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Developmental Precursors of Social Brain Networks: The
Emergence of Attentional and Cortical Sensitivity to
Facial Expressions in 5 to 7 Months Old Infants
Santeri Yrttiaho*, Linda Forssman, Jussi Kaatiala, Jukka M. Leppänen

Tampere Center for Child Health Research, School of Medicine, University of Tampere, Tampere, Finland

Abstract

Biases in attention towards facial cues during infancy may have an important role in the development of social brain
networks. The current study used a longitudinal design to examine the stability of infants’ attentional biases towards facial
expressions and to elucidate how these biases relate to emerging cortical sensitivity to facial expressions. Event-related
potential (ERP) and attention disengagement data were acquired in response to the presentation of fearful, happy, neutral,
and phase-scrambled face stimuli from the same infants at 5 and 7 months of age. The tendency to disengage from faces
was highly consistent across both ages. However, the modulation of this behavior by fearful facial expressions was
uncorrelated between 5 and 7 months. In the ERP data, fear-sensitive activity was observed over posterior scalp regions,
starting at the latency of the N290 wave. The scalp distribution of this sensitivity to fear in ERPs was dissociable from the
topography of face-sensitive modulation within the same latency range. While attentional bias scores were independent of
co-registered ERPs, attention bias towards fearful faces at 5 months of age predicted the fear-sensitivity in ERPs at 7 months
of age. The current results suggest that the attention bias towards fear could be involved in the developmental tuning of
cortical networks for social signals of emotion.
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Introduction

While the social skills of an individual reach their full capacity

after years of development, critical phases of this development may

occur already during the first year of life. Therefore, the

identification of the precursors of social cognition in infants is

important. Several studies suggest connections between the key

nodes of the emotional and social brain networks [1], especially

the amygdala, and cortical face processing circuitry [2], [3]. Thus,

studying the emergence of cortical face sensitivity in infants may

provide a critical window on the ontogeny of social cognition.

Behavioral observation of infant visual attention points to an

extremely early onset of face processing abilities. Already newborn

babies prefer faces or face-like stimuli over non-facial objects [4],

[5] and discriminate between different facial expressions [6]. By 3

months of age, infants acquire a more specialized preference for

smiling happy faces [7], and a categorical discrimination between

some facial expressions by the age of 5 months [8]. Rather than a

monotonic improvement, the acquisition of face expertise may

consist of transient sensitive periods for the development of

particular capabilities. Sensitive periods or ‘‘experience-expectant’’

mechanisms [9] could underlie the momentary waning of face

preference towards the second month [5]. The preference for

smiling faces at 3 months, likewise, changes into bias towards

fearful faces by the age of 5 to 7 months [10–12]. Such early biases

in attention towards facial cues have been suggested to have an

important role in canalizing the development of social brain

networks [13].

The development of face-selective neural populations in infants

has been targeted predominantly by studies using electroenceph-

alography (EEG) and less frequently by other modalities of

neuroimaging. The earliest signs of face-sensitive cortical activity

in infancy have been observed in positron emission imaging of

fusiform face areas (FFA) already at 2 months of age [14] and by

event-related potentials (ERPs) from the age of 3 months [15]. The

face-selective N170 response [16] generated in adult FFA [17],

[18] is developmentally preceded by the N290 and P400 responses

[15], [19]. Despite early face-effects in the N290, the correspon-

dence to the adult N170 remains incomplete during the first year

of life. For instance, the inversion effect, or ERP-sensitivity to the

orientation of face stimuli [20], [21] is not reached until 6 months

of age in the P400 [22]. In N290, the effect of face-inversion has

been found by the age of 3 months [23], although contrasting

results [19] suggesting a delayed onset of this effect, have been

reported. Sensitivity of infant ERPs to distinct facial expressions,

absent at 3 months in fearful vs. neutral contrast, emerges by the

age of 6 months [24]. The effects of facial expression on infant

ERP components such as N290, P400, and the Negative central

(Nc) have been documented at ages of 7 and 9 months [24–30].

The relationship between the N170, as an index of cortical

activity related to the structural encoding of faces [16], [31] and

the modulation of ERPs by emotional content of facial expressions
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remains to be clarified. While the effects of facial expressions on

ERPs in the N170 latency range have been suggested to indicate

emotional modulation of face-specific activity [27], [32], Rellecke

et al. [33] have recently argued for the independence between the

face-related activity and the coincident emotion-related ERPs in

adults. Whether the modularity of face- and emotion-sensitive

cortical processes is present already during infancy, or develops

later on, has not been established. Interestingly, unlike in the adult

N170 [34], the amplitude of the 4-month-old infant’s N290 is

larger for faces with direct than averted gaze [35]. Thus, the infant

N290 may be less specialized to structural encoding than the adult

N170. In order to disentangle face- and emotion-related activity

underlying face-sensitive ERPs in infants, experimental conditions

contrasting both facial (face vs. non-face) and emotional content

(emotive vs. neutral facial expressions) are needed.

In the current study, we focused on the connections between the

development of behavioral attention preferences towards facial

expressions and that of cortical face-sensitive areas. A recent study

with a large sample size (N = 73) showed that the attentional bias

towards fearful faces is present already at the age of 5 months [12],

suggesting that this component of fear bias may emerge earlier

than suggested by previous studies with smaller samples [10], [36].

