
Developing Psychophysiologically Interactive Computer Systems

Toni Vanhala

University of Tampere
Department of Computer Sciences
Interactive Technology
M.Sc. thesis
May 2005

i

University of Tampere
Department of Computer Sciences
Interactive Technology
Toni Vanhala: Developing Psychophysiologically Interactive Computer
Systems
M.Sc. thesis, 63 pages
May 2005

Abstract
This thesis presents a software framework to support the construction of
psychophysiologically interactive computer systems. The framework was
implemented in Java and C++ programming languages and it was used to
construct two systems. The first system was a remote heart rate monitoring
system. The second system was constructed for performing an empirical study
involving both facial electromyographic and wireless electrocardiographic
measurements. The first system was tested by four subjects who performed
scenarios of voluntarily induced heart rate changes. Measurements from
twenty-seven participants were collected with the second system. The results
showed that the framework supported the construction of these systems and
their accurate and reliable operation. The results also suggested that the
framework supports extending these prototypes into robust real-world
systems.

Keywords: biosignal processing, human-computer interaction, multimodal
architectures, proactive computing, psychophysiology, software frameworks.

ii

Contents
1. Introduction ...1
2. Psychophysiological computing..6

2.1. Applications..6
2.2. Challenges and solutions...12
2.3. Software ..17

3. Methods ...24
3.1 Framework..24

3.1.1. Structure of the framework..24
3.1.2. Implementation of the framework ..27

3.2. System prototypes..33
3.3. Data acquisition..35
3.4. System architectures ..36

4. Results ..39
4.1. System construction ...39
4.2. System operation..44

5. Discussion ..48
6. Summary..57

Acknowledgement.. 57
References .. 58

1

1. Introduction
The number of digital computers has been increasing since the late 1970s, when
mass-produced computers were first introduced to the general public.
Nowadays, computers are ubiquitous and many computers are embedded
within our environment, clothes, and even our bodies [Tennenhouse, 2000].
Furthermore, the number of computers connected with each other and their
surroundings is rapidly increasing. Consequently, the design, implementation,
and evaluation of human-computer interaction are becoming more and more
complex. One possible solution to this challenge is to introduce perceptive
capabilities for the computers themselves [Pentland, 2000]. Being able to
perceive their environment and classify the current situation, computers could
support the goals of their human operators by anticipating future events and
addressing them by taking appropriate actions. This would require that
computers could also perceive humans, that is, detect the psychological and the
physiological states of persons who are involved.

Although most of the previous research on human-computer interaction has
focused on its technological and psychological aspects, psychology and
physiology are interconnected and inseparable. Psychophysiology has long
studied these connections that provide an opportunity to explore the mind
through the functions of the body [Cacioppo et al., 2000]. For example, mental
stress induces changes to heart functioning. The heart muscle generates electric
signals that reflect these changes and propagate through the body [Brownley et
al., 2000]. The electric signals can then be measured from the surface of the skin
using electrocardiographic (ECG) equipment. The intervals between successive
heart cycles can be extracted from the acquired ECG data. Finally, the
variability of these intervals can be used to evaluate the level of mental stress
[Bernardi et al., 2000].

Psychophysiologically interactive computer systems perceive persons by
collecting physiological data and extracting psychophysiological measures
from this data. The systems use the extracted measures in order to select and
provide appropriate feedback to the monitored person. The systems may also
adapt their operation and functionality based on the acquired measures.
Furthermore, the feedback that a system can give to a monitored person
influences his or her physiology by affecting the psychological processes. The
resulting changes of physiological functioning then consequently act as an
input for the system [Figure 1].

2

The ability to continuously monitor psychophysiological processes
differentiates psychophysiologically interactive systems from conventional
computer systems, which view human-computer interaction as a processing
loop [Tennenhouse, 2000]. Placed within the loop of human-computer
interaction, humans must continuously and consciously communicate with a
computer system in order to operate it. In psychophysiological human-coputer
interaction, on the other hand, the monitored person does not need to actively
participate in the interaction with the system as physiological signals are
involuntarily and continuously produced. Thus, psychophysiologically
interactive computer systems can support a person without distracting his or
her tasks. A system provides this support by taking the initiative when
required and appropriate, that is, by being proactive [Tennenhouse, 2000].

As an example, a system that monitors heart functioning might alert
medical help in the case of a heart stroke. However, the person remains in the
control of the system as he or she can influence the monitored heart signals.
Generally speaking, humans can control their own physiology to a limited
extent. Further, they can also be trained to better control their physiological
processes. Heart functioning, for example, can be influenced with controlled
breathing or by performing simple mental activities [Bernardi et al., 2000].
Consequently, psychophysiological human-computer interaction is suited for
the proactive computing paradigm, which views the human as a supervisor
rather than an operator of computer systems [Tennenhouse, 2000].

Psychophysiologically interactive computer systems can support a wide
range of applications due to their ability to utilize both voluntarily and
involuntarily produced physiological data. Voluntarily controlled
psychophysiological signals have been used, for example, to create methods for
hands-free operation of computers [Surakka et al., 2004; Zhai, 2003; Millán,

Figure 1. Psychophysiological human-computer interaction. The computer
system analyses physiological data using a model of psychophysiological

relationships.

psychological
processes

physiological
processes

person

psychophysiological
model

psychophysiological
analysis

physiological
signals

feedback

computer system

3

2003]. As an example of the utilization of involuntarily produced
psychophysiological data, Lisetti and LeRouge [2004] proposed physiological
measures for identifying emotional states during medical data acquisition.
There are many situations that involve diagnostic measurements and that can
also influence emotions. One such situation is the common procedure of
measuring blood pressure with a strap-on collar. Anxiety and stress induced
by the situation can elevate the results. This elevation increases the risk of false
diagnosis of a permanently elevated blood pressure. Thus, from a clinician’s
viewpoint, it is necessary to detect emotions in order to assess and eliminate
their effect in diagnosis.

There is a wealth of different physiological signals. The most common
psychophysiological measures are derived from bioelectric signals that are
produced by nerve and muscle cells [Cohen, 2000]. Each of these signals has its
own characteristics, for example, frequency range and magnitude [Table 1].
These characteristics require specific analysis methods to be used for each
signal.

Table 1. Some common physiological signals with varying characteristics. Data
compiled from Table 48.1 in Neuman [2000b] and Table 52.1 in Cohen [2000].

For example, the smaller amplitude range of electroencephalographic
(EEG) signals requires them to be amplified more than electrocardiographic
signals, which have a much greater magnitude. Otherwise, the accuracy of
acquired EEG would be greatly reduced. Further, physiological signals contain
many different types of psychophysiological measures in many different
analysis domains [Gratton, 2000]. Each of these domains is an independent
source of information, although the domains also complement each other.
Different signals and domains require different analysis methods. Thus,

Physiological signal Acquisition Biologic source Frequency range Amplitude range

electrocardiogram (ECG) surface electrodes heart 0.05 – 1000 Hz 100 µV – 10 mV

electromyogram (EMG) single-fiber EMG:

needle electrode

surface EMG:

surface electrodes

muscle 0.01 – 10 kHz 1 µV – 2 mV

electroencephalogram (EEG) surface electrodes brain 0.5 – 100 Hz 2 – 200 µV

electro-oculogram (EOG) surface electrodes eye 0 – 100 Hz 10 µV – 5 mV

electroretinogram (ERG) microelectrode eye 0.2 – 200 Hz 0.5µV – 1 mV

4

psychophysiologically interactive computer systems are diverse in their
requirements for signal processing.

In addition to the diversity and complexity of physiological signals, many
other factors complicate the analysis of physiological data. These factors
include the complexity of the human physiological systems themselves,
indirectness of psychophysiological measures, and their context-dependency
[Cohen, 2000; Cacioppo et al., 2000]. One result from the complexity of
physiological systems is that most psychophysiological processes (including,
e.g., emotions) are reflected in more than one psychophysiological measure
[Lisetti and Nasoz, 2002; Cacioppo et al., 2000]. Furthermore, physiological
responses to different psychological factors can be nearly identical [Ward and
Marsden, 2003].

The indirectness of psychophysiological measures is the result of two
characteristics. First, the tighter the coupling between the physiological process
of interest and the sensor registering it, the more direct and noise-free is the
acquired signal [Neuman, 2000a]. However, the tightness of the coupling is
also related to the invasiveness of the measurement. Non-invasive measures
are more practical, comfortable, and safe for the monitored person. Also, the
sensors used in their acquisition are easier to maintain. For these reasons,
psychophysiological signals are most often acquired non-invasively.
Unfortunately, non-invasively acquired data has more noise than data that is
acquired with invasive methods. This further complicates the extraction and
analysis of psychophysiological measures.

Second, there is no clear, unambiguous linkage between mental processes
and physiological activity. In comparison, the relationship between physiology
and human health is extensively covered by models that can extract
meaningful features of physiological functioning with relatively little effort.
Actually, there is no generally accepted method for directly observing and
measuring psychological variables, which operate inside the black box of
human mind.

