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Abstract 

Background 

Glioblastoma multiforme (GBM) is a type of commonly occurred malignant 

astrocytoma with an extremely poor prognosis. GBMs display a remarkable genetic 

variability, and it is essential to study the genomic alterations and pathway 

dysregulations based on the different tumor entities.  

 

The gene IDH1 encodes cytosolic isocitrate dehydrogenase 1, which catalyzes the 

reactions of oxidative decarboxylation of isocitrate to α–ketoglutarate. Different types 

of mutation of IDH1 has been found in gliomas and GBMs, especially in secondary 

GBMs. Among the IDH1 mutations, R132H mutation is the most prominent one. IDH1 

mutation in GBMs is correlated with a longer survival time, and no IDH1 mutations are 

reported in many other tumor types. Thus IDH1 is hypothesized as crucial in the 

pathogenesis of GBMs, and it is regarded as a potential drug target.  

 

The fundamental goal of this study is to identify a gene signature correlated with IDH1 

mutation in GBMs. And related genes and biological pathways are also studied.  

 

Methods 

Most of the work of data collection and analysis are achieved with R pacakges. The 

step-down maxT method is adopted to perform the multiple testing procedure in order 

to find differently expressed genes. The p-values of statistical tests are corrected by 

controlling FWER. The clustering result is explicated as heatmap, and clinical data is 

elucidated with boxplot and Kaplan Meier-plot. Analysis of GO and KEGG pathways 

are used to extract more information from the genes. And the results are visualized as 

graphs in Cytoscape.  

 

Results 

A framework is created for identifying gene signatures as well as studying biological 

pathways. The expression data from 548 samples are collected, and 58 genes out of 

12042 genes are identified as differently expressed. Finally a gene signature with 50 

genes are proposed.  

 

Conclusion 

Microarray technology and statistics methods are effective for the studying of 

alterations in gene expression and biological pathways. The gene signature proposed 

by this study can distinguish samples harboring IDH1 mutation from GBMs. And future 

researches are necessary to corroborate and extend the results.  
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1. Introduction 
 

Glioblastoma multiforme (GBM) is a common brain malignancy1, and it is one of the 

most lethal and treatment-refractory cancer2. Numerous studies has been conducted in 

order to understand the biology of GBM and develop novel treatments. However, there 

is no significant breakthrough in this field. As the name indicated, GBM is exemplified 

by the cytologic and histologic variation and contains extensive genetic and biological 

variability3. The tumorigenesis of GBM is complicated by the diverse dysregulation of 

genome. Based on distinct genomic features, GBMs are divided into 4 subtypes: 

Proneural, Neural, Classical and Mesenchymal. Due to the heterogeneity of GBMs, it 

is necessary to study the aberrant pathways and phenotype in terms of different 

molecular characteristics. 

 

IDH1 (Isocitrate Dehydrogenase 1) is enzyme function as a catalyst to oxidatively 

decarboxylate isocitrate producing α–ketoglutarate (αKG or 2-OG). During this 

process, NADP+ is reduced to NADPH4. IDH1 has been found as frequently mutated 

in GBM and be associated with increase in overall survival5. Among all types of IDH1 

mutations, R132H mutation is the most commonly found one. However, mutant IDH1 

has not been found in a wide ranges of cancers so far6. In addition, more mutant IDH1 

is detected in secondary GBMs and younger GBM patients. Therefore, IDH1 is 

speculated to play a unique role in tumorigenesis of GBM, and studying on IDH1 can 

facilitate the development of novel therapy.   

 

Microarray technology is widely used to quantitatively monitor the expression level of 

thousands of genes simultaneously. Using the microarray expression data, this thesis is 

concentrated on identifying gene signature which is correlated with IDH1 mutation 

state in GBM samples. The GBM samples are divided into 2 groups (IDH1+ and IDH1-) 

according to whether they harbor IDH1 mutation. The main method is to find the 

differently expressed (DE) genes by statistical tests. And the clinical data is collected 

to get insights of the difference of clinical features between GBM samples with and 

without IDH1 mutation. In the interest of extracting more information from gene 

signature, GO and KEGG pathways are analysis.  Further, the gene signature is 

validated by hierarchical clustering. Hopefully, the results of this study can provide 

information for future studies on IDH1 mutation and aberrant pathways in GBM. 
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2. Literature Review 

2.1 Cancer and Glioblastoma 

Cancer is a class of diseases characterized by out-of-control cell growth. To be specific, 

the cells involved in cancer usually grow and reproduce in an uncontrollable way, and 

those cells breach and even destroy healthy tissue, including organs7. Without 

treatments, cancer is inclined to grow into worse progressively and can potentially lead 

to death8. 

 

The impaired cells may form abnormal mass of tissue or lumps, which are referred to 

as tumors. Tumors can grow and become harmful by interfering with the nervous, 

circulatory and digestive systems, or simply by pressing against nerves or blood vessels. 

Some tumors even result in releasing hormones that disrupt body functions.  

Note that tumor is not equivalent of cancer, and it does not necessarily cause a health 

threat. Actually, tumors can be categorized basically as 3 groups: benign (not 

cancerous), pre-malignant (pre-cancerous), or malignant (cancerous). And only the 

malignant tumors can be called cancer. Once the malignant tumors grow fast, they tend 

to become aggressive and spread to distant parts of the body by invasion and metastasis. 

However, it is difficult to draw clear lines of demarcation between benign, pre-

malignant and malignant tumors. Some benign tumors may eventually become 

premalignant, and then malignant. 

 

Cancer cells can migrate and penetrate into neighboring tissues directly by invasion. 

And metastasis is the process by which cancer cells penetrate into lymphatic and blood 

vessels, circulate through the bloodstream, and then invade normal tissues elsewhere in 

the body9. “Primary” means the original site of the cancer, while “secondary” implies 

any additional sites where the cancer has spread10. 

 

There are many different types of tumors, and scientists employ a variety of technical 

names to distinguish them. Tumors’ names usually indicate the locations they appear 

in and their shapes. For example, “blastoma” refers to as those tumors derived from 

embryonic tissue or immature “precursor” cells. And “blastoma” is often used as a 

suffix to describe tumors such as “glioblastoma”.  

 

Tumor grading is usually based on the microscopic examination of a tumor and its 

abnormality11. Tumor grading assign most cancers a numerical grade, which indicating 

the likely behavior of a tumor and its responsiveness to treatments. Generally, the 

grading system gives a low number grade (grade I or II) to cells or tissues with fewer 

abnormalities, and scores higher numbers (grade III, IV) to those with more 

abnormalities. Higher-graded cancers tend to grow and spread faster with worse 

prognosis. The factors taken into consideration in tumor grading can vary between 

different types of cancer.  

 

Glioma is a type of tumor that arise from glia, which is a tissue helps to keep the neurons 

in place and functioning well. Glioma can occur in brain and spine, and the former is 

more common. Like many other tumors, the degree of severity of a glioma depends on 

its grade. Grade I is the least serious and grade IV is the most serious. 
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There are 3 kinds of glia cells can produce tumors: astrocytes, oligodendrocytes, and 

ependymal cells. If the tumor is made up from more than one type of glia cells, it is 

called “mixed glioma”. According to the histological details, gliomas can be divided as 

many subtypes, such as astrocytoma, dendroglioma, pilocytic astrocytoma, and 

ependymoma. 

 

Astrocytic original gliomas, also called astrocytomas, are the most common type of 

glioma. Astrocytomas consist of various types, and they are thus graded on a scale from 

I to IV12, ranging from the slowly growing juvenile pilocytic astrocytoma (grade I) to 

the highly malignant glioblastoma multiforme (Grade IV). Astrocytomas have been 

found in many part of the brain and nervous system, including the central areas of the 

brain, the brainstem, the cerebellum, the cerebrum and the spinal cord13. 

 

Glioblastoma multiforme (also called GBM, Astrocytoma Grade IV, and Glioblastoma 

Grade IV) is the most common astrocytomas. And it is also the most aggressive form 

of malignant primary brain cancer in adults. The GBM has one of the worst prognosis 

among human tumor types14. The word “multiforme” indicates the significant 

intratumoral heterogeneity on the cytopathological, transcriptional, and genomic 

levels15. The GBM usually occurs in frontotemporal region and parietal lobes. But it is 

rarely found in the cerebellum and spinal cord. Primary glioblastoma, as the name 

implies, arises de novo without antecedent history of low-grade disease, while 

secondary glioblastoma evolves progressively from previously diagnosed low-grade 

gliomas16. 

 

Glioblastomas are composed predominantly of poorly differentiated, fusiform, round, 

or pleomorphic cells17. There are few biomarkers of favorable prognosis and, 

accordingly, few therapies strongly influencing disease outcome. According to some 

sources, the GBM are defined as many different subtypes, which are caused by different 

genomic aberrations and require different therapeutic approaches18. The genomic-based 

classification of the subtypes of GBM facilitates scientists to get insight into the 

molecular mechanism leading to this disease. And the sequence-based mutation 

detection is a kind of effective method to study the GBM. 

 

2.1.1 Hallmarks of Cancer 

The proliferation, differentiation and death of normal cells are under the control of 

many factors, and the molecular machinery relating to that has been studied for a long 

time. Usually, normal cells will grow only when stimulated by the growth factors, and 

they need a blood supply. And once the cells are damaged, anti-growth signals will 

prevent them from dividing until they are repaired. If the cells cannot be repaired, they 

will die through the apoptosis. Normal cells can only divide a limited number of times 

and they always remain where they belong. Each mechanism is controlled by several 

proteins. In one word, normal cells can balance cellular proliferation and death. When 

all the mechanisms are “conquered”, the normal cells transform into malignant tumor 

cells. Such disruptions of those mechanisms are caused by the damages of the related 

proteins: the corresponding genes are damaged by acquired or somatic mutations. 

 

An influential and highly cited paper asserts that the development of human cancer is a 

multistep process, and the cells gain six biological capabilities during this progressive 

conversion. Such six biological capabilities are shared by all cancers as common traits, 

and they are called “hallmarks”. Those hallmarks are: self-sufficiency in growth 
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signals, insensitivity to growth-inhibitory (antigrowth) signals, evasion of programmed 

cell death (apoptosis), limitless replicative potential, sustained angiogenesis, and tissue 

invasion and metastasis19. And the authors proposed four new hallmarks of human 

cancers as an updated, which are genome instability and mutation, tumor-promoting 

inflammation, reprogramming energy metabolism, evading immune destruction20. 

 

These cancer hallmarks provide a solid foundation for understanding the biology of 

cancer.  

 

2.1.2 Gene expression-based molecular classification of GBM 

An influential and highly cited paper classify GBM into 4 distinct subtypes based on 

the gene expression data. The subtypes of GBM comprises: Proneural, Neural, 

Classical, and Mesenchymal21. Although the subtypes share similar genomic 

aberrations, they have distinctiveness in terms of gene expression patterns, mutation 

and copy numbers. Proneural GBM is characterized as mutations of TP53 and IDH1as 

well as amplification of PDGFRA. Patients with Proneural GBM are significantly 

younger and they tend to survive longer. However, TP53 mutation is not found in 

Classical subtype, which is described as a high level expression of EGFR and EGFR 

vIII mutant. The main features of Mesenchymal subtype are the frequent mutation of 

NF1 and TP53 tumor suppressor gene and an epithelial-to-mesenchymal transition 

(EMT). Neural is a normal-like subtype, which do not contain significantly higher or 

lower rates of mutations. Neural subtype is the expression of several gene types of the 

brain’s noncancerous nerve cells, or neurons. Patients of Neural subtype is oldest 

among the 4 subtypes. In response to aggressive treatment, Classical subtype presents 

longest survival time, while Proneural subtype seems cannot get any benefits from the 

treatment. 

 

2.2 Genome Methylation and GBMs  

DNA methylation is the first discovered epigenetic marks and remains the most studied. 

DNA methylation occurs almost exclusively in the context of CpG dinucleotides. CpG 

dinucleotides do not distribute randomly in genome. Most CpG dinucleotides are in 

CpG islands, which are regions which contain more than 500 bases with a CG content 

of more than 55%22. The ratio of CpG dinucleotides form in a CpG island and 

statistically expected CpG should be 0.65 at least. CpG islands are important, because 

there are about 60% human gene promoters having relation with them23, and the 

methylation state of these CpGs are widely regarded as critical indicators of gene 

regulation. Most of human gene promoters are usually unmethylated in normal cells. 

Generally, CpG island methylation is associated with gene silencing24. Some 

methylated DNA can promote the recruitment of methyl-CpG-binding domain (MBD) 

proteins25, which can recruit histone-modifying and chromatin-remodeling complexes 

to methylated sites. However, unmethylated CpG islands generate a chromatin structure 

preferring to recruit Cfp1, which is better for gene expression. Except CpG islands, 

CpG island shores are another kind of regions which are tend to occur DNA 

methylation.  CpG island shores are close to CpG islands (the distant is not more than 

2kb), and contain less CpG dinucleotides26.  There are two features of methylation of 

CpG island shores: (1) They are highly conserved between human and mouse; (2) Most 

of them are conjectured to be tissue-specific. Therefore methylated CpG island shores 

can be used to distinguish different tissues. Genome methylation can not only inhibit 

gene expression, but also can promote it27. Besides, methylated CpGs in repetitive 
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elements are found to protect chromosomal integrity28. Non-CG methylation has been 

found in CHG and CHH sites29, and 5-hydroxymethyl-2′-deoxycytidine has also been 

observed30. 

 

It has been conjectured that DNA methylation has an intimate connection with many 

human diseases. For example, cancer cells can be characterized by a massive global 

loss of DNA methylation and acquisition of specific patterns of hypermethylation31. 

And rise to hyper- and hypomethylated sites of DNA sequences may lead to a great deal 

of neurological diseases32. In fact, statistically significant associations are found 

between the DNA methylation states and histological subtypes and grades of gliomas. 

Notably, mutation of genes encoding the isocitrate dehydrogenase (IDH) is considered 

to be associated with distinct DNA methylation phenotype in gliomas. In addition, a 

pervasive and highly conserved DNA repair enzyme, O6-methylguanine-DNA 

methyltransferase (MGMT), is associated with resistance to alkylating agent cancer 

therapy, which is applied to many patients with glioblastoma33. To be specific, the 

promoter methylation status of MGMT influences glioblastoma sensitivity to alkylating 

agent. Some researchers suggest that MGMT promoter methylation assessment could 

provide a prognostic or predictive biomarker for benefit from alkylator-based 

chemotherapy. 

2.3 The predominant genes related to gliomas and GBMs 

Following the brief introduction of genetic characters of GBM, a relatively detailed 

description of some important genes and corresponding enzymes are exhibited. As was 

discussed before, transformation from normal cells to glioma or GBM cells is a 

multistep process, whereby each genetic change confers a proliferative advantage. 

Some cancer cells of GBM show stem cell-like features, and that is one of the reasons 

why GBM is resistant to many treatments and has a high recurs frequently. A deep 

understanding of those genes and enzymes will provide insights into the tumorigenesis 

of glioma and GBM. 

 

2.3.1 Genomic and epigenetic characterization of GBM 

GBM is characterized by distinctive histopathologic features such as cellular 

heterogeneity, necrosis, and endothelial proliferation. Numerous studies focusing on 

the genomic and epigenetic characters have been performed to comprehend the 

pathological mechanism of glioma and devise targeted therapeutics.  

 

According to a widely cited paper34, some important genetic events in GBM has been 

detected: (1) dysregulation of growth factor signaling via amplification and mutational 

activation of receptor tyrosine kinase (RTK) genes; (2) activation of the 

phosphatidylinositol-3-OH kinase (PI3K) pathway; and (3) inactivation of the p53 and 

retinoblastoma tumor suppressor pathways. Based on the previous studies and the 

powerful The Cancer Genome Atlas (TCGA) pilot project, many novel genomic 

characters of GBM or glioblastoma have been identified.  

 

Many amplification and deletion events are found in GBM samples with the analysis 

of genomic copy number alterations (CNAs). Those CNAs affect the expression of 

many genes, including some known cancer-related genes. For example, the inactivating 

mutations of NF1, activations of EGFR family and mutations in PI3K complex are 

detected in most glioblastoma samples, and the aberration of TP53, PTEN, PDGFRA, 

ERBB2, MET, ARF, MDM2, MDM4, CDKN2B, CDK4 and RB1 genes occur 
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frequently. Those genes may play a key role in the development of golioblastoma. 

Besides, MGMT methylation, together with the mismatch repair (MMR) genes 

mutations, is found to be associated with the alteration of mutation spectrum of samples 

which are exposed to alkylating agent chemotherapy. Notably, although primary and 

secondary GBM have similar pathology, they carry distinct patterns of genetic 

abnormalities.  

 

Glioblastomas also harbor more hypermethylated CpG loci relative to other types of 

gliomas. In fact, a study exhibits that the ratios of hyper- to hypomethylated CpG loci 

are statistically significantly different across glioma histological subtypes35. In addition, 

the hypermethylation of histone residue H3K9 occurs frequently in gliomas36. And a 

group of metabolic pathways are commonly hypomethylated in gliomas.  

 

The genetic and epigenetic pattern of different GBM samples may be valuable and 

informative for the clinical decision-making. In other words, patients with different 

pattern of mutations should receive distinct treatments. And that is one of the reason for 

the analyses of genomic data. 

 

2.3.2 FGF and FGFR 

FGF (Fibroblast growth factor) family is an enzyme family with varied functions in 

regulating of cell mitogenesis, chemotaxis, angiogenesis, proliferation, migration and 

differentiation37. FGFs have been found involved in the development of many systems, 

including skeletal, nervous, and vascular systems. FGFs are highly conserved in both 

gene structure and amino-acid sequence. All of the FGFs share certain structural 

characteristics, and most of them can bind heparin strongly. 

 

FGFs can signal cross epithelial-mesenchymal boundaries directionally and 

reciprocally.  Some members of this family are crucial for the neuronal signal 

transduction in the central and peripheral nervous systems. And FGFs are homeostatic 

factors and play a role in angiogenesis, tissue repair and response to injury in adult 

organism. In addition to the functions in normal development, FGFs and FGF signaling 

pathway play significant roles in tumor development and progression. Some of FGFs 

are observed improperly expressed and contribute to tumors38.  

 

Fibroblast growth factor receptors (FGFR) are the receptors that bind to FGF proteins, 

and they are receptor tyrosine kinase (RTK). FGFRs transmit extracellular signals to 

various cytoplasmic signal transduction pathways through tyrosine phosphorylation 

FGFRs aid FGF signaling system to achieve diverse effects on diverse target cells39. 

Presently, 4 FGFRs (FGFR1-4) have been widely studied, and they share the common 

extracellular region containing 3 immunoglobulin (Ig)-like domains (designated IgI, 

IgII and IgIII), and thus belong to the immunoglobulin (Ig) superfamily40. Other 

important member of Ig superfamily include platelet-derived growth factor receptor 

(PDGFR), cluster of differentiation 7 (CD7) and Interleukin 1 receptor (IL-1R). 

 

Binding with FGFRs, FGFs can activate many genetic programs and stimulate cell 

growth by promoting cell cycle progression and inhibiting pathways of cell death. If 

any step in the process becomes unregulated, the cells will grow beyond control and 

might lead to tumor. Therefore, components in such pathways are potential 

oncoproteins.  
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FGF signaling pathway is reported to stimulate GBM growth. FGF1 (acidic FGF or 

aFGF) shows an elevated expression in most tumor samples compared with the control 

brain tissues41. In an early research42, FGF2, a pro-angiogenic molecule, is found 

expressing in most human gliomas, while FGF2 cannot be detected in mormal brain.  

 

The expression of FGF2 also increases with the degree of malignancy and vascularity 

in human gliomas. In a recent study, FGF2, which can activate FGFR1-4, displays a 

growth-promoting effect in several GBM cell lines. Inhibition of FGF signaling 

pathway produces a small but significant growth inhibition of GBM cells in vitro43. In 

addition, FGF4 is also detected in tumor cells, and it is conjectured to participate in 

glioma angiogenesis. Both FGF2 and FGF4 are demonstrated to regulate vascular 

endothelial growth factor (VEGF) and the formation of new blood vessels44. However, 

the limited ability of FGF signaling pathway to promote GBM cell proliferation 

suggests that it is not the only pathway in driving GBM cell growth.  

 

Not surprisingly, alterations in FGFRs can disrupt the FGF signaling pathways, and 

FGFRs are thus considered to be associated with tumors. Previous studies reveal that 

FGFR1 expression is significantly increased in malignant tumors relative to normal 

white matter45. By contrast, FGFR2 expression is absent in malignant astrocytomas, 

while abundant in normal white matter as well as in all low-grade astrocytomas46. 

