HERV-K 22q11.23, C150RF21, and
HNRPA2B1. These partners identified can fuse with other members of ETS family creating

possibilities of rare gene fusions in PCa (Helgeson et al., 2008).
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2.3.1.1 TMPRSS2-ERG gene fusion

“In prostate cells, androgen signaling has been shown to induce co-localization of TMPRSS2 and
ERG, thereby allowing double strand breaks to facilitate gene fusion formation” (Haffner et al.,
2010; Lin et al., 2009; Mani et al., 2009). The fusion resulted in androgen-regulated expression of
ERG (which is a transcript regulator). Thus androgen responsive elements that normally restrict
expression of TPMRSS2 drove aberrant overexpression of 5° truncated ETS oncogenes (Tomlins et
al., 2007). Though this fusion has been seen in 90 % of the samples in the study by Tomlins et al.,
2005 and overexpression of ERG too, it confers fusion driven mechanism of ERG overexpression
as revealed by Demichelis et al., 2007 in their study of gene fusion associated with lethal prostate
cancer. The role of the fusion has been inferred by Yu et al., 2010 in attenuating androgen signaling
via inhibition of AR expression including attenuation of AR at gene specific loci.

TMPRSS2 and ERG are located <3 Mb apart on chr2l, so fusion can occur either with inter-
chromosomal insertion or deletion of intervening region, also due to chromosomal translocations.
Recent studies have shown varied frequency of this particular fusion across different tumors,
highest in clinically localized samples (tumor confined to prostate) and lowest in benign prostate
hyperplasia samples (Kumar-Sinha et al., 2008). Many different spliced isoforms of mMRNA of this
particular gene fusion have been observed. For example isoform involving exon 2 of TMPRSS2 in
frame with exon 4 of ERG has been associated with aggressive form of PCa (J. Wang et al., 2006).
It can be added to stated results that various isoforms produce varied affects to PCa progression

depending on their expression levels.

2.3.1.2 Other major gene rearrangements: CADM2, PTEN, MAGI2, TP53, SKP2, BRCA2.
Numerous research works has been published describing the somatic aberration landscape in

prostate genome. Few of them in agreement with results of other studies validating them and
expanding the work to a new level whereas, some contradictory. Most notably we have advanced to
the stage where PCa is seen to be classified with distinct patterns of aberrations in the genome. In
their study of whole genome sequencing of seven prostate tumors and patient-matched normal
samples, Berger et al. reported rearrangements in 3 out of 7 samples other than TMPRSS2 and ERG.
CSMD3 and CADM2 (cell adhesion molecule) were also stated to be disrupted in PCa. “CADM2
encodes a nectin-like member of the immunoglobin-like cell adhesion molecule” (Berger et al.,
2011) and several of this type of nectin like proteins have function in tumour suppression.

PTEN has been found to be a tumor suppressor gene in studies carried out that suppresses tumor
cell growth and may regulate tumor cell invasion and metastasis (J. Li et al., 1997). Notably, Berger
et al. found PTEN gene disrupted and in addition MAGI2 gene which encodes PTEN interacting
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protein. The disruption was a dinucleotide insertion in the PTEN coding sequence in one of their
samples. The rearrangements disrupting both genes affects their functionality specially PTEN either
directly or indirectly through MAGI2, dysregulating PI3 kinase pathway in PCa. In agreement with
Berger et al., in a review PTEN locus was reported to be deleted in 40 % of primary PCas (Barbieri
& Tomlins, 2014). Notable observation in the same study was that PTEN rearrangements resulted in
chromosome copy loss whereas MAGI2 rearrangements were balanced. In accordance with this
study Robbins and colleagues in their work of lethal metastatic prostate tumors report a
homozygous deletion in one of their tumor samples which encompasses many genes including
PTEN. Furthermore in addition to PTEN disruption, double strand breakage was of the BRCA2
tumor-suppressor gene is also one of the somatic alteration stated by them (Robbins et al., 2011).
Taylor et al., in their study of 200 or more tumor samples have carried out analysis for copy number
changes. Interestingly, they have implicated in 5 of 17 metastatic lesions studied, significant
changes in TP53, SKP2 and PTEN. In accordance with this study Robbins et al., 2011 supported the
concept of before-mentioned somatic alterations driving lethal PCa but also reveal novel somatic
point mutations in genes including MTOR, BRCA2, ARHGEF12, and CHD5. Other notable deletion
of gene is CHDL, “which encodes a chromo-domain helicase DNA-binding protein that acts to
remodel chromatin states and is involved in transcriptional control across the genome”. As Barbieri
et al,. have reported CHD1 was recurrently seen to be deleted in 10-25 percent of both primary and
metastatic tumors. Although rearrangements and point mutation have been detected but lesions in
CHD1, specifically focal homozygous deletions are restricted to ETS-negative tumors. There is
considerable increase in other genomic rearrangements harbored by PCas which have CHD1
deletion as stated in review by Barbieri et al. (Barbieri & Tomlins, 2014; Barbieri et al., 2012;
Burkhardt et al., 2013; Grasso et al., 2012; Taylor et al., 2010).

2.3.2 Germline Variations
Risk of inheriting cancer is elevated due to germline mutations in genes (Park BH, 2003). This fact

has been shown in various genome wide association (GWA) studies as germline SNPs were
detected to be associated with PCa (Witte, 2009). Lichtenstein et al. have shown that there is a very
high probability of PCa inheritance and given this fact, the risk involving germline mutations in
genes cannot be denied. Several chromosome loci have been shown by studies to harbor these
mutations such as mutations in chromosome 8q24 region which are associated with PCa and this
region has also been associated with colorectal, breast, ovarian and bladder cancers (Amundadottir
et al.,, 2006; Witte, 2009). In addition chromosome 24 loci and other PCa variant loci on

chromosome 10 and 17 have also been identified. The one of the two loci is found to be associated
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with SNP (located near promoter of MSMB gene) in PCa (Witte, 2009). Beke et al. found in their
study that deregulation of MSMB gene increases PCa advancement (Beke et al., 2007). All these
GWA studies have put a new insight in PCa understanding by deciphering role of germline
variations associated with the risk of disease and its development but overall view is still unclear
about how potential use of these SNPs can explain varied aggressiveness of PCa. But studies have
shown SNPs to be linked with PCa independently but when combined together they can increase
the risk of the disease (Witte, 2009).

2.3.3 Somatic Mutations
The important somatic variations are the rearrangements which have been discussed already but

apart from them many genes have been linked to PCa which are found to be mutated. Berger et al.,
2011 have given an elaborate description of somatic mutations in their study. They have stated that
more than 80% of the PCa genome harbored somatic mutations (7 PCa samples in total), especially
CpG dinucleotides where mutation rate was ten times more than the other regions in genome.
Various genes were reported to harbor mutations though not the all the samples encompassed every
mutation again enlightening complexity of PCa. Genes mentioned to be mutated were SPTAL,
SPOP, chromatin modifiers CHD1, CHD5, HDAC9, and members of HSP-1 stress response
complex (HSP2, HSPA5 and HSP90AB1). Other cancer genes such as PRKCI and DICER were also
stated to be mutated by the study. Targeted mutational analysis done by Robbins et al. on matched
normal-tumor samples novel mutations were revealed in MTOR, BRCA2, ARHGEF12 and CHD5
(Robbins et al., 2011).

Of all the mutated genes listed in various studies the significant mutated gene is SPOP. As
emphasized by Barbieri et al., 2012 in their study of primary tumors and matched normal-tumor
samples, in addition to 5000 mutations they found SPOP was “most” mutated one. In localized
prostate tumors SPOP mutation is a common point mutation. Again, Barbieri et al. 2014 in their
review state SPOP mutations to be around 6-15 % of multiple cohorts. As an evidence of distinct
patterns in PCa tumors SPOP mutations were found to be mutually exclusive of ETS fusions
(Barbieri et al., 2012). In addition to this fact SPOP has been found to mutually exclusive with
deletions and mutations in TP53 tumor suppressor (Barbieri et al., 2012; Lindberg et al., 2013). A
distinct pattern of SPOP mutation was also shown by them in the study was CHD1 deletions were
associated with SPOP mutations. These CHD1 deletions are restricted in ETS negative tumors like
SPOP mutations which make ETS negative prostate tumor class distinct from other PCas.
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Furthermore, recurrent mutations have also been found in FOXA1 (Grasso et al., 2012) and MED12
(Barbieri et al., 2012). FOXA1 is known to modulate androgen receptor transcriptional activity. In
another finding in their review, Barbieri el al., 2013 notify 25 to 30 percent of localized PCas
harbor lesions in TP53 which happen to an “earlier” event in PCa progression (Barbieri et al.,
2012). Suggesting a possibility how variation occurs in PCa in a timeline fashion.