The context-dependency of physiological measures is evident in the
variance of the base level of activity [Gratton, 2000]. The base level of activity
can be defined as activity that occurs before the physiology responds to the
psychological element of interest. The identification of the base activity level is
difficult, even in controlled environments (e.g. empirical studies in a
laboratory). When physiological data is to be used in psychophysiological
human-computer interaction, this identification is even more difficult. In real-
world applications there usually are no controlled epochs with certain
identifiable conditions. However, these conditions do affect the base level of

5

activity [Cacioppo et al., 2000]. Thus, context must always be taken into
account in the analysis of psychophysiological data.

The context-dependency of psychophysiological data has recently become
even more pronounced, as wearable, wireless, and mobile physiological
monitoring devices have become common [Teller, 2004; Vehkaoja and Lekkala,
2004]. Mass-produced physiological monitors for the end-user are already
available for several applications, including weight management and sleep
monitoring [Bodymedia, 2005; Compumedics, 2005; Polar, 2004]. These new
devices can operate in multiple contexts, which poses new challenges for
psychophysiological computing. Psychophysiologically interactive systems that
utilize these devices must repeatedly answer questions about who employs
computation, where computation is performed, how people and devices
interact, and what the computation is used for [Fitzmaurice et al., 2003].

The challenges in analyzing psychophysiological data and utilizing it in
human-computer interaction complicate the development of
psychophysiologically interactive systems. The present thesis presents a
software framework that aims to support the development of
psychophysiologically interactive systems by addressing these challenges. The
framework provides this support by offering a set of software components that
different psychophysiologically interactive computer systems can share.
Furthermore, the framework is implemented according to a set of design
patterns that provide viable solutions for the software architectures of these
systems.

The structure of this thesis follows the process of creating the framework.
For designing the framework, the common requirements of
psychophysiologically interactive computing systems were first identified.
Then, a suitable architecture for handling many types of data processing and
static system configurations was designed. In order to support the dynamic
operation of systems, software agent technology was used to implement this
architecture. Finally, two psychophysiologically interactive systems were
constructed with the framework. The framework was evaluated based on the
results from the implementation and operation of these systems.

6

2. Psychophysiological computing

2.1. Applications
The applications for psychophysiological data cover many diverse fields,
including new interaction modalities for human-computer interaction, affective
computing, and medical applications. Allanson and Fairclough [2004] divided
these applications into biofeedback-based and cybernetically adaptive systems.
Biofeedback-based systems provide feedback about physiological processes to
the monitored person. The purpose of this feedback is to provide the person
the ability to gain awareness of physiological processes. Being aware of these
processes, the person is able to train for voluntary control over them. Adaptive
biocybernetic systems, on the other hand, modify their own functionality and
appearance based on the psychophysiological state of the monitored person.

However, interaction can cover other actors in addition to a single person
and a single measurement system. As an example of this kind of extended
interaction, computer-assisted diagnosis has been extensively studied for
several years [Rangayyan, 2001]. The clinician is informed about the
physiological and emotional state of the patient, who is being monitored with
remote technology [Figure 2]. The interaction loop is closed by the feedback
from the clinician to the monitored patient. In this case, feedback from a
computer system is mediated through and moderated by another person. The
system is neither biofeedback-based nor biocybernetically adaptive as
interaction occurs between multiple actors: the patient, the clinician, and the
computer system.

Figure 2. Computer-aided diagnosis and therapy based upon biomedical
signal analysis [Rangayyan, 2001 (modified and redrawn from Figure 1.32)].

Transducers

Physiological system
(patient)

Biomedical
signals Isolation

preamplifiers
Amplifiers
and filters

A/D
conversion

Feature
extraction

Artifact
filtering

Detection of
events

Pattern
recognition

and
classification

Diagnosis and
therapy

Physician or
medical specialist

Signal data acquisition

Signal processingSignal analysis

Computer system

7

In addition to the type of interaction it supports, a system can be classified
according to the type of data it processes. Systems can differ in both the
amount and the abstraction level of data they require for their operation. For
example, computer-aided diagnosis systems have to provide physicians with
high-level data that aids their diagnostic decisions. Thus, as presented in
Figure 2, a diagnosis system has to perform a lot of signal analysis steps prior
to providing suggestions for the diagnosis. Table 2 presents a classification of
psychophysiologically interactive systems according to the characteristics of
data and the type of interaction they support.

Table 2. A classification for psychophysiologically interactive systems.

Biofeedback has been extensively used in clinical applications. In the first
clinical application, feedback derived from electromyographic (EMG) activity
was used to treat muscle tension headache. Tones and clicks corresponding to
the tension of a forehead muscle were presented to the patient, who was
trained to gain voluntary control of the muscle. Later, this approach was
extended to general stress management. Currently, electromyographic
biofeedback is a standard procedure in rehabilitation of nerve and muscle
damages. During rehabilitation sessions, feedback derived from the EMG
signal is used to guide the tension of spastic or denervated muscles [Tassinary
and Cacioppo, 2000]. It is evident that the provided feedback must be

type of supported interaction

biofeedback-based
biocybernetic

adaptation
extended interaction

sh
or

t-t
er

m

clinical biofeedback
hands-free control using

facial muscles and gaze
phobia treatment

lo
w

-le
ve

l

lo
ng

-te
rm

fitness and weight

management
virtual coaching telemedicine

sh
or

t-t
er

m

brain-computer interface adaptive brain interface attention monitoring

ty
pe

 o
f p

ro
ce

ss
ed

 d
at

a

hi
gh

-le
ve

l

lo
ng

-te
rm

stress management adaptive environments social awareness

8

immediate and directly correspond to the intensity of physical activity. Thus,
clinical biofeedback applications deal with low-level data collected during a
short time period.

As an example of extended interaction based on low-level short-term
physiological data, virtual reality environments combined with monitoring of
psychophysiological activity were successfully used in treating a number of
different phobias [VRMC, 2005; Garcia-Palacios et al., 2002]. In this application,
biofeedback was mediated by clinicians who monitored their patients during a
treatment session. The anxiety and stress level of a patient were estimated from
the registered physiological signals during the session. These estimates guided
the clinician in adjusting the treatment for each individual patient and
treatment session. Parameters of physiological activity were sometimes also
shown to the monitored person. This enabled training the person to recognize
and control the physiological responses associated with his or her fear.

Biocybernetically adaptive systems that process short-term data at a low
level enable new interaction techniques. The motivation for developing such
techniques is their potential efficiency, comfort, and accessibility for persons
with disabilities. One approach is to combine information of where the
attention is directed with voluntarily produced physiological activity. This
approach was used in the work of Surakka and others [2004]. In this novel
input method objects could be selected by looking at them and voluntarily
activating a facial muscle. In other words, the system collected information
about the visual attention (i.e., gaze direction) and the intent (i.e., voluntary
facial action) of the user. This information was converted into interface
commands. Thus, the method utilized the collected data in a very direct way,
that is, without extracting any high-level meaning from it. The actions of the
user were interpreted as events that changed the operation of the system, that
is, adapted the system. As another example of a similar biocybernetically
adaptive application, Felzer and Freisleben [2000] implemented a system for
driving a wheel chair using voluntary activations of certain facial muscles.

Long-term monitoring of physiology enables a completely different set of
applications. The information gained during a longer time period is not
necessarily better nor more accurate, but different from what can be
immediately deduced. For example, the frequency spectrum of
electromyography provides information about the fatigue in the monitored
muscles [Tassinary and Cacioppo, 2000]. Amplitude analysis, on the other
hand, provides information about the current tension in the muscle. However,
frequency analysis is based on data from a longer time period than amplitude

9

analysis. Thus, the type of information provided by the EMG depends,
ultimately, on the length of the inspected time period.

An example of a system based on delayed biofeedback (i.e., feedback based
on long-term physiological data) is the HealthWear weight loss system
[BodyMedia, 2005]. The system monitors several physiological signals with
wearable sensors. The activities and caloric expenditure of the person are
derived from the registered signals. This data can then be used for balancing
the intake and expenditure of calories.

Delayed biofeedback has also been used for fitness management. Polar
[2004] provides a heart rate monitoring system that consists of an
electrocardiographic (ECG) sensor that is worn around the chest and a
wristwatch that collects and displays the ECG data. The system includes
features both for measuring current level of fitness and for planning exercises
accordingly. Both the HealthWare system and the fitness management system
require long-term monitoring of physiology in order to estimate stable effects
and trends in physiological processes. Short-term measures would be subject to
many sources of measurement errors and artifacts and thus unsuitable for this
purpose [Binkley, 2003].

As another example of a fitness-related application, Ijsselsteijn and others
[2004] studied the effects of coaching on the motivation of participants who
were cycling on a home exercise bike. The participants were given feedback on
their performance every minute. The feedback was based on the heart rate of
the participant and it was presented by a virtual embodied agent. In other
words, the system adapted its operation (i.e., the feedback) according to long-
term physiological data. The empirical results of Ijsselsteijn and others [2004]
showed that the given feedback lowered the pressure and tension perceived by
the participant during the workout. These results are supported by the findings
of Partala and Surakka [2004], who studied the effect of emotionally-significant
interventions in a human-computer interaction scenario. They found a positive
effect of interventions on user performance.

