
Classification of medical data using

Restricted Boltzmann Machines

Markku Aalto

University of Tampere

School of Information Sciences

Computer Science

M.Sc. Thesis

Supervisor: Martti Juhola

March 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250133555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Tampere

School of Information Sciences

Computer Science

Markku Aalto: Classification of medical data using Restricted Boltzmann

Machines

M.Sc. Thesis, 49 pages

March 2014

Abstract

Restricted Boltzmann Machines are generative models commonly used for

feature extraction and for training deep neural networks. In this thesis, their

applicability for classification of medical data is researched. Three different

approaches are evaluated using two small medical data sets. It is shown that

the resulting classifiers are able to form sensible models of the data, having

competitive performance when compared to other methods on these data

sets.

Keywords and terms: Boltzmann Machine, Restricted Boltzmann Ma-

chine, neural network, classification, heterogeneous data

Contents

1 Introduction 1

2 Data 3

2.1 Incontinence . 3

2.2 Vertigo . 5

2.3 Preprocessing . 6

3 Foundations 7

3.1 Boltzmann Machine . 7

3.1.1 Modeling data . 7

3.1.2 Training . 10

3.2 Restricted Boltzmann Machine 13

3.2.1 Contrastive Divergence 15

3.2.2 Heterogeneous data . 16

3.2.3 Regularization . 18

3.2.4 Dropout . 19

3.2.5 Momentum . 20

4 Classification 22

4.1 Testing setup . 22

4.2 Time considerations . 24

4.3 Joint-density Restricted Boltzmann Machine 25

4.3.1 Description . 25

4.3.2 Results . 26

4.4 Multiple Restricted Boltzmann Machines 29

4.4.1 Description . 29

4.4.2 Results . 30

4.5 Deep Belief Network . 34

4.5.1 Description . 34

4.5.2 Results . 35

5 Conclusions 39

Bibliography 42

Chapter 1

Introduction

Restricted Boltzmann Machine (RBM) is a type of generative neural net-

work. Its properties are described in detail in Section 3. Originally, similar

models were introduced by Smolensky (1986), who called them ”harmoni-

ums”. Later on, they became known as topologically restricted version of

Boltzmann Machines, when Hinton (2002) suggested them as a Product of

Experts model.

One of their most common uses today is as a building block for deep neural

networks. This deep learning is often applied to various artificial intelligence

tasks, such as image or speech recognition. In these domains the complex

structure of the data necessitates the use of deep networks, and RBMs are

considered one of the most efficient and effective ways of training them,

achieving several state-of-the-art results. This area is reviewed in Bengio

(2009), Bengio et al. (2012), and Hinton (2007).

These AI-related data sets are typically very large and homogeneous. In this

1

thesis, however, the applicability of RBMs to the task of classification of two

smallish medical data sets (described in Section 2) is explored. Given that

this is somewhat atypical application for this type of network, the relevant

concerns are not thoroughly addressed in existing literature. Noise, overfit-

ting, and other statistical problems are mostly associated with smaller and

incomplete data sets and thus they are not of primary importance for typical

deep networks.

There is some evidence that generative networks can perform quite well even

with small training sets (Ng and Jordan, 2002). In Section 4, three differ-

ent methods of using RBMs for classification are tested. The focus is on

generative training followed by discriminative fine-tuning.

The classifiers were implemented in Python, taking advantage of Theano

library (Bergstra et al., 2010). Theano optimizes and compiles the defined

calculations for increased runtime performance.

2

Chapter 2

Data

2.1 Incontinence

The first data set concerns female urinary incontinence. Total of 529 patients

are separated into five different classes, four of which are for the most common

incontinence diagnoses and one is for continent patients. Class breakdown

can be seen in Table 2.1. Class sizes are clearly imbalanced and quite small,

especially for the last three classes.

For each patient, there are 13 variables - five quantitative and eight binary

ones. Out of all values, 17.9 % are missing. There are 87 complete cases.

For comparison, some previous results are given in Table 2.2. The column

headers are defined in Equations 4.1 - 4.8. These results were achieved using

logistic regression on Expectation-Maximization imputed data (Laurikkala

et al., 2001). Results for the last two classes could not be reliably computed

due to their small size.

3

Table 2.1: Diagnosis frequencies in the Incontinence data set.

Incontinence class Absolute frequency Relative frequency (%)

Stress 323 61.1

Mixed 140 26.5

Sensory urge 33 6.2

Motor urge 15 2.8

Continent 18 3.4

Table 2.2: Previous classification results for the Incontinence data set.

Incontinence class Sensitivity Accuracy

Stress 0.86 0.83

Mixed 0.88 0.88

Sensory urge 0.50 0.99

4

Table 2.3: Diagnosis frequencies in the Vertigo data set.

Vertigo class Absolute frequency Relative frequency (%)

Vestibular schwannoma 130 16

Benign positional vertigo 146 18

Ménière’s disease 313 38

Sudden deafness 41 5

Traumatic vertigo 65 8

Vestibular neuritis 120 15

2.2 Vertigo

The second data set is somewhat larger and more complex set about ver-

tiginous patients. There are 815 patients divided into six classes, as shown

in Table 2.3. Out of the total of 38 variables, 16 are quantitative, 10 are

ordinal, 11 are binary, and one is nominal with 4 possible values. Handling

ordinal variables correctly can be quite difficult and requires specific domain

knowledge, so they are simply considered nominal in the rest of the work.

This results in a loss of information about the ordering. About 11 % of the

values are missing.

Previous results for this data set can be seen in Table 2.4. See Equations 4.1

- 4.8 for the header definitions. A set of perceptron neural networks (NetSet)

were used for these results (Siermala et al., 2008).

5

Table 2.4: Previous classification results for the Vertigo data set.