Scientists hypothesize that FGFR1 signals through Mitogen-activated protein kinase 

(MAPK) pathway.  

 

2.3.3 PDGF and PDGFR 

PDGF (The family of platelet-derived growth factor) includes 4 members: PDGF-A, -

B, -C, and -D. PDGFs participate in normal embryonic development, central nervous 

system (CNS) development, cellular differentiation, tissue homeostasis, and response 

to tissue damage. All members of PDGF family share the PDGF/VEGF homology 

domain, which is a highly conserved growth factor domain47. Due to the diverse 

transcriptional regulatory mechanisms and structures, PDGFs have numerous functions 

in the developments of normal systems and tumors.  

 

Platelet-derived growth factor receptor (PDGFR), as its name implicates, is the receptor 

of PDGF. PDGFRα and PDGFRβ are the two isoforms of PDGFR, and they are 

encoded by genes PDGFRA and PDGFRB respectively. As mentioned above, PDGFRs 

are classified as receptor tyrosine kinases (RTK), and they share Ig-like domains and a 

split intracellular tyrosine kinase domain. 

 

PDGFs activate the signal transduction pathways and downstream gene transcription 

events by signaling via PDGFRs. Different PDGFs have different affinity to PDGFRα 

and PDGFRβ48. 

  

Aberrant activity of the PDGFs and their receptors are associated numerous 

pathological conditions, and it has been reported that PDGFs and PDGFRs play 

important roles in the pathogenesis of gliomas49. Actually, overexpression and 

hyperactivity of PDGFs and PDGFRs are very common in human gliomas of all grades. 

The establishment of PDGF autocrine loop is not only an initial event of GBM 

progression, but also crucial in the late stages of GBM. PDGFs are also related to 

glioma angiogenesis, but the angiogenic effects of PDGFs are weaker than FGFs and 

VEGFs. 
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According to an early study, PDGFA and PDGFB are detected to be expressed in low-

grade and anaplastic astrocytomas as well as in glioblastomas, and the expression 

correlates positively with tumor grade50. Particularly, PDGFA expresses at higher 

levels than PDGFB. In addition, PDGFC and PDGFD are also present in glioma and 

primary glioblastoma51. Notably, PDGFC is undetectable in normal fetal and adult brain 

tissues and PDGFD express as a lower level in normal brain tissues. 

 

Amplification and overexpression of PDGFRs will lead to the activation of some 

important pathways in gliomas, including RTK signaling pathways, RAS/MAPK and 

PI3K pathways.  PDGFRα is found at a high level in all grades of gliomas, while 

PDGFRβ is absent in glioma cells. And PDGFRα expresses in glioblastomas at highest 

level52. Nonetheless, another study shows that the expression of PDGFRβ as well as 

PDGFB is detected in hyperplastic tumor endothelial cells in glioblastoma53. It is 

possible that the expression of PDGFRβ is confined in tumor endothelial cells. And 

PDGFRβ also displays a positive correlation with glioma grades. To date, activating 

rearrangements of PDGFRA gene are rarely detected in gliomas.  

 

2.3.4 EGF, TGF and EGFR 

EGF (Epidermal growth factor) stimulates cell growth, proliferation, and 

differentiation. Overactive signaling of EGF system are detected in many aggressive 

cancers including GBM54, and numerous evidences have demonstrated its importance 

in glioma transformation and angiogenesis. 

 

TGF (Transforming growth factor) refers to 2 classes of polypeptide growth factors: 

TGFα and TGFβ. However, they are not similar in the structural or genetical aspects. 

TGFα shares 42% homology with EGF and regulates normal growth and development 

of many tissues55. TGFα is demonstrated as a mediator of the proliferation and 

transformation of human glioma cells, and it has been reported to involve in the 

angiogenesis of gliomas56. TGFα expresses in gliomas, and its expression is correlated 

with tumor grade as well as the expression of EGFR and Ki-6757. 

 

TGFβ serve as an inhibitor of proliferation in various systems. However, TGFβ is 

detected to be mitogenic for many glioma cell lines58. One of the possible explanation 

for the switched function of TGFβ is the dysregulation of the TGFβ signaling pathway. 

Besides, TGFβ protein induces expression of PDGFA, PDGFB, and PDGFRβ in glioma 

cells, and that is also a factor for TGFβ to convert from inhibitor to mitogen.  

 

TGFβ plays a role in glioma angiogenesis. TGFβ expresses in glioblastoma but is 

almost absent in low-grade glioma or normal brain. And TGFβ is also inversely 

correlated with the survival of patients with malignant gliomas59.  

 

Epidermal growth factor receptor (EGFR, ERBB or ERBB1) is the receptor of EGF and 

TGFα, and it is a RTK. EGF and TGFα exert their effects on many pathways through 

binding EGFR. High level of expression in many types of cancer suggests that EGFR 

is strongly associated with the pathogenesis and tumor aggressiveness of multiple 

cancers. In fact, amplification and overexpression of EGFR is a striking feature of 

GBM60. The most common mutant form of EGFR is EGFRvIII, which is more 

oncogenic than wild type of EGFR (wtEGFR)61. EGFRvIII usually coexpresses 
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wtEGFR, and it is correlated with HB-EGF expression in GBM. However, 

understanding about the oncogenic potential of EGFRvIII is incompleted. 

 

EGFR is rarely detected in normal glial cells but is widely expressed in human 

gliomas62. The gene encoding EGFR, is the most frequently amplified RTK gene in 

glioblastoma. Amplification of EGFR often occurs in many primary GBM samples and 

is associated with EGFR overexpression, whereas it is very rare in secondary GBMs. 

Particularly, EGFR amplification has a correlation with the histologic subtypes of 

GBM. Interestingly, EGFR gene rearrangements are observed in most samples with 

EGFR overexpression. Up to now many EGFR genetic alterations have been found, 

such as gene rearrangements, deletions, alternative splicing, and translational 

alterations. Those alterations could result in the expression of aberrant EGFR and 

contribute to an increased tumorigenicity. Evidence from studies about radiation and 

human head and neck carcinoma supports that the expression of EGFR is directly 

correlated with poor prognosis and radiation resistance63. Since inappropriate 

expression of EGFR contribute to the highly resistance to radiation treatments of GBM, 

EGFR signaling system is an attractive target for therapeutics designing. 

 

2.3.5 NF1 

NF1 (Neurofibromin-1) is a tumor suppressor and a negative regulator of the RAS 

signal transduction pathway64. Loss of NF1 expression will result in elevated activity 

of RAS, which is an important intracellular protonocoprotein in promoting cell growth 

and survival. Consequently, hyperactivation of RAS will activate a series of 

downstream intermediates, including AKT, and the mammalian target of rapamycin 

(mTOR). 

 

Mutations in NF1 have been linked to the hereditary condition neurofibromatosis type-

1, where patients are predisposed to glioma development65. Mutation or homozygous 

deletion of NF1 is also observed in some glioblastoma samples. 

 

2.3.6 PTEN 

PTEN (Phosphatase and tensin homolog deleted on chromosome TEN) is a protein 

containing a lipid-binding domain that allows anchorage to the plasma membrane. 

Since PTEN is a direct antagonist of the activity of PI3K, inactivation of PTEN will 

cause AKT hyperactivation and thus prompt the growth and proliferation of cells66. 

 

PTEN is originally discovery as tumor suppressor, which is mutated and lost in many 

types of cancer. A variety of mutations of PTEN are shown correlated with the 

development and progression of cancer. Mutations and deletions of PTEN are frequent 

and late events in high-grade gliomas, but rarely found in low-grade gliomas. Loss of 

PTEN is also significantly associated with a poor survival67.  

 

2.4 The predominant pathways related to glioma and GBM 

Like many other types of cancer, a series of pathways malfunctions exist in GBMs. And 

those aberrance of pathways are essential for the normal cells to transform into tumor 

cells progressively and to become malignant. The deregulations of 3 pathways: 

RTK/RAS/PI3K signaling, the p53 and RB tumor suppressor pathways, are detected in 

most glioblastoma samples, implying the disruption of these pathways is a core 

requirement for glioblastoma pathogenesis. Moreover, with the recent advances in 
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technology and approaches, novel pathways contributing to gliomas and GBMs are 

reported68. 

 

2.4.1 The RB pathway 

Members of RB (retinoblastoma protein) family are tumor suppressor proteins which 

are found as dysfunctional in some cancers. RBs function primarily as regulators of the 

mammalian cell cycle progression, and suppressors of cellular growth and proliferation. 

Generally, each RB bind and sequester distinct members of E2F family of transcription 

factors, and thus inhibit proliferation through repressing the transactivation of relevant 

genes69. Of note, E2Fs target genes encode proteins involved in DNA metabolism and 

synthesis and chromosomal replication. E2F DNA binding sites help to repress 

transcription in quiescent cells. However, activated CDK complexes by MAPK will 

phosphorylate RBs, enabling the expression of E2F-dependent genes that facilitate the 

G1/S transition and S-phase. Also, the p16INK4a transcribed from gene CDKN2A 

inhibits both CDK4 and CDK6 and maintains RB activation. Therefore, the inactivation 

of p16INK4a (the inhibitor of) will also disrupt RB functions70.  

 

Some genetic alterations inactivating RB pathway have been detected in gliomas. In 

high-grade glioma, amplification of the CDK4 and CDK6 gene, and mutation of RB1 

gene are found. Markedly, inactivation of p16INK4a caused by allelic loss or 

hypermethylation prevails in cultured glioma cell line and high-grade gliomas71, 

implying that p16INK4a is a very important suppressor of glioma tumor. In addition, loss 

of chromosome 13q is representative in the transition from low- to intermediate-grade 

gliomas72. 

 

2.4.2 The p53 pathway 

Tumor suppressor p53 is a major regulator of multiple cellular responses encoded by 

the gene TP53. The p53 has been studied in a great depth and it is indispensable in cell 

division regulatory73. And p53 pathway contain hundreds of genes that response a wide 

range of stressing signals, involving cell cycle arrest, apoptosis or cellular senescence. 

Inducing apoptosis of neurons and neural progenitors, p53 plays an essential role during 

the development of central nervous system by controlling the cell number. Loss of p53 

function facilitates the self-renewal of early neural progenitors. 

 

Somatic mutations in the TP53 gene are the most common genetic changes found in 

human cancer, and alterations in genes which impact p53 functions also widely exist in 

most cancers. There are many factors that can cause the inactivation of p53, such as 

viral infection, loss of ARF, or overexpression of MDM2.  

 

The p53 transcription factor can be activated in response to DNA damage, hypoxia, and 

oncogene activation. After post-translational modification by various genotoxic and 

cytotoxic stress-sensing agents, stabilized p53 function as a transcription factor 

regulating more than 2500 genes promoters. Among the genes stimulated by p53 are 

the p21 (cyclin-dependent kinase inhibitor1), MDM2, and many genes encoding 

proapoptotic proteins. Besides the target gene of p53, MDM2 also induce the p53 

inactivation through inhibiting p53 transcription and catalyzing p53 ubiquitination. 

Actually, MDM2 is a key negative regulator of p53 during normal development and in 

tumorigenesis74. Another component in p53 pathway is MDM4, which inhibits p53 

transcription and enhances the ubiquitin ligase activity of MDM275. Importantly, 

CDKN2A (the gene encoding p16INK4a) encode a second product: ARF protein (p14ARF 
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in humans and p19arf in mice). ARF protein is a tumor suppressor that antagonize 

against MDM2 and stabilize p5376. And the expression of ARF is facilitated by 

CHD577. Nevertheless, ARF function is not restricted to the p53 pathway. E2F1, the 

important component in RB pathway, can be inhibited by ARF. And MDM2 

participated in the modulation of E2F1 activity by ARF78. In fact, evidence from many 

experiments supports that there are some connections between p53 pathway and RB 

pathway.  

 

TP53 mutations are prevalent in glioblastomas, especially in the secondary 

glioblastoms. Loss of p53 caused by point mutations or chromosome 17p loss is a 

frequent and early event in the pathological progression of secondary GBM79. 

Amplification of chromosome harboring MDM2 gene is found in sporadic primary 

GBM samples80. Amplification of MDM4 is also found in GBM81. There are also some 

GBM samples containing loss of chromosome 1p, where the CHD5 gene is located. 

The inappropriate expression of p21 (the inhibitor of CDK2 encoded by gene 

CDNK1A) caused by p53 functional inactivity is also found in glioma, although there 

is no genomic alteration in CDNK1A gene. A study shows the evidence that p53 loss 

might cooperate in tumorigenesis by impairing neural stem cells differentiation 

potential82.  

 

2.4.3 The PI3K pathway 

Phosphoinositide 3-kinases (PI3Ks) are a family of proteins regulating cell growth, 

metabolism, proliferation, glucose homeostasis and vesicle trafficking. There are 3 

members in PI3K family: class-I, -II, and -III PI3K, and class-I PI3K is the most 

extensively studied member83. PI3Ks can phosphorylate the proteins with pleckstrin 

homology (PH) and PH-like domains, and those proteins are thus recruited to plasma 

membrane and transmit signals. Among those proteins, Protein Kinase B (AKT or PKB) 

is the best-characterized one. AKT phosphorylates about 100 substrates thereby 

modulating a wide range of cellular functions84. For example, AKT activates cell 

proliferation and exerts a strong anti-apoptotic effect by phosphorylation various 

proteins. AKT is also essential in forming genetically modified neural progenitors for 

GBM85. In addition, AKT also regulates a set of proteins implicated in growth, 

metabolism and angiogenesis. Importantly, AKT expedites the activation of mTORC1 

pathway through the phosphorylation of TSC2 (tuberin) and PRAS40 (proline-rich 

AKT substrate of 40 kDa)86. Since mTORC1 is a complex regulating protein translation 

and ribosome biogenesis, activated AKT promotes the production of ribosomes and 

proteins. In fact, the PI3K/AKT/mTOR pathway plays an important role in apoptosis 

and hence cancer and longevity87. 

 

Downstream components of PI3K pathway confer strong feedback controls88. For 

example, feedback signaling can activate AKT and lead to a poor result in the 

treatments of cancers89. Hyperactivation of mTORC1 will result in the repression of 

PDGFRA and -B transcription, which impacts not only in PDGF signaling to AKT but 

also on the proper transmission of the signal from other growth factor receptors90. 

And many studies have shown that inhibiting mTORC1 will activate PI3K. Besides, 

transcriptional repression and inhibitory phosphorylation of IRS-1 by downstream 

elements also cause feedback inhibition of PI3K91. 

 

According to considerable works, PI3K pathway is a central integrator of metabolism 

and survival/growth signals, and aberrances of many members in PI3K pathway are 
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associated with development of malignancies. Firstly, mutations in PTEN, which is the 

upstream negative regulator of PI3K pathway, is commonly found in many cancers 

including GBM92. Secondly, PI3K class IA, which is on the top of this pathway, is 

mutated and amplified in a variety of cancers. And mutant PIK3R1 has been found in 

GBM93. Furthermore, amplification of AKT genes exists widely in human cancers, and 

a point mutation of AKT1 in several cancer patients is reported94.  

 

2.4.4 The RAS/MAPK pathway 

Activated RAS proteins implicate in cellular signal transduction, which is crucial in 

many cellular processes, including proliferation, migration, differentiation and 

apoptosis. RAS is also one of the most common oncogene in human cancer95. 

 

RAS/MAPK pathway can be switched on by integrins. Integrins are transmembrane 

heterodimer receptors that mediate the interaction between the ECM (Extracellular 

matrix) and the cytoskeleton. Usually integrins create connections between ECM and 

cytoskeleton actin filaments by binding cytoplasmic anchor proteins and creating focal 

adhesion complex96. Those focal adhesion complexes will facilitate the cross-

phosphorylation and activation of FAK (focal adhesion kinase). Upon activated, FAK 

prompts a signal transduction cascade recruiting Grb2 (the adaptor protein) and SOS 

(the RAS guanine nucleotide exchange factor) to phospho-FAK at the plasma 

membrane, and finally RAS is activated. Activated RAS (RAS-GTP) then activates 

serine/threonine kinase RAF, and RAF phosphorylates mitogen-activated protein 

kinase kinase (MEK), which in turn phosphorylates MAPK (mitogen-activated protein 

kinase)97. The activation of MAPK lead to the phosphorylation of many nuclear 

transcription factors that induce the expression of genes promoting cell cycle 

progression. Markedly, RAS can also activate PI3K.  

 

Besides integrins, activated RTKs can also induce MAPK pathway. Particularly, 

activated RTK expedites receptor dimerization and cross-phosphorylation, which create 

binding sites for adaptor protein complexes such as Grb2/SOS. And RAS can be 

activated. 

 

Some mutations of RAS gene family will generate permanently activated RAS proteins, 

which result in unintended and overactive signaling inside the cell and is associated 

with some cancers98. Although RAS mutation is very rare in GBMs, increased RAS 

pathway activity is detected in almost all GBMs. Therefore, it is also possible that 

upstream factors elevate RAS activity. For example, the integrin α3β1 which regulates 

glioma cell migration is consistently over-expressed in gliomas99. And RTKs like 

EGFR and PDGFR are highly activated in many GBMs. Moreover, in a mouse model, 

combined activation of RAS and AKT in neural progenitors induces GBM formation100. 

 

2.5 Isocitrate Dehydrogenase (IDH) and GBM 

Isocitrate Dehydrogenase (IDH) is an enzyme that catalyzes the oxidative 

decarboxylation of isocitrate into alpha-ketoglutarate (αKG or 2-OG), which produces 

NADPH (or NADH) and is involved in tricarboxylic acid (TCA) cycle. Since the 

reaction catalyzed by IDH is reversible, IDH participates in the reaction forming 

isocritrate through reductive carboxylation of αKG. The isocritrate produced from this 

reaction will be further metabolized to facilitate lipid biosynthesis101. 
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Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are two isoforms of isocitrate 

dehydrogenase. IDH1 localizes to the cytosol and peroxisomes, whereas IDH2 exists 

in mitochondria. IDH1 and IDH2 are NADP+ -dependent enzymes. And there is also an 

IDH enzyme called IDH3, which use NAD+ as cofactor. The different IDH isoforms 

have overlapping function in cellular metabolism, but not redundant102. 

 

Heterozygous mutations in the gene encoding isocitrate dehydrogenases (IDH1 or 

IDH2) are frequently observed in gliomas and some other tumors103, and such mutations 

are considered to be associated with the tumor formation in GBM. Mutations in IDH1 

are detected in gliomas at a higher frequency than mutations in IDH2. The inverse 

correlation between mutations in IDH1and IDH2 suggests that they affect a similar 

pathway. According to previous studies, mutations in IDH1 are consistently found in 

codon 132 for arginine (R132), and mutations in IDH2 are largely confined to the 

analogous amino acid R172104. All the presently identified hotspot mutations are single-

nucleotide substitutions in the respective arginine codons105. 

 

Mutations (usually the mutations are heterozygous) makes IDH reduce affinity for its 

substrates and thus lose activity to convert isocitrate into αKG. However, mutant IDH 

gains the ability to reduce αKG to D-2-hydroxyglutarate (D2HG or R-2-

hydroxyglutarate) in an NADPH-dependent manner and results in accumulation of 2-

hydroxyglutarate106. In fact, the level of αKG is slightly lower in IDH mutant gliomas, 

though this decrease was not statistically significant. And the tumor-derived mutant 

IDH dominantly inhibits the wild-type IDH107. Some in vitro experiments show that the 

mutant IDH promotes the proliferation and blocks differentiation of cells108. But some 

studies reveal that mutant IDH has very limited capability to promote the proliferation 

and inhibit differentiations in vivo independently. 

 

Except an important TCA cycle intermediate, alpha-ketoglutarate (αKG) is also an 

essential cofactor for many enzymes, including Jumonji domain-containing histone 

demethylases, TET 5-methylcytosine hydroxylases, and EglN prolyl-4-hydroxylases. 

EglN prolyl-4-hydroxylases is the enzyme that tag HIF transcription factor for 

polyubiquitylation and proteasomal degradation. 

 

D-2-hydroxyglutarate (D2HG) is an oncometabolite109 having a connection with the 

increased risk for glioma. No physiologic functions of D2HG are found in normal 

metabolism. Usually, D2HG exists in normal cells at a very low level. The level of 

D2HG in IDH mutant tumors can be extremely increased. D2HG is structurally and 

chemically similar with αKG. Competing directly with αKG, D2HG inhibits αKG -

dependent dioxygenases and thus hinders DNA demethylation, resulting in 

hypermethylation of CpG dinucleotides110. Besides, D2HG also inhibits αKG -

dependent oxygenases and causes an increasing of histone methylation. And the histone 

demethylation is required for lineage-specific progenitor cells to differentiate into 

terminally differentiated cells. Such epigenetic alterations impact on differentiation and 

gene transcription, and contribute to the formation of tumors.  