Somatic mutations described till now were results of comprehensive work done on exomes of PCa
with help of NGS. With many factors affecting abnormal working of PCa genome, the variation in
other parts of chromatin than exome cannot be neglected given the fact in these parts of the
chromatin resides the regulatory elements which control the gene expression precisely and carefully
in spatial and temporal fashion. Genome deregulation can have major impact on cellular functions,
and if proteins (TFs, activators, repressors, co-activators and co-repressors) are involved it can
affect gene expression control, also in DNA repair and maintenance mechanisms (Barbieri &
Tomlins, 2014). For example Enhancer of Zeste Homolog 2 (EZH2) reported dysregulated in
variety of cancers. It can be through mutations, overexpression and other mechanisms. “EZH2 acts
as a histone methyltransferase to silence gene expression and plays a critical role in chromatin
regulation” (Barbieri & Tomlins, 2014). Nature of PCa can be driven by aberrant expression as
Varambally et al., 2002 have shown overexpression in PCa is associated with PCa metastasis and
aggressiveness. A number of genes involved in chromatin regulation (histone modification) have
also been found to be mutated in PCa, including KDM6A/UTX, MLL2, and MLL3 (Barbieri et al.,
2012; Lindberg et al., 2013; Taylor et al., 2010).

Given the genomic alterations in PCa genome, an altogether different level of understanding of the
complexity genomic alterations has been made possible through whole genome sequencing rather
than targeted sequencing. Gene fusions are seen as most common genetic abnormality in PCa. If
we can complete the picture involving germline SNPs and somatic mutations, the understanding of
mechanisms of PCa genesis and progression can be achieved. The disruption caused by them is not
confined to overexpression and dysfunction, they also affect the major pathways affecting the cell
function. Multiple AR-pathway signaling components are seen to have been mutated or
dysregulated (Grasso et al., 2012; Taylor et al., 2010). AR gene disruption has been shown to have
increased activity in PCa. It is amplified in 40 % of the metastatic tumors and mutated in 10 %
treated metastatic tumors but absent in localized PCa (Barbieri & Tomlins, 2014; Grasso et al.,
2012; Taylor et al., 2010). In their review Barbieri et al. have reported many alterations, such as in

genes like FOXA1l and NCOA2 which increases androgen signaling and other transcriptional
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activity mediated by androgen that could initiated genomic rearrangements in PCa making androgen
signaling pathway of critical importance in primary and advanced PCa (Barbieri & Tomlins, 2014).
As Berger et al., 2011 state “whole genome sequencing of large numbers of relapsing primary and
metastatic PCas promises to define a genetic cartography that assists in tumor classification,
elaborates mechanisms of carcinogenesis and identifies new targets for therapeutic intervention”.
But of more importance is discovering the timeline of occurring events which can be critical in
cancer progression and aggressiveness (Barbieri & Tomlins, 2014). Some progress has been seen,
as SPOP mutation and ETS rearrangements which are mutually exclusive events occurring earlier
whereas PTEN, TP53 and AR disruptions seen in advanced stages of tumors (Beltran et al., 2013).
All these findings help to make a framework of timespan of PCa from initiation, progression and in
advanced cases death. With many more studies undergoing at whole genome level, it may become
possible in future that PCa can evolve from poorly understood molecular heterogeneous to
homogenous clinical types and more identifiable by molecular criteria amenable to specific
management strategies (Barbieri & Tomlins, 2014).

2.4 Tools for Variant Analysis by Whole Genome Sequencing
To extract information from the DNA, the sequence of bases must be revealed which stores all the

coding information for proteins. As classical sequencing methods are not very efficient and cost
friendly at large scale, various technologies have been developed for sequencing DNA which is in
use at present since few years. A generic name of “next generation sequencing” (NGS) is termed
which includes many platforms for sequencing DNA depending on the sequencing approach and
output. These NGS technologies have proved to very cost efficient, with high throughput but
producing manageable data output and have straightforward interpretation of analysis results
(Mardis, 2013). As cost of NGS methods decreased, the amount of data produced from sequencing
increased exponentially thus resulting in further development of various analytical tools and
algorithms. Depending on the type of analysis varies the tools selection. One of such type
application of NGS is in variant analysis which involves series of five distinct steps; quality
assessment, sequence alignment, variant identification, variant annotation and visualization
(Mardis, 2013).

2.4.1 Next Generation Sequencing methods
There are number of platforms for NGS in the market which follow common principles of template

preparation, sequencing and imaging but differ in the chemistry applied, how sequencing is

performed and data output. NGS instruments instead of cloning the DNA, construct a library of
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fragments from the DNA to be sequenced. Each fragment to be used as a template which is
covalently attached by DNA ligase to a universal adapter (specific to platforms) used to polymerase
amplify the library fragments (Mardis, 2013). These templates are usually immobilized on a solid
supports depending upon the platform. Each fragment yields a single sequence focus which is
required to produce sufficient signal from the DNA sequencing steps that determines the sequenced
data, which gives it a digital nature. This type of sequencing is also referred as massively parallel
sequencing because of the steps simultaneously performed on each fragment in a stepwise manner.
Nucleotide addition being the first and detection of that incorporated nucleotide on the fragment
being sequenced and finally washing step which can be either performed for chemically removing
unattached nucleotides after first step or to remove fluorescent labels or blocking groups (Mardis,
2013). The enormous data sets produced at the end are results of millions to billions of reaction foci
to be sequenced at a time, in addition these methods perform sequencing and detection step

simultaneously in a sequence, latter followed by former.
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Figure 2.4: First two steps of sequencing performed in lllumina/Solexa GA, library preparation and cluster
generation. (Adapted: Metzker, 2010).

Among various technologies available Illumina/Solexa Genome Analyzer (GA) is dominant one in
the market currently (Metzker, 2010). This technology works in three principle steps. First, library
preparation where the single DNA molecule (repaired and adenylated after the fragmentation
200~500 bp) are ligated adapters at both ends which are then isolated and purified. In second step
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which is cluster generation, single molecules are immobilized by hybridizing to the fixed oligos
which were already further attached to the solid support (flow cell). Bound fragments are then
clonally amplified to make copies through extension and bridge amplification with adjacent primer
to form hundreds and millions of clusters (Metzker, 2010). Reversed strands are cleaved and
washed away. With ends blocked sequencing primers are hybridized to the DNA templates, now the
clusters are ready for the third and last step which is sequencing. In sequencing all the clusters are
sequenced simultaneously (hence the term massively parallel sequencing is often used) base by base
in parallel by adding all four fluorescently labelled reversibly terminated nucleotides where all
compete for one site. The termination of DNA synthesis after addition of a nucleotide is an
important step. After each step of synthesis remaining nucleotides are washed away and imaging is
performed where clusters are excited by a laser to detect the incorporated nucleotide. This step is
followed by a cleavage step where inhibiting/terminating group or fluorescent dye is removed
allowing addition of the next base (Metzker, 2010).

Though sequencing performed is highly specific and of high quality but it is not error free, where
substitutions are the most common, most number of this type of errors occurring where previous
base detected is ‘G’ (Dohm et al., 2008). The technology is vulnerable to amplification bias during
template preparation which results in underrepresentation of AT-rich and GT-rich regions (Bentley
et al., 2008; Dohm et al., 2008). The error percentage of resulting reads is said to be at most 0.5 %
i.e. 1 in 200 bases. Some fragments which lag behind in extension than other fragments due to
incomplete de-blocking in the previous cycle or oppositely complete lack of blocking which allows
more than one nucleotide to add contributes as noise termed as phasing. Another issue which adds
to noise is the fluorescence labels which fail to cleave after one cycle adds residual interference
(Mardis, 2013).

Read length after sequencing has been improved in this technology from 25 bp single end reads to
150 bp paired end reads. Short reads pose a challenge of assembling as the extent of shared
sequence is limited. In addition, size and complexity of the genome add to the limitation due to
repetitive content of half of the genome which includes gene families (Mardis, 2013). To overcome
this limitation, reads length have to be increased to improve the certainty of the origin which is
provided in the recent sequencers as in paired-end sequencing (Mardis, 2013). In this read pairs on
basis of length covered can be obtained as paired end reads or mate pair reads.
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primed only at one end are extended to clusters with numerous cycles but are removed so that the
extension of fragments with different set of adapters primed can take place which is also the
opposite end. In mate pair sequencing the sequencing procedure is almost the same but initially
fragments to be sequenced undergoes a series of chemical and biological steps to get library of
enriched fragments which contain both ends of the initial fragment joined by a central adapter
(Mardis, 2013). The fragment length is more than 1kb in this case. The combination of the above
two approaches can provide coverage up to 20 kb specially in obtaining long range assembly in
difficult regions of the genome (Gnerre et al., 2011).
After sequenced reads are generated and filtered, they are ready for the next step in variant analysis

of aligning to the reference genome. There are two repositories for human reference genome
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assemblies namely UCSC (hg) and GRC (GRch) which are identical (Genome bioinformatics
group) but have different in nomenclature. UCSC provide hgl8 and hgl9 versions of human
genome assembly while GRCh36 and CRCh37 are provided by GRC (Pabinger et al., 2013).