However, no longitudinal studies combining measurements of

both behavioral and ERP responses to facial expressions are

available from this developmental period. Thus, the stability of the

fear-bias and the relationship between the fear-bias in overt

attention and cortical activity elicited by facial expressions await

further elucidation. Interestingly, such biases in attention towards

social stimuli [13] as wells as subcortical face-processing pathways

[3] have been suggested to lay developmental foundation for

cortical processing of conspecific signals. These views would, thus,

predict that attentional biases dictate the development of cortical

sensitivity to faces and facial expressions. However, cortical

sensitivity to faces and facial expressions might also influence

attentional preferences towards these stimuli during early infancy.

In order to address these questions, we combined the measure-

ment of infant gaze patterns and electroencephalographic (EEG)

data during the presentation of distinct facial expressions as well as

non-face control stimuli at 5 and 7 months of age in a longitudinal

design. Our aims were 1) to examine the stability of the behavioral

fear-bias across 5 and 7 months of age, 2) to identify fear-sensitive

cortical activity in ERPs recorded over posterior scalp regions at 5

and 7 months of age, 3) to analyze the relationships between the

scalp topographies of fear- and face-sensitive ERPs, and 4) to

explore the correlations between the gaze and ERP patterns of

fear-sensitivity both within and across measurements. Given recent

results for the early onset of the overt attentional bias towards fear

at 5 months [12] and the hypothesized role of attention biases in

guiding the development of social brain networks [13], we were

particularly interested in testing the prediction that early biases in

attention towards fear are associated and may also developmen-

tally precede cortical fear-sensitive activity.

Methods

1. Ethics Statement
Ethical permission for the study was obtained from the Ethical

Committee of Tampere University Hospital and a written

informed consent was given by the parents of the participants

before the start of the study.

2. Participants
The current study was implemented as part of an ongoing

longitudinal study started in April 2012 (Tampere, Finland) with

planned follow-ups from the age of 5 months until the age 48

months. The attention disengagement data from this longitudinal

study have been reported in previous publications [12], [36], and a

sub-sample of the EEG data was used as an example dataset in a

methodological study [37]. In the current study, we re-analyzed

the attention disengagement data to assess developmental stability

and focused on the relations between attention disengagements

and ERPs in the context of emotive face stimuli at 5 and 7 months

of age. The average ages at measurements were 5.1 months

(SD = 0.1, Range: 4.8–5.4 months) and 7.1 months (SD = 0.1,

Range: 6.8–8.0 months). A total of 125 (55 females) infants

participated in these assessments. The participants were healthy,

and largely from urban middle-class families. Premature birth

(n = 1), fussiness (n = 2) or technical problems during testing

(n = 6), and experimenter’s error (n = 1) lead to the rejection of 10

participant from all further analyses. The final sample sizes varied

between different analyses according to the specific inclusion

criteria as explained below (detailed in ‘5. Gaze acquisition and

analysis’, ‘7.2. ERP extraction’, and ‘8. Statistical analyses’).

3. Face stimuli
The experimental stimuli consisted of both face stimuli and non-

face control stimuli. The faces were photographed images of two

female models portraying fearful (FE), happy (HA), and neutral

(NE) expressions (Figure 1, bottom). A validation of these facial

stimuli as good examples of the intended emotional categories has

been provided by Peltola et al. [10]. The non-face stimuli were

produced by randomizing the phase spectrum of one of the face

pictures from each model, thus, controlling for low level visual

features (e.g., brightness and amplitude spectrum) of the stimuli

between faces and non-face stimuli. Both faces and non-faces were

cropped to the outline of face/head and subtended 15.4u and

10.8u (visual angles) on a 230 monitor. The stimuli were viewed at

the distance of about 60 cm in a dimly lit room.

4. Attention disengagement paradigm
In order to capture biases in infant attention, we used the

Overlap paradigm [38], where a high-contrast or other salient

(‘‘pop-out’’) stimulus is inserted as a distractor along the initially

presented and attended stimulus (for an illustration of the

paradigm, see Figure 1). A typical infant response to the

presentation of the distractor is a gaze shift towards this novel

stimulus. As the gaze shift reflects an active attentional process of

disengagement from the initial stimulus, the paradigm can be used

to probe differences in attention allocation between distinct stimuli

[39]. In the current study, different facial expressions were first

presented in the center of the screen for a duration of 4 seconds in

each trial. After 1 second from the face onset, a peripheral target

appeared 13.6u randomly on the left or the right side of the face (or

non-face control) stimulus. The distractor stimuli were black and

white checkerboards or circle arrays with a height and width

dimension of 15.4u and 4.3u, respectively. Before each trial, an

animated attention-grabber (a red circle which dilated periodically

from 0.4u to a size of 4.3u) was presented in the screen center.

When the infant fixated on the attention-grabber, the experi-

menter initiated the presentation of the face (or non-face) stimuli.

Facial expressions from one of the two models, counter-balanced

across participants, were shown in the first 24 trials after which

face stimuli from the second model were used. The stimuli were

presented in random order with the constraints that each of the

four expressions from both models were presented 6 times and the

flanker was presented on the same side of the screen no more than

four times in a row.