Long-term physiological monitoring has clinical applications as well.
Bondmass and others [1999] showed that long-term monitoring of
physiological data significantly improved the quality of life after a heart
failure. In their study, physiological measures were taken at home and
electronically transmitted to a remote medical center. At the medical center,
health care personnel were alarmed if too large deviations were present in the
physiological data. Thus, described according to the suggested classification of
psychophysiologically interactive computer systems, the system collected low-
level long-term physiological data that was used in extended interaction

10

involving the patient, the health care personnel, and the system. The results of
the study showed that readmissions, the length of stay in hospital, and hospital
charges were significantly decreased as a result of home monitoring.

Systems that automatically extract high-level meanings from physiological
data and utilize them in psychophysiological human-computer interaction
require a more detailed model of psychophysiological processes than
previously presented applications. Brain-computer interfaces, for example, are
based on voluntarily produced brain activity [Hinterberger et al., 2004;
Wolpaw et al., 2002]. Different mental tasks are performed by the user of the
system. These tasks produce specific changes to the electrical activity of the
brain, which enables them to be recognized by the system. Recognized tasks
are converted into interface commands. The tasks can be used, for example, to
move a cursor. Automatically recognized mental tasks could potentially be
high-level data for psychophysiological human-computer interaction.
However, in current brain-computer interfaces, the tasks that are used to
operate the interface are fixed and limited. Furthermore, the user has to be
trained to produce the required activity. Thus, classifying brain-computer
interfaces as systems that process high-level data reflects more their future
potential than their current capabilities.

Adaptive brain interfaces are similar to brain-computer interfaces, with the
exception that they can adapt to mental tasks preferred by individual users
[Millán, 2003]. However, this does not mean that adaptive brain interfaces
perform a more detailed analysis of physiological data. The abstraction level of
extracted measures is equal between brain-computer interfaces and adaptive
brain interfaces. As a consequence, the users of an adaptive brain interface still
have to be trained, but the training period can be considerably shorter
compared to a conventional brain-computer interface.

Despite the current limitations in the automatic recognition of brain
activity, Chen and Vertegaal [2004] have presented a practical application for
involuntary, untrained brain activity. They used electric signals of the brain to
distinguish between low and high states of motor activity. In addition to the
motor state of the monitored person, the mental load of the person was also
extracted from physiology. This estimate was based on the frequency
characteristics of heart activity. More specifically, the total power in the lower
frequencies of heart rate variability (LF HRV) was used to index the amount of
mental activity. The measures derived from brain and heart activity were then
combined in order to distinguish between four attentional states [Table 3].

11

Table 3. Classifying activities according to attentional state. (Redrawn and
modified from Table 1 in Chen and Vertegaal [2004].)

The mobile phone of the person had different notification modes associated
with each attentional state. For example, when the motor activity and the
mental load were both low, received calls would cause the phone to ring.
When there was little motor activity and a high mental load, the received calls
would cause the phone to vibrate. In addition, each caller was notified of the
person’s status prior to calling. The notification was displayed with an instant
messaging application provided for the caller on his or her desktop computer.
This way, callers could themselves decide whether interrupting the person
would be appropriate. Thus, the system supported extended interaction, in
addition to being biocybernetically adaptive as well.

Psychophysiological measures also provide means for estimating the stress
level of a person. An often used measure for mental stress has been the
variability of the heart rate (see, e.g., [Hjortskov et al., 2004] and [Chen and
Vertegaal, 2004]). There is accumulating evidence suggesting that mental stress
affects the onset and recovery from physical diseases, for example heart
conditions [Strike and Steptoe, 2003]. In the long run, monitoring the mental
stress level and providing feedback about it would enable the person to gain a
better control over the factors that contribute to it. This would help in avoiding
and relieving the effects of physiological diseases.

Reliable recognition of psychophysiological states can also be applied to
infer individual preferences. For example, emotional reactions associated with
particular songs could be used to recognize the likes and dislikes of a person.
Similar information has been used to select background music that suits the
diverse preferences of people who are, for example, working out in the same

Low motor activity High motor activity

Lo
w

 L
F

H
R

V
po

w
er • Low mental activity

• At rest

Candidate activities: pausing, relaxation.

Mobile phone notifications: ring.

Instant messaging status: available.

• Low mental activity

• Sustained movement

Candidate activities: moving.

Mobile phone notifications: ring.

Instant messaging status: busy.

H
ig

h
LF

H
R

V
po

w
er • High mental load

• At rest

Candidate activities: driving, reading, thinking.

Mobile phone notifications: vibrate

Instant messaging status: available.

• High mental load

• Sustained movement

Candidate activities: meeting, lecturing, writing.

Mobile phone notifications: silent.

Instant messaging status: busy.

12

gym [Chao et al., 2004; Marti and Lee, 2000]. Thus, unobtrusively acquired
psychophysiological measures of preferences could provide methods for
automatically adapting shared environments.

This approach could be expanded even further by providing information
about the patterns of psychophysiological states to other persons. First, the
attentional state of a person would be inferred (e.g., with the method of Chen
and Vertegaal [2004]). During long-term monitoring, these states form
temporal patterns that can be extracted from the data [Fisher and Dourish,
2004]. It might be, for example, that a certain person is usually occupied with
mentally and physically challenging tasks during mornings. Then, he could be
more easily reached during the rest of the day. Thus, based on the patterns of
attentional states, it is possible to infer and predict when a person is available
for interruptions and when not. Of course, temporal patterns could be
extracted also from other psychophysiological measures (i.e., besides attention)
and these patterns then applied in a similar manner.

A number of different applications for psychophysiological data were
presented in this section. The purpose of this discussion was to illustrate the
potential of psychophysiological human-computer interaction and the diversity
of its applications. As the previous examples showed, applications have
differing requirements concerning the abstraction level and the amount of data
they process and the types of interaction they support. Thus, the design and
implementation of tools that support the construction of psychophysiologically
interactive computer systems is a challenging task. In the following section,
these challenges will be discussed in more detail.

2.2. Challenges and solutions
The challenges that the development of psychophysiologically interactive
computer systems faces are related to both the nature of psychophysiological
data and the broad range of potential applications. Thus, a framework that
supports the development of these systems should incorporate basic tools for
physiological signal analysis as well as support for many types of systems and
their diverse software architectures.

The challenges that relate to the nature of psychophysiological data can be
summarized as follows (the challenges are numbered for later reference):

1. Psychophysiological data is context-dependent. Information about the
context is required to interpret the data. [Cacioppo et al., 2000; Gratton,
2000]

2. The parameters of data acquisition have a large significance for later
signal analysis [Mainardi et al., 2000; Tassinary and Cacioppo, 2000]. As

13

an example, different standards for electrode placement have been
defined for electromyographic and electroencephalographic
measurements in order to guarantee their validity and comparability
[Fridlund and Cacioppo, 1986; Böcker et al., 1994].

3. Psychophysiological data is non-specific. Every physiological process is
affected by a number of psychological factors and vice versa [Cacioppo
et al., 2000]. Furthermore, physiological responses to different factors
can be nearly identical [Ward and Marsden, 2003].

4. Psychophysiological responses are individual. Thus, information about
the individual is required to interpret psychophysiological data.
[Allanson and Fairclough, 2004; Ward and Marsden, 2003]

5. Physiological data is noisy and recognition of psychologically significant
events is unreliable. Often, several signals are collected and analysed in
order to increase the validity of measurements. [Cohen, 2000; Oviatt
and Cohen, 2000; Teller, 2004]

6. Different dimensions of psychophysiological data provide different types
of information [Gratton, 2000]. Processing data in time, frequency,
amplitude, and spatial domains must be supported.

The challenges related to the diversity of psychophysiologically interactive
computer systems include:

7. Proactive and ubiquitous computing favours systems that are distributed,
mobile, and embedded [Tennenhouse, 2000; Weisner, 1993]. In order to
support these increasingly popular computing paradigms, it is
necessary to provide support for the construction of systems that
consist of diverse components [Allanson and Fairclough, 2004; Davies
and Gellersen, 2002].

8. Due to the systems being distributed and mobile, the context in which a
system operates may change unexpectedly. Systems must be context-
aware and ready to adapt to different contexts. [Davies and Gellersen,
2002]

9. Many psychophysiologically interactive applications require constant,
long-term monitoring of physiological signals (see, e.g., those
discussed in the previous section). Related to the eighth challenge,
systems must also be sensitive to changes in the physical environment
and the software context in order to guarantee reliable monitoring. This
requires that systems adapt themselves when the goals of and the tasks
for the system are at risk.