2.4.2 Genome alignment: BOWTIE 2
Sequencing machines results in huge amounts of data in terms of number of reads (short DNA

sequences) generated. As reads are short and to reveal from which part of the genome they are
generated alignment to the reference genome is required. As human genome is huge the
computational costs for alignment millions of reads is also high. Studies like Ley et al., 2008 where
number of reads generated reach in billions and short read alignment tools like Maq ( Li H., Ruan et
al., 2008) and SOAP (Li, R. et al., 2008) will take 5 CPU-months and 3 CPU-years align them
(Langmead et al., 2009). To decrease the computational time number of CPUs has to be increase
which results in high computing cost.

To overcome above outlined shortcomings BOWTIE (Langmead et al., 2009) was developed which
is ultrafast, memory efficient as compared with Mag and SOAP. It uses a novel indexing strategy on
reference genome uses burrows-wheeler transform (BWT) (M. Burrows, n.d.) based on full-text
minute-space (FM) index (Ferragina & Manzini, 2000). Initially developed for data compression

BWT-based indexing when applied allows large reference genome to be searched efficiently.
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As seen in the figure BWT of text X is

Pos lo$oogg (last column of matrix resulted
after string sorting), which is generated

X = googol$ by lexicographically  sorting rows

according to the first characters of the matrix. The rows of matrix are made of all possible text
generated by cyclic rotations of test X added character “$” at the end. “$” is not in the text and is

considered lexico-graphically less than all the characters.

The text search by navigating the index is possible due the ‘last first (LF) mapping’ property of the
matrix. As stated by Langmead et al., 2009 the LF property is that “the i occurrence of letter X in
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the last column corresponds to the i™ occurrence of X in the first column.” This property is used for

exact matching of substring and can also be used to un-permute BWT to recover original text.
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Figure 2.8 Exact matching of substring “go” using LF mapping property of the burrows-wheeler matrix.
BWT(X=googol$) is in red. The values in the matrix are the number of times the character
appears before that position in the last column (starting from top to down).

For example the substring “go” is searched in following steps in main text X.
Step 1. The last character in the substring i.e. “0” is selected and the range of that character in the
first column of the matrix is chosen in lexicographical order as shown in the figure.

Step 2. Same range is selected in the last column.

Step 3. As “g” is the next pattern character, the values of that character in the matrix corresponding
to the first row and next to last row of range (selected in previous step) are selected from the LF
matrix, which are shown as 0 and 2 respectively.

Step4. The first row value in the LF of the character “g” matrix corresponds to that row before
which the character has appeared as many times as the value, which is equal to the value “0”. The
second value which is “2” is used to select number of rows of that character (“g”’) which gives the
range of the rows in which string is matched as seen in the figure above.

The EXACTMATCH algorithm in bowtie works in the same fashion to navigate or search the text
in the index. As this algorithm does not allow for mismatches or inexact matches which can be due
to sequencing errors or genetic variations two extension were made in addition to it, a back tracking
algorithm that allows high quality alignments with mismatches and other being double indexing

strategy to avoid excessive backtracking (Langmead et al., 2009).
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The efficiency of index based alignment in BOWTIE comes to question when alignment are
permitted to contain gaps which again can occur due to sequencing errors or insertion and deletions
(Langmead & Salzberg, 2012). The number of gaps increases the search space thus increasing the
search time. The inability of bowtie to overcome this BOWTIE 2 was developed which extends the

FM index approach to allow gapped alignment (Langmead & Salzberg, 2012).
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Figure 2.9: Workflow of alignment in bowtie 2. (Adapted: supplementary data Langmead & Salzberg, 2012)

As seen in the figure 2.9 BOWTIE2 proceeds for gapped alignment in two stages. First is the
alignment of the seeds generated from the reads (forward and reverse both). The alignment
proceeds in an un-gapped fashion using the space and memory efficiency of full text minute (FM)
index. The alignment yields burrows-wheeler ranges and rows which are prioritized according to
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the ranges (rows from small range given high priority). The rows prioritized are then chosen
randomly by BOWTIE2 and selected row’s offset is resolved (or located) onto the reference
genome using last first mapping property of FM index. First stage can be seen in first 3 steps of the
above figure 2.9. In second stage BOWTIE 2 through dynamic programming perform gapped
alignments accelerated by efficient single-instruction multiple-data (SIMD) parallel processing of
contemporary processors in the flanking neighborhood of the prioritized and resolved seed hits. The
process continues until all seed hits or alignments are examined, or up to the limit of dynamic
programming (Langmead & Salzberg, 2012).

Fixing the deficiency of BOWTIE in BOWTIE 2 by including gapped alignments and improving
speed and number of reads aligned by using dynamic programming, makes bowtie 2 an extremely
accurate and sensitive alignment tool. The alignment draw parallels in terms of data output of
number of reads generated after sequencing. Specific file formats have been assigned or developed

for this purpose which are considered default or close to default when analyzing NGS data.

2.4.3 SAMtools and File formats (SAM/BAM)
There are numerous sequencing platforms available (Mardis, 2013) which produce data in the

formats which may vary accordingly. Generally FASTQ format (Cock et al., 2010) is most common
file format amongst them. Again with different technologies there are different alignment tools for
read mapping again reference genome which produce data in different format making the
downstream process complicated, also it makes work cumbersome if the data is to be compared and
utilized from different sources (Li, H. et al., 2009). Li et al. devised a common format called as
sequence alignment map (SAM) which supports various aligners for storing alignment information
generated, can be converted from other alignment formats generated, compact and supports
different read types like single- , paired- end and their combination which can be handled with
SAMtools software package making downstream analysis streamlined.

SAM stands for sequence alignment map, as the term suggests sequence alignment can be stored
and visualized easily. A generic SAM file which is tab delimited has an optional header section
followed by the alignment of reads section. These read alignments are one per line and each has
mandatory fields which are 11 in number.

QNAME: query name of the read or pairs of reads. (Required for all alignments)
FLAG: a bitwise flag for tagging mate pairs, paired reads, strand etc. (Required for all alignments)
RNAME: reference sequence name. Value “*” if read is not aligned.

POS: leftmost position of the first aligned base (clipped). 1-based i.e. the first base in a reference

sequence has coordinate 1.
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MAPQ: phred based mapping quality describing alignment uniqueness.

CIGAR: a set of characters describing pairwise alignment. (M=match/mismatch, I=Insertion,
D=Deletion, N=bases skipped on the reference, S=soft clipping, H=hard clipping, P=Padding, “=" =
sequence match, X=sequence mismatch).

MPOS: leftmost mate position.

MRNM: mate reference name.

ISIZE: Inferred insert size.

SEQ: Segment sequence on the same strand as the reference.

QUAL.: Query quality which is ASCII of phred base quality.

coor 12345678901234 5678901234567890123456789012345
ref AGCATGTTAGATAA™ *GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

Paired-end > 001+ TTAGATAAAGGATA*CTG
\ roe2+ 2aaAGATAA*GGATA
1003+ £eetaAGCTAA
_— 1 roe4+ ATAGCT TCAGC
uttipar \: roes- HagetTAGGC
reol - CAGCGCCAT
@sQ SN:ref LN:45
Ins & padding | reel 163 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTA *
Softclipping | ree2 o ref 9 30 3S6MIP1I4M * © O AAAAGATAAGGATA .
ree3 @ ref 9 30 SHEM * 9 © AGCTAA * NM:i:1
reeda 0 ref 16 30 6M1415M * © 0 ATAGCTTCAGC *
Hard clipping | ree3 16 ref 29 30 6H5M * @ 0 TAGGC *  NM:i:
ro01 83 ref 37 30 9M = 7 -39 CAGCGCCAT *

Figure 2.10: SAM file format specifications, showing alignment of reads to the reference. (H. Li et al., 2009)

SAM format can store different kinds of alignments which can be seen as different colored in the
figure. Paired read alignments where reads have identical read pair name. In this mapped reads are
stored in two or more alignment lines in the file. Other alignments can be clipped (hard and soft),
spliced, multi-part, padded and alignment in color space (not shown in the figure 2.10). Each
alignment then can be described with set of extended cigar strings. All reads mapped to the
reference are represented on the forward genomic strand.

Parsing is slow in SAM, therefore there is a compressed binary format (BAM) which is generally
used for intensive data processing. Both file formats can be converted into each other, performed

I/O operations and can be manipulated via command line SAMtools. For example viewing, sorting,
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indexing and merging. SAM/BAM files can be sorted according to reference coordinate, query
name or can be left unsorted. Mostly these can only be performed on BAM files sorted by left most
coordinate. Sorting is necessary for stream based processing where alignment operations can be
carried on in a stream without loading each alignment in the memory (H. Li et al., 2009). Indexing
is also necessary which provides a way of quick retrieval of alignments. One of the things to note
here is the removal of duplicate reads is a part of the downstream process which can be handled
with SAMtools. The generic nature of the format separating alignment step from the downstream
process provides a modular approach to NGS data analysis where data can be handled accordingly

to the users need and set of fixed steps can be comprised to make a pipeline for repeated analysis.