Developmental Precursors of Social Brain Networks
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5. Gaze acquisition and analysis
Infants’ gaze was recorded by digital video camera (Canon

ZR960 & QuickTime or iMovie software) and corneal-reflection

eye-tracking (Tobii TX300, Tobii Technology, Stockholm,

Sweden). Allocation of attention to distinct face stimuli was

investigated through the probability of gaze disengagement from

the centrally presented face to the peripheral distractor. That is,

trials were coded as containing an attention disengagement from

the face or a sustained dwell of attention at the face. Valid

attention disengagement was defined as a saccade towards the

distractor within 150 to 1000 ms after distractor onset. Only trials

where the participant fixated (engaged) to the face and maintained

gaze within the face for at least 70% of the time preceding gaze

disengagement (or the 1000 ms post-stimulus time limit) were

coded. Gaze disengagements were extracted from eye-tracking

data using custom Matlab code (gazeAnalysisLib) [40].

6. EEG acquisition
EEG was recorded simultaneously while running the Overlap

paradigm by using a high-density EGI HydroCel 128-electrode

net (Electrical Geodesics, Inc.) and was sampled at 250 Hz.

During the measurement, the accompanying parent held the baby

on her/his lap without touching the electrode net. Electrode

impedances were measured at the beginning of each session and

saved in separate files. Data were initially (first 33 participants)

acquired until a count of 72 trials was reached or until the

participant could no longer remain attentive to the stimuli.

Because most participants became inattentive or fussy before

reaching the last trial, we lowered the maximum number of trials

to a level that was acceptable for most infants (48, which equaled

to 12 presentations of each stimulus category). Overall, an average

of 48.3 (SD = 10.2) and 46.4 (SD = 4.5) trials were presented at 5-

and 7-months measurements, respectively.

The inter-stimulus interval (ISI), measured between the onsets

of consecutive face/control stimuli, was determined by the

disengagement paradigm to always exceed 4 seconds. As the rate

of stimulus presentation was contingent on the infant fixating the

attention-grabber and the experimenter manually initiating the

trial, the average ISIs were 10.4 (SD = 3.0) and 9.3 (SD = 2.2)

seconds for the measurements at 5 and 7 months, respectively.

7. EEG analysis
7.1. EEG preprocessing. EEG preprocessing was based on a

combination of visual quality control of participant compliance

and automated artifact detection using the Eegtool software [37]

which incorporates key preprocessing functions from the EEGLAB

toolbox [38]. First, EEG epochs during which unwanted

participant behaviors were identified in synchronized video

recordings of the participants were rejected. Such behaviors

included gaze shifted away from the central stimulus prior to the

onset of the lateral distractor, saccades, blinks, sucking the pacifier,

contraction of the oral or other facial muscles, prominent tongue

movements, excessive body movements, infant or parent touching

the electrodes, parent moving the infant, and infant being outside

the angle of view of the video.

The steps in the automated EEG preprocessing were 1) low-pass

filtering at 30 Hz, 2) segmentation of the data to epochs spanning

2100 ms to 800 ms around stimulus onset, 3) detrending the

epoch, 4) rejecting channels with high impedance values (.200 V
during calibration), and 5) aligning the EEG signal to the 100-ms

pre-stimulus baseline. The data in each epoch was then scanned

(automatically) for artifactual EEG signal in each channel using a

maximum-amplitude-based criterion. Channels in a given epoch

indicating absolute potentials greater than 150 mV were marked

bad and replaced with data interpolated from acceptable channels

using spherical interpolation. However, if the number of bad EEG

channels in an epoch was greater than 12 (i.e., about 10% of the

128 electrode channels), the entire epoch was rejected. Finally, the

EEG signal was re-referenced to the average from all electrodes.

7.2. ERP extraction. To examine face- and fear-sensitivity in

ERPs, we combined epochs from specific stimulus conditions in

the following way: Face condition includes fear (FE), happy (HA),

and neutral (NE); Non-Face condition includes phase-scrambled

control stimulus (CS); Fear condition includes FE; and Non-Fear

condition includes HA & NE. ERPs were initially extracted

separately from all electrode channels as averages across epochs

given that at least 5 acceptable epochs were acquired from the

participant/condition. Although this criterion is lower than that

typically used in infant ERP studies (i.e., 8–10 trials/condition),

the reduced signal-to-noise ratio (or effect size) at the level of

individual infants is compensated by the relatively large overall

sample size in the current dataset. The average number of epochs

included in the ERP analyses for the face-effect was 15.5 and 16.0

at 5 and 7 months, respectively. For the fear-effect the

corresponding mean numbers of epochs were 11.2 and 12.0. It

Figure 1. The overlap paradigm. A face or a control stimulus was
presented in the center of the screen after the participant fixated on an
expanding red circle (fixation stimulus). A distractor was added to the
right or to the left of the central stimulus after 1000 ms from face/
control onset. The central stimulus was presented until the end of each
trial, thus, overlapping in time with the distractor. The sequence of
events and stimuli in the paradigm are shown with the duration of each
event (top). The stimuli categories presented in the central location
(neutral, happy, and fearful faces as well as phase-scrambled control
stimuli) are shown in the bottom panel.
doi:10.1371/journal.pone.0100811.g001
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is also of note that the within-subject analyses were complemented

by group-level bootstrapping analyses (as described below) that

used all available data and were not affected by any criteria for

trial count or number of available trials per participant. From the

measurement at 5 months, 60 and 75 participants were included in

the analyses of face- and fear-sensitivity, respectively. At 7 months,

acceptable data for the analysis of face-sensitivity was acquired

from 99 participants, and 100 participants were included in the

analysis of fear-sensitivity. In longitudinal repeated-measures

(across 5 and 7 months of age) analyses, only participants with

acceptable data from both measurement ages were qualified

(N = 50 and N = 63 for the analysis of the fear- and face-effects,

respectively).