14

10. Physiological data is processed at and presented with different levels of
abstraction, partly depending on the role that humans have in the
operation of a system. For example, clinicians prefer to have a higher
abstraction level of data when they make diagnoses and prognoses
[Rangayyan, 2001]. For this reason, multiple processing steps have to
be completed before the data is presented to the user of a computer-
assisted diagnosis system (see, e.g., Figure 2 in Section 2.1). On the
other hand, clinical biofeedback is performed using low-level data that
is immediately displayed to the patient [Tassinary and Cacioppo,
2000]. Thus, when dealing with psychophysiological data, different
abstraction levels must be supported [Allanson and Fairclough, 2004].

There are two general methods that address these ten challenges. The first
method is to combine several parallel input signals in order to achieve better
validity and accuracy in analysis of data. The other method is based on the use
of context as an additional source of information.

The combination of different signals, that is, modality fusion, can be
approached in two different ways. The first approach is to combine the
different sources of information at the feature-level. This type of fusion is
performed at an early stage of analysis by combining signals that are
temporally close to each other. The second approach is to combine
independently recognized events at the semantic level. This approach is
sometimes also called decision-level fusion. [Oviatt and Cohen, 2000]

In semantic fusion, the significant events are first recognized from each
input stream. Then, the events are combined using semantic rules. Semantic
rules are relatively easy to understand and define, when compared to those
used in performing feature-level fusion. Rules that deal with feature-level data
are usually extracted automatically with machine-learning and other artificial
intelligence and data mining methods. As a consequence, they usually are not
in a form that can readily be interpreted by a human supervisor. Thus,
semantic fusion is preferred when human understanding of and control over
the recognition process is desired. According to Oviatt and Cohen [2000],
semantic fusion also requires less training data for a system.

As an example of modality fusion in the recognition of psychological states,
Zeng and others [2004] studied the benefits of fusion in the recognition of
emotions. They found that fusing prosodic cues of the speech and facial
expression data improved the accuracy of emotion recognition, when
compared to methods that used only one of these two modalities. The accuracy
of recognition was 56 percent when a facial expression classifier was utilized

15

alone. Prosody-only recognition resulted in an accuracy of only 45 percent.
When these two modalities were fused together, an accuracy of nearly 90
percent was achieved in the recognition of emotional expressions. The most
accurate classifier fused the two modalities at the decision (i.e., semantic) level.

Similarly, Busso and others [2004] reported their experiment on recognizing
emotions from facial expressions and speech. They inspected the accuracy of
emotion recognition both when one of the two modalities was utilized alone
and when the modalities were fused together. Fusion at the feature-level and at
the semantic-level was studied separately. Figure 3 illustrates the results from
this experiment.

To summarize, the results of Busso and others [2004] showed that both
fusion methods improved the recognition of some emotions, but degraded the
recognition of happiness compared to analysis of facial expressions alone.
Feature-level fusion performed better for expressions of anger and neutral
expressions. However, semantic-level fusion was more accurate in recognizing
the other two emotions. Thus, it was not possible to determine, which approach
to fusion was generally the better one.

The best suited fusion method might depend on the context. Thus, knowing
the context could help in selecting the most appropriate method for analysis.

40

60

80

100

anger sadness happiness neutral

emotion

ac
cu

ra
cy

 (%
)

audio only facial expression only
feature level fusion semantic level fusion

Figure 3. Recognition accuracies for four emotions using unimodal and
bimodal classifiers. Accuracies were derived from the results of Busso and

others [2004]. Accuracies shown for semantic fusion are those achieved
using the semantic rule with the best overall performance.

16

The context includes people, places and objects that are relevant for the current
task [Dey, 2001]. Dealing with psychophysiological data, we should also
include information about other situational factors that might affect the
psychophysiological processes, for instance, the time of day [Allanson and
Fairclough, 2004; Ward and Marsden, 2003].

Context is an important factor in the analysis of psychophysiological data in
general. Cacioppo and others [2000] summarized the significance of context for
psychophysiological analysis as follows:

“… [A] wide range of complex relationships between psychological
and physiological phenomena might be specifiable in simpler, more
interpretable forms within specific assessment contexts.”

As an example of how context simplifies psychophysiological phenomena,
the individuality of physiological reactions can be taken into account by
adapting to the context. The context provides cues that help in the
interpretation of a psychophysiological reaction, even if the reaction is highly
individual in nature. For example, a sudden change in parameters of heart
activity might be due to many factors, including a heart failure and an
emotional reaction. If the change in heart activity coincides with the person
viewing a World Wide Web page with emotionally-significant content, there
can be a greater confidence for the chosen interpretation, when compared to a
situation in which no contextual clues are provided.

Further, collection and analysis of long-term data helps in estimating and
anticipating the effects that a particular context has on an individual person.
This way, an individual model can be formed for each monitored person. This
enables systems to account for individual differences in psychophysiological
reactions. In many cases this is essential, as general models of
psychophysiology are not sufficient for the recognition of psychophysiological
events that occur rarely and last for a short period of time [Ward and Marsden,
2003].

Finally, information about the context is crucial for systems that are
distributed, mobile, or ubiquitous [Davies and Gellersen, 2002]. These systems
have to adapt in response to variations in the availability of resources. For
example, a chronically-ill person working in an office could be continuously
monitored using wireless or ubiquitous technology. Her heart rate would be
registered with a wireless electrode system (e.g., the system presented by
Vehkaoja and Lekkala [2004]) that transmits the electrocardiographic data to a
desktop computer. However, if she left her office and moved outside of the
range of the wireless connection with the desktop computer, some other device
would have to assume some of the tasks performed by the computer. This

17

could be a Personal Digital Assistant (PDA) that the person carries with her, for
instance.

However, a PDA would not have as great signal processing capabilities nor
network bandwidth as a desktop computer. Therefore the two devices would
not be interchangeable in the system architecture, which would have to be
modified. The PDA could for example be assigned with storing the data, until
the wireless connection can again be established. Then, after re-establishing the
connection, the PDA could deliver the stored data to the desktop computer. In
order to appropriately adapt the architecture, the system would have to know
the resources and services offered by both devices (i.e., the desktop computer
and the PDA). In other words, the hardware and software context should be
known to the system.

In summary, information about the context can help both to extract
meaning from psychophysiological data and to automate the management of
the system architecture. The former task can also be supported by providing
multiple signals for psychophysiological analysis and utilizing methods that
gain leverage from the complementing information in these signals. The next
section discusses some of the previously applied software tools for this
purpose, as well as tools for the development of psychophysiologically
interactive computer systems in general.

2.3. Software
As early as in 1982, Arroyo and Childers presented their modular software
system for the recognition of brain activity. The task of the system was to
collect and classify single visual evoked potentials from
electroencephalographic signals [Arroyo and Childers, 1982]. In order to
support modularity, the system was constructed of several software programs.
Each of the programs transformed the data to a form that could be further
processed by another program. In other words, each of the programs solved a
subproblem. The appropriate sequence of programs could then perform the
overall task of the system. One of the design criteria of Arroyo and Childers
was the generality of the system, that is, the ability to adapt and apply its parts
to many systems and applications. The modularity of the system fulfilled this
requirement. As the tasks and problems of the systems were decomposed to
smaller parts, programs that solved the emerging subproblems could be used
in many applications.

Currently, a large collection of software tools (i.e., a toolkit) is available
from the Massachusetts Institute of Technology under the GNU General Public
License (GPL) [PhysioNet, 2003]. This collection is called the PhysioToolkit and
it includes tools for event recognition, acquisition of data, data visualization,

18

data conversion, and many other tasks associated with the utilization of
physiological signals. These tools can be used much in the same manner as the
software modules of Arroyo and Childers [1982]. As the PhysioToolkit is
released under the GNU GPL, the source code of the tools is also open. This
openness enables the toolkit’s users to modify the tools in order to integrate
them to their own systems. However, the license of the tools requires that the
modifications and the resulting system have to be released under the GNU
GPL as well. This might restrict their applicability to non-commercial use only.

A software architecture gives a high level description of the structure and
operation of a software system [Schmidt et al., 1996]. When modular tools are
used as a basis, the system architecture complies with the Pipes and Filters
design pattern [Buschmann et al., 1996]. Systems that use this pattern consist of
a sequence of programs that transform data. The result from a transformation
is processed by another program that is next in the series.

The PhysioToolkit itself does not provide any method for constructing the
architecture (i.e., defining the order of programs), nor the means to receive and
send data between programs. However, the environment in which the tools are
used may provide a method for defining the system architecture, that is, for
joining the tools together. For example, the UNIX shell (i.e., text-based user
interface) provides this functionality with a special pipe character (“|”).
Sequential commands separated with the character are joined together. The
resulting sequence is called a pipeline.

Output from a preceding command in a pipeline is provided to a
succeeding command through the standard shell interface. For example, the
combined result of the commands in Figure 4 is that the system sends a mail to
the address “Some.One@Somewhere.biz”. The mail contains the number of
lines in the file “test.txt”. The first program (cat) simply reads the file and sends
it to another program (wc) that counts the lines. Finally, the line count is sent to
the last program (mail) in the pipeline. It sends the received message (i.e., the
line count) to the recipient via electronic mail.