Incontinence class Sensitivity Specificity Precision Accuracy

Vestibular schwannoma 0.76 0.98 0.85 0.92

Benign positional vertigo 0.81 0.90 0.60 0.88

Ménière’s disease 0.73 0.91 0.82 0.84

Sudden deafness 1.00 1.00 0.89 1.00

Traumatic vertigo 0.92 0.98 0.87 0.97

Vestibular neuritis 0.86 0.98 0.93 0.95

2.3 Preprocessing

To deal with missing values, the data were imputed using Random Forest

method with the missForest package (Stekhoven and Buehlmann, 2012) for

R. Moreover, quantitative variables were normalized to zero mean and unit

variance for reasons described in Section 3.2.2.

6

Chapter 3

Foundations

3.1 Boltzmann Machine

3.1.1 Modeling data

Boltzmann Machine (BM) is an energy-based neural network for modeling a

set of binary vectors (see Ackley et al. (1985), Hinton and Sejnowski (1986)).

It consists of stochastic binary units that are symmetrically connected to each

other. The units are often divided into visible and hidden units. Visible units

hold the actual observations that are modeled - they are comparable to the

input layer of a perceptron. Hidden units can be thought of as explanations or

feature detectors for the visible units. In practice they increase the modeling

capacity of the network.

Let W = [wij] be the weight matrix for the connections between the units,

where wij is the weight of the connection between units i and j, which can be

7

either visible or hidden units. As the connections are symmetrical, wij = wji.

Each unit also has a bias; a = [ai] is the bias vector for the visible units and

b = [bk] is for the hidden units.

Now, the network assigns an energy to every configuration of units

E(v,h|θ) = −
∑
i

aivi −
∑
k

bkhk −
∑
i,j>i

wijvivj −
∑
k,l>k

wklhkhl −
∑
i,k

wikvihk

(3.1)

where v and h are binary vectors of the states of visible and hidden units,

respectively, and θ is vector of the model parameters [W, a,b]. Here i and j

iterate over the indices of visible units, while k and l do the same for hidden

units. To unpack, the first two terms in Equation 3.1 come from visible and

hidden biases, the next two from the connections within visible and hidden

units (pairwise connections only counted once) and the last term from the

connections between visible and hidden units. A probability distribution of

unit state configurations is defined based on that energy

P (v,h|θ) =
e−E(v,h|θ)

Zθ

(3.2)

where

Zθ =
∑
v,h

e−E(v,h|θ) (3.3)

is the partition function (sometimes called the normalizing constant). We are

mostly interested in the visible units, so the hidden ones can be marginalized

away

P (v|θ) =

∑
h e
−E(v,h|θ)

Zθ

. (3.4)

For notational convenience, we can define free energy as

F (v|θ) = − log
∑
h

e−E(v,h|θ) (3.5)

8

allowing us to rewrite the previous equations as

P (v|θ) =
e−F (v|θ)

Zθ

(3.6)

Zθ =
∑
v

e−F (v|θ). (3.7)

To clarify how a BM models data, Figure 3.1 and Table 3.1 show an ex-

ample. It should be noted that in this case it was possible to calculate the

exact value for the partition function and thus the exact probabilities. As

this requires summing over every possible configuration of the network, it

is computationally intractable for realistically sized networks. Dealing with

this problem will be a common theme later on. Also, the example net is not

fully connected. This is equivalent to simply having a fixed weight of 0 for

the lacking connections. BM itself does not restrict the topology.

Sampling from the network is difficult due to intractability of Z. There is,

however, a Markov Chain Monte Carlo method for getting unbiased samples

(although inefficiently). First, from Equation 3.2 it follows that

P (vi = 1|v\i,h,W, a) = σ(
∑
j 6=i

wijvj +
∑
k

wikhk + ai) (3.8)

P (hk = 1|h\k,v,W,b) = σ(
∑
l 6=k

wklhl +
∑
i

wkivi + bk) (3.9)

where v\i denotes vector v without ith element (that is, every state except

for vi is given), and σ(x) = 1/(1 + e−x) is the sigmoid function. Now, if you

initialize the states randomly, and then update the state of each unit one at

a time by applying these equations, eventually the Markov chain will reach

stationary distribution and the network will end up in a configuration in

accordance with the probabilities induced by the model parameters (Hinton

9

v2

0

v1

1
h1

2

h2

-1
-1

1

-2
2

Figure 3.1: A small Boltzmann Machine with two visible units and two

hidden units. The circles representing units have their respective label and

bias written inside them. Between the units there are connections and their

weights.

and Sejnowski, 1986). This process is called Gibbs sampling and in this case

updating the state of every unit once is one full Gibbs step. In general, many

steps are required to reach stationary distribution.

3.1.2 Training

For the network to be useful, it needs to model some actual data. Assume

there is a training set D that consists of n binary vectors. The goal is

to maximize the probability that when one samples from the network n

times, one ends up with D. This is equivalent to maximizing the product of

probabilities the network assigns to vectors in D, which, in turn, is the same

as maximizing the sum of log probabilities of vectors in D.

10

Table 3.1: Probability calculations for the Boltzmann Machine in Figure 3.1.

The first four columns show the states of the respective units, with every

configuration listed. Values in the last three columns are rounded to the

given precision.

v1 v2 h1 h2 E(v,h|θ) e−E(v,h|θ) P (v,h|θ) P (v|θ)

0 0 0 0 0 1.0 0.008

0.22
0 0 0 1 1 0.4 0.003

0 0 1 0 -2 7.4 0.057

0 0 1 1 -3 20.1 0.154

0 1 0 0 0 1.0 0.008

0.58
0 1 0 1 1 0.4 0.003

0 1 1 0 -3 20.1 0.154

0 1 1 1 -4 54.6 0.419

1 0 0 0 -1 2.7 0.021

0.11
1 0 0 1 0 1.0 0.008

1 0 1 0 -1 2.7 0.021

1 0 1 1 -2 7.4 0.057

1 1 0 0 0 1.0 0.008

0.09
1 1 0 1 1 0.4 0.003

1 1 1 0 -1 2.7 0.021

1 1 1 1 -2 7.4 0.057

Zθ ≈ 130.2

11

Given a data vector v ∈ D, one can get the following partial derivatives:

∂ logP (v|θ)

∂wij

= 〈xixj〉data − 〈xixj〉model (3.10)

∂ logP (v|θ)

∂ai
= 〈vi〉data − 〈vi〉model (3.11)

∂ logP (v|θ)

∂bk
= 〈hk〉data − 〈hk〉model (3.12)

where 〈y〉P denotes the expected value of y in the probability distribution P

and xi is the state of unit i, which can be either hidden or visible unit. The

distributions data and model refer to P (h|v,θ) and P (h,v|θ), respectively.