The conventional within-subjects analysis of ERPs was com-

plemented by group-level analyses using grand-averaged ERPs

calculated from all available trials in the dataset. This approach

enables statistical analyses of data without excluding participants

with low trial counts as well as visualization of variability around

the grand average [35]. Using bootstrapping, we calculated

resampling distributions of ERP waves from a pool of accepted

epoch data from all participants. We further produced confidence

intervals (CIs) using the basic bootstrap intervals to allow statistical

analyses of differences between stimulus conditions. These CIs

were calculated for both ERPs from specific stimulus conditions

(e.g., Fear) and for their differences (e.g., Fear vs. Non-Fear).

Statistical significance of the difference between two conditions

can, thus, be stated when the difference wave, and its confidence

limits, take non-zero values. In the current analysis, we sampled

epochs from a set of electrode channels with replacement. Thus,

the size of the pool of epochs input to bootstrapping analysis

depended on the number of channels in the channel set and the

number of acceptable epochs (depends on stimulus condition) from

all participants. Analyses concerning the potential effects of

variations in the number of acceptable epochs between stimulus

conditions (e.g., Face vs. Non-Face) are reported in Supplementary

material (Supplement S1). The toolboxes [37], [41] used for EEG

analyses are open source and custom scripts used for data analyses

are available from the authors.

8. Statistical analyses
8.1. Behavioral analyses. We summarized the behavioral

disengagement data into indices of face- and fear-bias based on the

probability of attention shifts, p(saccade), from the face stimulus to

the peripheral target (disengagement). The bias scores were

calculated as follows:

face-bias~p(saccadeDCS){p(saccadeDHA&NE)

fear-bias~p(saccadeDHA&NE){p(saccadeDFE)

That is, in the calculations of the face-bias, the face condition

(HA is happy and NE is neutral stimulus) was contrasted to the

non-face control condition (CS is control stimulus). In calculating

the face-bias we sought to minimize the effect of emotional cues on

the score variable. In particular, as fearful faces have been shown

to suppress attention shifts to peripheral targets [10], [12], [36],

[42], the fearful condition was not included in the calculation of

the face-bias. The fear-bias was based on the difference between

the fearful stimulus condition (FE) and the average across non-

fearful face conditions. The number of accepted participants (with

$3 trials per condition) for the calculation of the face- and the

fear-bias was 74 and 75 for the 5-months visit and 103 and 103 for

the 7-months visit. From these participants, an average of 8.2–9.1

trials (SD = 2.4–3.2) and 8.8–9.1 trials (SD = 2.5–2.7) were

acquired per condition at 5- and 7-months visits, respectively. In

order to assess the reliability of the behavioral scores, we calculated

Spearman r coefficients between the bias scores obtained from the

first and last 24 trials measured during the 5-months visit. These

split-half reliabilities for fear- and face-bias scores from the 5-

months visit were r= .28 (p,.05, N = 49) and r= .39 (p,.01,

N = 50), respectively. The disengagement probability as such,

rather than the bias scores based on their difference, had a split-

half reliability of r= .64.

A comprehensive analysis of the behavioral data has been

presented in our previous article [12]. In the current study, we

analyzed the consistency of the disengagement probability and the

behavioral bias scores across visits at 5 and 7 months using

Sprearman correlation coefficients. We, further, analyzed these

correlations in reference to the score reliability.
8.2. ERP analyses. Analyses of the ERP data focused on

posterior channels given previous studies showing differences in

ERPs to faces vs. non-faces at posterior sites 200–300 ms after

stimulus onset [14] as well as larger ERP positivity to fear-related

vs. neutral/happy cues, starting at the latency of the N290/P400

components [27], [43] (see also [10], [24], for evidence for

differential activity at frontocentral regions). Initial analyses of the

current data with similar electrode groupings to those used in a

previous high-density study [44] replicated previous findings

regarding differential ERPs for faces at 5 and 7 months and

fearful facial expressions at 7 months of age (reported in [37],

shown in Supplement S1). However, these analyses provided no

information about the spatial distribution of face- and fear-effects

and their overlap over posterior scalp areas. Thus, in order to

determine the electrode sites that were maximally sensitive to

different stimulus conditions (Face vs. Non-Face and Fear vs. Non-

Fear), we calculated differences between ERPs from pairs of

conditions. The analyses focused on the amplitude of the N290

component (i.e., 248–348 ms post-stimulus time) given previous

research linking this component with face processing and our own

preliminary analyses of the current dataset showing overlap in

face- and fear-sensitivity at this latency range (Supplement S1).

The differences, for each time-point, were normalized using the t-

statistic as follows:

t~
�XX 1{ �XX 2

sPooledH
N1zN2
N1|N2

� � ,

where

sPooled~H
N1|s1

2zN2|s2
2

N1zN2

� �
,

and �XXi is mean amplitude, si
2 is variance, and Ni is sample size

(number of ERPs). Based on visual inspection of the scalp

topographies of these t-scores (Figure 2), we identified clusters of

differential activity for face and fearful stimuli at posterior sites.