2.4.4 Variant Detection with VARSCAN 2
One of the main advantages of high-throughput sequencing is particularly to identify variants in the

genome affecting human diseases (Koboldt et al., 2009). When it comes to cancer studies where the
disease is caused by mutations and variations, deep sequencing of normal-tumor pairs can make it
feasible to detect rare variants, mutations and can provide their allele frequencies (Brockman et al.,
2008) in both individual and pooled samples. Although most of the tools for variant detection are
dependent on single sequencing platform or aligners (Koboldt et al., 2009) very few tools are
available for analysis that are compatible with multiple data and aligner types. SAMtools (Li, H. et
al., 2009) and VARSCAN 2 (Koboldt et al., 2012) fall in that category with some other tools which
can be applied on generic alignment formats like SAM/BAM formats or “SAMtools pileup”, but
SAMtools is not a good option when comes in handling normal-tumor pairs as described by
Pabinger et al., 2013 in their survey of tools for somatic callers as it is only confined in detecting
short INDELs and SNPs with its BCFtools set of commands.

Variant calling for short read alignments is a challenging task. Sophisticated analysis tools are
required for obtaining true variant calls given the error prone data of sequenced short reads
(Shigemizu et al., 2013). High quality of variants is again a critical issue because of the false
positive rates if we are considering whole genomes. In cancer studies generally normal-tumor pairs
are studied for somatic variation as it gives a direct comparison at every position for accurate
mutation detection. Though tumors not only contains somatic mutations but their genomes are
heterogonous (Ding et al., 2010), contains somatically acquired rearrangements (Campbell et al.,
2008) and copy number alterations (Beroukhim et al., 2010) making variant calling even more
challenging. Platform independent VARSCANZ2 here provides a sensitive and specific way of
detecting germline variants in addition to somatic mutations, loss of heterozygosity (LOH) and

somatic CNVs in normal-tumor samples.
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Somatic point mutations have been implicated in oncogenesis long before (Reddy et al., 1982) and
are observed in all the cancer genomes (Stratton et al., 2009), and some of those which are termed
as driver mutations are linked to carcinogenesis and tumor progression (Pleasance et al., 2010).
High quality point mutation detection can be performed by VARSCAN2. As Koboldt et al., 2012
describe, the algorithm reads SAMtools pileup or mpileup files for both normal-tumor samples and
make pairwise comparison of base calls and normalized sequence depth at each position. By default
VARSCAN 2 requires 3x minimum coverage, with base quality of 20 (phred based) (minimum 3
reads with base quality >=20), allele frequency > 8% and P-value < 0.05. Based on these
assumptions the algorithm adopts a heuristic approach for variant detection by determining normal
and tumor genotype independently. VARSCAN?2 categorizes variants called as germline, somatic
and LOH. Mutation detection at each position is performed in several steps. First, minimum
coverage requirement is checked for both the samples and genotype is determined based on the
number of reads observed. If criteria are not met by the variant allele position is referred wild type
(homozygous reference) and most supported variant allele is chosen if multiple variant alleles are
observed. Direct comparison between normal and tumor is performed if one or both samples have a
variant at the position.

When genotypes do not match their read counts are computed by one-tailed “Fisher’s exact test”
(Graham, 1992) in a two by two table as shown below, by comparing number of reference-

Reference supporting Variant supporting
A. Tumor Reads tumor_reads1 tumor_reads2
Normal Reads normal_reads1 normal_reads2
B. Observed Reads total_readsl total_reads2
Expected Reads error_free reads reads_with_error

Table 2.1: 2x2 tables A and B for FET.

supporting reads and variant supporting reads observed in tumor with those of observed in normal.
Fisher’s exact test (FET) of independence is used in cases where we have 2 nominal variables for
each column (2 rows and 2 columns), like in our case with tumor and normal reads in reference and
variant supporting categories. The null hypothesis is the relative proportions of the one variables is
independent to other i.e. ratio of reference supporting reads to variant supporting reads is same for
tumor and normal reads. FET uses hyper-geometric distribution to calculate the probability of the
observed data and also the all data sets with extreme deviations under the null hypothesis. Variant is
called somatic if P-value threshold is met (0.10 by default) and normal matches the reference but
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LOH if the normal is heterozygous. Variant is termed germline if the significant threshold is not
met by a different process using again one sided FET with category B 2x2 table as seen in the table.
VARSCANZ2 provides further filtering of somatic variants into high confidence (HC) and low
confidence (LC) with the command process somatic, where HC somatic mutations should have
variant allele frequency at least 0.1 in tumor sample and less than 0.05 in normal with statistical
significance < 0.07 (Koboldt et al., 2012).

Copy number alterations can also be detected by VARSCAN 2 which applies a different algorithm.
Heuristic genotypic and computing statistical significance by FET are carried out simultaneously to
evaluate normal and tumor samples which make VARSCAN 2 to detect the smallest of significant
differences between them by exploiting the digital nature of NGS data. Though the performance of
VARSCANSZ2 is robust as stated by Koboldt et al., 2012 but the specificity and sensitivity of the
algorithm applied by VARSCAN2 depends on the accuracy of the alignments i.e. performance of

the sequence aligner.

2.4.5 Variant annotation: ANNOVAR
With large number of experiments being conducted generating huge amounts data, many number of

databases have been made or exists which store that data and are some of them are freely available.
For example with 1000 genomes project (Abecasis et al., 2012), not only functional aspects of
genome variation have been categorized but it has also led to advent of many sophisticated tools
and algorithms for data analysis and data mining. Variant identification is not the final step in
revealing the cause for disease like cancer, the prediction of their functional aspects is also crucial.
Several databases are in existence which serve this purpose of annotation such as doSNP for SNPs,
refseq for nucleotides, COSMIC for mutations in cancer and many other similar databases centered
around human genomic variation (Kintzer et al., 2010). As data generated by NGS is huge the
need for automated annotation (prediction) is important. The annotation process then helps to filter
out the variants and prioritize them for further analysis (Pabinger et al., 2013).

There are very less number of methods available that can detect large number of variants (whole
genome) and annotate them simultaneously. Usually sequencers are provided with their own
functional annotation software which is specific to them only. This sequencing platform-specific
nature does not fulfill the needs of the user (Wang et al., 2010). There are many computer aided
annotation tools have been developed, their annotation methods may differ but most of them
provide links to the existing databases for annotation. One of such tools is ANNOVAR.
ANNOVAR (Wang et al., 2010) which stands for annotate variation is a tool developed for up to

date functional annotation of human genome and other genomes from high throughput sequencing
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data so as to examine the functional effect on the genes and to identify variants such as reported in
1000 genomes project or dbSNP. INDEL, block substitution plus CNVs can also be annotated
through it. It is a command line tool which uses external databases (pre-compiled annotated
databases) that can be downloaded locally and used for annotation. Different methods for
annotations are provided in it which are categorized as gene-based, region-based and filter-based
(Pabinger et al., 2013).

ANNOVAR has additional features other than annotation of variants with respect to gene one of
which is the capability to compare variants to existing. It does it by its feature of filter based
annotation where it can evaluate and filter out subsets of variations which are not reported in filter
based database like 1000 genomes (SNPs with >1% frequency) or non-synonymous SNPs with
SIFT scores >0.05 and dbSNP. In other sense only those variants will be identified whose exact
chromosome positions, start and end, and observed alleles are matched. It is helpful in cases where
variations are assumed to be mutations. In gene based annotation it can identify variants in the
disrupted genes or nearby them as reported in whole genome experiments. These are intronic,
exonic, spliced, ncRNA, 3UTR, 5UTR, upstream or downstream TSS (1kb) and intergenic vairants
whose distance with flanking gene is reported. Thus they can help identify variants in nearby
promoter or enhancers though it doesn’t exactly notify variants in areas as functional element of
genome. With region based annotation variants in conserved regions or predicted TFBS can be
annotated with many other annotation tracks (K. Wang et al., 2010).

Chromosome Start End Bef Obs Comments

16 40303427 49303427 C 0T BrozW (NODz)

i 49321279 49321279 - C c.3016_3017inzC (WODz)
13 10661685 19661685 G - z5del3 (FIB2)

1 105293754 105203755 0 ATAAA Block substitution

1 13133880 13133881 TC - 2-bp deletion (rssorro105)

Figure 2.11 Example of the content of an ANNOVAR input file. (Adapted: K. Wang et al., 2010)

ANNOVAR takes a text based file as an input where each line corresponds to a variant which has 5
space or tab delimited columns (chromosome, start position, end position, reference nucleotide(s)
and alternate nucleotide(s)). ANNOVAR package comes with a set of PERL scripts to automate the

procedure which are used in the annotation pipelines, such as conversion of input file to
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ANNOVAR readable file, downloading the relevant database which is important and the annotation

script to perform annotations on selected databases by scanning them (K. Wang et al., 2010).