Figure 4. A UNIX pipeline.

cat ’test.txt’ | wc –l | mail Some.One@Somewhere.biz

text line countfile email

mailto:�Some.One@Somewhere.biz�
mailto:Some.One@Somewhere.biz

19

Even if the environment does provide a method for defining the system
architecture, the architecture must be defined and the environment known
before the system is running. In other words, the PhysioToolkit does not
provide means for real-time adaptation, nor does any other toolkit per se.
Thus, the tool-based approach is not sufficient for biocybernetically adaptive
systems and suits even worse for systems that have multiple purposes, that is,
can adjust themselves to serve the (unexpected) needs arising from sources
external to the system. As discussed in the previous chapter, this concerns most
mobile, distributed, ubiquitous, and wearable systems. For example, wearable
sensors that provide data for nearby systems would be difficult to include in
architectures based on separate tools. Wearable sensors travel from a location
to another with the person who wears them. As a consequence, the availability
of external resources, such as wireless network connections and other devices,
varies during the operation of the system.

As another example of existing tools for psychophysiological computing,
Allanson [2002] presented a JavaBean toolkit for the development of
physiologically interactive computer systems. JavaBean components enable the
development and configuration of systems using a visual editor, such as the
Bean Builder [Sun, 2004; CollabNet, 2004]. Visual editing may be especially
suited for prototyping and less technology-oriented persons. Research systems
that collect physiological data are often managed and configured by
researchers specialized in psychology and physiology instead of programming.
Thus, JavaBean components could be a feasible solution to support the
construction of psychophysiologically interactive computing systems.

Although visual editing has its benefits, it can generally be used only to
define the beginning state of the system. Real-time adaptation of systems that
are constructed of separate components is restricted, regardless of the tools that
are applied. On the other hand, defining multiple states for a system and
transitions between these states is quite simple with a graphical editor. This
would also enable the system to adapt. However, this is not practical for
systems that are even moderately complicated. The reason for this is the large
number of possible states and transitions that quickly add up to an
unmanageable number of different combinations.

In addition to searching for specific tools for the utilization of physiological
signals, it is possible to inspect existing systems and find architectural solutions
and design patterns that are suitable for psychophysiological computing.
Furthermore, software frameworks that have been used in the construction of
these systems might provide leverage for the development of
psychophysiologically interactive computer systems as well.

20

As discussed in Section 2.2, multiple physiological signals can be used to
support psychophysiological analysis. This suggests that it would be
appropriate to primarily focus on multimodal systems, as these systems are
designed especially for this purpose. In addition to utilizing multiple parallel
input signals, multimodal systems model the content of interaction at a high
level of abstraction [Nigay and Coutaz, 1993]. As the psychophysiologically
interactive systems must form psychological interpretations from physiological
data, this is a necessity for them also. Besides the fusion of modalities and
extraction of high-level data, there are also other relevant fields of research that
the work on multimodal interaction has already covered. These fields include
distributed systems, mobile systems, and adaptive systems. Thus, a closer
inspection of multimodal systems could give an insight to the possible
solutions for a number of challenges that multimodal and
psychophysiologically interactive computer systems have in common.

A popular approach in the development of multimodal systems is to solve
problems by employing a number of independent software agents. Although
there have been many attempts to define an agent, none of them is generally
accepted yet. According to Russell and Norvig [1995], an agent is an
autonomous entity that perceives its environment through sensors and acts
upon that environment through effectors. The behavior of an agent is
determined by both its built-in knowledge and the experience it gains. In other
words, agents have an internal state, which they update based on the actions
they take and changes they perceive. This internal state enables agents to aim
for a goal, anticipate future events, and take the initiative. Thus, according to
the definition of Russell and Norvig [1995], all agents are proactive
[Tennenhouse, 2000].

The QuickSet system is an example of an agent-based multimodal system
[Cohen et al., 1997]. The QuickSet system was developed for multimodal
interaction using voice and gestures. It was implemented based on the Open
Agent Architecture [Moran et al., 1998]. This architecture supports multiple
agents that can be written in many programming languages and run on
different platforms. Each system contains a facilitator agent that handles
requests from other agents, divides these requests into tasks, and delegates
these tasks to agents that can perform them. A high-level language called
Interagent Communication Language (ICL) is used for this purpose. The
architecture also supports multiple facilitators. However, according to Moran
and others [1998], multiple facilitators are seldom required.

The strong sides of the QuickSet architecture are its distributability and the
support for multiple software and hardware platforms. Cross-platform

21

communication between agents is made possible by the high-level language
the agents use to communicate with the facilitator and each other. On the other
hand, the facilitator (or multiple facilitators) can form a bottleneck in systems
where data is frequently interchanged [Moran et al., 1998]. Thus, physiological
data, which is collected at a high sampling rate, cannot be mediated through
the facilitator.

As another example of agent-based architectures, Elting and others [2003]
presented the Embassi system that was applied to multimodal interaction with
consumer electronics, such as television receivers and home stereo appliances.
The Embassi system used a layered grouping of agents. Layers processed
information at different levels of abstraction. The modalities were
independently analysed and fused together at the semantic level. Instead of
using a central data structure or a facilitator agent for handling communication
between agents, agents were organized to a pipeline, that is, information
flowed from lower to higher abstraction levels. Information that concerned the
whole system was provided by a separate context-manager.

Agents could join and leave the Embassi system at any point of its
operation by informing the Polymodal Input Module, which was the
component that performed the fusion of different modalities. This very
straightforward approach was suitable for a system aimed for multimodal
voluntary control of applications and hardware. The modalities complemented
each other and when an agent left the system, input from the corresponding
modality could simply be excluded.

However, this is not sufficient for every psychophysiologically interactive
application. To recapitulate an earlier example, a person could wear a wireless
electrocardiographic (ECG) sensor that measures her heart activity. Then, if she
moved outside the range of the receiver, an agent reading the sensor would
notice that the measurement is no longer valid and decide to leave the system.
If the purpose was to register the heart rate and use it in the analysis of mental
effort (e.g., based on heart rate variability), an intelligent system would not
cease the measurement of the mental effort completely, but possibly store the
ECG data for later analysis, or use another signal to evaluate the mental effort.

Furthermore, in the Embassi system, agents that analyzed other modalities
were queried in order to perform the fusion of modalities, whenever input was
received from one modality. This is not a generally suited solution for
psychophysiological human-computer interaction, as it forces the systems to
use semantic-level fusion and the recognition of significant events is difficult
from any single physiological signal or other modality (see, e.g., [Cacioppo et
al., 2000; Ward and Marsden, 2003]).

22

This section presented software architectures that have been used to
address challenges faced by psychophysiologically interactive computer
systems. Although an answer to every challenge in psychophysiological
human-computer interaction was not found, the presented architectures
suggested solutions that can be useful when developing psychophysiologically
interactive computer systems. Table 4 summarizes the challenges of
psychophysiological computing and solutions offered by the existing tools.

Table 4. Challenges for psychophysiological computing and solutions offered
by existing architectures (numbering corresponds to Section 2.2.).

Challenge Toolkits (pipelines) Agent-based architectures

1. Psychophysiological data
is context-dependent.

- No method provided for acquiring and
analyzing context.

+ A separate agent may be provided for
managing context.

2. Parameters of data
acquisition must be
known in analysis.

- No support offered for defining parameters
and preserving them through processing.

+ Flexible inter-agent language enables the
agents to communicate parameters at a
high level.

3. Psychophysiological data
is non-specific.

- No method for dealing with ambiguity.
Focus is on the analysis of a single
signal.

+ The fusion of parallel signal helps to
resolve ambiguities.

- The provided method for signal fusion is
inefficient for the processing of low-level
data (see also challenge #10).

4. Psychophysiological
responses vary between
individuals.

- No support offered for storing and taking
into account individual parameters.

+ The agent that manages the context can
provide information about the individual.

+ Individual parameters may be preserved or
queried through processing.

5. Recognition of events is
unreliable.

See the third challenge. + Context-awareness and signal fusion help
to resolve ambiguities.

6. Different domains of data
and analysis must be
supported.

+ Components can be replaced in order to
analyze different domains.

- Simultaneous analysis of multiple domains
is not supported.

+ The same data can effortlessly be
provided for multiple agents that analyze
different domains at the same time.

7. Systems are often
distributed.

- Toolkits themselves do not provide
methods for distributed computing.

+ The communication between agents is
independent of software and hardware
environments.

8. Systems must be context-
aware and adaptable.

- No support for context-awareness.
- Only static architectures are supported.

+ Modifying the architecture is possible.
+ The most suitable agents are recruited for

performing a task at a particular time.

9. Support for long-term
monitoring must be
included.

- The constructed systems do not have
awareness of the properties and status
of individual components (i.e., tools).

+ Changes in the context can be taken into
account.

- The adaptability of system architectures is
limited.