 

Furthermore, mutant IDH contributes to tumorigenesis by up-regulating HIF-1α target 

gene transcription. Hypoxia-inducible factor 1-alpha (HIF-1α) plays an important role 

in the transcriptional activation of genes involved in glucose metabolism, angiogenesis, 

and other crucial aspects of cancer biology. HIF-1α confers tumor cells a growth 

advantage by regulating the hypoxic response pathways. It has been found that HIF-1α 
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is associated with increased patient mortality in several cancer types111. However, a 

study on astrocytomas suggests that HIF-1α can be oncoprotein or tumor suppressor, 

depending on the extant microenvironment of the tumor112. And some researchers assert 

that HIF elevation in IDH mutant tumors is usually confined to areas of necrosis and 

presumed severe hypoxia. They also suggest that IDH mutation is not the only reason 

for the activation of HIF-1α pathway in gliomas113. 

 

As what mentioned before, the level of HIF-1α is increased in IDH mutant tumors 

compared with normal brains in an experiment of IDH1 R132H knock-in mice114. The 

accumulation of 2-hydroxyglutarte in IDH mutated tumors will inhibit the prolyl 

hydroxylase, which are αKG-dependent dioxygenases that hydroxylate HIF-1α for 

proteasomal degradation in the presence of oxygen. Therefore, the mutant IDH may 

stabilize HIF-1α and increase its steady-state levels through the decrease of enzyme 

activity and increased level of 2-hydroxyglutarte. However, several researches shows 

controversial results about the relationship between D2HG and HIF-1α. According to 

recent studies, it is the L-2-hydroxyglutarate (L2HG or S-2-hydroxyglutarate) 

enantiomer that inhibits HIF prolyl hydroxylases, while the D2HG enantiomer 

produced by mutated IDH stimulates their activity resulting in diminished HIF-1α 

levels115. In that experiment of knock-in mice, tissue hypoxia is also a reason for the 

elevated level of HIF-1α. Nonetheless, whether D2HG is sufficient to down-regulate 

HIF-1α remains obscure. 

 

EglN1 is a member of αKG-dependent dioxygenases family, and it is the principal HIF 

prolyl-hydroxylase. As described above, HIF-1α will be degraded after tagged by EglN 

under normoxic conditions. When the activity of EglN1 is inhibited under hypoxic 

conditions, HIF-1α will have the chance to accumulate and activate the transcriptional 

response of cells to hypoxia. Consistent with the discovery about D2HG potentiating 

EglN1 activity, IDH mutant brain tumors show decreased HIF activation relative to 

their wild-type counterparts. Some researches deem that EglN plays a causal role in 

transformation of astrocytes by mutant IDH in cell culture models. Actually, some EglN 

inhibitors have been developed for the treatment of anemia and tissue ischemia116, 

which may inspire the researches of novel treatments for IDH mutant tumors. 

 

TET1, TET2 and TET3 are from a family of αKG-dependent DNA-modifying enzymes, 

and they catalyze reactions to convert 5-methylcytosine (5mC) to 5-

hydroxymethycytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine 

(5caC)117. And the TET enzymes are crucial in epigenetic regulations of gene 

expression118. TET2 is considered to be a relevant target of D2HG in IDH mutant 

tumors. An in vitro experiment demonstrates that the catalytic activity of TET2 is 

potently inhibited by D2HG110. Although the connections between TET2 and IDH in 

glioma are still unclear, researchers believe that loss of TET2 activity is an important 

and frequent pathogenic event in brain tumors119.  

 

Another potential relevant target of D2HG is the Jumonji domain-containing (JmjC) 

family of histone lysine demethylases, which have crucial functions in regulating gene 

expression through mediating histone methylation and demethylation. This enzyme 

family has been connected with the pathogenesis of many cancers: some JmjC histone 

demethylases are considered to function as tumor suppressors but some promote tumor 

growth. KDM6B (JMJD3), a member of JmjC histone demethylases family, is reported 

to promote the terminal differentiation of glioblastoma cells120. And KDM6B is also 
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associated the regulation of p53. It has been observed that D2HG can inhibit many JmjC 

histone demethylases, and may thus contributes to transformation of mutant IDH 

expressing cells121. Some researchers speculate that the important alteration of histone 

methylation induced by D2HG that promote tumor formation are only at specific 

genetic loci. Although it is unknown whether D2HG affects histone methylation in 

primary IDH mutant tumors, different functions of the JmjC histone 

demethylases in different tissues might explain the tissue specificity of IDH mutations 

in cancers.  

 

Except what mentioned above, there are many enzymes are found to be inhibited by 

D2HG in IDH mutant tumors, including cytochrome c oxidase (complex IV), ATP 

synthase (complex V)122 and PLOD family of lysyl-5-hydroxylases. Understanding the 

associations between those enzymes and tumors will help to understand how IDH 

mutant contribute to tumor formation and development. And it will also provide 

valuable information for the design of specific therapeutics. 

 

IDH1 and IDH2 also have a function producing NADPH, which is the principal cellular 

and mitochondrial antioxidant preventing cells from oxidative stress and radiation 

damage123. IDH mutations will result in a lower concentration of NADPH, and thus 

disrupt the ability of cells for reductive processes in defense against reactive oxygen 

species. NADPH has also some essential regulatory functions in cells. The disruption 

of NADPH levels will have profoundly effects on the IDH mutant cells.  

 

Most mutations of IDH occur frequently in grades II–III gliomas and secondary 

glioblastomas124. Spontaneous IDH mutations are thought as strong prognostic 

indicators in secondary glioblastomas125. And point mutations in IDH is one of the 

major feature of Proneural GBM (most known secondary GBMs were classified as 

Proneural). Nevertheless, such mutations are very rare in primary GBMs and pediatric 

GBMs126, and none of the brain tumors of nonglial subtypes are found as harboring 

IDH mutations127. And the mutations of IDH1 and IDH2 seem to be mutually exclusive 

in brain tumors, because no cases are reported containing both IDH1 and IDH2 

mutations128. 

 

IDH mutant tumors tend to be relatively indolent and are associated with increased 

overall survival and younger age, which is consistent with the fact that HIF-1α can work 

as both oncoprotein or tumor suppressor. However, it is obscure whether the difference 

is driven by IDH mutational status of tumors, or is just a reflection of other biological 

distinctions. IDH mutations are also found more commonly in tumors with TP53 

mutations. Besides, IDH mutations have relation with a distinct DNA methylation 

phenotype and an altered metabolic profile in glioma129. IDH mutant brain tumors 

frequently displays a global DNA hypermethylation signatures. A study on glioma 

methylation patterns demonstrates that the ratio of hyper- to hypomethylated CpG loci 

in IDH mutant tumors is much higher than that of IDH wild-type tumors130. And IDH 

mutant tumor samples are more highly methylated than other samples without such 

mutations. Although IDH mutation is heterozygous, the methylation profile of IDH 

mutant tumors is generally homogenous. This study also concludes that IDH mutation 

is more robustly associated with methylation class compared with other classical glioma 

tumor genetic markers. 

 



16 

 

Mutations in IDH also lead to the hypermethylation of several cellular signaling 

pathways and the hypomethylation of some metabolism and biosynthesis pathways131. 

One possible explanation is that the relatively lower level of αKG and NADPH in IDH 

mutant tumor could drive the selection of cells with compensatory metabolic gene 

expression profiles. And the alterations in those cells are regulated by epigenetic factors 

such as methylation and chromatin configuration. 

 

Taken together, IDH mutations play a crucial role in gliomagenesis and they are 

associated with a distinct phenotype. Mutant IDH is regarded as an oncogene. The 

genetic and epigenetic alterations in IDH mutant gliomas are not independent. And 

researching on the association between IDH mutations and phenotypes in glioma can 

provide profound implications for the development of diagnoses and therapies. 

However, there are still many facts about IDH and glioma remaining unknown. The 

relationship between IDH mutation and glioma tumor progression is much more 

complex than what the recent studies have shown. 

 

2.6 Gene signatures  

A gene signature is defined as a group of genes, whose combined gene expression 

alteration (or pattern) can be regarded as a unique characteristic of a medical or other 

condition132. In other words, the expression of the group genes are significantly 

associated with a certain condition. Ideally, a gene signature is predetermined and 

should have a specificity in terms of diagnosis, prognosis or prediction of therapeutic 

response. And such a specificity should be validated in independent groups of samples. 

 

Identifying gene signatures can be applied to a wide range of biological and medical 

fields: from understanding tumor formation to initiating novel treatments. Microarray 

technology has become the most widely used method to find gene signatures.  After 

decades of development, many gene signatures about tumors are identified. For 

example, a gene signature is found to be strongly associated with the clinical feature of 

breast cancer133, and classification of human acute leukemias can be achieved based on 

gene signatures134. A variety of analysis methods for identifying gene signaures have 

been proposed, such as “bottom up”, “top-down” supervised approaches, and gene 

candidate approach135. In addition, gene signature models are developed based on 

known pathways or other information.  

 

2.7 Introduction of statistics methods1 

2.7.1 Statistics and parameters 

A statistics represents a characteristic of samples, and it can be divided as descriptive 

statistics and inferential statistics. The main purpose of descriptive statistics is to 

demonstrate and summarize the data from samples. However, inferential statistics are 

used to make inference or prediction from data. Statistics are widely used in hypotheses 

testing. 

 

One the other hand, a parameter refers to a characteristic of a population. And the 

inferential statistics are usually used to infer a parameter of the population from which 

samples are drawn. 

                                                 
1 Most of the formulas in this section is from the paper “Resampling-based multiple testing for microarray data analysis” 
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Normally an appropriate test statistics should be determined before doing the 

hypotheses tests, and how to choose statistics depends on the details of the particular 

experiment. Only depending on samples, statistics collect and represent the information 

from a certain aspect of samples. Assuming that there are a series hypotheses to be 

tested, let 𝑇 stand for the test statistic, and 𝑇𝑖 means the statistic for each null 

hypothesis 𝐻𝑖. After choosing the critical value 𝑐𝛼, a null hypothesis can be rejected 

when |𝑇𝑖| > 𝑐𝛼, where 𝛼 means confidence level indicating that the probability of 

rejecting a true null hypothesis is equal or less than 𝛼 . 

 

2.7.2 Hypothesis testing 

Based on sample data, hypothesis testing is a procedure to identify whether there is 

enough evidence supporting a hypothesis with respect to a parameter. In most cases, 

hypothesis testing consists of 2 opposite hypotheses: null hypothesis (H0) and 

alternative hypothesis (H1). Null hypothesis is a statement about no effects or no 

difference. And the alternative hypothesis is in favor of that an effect or a difference 

does exist. Since most researches focus on the influence of drugs or conditions on 

samples, H0 is generally expected to be rejected. And H1 can be directional or non-

directional (or two-tailed)136. Non-directional hypothesis does not make inference in a 

particular direction, while directional hypothesis indicates a directional relationship 

between groups. Although there are 3 possible alternative hypotheses, researchers can 

only select one as H1. 

 

For a typical gene expression data analysis, one null hypothesis is usually like: the gene 

does not express differently between the 2 conditions/phenotypes.  

 

Upon collecting data from samples, hypotheses are evaluated with appropriate 

inferential statistical tests. A test statistic will be generated, which is a function of the 

sample. The sampling distribution of test statistics under the null hypothesis is 

calculable, so that the test statistic can be compared with critical values and the p-value 

can be gained. The critical values in a test are highly unlikely to occur if the null 

hypothesis is true. And the comparison between test statistic and critical values 

indicates the statistical significance, which means whether the observed difference 

occur by chance or is due to a genuine experimental effect. 

 

A sampling distribution contains all the possible values the test statistic can be assumed, 

if infinite number of studies with the same size of sample as the study were conducted. 

Based on the sampling distribution, one can declare whether the observed difference 

between sample groups is due to chance. And p-value can be calculated, which refers 

to the probability of obtaining a test statistic (𝑇 = 𝑡) result at least as extreme as the one 

that was actually observed, under the assumption that H0 is true.  

The p-value is an alternative way to evaluate the hypotheses. The smaller the p-value 

is, the more convincing the evidence is in favor of the alternative hypothesis. One can 

set the criteria to decide whether to reject H0, and the criteria is referred to as 

significance level for a test. The significance level is typically set at 5% or 1%: if the 

p-value is less than 5% or 1% assuming H0 is true, this null hypothesis can be reject due 

to the unlikelihood of getting such a result by chance.  

 

The confidence interval (CI) is a type of estimated range of values for an unknown 

population parameter. CI is used to measure the reliability of an estimate. 
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Correspondingly, confidence level indicates the frequency of the observed interval 

contains the parameter. In hypothesis testing, confidence level is complement of 

significant level, i.e.  95% confidence interval means to reject any value of H0 that is 

outside the interval at a 5% significance level. 

 

In the other hand, the set of values for the test statistic that leads to rejection of null 

hypotheses is called rejection region, while acceptance region is defined as the set of 

values for the test statistic which are consistent with the null hypotheses. Obviously, 

rejection region and acceptance region are complementary. In many analysis, rejection 

region is the only set needed to be determined. And rejection region at level 𝛼 can be 

denoted as Γ𝛼 . For a particular confidence level 𝛼, p-value is the minimum type I error 

rate over all possible rejection regions Γ𝛼 containing the observed value 𝑇 = 𝑡,  i.e., 

 

𝑝(𝑡) = min Pr (𝑇 ∈ Γ𝛼|𝐻 𝑖𝑠 𝑡𝑟𝑢𝑒); 𝑡 ∈ Γ𝛼 

 

When  𝑝 < 𝛼, rejecting null hypotheses provides control of the type I error rate at level 

𝛼. Apparently, a smaller 𝑝 gives stronger evidence to reject the null hypothesis. The p-

values without adjustments are called raw p-value. 

 

Usually, selections about the type of alternative hypothesis and the level statistical 

significance should be determined before conducting the experiments. And appropriate 

statistical testing procedures should be selected according to the characteristics of the 

data from studies.  

 

2.7.3 Type I and Type II errors in hypothesis testing 

In hypothesis testing, errors committed by researchers can be divided into Type I and 

Type II errors. A Type I error (or a false positive) occurs when a true null hypothesis is 

rejected. The likelihood of making a Type I error depends on the significance level. For 

instance, the possibility to commit a Type I error (usually represented by 𝛼) at a 5% 

significance level is 5%. A Type II error (or a false negative) is to retain a false null 

hypothesis.  

 

Assume that among the 𝑚 null hypotheses testing simultaneously, the number of true 

null hypotheses is  𝑚0 . Let 𝑅 denote the number of rejected hypotheses. Then a 

summary table of multiple testing problem can be built (table.2.1). Among the true null 

hypotheses, there are 𝑉 hypotheses which are rejected (Type I errors) and 𝑈 hypotheses 

which are not rejected. Similarly, for the 𝑚 − 𝑚0 non-true null hypotheses, 

𝑆 hypotheses are declared as significant, while 𝑇 hypotheses are declared non-

significant (Type II errors). The number 𝑅 is observable random variables, while 

number 𝑉, 𝑈, 𝑆 and 𝑇 are unobservable random variables. 

 
Table. 2.1 Summary table of multiple testing problem 

 Not Rejected Rejected Total 

True null hypotheses 𝑈 𝑉 𝑚0 

Non-true null hypothese 𝑇 𝑆 𝑚 − 𝑚0 

Total 𝑚 − 𝑅 𝑅 𝑚 

 

Therefore, two sets Μ0 {𝑖: 𝐻𝑖 𝑖𝑠 𝑡𝑟𝑢𝑒} and Μ1 {𝑖: 𝐻𝑖 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒} can be defined, and 

obviously, |Μ0| =  𝑚0 and  |Μ1| =  𝑚 − 𝑚0 . Therefore, the true hypotheses can be 
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written as 𝐻Μ0
= ⋂ {𝐻𝑖 𝑖𝑠 𝑡𝑟𝑢𝑒}𝑖 ∈Μ0

, and the total null hypotheses in the analysis is 

𝐻Μ =  ⋂ {𝐻𝑖 𝑖𝑠 𝑡𝑟𝑢𝑒}.𝑚
𝑖=1  

 

The likelihood of committing Type II errors (denoted as 𝛽) is inversely related to the 

likelihood of committing a Type I error. Namely, there is a trade-off between them. In 

hypothesis testing, the likelihood of making Type I error is the one to be controlled at 

a certain level. Because Type I errors are regarded more harmful, and Type II errors are 

not “really errors”. When the testing result is not significant, it indicates that the 

evidence is not strong enough to support that H0 is false. Therefore, lacking of 

significance does not mean H0 is true. 

 

2.7.4 Multiple testing problem 

In large-scaled studies (for example, the microarray gene expression experiments), 

numerous hypotheses are tested simultaneously and incorrect rejections of H0 are more 

likely to occur if no measures for control are taken137. To be specific, let 𝑚 and 𝛼 denote 

the number of hypotheses to be test and significant level respectively. And let 𝑎 

represent the false H0 among all the 𝑛 null hypotheses. Then there will be 𝛼 ∗ (𝑚 − 𝑎) 

hypotheses being incorrectly rejected by chance. Since the false H0 usually forms a very 

small part of the overall hypotheses, the number of the false positive hypotheses 

approximately equals to 𝛼 ∗ 𝑚, which is not a small amount. In other words, the 

probability of generating at least 1 false positive is 1 − (1 − 𝛼)𝑚. Obviously, such 

probability is too large to be accepted. And when the number of hypotheses (𝑚) is very 

large, the results will be quite misleading. That is the multiple testing problem typically 

existing in many microarray experiments.  

 

Several methods have been developed to address the multiple testing problem, and most 

of them try to control the FWER (family-wise error rate) and FDR (false discovery rate) 

through adjusting p-value and confidence level for each individual test. 

 

FWER is the probability making at least one Type I error (or incorrectly rejecting the 

H0) over the whole family of tests. And FDR is the expected proportion of falsely 

rejected H0 among all rejected H0. 

 

FWER describes the likelihood of committing any error among all the hypotheses tests, 

while FDR reveals to what fraction of the rejected H0 are, on average, really true. 

Bonferroni correction and Holm–Bonferroni method are the single-step procedures 

attempting to control FWER, whereas Benjamini–Hochberg procedure and  

Benjamini–Hochberg–Yekutieli procedure control FDR138. Westfall and Young 

permutation is an approach controlling FWER used when test statistics are strongly 

dependent. Methods controlling FWER are much more conservative. One need to select 

the controlling methods based on the research condition and goal.  

 

2.7.5 Methods for controlling FWER in microarray data analysis 

As discussed before, the Family-wise error rate (FWER) is defined as the probability 

of making one or more type I error, i.e., 

𝐹𝑊𝐸𝑅 = Pr(𝑉 > 0) 
 

Controlling the FWER under the true null hypotheses 𝐻Μ0
= ⋂ {𝐻𝑖 𝑖𝑠 𝑡𝑟𝑢𝑒}𝑖 ∈Μ0

 is 

called exact control.  
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𝐹𝑊𝐸𝑅 = Pr(𝑉 > 0|𝐻Μ0
) 

 

However, in many cases the number of true null hypotheses is unknown, weak control 

is adopted to control the FWER under all the null hypotheses 𝐻Μ = ⋂ {𝐻𝑖 𝑖𝑠 𝑡𝑟𝑢𝑒}.𝑚
𝑖=1   

𝐹𝑊𝐸𝑅 = Pr(𝑉 > 0|𝐻Μ) 
 

Practically, there are some disadvantage of the weak control. Thus, Strong control is 

widely used in microarray experiments analysis by controlling every possible choice of 

the set of Μ0. For FWER, strong control means to control of 

𝑚𝑎𝑥Μ0⊆{1,…𝑚}
Pr(𝑉 > 0|𝐻Μ0

) . 

 

In other words, if the strong control for FWER is at level 𝛼, 𝐹𝑊𝐸𝑅 ≤ 𝛼 regardless of 

which or how many nulls in the family are true.  

 

The adjusted p-value for an individual hypothesis (𝑝𝑖) is defined as the smallest Type I 

error rate level 𝛼 at which one would reject it, given the values of all test statistics 

involved. For instance, if the FWER is controlled, the adjust p-value for hypothesis 𝐻𝑖 

is: 

𝑝𝑖 = inf{α: 𝐻𝑖 is rejected at FWER =  α} 
 

In details, the way of adjusting p –values can be divided as 3 classes: single-step, step-

down and step-up procedures. 