2.4.6 Peaks Annotation: HOMER

HOMER (Hyper-geometric Optimization of Motif EnRichment) (Heinz et al., 2010) is a command
line tool for motif discovery and analyzing data from NGS. Apart from de novo motif discovery
algorithm and many tools for functional genomic sequencing analysis like ChlP-seq, RNA-seq,
DNase-seq and other data sets, it can also be used to for annotating peaks predicted in ChlP-seq or
DNase-seq experiments. Annotating peaks can help in associating peaks with nearby genes. In
variant analysis to identify variants in regulatory regions (peaks from ChlIP-seq or DNase-seq)
annotating peaks can expand the information base, for example accurate distance of peaks from
TSS or TTS can be predicted. The regions annotated where peak falls include regions like TSS (by
default defined from -1kb to +100bp), TTS (by default defined from -100 bp to +1kb), CDS Exons,
5 UTR Exons, 3' UTR Exons, CpG Islands, Repeats, Introns and Intergenic. CpG Islands and
Repeats are the part of detailed annotation (Homer Software and Data Download).
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3. AIMS

In addition to the achieve research goals the main aims of the study were:

» To understand PCa genomics and develop a pipeline for variant analysis.
» To detect, annotate somatic mutations in non-coding regions of PCa genome and
find their location if they fall in regulatory regions.

> To investigate significance of the genes related to mutations in PCa or other cancers.
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4. Methods
4.1 Data collection

Data obtained for variant analysis was high quality matched normal-tumor complete genomes in
processed BAM files (Single file each normal and tumor sample) from PCa study done by Berger et
al., 2011 “The genomic complexity of primary human PCa”. These were DNA samples from the
blood and the tumors of human male participants (7 samples in total) sequenced to approximately
30x haploid coverage on an Illumina GA Il sequencer which were put to the processing pipeline and

aligned to the reference(hgl18, UCSC genome assembly) (Berger et al., 2011).

Sample SRA Identifier Age PathologicalStage FusionStatus TumorPurity

(S1)PR-0508 Normal-SRS165685 57 T2c Negative 73%
Tumor SRS165686

(S2)PR-0581 Normal-SRS165687 69 T3b TMPRSS2-ERG 60 %
Tumor SRS165688

(S3)PR-1701 Normal-SRS165689 62 T3a TMPRSS2-ERG 49 %
Tumor SRS165690

(S4)PR-1783 Normal-SRS165691 66 T2 Negative 75 %
Tumor SRS165692

(S5)PR-2832 Normal-SRS165693 66 T2¢ TMPRSS2-ERG 59 %
Tumor SRS165694

(S6)PR-3027 Normal-SRS165695 66 T3b Negative 74 %
Tumor SRS165696

(S7)PR-3043 Normal-SRS165697 69 T2c Negative 68 %
Tumor SRS165698

Table 4.1: Clinical Characteristics of 7 PCa Genomes. (Berger et al., 2011)

To determine if variants are located in regulatory regions, open chromatin data by DNasel HS from
ENCODE/OpenChrom(Duke University) was used. Open chromatin regions are highly sensitive to
DNasel enzyme and its activity is used to map general chromatin accessibility and DNasel
"hypersensitivity" is a feature of active cis-regulatory sequences. Functional regulatory elements or
Peaks obtained (DNasel hypersensitive sites) in data were isolated using methods called DNase-seq
or DNase-chip (Song and Crawford, 2010; Boyle et al., 2008; Crawford et al., 2006). Sample cells
for cell lines (LNCaP) were digested with DNasel and then DNase digested ends are captured
which was sequenced using lllumina (Solexa) sequencing. After additional verification step reads
were aligned to reference genome using BWA (Li et al., 2009) for the GRCh37 (hgl9) assembly.
The tracks thus obtained represent DNasel sensitivity as a continuous function using sequencing tag
density (Raw Signal) and discrete loci of DNasel sensitive zones (HotSpots) and hypersensitive
sites (Peaks). “Peaks” are the regions of enriched signal in the DNase HS experiment. Peaks were
called based on signals created using F-Seq (Boyle et al., 2008b). ENCODE consortium with
Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) and ChIP-seq experiments have
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collected locations of active regulatory elements identified as open chromatin regions for many cell
types which were used to validate the assay delineating areas of open chromatin. The format of the
peak data or tracks can be seen in the table below.

field example | description
bin 589 Indexing field to speed chromosome range queries.
chrom chrl Reference sequence chromosome or scaffold

chromStart | 526518 | Start position in chromosome

chromEnd | 526780 | End position in chromosome

name chrl.l Name given to a region (preferably unique).
score 593 Indicates how dark the peak will be displayed in the browser (0-1000)
strand + or - or . for unknown

signalValu | 0.0555 | Measurement of average enrichment for the region
e

pValue 2.23 Statistical significance of signal value (-log10). Set to -1 if not used.

gValue -1 Statistical significance with multiple-test correction applied (FDR -log10). Set to -1
if not used.

peak 126 Point-source called for this peak; 0-based offset from chromStart. Set to -1 if no

point-source called.

Table 4.2: Sample Schema for Duke DNasel HS - Open Chromatin by DNasel HS from ENCODE/OpenChrom(Duke
University). In BED format.

Using UCSC table browser uniform tracks for DNasel HS for LNCaP cell lines in the form of two
files was downloaded. The data was for LNCaP cell line (Horoszewicz et al., 1983) with and
without androgen induced which was then combined to form a single BED (UCSC BED format)
file.

4.2 Data Analysis: Variant analysis by whole genome sequencing

A pipeline was setup using different tools and utilities on a pilot data for chromosome 21 which was
then used to upscale analysis on all seven samples. A variant detection pipeline follows a typical
workflow but tools may vary according to needs. After sequencing at a specific platform reads were
assessed for quality and aligned, in the case of current study reads were obtained pre-aligned where
reads were already processed with manufacturer’s (sequencing platform) software and through
PICARD pipeline a single BAM file for each sample was produced (Berger et al., 2011). Our
pipeline was imposed on these BAM files where steps involved are reads filtering and extraction
with BamuUtil, realignment to reference (hgl9) with BOWTIE2, conversion from BAM files to
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pileups for variant detection through SAMtools, variant detection with VARSCANZ2, variant
annotation with ANNOVAR and finally determining variants in regulatory region using DNasel HS
data with annotating peaks hit with HOMER for further accuracy. In addition peaks (Overlapping
variants) were further sought for predicted TFBS using ENCODE ChlIP-seq data (TFBS Track,
ENCODE).

Lab
Y
NGS Platform

lllumina, SOLID, 454, ..

¥

Quality Assessment
Trimming, Filtering, ...

Y
Read Alignment

Reference Genome

Pipelines

Prioritization / Filtering

Y

Lab

Figure 4.1: Basic steps in whole genome seAquencing studies. (Adapted: Pabinger et al., 2013)

4.2.1 Reads extraction from BAM file
As sequenced reads in BAM file obtained were aligned to hgl8 (UCSC genome assembly) the reads

first have to be extracted before realignment to the newer version hgl9. BamuUtil, a repository
containing several programs to perform operations on SAM/BAM file, was used for extraction of
reads from pre-aligned BAM files. Reads were extracted via bam2Fastq utility of BamUtil as both
paired and unpaired reads (single end) also with unmapped reads were extracted in two different
files. Before extracting, reads were filtered to remove low quality and duplicated reads by using
dedup utility of BamUtil with phred based quality score of 20 (g20). BamUtil was preferred over
SAMtools and PICARD for extracting reads due to its feature of producing mapped paired and
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unpaired reads separately in single run, also the ability to handle mates on different chromosomes

which Picard specially does not handle (BamUtil, Abecasis Group).

4.2.2 Reads re-alignment
Filtered reads paired and unpaired (single end plus unmapped) in FASTQ format (Cock et al.,

2010) were aligned to newer reference genome build hgl9 using BOWTIE2. Alignment was done
separately for the two different files i.e. paired and unpaired reads. Default parameters were used
and resulting output was piped to SAMtools (Li, H. et al., 2009) to get a sorted BAM file each for

paired and unpaired reads.

4.2.3 Sequence alignment and file operations
SAM/BAM format is most common file formats for downstream sequencing analysis. Most of the

file processing and operation were carried out by program SAMtools (Li, H. et al., 2009). SAMtool
view-, sort- and index- option were used for conversion for SAM/BAM files, sorting and indexing
respectively. To get alignment statistics option flagstat- was used on BAM files. In end to get
normal and tumor files per sample as an input for variant detection SAMtool merge- option was
utilized to merge the sorted paired and unpaired BAM files resulted after alignement BOWTIE2
which was then piped to another SAMtool option mpileup- to get normal and tumor pileups ready

for variant detection.