10. Different abstraction
levels for processing and
communicating
physiological data should
be supported.

+ The type and level of data passed between
components is not fixed.

- No method provided for coding the
abstraction level of data.

- The central agent that manages the
architecture (e.g., in QuickSet) or
performs signal fusion (e.g., in Embassi)
forms a bottle-neck for low-level data.

23

It should be noted that only solutions offered by the approach in general
are presented in Table 4. For example, although an individual tool might
provide a method for analyzing context, using a toolkit does not guarantee that
ability for every system constructed with it. As Table 4 shows,
psychophysiological human-computer interaction has some specific
requirements that these architectures do not address. These needs are
addressed in this thesis by constructing a framework that is specifically
intended for the development of psychophysiologically interactive computer
systems.

The design of a software framework begins with the identification of
functionality that is common for applications in the domain of interest, in this
case, psychophysiological interaction with a computer system [Flippo et al.,
2003]. This was done both by inspecting the previously discussed applications
(Section 2.1) and by analyzing some existing software tools in this section.
Next, a core that does not contain any application-specific functionality is to be
defined. Finally, the framework is to be implemented and evaluated. The
remaining steps are taken in the third and the fourth chapter.

24

3. Methods

3.1. Framework

3.1.1. Structure of the framework
As discussed in the previous section and illustrated in Table 4, no readily
available solutions exist for all of the challenges of psychophysiological
computing. However, several partial solutions do exist. Thus, instead of
utilizing a single method, several approaches have to be combined in order to
create a framework that adequately supports psychophysiological human-
computer interaction. In the present work, the focus was first on designing a
method that would enable the construction of stable architectures from
modular components. Then, this method was extended with the ability to
adapt architectures during their operation.

Pipelines are suited for processing of physiological data due to their
efficiency and support for the reuse of components [Buschmann et al., 1996;
Ilmonen and Kontkanen, 2003]. For this reason, the Pipes and Filters design
pattern was selected as the basis for composing static architectures with the
framework. In this design pattern, data flows through pipes that run between
filters. The pipe is an abstract concept for the connection between filters and
does not force any particular implementation to be used. Filters transform the
data they receive, process the data, and send the result through an outgoing
pipe. Thus, a system consists of pipelines [Figure 5].

A B C
A{data} B{A{data}}data C{B{A{data}}}

Figure 5. Information pipeline. The data is fed to the system through the
first filter, which performs some transformation on the data. The resulting

data is then fed to the second filter. Finally, the result from these two
transformations is fed through the third filter. The output of the system is
the combined result of these three transformations. If filters are viewed as
mathematical functions A{x}, B{x}, and C{x}, the system corresponds to the

composite function C{B{A{x}}}.

25

In order to support psychophysiologically interactive systems that can
consist of more complex pipelines, the basic Pipes and Filters pattern was
extended in the present framework. This extension enabled systems to handle
architectures that support sending information to preceding filters, as well as
architectures that allow the processing flow to be split into separate flows or
several flows to be joined into a single one [Figure 6]. The benefits of these
more complex architectures include increased efficiency due to the possibility
to share filters between processing flows. Another benefit is the adaptability
that results from the ability to provide feedback to earlier stages of processing.

The connections (i.e., pipes) between filters were available through buffers.
Each filter contained a separate buffer for each of its input and output channels
[Figure 7].

A B C
A{data} B{A{data}}data C{B{A{data}},

D{A{data}}}

D
A{data} D{A{data}}

Figure 6. A complex processing flow. The flow is split at the first
filter and rejoined at the third filter. Data could be fed back to
preceding filters, but these types of connections are left out for

clarity of presentation.

Processing Processing

Figure 7. Two filters connected with a pipe. The filter on the left has two
input channels and one output channel. It provides data for both the

filter on the right and another filter that is not displayed in this figure.
The filter on the right receives data from the left filter and from another

filter, not displayed here. The filter produces four different outputs
from the two inputs.

26

Processing items could be retrieved from incoming buffers, processed, and
the results placed in an outgoing buffer. The framework handled the actual
delivering of items from a filter to another. However, each filter was
responsible for flushing its outbound buffers when they were full.

Managing the connections between filters can be very complex, especially
when the filters can dynamically change their processing and the architecture
by modifying themselves and joining or leaving the system during its
operation. Changes to one part of the system can affect its other parts, which
impedes the search for the optimal software architecture. For these reasons, in
addition to the pipes and filters, a centralized and more abstract method is
required for managing the architecture dynamically (i.e., while the system is
operational). To address this need, each filter was encapsulated in an agent that
managed the respective filter. This way, the framework could take advantage
of both the efficiency of the static pipeline-based architecture and the
adaptability offered by software agents.

Every agent registered to a central agent called the Broker. During the
registration, an agent described its processing capabilities as well as the
properties of its input and output channels. The communication between filters
and the Broker was handled using a high-level language based on Extensible
Markup Language (XML) [W3C, 2005]. Figure 8 presents an example of a
typical registration message.

<?xml version=’1.0’ encoding=’utf-8’?>
<register>

<IP>
127.0.0.1:50004

</IP>
<id>

CORRELATOR
</id>
<input>

<id>
ECG

</id>
</input>
<output>

<id>
HEART_RATE

</id>
</output>

</register>

Figure 8. An example of a registration message in the XML-based language.

27

The Broker managed the connections between filters following the
Mediator design pattern [Gamma et al., 1994]. When a new pipe was formed
between two filters, the Broker asked the agent that managed the receiving
filter to prepare for the incoming data. Then, the Broker provided the sender
the necessary information about the hardware and software environment of the
receiver. The sender formed a connection to the receiver and informed the
Broker of the result, that is, whether the connection attempt to the receiver was
successful or not. Removing a pipe from the architecture was performed in the
opposite order (i.e., by first informing the sender and then the receiver of the
data).

3.1.2. Implementation of the framework
The framework was implemented in Java and C++ programming languages.
The implementation consists of an abstract base class for agents, classes that
extend this base class for different types of filters, the Broker, and agents that
implement specific data processing methods for psychophysiological signals.
The base class for an agent is available in both languages. The extensions of
this class are implemented in C++ and contain functionality for agents that
send data, receive data, or convert data and pass it forward (i.e., both receive
and send data). These classes are called the Sender, the Receiver, and the Filter
class, respectively. Class diagram of the C++ implementation is shown in
Figure 9.

<<interface>>
AgentInput

<<interface>>
AgentOutput

TCPStream UDPStream

DataSender DataReceiver DataFilter

Agent

Communicates through

Broadcast-
Stream

Broadcast-
Input

Broker Registers to SyncBufferstores &
retrieves

Figure 9. Class diagram of the basic components in the framework.
The presented classes were implemented in the C++ language,

except the Broker, which currently has only a Java implementation.

28

The connections (i.e., the pipes) between filters are accessed through
abstract interfaces that hide the true implementations of the data stream. Data
is received via the AgentInput interface and sent via the AgentOutput
interface. The underlying pipe is implemented either as a User Datagram
Package (UDP) or as a Transport Control Protocol (TCP) stream. Connections
used only to either receive or transmit data are also supported. Currently,
support for sending and receiving UDP broadcasts is implemented as
BroadcastStream and UDPInputStream classes, respectively.

Implementing other types of connections (in addition to UDP and TCP
streams) would simply require the developer to extend one or both of the
interfaces for receiving (AgentInput) and sending (AgentOutput) items. All
communication between agents is handled through these abstract interfaces.
This way, the underlying implementation of a stream can be changed without
modifying the algorithms that handle the communication via the stream.
Furthermore, the current implementation of components, including streams,
uses a multi-platform program library to access basic services of the operating
system and another for managing the components that provide a graphical
representation [Sugar, 2005; Smart, 2004]. These libraries enable the same
components to be compiled and run under multiple environments without
modifying the components themselves.

A number of filters were implemented for a number of specific
psychophysiological signal processing tasks, including correlation calculations
and the computation of the power of a signal. However, there are a large
number of methods and algorithms that could be implemented and many
applications have specific requirements. Thus, it is impossible to anticipate and
address every need. As a result, the developer has to occasionally create new
components components in order to cover the requirements of the application
at hand.

A new filter can be created by extending either the base Agent class or one
of the more specialized classes (i.e., the Sender, the Receiver, or the Filter class).
In practice, extending one of these classes consists of overriding the XML
presentation of the agent and implementing the data processing that is specific
for each filter. The filter can read data from an internal buffer and place
processed data into another buffer. These buffers are provided by the
framework. Furthermore, if one of the specialized classes is used as the basis
for the extension, the developer is released of the effort of retrieving new
processing items from the data stream (i.e., pipe), placing these items to the
incoming buffer, and sending the data placed in the outgoing buffer to
recipients. The framework handles each of these steps.

29

Figure 10 presents a typical lifespan of an agent as a sequence diagram
[OMG, 2005]. Lifespan in this case means the period of time when the filter is
an active part of the system, that is, connected to it in some way. The actual
software component that corresponds to the agent might be active and reside in
memory outside of this period.