 

For the single-step procedures, equivalent multiplicity adjustments are applied to all 

hypotheses, without taking consideration of the ordering of the test statistics or raw p-

values. Bonferroni procedure is a widely used stingel-step method, and it set the 

confidence level of individual test as 𝛼/𝑚. One null hypothesis will be rejected when 

the corresponding p-value is less than 𝛼/𝑚. Thus the Bonferroni single-step adjusted 

p-values is defined as: 

𝑝𝑖 = min(𝑚𝑝𝑖, 1) 
 

When the number of total hypotheses (𝑚) is very large, it becomes extremely hard to 

reject one hypothesis. Therefore, Bonferroni procedure is regarded as somewhat 

conservative if there are a large number of tests. Furthermore, groups of genes may 

have highly correlated because of the co-regulation in many microarray experiments, 

and it makes the test statistics are positively correlated. Bonferroni procedure is not 

suitable in such cases because of its regardless of the correlations. To take into account 

the correlations between test statistics, Westfall & Young (1993) proposed two kind of 

single-step adjustments approaches: minP and maxT. Let 𝑃𝑙 represent the random 

variable for the raw p-value of the lth hypothesis, and let 𝐻Μ represent the set of all null 

hypotheses to be tested, the single-step minP adjusted p-values can be written as: 

𝑝𝑖 = Pr ( min
1≤𝑙≤𝑚

𝑃𝑙 < 𝑝𝑖 |𝐻Μ) 

Employ 𝑇𝑙 to denote the random variable for the test statistics of the lth hypothesis, 

and let 𝑡𝑖 denote the realization of the random variable 𝑇𝑖, then the single-step maxT 

adjusted p-values can be written as: 

𝑝𝑖 = Pr ( max
1≤𝑙≤𝑚

|𝑇𝑙| ≥ |𝑡𝑖| |𝐻Μ) 
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Apparently, single-step minP and maxT procedures assume all the 𝑚 null hypotheses 

are true, so the adjusted p-values control FWER in a weak way. To give strong control 

of FWER, data is assumed to have a property called “subset pivotality”139.  For all the 

subsets Κ of {1, … 𝑚}, the joint distribution of a sub-vector of raw p-values {𝑃𝑖: 𝑖 ∈ Κ}  

are identical under the restrictions 𝐻Κ = ⋂ { 𝐻𝑖 𝑖𝑠 𝑡𝑟𝑢𝑒}𝑖∈Κ  and 𝐻Μ =
⋂ {𝐻𝑖 𝑖𝑠 𝑡𝑟𝑢𝑒}𝑚

𝑖=1  . Subset pivotality is important, because it ensure the adjusted p-

values calculated under all null hypotheses to provide strong control of FWER. 

Moreover, the following resampling can be done under all null hypotheses 𝐻Μ 

conveniently (in most cases the set of true null hypotheses 𝐻Μ0
 is unknown).  

 

For the gene expression values matrix, the data always have the subset pivotality 

property. Consider a subset Κ = {𝑖1, 𝑖2, … , 𝑖𝜅} , and its complement {𝑗1, 𝑗2, … , 𝑗𝑚−𝜅}. 

For a certain gene 𝑖, the test statistics 𝑇𝑖 is computed solely from the data of this gene 

(the ith row of the matrix),  so the joint distribution (𝑇𝑖1
, 𝑇𝑖2

, … 𝑇𝑖𝜅
) is independent with 

the hypotheses (𝐻𝑗1
, 𝐻𝑗2

, … , 𝐻𝑗𝑚−𝜅
) if (𝐻𝑖1

, 𝐻𝑖, … , 𝐻𝑖𝜅
) have same specification.  

 

Compared with single-step methods, step-down procedures provide a less conservative 

but more powerful strong control of FWER or other error rates. Holm method is a step-

down procedure improved from Bonferroni method. Firstly, it ranks all the 𝑚 raw p-

values in ascending order. Let 𝑝𝑟𝑖
 represent the ith ordered raw p-value, the ranking can 

be written as:  

𝑝𝑟1
≤ 𝑝𝑟2

≤ ⋯ ≤ 𝑝𝑟𝑚
 

 

If the first hypothesis can be rejected at level 𝛼/𝑚, set the level for rejecting the second 

hypothesis as 𝛼/(𝑚 − 1). By analogy, if the first (𝑖 − 1) hypotheses can be rejected, 

set the significant level as 𝛼/(𝑚 − 𝑖 + 1)for the ith hypotheses. The step is repeated 

until the ith hypothesis cannot be rejected. Therefore, The Holm step-down adjusted p-

values can be given as: 

𝑝𝑟𝑖
= max

𝑘=1,2,…𝑖
{min ((𝑚 − 𝑘 + 1)𝑝𝑟𝑘

, 1)} 

 

If the data are assumed to have subset pivotality, the step-down minP and step-down 

maxT procedure can provide strong control of FWER under all null hypotheses. And 

they are less conservative than the Holm method. 

 

The step-down minP adjusted p-values proposed by Westfall & Young (1993) is written 

as: 

𝑝𝑟𝑖
= max

𝑘=1,2,…𝑖
{Pr ( min

𝑙=𝑘,…,𝑚
𝑃𝑟𝑙

≤ 𝑝𝑟𝑘
|𝐻Μ)} 

 

If the tests statistics is ranked as descending order (|𝑡𝑠1
| ≥ |𝑡𝑠2

| ≥ ⋯ ≥ |𝑡𝑠𝑚
|), the step-

down maxT adjusted p-values can be written as follow (larger test statistics suggest 

alternative hypothesis): 

𝑝𝑠𝑖
= max

𝑘=1,2,…𝑖
{Pr ( max

𝑙=𝑘,…,𝑚
|𝑇𝑠𝑙

| ≥ |𝑡𝑠𝑘
||𝐻Μ)} 

 

2.7.6 Resampling methods for statistical testing 

To get more reliable results, resampling method is used during the analysis. Usually the 

joint (and marginal) distribution of the test statistics is unknown. To avoid the 

parametric assumptions about the joint distribution of the test statistics, resampling 
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methods are adopted. One of the distinctive features of resampling methods is that the 

observed data itself constructs the relevant sampling distribution, and the scientists are 

restricted by any assumptions about the distribution of the underlying population. In 

each time of resampling, the observed variables’ values are re-assigned randomly to 

different sample groups and the test statistics are re-computed.  And a resampling 

distribution will be obtained after thousands of resampling. Then the original test 

statistics can be compared with the resampling distribution, which gives evidence about 

whether the corresponding hypotheses should be rejected.  

 

The resampling p-value is calculated based on the test statistics distribution created by 

the resampling process. Especially, the resampling p-value is the proportion of 

resampled data sets yielding a test statistics as extreme as the original test statistics. 

Therefore, the results yielded from resampling methods are not based on any 

assumptions regarding an underlying population distribution140. 

 

Since the results depend exclusively on the observed data, resampling methods make 

the tests more robust by incorporating the distribution characteristics. According to 

Westfall & Young (1993), resampling methods “encompass many existing parametric 

multiple testing methods as special cases, and provide multiple testing solutions in 

situations where alternative methods are unavailable”.  

 

2.7.7 Chi-Square Test and Fisher Exact Test2 

Usually, categorical data can be summarized by a form of an 𝑟 ∗ 𝑐 table, which consists 

of 𝑟 rows and 𝑐 columns. Such a table is referred to as contingency table, and it 

describes the frequency distribution of the variables. To be more specific, the data in 

each cell of contingency table is the number of observations that are categorized in the 

cell. Contingency table is very useful when identifying the dependence structure 

underlying the categorical variables with the help of hypothesis testing methods. 

 

Chi-square test (χ²-test) is used when the sampling distribution of the data in a 

contingency table is assumed as chi-square distribution. And the chi-squared 

distribution (χ²-distribution) with 𝑘 degrees of freedom is the distribution of a sum of 

the squares of 𝑘 independent standard normal random variables. Generally, the problem 

chi-square test is employed to solve is that: in the underlying population(s) represented 

by the sample(s) in a contingency table, whether the observed cell frequencies are 

different from the expected frequencies or not.  

 

The two main purposes of chi-square test is to test the homogeneity (whether the 

proportions of observations in a series populations are equal) and independence (the 

extend one variable influence another) of the variables. The computation processes for 

the two purposes are identical. The generic null and alternative hypothesis involve 

observed (𝜊) and expected (𝜀) cell frequencies in the underlying population(s) 

represented by the sample(s).  

 

The null hypothesis can be stated as “observed frequency of each of the 𝑟 ∗ 𝑐 cells is 

equal to the expected frequency of the cell”: 

𝐻0: 𝜊𝑖𝑗 = 𝜀𝑖𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑒𝑙𝑙𝑠 

                                                 
2 The table and formulas in this section are adapted from the book “Handbook of Parametric and Nonparametric Statistical 

Procedures, 2nd Edition” 
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where 𝑖 and 𝑗 represent the index of a cell in the contingency table.  

 

The alternative hypothesis can thus be described as “observed frequency of at least one 

of the 𝑟 ∗ 𝑐 cells is not equal to the expected frequency of the cell”: 

𝐻0: 𝜊𝑖𝑗 ≠ 𝜀𝑖𝑗  𝑓𝑜𝑟  𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐𝑒𝑙𝑙 

 

For the contingency table, let the notation Ο𝑖𝑗 represents the number of observations in 

the cell that is in the ith row and the jth column. Similarly, Ο𝑖.denotes the number of 

observations in the ith row, and Ο.𝑗 denotes the number of observations in the jth 

column. The notation 𝑛 is used to represent the total number of samples. 

 

The expected frequency or count of a cell (Ε𝑖𝑗) can be calculated as: 

Ε𝑖𝑗 =
(Ο𝑖.)(Ο.𝑗)

𝑛
 

Therefore the test statistic (𝜒2) for the chi-square test of 𝑟 ∗ 𝑐 tables is computed with 

equation: 

𝜒2 =  ∑ ∑ [
(Ο𝑖𝑗 − Ε𝑖𝑗)2

Ε𝑖𝑗
]

𝑐

𝑗=1

𝑟

𝑖=1

 

 

The degree of freedom (df) for the relevant χ²-distribution is: 

𝑑𝑓 = (𝑟 − 1)(𝑐 − 1) 
 

If the obtained test statistic is equal to or greater than the critical value at the particular 

level of significance, null hypothesis can be rejected. 

 

However, the χ²-distribution only provides an approximation of the exact sampling 

distribution for a contingency table. To be specific, the accuracy of the chi-square 

approximation increases as the size of the samples increases. And when the size of 

samples is small (less than 20) and the dimension of contingency table is 2 ∗ 2 , Fisher 

exact test is recommended to be adopted instead of chi-square test.  

 

For the 2 ∗ 2 contingency table, which is used in the pathway enrichment analysis, the 

χ²-distribution is employed to approximate the hypergeometric distribution. And the 

genes mapped to a certain GO term might be small, which will lead to a small frequency 

or count in the corresponding cell of the contingency table. Consequently, Fisher exact 

test is selected to perform the analysis. 

 

Fisher exact test is one of a class of exact tests, so called because the significance of the 

deviation from a null hypothesis can be calculated exactly, rather than relying on an 

approximation that becomes exact in the limit as the sample size grows to infinity, as 

chi-square test. The assumptions in Fisher exact test are identical as those mentioned in 

the chi-square test for 𝑟 ∗ 𝑐 tables. Besides, both the row and column sums of a 2 ∗
2 contingency table are assumed to be predetermined in Fisher exact test. Nonetheless, 

this assumption is seldom met in practical.   

 

In Fisher exact test, the p-values are computed based on hypergeometric distribution. 

The hypergeometric distribution is a discrete probability distribution. In such a model, 

there are two possible outcomes (to be designated Category 1 versus Category 2) in a 
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set of 𝑁 trials. Sampling without replacement, the outcome of a trial will be dependent 

on the outcomes of previous trials. Assuming that there are 𝑁 objects totally, and among 

them there are 𝐾 objects in Category 1 (thus there are (𝑁 − 𝐾) objects in Category 2). 

If 𝑛 samples are drawn from the N objects without replacement, the probability 

(𝑃(𝑋 = 𝑘)) of obtaining exactly 𝑘 objects from Category 1 and (𝑛 − 𝑘) objects from 

Category 2 is: 

𝑃(𝑋 = 𝑘) = 𝑓(𝑘; 𝑁, 𝐾, 𝑛) =  
(𝐾

𝑘
)(𝑁−𝐾

𝑛−𝑘
)

(𝑁
𝑛

)
 

Accordingly, if a one-tailed analysis is conducted, the probability (𝑃) of obtaining a 

value equal to or more extreme than 𝑘 in such experiments is: 

𝑃 = 1 −  ∑ 𝑓(𝑗; 𝑁, 𝐾, 𝑛)

𝑘−1

𝑗=0

 

Evidently, the smaller the probability is, the more impossible to observe such a result 

by chance. And if the probability is equal or less than the predetermined confidence 

level, the result can be regarded as statistically significant. 

 

In illustrating the calculation of chi-square test and Fisher exact test, a 2 ∗ 2 

contingency table is constructed by recording the data in the form of frequencies or 

counts (table.2.2). 

 
Table.2.2 Contingency table for the calculation of p-values in fisher exact test 

 Column1 Column2 Row Sums 

Row1 a b a+b = n1 

Row2 c d c+d = n2 

Column Sums a+c b+d a+b+c+d = n 

 

The test statistic of chi-square test can be calculated quickly as: 

𝜒2 =
𝑛(𝑎𝑑 − 𝑏𝑐)2

(𝑎 + 𝑏)(𝑐 + 𝑑)(𝑎 + 𝑐)(𝑏 + 𝑑)
 

 

And the exact probability (𝑃) of obtaining a specific set of observed frequencies for the 

2*2 contingency table is: 

𝑃 =
(𝑎+𝑐

𝑎
)(𝑏+𝑑

𝑏
)

( 𝑛
𝑎+𝑏

)
=

(𝑎 + 𝑐)! (𝑏 + 𝑑)! (𝑎 + 𝑏)! (𝑐 + 𝑑)!

𝑛! 𝑎! 𝑏! 𝑐! 𝑑!
 

 

The null hypothesis of Fisher exact test can be stated as:“ In the underlying populations 

the samples represent, the proportion of observations in Row 1 that falls in cell a is 

equal to the proportion of observations in Row 2 that falls in cell c”. 

 

The corresponding alternative hypothesis for one-sided test is:“In the underlying 

populations the samples represent, the proportion of observations in Row 1 that falls in 

cell a is greater or less than the proportion of observations in Row 2 that falls in cell c”.  

The alternative hypothesis (greater or less) should be consistent with the observed data. 

Note that the probabilities for any sets of observed frequencies that are even more 

extreme than the observed frequencies should also be taken into account.  
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2.7.8 Mann–Whitney U test3 

Mann–Whitney U test (hereafter referred to as U-test), a nonparametric equivalent of 

Student's t-test, are selected to perform the analysis. For each hypothesis, expression 

data from all samples are arranged in ascending order, regardless which group the 

samples belong to.  

 

For the gene expression analysis, consider that there are 𝑛 samples in total. let 𝑥𝑟𝑗 

denote the jth ranked gene expression value, so all the ranked data should be: 

 

𝑥𝑟1 ≤ 𝑥𝑟2 ≤ ⋯ ≤ 𝑥𝑟𝑛 
 

Then each expression value is assigned a rank. For example, the smallest expression 

value is assigned as 1, and the largest one will be assigned as rank 𝑛 if there is no ties. 

(In some cases, the ranks can be reversed, which will not affect the final result of U-

test.) Importantly, when there are two or more samples with equal expression values, 

the average of the ranks involved will be assigned to all the samples. However, the tie 

adjustment will not influence the sum and average of ranks for the two groups when the 

samples with ties are from the same group. After the adjustments of ranks, the sum of 

all ranks (∑ 𝑅𝑖) for each group can be calculated. Then the statistics, usually called “U”, 

can be computed. There are two groups in this study, and  𝑈1, 𝑈2 denote the U values 

for each group. 

 

𝑈1 = 𝑛1𝑛2 +  
𝑛1(𝑛1 + 1)

2
− ∑ 𝑅1 

𝑈2 = 𝑛1𝑛2 +  
𝑛2(𝑛2 + 1)

2
− ∑ 𝑅2 

where 𝑛1 and 𝑛2 are the numbers of samples in the two groups.  

 

The smaller one of 𝑈1 and  𝑈2 will be the obtained statistics 𝑈. In order to reject the 

null hypothesis, the value of 𝑈 must be equal or less than the critical value at the 

prespecified level of significance. 

 

The normal distribution can be applied to approximate the Mann–Whitney U statistic if 

there are many samples. Especially, normal approximation should be considered when 

the sample size is larger than those documented in the exact table of the U distribution. 

The normal approximation of the Mann–Whitney U test statistic (represented as “z”) 

is: 

𝑧 =
𝑈 −

𝑛1𝑛2

2

√𝑛1𝑛2(𝑛1+𝑛2 + 1)
12

 

,where 𝑈 is the smaller one of 𝑈1 and  𝑈2. And the absolute value of 𝑧 must be equal to 

or greater than the critical value at a specific level of significance, so that the null 

hypothesis can be rejected. The result yielded by the normal approximation is usually 

consistent with the result obtained when the exact table for the Mann–Whitney U 

distribution is used. 

 

                                                 
3 The formulas in this section are adapted from the book “Handbook of Parametric and Nonparametric Statistical Procedures, 2nd 

Edition” 
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2.7.9 The class imbalance problem 

In many practical studies, imbalance data sets are generated and they weaken the power 

of most classifiers. An imbalance data set is highly skewed: most of the instances 

belong to one class (major class), whereas much fewer instances are labeled as the other 

class (minor class)141. And in most cases, the minor class is much more important. For 

example, in the study about rare diseases or genetic mutation in a population, samples 

with the diseases or mutation are very few. However, most classifiers tend to be biased 

towards the major classes and the minor classes are hence be ignored142. Several 

techniques have been proposed focusing on the class imbalance problem143, which are 

beyond the scope of this thesis.   

2.8 An outline of microarray 

The accelerating availability of new technologies has transformed both the theory and 

practice of cancer research. Among those technologies microarray is an important and 

lost-cost one. Microarray technology is applied increasingly in biological and medical 

research to address a wide range of problems, such as quantification of gene expressions 

or the classification of tumors.  

 

Usually, microarray is on a solid substrate (a glass slide) and contain an ordered series 

of sample. And the number of ordered samples can be hundreds of thousands on one 

slide. There are several alternatives of microarrays for differently researching purposes. 

Basically, the type of microarray depends on the sample (DNA, RNA, protein or tissue) 

placed on it. The most commonly used microarray is DNA microarray, which can be 

used for monitoring of expression levels in cells for thousands of genes simultaneously. 

In addition, DNA microarray is also capable of analyzing mutations, SNPs, or 

methylation states of genes in a sample. 

 

According to the devices, microarrays can be classified as single-channeled and dual-

channeled, where one or two samples might be hybridized simultaneously. In the single-

channeled DNA microarray, absolute levels of gene expression is assayed, while in the 

dual-channeled counterpart relative levels of expression is evaluated.  

 

Microarray technology presents an effective way to identify genes and pathways, which 

is valuable in many aspects such as finding potential drug targets, initiating novel 

therapy and genetic diagnosis. 

 

2.8.1 Basic workflow of DNA microarray 

First of all, a suitable microarray should be prepared or selected according to the 

research goals. Upon the acquisition of microarray, the RNA can be extracted and 

purified from samples. Then the RNA is converted to cDNA or cRNA, which are 

labeled with fluorescent reagents. The most commonly used dyes are Cy3 and Cy5. 

Fluorescently labeled cDNA or cRNA can be used in the hybridization process. The 

probes which are complementary to the molecules on the microarray hybridize with the 

strands on the microarray slide. Subsequently, microarray are washed and “read” by 

some commercially available scanners, so that the gene expression levels can be 

quantitated based on the amount of emitted fluorescence. A summary of the workflow 

is display in figure.2.1144.  
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Figure 2.1 A typical workflow of expression microarray experiment 

 

Importantly, making some replicates is strongly recommended for microarray 

experiments145, and it can avoid many random errors. There are 2 types of replicates: 

biological replicates and technical replicates. Replicates can be designed based on the 

experiments, and samples can be also regarded as replicates in some cases. In addition, 

replicates facilitate to estimate the true expression of samples and potentially reduce the 

noise in data. However, bad replicates should be removed like other data with bad 

quality before any calculation.  