One can sample from the first one by clamping the visible units to states

according to v and running the Markov chain described in Section 3.1.1 over

the rest of the units. For the second one, the same thing can be done with

no clamping, allowing all states to be updated.

These two terms are often called the positive phase and the negative phase.

Positive phase finds hidden configurations that work well with the visible

configuration and decreases their energy (thus making the global configu-

ration more probable). Negative phase finds global configurations that the

net thinks are probable and increases their energy (getting rid of spurious

minima).

From these derivatives one can directly get update rules for the parameters

∆wij = ε(〈xixj〉data − 〈xixj〉model) (3.13)

∆ai = ε(〈vi〉data − 〈vi〉model) (3.14)

∆bk = ε(〈hk〉data − 〈hk〉model) (3.15)

where ε is the learning rate.

12

v1 v2 v3 v4

h1 h2 h3 h4 h5

Figure 3.2: Restricted Boltzmann Machine with four visible units in the

bottom layer and five hidden units in the top layer.

The theory here is sound, but there is a significant problem. It can take a

relatively long time to get a sample and a lot of them are needed to get good

approximations for the expected values. While it is possible to train a BM

this way, it is not quite practical for large networks. In the next section,

Restricted Boltzmann Machines are examined to find ways to speed up the

training.

3.2 Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM) is simply a BM with restricted topol-

ogy. It has exactly two layers, one for visible units and one for hidden units.

There are no connections within the layers. In effect, the units form a bipar-

tite graph (usually a complete one). An example is shown in Figure 3.2.

The equations in Section 3.1 also hold true for RBMs, but some of them can

be simplified due to the lack of intra-layer connections. Additionally, hidden

units become mutually independent given visible units and vice versa.

It is fair to ask whether RBMs are weaker models than general BMs, but

it has been shown that RBMs can represent any discrete data distribution

13

v0 v1 ≈ P (v|h0,θ) v∞ ≈ P (v|θ)

h0 ≈ P (h|v0,θ) h1 ≈ P (h|v1,θ) h∞ ≈ P (h|θ)

· · ·

Figure 3.3: Gibbs sampling from an RBM. vt is the vector of states of visible

units at time t, and ht is the same for hidden units.

given enough hidden units (Le Roux and Bengio, 2008).

To get samples, one can use Gibbs sampling in a more efficient way than with

BMs in general. Instead of updating the state of a single unit at a time, one

can update a whole layer in parallel, alternating between the layers. This

is much faster than sequential updates when using modern, multi-threaded

processors. This sampling process is shown in Figure 3.3. For positive phase,

one would set v0 to a data vector from the training set and compute h0 from

it. With visible units being clamped and hidden units being mutually inde-

pendent given the visible units, stationary distribution would be reached in

this single step and the states could be used for collecting statistics. Negative

phase statistics could be collected by initializing v0 randomly and running

the Markov chain until convergence, and then taking the samples.

Using an RBM solves the efficiency problem for positive phase, but getting

samples for the negative phase is still too slow. To speed up the negative

phase, Contrastive Divergence learning procedure makes some changes to the

process to make it practical.

14

3.2.1 Contrastive Divergence

In Contrastive Divergence (CD), there are two ways to make sampling for

the negative phase faster (Hinton, 2002). Firstly, instead of initializing the

states randomly, they are set to a data point from the training set, as one

would do in the positive phase. As the data and model distributions will

be close to each other (at least after some training has already occurred),

the starting point will already be more probable in the model and closer to

convergence. Secondly, instead of running the chain to convergence, only a

fixed number of Gibbs steps will be taken. Using the notation of Figure 3.3,

the negative phase statistics will be collected from states vn and hn with n

being the number of full Gibbs steps. This might seem like a risky move. If

stationary distribution is not reached, then the samples are not truly from

the model distribution, as they will be biased by the initial configuration.

Using the expected values from these samples means that we are not directly

maximizing the log probability any more. It has indeed been shown that

the values received by CD are not derivatives of any function (Sutskever and

Tieleman, 2010). Nevertheless, even CD-1 (CD with one Gibbs step) appears

to work quite well in practice. More steps can be taken to better approximate

the log probability gradient, if there are resources to do so.

One problem with CD is that the mixing rate of the Markov chain tends to

slow down as learning progresses. This can be remedied to some extent by

increasing the amount of Gibbs steps per update, but this also slows down

the learning. Another learning procedure called Persistent Contrastive Di-

vergence (PCD) uses a slightly modified way of getting samples from the

model distribution (Tieleman, 2008). Instead of restarting the chains after

15

every parameter update, a fixed set of persistent chains is used. At first, a

batch of samples is generated just as in CD negative phase. After updating

the model parameters, the Markov chains for negative phase are continued

from the last sampling points, instead of restarting them from training data

points. This relies on the assumptions that the model changes only a lit-

tle between each update and that the previous negative samples are good

representations of the previous model distribution, making them even better

initialization points than actual data points. The points induced by these

chains are called fantasy particles. In effect, they roam around the energy

landscape finding configurations likely in the model and increasing their en-

ergies. It is also possible to use multiple Gibbs steps per each update for

PCD as it is for CD, but PCD seems to be more robust in this regard and a

single step is often good enough.