A sequence diagram is a graphical notation for describing the internal
behaviour of a system. In object-oriented design, rectangles at the top row of a
sequence diagram indicate objects, that is, instances of a class. Dashed lines
extending downwards from these objects indicate the timeline. Discontinuities
in the timeline are marked with pairs of diagonal lines (not shown in Figure
10). Arrows that are drawn between timelines represent messages that objects
pass to each other. Usually these messages are method calls, as the objects are
located in the same software environment. However, in the present framework
these messages are coded in the XML-based language that the agents use to
communicate. The pipe that relays the message is currently implemented as
either a TCP or a UDP connection.

: AgentRegistry: Agent : Broker : Listener

queryParameters()

parameters

register(parameters)

newAgent(agent)

agentLeft(agent)

leave()

release(parameters)

Figure 10. The typical lifespan of an agent in the framework. Note that
the arrows do not represent method calls. Instead, the messages between

agents are passed via network connections. However, the Broker does
use local procedure calls to notify its listeners. The passed messages are

coded in a language based on XML.

30

Before the agent registers to the Broker, it connects to a local service called
an AgentRegistry. This service provides the agent with a unique identifier and
a network address. These are required to register as a part of the system. The
AgentRegistry service can also assign a Broker to an agent. This enables the
system to automatically share the management of agents among multiple
Brokers in a manner that evenly distributes the workload. This is a good
method for meeting the efficiency requirements imposed on systems that
consist of a large number of agents residing in the same environment.
However, there is also another option available for a developer who wishes to
distribute the management of a system. The developer can establish multiple
local Brokers that agents directly register to. This might be a good choice when
the system consists of many separate devices and a Broker can be assigned for
each of them.

After the agent knows the parameters that are required to contact a Broker,
it sends a registration message to the Broker. The message contains information
about the agent and the filter encapsulated in it (see Figure 8 in Section 3.1.1.).
The Broker stores this information for later use. The Broker also notifies all of
its listeners about the new filter. Listeners are software components that have
registered to receive notifications about changes to the software architecture of
the system. Thus, listeners are comparable to Observers presented by Gamma
and others [1994].

The registration of software components is done with a standard procedure
call (a general mechanism in modern computer architectures and programming
languages). The listeners are also notified of the associated architectural
changes using this same method. Thus, the framework currently only supports
listeners written in Java programming language, as the Broker was
implemented using this language. Also, listeners have to be located in the same
software environment as the Broker.

When an agent leaves the system, it notifies the Broker, which in turn
notifies the listeners. Then, the agent contacts the AgentRegistry where it
originally received the parameters required for registration. The AgentRegistry
can subsequently release the unique parameters that were reserved for the
agent and provide them for other agents that register later. The framework
does not enforce agents to contact the registry service to release these
parameters, but it is a good practice. However, the option to reserve
parameters for later use has been left to the developer. This may be useful in
some cases, as the software component that corresponds to the agent can still
reside in some environment and continue to operate, although it is no longer a
part of the system.

31

The Broker provides a central interface for the management of the system
architecture. In the case that there are multiple brokers in a system, one of them
manages the overall system. Other Brokers register to this central Broker as
agents. As an example of the simplicity this promotes, Figure 11 presents a
sequence diagram for a case where a visual editor is used to dynamically
manage the system, that is, to change the architecture while the system is
operational. This case also illustrates how connections are created between
components.

: View: Control : Broker sender : Filter

queryFilters()

filters

display(filters)

receiver : Filter

register(properties)

newFilter(properties)

update(newFilter)

join(senderID, receiverID)

receiveData(dataType)

sendData(type, receiver)

newConnection(senderID, receiverID)

update(newConnection)

Period of system operation without architectural changes

registerAsListener()

Figure 11. Sequence diagram of a case where system architecture is
managed with a visual editor. The editor is split into two parts: the

Control and the View components.

32

The visual editor application is divided into Control and View components
for clarity of presentation. The Control component receives commands from
the user interface and requests the Broker to make the relevant changes to the
system architecture. The View component displays the components and is
updated by the Control component when the architecture changes.

First, the Control component queries the current architecture from the
Broker. Second, the Control component registers to the Broker as a listener in
order to receive notifications when the system architecture changes. Then, the
component updates the View according to the present architecture of the
system. For a while, the system operates normally until a new agent registers to
the Broker. The Broker notifies the listeners, including the Control component,
about this event with a local procedure call. The described method complies
with the Observer design pattern that is widely used in software development
[Gamma et al., 1994].

When the Control component receives the information about the new filter
managed by the joining agent, it can update the View immediately in order to
display the new filter in the user interface of the editor. At the same time, the
Broker can inform the agent that its registration has been accepted.

In this example, these events are followed by a request from the Control
component to connect two filters together, that is, to form a pipe. The
originator of this request is the editor’s user, who manipulates the architecture
using a graphical user interface. The Broker reacts to this request by asking the
agent that handles the receiving filter to prepare for incoming data. The agent
accepts the connection by providing a Uniform Resource Locator (URL) that
can be used to contact it. The agent also informs the Broker of the network
protocols it prefers for connections, unless a protocol was already specified by
the Broker. Next, the Broker asks the sender to connect to the recipient. When
the sending filter has successfully formed a connection, it reports this success to
the Broker. The Broker informs its listeners, including the Control component,
of this new component. Finally, the View can be updated accordingly.

From the viewpoint of the visual editor’s user, the filters are shown in some
abstract graphical form, and they can be manipulated directly using the tools
provided by the graphical user interface. For example, a connection between
filters might be formed by dragging the sending filter over the receiving filter
with the mouse and then releasing the mouse button. The graphically
displayed architecture and the true architecture of the system are always
equivalent, allowing for small delays. These slight delays are due to the time
required for notifying all listeners about architectural changes and updating
the visual representation.

33

The details concerning the connections (protocols, transmission rates, and
so on) can be hidden from the user, although it is possible to allow them to be
controlled when necessary. For example, a graphical dialog for changing these
properties could be provided. Further, the dialog could be automatically
generated based on the XML-based description of the filter. This description is
provided by every agent when registering to a Broker.

 The present implementation of the framework provides a starting point for
developing psychophysiologically interactive computer systems. Next, two
systems that were developed with the support of the framework are presented.
The experiences from the development and the operation of these systems were
used to evaluate the design patterns and solutions that were adopted for the
framework.

3.2. System prototypes
In order to evaluate the support offered by the framework, it was used to
construct two psychophysiologically interactive systems. The first system
monitored the heart rate of a person with wireless electrocardiography (ECG).
The general setup of the system is presented in Figure 12.

The ECG signal was registered with a wireless measurement system. The
system was attached to the chest of the monitored person. The system acquired
the ECG signal and provided either the acquired ECG values or heart rate it

RF
transmitter

RF receiver

electrodes

PC

Internet

Mobile
phone

operator
GSM
network

Embodied
agent

ECG
HR

ECG
signal

system
operator

control signal

heart data

display of ECG

display of HR

psychophysiological
state

message

affective audiovisual
feedback

SMS message

mode change
requests

Figure 12. The setup for the remote heart rate monitoring system.

34

derived from them, depending on its mode of operation. The data was sent via
a radiofrequency (RF) connection to a RF receiver connected to a desktop
personal computer (PC). The PC could request the electrode system to act in
either of its two modes. The PC provided audiovisual feedback to the
monitored person and a graphical interface for the operator of the system.

The graphical interface enabled the operator of the system to define
thresholds for the heart rate. When the thresholds of a safe situation were
exceeded, the system provided audiovisual feedback to the monitored person.
The feedback was given by an embodied agent that instructed the person to
relax and breathe calmly. Then, if the vital functions did not return to normal,
but approached a critical state, the system alerted a system operator via Short
Messaging Service (SMS). The SMS service was accessed through the Internet
using the World Wide Web site of the mobile phone operator.

After the operator was contacted, the audiovisual agent informed the
monitored person that human assistance was already on its way and assured
that everything would be fine. When vital functions progressed towards
normal, the agent gave positive encouragement and further instructions for
relaxation to the monitored person.

The heart rate monitoring system was tested with four subjects. The system
was applied to acted scenarios, where the monitored person induced heart rate
changes with controlled breathing or parameters of the system were set to bias
the assessment of signals towards abnormal functioning. This enabled a more
controlled setting than actual clinical scenarios.

The framework was also used in setting up an experimental empirical
study. In this study twenty-seven participants voluntarily activated either the
corrugator supercilii (knits and lowers the brow) or the zygomaticus major (draws
lip corners up) muscle. These muscles were monitored with facial
electromyography (EMG). Voluntarily controlled facial muscle activity was
held at one of three intensity levels at a time. Activations lasted for 30 seconds
each. The power of the EMG was visually displayed to the participant
throughout the experiment. The activity of the heart was registered with
electrocardiography using the same wireless electrode system that was used in
the first test setup. The empirical setup acted as a testing ground for the
framework, as accurate timing and reliability of data collection was essential.
Furthermore, multiple parallel signals (ECG and EMG) of differing
characteristics and parameters of acquisition and processing were collected.
Thus, the empirical setup was sufficiently different from the first heart rate
monitoring system, in order to complement the results from the first trial of the
framework.