 

2.8.2 Microarray data pre-processing and normalization 

Data pre-processing is a necessary step in microarray experiments for the detailed 

analysis. Images produced by microarray experiments need to be parsed into numerical 

values to assay the intensities. The quality of images is significant for the following 

analysis. Good quality images should have high signal to noise ratio as well as a low 

background. There are various tools available for the quality control.  
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Missing values are common in experiment, which are defined as data whose intensity 

is below 0 or equals to 0, and they should be replaced by a certain estimated value 

(imputation) or just deleted. 

 

Since the total brightness of a spot is composed by background brightness and labeled 

sample brightness, it is rational to make the spot intensities (or foreground intensities) 

be independent from background by subtracting it. Usually, background intensities 

should not vary multiplicatively with the spot intensities. And if such phenomenon 

occurs, there may be some problems in hybridization. 

 

After removing the background, the relative expression ratio of genes can be calculated. 

The intensity ratio can be got easily using the formula: 

𝐸𝑖 =
𝑅𝑖

𝐺𝑖
 

 

where 𝑅𝑖 and 𝐺𝑖 is the median expression level of gene i (after background correction) 

in the red and green channel, respectively. However, the distribution of intensity ratio 

is highly skewed and asymmetric, because the ratios for up-regulated genes will range 

from 1 to infinity while the down-regulated genes will only have ratios between 0 and 

1.  

 

The log-transformation makes skewed distributions more symmetrical, so that the 

figure of variation becomes more realistic. In other words, it makes the variation of 

intensities more independent of absolute magnitude of intensity values. The most 

commonly used log-transformation is 2-based. However, log-transformation introduces 

systematic errors in the lower end of the expression value distribution. 

 

Another data transformation method is fold change. If the intensity ratio is below 1, the 

value of fold change is inversed intensity ratio. But when the intensity ratio is higher 

than 1, fold change equals to intensity ratio. Obviously, fold change has some similar 

effect with log-transformation.  

 

Data normalization is performed after transformation. The aim of normalization is to 

remove those systematic biases146, but too strong normalization may make us miss the 

important biological variation from data. Hence, we need to find out the causes of 

systematic variations. Dye effect is the most common bias, and the scanner settings can 

also affect the measuring of intensity. As stated before, the replicate experiments may 

contain different sample variances due to differences in experimental conditions.  And 

experimenter is one of the largest sources of systematic bias. Even though such 

systematic biases may be comparatively small, they may be confounding when 

searching for subtle biological differences. Importantly, bias introduced by the 

biological role of reporters or samples should not be normalized. 

 

Normalization for microarray data also includes standardization and centralization. And 

the most widely used method is the log-transformation, which can make the data more 

normal-like and even out highly skewed distributions. There are a variety of methods 

for normalization, and the best choice of methods depends on the experimental design 

and results. For example, the linearity of data is a basis for choosing normalization 

methods. Linearity denotes that in the scatter plot of red channel versus green channel, 

the relationship between the channels is linear. When the data are linear, methods such 
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as median centering and scaling can be applied. For the non-linear data, lowess 

smoothing or other local method are preferred. Checking the linearity of the data also 

provides information about the reliability of the data, especially in the lower intensity 

range. Particularly, there are specific methods like RMA (robust multichip average) for 

the normalization of Affymetrix chips.  

 

2.8.3 Microarray data analysis 

After obtaining reliable data from microarray experiments, the biological information 

of interests will be derived from it. 

 

One of the most common problem to be solved by microarray experiments is to find 

differently expressed (DE) genes. According to the expression levels from different 

types of samples, genes with statistically significantly different expression between the 

samples can be identified with some statistical methods. Apart from that, a ranked list 

about a genes based on “how distant is the expression level between different samples 

or conditions” can be obtained. In contrast, a set of genes can be pre-determined before 

experiments (for example, a group of genes involved in a certain pathway), and then 

they are checked whether to display significant differential expression as a whole in 

distinctive conditions.  

 

There are many standard statistical tests available to find differently expressed genes, 

including t-test two-class comparisons, ANOVA (Analysis of variance) for multi-class 

comparisons, and Cox models for survival data. All of those methods are gene-wise, 

and the connections between genes might be omitted. To make use of the information 

of all the genes, hierarchical Bayes or empirical Bayes methods can be adopted. And 

the differential expression might be defined as a biologically meaningful way, so that 

“customized null hypotheses” can be used in statistical tests. The gene-by-gene 

approaches also generate multiple testing problem because thousands of hypotheses are 

tested simultaneously. If all the “rejected null” genes in the tests are regarded as 

differentially expressed, the study will end up with many false rejections. The most 

widely accepted method for the multiple testing adjustments is to control of the family 

wise error rate (FWER) or the false discovery rate (FDR). Statistical methods are also 

applied to answer questions like “whether members of a gene set are enriched in the 

differently expressed genes.” 

 

Furthermore, genes or samples can be classified as distinctive groups based on their 

expression patterns in the microarray experiments, which is usually accomplished by 

clustering. Besides, other machine learning methods like SOM (self-organizing map), 

SVM (support vector machines), PCA (principal component analysis) and DLDA 

(diagonal linear discriminant analysis) are used in the classification tasks of microarray 

data147. To represents the results in a lucid and concise fashion, visualization technology 

is required. Moreover, the biological interpretation from microarray data can be achieve 

through gene annotation. The relevant methods for data analysis are discussed in a 

separated sections. 

2.9 Databases for genome annotation and biological pathways 

2.9.1 Genome annotation 

Usually, a list of genes or gene products that are supposed as being “interesting” is 

obtain after data analysis.  And gene annotations provide more biological information 

about the experiment results, which is strongly desired.   
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The aim of genome annotation is to identify elements from genome and attach 

biological information for those elements. Basically, annotations can be either 

experimentally proven or computational predictions. 

 

The hypothesis for the biological interpretation is generally like “If some cellular 

function is activated during the experiment, then several genes involved in this function 

should follow a similar pattern of activation.” Hence it is expected to find annotations 

related to a certain function/process/pathway enriched in some cluster. 

 

Fortunately, there are some databases about that available (for example, TOPSAN, 

ChemProt, DAnCER, TAIR, OryGenesDB, MGED and KEGG), which enable us to 

obtain annotation information more efficiently and easily. One of the difficulties of 

annotation work is that it is hard to collect all the kinds of phenotypes of samples while 

collecting their genomes. Presently, researchers are contriving to make a great amount 

of new annotation and correct some annotations, indicating that annotation work is 

relatively behindhand; and there are some mistakes in the existing annotations in 

databases. One reason is that those isoform transcriptons with low abundance did not 

get enough attention at the early stage of research. And earlier large-scale transcript 

sequencing projects emphasized on protein-coding genes, so there must be many 

unknown elements in other regions. 

 

For microarray experiments, annotations facilitate researchers to fetch more 

information about the genes of interests. Often the first step is to locate an identifier for 

the genes (or probes), and identifiers often come from databases. Sometimes identifiers 

will change during the updating of databases, and genes may have different identifiers 

in different databases. Bioconductor provides many tools to solve such problem. For 

example, the package “org.Hs.eg.db” is for the genome wide annotation for human, 

primarily based on mapping using Entrez Gene identifiers. Some packages like 

“hgu95av2.db” support the mapping of identifiers from different kinds of microarray 

platform. There is also a list of annotation packages for different identifiers on the 

website of Bioconductor. Even if no identifiers are available, homology searching 

(BLAST) can assist us to identify those genes.  

 

2.9.2 Gene Ontology  

The Gene Ontology (GO) project is a collaborative effort to address the need for 

consistent descriptions of gene products in different databases148. Many gene products 

or biological elements are described and conceptualized diversely in different 

databases, which inhibits effective searching by both computers and people. Moreover, 

it has been found that there is a high level of sequence and functional conservation in 

many eukaryotes. It is possible to transfer the biological annotations from the 

experimentally tractable model organisms to the less tractable organisms based on gene 

and protein sequence similarity. So a computational system is required to compare and 

transfer the annotations among different species automatically or manually. Since much 

of the knowledge about those biological elements are deficient and updating rapidly, 

this computational system should allow the changing and updates constantly and be 

flexible enough. Gene Ontology (GO) Consortium was formed to solve such problems. 

The goal of the Consortium is to produce a structured, precisely defined, common, 

controlled vocabulary for describing the roles of genes and gene products in any 

organism. 
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Many databases have been included in the Consortium, and the full list of member 

organizations can be found in GO Consortium’s webpage: 

http://www.geneontology.org/GO.consortiumlist.shtml#assoc 

 

GO is structured hierarchically as a directed acyclic graph (DAG). As a node, each GO 

term is connected with other terms in the graph. The relationships between terms are 

represented as arcs in the graph, and they are categorized as “is a”; “part of”; and 

“regulates”, “negatively regulates” and positively regulates. However, unlike the 

hierarchy, a GO term may have more than one parent term. There are 3 basic categories 

of GO: biological process (BP), molecular function (MF) and cellular component (CC). 

Biological process is defined as the biological objective to which the gene or gene 

product contributes. Molecular function is the biochemical activities of a gene product 

at the molecular level. And cellular component provides the information about the parts 

of a cell or its extracellular environment where a gene product is active. GO is being 

updated frequently with new terms being created and old ones rendered obsolete. If 

there are terms tagged “is_obsolete: true”, there should be no new annotations attached 

to these terms.  

 

Genes, gene products or other biological elements can be mapped to the corresponding 

GO terms according to their attributes. The information from GO consortium and the 

mapping relationships of genes and GO terms can be accessed by the R package GO.db. 

 

2.9.3 KEGG  

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for 

systematic analysis of gene functions, integrating genomic information with higher-

level systemic functions of the cell, the organism and the ecosystem149.  The GENES 

database is a collection of gene catalogs for all the completely sequenced genomes and 

some partial genomes with up-to-date annotation of gene functions. The PATHWAY 

database is one of the most well-known databases of KEGG, which graphically 

represents the cellular processes, including metabolism, membrane transport, signal 

transduction and cell cycle. Actually, KEGG pathway maps are widely used for 

biological interpretation of genome sequences and other high-throughput data. In detail, 

pathways in KEGG database are stored and represented as graphs, where nodes are 

molecules (proteins or compounds) and edges denote the relationship between 

molecules. And pathways can be downloaded for academic purposes from KEGG 

website as KGML format. It is sometimes necessary to parse and operate the pathways 

for biological interpretations. And visualization of those pathway graphs makes the 

analysis results more intuitive and readable. Fortunately, there are diverse tools 

available.  

 

The KEGG knowledge base has expanded to contain 15 main databases including 

genomic, chemical, health and drugs information. KEGG base allows to extract 

meaningful information from large amounts of experimental data more effectively.  

2.10 Tools for data analysis and visualization 

2.10.1 R and Biocondcutor 

R is a language and environment for statistical computing and graphics, with many 

sophisticated statistical functions implemented. R have many versions, allowing to be 

compiled and run on diverse platform, including Windows, Mac OS X, and Linux 

operating systems. Because of the free availability and the advantages in mathematical 

http://www.geneontology.org/GO.consortiumlist.shtml#assoc
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and visualization, R has become the world-wide language for computational statistics, 

data science, visualization and bioinformatics. R is under constant development, and 

many new methods are added daily.  Furthermore, R is supported by a diverse and 

active community of data scientists and programmers. 

 

The Bioconductor project is an open source and open development software project. 

Based on the statistical computing environment R, Bioconductor project aims at 

providing tools for the analysis and comprehension of high-throughput genomic data. 

Presently, a large number of tools are available as R packages, and their functions cover 

the analysis and visualization of data from DNA microarray, sequence, flow, SNP, and 

other data150.  

 

2.10.2 Tools for microarray data analysis and visualization 

Since microarray technology is widely applied in many fields, a series of tools are 

required to handle the massive amount of data. Currently, various software for data 

analysis and visualization are freely or commercially available151.  

 

SAM is a free software widely used for genomic expression data mining. “SAM” is the 

abbreviation of “significance analysis of microarrays”, and the software adopts a 

modified t-test as well as permutation methods to identified differently expression 

genes152. The samr package for R language has been developed. Other software used 

for significance analysis of microarray data includes EDGE, Cyber-T and MeV. 

  

Affymetrix gene chip platform is a very popular platform for the studying genes 

expressions. And many tools have been developed aiming at the data analysis of 

Affymetrix. The Affymetrix GeneChip Command Console Software (AGCC) is the 

latest generation of instrument control software for GeneChip systems, and Affymetrix 

Expression Console Software is used to conduct the probe set summarization, 

quantification, and normalization integrating the AGCC software. In addition, plentiful 

free software are available for the Affymetrix platform, such as DNA-Chip Analyzer 

(dChip), TM4 and RMAExpress.  

 

DAVID Bioinformatics Resource provides online tools for annotation and functional 

analysis153. Containing a biological knowledge base, DAVID establishes a high 

throughput and integrated data mining environment. There are 4 distinct modules on 

DAVID website: functional annotation, gene functional classification, gene ID 

conversion and gene name batch viewer. Expression Analysis Systematic Explorer 

(EASE) is a downloadable version of DAVID with few added features.  

 

Cytoscape is a general platform for complex network analysis and visualization, 

especially for biological network154. The main function of Cytoscape is to visualize 

biological network and integrate the network with expression profiles, phenotypes, and 

other molecular states. Cytoscape is capable of connecting the network with large DNA 

and protein databases, which enhances this software power. The functions of Cytoscape 

are extended by many Apps (or plugins), which are available in Cytoscape App Store. 

Cytoscape has become the standard network visualization tool in molecular biology. 

  

It is deserved to mention that Bioconductor provides a large number of packages based 

on R language for the analysis and visualization of microarray data. “Affy” is a package 

designed for the quality assessment, prepossessing and analysis for Affymetrix gene 
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chip microarray probe level data. And “limma” is a package for differential expression 

analysis of microarray data. Limma is initiated for the analysis of complex experiments 

as well as simple ones. Although limma can be used for data input and normalization, 

the main function of this package is to fit a linear model for the expression data for each 

gene or probe. There are auxiliary functions for constructing design matrix and contrast 

matrix as well as estimating “average” variability with empirical Bayes statistics 

method. Furthermore, “multtest” package also conducts differential expression 

analysis, but it uses statistical tests. And the distinct advantage of multtest is that many 

plicable resampling-based single-step and stepwise multiple testing procedures (MTP) 

for controlling a broad class of Type I error rates are implemented. The multtest 

package supports a lot of methods for the adjustment of p-values controlling FWER 

and FDR, so that the results can be more reliable. In some cases, genes or probes are 

known not express in the tissues or pathways of interests, or they may have similar 

expression levels across all samples or conditions. Those genes (or probes) with low 

expression or low variability can be removed before the statistical analysis, so that the 

number of genes to be tested will reduce considerably and the reliability of result can 

be enhanced. Such filtering can be accomplished by the package “genefilter”. Using 

this package, Genes from microarray datasets can be discarded according to a variety 

of different filtering mechanisms. And users are allowed to create different criteria.  

  

After identifying the differently expressed genes, biological interpretation is always 

achieved through data annotation and visualization. On bioconductor website, many 

relevant packages can be found. “GO.db” is an annotation package that combines the 

structure of the GO terms with the assignment of genes to terms. Different types of gene 

or probe identifiers can be converted with the help of a series of annotation packages, 

which are widely used in the enrichment analysis together with GO.db. The enrichment 

analysis of GO terms can be done by package “topGO”, which implements a number 

of test statistics and algorithms. And the enrichment results obtained from different 

methods can be compared easily. In addition, topGO provides visualization function for 

identifying how the significantly enriched GO terms distribute across GO graph. Users 

can choose how many significant GO terms should be involved in the graph. 

“KEGGgraph” package contains the unique function to parse KEGG pathways from 

KGML files into graphs. Other functions of this packages include graph operation and 

visualization. Collaborating with other graph package, KEGGgraph is able to address 

versatile biological problems.  

 

“RCytoscape” package integrates Cytoscape with the statistically powerful 

programming environment of R155. This package remedies the limitation of Cytoscape, 

which lacks of a full-featured, bioinformatically capable scripting language. Inside of 

performing manually, all the details of a biological networks are allowed to be defined 

by the commands and functions of R. Therefore, the reproducibility and efficiency of 

data exploration is enhanced. When importing network data from R to Cytoscape, R 

package “XMLRPC” and the plugin “CytoscapeRPC” is required.  

 

2.10.3 Graphs as analysis tools 

Graphs have a long-standing history in the applications of numerous scientific fields. 

The structure of a graph usually is composed of nodes and edges, where nodes represent 

objects of interest and edges represent relationships between the nodes. Besides, edges 

in the graphs can have weights and directions if necessary. Because of the flexibility 

and simplicity, graphs are quite useful for bioinformatics analysis, especially for the 
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network and sequence analyses. In the analysis of biological network, nodes always 

stand for genes or proteins, and edges are used to elucidate the diverse pairwise 

relationships, like co-expression, interactions, inhibition, etc.  

 

As aforementioned, GO ontology is structured as a DAG (directed acyclic graph), 

which is a graph with directed edges but without cycles. And genes annotated to a 

certain GO term is a subset of those annotated to its parent nodes. 

 

Most pathways in KEGG are organized as graphs and can be viewed as networks. And 

the edges of graphs in KEGG can have different attributes representing varied 

relationships between the objects of networks.    

 

With the help of graph theory, biological networks or pathways can be operated (e.g. 

subset or merge) and more information can be extracted. Presently, some functionality 

has been implemented in R/Bioconductor, so that the data from biological databases 

can be handled with graph algorithms. Parsing the biological data as graphs enable to 

visualize the networks in an insightful way.  The “graph” package carries out basic 

graph handling capabilities. R package “RBGL” interface with the boost graph library, 

which contains algorithms for probing and analysis mathematical graphs. “Rgraphviz” 

connects with AT&T GraphViz software, and it is powerful to display the topology of 

connectedness between nodes. Rgraphviz is adept to show the graphs with particular 

attributes, by using different layout features156. For the large graphs with high-

dimensional data, GGobi is used for visualization. The “rggobi” package complements 

GGobi’s graphical user interface, and supports data transition between R and GGobi. 

2.11 Introduction of clustering methods 

Clustering is an unsupervised technique used to group together objects which are 

“close" to one another in a multidimensional feature space, usually for the purpose of 

uncovering some inherent structure which the unlabeled data possesses. A cluster is 

therefore a collection of objects which are “similar” between them and are “dissimilar” 

to the objects belonging to other clusters. Obviously, a similarity criterion should be 

introduced. Distances and concepts are the two commonly used clustering criteria. 

Euclidean distance, correlation distances, Manhattan distances, Hamming distance, and 

Edit distance are widely used to measure the dissimilarity between each pairs of data 

points. And a distance matrix is usually constructed. Depending on the distance measure 

used, different pairs of data may be considered as “more similar”. There are also some 

way to compute the distance between several probability distributions, such as Chi-

Square and KL-Divergence. 

 

There has been a plethora of clustering algorithms (they can be classified as exclusive, 

overlapping, hierarchical and probabilistic clustering); each of them has advantages and 

disadvantages. And one of the problems in clustering is to find out the most appropriate 

algorithm to the particular experiment data. Therefore the results of clustering should 

be validated. Criteria such as silhouette width, connectivity and dun index can be used 

to evaluate the clustering results. And for bioinformatics, clustering results should have 

not only statistical significance but also biological meanings. 

 

Clustering methods can be also classified as grouping data methods and partitioning 

data methods. Grouping data approaches seek to probe how data are clustered by 

reconstruction data relation. One of the commonly used grouping data approaches is 
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hierarchical clustering. Partitioning data approaches attempt to detect and predict the 

hidden structure in the available data. K-means clustering and fuzzy C-Means clustering 

are partitioning data approaches. 

 

2.11.1 Hierarchical clustering 

Hierarchical clustering is an agglomerative clustering algorithm. It yields a dendrogram 

which can be cut at a chosen height to produce the desired number of clusters. Each 

observation is initially placed in its own cluster, and then the clusters are gathered 

successively according to their “closeness”. The closeness between data points is 

determined by distance matrix. Distance between new formed clusters can be calculated 

in different ways: single-linkage from complete-linkage and average-linkage. In single 

linkage clustering, the distance between one cluster and another is considered to be 

equal to the shortest distance from any member of one cluster to any member of the 

other cluster. By contrast, in complete linkage clustering, the distance between two 

clusters is stipulated to be equal to the longest distance from any member of one cluster 

to any member of the other cluster. And in average linkage, the distance is the average 

distance from any member of one cluster to any member of the other cluster. 

 

Single linkage may lead to remarkably skewed results, so it is not the best approach for 

hierarchical clustering. But it is good for picking outliers that are connected in the very 

last steps of the process. Complete linkage tends to produce very tightly packed clusters. 

The method is very sensitive for the quality of the data. 