3.2.2 Heterogeneous data

So far only binary units have been considered. Many data sets, including

the ones used in this thesis, can not be efficiently represented in binary

form (at least without sophisticated pre-processing). While there are several

modifications of RBMs that use different types of units to allow for modeling

continuous or other types of data, it is necessary to combine multiple unit

types in a single network to handle the data sets in this study.

Categorical variables can be modeled by a set of binary units with the ad-

ditional constraint that only one of them can be active at a time (Hinton,

2010). These binary units form a softmax unit, where the probability of each

16

binary unit being active is normalized by the whole group. If all visible units

form a single softmax and xi is the input for unit vi, the probabilities are

P (vi = 1|h,W, a) =
exi∑
j e

xj
. (3.16)

One way to deal with continuous variables is to use linear units with Gaussian

noise (Hinton, 2010). In a network where the visible units are such Gaussian

units and the hidden units are binary, the energy function becomes

E(v,h|θ) =
∑
i

(vi − ai)2

2σ2
i

−
∑
j

bjhj −
∑
i,j

vi
σi
hjwji (3.17)

where σi is the standard deviation of the Gaussian noise for the visible unit

vi. Learning the standard deviations is possible, but it adds more complexity.

This can be circumvented by normalizing the data such that each continuous

variable has zero mean and unit variance. With normalized variables one can

use fixed standard deviation and noiseless reconstruction of the visible units.

Visible units will then behave as linear units where the updated value is the

mean input. Stochasticity of the network will be preserved as the hidden

units are still stochastic binary units.

Using mean updates for visible units is also possible for other unit types.

With binary and softmax units this simply means using the probabilities

directly instead of sampling a stochastic value according to them.

When multiple visible unit types exist in a single RBM, the energy func-

tion becomes a combination of their respective energy functions (Tran et al.,

2011). Every visible unit contributes energy depending on its type: (vi −

ai)
2/2σ2

i for linear visible units and aivi for binary ones. The hidden units

are always binary so there is no change and the connections between hidden

17

and visible units end up as vihjwji, if the visible units use fixed unit variance.

In this context the categorical variables work as multiple binary ones.

3.2.3 Regularization

Data sets used in this study are quite small with many missing values. Due

to this, overfitting is a significant problem. The gist is that the model with

this problem describes the training data very well, but it is too specific and

does not generalize to data it was not trained with. This is called the bias-

variance tradeoff as the goal is to minimize both the bias and the variance

of model error, but these tend do work against each other.

Common ways of preventing overfitting are to simply reduce the modeling

capacity by using fewer hidden units or using different types of weight-decay.

Weight-decay also has other benefits when used on RBMs (Hinton, 2010).

Penalizing extreme weights is useful for making sure that units are actually

active and not just stuck on or off. Keeping the weights close to zero also

makes the mixing rate of Markov chain faster and thus improves the learning.

Instead of or in addition to weight-decay, it is also possible to use a weight

constraint (Hinton et al., 2012). This means that there is a fixed upper limit

for the L2 norm of incoming weight vector of every hidden unit. If a weight

update would make the norm cross that limit, the weights are scaled so that

they stay within bounds. As a result, it is possible to use higher learning

rates to more effectively search the weight-space while keeping the weights

reasonable and avoiding divergence.

18

3.2.4 Dropout

Another way of dealing with the bias-variance tradeoff is to use ensemble

learning, where multiple models are trained with different subsets of training

data and their results averaged. An effective way of achieving this with

RBMs is to use dropout technique (Hinton et al., 2012). For each training

case, hidden units are dropped out of the network with some probability p.

The learning procedure and weight update is then done as if those dropped

out units and weights related to them did not exist.

In effect, this results in a whole family of networks with weight sharing. To

get their averaged result, one can activate every hidden unit, do an upwards

pass to update the hidden unit states, and then a downwards pass where the

outputs of hidden units are multiplied by p. If the model is trained so that

approximately half the hidden units are active at a time, then activating all

of them would cause about twice as much input to visible units, hence the

scaling.

From another perspective, this reduces the co-adaptation of the hidden units,

as they can not rely on other hidden units being there. If every subset

of hidden units should be a reasonable model, it pushes every unit to be

independently useful.

An example of dropout can be seen in Figure 3.4. For the next weight update

the network will be trained as if only the three remaining hidden units and

their connections existed. The weights and biases that correspond to the

dashed units and connections will not change during this training.

19

v1 v2 v3 v4

h1 h2 h3 h4 h5

Figure 3.4: Restricted Boltzmann Machine with hidden units h3 and h5

dropped out.

3.2.5 Momentum

In gradient descent learning, it is common to use momentum to speed up

the learning process. Sometimes directly following the steepest descent is

not the optimal direction for minimizing the objective function in the long

term, as it might be almost perpendicular to the direction of local minima,

repeatedly crossing an energy ravine. Using momentum, the local opposing

trends tend to cancel out and velocity will build towards common direction.

Nesterov’s Accelerated Gradient (NAG) is a similar method that is used in

this work. In classical momentum (CM), new velocity is calculated from

current velocity and gradient, after which it is added to the current weights.

In NAG, the gradient is calculated after a ”simulated” update of weights

with current velocity (Sutskever et al., 2013).

CM can be written as

vt+1 = µvt + εg(θt) (3.18)

θt+1 = θt + vt+1 (3.19)

where v is the velocity, t is the time step, µ is the momentum coefficient, ε

is the learning rate, θ is the parameter to optimize, and g(θ) is the gradient

20

at θ. Compared to this, NAG is

vt+1 = µvt + εg(θt + µvt) (3.20)

θt+1 = θt + vt+1 (3.21)

so the only difference is that the new gradient is calculated at the point

where the current parameter would end up, if the current velocity was already

applied.

21

Chapter 4

Classification

4.1 Testing setup

The Incontinence data set can be conveniently split into 15 batches of 34

data points with identical class composition in every batch by leaving a few

samples out. In the following tests, the samples are randomly divided into

these batches, and the tests are run by using 14 of these batches as the

training set and the one leftover batch as the testing set. This is repeated

15 times so that each batch is the testing batch once. This whole process is

repeated six times to collect the final statistics.