4.2.4 Variant Detection
To detect somatic variation between obtained normal and tumor samples, VARSCAN2 program

was utilized (Koboldt et al., 2012). The program has an outstanding feature of producing variants
with high confidence. After getting normal tumor pileups, each sample pair in pileups was fed to
VARSCAN 2 somatic- command to get variant output in different files according to somatic status
to report germline, somatic, and LOH events at positions where both normal and tumor samples
have sufficient coverage (default is 8) as stated in VarScan user’s manual. Options --strand-filer and
--output-vcf were set to 1 to remove variants with strand bias > 90% and variant file in vcf format
which is a general format to store gene sequence variations. Other options were left to default. To
remove clusters of false positives and SNV calls near indels somaticFilter- command was used with
-min-avg-qual option 30 (phred base minimum average base quality for variant supporting reads)
on somatic mutation file (VarScan User's Manual). Finally isolating somatic mutations by type and
confidence the command processSomatic was utilized to yield low and high confidence mutations

ready for annotation (VarScan: variant detection in massively parallel sequencing data).
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4.2.5 Variant Annotation
Variants were annotated based using program ANNOVAR (Wang et. al. 2010). Files first were

converted to ANNOVAR readable files by convert2annovar.pl perl script in ANNOVAR package.
Finally gene based and filer based annotations were simultaneously carried out using
table_annovar.pl script. The database utilized were refGene, 1000g2012apr_all, snp137, cosmic65
and esp6500_all, only refGene being the only gene base and rest filter based. Databases where
initially downloaded using annotate_variation.pl and -downdb option for hg19 build.

4.2.6 Peak detection and mutation filtering
Peaks or DNasel HS sites obtained as tracks from Open Chromatin by DNasel HS from

ENCODE/OpenChrom(Duke University) for LNCaP cell lines with both androgen induced and
without it were combined to get a single peak file. Peaks or chromosome intervals were searched if
mutations fall in them. Mutation filtering according to their annotation and all other operations for

producing relevant results were performed with R scripts.

4.2.7 Peaks Annotation with HOMER
Finally after getting hits for mutations falling in peaks, peaks were annotated using HOMER

software’s annotatePeaks.pl perl script for better accuracy of finding promoter or enhancer regions
of candidate genes.
The candidate genes determined with mutations in their promoter and enhancer regions were then

searched extensively in published literature and selected relevantly as final results of the study.

4.2.8 ldentifying TFBS
TFBS clusters (V3) from ENCODE ChIP-seq experiments for 161 transcription factors were

downloaded to identify variants detected (in overlapping peaks) in previous steps which are also
TFBSs (TFBS Track, ENCODE).
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5. Results

Berger et al., 2011 have reported in their study mutations in the gene SPOP and SPTAL in 2/7
samples. In accordance with the finding we have also detected mutations in 2/7 samples for SPOP
and SPTA1 (only 1 sample for SPTAL) delineating the pipeline and variant analysis of the current
study to be appropriate.

Sample chromosome position reference | alternate gene mutation type
S1(PR-0508) chrl7 47696426 A C SPOP non-synonymous
S7(PR-3043) chrl7 47696643 A C SPOP non-synonymous
S7(PR-3043) chrl 158605757 C T SPTAL non-synonymous

Table 5.1: Mutations detected in SPOP and SPTAL in accordance with reported in Berger et al., 2011.

After filtering the SNVs and their annotation a total of 54679 SNVs were detected across 7 samples
with mean of 7811 SNVs. With respect to refSeq gene annotations following are the described

mutational landscape across 7 samples.

refSeq S1 S2 S3 S4 s5 s6 s7
Annotations (PR0508) (PR0581) (PR1701) | (PR1783) | (PR2832) | (PR3027) | (PR3043)
downstream 57 51 44 44 48 39 27
exonic 36 85 49 44 30 51 30
intergenic 5550 8881 4725 5319 5059 4315 5051
intronic 1635 2222 1612 2177 1805 1562 1286
ncRNA-exonic 24 47 26 15 20 26 13
ncRNA-intronic 323 485 301 268 245 254 256
upstream 26 68 43 37 41 30 21
upstream/ 3 0 1 1 1 0 0
downstream
ncRNA_UTR3 0 0 0 1 1 0
splicing 0 1 0 0 0
UTR3 35 57 35 31 33 27 25
UTR5 2 7 3 2 6 1 2

Table 5.2: Mutational Landscape across 7 samples. Mutations annotated both “upstream/downstream” were flanked by
two genes whereas upstream and downstream regions are within 1 kb region from TSS and TTS respectively
and mutation annotated "splicing” is variant that is within 2-bp away from an exon/intron boundary by
default. (ANNOVAR, refSeq output).

5.1 Mutations in Promoters/Near Promoter regions

A total of 31SNVs were detected and filtered out in promoter regions (regions overlapping DNasel
HS sites within 1000 bp upstream of TSS or TTS) across all samples. SNVs were filtered according
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to annotations done with ANNOVAR and HOMER which also includes mutations in introns, UTR,
and TTS.

A table describing SNVs near promoter regions overlapping DNasel HSs is shown below where
distance to TSS is negative for upstream SNV and positive for downstream. Only 4 out of them

were found relevant in literature as most of them are related to pseudogenes and RNAs.

Chromosome | Distance to TSS Gene Name Gene Type Position ref | alt TFs
TCF7L2
_ HDACS
chrl -695 ALDH4A1 protein- 19229941 | G | C | GATA2
51 coding GATA3
FOXA1
chr9 -73 LOC100132352 pseudo 68726487 G A
chr3 -132 LOC401074 miscRNA 75721264 C T
chr3 -132 LOC401074 miscRNA 75721270 C A
chr3 -132 LOC401074 miscRNA 75721366 C T
chrb -911 MIR4461 miscRNA 134262767 T C
S2 chrb -911 MIR4461 miscRNA 134262778 | C T
chr7 -144 PRSS1 protein-coding | 142457244 T C
chr9 -585 LOC642236 pseudo 68454897 C G
chr9 -585 LOC642236 pseudo 68454907 G A
chrll -74 RAB30 protein-coding | 82782850 C T
chrl7 27 ZNF286A protein-coding | 15602950 G T
chr3 -201 FLJ20518 pseudo 75713238 C A
chr3 -201 FLJ20518 pseudo 75713241 A G
chr3 -201 FLJ20518 pseudo 75713264 G T
S3 chr5 4 GFM2 protein-coding | 74062991 C A
chr9 -73 LOC100132352 pseudo 68726463 C G
chrl2 -904 RPAP3 protein-coding | 48100700 G C
chrl7 96 LOC100130581 miscRNA 41466073 T C
chrl 465 CREB3L4 Tg’;?r'lg' 153941196 | T | G | MYC
chrl7 -438 KCNJ18 protein-coding | 21307973 G A
s4 chr2 -399 TIAL protein-coding | 70476210 C A
chr2 -38 ANKRD30BL pseudo 133015653 | G A
chr8 -132 RP1 protein-coding | 55528477 G A
chr2 282 ANKRD30BL pseudo 133015252 | G A
chr3 -245 ZNF717 protein-coding | 75834451 C G
S5 chr8 40 SLA protein-coding | 134115205 Cc G
chr9 -333 LINC00094 miscRNA 136890317 | C A
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S6

chrll

-352

MTRNR2L8

protein-coding

10531001

chrl?

-681

ACACA

protein-
coding

35716787

POLR2A
MAX
E2F1

KDM5B
E2F6
REST
CBX3

S7

chr2

682

CAD

protein-
coding

27440974

POLR2A
CTCF
TBP
MAX
USF2

Table 5.3: SNVs in promoters or near promoter regions overlapping with DNasel HSs. Only 4 SNVs shown in red are
found relevant in literature. In the table SNVs are described with Chromosome, distance to TSS, respective
gene, its type, SNV position, reference nucleotide, alternate nucleotide and in the final column TFs

found binding at that location

5.2 Distal SNVs
A total of 621 distal SNVs were found overlapping the DNase peaks across all the samples. These

SNVs were detected both upstream and downstream within 1Mb distance from the respective genes.

Only those SNVs were selected which are found relevant in literature and filtered according to

annotations by ANNOVAR and HOMER, for example pseudogenes and non-protein coding RNAs

were not considered. These were 21 in total across all samples.