After identifying clusters of electrodes exhibiting maximal face-

and fear-sensitivity over posterior scalp sites the statistical

significance of the effects at group level were further tested by

using the bootstrapping analyses and all available epochs as

described above. Also, the overlap in scalp distributions of the

face- and the fear-effects were investigated through Sensitivity 6
Location interactions on ERP amplitudes. The factor Sensitivity

referred to the difference either between the Fear and the Non-
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Fear stimulus condition (fear-sensitivity) or between the Face and

the Non-Face stimulus condition (face-sensitivity) and the factor

Location indicated the EEG channel cluster (Face- vs. Fear-

sensitive cluster).

The consistency of the face- and the fear-sensitivity in N290

amplitude across 5 and 7 months was analyzed using Spearman

correlation coefficients. To this end, the face-related ERP

negativity and fear-related ERP positivity were calculated (from

both visits) as difference between the Face and the Non-Face

condition, and between the Fear and the Non-Fear condition,

respectively.

8.3. Relationships between behavioral and ERP

measures. The relationship between the behavioral attention

biases and the sensitivity of the N290 amplitude to faces or fearful

faces were studied as correlations between: 1) the attention biases

and the co-registered N290 response, 2) attention biases at 5

months and the N290 response at 7 months, and 3) N290 response

at 5 months and attention biases at 7 months. In these analyses,

the attention biases refer to increased attentional dwell on faces or

fearful faces (described in ‘8.1 Behavioral analyses’) and the N290

amplitude was expressed as face-related ERP negativity or fear-

related ERP positivity (described in ‘8.2 ERP analyses’).

Results

1. Behavioral attention disengagement from faces
An analysis of the current behavioral data has been presented in

our previous article [12] indicating an attention bias towards faces

and especially to fearful faces. These biases were manifested as an

increased probability of an attention dwell for face versus non-face

and for fearful as opposed to non-fearful stimuli, respectively. The

focus of the current analyses on the attention disengagement data

was on the consistency of the attention biases across age as well as

on the relationship between the biases and the cortical responses.

The typical behavior to disengage from the face to the

peripheral distractor (median probability = .65 and .56 at 5 and

7 months respectively) was highly consistent across ages (r= .40,

p,.001, N = 67). In contrast, a low consistence of the behavioral

scores was found for both the face- (r= 2.03, p = .80, N = 67) and

the fear-bias (r= .09, p,.45, N = 67) across visits. These low

correlations may be due to limited reliability of the bias scores (.28

and .39, for the fear- and the face-bias, respectively). Disattenuat-

ing the scores [45] indicated that the correlation for the fear-bias

across age was .32 in relation to the score reliability. Thus,

correlation between the visits may be low because of measurement

error.

2. Face- and fear-sensitivity in ERPs
The results of analyses examining the scalp distribution of the

face- and fear-effects in the 248–348-ms latency range are shown

in Figure 2. N290 waves were elicited by Face and Non-Face

(Fig. 3) as well as by fearful and non-fearful stimuli (Fig. 4). The

largest differences between the Face- and the Non-Face condition

(Figure 2, right) were found in the occipital electrodes (E70, E73,

E74, E75, E81, E82, E83, and E88) at both ages. Analyses of

differences between the Fear and the Non-Fear condition showed

no clear clusters of fear-sensitive electrodes over posterior regions

at 5 months, but at 7 months, a positivity for fearful vs. non-fearful

faces was observed in medial channels located towards the parietal

region (E72, E62, E67, E61, E54, E77, E78, and E79), and

coincided with a polarity reversal (negativity) at more anterior

sites.

Group-level ERP extraction with bootstrapping and including

all available data showed that the face- and fear-effect on ERP

amplitudes at the selected electrode clusters were significant at

both ages (p,.05), and most evident at the latency of the N290

and early parts of the P400 component (Figures 3 and 4).

Additional analyses were also conducted to examine whether the

observed effects were dependent on the data analyses techniques

used in the current study (particularly detrending) and trial counts.

The additional analyses are reported in the Supplementary

material (Supplement S1).

To assess the differences in scalp topography between the face-

and the fear-sensitive activity in the N290 latency range, the face-

and the fear-effect were investigated through Sensitivity 6
Location interactions on ERP amplitudes. As indicated by

Figure 2, the face- and fear-specific modulations in the ERPs

were associated with increased scalp negativity and positivity,

respectively. This difference in ERP polarity between the face- and

fear-sensitivity was reflected in the main effect of Sensitivity at

both 5 months [F(1,53) = 34.25, p,.001] and 7 months

[F(1,91) = 40.36, p,.001]. The Sensitivity further interacted with

Location at both ages [5 months: F(1,53) = 49.00, p,.001; 7

months: F(1,91) = 60.38, p,.001] due to increased face-related

negativity at the posterior as opposed to the more anterior

electrode cluster (D= 14.0 mV and D= 13.7 mV at 5 and 7

months, respectively). Thus, the results suggest that the effects of

face and fear on cortical activity are dissociable at the level of scalp

topography.