With the Vertigo data set the testing procedure is a bit simpler. For every

run, 10 % of the data points are randomly selected into the testing set with

the rest forming the training set. This is repeated 50 times to collect the

statistics. It should be noted that while the total amount of tested samples

is the same between different test runs, their class compositions might differ.

22

The results are presented in two tables per each combination classification

method and data set. The first table shows specifically how testing samples

belonging to each class were classified. If the number in row x and column y

is n, that means that n testing samples that belong to class x were classified

as y. Correctly classified samples are on the diagonal. Due to the difference

in class compositions noted in the last paragraph, the absolute numbers for

the Vertigo data set are not directly comparable between different methods.

The second table shows summary statistics for every class. If we define

TP (True Positive) = # of correctly classified positive samples (4.1)

TN (True Negative) = # of correctly classified negative samples (4.2)

FP (False Positive) = # of incorrectly classified negative samples (4.3)

FN (False Negative) = # of incorrectly classified positive samples, (4.4)

then

Sensitivity =
TP

TP+ FN
(4.5)

Specificity =
TN

TN+ FP
(4.6)

Precision =
TP

TP + FP
(4.7)

Accuracy =
TP + TN

TP+ TN + FP + FN
. (4.8)

Here positive means that the sample belongs to the class in question and

negative means that it belongs to another class.

23

4.2 Time considerations

Training a simple RBM mostly involves matrix multiplications and element-

wise operations, both of which can be performed efficiently in parallel. Some

additional difficulties are caused by using multiple unit types in a single

network and techniques like dropout. The training time is obviously affected

by the usual factors, such as the size of the training set, the number of

epochs, the size of the mini-batches used in the training and so on. Out of

RBM-specific meta-parameters, the most important ones are the amount of

hidden units and the number of Gibbs steps taken per model update (e.g.

CD-1 vs. CD-10).

After the RBM is trained, classifying a new sample mostly requires calcu-

lating its free energy, which can be done in linear time as a function of the

amount of units in the network. For all the used classification methods, this

testing phase is practically instantaneous.

In the following tests, the meta-parameters were adjusted such that a com-

plete set of tests for a single data set and method could be performed in

about eight hours or less using a decent laptop. Test sets are comprised of

several dozen individual tests, so training and testing a single model usually

took from five to ten minutes.

24

4.3 Joint-density Restricted Boltzmann Ma-

chine

4.3.1 Description

The training of RBMs is a form of unsupervised learning, as it is concerned

with modeling the distribution of data rather than mapping it to labels.

In Vertigo and Incontinence data sets, however, all data are labeled. The

simplest way to include the labels in the model is to concatenate them with

the features by making the label a categorical variable and to train a joint-

density model of them.

Given an RBM trained in this way, it is theoretically possible to classify new

samples by clamping the visible features of the sample and then trying every

possible state for the visible unit corresponding to the label. For each of

these combinations the probability can be calculated and the most probable

label for the given features can be selected.

Unfortunately, due to the intractable partition function, these probabilities

are difficult to calculate directly. Free energies of the visible units can be

easily calculated, and because there is only one network, the partition func-

tion is the same for every combination of features and label. Thus, the free

energies are directly comparable and the combination with the smallest free

energy is also the most probable.

Another consideration is that CD/PCD learning is purely generative. Sam-

pling from the network would result in the specific combination of features

25

and label with its respective probability. Training a good generative model

is a very general and difficult problem, though. The classification capability

comes essentially as a free side-effect with the generative model.

In practice it might be beneficial to be a bit less ambitious and focus explicitly

on the classification performance, as that is the only thing we need in the end.

This kind of discriminative training can be done by using the log probability

of correct classification of test data directly as the objective function (Hinton,

2010). In these tests, generative training was first used to find the general

structure of the data, followed by discriminative fine-tuning to improve final

performance.

4.3.2 Results

For the Incontinence data set, 5000 epochs of PCD-1 learning were performed

using 50 hidden units. Both L2 weight-decay and weight constraint were

used. During training, momentum coefficient was slowly increased while

learning rate was decreased. After this generative training, additional 1000

epochs of discriminative training with small learning rate were done to fine-

tune the network for discrimination. The results are shown in Table 4.1. The

main problem was that the Mixed class proved to be difficult to separate from

the others, except for the Continent class.

With Vertigo the network had 100 hidden units and 1000 epochs of PCD-1

were done followed by another 1000 epochs of discriminative fine-tuning. See

Table 4.2 for the results. The classification seemed quite consistent overall

without any major problems.

26

Table 4.1: Joint-density RBM classification results for the Incontinence data

set.

(a) Class breakdown

Class

Class
Stress Mixed Sensory urge Motor urge Continent

Stress 1716 152 8 0 14

Mixed 90 684 33 3 0

Sensory urge 5 84 94 0 5

Motor urge 0 29 3 58 0

Continent 2 0 0 0 88

(b) Summary statistics

Class Sensitivity Specificity Precision Accuracy

Stress 0.91 0.92 0.95 0.91

Mixed 0.84 0.88 0.72 0.87

Sensory urge 0.50 0.98 0.68 0.96

Motor urge 0.64 1.00 0.95 0.99

Continent 0.98 0.99 0.82 0.99

27

Table 4.2: Joint-density RBM classification results for the Vertigo data set.