Chromosome | Distance to TSS | Gene Name Gene Type Position ref alt TFs
EP300
ZNF217
chrl4 -22644 GPR68 rotein-codin 91742928 C A MyC
s1 P g FOXAL
RXRA
ESR1
chrl7 -10155 NCOR1 protein-coding 16108182 A T
ARIDA
. . GATA3
S2 chrll 51557 ARHGEF12 | protein-coding | 120259203 T C FOXA1L
FOXA2
s3 chr7 -11426 NRCAM | protein-coding | 107892079 | G | A
chrll 9627 FOLH1 protein-coding 49220622 G A
<4 chrl3 66179 CDK8 protein-coding 26895001 C A
chr2l 34593 BTG3 protein-coding 18950621 G T
chr21 16128 SON protein-coding 34931410 T G ZKSCAN1
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GATA3
ARID3A
chr6 76542 MYB | protein-coding | 135578967 | G | T g,\TACég
RAD21
chr7 16421 PDGFA protein-coding 543104 C T
chr8 406490 POTEA protein-coding 43554102 G A
chr8 -17405 MTSS1 protein-coding | 125758202 C T
chrl 24929 HSD3B1 protein-coding | 120074796 G T
chrb -328520 IRX4 protein-coding 2211334 T C
S5 chrl0 112114 MGMT protein-coding | 131377630 C G E2F1
chrll 6789 TP53AIP1 | protein-coding | 128800871 T G
chr2l 3744 TMPRSS2 | protein-coding 42876172 C G
s6 chrl7 21446 IGF2BP1 | protein-coding 47096228 T G ZNF263
chr5 -4123 DOCK2 protein-coding | 169060126
chrl7 -56982 DLX4 protein-coding 47989648 G A
CTCF
S7 chr3 148694 CHL1 protein-coding 510059 A T Zsl\lh;é?
RAD21

Table 5.4: Relevant SNVs in Enhancer regions. In the table SNVs are described with Chromosome, distance to TSS,
respective gene, its type, SNV position, reference nucleotide, alternate nucleotide and in the final column
TFs found binding at that location.
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6. Discussion

Somatic mutations in noncoding regions of the genome may relate to tumorigenesis. This
hypothesis was supported by two separate studies by Horn et al., 2013 and Huang et al., 2013 as in
their findings somatic mutations were reported to be occurring in TERT promoters in human
melanoma elevating the transcriptional activity. In the current study conducted we have also tried to
identify non-coding mutations in published WGS data and found mutations in promoter and
enhancer regions of genes somehow relevant in PCa or related to genes significant in PCa. Most of
the research work till now is or has been carried out in protein coding genome due to cost of WGS
or because there is certain level of difficulty in interpreting non-coding mutations. But with large
projects like ENCODE which has accumulated large amounts of data sets and annotated most of the
non-coding genome which is freely available has made it easier to understand functions of elements
in non-coding genome. Though this search in non-coding genome can be divided into many regions
of interest like chromatin structures, conserved, epigenetic, regulatory etc. we have tried to cover
the regulatory aspects of PCa genome. We believe findings of the study may prove significant in
PCa. Mutations distances from the genes were carefully selected to categorize them (< 1kb for
promoters and < 1MB for enhancers). We have also included the mutations in introns as DNasel
HSs were also detected engulfing them which implicate they may play role in regulation of the
respective gene. Annotations of peaks containing mutations were done by HOMER as it annotate
peaks with distance from TSS or TTS of the gene which is important in our case in categorizing and
selecting relevant mutations. After carefully filtering SNVs, their genes were then looked in
published literature which may implicate their role in PCa and as we report significant mutations

have emerged.

6.1 Mutations in Promoters/near Promoter regions
A total of four genes relevant to our study were identified across four different samples whose

promoters or downstream regulatory (intronic) regions were found to be mutated. ALDH4A1 and
ACACA were two genes having mutation in promoter region (in samples S1 and S6 respectively)
whereas CREB3L4 and CAD were mutated in their intron (in samples S4 and S7 respectively)
which may act as a region of downstream regulation. ALDH4Al1 or ALDH4 (aldehyde
dehydrogenase 4 family, member Al) has been reported by researchers as a direct target of p53
which prevents cell damage through transcriptional activation of ALDH4 (Yoon et al., 2004).
Though binding site for p53 have been shown to occur at intron 1 of ALDH4, it is unclear how

promoter mutation can affect ALDH4 functioning. Interestingly, HDAC8 and FOXA1 TFs were
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found to have binding site in that region of somatic mutation. HDACS inhibition has been shown to
suppress both wild type and mutant p53 transcription (W. Yan et al., 2013) citing an anti-cancer
property of HDAC inhibitors. Various classes of HDACs were seen related to PCa progression
(Abbas & Gupta, 2008) but specific role for HDACS is unclear. FOXAL1 on other hand is well
known factor and plays as crucial role PCa progression (Jin et al., 2013) and (Imamura et al., 2012).
Another gene ACACA or ACCA (acetyl-CoA carboxylase alpha) was detected with a somatic
mutation in its upstream promoter region. ACCA has been shown by researchers as a BRCAL
associated protein which interacts specifically with BRCAL by its tandem of BRCT domain which is
crucial for BRCA1 function (Magnard et al., 2002). BRCAL has been identified as tumor suppressor
in PCa as reported by (Rosen et al., 2001) and risk of PCa is higher for individual carrying mutated
(germline) BRCAL. ACCA as fatty acid synthase (FAS) have been shown to have increased
expression in PCa which is known to occur in early phase of PCa development (Swinnen et al.,
2002). ACCA knock down has also been reported by researchers in inhibiting LNCaP cell
proliferation (Brusselmans et al., 2005). One of the hypotheses that can be generated by the given
facts this somatic mutation in ACCA promoter may play a significant role in overexpression of the
respective gene in PCa or its deregulation resulting in loss of interaction with BRCA1 which is
known to be conserved in humans (Magnard et al., 2002) but then role of BRCAL in PCa could be
point of discussion.

Other somatic mutations which fall in DNasel HS were in the introns of genes CREB3L4 and CAD
in sample S4 and S7 respectively. CREB3L4 gene which encodes a CREB (CAMP responsive
element binding) protein also known by its homolog AIbZIP, has been shown to be expressed at
higher levels in PCa. As it is androgen regulated AIbZIP may have a significant role in PCa and AR
signaling as stated by Qi et al., 2002. Another somatic mutation of this type was seen in CAD 682bp
downstream from TSS. CAD was identified to be one of the partners of AR to which it interacts in
PCa and was shown to assist AR translocation in the nucleus and its transcription stimulation
(Morin et al., 2012).

Interestingly all the somatic mutations described above were seen in the samples which are
TPRSS2-ERG fusion negative and two of them in same chromosome (chromosome 1, Table 4) but
in different samples. For most of the somatic mutation TFs were identified related to the mutated
sites but it is a difficult task to accurately predict the actual binding sequence of the TFs at that site.
Therefore it is unclear how all these factors combine to characterize these promoter somatic

mutations as driver mutations.

45



6.2 Mutations in Enhancer regions

In distal DNasel HSs detected containing somatic mutations, out of 621 SNVs only 21 SNVs were
selected on the basis of relevant literature which may prove significant in PCa. Out of 7 samples
sample S4 (PR1783) was found to have most number of distal SNVs or enhancer SNVs. Enhancer
SNVs were located both upstream and downstream of their respective gene ( see Table 5). None of
the samples were seen to have common mutation/s in the DNasel HSs detected. This fact somehow
slightly weakens the credibility of the results but the mutations and related genes the enhancer site
cannot be neglected which have been seen related to PCa in literature. Though none of samples
were found to harbor same mutations but chromosomes 11, 17 and 21 were found be mutated on
maximum occasions (3 times) each across different samples, only chromosome 21 was mutated
twice in S4 (PR1783).