In order to track the consistency of face- and fear-sensitivity in

N290 amplitude across 5 and 7 months, Spearman correlations

between these sensitivities were calculated across visits. The face-

sensitivity (increased negativity in Face vs. Control condition) was

consistent across 5 and 7 months (r= .31, p,.01, N = 50). While

fear-related ERP positivity was uncorrelated between visits

(r= .05, p = .34, N = 63), participants that expressed (above

median values of) fear-sensitivity in ERPs at 5 months continued

to show higher levels of fear-sensitivity (Fear: M = 25.8 mV,

SD = 1.7 mV; Non-Fear: M = 210.7 mV, SD = 1.9) at 7 months of

age [F(1,30) = 8.89, p,0.01, Partial g2 = 0.23]. Participants with

no/low fear-sensitivity in the 5-months ERP data, responded

invariantly to fearful (M = 28.5 mV, SD = 2.0 mV) and non-fearful

(M = 28.9 mV, SD = 1.2 mV) stimuli [F(1,31) = 0.03, p = 0.86,

Partial g2 = 0.001].

3. Relationships between attention biases and the N290
amplitude

No associations between the face- or the fear-bias in attention

disengagement and the co-registered N290 amplitude (face- or

fear-effect on ERP) were observed at 5 months (|rs| = .05 to .17,

ps = .13 to .36) or at 7 months (|rs| = .10 to .16, ps = .08 to .24).

However, the behavioral fear-bias score calculated from the gaze

data from the 5-months measurement was associated with the fear-

sensitivity in ERPs at 7 months (r= .22, p(1-tailed),.05, N = 61).

That is, an increased behavioral fear-bias at 5 months predicted

increased fear-sensitivity in ERPs at 7 months. The mean increase

in ERP positivity in the N290 latency range was 4.7 mV

(SD = 1.6 mV) and 20.8 mV (SD = 1.6 mV) in participants scoring

higher and lower than the median fear-bias, respectively. The

relationship between behavioral fear-bias at 5 months and the

fear-sensitivity in N290 response at 7 months is illustrated in

Figure 5. Note that while the fear-bias correlated with the ERP

fear-modulation at 7 months, the absolute proportion of disen-

gagements from face stimuli did not (r= 2.04 and 2.07 for raw

disengagement probability at 5 and 7 months, respectively). The

face-sensitivity in ERPs at 7 months was uncorrelated with the

behavioral bias scores at 5 months (|rs| = .04 to .08, ps = .26 to

.38). Finally, analyses testing the opposite direction of influence
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(i.e., cortical face/fear-sensitivity as a predictor of later attention

bias) showed no correlations between the face-related negativity or

fear-related positivity in the N290 at 5 months and the behavioral

attention biases at 7 months (|rs| = .02 to .14., ps = .17 to .46).

Discussion

By the second half of the first year, infants typically acquire a

preference for fearful over other facial expressions [10], [11]. In

the current longitudinal study, we tracked this developmental

transition and its relationship to the development of cortical face-

processing areas from 5 to 7 months of age. The behavioral

tendency to suppress attention disengagements from faces as

opposed to non-face stimuli and from fearful as opposed to non-

fearful stimuli was found at both ages (reported previously in [12]).

In the ERP data, facial stimuli with variable emotional expressions

elicited face-sensitive cortical activity at both ages as indicated by

posterior ERP negativity in the N290 latency range for face as

opposed to non-face stimuli. Modulation of cortical activity within

the same latency range by stimulus fearfulness was found already

at the age of 5 months in the bootstrap analysis including all trials,

but this effect became more consistent across different analyses

and its scalp distribution more well-defined at 7 months of age.

The participants indicating cortical sensitivity to fear at 5 months

indicated the fear-effect also at 7 months, expressing the stability of

the fear-sensitivity in the ERPs of individual babies. Finally, we

analyzed the correlations between attention and ERPs both within

and across measurement ages. Our analyses point to the

independence of the face- and fear-effects between attention and

co-registered face-related cortical activity. However, an interaction

between the modalities was revealed as the early fear-bias in

attention at 5 months predicted the effect of fear on the follow-up

ERP measures of cortical face-specific activity at 7 months.

Unlike in many previous studies examining infants’ face and

emotion processing, we used a longitudinal design in order to track

the development of attention bias towards specific facial expres-

sions at the level of individual babies. While the tendency to

disengage from faces per se was highly stable across age, the

correlations in the bias scores across the ages of 5 and 7 months

turned out to be relatively low. Thus, besides increasing with age

in the group level [36], the fear-bias may undergo considerable

rank-order changes (for mean-level vs. rank-order changes cf., [46]

and [47]) across time in the individual level. The lack of

correlation may also be partly explained by attenuation due to

measurement error. Our reliability analyses using a split-half

design within measurements found low, albeit significant, corre-

lations between scores from the first and the second half of a

session. The reliabilities for fear- and face-bias (r = .28 and r = .39,

respectively), were representative of those describing behavioral

scores previously obtained from infants at this age [48]. Given that

our bias scores were summarized from disengagement probabil-

ities from distinct stimulus conditions, their reliability is reduced in

comparison to that of the constituent disengagement probabilities.