(a) Class breakdown

Class
Class VS BPV MD SD TV VN

Vestibular schwannoma (VS) 569 16 71 6 0 6

Benign positional vertigo (BPV) 4 607 81 0 16 16

Ménière’s disease (MD) 25 48 1422 8 6 18

Sudden deafness (SD) 9 6 33 171 0 0

Traumatic vertigo (TV) 0 18 5 0 287 14

Vestibular neuritis (VN) 0 20 18 0 9 533

(b) Summary statistics

Class Sensitivity Specificity Precision Accuracy

Vestibular schwannoma 0.85 0.99 0.94 0.97

Benign positional vertigo 0.84 0.97 0.85 0.94

Ménière’s disease 0.93 0.92 0.87 0.92

Sudden deafness 0.78 1.00 0.92 0.98

Traumatic vertigo 0.89 0.99 0.90 0.98

Vestibular neuritis 0.92 0.98 0.91 0.98

28

4.4 Multiple Restricted Boltzmann Machines

4.4.1 Description

Another approach is to train a separate RBM for each class. Again, it would

be theoretically possible to simply calculate how probable a data vector is

in each of those RBMs and select the most probable one, but the exact

probabilities are intractable. With multiple networks and differing partition

functions, not even the free energies are directly comparable.

If v is a data vector and A is a class, then

P (v|A) = P (v|θA) =
e−F (v|θA)

ZA

(4.9)

with θA being the model parameters for the RBM trained for class A, and ZθA

being abbreviated as ZA. We can then use Bayes’ theorem for classification

P (A|v) =
P (v|θA)∑
X P (v|θX)

=
1
ZA
e−F (v|θA)∑

X
1

ZX
e−F (v|θX)

=
e−F (v|θA)∑

X
ZA

ZX
e−F (v|θX)

(4.10)

where X iterates over every class. To calculate class probabilities at least

the ratios between the different partition functions need to be known. One

way to find working values is to simply use maximum likelihood learning to

discriminatively find values that work well for the classification task (Schmah

et al., 2008). Unfortunately, attempts to find direct values for the partition

functions and thus consistent ratios in parallel for more than three classes

proved to be unsuccessful in the current study.

29

To get around this problem, each ratio was found separately by only consid-

ering the relevant two classes during training. It should be noted that the

ratios found this way are not consistent (for example, ZA

ZB

ZB

ZC
6= ZA

ZC
), but they

can nevertheless be used for calculating approximate probabilities.

4.4.2 Results

For Incontinence, the RBMs had 50 hidden units. They were trained for 2000

epochs using CD-10. Momentum, decreasing learning rate and L2 weight-

decay were utilized as before. Additionally, 50 % dropout was used for hidden

units. To find the ratios, 5000 epochs of maximum likelihood learning were

performed for each pair of classes. The results can be seen in Table 4.3. Here

the problem with the Mixed class is even more prominent. Especially Sensory

urge has notably low sensitivity of just 0.12 with bulk of the samples classified

as Mixed and the rest divided mostly between Sensory urge and Motor urge.

Due to the three middle classes getting muddled up, the statistics for those

classes are quite weak.

With Vertigo mostly the same parameters as with Incontinence were used,

except that the RBMs had 75 hidden units and they were trained for 3000

epochs. Results can be seen in Table 4.4. There seem to be quite a lot

of misses without any apparent trend. Notably Sudden deafness has low

precision while Benign positional vertigo has low sensitivity. Overall accuracy

still remains decent despite these problems.

There are several possible ways to improve the classification. Obviously the

method used for finding partition function ratios is far from optimal. The

30

Table 4.3: Multiple RBM classification results for the Incontinence data set.

(a) Class breakdown

Class

Class
Stress Mixed Sensory urge Motor urge Continent

Stress 1631 238 3 3 15

Mixed 42 742 11 9 6

Sensory urge 3 125 22 24 6

Motor urge 0 31 1 58 0

Continent 1 0 0 0 89

(b) Summary statistics

Class Sensitivity Specificity Precision Accuracy

Stress 0.86 0.96 0.97 0.90

Mixed 0.92 0.82 0.65 0.85

Sensory urge 0.12 0.99 0.59 0.94

Motor urge 0.64 0.99 0.62 0.98

Continent 0.99 0.99 0.77 0.99

31

same training set was used for training the RBMs and for finding the ratios.

The problem is that the specific training samples used for training the RBMs

are bound to have very low free energies as the network is optimized for them.

Thus, the free energies of those samples are not representative of the class in

general and result in bad ratios. The reason for not using separate training

and testing sets is that some classes only had a few samples, and losing any

training samples made the model rapidly worse. It would be possible to only

do the splitting for larger classes, but it was not done due to consistency and

simplicity.

Another possible problem is that the training for RBMs is purely generative

without any discriminative training signal. Discriminative fine-tuning signif-

icantly improved the classification performance of Joint-density RBMs and

while the situation is not directly comparable, it is reasonable that it could

also improve the performance here. This was not done here, because train-

ing the RBMs in parallel discriminatively would have required significant

architectural overhaul in the implementation.

32

Table 4.4: Multiple RBM classification results for the Vertigo data set.

(a) Class breakdown

Class
Class VS BPV MD SD TV VN

Vestibular schwannoma (VS) 446 0 5 46 0 0

Benign positional vertigo (BPV) 58 614 188 17 14 20

Ménière’s disease (MD) 74 56 1243 30 5 15

Sudden deafness (SD) 0 0 13 92 0 2

Traumatic vertigo (TV) 12 42 39 8 310 21

Vestibular neuritis (VN) 32 10 47 6 14 571

(b) Summary statistics

Class Sensitivity Specificity Precision Accuracy

Vestibular schwannoma 0.90 0.95 0.72 0.94

Benign positional vertigo 0.67 0.97 0.85 0.90

Ménière’s disease 0.87 0.89 0.81 0.88

Sudden deafness 0.86 0.97 0.46 0.97

Traumatic vertigo 0.72 0.99 0.90 0.96

Vestibular neuritis 0.84 0.98 0.91 0.96

33

4.5 Deep Belief Network

4.5.1 Description

RBMs are often used as building blocks for deep networks (Bengio et al.,

2012). One such network is Deep Belief Network (DBN), which can be trained

by stacking RBMs on top of one another. The process is started by training

a single RBM as the bottom layer as usual. Then another RBM is trained

that uses the hidden units of the previous RBM as its visible units. Training

set for the second RBM is generated by taking an original training sample,

setting it as the visible units of the bottom RBM and then updating the

states of the hidden units of the bottom RBM according to their marginal

probabilities. This is repeated for all training samples and the resulting

vectors of hidden unit states form a training set for the second RBM.