Samples S2 (PR0581), S4 (PR1783) and S5 (PR2832) harbored mutations in chromosome 11
enhancers of genes ARHGEF12, FOLH1 and TP53AIP1 respectively. ARHGEF12 has been
reported by Robbins et al., 2011 harboring a candidate somatic mutation in their study of metastatic
prostate tumors which among other candidate mutations reported may contribute to lethal PCa.
ARHGEF12 (also known as LARG- leukemia-associated Rho guanine-nucleotide exchange factor)
has also been reported as a candidate tumor suppressor gene by Ong et al., 2009 in human breast
and colorectal cancer. The mutation or any change in expression of ARHGEF12 may have an effect
in PCa. FOLH1 also known as GCPII and PSM, when expressed as prostate-specific membrane
antigen (PSMA) and folate hydrolase (FOLH1) has been shown to be related to breast and PCa risk
(Divyya et al., 2013). PSMA overexpression in PCa has been used for targeted therapy (Cao et al.,
2007). In addition PSM-E which is a spliced variant of PSMA, has been shown in a research study
that could suppress proliferation, migration and invasiveness of PCa cells (Cao et al., 2012).
Another gene TP53AIP1 (tumor protein p53 regulated apoptosis inducing protein 1) has been
associated in p53 signaling pathway which is one of most commonly disrupted pathways in PCa
(Osman et al., 1999). The literature findings supporting the significance of mutations may be just
implicate or create a hypothesis but give a certain evidence to proceed in another direction to
understand PCa genomics. Furthermore, samples S1(PR0508), S6(PR3027) and S7(PR3043)
harbored mutations in chromosome 17 in enhancers of genes NCOR1, IGF2BP1 and DLX4
respectively. NCOR1 when phosphorylated (PKA-dependent) act as a suppressor of a
transcriptional activity of AR in PCa (Choi et al., 2013). Thus negative regulation of NCOR1 will
affect the transcriptional activity of AR in opposite fashion i.e. de-repression. PTEN has been found

mutated by many research studies and its effect in progression of PCa, the gene IGF2BP1 was
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reported to enhance the PTEN expression in a study by Stohr et al., 2012. Thus IGF2BP1 can
indirectly affect PCa. DLX4 gene which is widely expressed in many cancers including PCa was
reported in a study to promote epithelial to mesenchymal transition of cancer cells, cancer
migration, invasion and metastasis (Zhang et al., 2012). The mechanism and pathways involved is
unclear. It can be seen clearly that each gene could affect in a certain way directly or indirectly
which may have an effect in PCa. In chromosome 21 where the significant fusion between
TMPRSS2-ERG genes occurs harbored 3 enhancer mutation across samples S4 (PR1783) and S5
(PR2832). Two mutations in same sample S4 and other one in S5 which is also a fusion positive as
seen in table 4.1. Two genes in S4 whose enhancers contain a mutation were BTG3 and SON. SON
is a MAPK modulated gene which has been seen to play major role in the proliferation, survival,
and tumorigenicity of pancreatic cancer cells (Furukawa et al., 2012). “Signal transduction via
mitogen activated protein (MAP) kinases plays a key role in a variety of cellular responses,
including proliferation, differentiation, and cell death” (Maroni et al., 2004). Study done by
Mukherjee et al., 2011 have shown that MAP kinase (MAPK) pathway may promote development
of castrate-resistant PCa (CRPC). On the contrary MAPK/ERK activation inhibits PCa cell
proliferation (Moro et al., 2007). As MAPKSs regulate diverse cellular programs, the role of the
MAPK-associated SON in PCa is not evident yet. “B-cell translocation gene 3 (BTG3) is a member
of the BTG family which inhibits cell proliferation, metastasis, and angiogenesis, and also regulates
cell-cycle progression and differentiation in a variety of cell types” (Deng et al., 2013). In many
cancer types like renal cancer, breast cancer, ovarian cancer and lung cancer decreased expression,
down-regulation, epigenetic silencing or inactivation (which inhibits its tumor suppressing
property) of the gene has been related to carcinogenesis and subsequent progression of cancer
(Chen et al., 2013; Deng et al., 2013; Majid et al., 2009; Jingwei Yu et al., 2008). In sample S5 the
gene central to PCa TMPRSS2 had a mutation in its enhancer region. Interesting fact is that the
tumor sample is also TMPRSS2-ERG fusion positive. This fusion has been discussed elaborately in
previous sections.

Chromosomes chr5, chr7 and chr8 were seen to harbor mutations on two occasions across different
samples. Chr5 mutation was seen in S5 (PR2832) and S6 (PR3027) in enhancers of genes IRX4 and
DOCK?2 respectively. Similarly Chr7 mutation was seen in S3 (NRCAM gene) and S4 (PDGFA
gene) while Chr8 enhancer was mutation twice in S4 (genes MTSS1 and POTEA). IRX4 is
expressed in prostate cells and its expression is related to tumor suppressive effect in PCa (Nguyen
et al., 2012). El-Haibi et al., 2011 found a positive role for dedicator of cytokinesis 2 (DOCK2) in

PCa growth. Neuron-glia-related cell-adhesion molecule (NRCAM) is frequently expressed in PCa,
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and a recent study by Tsourlakis et al., 2013 conclude association of high NRCAM expression with
favorable tumor phenotype and reduced risk of prostate specific antigen recurrence. PDGF has been
reported to assist tumor progression through PI3K pathway activation in a study by Werth et al.,
2008. Metastasis suppressor 1 (MTSS1) or MIM as the name suggest has anti-metastatic properties
which was shown in breast and bladder cancer by Parr & Jiang, 2009 and Lee et al., 2002
respectively. The role of before-mentioned gene still is not evident in PCa. POTE ankyrin domain
family member A is a member of POTE gene family which is selectively expressed in prostate,
testis, ovary, and placenta, as well as in PCa (Bera et al., 2002). Though its expression is observed
in LNCAP PCa cell lines and some PCas the expression is almost undetectable in normal essential
tissues.

Some mutations were also observed occurring in the respective chromosome just once in different
samples. GPR68 (also known as Ovarian cancer G protein-coupled receptor 1, OGR1) in sample S1
in chrl4 was revealed as metastasis suppressor gene like MTSS21 in PCa (Singh et al., 2007; Yan et
al., 2014). In sample S4 where most number of mutations were seen Chr6 and Chrl3 harbored
enhancer mutation in MYB and CDK8 genes. MYB in a study by Srivastava et al., 2012 showed its
overexpression resulting in PCa cells malignancy and its role in castration resistance. The
upregulation was many folds in castration-resistant cells as compared with androgen-dependent
(LNCaP) cells. Gu et al., 2013 in their research show oncogenic (melanoma and colorectal cancers)
CDKS8 in a contrasting role as a tumor-suppressor gene in endometrial cancers. In other study Adler
et al., 2012 state role of CDK8 in tumor growth and maintenance of tumor dedifferentiation. The
role of CDKS8 in PCa is still to be elucidated. “The MGMT gene is an important DNA repair gene
and plays a central role in the pathogenesis of cancer” (Du et al., 2013). In their study Du et al.,
2013 have reported polymorphic factors in MGMT gene associated with cancer risk. Leu84Phe
polymorphism was shown to be associated with increased risk of PCa with other types of cancers
also. This gene was detected in sample S5 of the current study in enhancer of Chr10. Another
mutation in the same sample was seen in Chrl related to HSD3B1 gene. 3B-hydroxysteroid
dehydrogenase type 1 was reported to have gain of function resulting from mutation in CRPC
which catalyzes conversion of the adrenal-derived steroid dehydroepiandrosterone to DHT. PCa
growth is dependent on androgen stimulation, and DHT is one the most potent androgen. HSD3B1
gene provides an alternate mechanism for DHT synthesis (Chang et al., 2013). CHL1 gene
promotes cancer development (Senchenko et al., 2011). A mutation related to CHL1 was detected
in sample S7 in Chr3 in our study. Region where gene is located on Ch3 was shown to have PCa

susceptibility in Finnish PCa families (Rokman et al., 2005).
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The results we have discussed to a certain extent imply that direction of research in which we have
proceeded is still unexplored and there is need to further look into the role of the mutations for their
exact role in the PCa. We believe the research has contributed to some extent to at least attract some
attention in the role of regulatory regions in PCa but there is need for more dedicated and exclusive
research in this aspect of PCa.
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7. Conclusion

As the cost of sequencing has considerably decreased which has been the case for past few years,
PCa genomics which was concentrated only to exomes in various studies has now expanded to
whole genomes. Though sequencing was achievable of whole genomes, interpreting mutation in
vast non-coding genome was still not trivial. In this study we have made an effort to expand and
explore biological insights of PCa as described by Berger et al., 2011 and shifted the objective to
interpreting and analyzing mutations in coding region to non-coding region. With justification of
participation of non-coding region in cellular machinery as supported by various published studies
we have achieved to some extent in our objective in focusing and analyzing mutations in regulatory
regions of PCa genome. Satisfactory results were produced through our pipeline of selectively
chosen independent tools which formed the base of our analysis. Though tools were selected
according to their performances and external data utilized was generic (DNase HS was not from the
samples utilized in the study) it is difficult to conclude that the pipeline was optimal but accuracy
and precision of mutation detection or whole analysis could give much improved results if different
approach is followed in selecting tools and their utilization. This can only be possible through
experience. Mutations observed support our hypothesis but there is further need for specific analysis
of each significant mutation and its validation. No direct evidence was found in the literature
relating mutations to PCa but indirectly satisfactory information have been found in already
published literature about the genes linked to the mutations reflecting their role in PCa. In addition
if expression profile of those genes could be mapped the overall picture will become much clear if
suspected genes are showing aberrant expression, but for further validation of suspected mutations
further expansion of work may be needed which will encompass the molecular biology involving
TFs and their binding sites. PCa has such complex genomics of having subtypes characterized by
type specific aberrations and in addition more complications resulting during the course of disease,
our research is a minute step to attract the attention towards our hypothesis but there is need for
more specific work (region based) to be done and with novel statistical techniques and bigger

sample size it may result in further expansion of understanding about PCa.
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