 

Hierarchical clustering has 2 distinct advantages: well visualization of relation between 

data points and interpretation data with merging distance. Hierarchical clustering is 

often applied in the analysis of patient samples to organize the data based on the cases, 

and it suffers from low noise tolerance157. 

 

2.11.2 K-means clustering 

K-means clustering is one of the simplest and fastest clustering methods. It finds 

iteratively 𝑘 clusters such that the within-cluster distances from the cluster centroid are 

minimized.  

 

K-means clustering starts with an initial guess for the cluster centroids, which should 

be placed in a cunning way. Each point (or observation) is placed in the cluster to which 

it is nearest. Then the cluster centroids are updated and each point will be associated 

again to the nearest new centroid. This process (loop) will be repeated until the cluster 

centroids no longer change. Thus, K-means is an iterative method minimizing within-

class sum of squares for a given number of clusters. K-means clustering is also an 

exclusive clustering algorithm. 

 

The different initializations for number of clusters centroid may lead to different 

clustering results.  There is no guarantee to find a globally optimal result. And a poor 

choice of 𝑘 can give poor results. K-means algorithm can be run multiple times to 

reduce this effect.  

 

Sometimes the number of clusters is given by biological knowledge. When the relevant 

biological knowledge is unknown, evaluation for the goodness of each clustering result 

is highly recommended, so that results from different 𝑘 can be compared.  
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Furthermore, a parameter like “within-cluster diversity” can be introduced to evaluate 

the clustering results. However, within-cluster diversity cannot always work well, some 

statistical measures are thus used to select the models in k-means clustering. For 

example, Akaike information criterion (AIC) and Bayesian information criterion (BIC) 

are two criteria which help to select the best model if a probabilistic model for the data 

can be used. A good model will have a small value of AIC or BIC158. 

 

2.11.3 Fuzzy C-Means clustering 

Fuzzy C-Means clustering allows one piece of data to belong to two or more clusters. 

This algorithm starts with an initial guess for cluster centers. And each data point will 

have estimated “memberships” for the 𝑘 clusters. Then the 𝑘 cluster centers will 

recomputed based on the membership values. The process is similar with K-means 

clustering. And this algorithm suffers from the similar problems with k-means 

clustering. Thus, Akaike information criterion (AIC) and Bayesian information 

criterion (BIC) are also used in this method to assist to find the optimal k clusters. Fuzzy 

C-Means clustering is frequently used in pattern recognition159. 

 

2.11.4 K-nearest neighbor (KNN) 

KNN is the simplest classification method forming clusters by building a classifier. 

Optimally, two sets are made as training set and test set. The former is used for building 

the classifier while the latter is used for the validation of the classifier. KNN contains 

three phases: neighborhood analysis (to select genes for classifying), class prediction 

(to classify the selected genes into different groups), and validation (to verify results 

and to rule out the effect of sampling error on the construction of the classifier).  

 

KNN is used for finding a set of genes that differentiates two or more groups of samples. 

And it performs better when the number of nearest neighbors (K) used for building the 

classifier is smaller (10-20% of the group).  

 

KNN can only fit a linear discriminator to the dataset. However, data from microarray 

experiments are always multidimensional, KNN method may not work very well. When 

KNN classification produces many misclassifications, it is better to use other methods 

which can fit polynomial discriminators.  

 

2.11.5 Model-based clustering 

Model-based clustering uses certain models for clusters and attempt to optimize the fit 

between the data and the model. In model-based clustering each cluster can be 

mathematically represented by a parametric distribution. A dataset can thus be modeled 

by a mixture of these distributions. An individual distribution used to model a specific 

cluster is often referred to as a “component distribution”. And the mixture components 

and group memberships are estimated using maximum likelihood (EM) algorithm. In 

simple cases such distributions may be multivariate Gaussians160.  

 

2.11.6 Visualization of clustering 

With the help of visualization methods, clustering results can be understood and 

analyzed in an intuitive way.  

 

Spot plots and heatmaps are commonly used. Clustering results are always show by 

grouping genes of clusters next to each other. Genes within a cluster should follow the 
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average expression pattern of the cluster. Some genes with unique expression patterns 

do not fit well in any group, and we should pay attention to them and to find if they are 

truly different expressed genes or just a result of experiment errors in the further 

analysis.  

 

A red/green color scheme figure is most widely used. Red and green color can represent 

the two extremes of gene expression. And the color intensity represents the magnitude 

of deviation. 
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3. Research Objectives  

 

The main objective is to propose a gene signature distinguishing GBM samples with 

IDH1 mutation from the counterpart without IDH1 mutation. Furthermore, the overall 

goal is to create a framework for identifying gene signature as well as analyzing the 

aberrance of pathways in GBMs. Therefore, several sub-tasks are required to be 

accomplished, including: 

 

 Data collection 

 Selection of appropriate statistical testing methods  

 Execution of statistical tests and correction of p-values for the multiple testing 

problem 

 Clinical data analysis 

 GO pathways enrichment analysis 

 Investigation of GO and KEGG pathways 

 Proposing of gene signature validated by hierarchical clustering 

 Visualization the analysis results 

 

Ideally, the gene signature can be used to distinguish GBM samples with IDH1 

mutations from those without IDH1 mutation. The established framework should be 

capable of identifying gene signatures correlated with a specific medical condition. In 

addition, this study intends to find the difference in biological pathways between the 2 

types of GBMs. From the overall results, targets for future research can be aroused.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

4. Material and methods 

4.1 Scripts for researching 

All scripts are written with R language.  

4.2 Data collection 

The processed gene expression data used in this study are download from TCGA 

website, which are obtained originally from microarray experiments using H113 

platform. Different batches of data are collected and into one data matrix. And in this 

matrix, each row represents a gene, and each column corresponds one sample. In total, 

there are 12042 genes and 538 samples. 

 

The list of samples with IDH1 mutation is from the paper “Integrated genomic analysis 

identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in 

PDGFRA, IDH1, EGFR, and NF1”, which is available in TCGA website. 

 

The clinical data about 579 GBM patients are also obtained from TCGA website.  

4.3 Analysis about the normality of gene expression data 

In order to check whether the expression value data for each gene are from a normally 

distributed population, Shapiro-Wilk test is executed161. If the p-value for a test is less 

than the predetermined confidence level (0.01), the corresponding data can be 

considered as not normally distributed.  

 

The p-value for each test is gathered to make a histogram (figure.4.1). From this figure 

it is obvious that most gene expression value do not follow normal distribution. With 

this indication, non-parametric test methods are considered for the following analysis. 

 
Figure 4.1. Histogram of the p-values for all genes from Shapiro-Wilk test 
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4.4 Identification of differently expressed genes 

4.4.1 The fundamental approach 

All the samples are divided as two groups, based on whether they have IDH1 mutations. 

Samples with IDH1 mutations are denoted as “IDH1+” group, while those without 

IDH1 mutations belong to “IDH1-” group. 

 

The aim of hypotheses testing is to detect whether the two groups of samples represent 

two population with different gene expression levels. Thus the null hypothesis for each 

gene is “there is no difference of the expression values between the IDH1 mutation 

positive and negative samples”. And the alternative hypothesis for each gene is “there 

is difference of the expression values between the IDH1 mutation positive and negative 

samples”. The test is thus two-sided. The confidence level (α) is set as 0.01, i.e. if the 

p-value is less than 0.01, the null hypothesis can be rejected and the corresponding gene 

is identified as differently expressed.  

 

4.4.2 Selection of methods for multiple testing procedure 

A test statistic that discriminates between the hypothesis and the alternative should be 

selected. Since most data do not follow normal distribution and the samples can be 

assumed as independent, test statistics calculated from Mann–Whitney U test is chosen 

to perform the basic hypotheses testing. Besides, Mann–Whitney U test get less impact 

of outliers compared with t-test. 

 

Furthermore, there are 14 samples with IDH1 mutations, while there are more than 500 

samples in the other group. And it may cause the class imbalance problem during the 

analysis. Besides, there are 12042 genes to be tested, so the multiple testing problem is 

inevitable. To get reliable results, step-down maxT multiple testing procedures, a 

resampling method with strong controlling of family wise type I error rate, is used in 

the process of analysis.  

 

Assuming that 𝑚 genes for 𝑛 samples are obtained from the microarray experiments, a 

𝑚 ∗ 𝑛 data matrix X = (𝑥𝑖𝑗) can be constructed with rows corresponding genes and 

columns to samples. Additional information consists covariates Y describing whether 

an individual sample has IDH1 mutation, which can be represented as an indicator 

vector 𝑌. Let 𝑌𝑗 = 1 when a sample 𝑗 has IDH1 mutation, and 𝑌𝑗 = 0  otherwise 

(j=1,2,…,n). Therefore, the null hypothesis for a random gene 𝑖 can be denoted as:  

 

𝐻𝑖: There is no association between 𝑋𝑖 and Y 

 

The alternative hypothesis is two-tailed: there is association between 𝑋𝑖 and Y. 

 

4.4.3 Calculation of statistics  

As discussed before, Mann–Whitney U test is used to calculate the test statistics. The 

details and related formulas can be found in literature review section.  

 

4.4.4 Permutation method for statistical testing4 

In this study, resampling is achieved by permuting the columns in the expression data 

matrix which represent the samples of the experiments. This permutation of group 

                                                 
4 This method is adapted from the paper “Resampling-based multiple testing for microarray data 

analysis” 
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labels (in this study, there are 2 kinds of groups) preserves gene-gene correlations and 

distributional characteristics of the gene expression levels, because the covariates Y is 

independent with gene expression levels. Since it is impractical to compute all the 

possible combinations for the samples, permutation tests are always performed by 

randomly selecting a large number of the possible arrangements for the data. In details, 

if B represent the total times of permutation, the test statistics of each gene are 

calculated and written as 𝑡1,𝑏 , 𝑡2,𝑏 , … , 𝑡𝑚,𝑏 for bth time of permutation. Then the raw p-

value of permutation for the two-sided test (denoted as 𝑝𝑖
∗) is the proportion of the 

permutation test statistics which are as extreme as the original test statistics: 

𝑝𝑖
∗ =  

#{𝑏: |𝑡𝑖,𝑏| ≥ |𝑡𝑖|}

𝐵
  𝑓𝑜𝑟 𝑖 = 1,2, … 𝑚 

 

The algorithm of computing permutation step-down maxT adjust p-values is shown as 

follow. 

1. Calculate the original tests statistics for each hypothesis, and rank then in 

descending order: |𝑡𝑠1
| ≥ |𝑡𝑠2

| ≥ ⋯ ≥ |𝑡𝑠𝑚
| . 

For each time of permutation, repeat steps 2-4 for B times.  

2. Permutate the n columns in the gene expression data matrix.  

3. Calculate the permutation test statistics 𝑡1,𝑏 , 𝑡2,𝑏 , … , 𝑡𝑚,𝑏 for each 

hypothesis. 

4. Compute the 𝑢𝑖,𝑏 = max
𝑙=1,2,…,𝑚

|𝑡𝑠𝑙,𝑏| by 𝑢𝑚,𝑏 = |𝑡𝑠𝑚,𝑏| 

𝑢𝑖,𝑏 = max(𝑢𝑖+1,𝑏, |𝑡𝑠𝑖,𝑏|)  𝑓𝑜𝑟 𝑖 = 𝑚 − 1, … ,1 

 

,where 𝑏 represents each time of the permutation and 𝑢𝑖,𝑏 is the successive 

maxima of test statistics. 

          

After repeating the permutation for B times, and enforcing the monotonicity constraints 

by setting 

𝑝𝑠1 
∗ ←  𝑝𝑠1

∗  

𝑝𝑠𝑖

∗  ← max(𝑝𝑠𝑖−1

∗ , 𝑝𝑠𝑖

∗ ) 𝑓𝑜𝑟 𝑖 = 2,3 … , 𝑚 

 

the adjusted p-value can be estimated as: 

𝑝𝑠𝑖

∗ =
#{𝑏: 𝑢𝑖,𝑏 ≥ |𝑡𝑠𝑖

|}

𝐵
 𝑓𝑜𝑟 𝑖 = 1,2, … 𝑚 

4.5 Pathways Enrichment Analysis 

Data analysis of microarray experiments results in a list of differently expressed genes 

with statistical significance. The consequent task is to interpret the biological 

information from those genes. One way is to map the differentially expressed genes to 

onto known pathways or gene ontology, and then perform the enrichment analysis. To 

be specific, this study is to find out whether the set of genes identified as differently 

expressed between two groups of samples displays “enrichment” in some pathways or 

ontology. Such task is always achieved through using various statistical tests. 

  

For the pathway enrichment analysis, the goal is to character the differently expression 

(DE) genes and identify the pathways those genes associate with. Particularly, we want 

to detect the significant enrichments of Gene Ontology (GO) categories within the list 

of DE genes which are found in previous analysis. 
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A 2 ∗ 2 contingency table can be made to describe the problem (table.4.1). The non-DE 

genes are those genes which are considered as non-differently expressed in the previous 

analysis. In this contingency table, “n” represents the total number of annotations in the 

GO database for the genes in the experiment. Obviously, the sum of first row “a+b” 

denotes the number of annotations related with genes of interest (corresponding to the 

Category 1 in the aforementioned model). For each GO term, the total number of 

annotations of the genes in the data can be represented the sum of first column “a+c”. 

And “a” is the number of annotations of the genes of interest for the particular GO term.  

 
Table 4.1 Contingency table for enrichment analysis using fisher exact test 

 Genes are associated 

with a GO term 

Genes are not associated 

with a GO term 

Row Sums 

DE Genes a b a+b = n1 

non-DE Genes c d c+d = n2 

Column Sums a+c b+d a+b+c+d = 

n 

 

 

For a certain GO term, the number of genes associated with it might be small, and Fisher 

exact test is employed to the enrichment analysis. Therefore the probability of getting 

such a result can be calculated with this equation: 

𝑃 =
(𝑎+𝑏

𝑎
)(𝑐+𝑑

𝑐
)

( 𝑛
𝑎+𝑐

)
=

(𝑎 + 𝑐)! (𝑏 + 𝑑)! (𝑎 + 𝑏)! (𝑐 + 𝑑)!

𝑛! 𝑎! 𝑏! 𝑐! 𝑑!
 

 

The null hypothesis is that: “there is no association between the genes of interest and 

pathway (GO term)”. And the alternative hypothesis is: “the genes of interest are 

connected with the GO term”. 

 

The p-value (𝑝𝑖) of a certain test is the sum of probabilities corresponding to the 

observed value “a” and more extreme cases: 

𝑝𝑖 = 1 −  ∑ 𝑓(𝑗; 𝑛, 𝑎 + 𝑏, 𝑎 + 𝑐)

𝑎−1

𝑗=0

 

 

If the p-value is very small, it is unlikely to observe such an enrichment by chance given 

that the differently expressed genes and the GO term are not related. 

 

In order to perform the enrichment analysis, all the genes in the data will be mapped to 

the annotations of GO terms. Then the p-values of the each GO terms can be calculated. 

In this study, the confidence level is set as 0.01 (𝛼 = 0.01). GO terms with a p-value 

less than 0.01 are regarded as significant (i.e. the GO terms have some connections with 

the differently expressed genes obtained from the experiments).  

 

In this enrichment analysis the p-values are not adjusted. Usually, the raw p-values in 

enrichment analyses are not very extreme162. And if the p-values are adjusted to control 

the FWER or FDR, the results might be very conservative and no or very few GO terms 

can be identified as significant. In this case some interesting GO terms could be ignored 

and valuable information will be lost. Furthermore, many assumptions have been 
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adopted before conducting the enrichment tests. Hence, it is not enough to control the 

error rates only by considering the number of GO terms (tests).  

4.6 Analysis of the KEGG pathways 

To get insight of how the DE genes participate in some pathways, an analysis about 

relevant KEGG pathways is performed.  

 

First of all, 3 KEGG pathways are selected and merged, and they are “glioma”, 

“regulation of actin cytoskeleton”, and “pathways in cancer” (their KEGG pathway ID 

are “05214”, “04810”, and “05200”, respectively).  

 

With the help of R package “KEGGgraph”163, the 3 pathways are downloaded from 

KEGG site and parsed into graphs. And the 3 pathways are merged into one network 

because of the fact that some KEGG pathways embed other pathways. In addition, some 

pathways only record the genes involved in, but do not provide the relationships (edges) 

between those genes and others. However, such relationships can be found in other 

pathways. And merging pathways can solve this problem. 

 

The genes are recorded as distinct identifiers in KEGG pathways, while the expression 

data from TCGA site adopt gene official symbols as identifier. Therefore, gene IDs in 

KEGG pathways are converted to gene symbols using R package “org.Hs.eg.db”. And 

the DE genes from the expression data analysis can be identified whether to participate 

in the 3 KEGG pathways. And how those genes interact with others in KEGG network 

can be examined. 

4.7 Visualization of pathways 

Visualization is an efficient way to comprehend and learn from the data. In this study, 

the significantly enriched GO pathways and the 3 pathways related to glioma are 

visualized as graphs using Cytoscape and several R packages. Besides, the hierarchical 

clustering result of the DE genes and samples without IDH1 mutation is visualized as 

heatmap.  

 

4.7.1 Visualization of GO pathways 

Upon the enrichment analysis, a list of statistically significant GO terms is obtained. To 

explore how those GO terms are distributed over the GO system (the biological process 

ontology), a directed acyclic graph containing all the significant GO terms and their 

ancestors are created. There are 118 nodes and 223 edges in this graph. The nodes in 

the graph are labeled as their names, and all nodes representing the significant GO terms 

are square. The color of each node is linked to the p-value of each GO term in the 

enrichment analysis: the darker the color is, the smaller the corresponding p-value is. 

 

Since the graph looks complicated, 3 sub-graphs harboring the most significant GO 

terms are made. The 3 simple sub-graphs incorporate similar information with the 

original graph, but they are more comprehensible.  

 

4.7.2 Visualization of KEGG pathways 

The 3 KEGG pathway are merged and a graph is generated. This graph have 467 nodes 

and 1898 edges representing genes and their relationships. Since the gene symbols are 

more readable, they are used as nodes labels in the network of KEGG pathways. 
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Different types of relationships between genes are represented by edges with different 

colors and shapes, and the detailed stipulations are elucidated in table.4.2.   

 
Table.4.2 Stipulation for visualizing KEGG pathways interactions 

Relationship Type Line Type Source 

Arrow 

Target Arrow Color 

activation solid - arrow green 

phosphorylation sinewave - arrow green 

inhibition dash dot - T arrow red 

expression solid - delta arrow blue 

dissociation dash dot - - black 

dephosphorylation dot - arrow green 

compound dot - - black 

binding/association solid arrow arrow cyan 

indirect effect equal dash - arrow black 

missing interaction dot  - - dark red 

 

There are 4 DE genes are involved in this merged pathway, and they are FGF17, MSN, 

ITGB8, and PDGFA. However, the graph is too large and complicated, and it looks like 

a hairball. Consequently, some sub-graphs are made for the simplification purpose. 

Nodes with different sizes are assigned to genes based on their expression values. 

Moreover, the nodes in the sub-graphs are colored corresponding to the log fold change 

of each gene between the two kinds of sample group.   

4.8 Hierarchical clustering and visualization 

After performing the multiple testing procedure, 58 DE genes are identified and 50 of 

them are participated in the enrichment analysis of GO. 2 new matrices consisting 

expression data of the 50 genes are formed, which contain all the samples with IDH1 

mutation (14) or without IDH1 mutation (534) respectively. And the 2 matrices are 

merged into a large one, which is for clustering genes using hierarchical clustering 

based on Euclidean distance. Furthermore, all the IDH1 mutation absent samples are 

clustered with the same method. Finally a clustered matrix is obtain, with the rows 

representing genes and columns representing samples. And this clustered matrix is 

visualized as heatmap. In the heatmap, red color denotes the low expression values, 

while green color indicates the high expression values.  
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5. Results 

5.1 Data collection 

The gene expression data are from microarray experiments using the “HT_HG-U133A” 

platform. After downloading from TCGA site, data are assembled into one file. In total, 

12042 genes expression data from 538 GBM samples are obtained.  Among the 538 

GBM samples, 14 samples harbor IDH1 mutation. All the data have been pre-

processed. 

 

The clinical data from TCGA site contains different types of clinical information from 

579 samples, including “vital status”, “age at initial pathologic diagnosis”, “death days 

to”, and “tumor status”.   

5.2 Multiple testing procedure 

To perform the statistical testing, samples are divided into 2 groups according to 

whether they contain IDH1 mutation. To be simplified, the 2 groups are denoted as 

IDH1+ (with IDH1 mutation) and IDH1- (without IDH1 mutation). 