For classification purposes one can add an output layer for the labels on

top of the network, and then fine-tune it for discrimination using standard

backpropagation. In effect, this works like a Multi-Layer Perceptron (MLP)

except that the weights are pre-trained by the greedy layerwise process of

training the RBMs.

The reason for this pre-training is that simple backpropagation becomes in-

creasingly inefficient as the number of layers grows. Pre-trained network can

already extract underlying structure of the data, so the backpropagation has

to perform mainly demarcation for the labels to fine-tune it for discrimina-

tion. Another significant benefit is that the pre-training is unsupervised. In

many data sets, only a small subset of the data is labeled. Labeled data

34

is only required for the fine-tuning so this allows all available data to be

efficiently used.

In these data sets, however, all data is labeled and there is not a lot of it.

It could be said that the amount of data does not really warrant a deep

network in the first place. This multi-layer approach has been justified by

showing that with enough hidden units and correct initialization, increasing

the number of layers improves the lower bound of the log probability of the

training data when the network is used as a generative model (Hinton et al.,

2006). In preliminary tests, however, the classification performance did not

improve with additional layers.

With shallow networks, the pre-training is mostly inconsequential as the

backpropagation is quite capable of finding good parameters for them. There

are also many similarities with Joint-density RBM and DBN with one hidden

layer. It was then decided to use three hidden layers for these tests as a

compromise between differentiating from Joint-density RBM and not having

unnecessary layers.

4.5.2 Results

For the Incontinence set, three hidden layers of 30 units each is used. The

RBMs are trained for 1000 epochs using CD-10. After the pre-training, a

logistic regression layer is added on top and trained using backpropagation

for 5000 epochs. See Table 4.5 for the results. They are very similar to the

ones achieved by the Joint-density RBM, except that there are slightly more

misses.

35

Table 4.5: DBN classification results for the Incontinence data set.

(a) Class breakdown

Class

Class
Stress Mixed Sensory urge Motor urge Continent

Stress 1730 139 8 0 13

Mixed 109 659 35 4 3

Sensory urge 4 88 72 10 6

Motor urge 2 12 14 62 0

Continent 10 0 0 0 80

(b) Summary statistics

Class Sensitivity Specificity Precision Accuracy

Stress 0.92 0.89 0.93 0.91

Mixed 0.81 0.89 0.73 0.87

Sensory urge 0.40 0.98 0.56 0.95

Motor urge 0.69 1.00 0.82 0.99

Continent 0.89 0.99 0.78 0.99

36

With Vertigo the parameters were otherwise similar except that each hidden

layer had 50 units. Results are in Table 4.6. These, in turn, resemble the

Multiple RBM results a lot. The same classes are problematic and the rest

are very similar, with DBN generally being slightly better.

In these tests the discriminative training was performed directly after the

layer-wise training of the RBMs. It would also be possible, after training the

RBMs, to improve the generative performance of the whole network using a

contrastive wake-sleep algorithm (Hinton et al., 2006).

37

Table 4.6: DBN classification results for the Vertigo data set.

(a) Class breakdown

Class
Class VS BPV MD SD TV VN

Vestibular schwannoma (VS) 464 0 10 29 0 0

Benign positional vertigo (BPV) 56 614 205 26 14 29

Ménière’s disease (MD) 81 65 1233 26 3 9

Sudden deafness (SD) 1 0 10 99 2 1

Traumatic vertigo (TV) 7 50 30 10 316 16

Vestibular neuritis (VN) 23 9 50 4 4 554

(b) Summary statistics

Class Sensitivity Specificity Precision Accuracy

Vestibular schwannoma 0.92 0.95 0.73 0.95

Benign positional vertigo 0.65 0.96 0.83 0.89

Ménière’s disease 0.87 0.88 0.80 0.88

Sudden deafness 0.88 0.98 0.51 0.97

Traumatic vertigo 0.74 0.99 0.93 0.97

Vestibular neuritis 0.86 0.98 0.91 0.96

38

Chapter 5

Conclusions

Joint-density RBM appeared to be the best classifier in these tests, while

also being the simplest one. With the Incontinence data set it had quite

similar performance when compared with the existing results (see Tables 2.2

and 4.1). The sensitivity was slightly higher for the Stress class and slightly

lower for the Mixed class. Both had problems with the Sensory urge class,

only having 0.50 sensitivity. Overall accuracy was somewhat better for the

Stress class, slightly worse for the Sensory urge and approximately equal for

the Mixed class. The last two classes, Motor urge and Continent, had no

previous results but they were both reasonably well classified, except that

Motor urge had only 0.64 sensitivity.

Results for the Vertigo data set were also quite close with the previous ones

(see Tables 2.4 and 4.2). In terms of sensitivity, Ménière’s disease had notably

better one while Sudden deafness had worse. As Ménière’s disease was the

largest class, this helped in raising the accuracy higher for every class except

39

for Sudden deafness. The second largest class, Benign positional vertigo, also

had overall better statistics. Smaller classes had very similar results, with

the exception of Sudden deafness, which had excellent existing results.

There is certainly room for improvement just by adjusting meta-parameters

and using more computational resources. The ones used for these tests were

selected simply by manually testing a few options for each value and choosing

a reasonably working combination. The classification methods themselves

could also be improved. Some of their possible shortfalls are discussed in

their respective sections.

Numerous different ways of improving RBM learning have been suggested

in the literature. For example, using rectified linear units instead of binary

units as hidden units (Dahl et al., 2013) has been beneficial in some cases.

There has also been attempts to address common learning problems by using

adaptive learning rate or other learning rate schedules (Cho et al., 2011), or

by using other learning procedures than CD/PCD, such as parallel tempering

(Desjardins et al., 2010). The problem with implementing many of these is

that they tend to make the process more complex, making it harder to reason

about it. They might also add even more meta-parameters making it more

difficult to find optimal combinations. Moreover, it is not always obvious

how they should work together when implemented at the same time.