Then again, there were both theoretical and empirical reasons to

focus on biases in the attention disengagement rather than on the

raw disengagement probabilities. As evidenced by our previous

studies, infants typically disengage from the attended stimuli when

a distractor is presented. At the same time, this behavior is

significantly modulated by the emotive or social value of the

attended stimulus [36]. Further, infants’ genotype and early life

Figure 2. Face- and fear-sensitivity plotted in ERP scalp topographies from the 248–348-ms latency range corresponding to the
N290 response. The top-most panels show ERPs elicited by face and non-face control stimuli and their difference in Studentized values from the
measurements at 5 and 7 months of age. The bottom-most panels show the corresponding topographies for the fear- and the non-fear conditions as
well as from their difference. The largest differences between face- and non-face conditions were found in the occipital electrodes (E70, E73, E74, E75,
E81, E82, E83, and E88). For the fearful vs. non-fearful conditions the largest differences were found in the parieto-occipital channels (E72, E62, E67,
E61, E54, E77, E78, and E79). Channel groups are encircled (white line) in the scalp maps.
doi:10.1371/journal.pone.0100811.g002

Figure 3. Grand average ERPs from the face- and the non-face conditions extracted from the channel set indicating maximal
difference between the conditions. A significant increase in ERP negativity for face vs. non-face stimuli was observed at both 5 and 7 months of
age. The effect of face stimulus was indicated over a broad latency range corresponding to the N290 and P400 responses. The confidence intervals
were calculated as basic bootstrap intervals comprising 95% of the resampling distribution of mean ERP amplitudes.
doi:10.1371/journal.pone.0100811.g003
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experiences (i.e., parental stress) have been found to be associated

with the fear-bias score rather than with raw disengagement

probability [12], [42]. Also in our current results, an association

between ERPs and behavior was found in the attention preference

for fear but not in the general tendency to shift attention from

faces to novel objects. Thus, the predictive validity of the attention

shift paradigm may be increased by extracting biases for specific

emotional signals. However, an important pursuit for future

studies would be to increase the reliability of the index of

attentional bias. This might be achieved either with protocols that

tap more directly to preference between distinct facial stimuli using

simultaneous presentation. The reliability of the index may be also

increased with improved parameterization of the disengagement

data.

The onset of face-sensitive ERP activity at 3 months of age [15],

[23] appears to precede sensitivity to fearful faces at around 6

months [24]. It is of note, however, that the relations between

cortical face- and fear-sensitive regions have been relatively little

investigated in the same sample of infants. The current results

replicated previous findings showing face-sensitive activity in the

N290 latency range [15]. The scalp distribution of the difference

between face- and non-face conditions was remarkably similar

between 5 and 7 months of age. The results were more complex

regarding fear-sensitivity in ERPs. At 5 months, evidence for fear-

sensitivity was observed in the bootstrap analyses only. At 7

months, fear-sensitivity was observed in all analyses, and the scalp

distribution of the effect was well-defined and circumscribed to

upper posterior electrodes. Together, these results suggest that the

expected pattern of posterior positivity for fear may start to emerge

at 5 months and become more well-defined (and consistent) at 7

months of age. Finally, the current results indicating distinct ERP

scalp topography between the fear- and face-sensitivity together

with the known developmental lag between face- and emotion-

sensitive ERP effects may reflect modular processing of structural

and emotive facial cues during infancy. However, further studies

using source level analyses are needed to address the whether these

processes truly reflect the activation of separable cortical networks.

While four stimulus categories were presented equiprobably to

participants, the analyses of face-sensitivity in the N290 were in

effect based on a comparison between ERPs elicited by frequently

presented face stimuli (75% incidence) and infrequently presented

control stimuli (25% incidence). In this respect, the control stimuli

were presented as oddball-deviants which typically elicit ERPs

with an increased amplitude [49], [50]. In adults, the visual

oddball effect seems to be manifested in early posterior negative

wave in the 140–180-ms range [51], [52], which overlaps in time

Figure 4. Grand average ERPs from the fear- and the non-fear conditions extracted from the channel set indicating maximal
difference between the conditions. A significant increase in ERP positivity for fearful vs. non-fearful stimuli was observed at both 5 and 7 months
of age. The effect of stimulus fearfulness was indicated over a broad latency range corresponding to the N290 and P400 responses. The confidence
intervals were calculated as basic bootstrap intervals comprising 95% of the resampling distribution of mean ERP amplitudes.
doi:10.1371/journal.pone.0100811.g004

Figure 5. Association between the behavioral fear-bias at 5
months and the ERP fear-sensitivity at 7 months. A positive
correlation between the behavioral fear-bias (increased probability of
attentional dwell on fearful faces) and fear-sensitivity in N290 amplitude
(increased positivity to fearful faces) was found (r= .22, p,.05, N = 61).
Horizontal and vertical reference lines indicate median values.
doi:10.1371/journal.pone.0100811.g005
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with the face-sensitive N170. While the oddball effect has been

established in infants in the auditory domain [53], the effect is

susceptible to developmental changes: instead of the early vertex-

negative peak elicited by the deviant, a positive wave at 300–400-

ms latency range has been observed in 6-months old infants [53],

[54]. In infant visual ERPs the amplitude modulation related to

oddball stimulation is typically observed in the negative central

(Nc) component [55–57] which is elicited 350–600 ms after

stimulus onset [58], [59], or in the infant P3 [60]. Therefore, the

oddball effect in infant visual ERPs seems to have a longer latency

than the face-sensitive N290 suggesting that the oddball effect may

not play a significant role in the current results. This interpretation

is supported by the similarity of the current face-sensitive ERP

modulation to that observed in a previous study [15] using an

equal probability of face and control stimuli.