  

The confidence level of testing is set as 0.01. After 100000 times permutation, there are 

58 hypotheses (genes) whose step-down maxT adjust p-values are less than preset 0.01.  

The list of  differently expression (DE) genes are presented in table 5.1, where the 

corresponding p-values, means of expression level as well as log fold changes (lfc) 

between the 2 groups are show. The genes are named after the official symbols. (Note 

that the expression data in TCGA site has been log-transformed, thus the lfc for each 

gene is calculated by subtracting the mean expression value of IDH1- from the 

counterpart of IDH1+.) Another information is about whether the DE genes participate 

in the following enrichment analysis of GO.  

 
Table 5.1 Genes identified as differently expressed between IDH1+ and IDH1- group 

Gene ID p-value Mean of expression 

value 

Log fold change Participant of 

enrichment analysis 

C13orf18 0.00003 6.50481843505201 -1.7594423258852 FALSE 

SLC2A10 0.00168 7.46581666859923 -1.9150559157706 TRUE 

C1orf107 0.00011 6.02261090102387 -0.623579467055817 TRUE 

SDF4 0.00013 7.73593932220155 -0.898515241468418 TRUE 

HRH1 0.00735 7.04064086154501 -1.48060700681628 TRUE 

KLHL26 0.00453 6.3338242722834 -1.1189940433284 FALSE 

TRIM48 0.00245 3.97511774451691 0.490785176537107 FALSE 

GALNS 0.00095 6.96020656346752 -0.808163801639173 TRUE 

MSN 0.00665 9.66746011523786 -1.53046964713946 TRUE 

LDHA 0.00487 12.3074759945108 -1.07775135394969 TRUE 

SYNJ2 0.00212 5.12410183143534 -0.547907567331171 TRUE 

PLA2G5 0.00035 6.34784245278702 -2.33045012483499 TRUE 

EFEMP2 0.00735 7.69813379611282 -1.86564391945418 TRUE 

GPR172A 0.00268 6.0666750020006 -0.635645803050076 TRUE 

M6PRBP1 0.00194 8.59829097849664 -0.992722131599963 TRUE 

AK3L1 0.0013 8.4941886078041 -1.6168604700219 TRUE 

FGF17 0.00535 4.26248812444411 0.253443360938069 TRUE 
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OSBPL10 0.00103 6.56026011270817 -1.65829036087509 TRUE 

ITGB8 0.00612 5.32601620181649 -0.832741876576378 TRUE 

CHST2 0.00039 8.46073001506132 -1.59513521956752 TRUE 

MYO1E 0.00083 5.83316532823624 -0.733524348553893 TRUE 

PLAT 0.00117 8.59058151796819 -1.7702037187437 TRUE 

CHST7 0.00008 6.79953922274088 -1.50447419773885 TRUE 

PHLDA3 0.00222 6.08742984683793 -0.770160524581396 TRUE 

SLC22A18 0.00076 6.26263608928778 -1.08909804675403 TRUE 

FHL2 0.00255 6.45770539762117 -1.55737875797186 TRUE 

ALDOA 0.00089 11.8938046037745 -0.764873469512798 TRUE 

ANXA5 0.00586 10.9302304754921 -0.921580743285823 TRUE 

ACRV1 0.00864 3.9897896643043 0.250108213784156 TRUE 

BDH1 0.0043 5.69648233545281 -0.946421454400804 TRUE 

ELOVL6 0.00114 5.74994645280678 -0.796107142706778 TRUE 

DUSP5 0.00612 5.78823916743292 -1.10129642438526 TRUE 

SPRY2 0.00627 9.00128139527228 -1.5027289996529 TRUE 

NSUN5 0.00004  7.02347309368607 -1.16836321216677 FALSE 

MEOX2 0.00055 6.53659028548913 -2.86618350197156 TRUE 

C20orf23 0.00616 5.45255932048912 -0.856925090525791 TRUE 

ARSJ 0.00759 5.44013646547739 -1.30774197914524 TRUE 

CXCL14 0.00501 8.30057854103491 -3.10201048186541 TRUE 

MRC2 0.00363 7.64166783714594 -1.18866001283532 TRUE 

CD97 0.00334 6.1789474647951 -1.08767784430674 TRUE 

OPLAH 0.00149 4.52847562466045 -0.518567413120151 TRUE 

CYP27A1 0.00695 6.8420002532146 -0.762349168144615 TRUE 

TMEM22 0.0013 7.62938687115094 -1.7821185913363 FALSE 

ZNF492 0.00033 4.9128656793679 0.620298050262146 TRUE 

ACSL3 0.00387 8.78019385729841 -1.00450522197869 TRUE 

FLJ11286  0.00008 7.94001078532698 -1.49653649275423 FALSE 

FLJ21963 0.00011 6.41905274095563 -1.80130464933032 FALSE 

IMPACT 0.00457 6.89535157793583 -0.994913444437907 TRUE 

TRIP6 0.00010  7.90373430689605 -1.66666272252316 TRUE 

PDLIM4 0.00978 5.670215544313 -1.00220387359665 FALSE 

PDGFA 0.00013 7.54141522216949 -1.67480178317232 TRUE 

ELOVL2 0.00063 6.4971040348515 -1.86774149986604 TRUE 

PMP22 0.00205 10.8124357948992 -1.47076270137476 TRUE 

PIPOX 0.00010 7.66064053544618 -2.27058433235844 TRUE 

STEAP3 0.00307 7.20480661809553 -1.58750087171272 TRUE 

RAB36  0.00004 5.2719111443214 -0.836496692396398 TRUE 

MOXD1 0.00689 7.57323012307391 -2.34576356887844 TRUE 

CNKSR1 0.00227 4.40394753350249 0.365849465714881 TRUE 
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5.3 Analysis of clinical data 

The clinical data contains information from 579 samples, and among them there are 12 

IDH1+ samples and 530 IDH- samples whose gene expression data are used in previous 

statistical testing. After removing “not available” data, the remaining clinical data for 

12 IDH1+ samples and 530 IDH- samples are visualized as boxplots (figure 5.1) and 

Kaplan–Meier plot (figure 5.2). In the same way, IDH1+ represents the samples with 

IDH1 mutation, while IDH1- means the samples without IDH1 mutation in the 2 

figures.  

 

The boxplots in figure 5.1 show the age at initial pathological diagnosis for samples. It 

is obvious that patients with IDH1 mutation are younger than those without such 

mutation. In the Kaplan–Meier plot, IDH1+ samples display a better overall survival 

than IDH1- samples. The clinical information shown in the 2 figures conforms to 

previous knowledge about IDH1 mutation.  

Figure.5.1 Boxplots about age at initial pathologic diagnosis based on 2 groups 
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Figure.5.2 Kaplan–Meier plot for IDH1+ and IDH1- sample groups 

5.4 Enrichment analysis of GO 

Not all the genes from previous study participate in the enrichment analysis, because 

some genes are not found to be assigned to any BP GO terms, and the Entrez ID of 

some genes are unknown. In fact, 10515 genes out of all the 12042 genes can be used 

to perform this analysis, and 50 genes of them are DE genes. 

 

The fisher exact test identifies 36 GO terms of the biological process, which DE genes 

are significantly enriched (p-value < 0.01). The table 5.2 shows the list of 36 GO terms 

as well as the p-values of fisher exact test. Also, the number of annotated genes and DE 

genes among them for each GO term is included in table 5.2. And the definition of each 

GO term as well as the symbols of DE genes annotated can be found in appendix2.  

 

 
 

Table.5.2 Significant enriched GO terms  

GO ID Annotated Significant p-value Term 

GO:0045017 191 6 0.00027 glycerolipid biosynthetic process 
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GO:0030497 6 2 0.00033 fatty acid elongation 

GO:0071071 7 2 0.00046 regulation of phospholipid biosynthetic 

process 

GO:0044283 396 8 0.00050 small molecule biosynthetic process 

GO:0044711 410 8 0.00064 single-organism biosynthetic process 

GO:0048008 37 3 0.00070 platelet-derived growth factor receptor 

signaling pathway 

GO:0050819 43 3 0.00109 negative regulation of coagulation 

GO:0072330 169 5 0.00119 monocarboxylic acid biosynthetic process 

GO:0016053 261 6 0.00140 organic acid biosynthetic process 

GO:0046394 261 6 0.00140 carboxylic acid biosynthetic process 

GO:0046486 264 6 0.00149 glycerolipid metabolic process 

GO:0006044 13 2 0.00167 N-acetylglucosamine metabolic process 

GO:0044255 726 10 0.00190 cellular lipid metabolic process 

GO:0043436 861 11 0.00200 oxoacid metabolic process 

GO:0006637 54 3 0.00212 acyl-CoA metabolic process 

GO:0035383 54 3 0.00212 thioester metabolic process 

GO:0006082 874 11 0.00225 organic acid metabolic process 

GO:0006633 117 4 0.00226 fatty acid biosynthetic process 

GO:0035338 16 2 0.00255 long-chain fatty-acyl-CoA biosynthetic 

process 

GO:0035336 17 2 0.00288 long-chain fatty-acyl-CoA metabolic 

process 

GO:0046949 18 2 0.00323 fatty-acyl-CoA biosynthetic process 

GO:0035337 21 2 0.00439 fatty-acyl-CoA metabolic process 

GO:1901071 21 2 0.00439 glucosamine-containing compound 

metabolic process 

GO:0044281 2226 19 0.00479 small molecule metabolic process 

GO:0050818 72 3 0.00479 regulation of coagulation 

GO:0090407 450 7 0.00509 organophosphate biosynthetic process 

GO:0010741 148 4 0.00525 negative regulation of intracellular protein 

kinase cascade 

GO:0006629 984 11 0.00563 lipid metabolic process 

GO:0046474 155 4 0.00618 glycerophospholipid biosynthetic process 

GO:0044710 2650 21 0.00679 single-organism metabolic process 

GO:0008543 164 4 0.00752 fibroblast growth factor receptor signaling 

pathway 

GO:0008610 488 7 0.00786 lipid biosynthetic process 

GO:0008654 171 4 0.00869 phospholipid biosynthetic process 

GO:0051896 90 3 0.00889 regulation of protein kinase B signaling 

cascade 

GO:0006040 31 2 0.00944 amino sugar metabolic process 

GO:0042339 31 2 0.00944 keratan sulfate metabolic process 

 

Many of the significant GO terms are about the reactions and pathways involved in 

lipid, glycerolipid, phospholipid, and glycerophospholipid. Secondly, many GO terms 

describe the pathways and reactions implicated in the formation and elongation of fatty 

acid and fatty-acyl-CoA. And there is also a GO term on the pathways involving 

thioester (acetyl-CoA is a derivative of thioester). Furthermore, several GO terms about 
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the metabolism of different types of organic acids are found. Of note, there are some 

GO terms about those molecular signals generated by fibroblast growth factor receptor 

(FGFR), platelet-derived growth factor receptor (PDGFR), protein kinase B (AKT), and 

other protein kinase. Other biological processes include the reactions and pathways 

involving small molecular, keratan sulfate, glucosamine and N-acetylglucosamine.  

To visualize the significant GO terms and their location in the hierarchical GO system, 

a graph (figure.5.3) is generated. For the purpose of clarity, 3 sub-graphs (figure.5.4-

figure.5.6) are made, and the details can be read easier. In these graphs, square nodes 

represent the significant GO terms. The smaller the p-value of a GO term is, the darker 

the color of the corresponding node is.  

 

 
Figure.5.3 hierarchical graph of the GO biological process system  
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Figure.5.4 sub-graph of GO terms hierarchy focusing on organic acids metabolism 
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Figure.5.5 sub-graph of GO terms hierarchy focusing on acyl-CoA metabolism 
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Figure.5.6 sub-graph of GO terms hierarchy focusing on lipid metabolism 

 

5.5 Investigation of KEGG pathways 

Three KEGG pathways, “glioma”, “regulation of actin cytoskeleton”, and “pathways 

in cancer”, are selected and merged into one network. The merged network is visualized 

as a graph, containing 467 nodes (genes) and 1898 edges (different relationships). And 

4 of the DE genes are found in this network, their symbols are FGF17, ITGB8, PDGFA 

and MSN. In addition, there are some genes connected with glioma in this network, but 

they are not found as DE genes in statistical testing procedure. To get an insight of those 

genes, a sub-graph from this network is drawn and shown in figure 5.7. And 4 sub-

graphs focusing on the 4 DE genes and their neighbors are created (figure 5.8-5.11). 

Moreover, the size of each node reflects the corresponding gene expression level: genes 

higher expression level will have a larger size. And different colors of nodes represent 

the log fold change (lfc) between IDH1+ and IDH1- groups. Red and green color 

indicate the high and low extreme of lfc, respectively.  
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Figure.5.7 Important genes and interactions in glioma-related KEGG network 

 

 
Figure.5.8 FGF17 and neighbor genes in glioma-related KEGG network 
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Figure.5.9 ITGB8 and neighbor genes in glioma-related KEGG network 
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Figure.5.10 PDGFA and neighbor genes in glioma-related KEGG network 

 

 
Figure.5.11 MSN and neighbor genes in glioma-related KEGG network 

5.6 Clustering and heatmap 

The clustering result based on DE genes and samples with or without IDH1 mutation is 

visualized as heatmap (figure 5.12). Since there are more than 500 samples, this 

heatmap is not so clear. Therefore, to “amplify” the boundary between IDH1+ group 

and IDH1- group, a heatmap containing the first 60 samples are drawn (figure 5.13). 

From the smaller heatmap, striking differences of gene expression between the 2 groups 
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of samples can be seen. Such marked boundary between the 2 groups confirms that the 

50 genes work well as a gene signature.  

 

 
Figure.5.12 Heatmap of the clustering result based on the gene signature 

 

 
Figure.5.13 Heatmap of the clustering result of the first 60 samples 
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6. Discussion 
 

Understanding tumorigenesis of GBM and classification is significantly advanced 

through identification gene signatures which display different expression patterns 

between different subtypes of GBM.  And gene ontology enrichment analysis based on 

gene signatures enable researchers to find out the mechanism of the formation of 

different tumor.   

 

In this study, 58 genes are found to be differently expressed (p-value < 0.01) between 

GBM samples with IDH1 mutation and those without the mutation. And a gene 

signature containing 50 genes is proposed after performing GO enrichment analysis. 

Furthermore, GO enrichment analysis also indicates the pathways or chemical reactions 

those gene and their products participate in. In details, the main pathways and chemical 

reactions involve in the metabolism of lipid, fatty acid, organic acid and thioester. In 

other words, most significant GO terms are about the metabolism reprogramming, 

which is one of the hallmark of cancer. The analysis of clinical data exhibits a result 

which is consistent with previous knowledge. Investigation of differently expressed 

(DE) genes in KEGG network show the roles and the change of expression levels of 

DE genes as well as their neighbors in glioma-related pathways.  

6.1 Analysis of the results 

6.1.1 Discussion about the data analysis of gene expression and clinical data 

Mann–Whitney U test is selected to find out the DE genes with statistical significance, 

and resampling method (permutation) is used to ensure that the test is robust enough. 

The Step-down maxT multiple testing procedure is performed, and the adjusted p-

values are obtained by controlling FWER. Finally, 58 genes are found with significantly 

differential expression (p-value < 0.01).  

 

From the survival curve and boxplot about diagnosis ages, it is easy to find that samples 

with IDH1 mutation tend to be younger and survive for a longer time. Obviously, 

patients with IDH1 mutation display a feature similar with the Proneural subtype. Since 

the main characteristic of Proneural GBM is harboring frequent IDH1 mutation, the 

result of clinical data analysis conforms to the classification of GBM. 

 

Most of DE genes have lower expression levels in the IDH1+ group. In fact, there are 

only 4 genes (FGF17, ACRV1, ZNF492, and CNKSR1) displaying a slightly higher 

expression level in samples with IDH1 mutation. All other genes express higher in those 

samples without such mutation. Combined with the clinical data, it is possible that most 

of DE genes are associated shorter survival time and more aggressive tumors in GBM 

patients.  

 

And among them 50 genes are proposed as a gene signature and they are used for the 

clustering of samples. The clustering result show a striking boundary between the 2 

groups, suggesting that samples can be divided into 2 groups on the basis of this gene 

signature. And GO enrichment analysis is conducted based on this gene signature.  

 

6.1.2 Discussion about the GO enrichment analysis 

In this study, 36 GO terms are found as significant, and they can be divided as several 

groups: lipid metabolism, coagulation process, the series of molecular signals, 

glucosamine-containing compounds metabolism, and keratan sulfate. 
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Elevated lipogenesis has been revealed as a main feature of cancer164. Especially, the 

lipid level in malignant gliomas tumor tissues are higher than normal ones165. As 

known, lipids are crucial for the formation of new cellular membranes, which is 

necessary for the rapidly growing and dividing cancer cells. Some types of lipids even 

act as regulator for signal transductions. And lipids are alternative energy resource for 

cells166. 

 

A study on GBM shows that EGFR signaling expedite the activation of SREBP-1167, 

which is a master transcriptional regulator of fatty acid synthesis168. In other words, 

EGFR signaling can promote the transcriptional activation for some fatty acid synthase 

and increased the amounts of intracellular fatty acids. Moreover, high level of EGFR 

signaling makes the cells be more dependent on fatty acids synthesis. Besides, another 

study confirms that targeting fatty acid synthesis could be effective to block tumor cell 

growth169. 

 

4 genes (ELOVL6, ELOVL2, PLA2G5, and ACSL3) are annotated to the GO terms 

about fatty acids metabolism, and all of them express at a lower level in IDH1+ samples, 

compared with those without IDH1 mutation. The difference of expression from genes 

involved in lipid metabolism indicate that lipid synthesis is a potential target for 

designing new treatments. Apart from that, such a result is consistent with the previous 

study: IDH1 is implicated in lipid biosynthesis.  

 

The GO terms about organic acids metabolism are also significantly enriched, and 

genes involved in the fatty acids metabolism are annotated in these GO terms as well. 

Hence it is possible that the metabolism of other types of organic acids except fatty 

acids differs between the 2 sample groups. To be specific, samples without IDH1 

mutation may have elevated organic acids metabolism. In details, CYP27A1, OPLAH, 

LDHA, CHST2, CHST7, PIPOX and GALNS genes are involved in these GO terms. 

 

In addition, several DE genes are assigned to the GO terms about glycerolipids and 

glycerophospholipids biological process, which may indicate that there are some 

difference for the metabolism of glycerolipids and glycerophospholipids between the 2 

types of samples. Some researches has proposed that glycerophospholipid will be a 

novel drug target against cancer170. 

 

Moreover, GO terms of coagulation regulation are enriched with 3 genes (PLAT, 

PDGFA, and ANXA5) annotated. Previous studies had demonstrated that the activation 

of coagulation system prompts tumor growth and invasion in human glioma171. And 

scientists suggests that anticoagulation in patients with gliomas will have anticancer 

activity172. Coagulation is also connected with thrombembolic events, which is found 

in patients with primary and secondary brain tumors173. And the thrombembolic events 

is one of the factor that diminish the survival time of cancer patients. Taken together, 

the coagulation system may control the behavior of tumors and it can be a target of the 

novel therapy.  

 

There are 2 signaling pathways (PDGFR and FGFR) enriched. In addition, the enriched 

GO terms include process regulating the protein kinase B signaling cascade. Such a 

result supports pathways mediated by PDGFR, FGFR, AKT and other protein kinases 

are crucial pathways for the tumorigenesis of GBM. And it has been confirmed by 
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various studies. Importantly, the result in this study indicates that there might be some 

discrepancy in these pathways between samples with or without IDH1 mutation. 

 

Markedly, pathways about amino sugars (N-acetylglucosamine and glucosamine) are 

enriched, and 2 genes (CHST2 and CHST7) are assigned. The molecular beta1,6-N-

acetylglucosamine (beta1,6-GlcNAc)-bearing N-glycans has been found in human 

gliomas, while it is absent in normal brain cells. And the expression of beta1,6-GlcNAc-

bearing N-glycans is correlated with the invasivity of gliomas174. On the other hand, 

glucosamine is a prominent precursor in the biochemical synthesis of glycosylated 

proteins and lipids. And glucosamine is demonstrated to induce autophagic cell death 

in glioma cells175. The enriched GO terms imply the difference of animo sugars 

metabolism may exist between the two types of samples, and such a difference may be 

correlated with the disparity of lipids metabolism between the groups.  

 

Another enriched GO term is about pathway and reactions of keratan sulfate (KS). And 

N-acetylglucosamine is an important residue of KS176. A study show that KS is highly 

expressed on a cell surface in a glioblastoma cell line, and the KS is detected as highly 

sulfated in glioblastoma cells177. Nevertheless, the structure and function of KS in 

glioblastoma remains obscure. Thus the finding in this study provides a cue for the 

future research about understanding glioblastoma.  