Another source of bias is the imputation of missing values. Some of the

classes only have a very small amount of samples, which makes the impu-

tation harder and its effects more significant. It would be possible to use

unimputed data for training using a method similar to dropout (see Section

3.2.4), where the dropped out units are the visible units corresponding to

40

missing values. This approach has been successfully used for collaborative

filtering (Salakhutdinov et al., 2007).

In summary, generative networks such as RBMs appear to be a promising

alternative for these kinds of classification tasks, where only a limited amount

of quite noisy data is available. The area is progressing quickly with constant

new research into different methods and techniques. It can be expected

that with increasing practical experience and insight into these models, there

will be a good general understanding of how to optimize them for different

problems.

41

Bibliography

Ackley, David H, Geoffrey E Hinton, and Terrence J Sejnowski (1985), A

learning algorithm for Boltzmann machines. Cognitive Science, 9, 147–

169.

Bengio, Yoshua (2009), Learning deep architectures for AI. Foundations and

Trends in Machine Learning, 2, 1–127.

Bengio, Yoshua, Aaron C Courville, and Pascal Vincent (2012), Unsupervised

feature learning and deep learning: A review and new perspectives. CoRR,

abs/1206.5538.

Bergstra, James, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan

Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and

Yoshua Bengio (2010), Theano: a CPU and GPU Math Expression Com-

piler. In Proceedings of the Python for Scientific Computing Conference

(SciPy). Oral Presentation.

Cho, KyungHyun, Tapani Raiko, and Alexander Ilin (2011), Enhanced Gra-

dient and Adaptive Learning Rate for Training Restricted Boltzmann Ma-

chines. In Proceedings of the 28th International Conference on Machine

42

Learning (ICML-11) (Lise Getoor and Tobias Scheffer, eds.), ICML ’11,

105–112, ACM, New York, NY, USA.

Dahl, George E, Tara N Sainath, and Geoffrey E Hinton (2013), Improving

deep neural networks for LVCSR using rectified linear units and dropout.

In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE Inter-

national Conference on, 8609–8613, IEEE.

Desjardins, Guillaume, Aaron Courville, and Yoshua Bengio (2010), Adap-

tive parallel tempering for stochastic maximum likelihood learning of

RBMs. arXiv preprint arXiv:1012.3476.

Hinton, Geoffrey (2010), A practical guide to training restricted Boltzmann

machines. Technical Report UTML TR 2010-003, Department of Com-

puter Science, University of Toronto.

Hinton, Geoffrey E (2002), Training products of experts by minimizing con-

trastive divergence. Neural Computation, 14, 1771–1800.

Hinton, Geoffrey E (2007), Learning multiple layers of representation. Trends

in Cognitive Sciences, 11, 428–434.

Hinton, Geoffrey E, Simon Osindero, and Yee-Whye Teh (2006), A fast learn-

ing algorithm for deep belief nets. Neural Computation, 18, 1527–1554.

Hinton, Geoffrey E and Terrance J Sejnowski (1986), Learning and relearning

in Boltzmann machines. MIT Press, Cambridge, Mass, 1, 282–317.

Hinton, Geoffrey E, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and

Ruslan R Salakhutdinov (2012), Improving neural networks by preventing

co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.

43

Laurikkala, Jorma, Martti Juhola, Seppo Lammi, Jorma Penttinen, and

Pauliina Aukee (2001), Analysis of the imputed female urinary inconti-

nence data for the evaluation of expert system parameters. Computers in

Biology and Medicine, 31, 239–257.

Le Roux, Nicolas and Yoshua Bengio (2008), Representational power of re-

stricted Boltzmann machines and deep belief networks. Neural Computa-

tion, 20, 1631–1649.

Ng, Andrew Y and Michael I Jordan (2002), On discriminative vs. generative

classifiers: A comparison of logistic regression and naive bayes. Advances

in Neural Information Processing Systems, 2, 841–848.

Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton (2007), Restricted

Boltzmann machines for collaborative filtering. In Proceedings of the 24th

International Conference on Machine Learning, 791–798, ACM.

Schmah, Tanya, Geoffrey E Hinton, Steven L Small, Stephen Strother,

and Richard S Zemel (2008), Generative versus discriminative training of

RBMs for classification of fMRI images. In Advances in Neural Information

Processing Systems, 1409–1416.

Siermala, Markku, Martti Juhola, and Erna Kentala (2008), Neural network

classification of otoneurological data and its visualization. Computers in

Biology and Medicine, 38, 858–866.

Smolensky, Paul (1986), Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, vol. 1: Foundations, chapter Information pro-

44

cessing in dynamical systems: foundations of harmony theory, 194–281.

MIT Press, Cambridge, MA, USA.

Stekhoven, Daniel J and Peter Buehlmann (2012), MissForest - non-

parametric missing value imputation for mixed-type data. Bioinformatics,

28, 112–118.

Sutskever, Ilya, James Martens, George Dahl, and Geoffrey Hinton (2013),

On the importance of initialization and momentum in deep learning. In

Proceedings of The 30th International Conference on Machine Learning,

volume 28, 1139–1147, JMLR.org.

Sutskever, Ilya and Tijmen Tieleman (2010), On the convergence properties

of contrastive divergence. In International Conference on Artificial Intel-

ligence and Statistics, 789–795.

Tieleman, Tijmen (2008), Training restricted Boltzmann machines using ap-

proximations to the likelihood gradient. In Proceedings of the 25th Inter-

national Conference on Machine Learning, 1064–1071, ACM.

Tran, Truyen, Dinh Phung, and Svetha Venkatesh (2011), Mixed-variate

restricted Boltzmann machines. In ACML 2011: Proceedings of the 3rd

Asian Conference on Machine Learning, 213–229, JMLR.org.

45