Roughly parallel development in behavioral and ERP measures

of face processing has been indicated by previous research carried

out in infants around 6 months of age. That is, the sensitivity to

facial expressions in both behavior and cortical activity seem to

emerge during the same period of time. However, longitudinal

investigations combining both EEG and behavioral analyses of

face-processing are needed to establish the relationships between

these measures. On the one hand, the current results indicated a

parallelism between the effect of stimulus fearfulness on the ERPs

and on the attention allocation on a group level. On the other

hand, the within-subjects analyses revealed a more complex

relationship between the two phenomena. While the modulations

of attention and that of the co-registered ERPs by stimulus

fearfulness were largely independent both at 5 and 7 months of

age, the attention bias towards fearful faces at 5 months predicted

the modulation of the fear-sensitive cortical activity (N290) at 7

months of age. Thus, the gaze preferences and ERP data elicited

in the disengagement paradigm seem to reflect two distinct

mechanisms which may interact in the development of face

processing during infancy.

In interpreting the interaction between attentional bias and

emerging cortical sensitivity to facial expressions, it is interesting to

note that there is a striking difference between the low maturity of

cortical visual areas and the remarkable ability to attend to faces

more or less from birth [3]. The early attentional biases related to

conspecific detection are argued to be based on a subcortical

pathway involving the superior colliculus, pulvinar, and amygdala.

Besides developmental precedency of the subcortical over the

geniculo-cortical route of face processing, the subcortical pathway

modulates cortical processing of faces in adults [61], [62]. It has

been further suggested that activation of the amygdala is

associated with the allocation of attention towards sensory stimuli

in adults [63] and the processing of especially fearful faces [64–69].

Importantly, it has been hypothesized that the activity of the

subcortical path during face exposure may influence the develop-

ment of face-processing circuitry in infancy [3]. From these

premises, the involvement of the subcortical route of face

processing in the currently observed attention bias towards faces

and particularly to fearful faces seems possible. The relationship

between the fear-bias in attention at 5 months and the fear-

sensitivity in ERPs at 7 months could, thus, be tentatively

understood as reflecting subcortically driven plasticity in the

cortical face-processing areas. Indeed, a potentially critical role of

early attention to facial cues in the maturation of social brain

networks has previously been indicated by a decline in eye fixation

from 2 to 6 months of age in infants later diagnosed with autism

[13].

In summary, the current study indicated sensitivity to fearful

faces in both cortical activity and behavioral attention biases at

ages of 5 and 7 months. The attention bias for fear was related to

the development of fear-sensitivity in cortical face-sensitive

populations from 5 to 7 months. We suggest that these results

may reflect a sensitive period for the development of the cortical

encoding of facial cues. In future, it will be important to extend the

analyses of behavioral and cortical indices of emotion processing to

other components of the infant ERP. For example, a co-analysis of

infants’ behavioral attentional biases and the Negative central (Nc)

component (a long-latency negative component over frontocentral

sites) may provide important insights into how infants’ attention

biases are instantiated on the cortical level as previous studies have

shown larger Nc amplitude for fearful as opposed to neutral and

happy faces in 6–7 months old infants [24], [25], and the Nc has

been interpreted as a neural correlate of attention allocation [70].

Supporting Information

Supplement S1 Preliminary and complementary ERP analyses.

Description of ERP analyses using alternative preprocessing

settings and complementary statistical analyses.

(DOC)

Video S1 Illustration of the effects of stimulus condition (Fear vs.

Non-Fear) and that of the number of averaged epochs on

bootstrapped difference ERPs across series of bootstrap tests.

(AVI)

Acknowledgments

We gratefully acknowledge the efforts of the families who participated in

the studies. The authors are grateful to Mari Fadjukoff, Mia Huolman, and

Henna Salovaara for their contributions in data collection and scoring.

Author Contributions

Conceived and designed the experiments: JL SY LF. Performed the

experiments: LF JL SY JK. Analyzed the data: SY LF JL JK. Contributed

reagents/materials/analysis tools: JK JL SY LF. Wrote the paper: SY JL

LF.

References

1. Bickart KC, Wright CI, Dautoff RJ, Dickerson BC, Barrett LF (2011) Amygdala
volume and social network size in humans. Nat Neurosci 14: 163–164.

2. de Gelder B, Frissen I, Barton J, Hadjikhani N (2003) A modulatory role for
facial expressions in prosopagnosia. Proc Natl Acad Sci U S A 100: 13105–

13110.

3. Johnson MH (2005) Subcortical face processing. Nat Rev Neurosci 6: 766–774.

4. Goren CC, Sarty M, Wu PY (1975) Visual following and pattern discrimination

of face-like stimuli by newborn infants. Pediatrics 56: 544–549.

5. Morton J, Johnson MH (1991) CONSPEC and CONLERN: a two-process

theory of infant face recognition. Psychol Rev 98: 164–181.

6. Farroni T, Menon E, Rigato S, Johnson MH (2007) The perception of facial

expressions in newborns. Eur J Dev Psychol 4: 2–13.

7. Kuchuk A, Vibbert M, Bornstein MH (1986) The perception of smiling and its

experiential correlates in three-month-old infants. Child Dev 57: 1054–1061.

8. Bornstein MH, Arterberry ME (2003) Recognition, discrimination and

categorization of smiling by 5-month-old infants. Dev Sci 6: 585–599.

9. Greenough WT, Black JE, Wallace CS (1987) Experience and brain

development. Child Dev 58: 539–559.
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