 

The GO enrichment analysis using DE genes reveals that some pathways may differ 

between the IDH1+ and IDH1- samples. However, further studies are necessary to find 

the connections between those differences in pathways and IDH1 mutation as well as 

the functions of the DE genes. For example, it is worth discussing whether IDH1 

mutation is the direct reason for the difference in these biological process. And there 

are some DE genes not annotated to any significant GO terms, but studying their 

functions are also worthwhile to understand how IDH1 mutant affect the glioma cells.  

 

6.1.3 Discussion about the KEGG network analysis 

In this study the KEGG pathways are combined to perform the analysis, so that all the 

information from the pathways is included, and the redundant one is removed.  

Except genes roles in pathways, graphs representing KEGG network show some genes 

expression level and the log fold change between IDH1+ and IDH1- groups. There are 

4 genes (PDGFA, FGF17, ITGB8 and MSN) in the KEGG network from the gene 

signature.  

 

Literature review confirms the validity of this study. In IDH1+ group the expression of 

PDGFA gene is decreased, while PDGFRA is up-regulated. Since the PDGFA is 

positively correlated with tumor grade, it is possible that tumors with IDH1 mutation 

tend to be more indolent.   

 

And the expression of FGF17 is elevated, while all the FGFR1-3 are down-regulated. 

Of note, the expression change of FGFR2 is slight compared with FGFR1 and FGFR3. 

Unlike FGFR1, which is abundant in malignant tumors, FGFR2 are only found in 

normal tissues and low-grade astrocytomas. Hence such a finding is in accord with that 

glioblastomas with IDH1 mutation is less aggressive than those without IDH1 mutation. 

And future studies are required to find out the reason for up-regulating FGF17 in IDH1+ 

tumors.  
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Expression of ITGB8 (the gene product is β8 integrin) is recently found to drive the 

invasive growth behaviors of GBM by interacting with RhoGDI1, and thus shorten the 

survival time of patients significantly178. And in this study, ITGB8 expresses at a lower 

level in IDH1+ tumors, which is conformity with the longer survival time and less 

invasiveness of this type of tumor. However, whether the lower expression of ITGB8 

is directly associated with IDH1 mutation is not known.  

 

The moesin encoded by MSN is a member of ERM family, which serve both as cross-

linkers between plasma membranes and actin-based cytoskeleton and as regulators of 

signaling transduction of cytoskeletal remodeling179. The cytoskeleton plays a 

prominent role in the cellular morphogenesis180. MSN expression level is significantly 

higher in astrocytoma relative to normal brain and the MSN up-regulation is associated 

with the pathological grade of astrocytoma. Furthermore, MSN expression is identified 

as strongly negatively correlated with the patient survival181. Lately, a study 

demonstrates that moesin directly binds to microtubules in vitro and stabilizes 

microtubules at the cell cortex in vivo182. Compared with many genes, MSN expresses 

at a high level across all samples in this study. However, in line with the better survival, 

MSN gene has a significantly decreased expression in IDH1+ tumors.  

 

Both ITGB8 and MSN have not been previously described as playing a role in 

development or progression GBM, so it is possible that other genes in this gene 

signature will be found as important in the tumourigenesis of GBM. For example, some 

researchers conjecture that up-regulation of CD97 promotes cellular invasion and 

migration in gliomas183. And CD97 expression is inversely correlated with survival 

time of GBM patients184. This gene signature may provide information for discovering 

the predictors of poor prognosis and targets for novel therapy.  

 

In summary, this study proposes a gene signature to distinguish GBM samples 

harboring mutant IDH1 from the counterparts without mutant IDH1. Further researches 

are necessary to afford a more comprehensive understanding of the connection between 

this gene signature and IDH1 mutation in GBM. Hopefully, this study will facilitate the 

development of more effective diagnosis and treatments.  

6.2 Known limitations and potential enhancements 

First of all, the selection of methods for statistical test will affect the result. If other 

multiple testing procedures are chosen, the result of might be different. And in this 

study p-values are adjusted by controlling FWER, which is a conservative way185, and 

some DE genes may be ignored. Therefore, less conservative methods can be adopted 

to attempt to identify genes which may differently expressed between the 2 groups.  

 

Secondly, the samples with IDH1 mutation are much less than the samples without 

IDH1 mutation, which may lead to the imbalance problem. And the result of clinical 

data analysis thus does not have a statistical significance. In other words, more GBM 

samples with IDH1 mutation are required to get a more reliable result.  

 

The selection of KEGG pathways is also crucial for the investigation of genes function 

in biological pathways. The three selected KEGG pathways only include 4 DE genes. 

All other genes from the gene signature are omitted in this section. In the graph 

representing KEGG pathways, the size of a node is assigned according to average 

expression level of the gene across all samples. Nevertheless, the heterogeneity between 



62 

 

samples is ignored. Therefore, it would be meaningful to make similar graphs for each 

samples, and novel ideas might be extracted from the comparison of these graphs.   
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7. Conclusion 
 

This study proposes a gene signature which is correlated with the IDH mutation in GBM 

samples. And the gene signature are validated by hierarchical clustering. The relevant 

clinical data and pathways information are analyzed. As the result indicated, this gene 

signature is available for discerning IDH1 mutant samples from those GBMs with IDH1 

mutation.  

 

With the development of novel techniques and software, it is accessible to identify 

differently expressed genes linking to a medical condition, examine the enrichment 

states of those genes in different pathways, investigate the roles of the genes in 

biological pathways and visualize the data in an intuitive way. Importantly, this study 

illustrates a pipeline for identification gene signatures. With the help of this pipeline, it 

is possible to gain insights into the aberrances in genome and pathways of cancer for a 

particular condition. Moreover, future researches on IDH1 mutation in GBMs are 

provoked.  
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Appendix1 
 

Table A1.1 present the Entrez ID and names of genes in the gene signature  
 

Table A1.1 gene ID and name of genes from the IDH1 gene signature  

Gene 

Symbol 

Entrez ID Gene Name 

SLC2A10 81031 solute carrier family 2 (facilitated glucose transporter), member 10 

C1orf107 27042 digestive organ expansion factor homolog (zebrafish)  

SDF4 51150 stromal cell derived factor 4 

HRH1 3269 histamine receptor H1 

GALNS 2588 galactosamine (N-acetyl)-6-sulfate sulfatase 

MSN 4478 moesin 

LDHA 3939 lactate dehydrogenase A 

SYNJ2 8871 synaptojanin 2 

PLA2G5 5322 phospholipase A2, group V 

EFEMP2 30008 EGF containing fibulin-like extracellular matrix protein 2 

GPR172A 79581 solute carrier family 52 (riboflavin transporter), member 2 

M6PRBP1 10226  perilipin 3 

AK3L1 205 adenylate kinase 4 

FGF17 8822 fibroblast growth factor 17 

OSBPL10 114884 oxysterol binding protein-like 10 

ITGB8 3696 integrin, beta 8 

CHST2 9435 carbohydrate (N-acetylglucosamine-6-O) sulfotransferase 2 

MYO1E 4643 myosin IE 

PLAT 5327 plasminogen activator, tissue 

CHST7 56548 carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7 

PHLDA3 23612 pleckstrin homology-like domain, family A, member 3 

SLC22A18 5002 solute carrier family 22, member 18 

FHL2 2274 four and a half LIM domains 2 

ALDOA 226 aldolase A, fructose-bisphosphate 

ANXA5 308 annexin A5 

ACRV1 56 acrosomal vesicle protein 1 

BDH1 622 3-hydroxybutyrate dehydrogenase, type 1 

ELOVL6 79071 ELOVL fatty acid elongase 6 

DUSP5 1847 dual specificity phosphatase 5 

SPRY2 10253 sprouty homolog 2 (Drosophila) 

MEOX2 4223 mesenchyme homeobox 2 

C20orf23 55614 kinesin family member 16B 

ARSJ 79642 arylsulfatase family, member J 

CXCL14 9547 chemokine (C-X-C motif) ligand 14 

MRC2 9902 mannose receptor, C type 2 

CD97 976 CD97 molecule 

OPLAH 26873 5-oxoprolinase (ATP-hydrolysing) 

CYP27A1 1593 cytochrome P450, family 27, subfamily A, polypeptide 1 

ZNF492 57615 zinc finger protein 492 
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ACSL3 2181 acyl-CoA synthetase long-chain family member 3 

IMPACT 55364 impact RWD domain protein 

TRIP6 7205 thyroid hormone receptor interactor 6 

PDGFA 5154 platelet-derived growth factor alpha polypeptide 

ELOVL2 54898 ELOVL fatty acid elongase 2 

PMP22 5376 peripheral myelin protein 22 

PIPOX 51268 pipecolic acid oxidase 

STEAP3 55240 STEAP family member 3, metalloreductase 

RAB36 9609 RAB36, member RAS oncogene family 

MOXD1 26002 monooxygenase, DBH-like 1 

CNKSR1 10256 connector enhancer of kinase suppressor of Ras 1 
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Appendix2 
 

Table A2.1 delineates the definition of the significant enriched GO term, and table A2.2 

records the symbols of DE genes annotated.  

 
Table A2.1 significant GO terms and definitions.  

GO ID Definition 

GO:0045017 The chemical reactions and pathways resulting in the formation of glycerolipids, 

any lipid with a glycerol backbone. 

GO:0030497 The elongation of a fatty acid chain by the sequential addition of two-carbon 

units. 

GO:0071071 Any process that modulates the frequency, rate or extent of the chemical 

reactions and pathways resulting in the formation of phospholipids. 

GO:0044283 The chemical reactions and pathways resulting in the formation of small 

molecules, any low molecular weight, monomeric, non-encoded molecule. 

GO:0044711 A biosynthetic process - chemical reactions and pathways resulting in the 

formation of substances - involving a single organism. 

GO:0048008 The series of molecular signals generated as a consequence of a platelet-derived 

growth factor receptor binding to one of its physiological ligands. 

GO:0050819 Any process that stops, prevents, or reduces the frequency, rate or extent of 

coagulation. 

GO:0072330 The chemical reactions and pathways resulting in the formation of 

monocarboxylic acids, any organic acid containing one carboxyl (-COOH) 

group. 

GO:0016053 The chemical reactions and pathways resulting in the formation of organic acids, 

any acidic compound containing carbon in covalent linkage. 

GO:0046394 The chemical reactions and pathways resulting in the formation of carboxylic 

acids, any organic acid containing one or more carboxyl (-COOH) groups. 

GO:0046486 The chemical reactions and pathways involving glycerolipids, any lipid with a 

glycerol backbone. Diacylglycerol and phosphatidate are key lipid intermediates 

of glycerolipid biosynthesis. 

GO:0006044 The chemical reactions and pathways involving N-acetylglucosamine. The D 

isomer is a common structural unit of glycoproteins in plants, bacteria and 

animals; it is often the terminal sugar of an oligosaccharide group of a 

glycoprotein. 

GO:0044255 The chemical reactions and pathways involving lipids, as carried out by 

individual cells. 

GO:0043436 The chemical reactions and pathways involving any oxoacid; an oxoacid is a 

compound which contains oxygen, at least one other element, and at least one 

hydrogen bound to oxygen, and which produces a conjugate base by loss of 

positive hydrogen ion(s) (hydrons). 

GO:0006637 The chemical reactions and pathways involving acyl-CoA, any derivative of 

coenzyme A in which the sulfhydryl group is in thiolester linkage with an acyl 

group. 

GO:0035383 The chemical reactions and pathways involving a thioester, a compound of 

general formula RC(=O)SR' in which the linking oxygen in an ester is replaced 

by a sulfur atom. They are the product of esterification between a carboxylic acid 

and a thiol. 

GO:0006082 The chemical reactions and pathways involving organic acids, any acidic 

compound containing carbon in covalent linkage. 

GO:0006633 The chemical reactions and pathways resulting in the formation of a fatty acid, 

any of the aliphatic monocarboxylic acids that can be liberated by hydrolysis 

from naturally occurring fats and oils. Fatty acids are predominantly straight-

chain acids of 4 to 24 carbon atoms, which may be saturated or unsaturated; 

branched fatty acids and hydroxy fatty acids also occur, and very long chain 

acids of over 30 carbons are found in waxes. 

GO:0035338 The chemical reactions and pathways resulting in the formation of a long-chain 

fatty-acyl-CoA any derivative of coenzyme A in which the sulfhydryl group is in 
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a thioester linkage with a long-chain fatty-acyl group. Long-chain fatty-acyl-

CoAs have chain lengths of C13 or more. 

GO:0035336 The chemical reactions and pathways involving long-chain fatty-acyl-CoAs, any 

derivative of coenzyme A in which the sulfhydryl group is in a thioester linkage 

with a long-chain fatty-acyl group. Long-chain fatty-acyl-CoAs have chain 

lengths of C13 or more. 

GO:0046949 The chemical reactions and pathways resulting in the formation of a fatty-acyl-

CoA, any derivative of coenzyme A in which the sulfhydryl group is in thiolester 

linkage with a fatty-acyl group. 

GO:0035337 The chemical reactions and pathways involving a fatty-acyl-CoA, any derivative 

of coenzyme A in which the sulfhydryl group is in thiolester linkage with a fatty-

acyl group. 

GO:1901071 The chemical reactions and pathways involving glucosamine-containing 

compounds (glucosamines). 

GO:0044281 The chemical reactions and pathways involving small molecules, any low 

molecular weight, monomeric, non-encoded molecule. 

GO:0050818 Any process that modulates the frequency, rate or extent of coagulation, the 

process in which a fluid solution, or part of it, changes into a solid or semisolid 

mass. 

GO:0090407 The chemical reactions and pathways resulting in the biosynthesis of deoxyribose 

phosphate, the phosphorylated sugar 2-deoxy-erythro-pentose. 

GO:0010741 Any process that decreases the rate, frequency or extent of a series of reactions, 

mediated by protein kinases, which occurs as a result of a single trigger reaction 

or compound. 

GO:0006629 The chemical reactions and pathways involving lipids, compounds soluble in an 

organic solvent but not, or sparingly, in an aqueous solvent. Includes fatty acids; 

neutral fats, other fatty-acid esters, and soaps; long-chain (fatty) alcohols and 

waxes; sphingoids and other long-chain bases; glycolipids, phospholipids and 

sphingolipids; and carotenes, polyprenols, sterols, terpenes and other 

isoprenoids. 

GO:0046474 The chemical reactions and pathways resulting in the formation of 

glycerophospholipids, any derivative of glycerophosphate that contains at least 

one O-acyl, O-alkyl, or O-alkenyl group attached to the glycerol residue. 

GO:0044710 A metabolic process - chemical reactions and pathways, including anabolism and 

catabolism, by which living organisms transform chemical substances - which 

involves a single organism. 

GO:0008543 The series of molecular signals generated as a consequence of a fibroblast growth 

factor receptor binding to one of its physiological ligands. 

GO:0008610 The chemical reactions and pathways resulting in the formation of lipids, 

compounds soluble in an organic solvent but not, or sparingly, in an aqueous 

solvent. 

GO:0008654 The chemical reactions and pathways resulting in the formation of phospholipids, 

any lipid containing phosphoric acid as a mono- or diester. 

GO:0051896 Any process that modulates the frequency, rate or extent of the protein kinase B 

signaling cascade, a series of reactions mediated by the intracellular 

serine/threonine kinase protein kinase B. 

GO:0006040 The chemical reactions and pathways involving any amino sugar, sugars 

containing an amino group in place of a hydroxyl group. 

GO:0042339 The chemical reactions and pathways involving keratan sulfate, a 

glycosaminoglycan with repeat units consisting of beta-1,4-linked D-

galactopyranosyl-beta-(1,4)-N-acetyl-D-glucosamine 6-sulfate and with variable 

amounts of fucose, sialic acid and mannose units; keratan sulfate chains are 

covalently linked by a glycosidic attachment through the trisaccharide 

galactosyl-galactosyl-xylose to peptidyl-threonine or serine residues. 
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Table A2.2 significant GO terms and annotated DE Genes 

GO ID DE genes 

GO:0045017 "SYNJ2"  "PLA2G5" "ELOVL6" "ACSL3"  "PDGFA"  "ELOVL2" 

GO:0030497 "ELOVL6" "ELOVL2" 

GO:0071071 "ACSL3" "PDGFA" 

GO:0044283 "HRH1"    "PLA2G5"  "BDH1"    "ELOVL6"  "OPLAH"   "CYP27A1" "ACSL3"   

"ELOVL2"  

GO:0044711 "HRH1"    "PLA2G5"  "BDH1"    "ELOVL6"  "OPLAH"   "CYP27A1" "ACSL3"   

"ELOVL2"  

GO:0048008 "MYO1E" "PLAT"  "PDGFA" 

GO:0050819 "PLAT"  "ANXA5" "PDGFA" 

GO:0072330 "PLA2G5"  "ELOVL6"  "CYP27A1" "ACSL3"   "ELOVL2"  

GO:0016053 "PLA2G5"  "ELOVL6"  "OPLAH"   "CYP27A1" "ACSL3"   "ELOVL2"  

GO:0046394 "PLA2G5"  "ELOVL6"  "OPLAH"   "CYP27A1" "ACSL3"   "ELOVL2"  

GO:0046486 "SYNJ2"  "PLA2G5" "ELOVL6" "ACSL3"  "PDGFA"  "ELOVL2" 

GO:0006044 "CHST2" "CHST7" 

GO:0044255 "SYNJ2"  "PLA2G5" "ITGB8"  "FHL2"   "BDH1"   "ELOVL6" "ARSJ"   "ACSL3"  

"PDGFA"  "ELOVL2" 

GO:0043436 "GALNS"   "LDHA"    "PLA2G5"  "CHST2"   "CHST7"   "ELOVL6"  "OPLAH"   

"CYP27A1" "ACSL3"   "ELOVL2"  "PIPOX"   

GO:0006637 "ELOVL6" "ELOVL2" "PIPOX"  

GO:0035383 "ELOVL6" "ELOVL2" "PIPOX"  

GO:0006082 "GALNS"   "LDHA"    "PLA2G5"  "CHST2"   "CHST7"   "ELOVL6"  "OPLAH"   

"CYP27A1" "ACSL3"   "ELOVL2"  "PIPOX"   

GO:0006633 "PLA2G5" "ELOVL6" "ACSL3"  "ELOVL2" 

GO:0035338 "ELOVL6" "ELOVL2" 

GO:0035336 "ELOVL6" "ELOVL2" 

GO:0046949 "ELOVL6" "ELOVL2" 

GO:0035337 "ELOVL6" "ELOVL2" 

GO:1901071 "CHST2" "CHST7" 

GO:0044281 "HRH1"    "GALNS"   "LDHA"    "SYNJ2"   "PLA2G5"  "AK3L1"   "CHST2"   

"CHST7"   "FHL2"    "ALDOA"   "BDH1"   "ELOVL6"  "SPRY2"   "ARSJ"    

"OPLAH"   "CYP27A1" "ACSL3"   "ELOVL2"  "PIPOX"  

GO:0050818 "PLAT"  "ANXA5" "PDGFA" 

GO:0090407 "HRH1"   "SYNJ2"  "PLA2G5" "AK3L1"  "ALDOA"  "ACSL3"  "PDGFA"  

GO:0010741 "PHLDA3" "DUSP5"  "SPRY2"  "TRIP6"  

GO:0006629 "SYNJ2"   "PLA2G5"  "ITGB8"   "FHL2"    "BDH1"    "ELOVL6"  "ARSJ"    

"CYP27A1" "ACSL3"   "PDGFA"   "ELOVL2"  

GO:0046474 "SYNJ2"  "PLA2G5" "ACSL3"  "PDGFA"  

GO:0044710 "HRH1"    "GALNS"   "LDHA"    "SYNJ2"   "PLA2G5"  "AK3L1"   "ITGB8"   

"CHST2"   "CHST7"   "FHL2"    "ALDOA"    "BDH1"    "ELOVL6"  "SPRY2"   

"ARSJ"    "OPLAH"   "CYP27A1" "ACSL3"   "PDGFA"   "ELOVL2"  "PIPOX" 

GO:0008543 "FGF17"    "SPRY2"    "C20orf23" "PDGFA"    

GO:0008610 "SYNJ2"   "PLA2G5"  "ELOVL6"  "CYP27A1" "ACSL3"   "PDGFA"   "ELOVL2"  

GO:0008654 "SYNJ2"  "PLA2G5" "ACSL3"  "PDGFA"  

GO:0051896 "PHLDA3" "SPRY2"  "PDGFA"  

GO:0006040 "CHST2"   "CHST7" 

GO:0042339 "GALNS"   "CHST2" 

 