35

3.3. Data acquisition
Electrocardiographic (ECG) data was acquired for both test setups using a
wireless electrode system developed at the Tampere University of Technology
[Vehkaoja and Lekkala, 2004]. The system is illustrated in Figure 13. Blue
Sensor ECG electrodes were attached to a measurement patch that was
connected to a radio frequency (RF) transmitter. The ECG electrodes were
placed to the chest of the subject without skin preparation. The electrode
system had two modes of operation. It either only acquired the raw ECG data
or derived heart rate from the ECG. Then it delivered either the ECG or the
heart rate data to the RF receiver. The receiver was connected to a desktop
computer via a serial communications port. The sampling rate for ECG was 500
Hz and the recording passband was set from 0.07 to 192 Hz.

For the second test setup, in addition to the ECG, facial electromyography
was acquired with Grass® model 15™ differential amplifier using Ag/AgCl
electrodes. Electrodes were placed above zygomaticus major and corrugator
supercilii muscle sites on the left side of the face, according to the guidelines of
Fridlund and Cacioppo [1986]. The skin was cleaned with ethanol and slightly
abraded before electrodes were placed. The sampling rate was 2000 Hz and
recording passband from 10 to 1000 Hz.

Figure 13. Wireless electrode system for electrocardiographic measurements.

36

3.4. System architectures
The heart rate monitoring system provided audiovisual feedback to the
monitored person and an interface for configuring the thresholds for normal
heart rate. The software component responsible for the management of the
graphical user interface was called the DemoFrame [Figure 14].

The DemoFrame created components for displaying the ECG and the heart
rate. These components were instances of the SignalGraph and the PulseGraph
classes, respectively. The DemoFrame also had an intimate connection with the
DemoAgent, which handled the interaction between the graphical user
interface and the framework of software agents.

The signal from the wireless electrode hardware was read from the serial
communications port by the SerialIOAgent. The SerialIOAgent managed the
input from and output to the serial port. It delivered the received signal to the
PulseReaderAgent. This agent transformed the signal into an ordinary ECG
signal. Information about the mode of operation was encoded to the signal that
the wireless electrode system provided. This information had to be removed
before further analysis could be performed. Thus, the ECG signal could not be
directly provided from the SerialIOAgent to the DemoAgent, but had to be first
filtered by the PulseReaderAgent.

The PulseReaderAgent employed another agent, called the Correlator, to
compute the correlation between the ECG and a signal template in order to

DemoFrame

PulseReader-
Agent

SignalGraph Correlator

PulseGraph

SerialIO-
Agent

DemoAgent

SMSAgent Embodied-
Agent

message control

pulseECG

ECG

pulse

updatescreates

creates

creates

status ecg+mode

Figure 14. Software architecture of the heart rate monitoring system.
Software components are presented as rectangles and connections as
arrows. Dashed arrows are connections implemented as pipes of the

framework. Regular arrows represent connections implemented using
shared memory (i.e., not using the framework). Connections are

labelled according to transferred data (in regular text) or the
relationship between components (in italics).

37

recognize heart cycles. Based on the correlation, the Correlator derived the
heart rate and delivered it to the PulseReaderAgent, which in turn provided it
and the original signal data to the DemoAgent. The DemoAgent used the
received data and its internal state to decide when the mode of operation had
to be changed. When the agent decided to change the mode, it first told the
SerialIOAgent to relay a command for mode change to the wireless electrodes
via the serial port connection. Then, it instructed an embodied agent about the
new status and told the SMSAgent to send a message to the monitoring
personnel, if necessary. The embodied agent provided the appropriate
audiovisual feedback to the monitored person.

The software architecture used in the setup for the empirical study shared
many software components with the previous system [Figure 15]. This could be
expected, of course, as both systems registered and processed
electrocardiographic data. However, it was not obvious that the same
components could be used without modifications.

 As the experimental tasks consisted of voluntary activations of facial
muscles, the system provided the participant visual feedback on his or her
facial activity via a graphical user interface. The software component
responsible for managing the graphical user interface was called the
MainFrame. The MainFrame created components for displaying the raw EMG
and ECG signals and the mean power of EMG. The component that displayed
the raw signals was called the SignalGraph. The SignalGraph component was
developed for the previous system and reused in the construction of this
second system. The mean power of EMG was displayed to the participant
using the PowerGraph component. The MainFrame also created and
communicated with the ExperimentAgent, which handled the interaction

MainFrame

PulseReader-
Agent

SignalGraph

PowerGraph SerialIO-
Agent

Experiment-
Agent

ECG

control

updatescreates

creates

creates

updates

EMGReader FileWriter ECGEMG

EMG

creates&controls

ecg+mode

Figure 15. Software architecture of the system used in the empirical study.

38

between the graphical user interface and the framework of software agents.
Thus, its task was very similar to the operation of the DemoAgent, which was a
part of the first test setup.

Wireless electrodes were joined to the system using the components that
were developed for the first system (see Figure 14). SerialIOAgent controlled
and acquired data from the wireless electrodes via a serial port. The
PulseReaderAgent converted the coded signal into raw ECG data, which was
sent both to the ExperimentAgent and the FileWriter, which stored the
collected data for off-line analysis.

The ExperimentAgent monitored the mode of the electrodes and sent a
request to change mode, if electrodes were providing the system with the
computed heart rate instead of the raw ECG signal (as shown in Figure 12).
EMG signal was acquired by a separate program that sent the obtained sample
values as UDP multicast packages. These packages were received by the
EMGReader agent, which provided the EMG data for the ExperimentAgent
and the FileWriter. ExperimentAgent updated the respective displays with the
data and, when an experimental task was to be performed, changed the mode
of operation when the activity was within the required target range.

39

4. Results

4.1. System construction
The present framework implemented the Pipes and Filters, the Mediator, and
the Observer design patterns. Table 5 summarizes the implications of these
patterns. The general implications were derived from the theoretical qualities
of the design patterns and they are common to all implementations of these
patterns. These general implications are illustrated by the specific implications
that were acquired from testing the framework. Some of these implications are
more evident when results from the operation of the two systems are inspected.
These results will be presented in the next section.

The Pipes and Filters pattern removed the need for temporarily storing
data, for example, into files. However, the pattern still allowed intermediate
data to be inspected. This benefit was evident especially when implementing
the software for the empirical test setup. Both raw electromyographic data (i.e.,
intermediate data) and events derived from it (i.e., the result of processing)
could be effortlessly recorded to a file, although the latter data was available at
a later processing stage than the former.

Another benefit from using the Pipes and Filters pattern was the flexibility
provided by simple exchange of filters. The simple interface common to all
filters enabled them to be replaced with other filters that performed the same
task, without modifying other parts of the system. When developing the
second test setup, an agent that provided simulated electromyographic (EMG)
data was implemented for testing purposes. This agent was used to simulate
the operation of the system when the hardware for EMG acquisition was not
available. Replacing the agent with another agent that actually acquired data
from a subject was a straightforward operation due to the flexibility of the
design pattern.

The possibility to recombine existing filters and construct new systems
from existing components was also supported by the use of the Pipes and
Filters pattern. This characteristic relieved the effort when constructing the
second test system as filters from the first system could be reused without any
extra effort.

The method that was used in implementing the Pipes and Filters pattern
also supported the extensibility of systems. In the first test setup, the SMSAgent
and the EmbodiedAgent were not a part of the agent architecture, that is, they
were not developed using the present framework. However, integrating them

40

Table 5. Summary of design patterns used in the framework and their
implications.

General implications Specific implications

Removed the need to temporarily store the data

in one location.

Enabled intermediate data to be inspected.

The second setup could effortlessly record data

from different stages of processing to the same

file.

Parts of systems could be exchanged without

effort.

The second setup could be reliably tested by

exchanging the components for data acquisition

with components for data simulation.

Parts of systems could be reused. The second setup could use parts of the first one.

Architectures were adaptive as a consequence

of the exchangeability and the reusability of

components.

Agents could be employed in arbitrary order at

arbitrary times.

Many types of processing architectures were

supported.

Communication between different stages of

processing was possible in both setups.

Efficiency was supported by the possibility to

share the common components of pipelines.

Common tasks had to be performed only once

during the operation of the two setups.

Pipes and Filters

[Buschmann et

al., 1996]

Components were active in processing the data. There were no idle periods during the operation of

the two systems.

Mediator stored behavior that would otherwise

have been distributed.

The Broker provided a simple method and a

central interface for defining the architectures of

the two systems.

Software components did not have to directly

refer to each other.

The reused components from the first setup did

not have to be modified in order to be joined to the

second system.

Mediator

[Gamma et al.,

1994]

Interactions between individual software

components were replaced with interactions

between them and the Mediator.

Different levels of coupling could be separated

when constructing the first setup. This simplified

its construction.

Observer

[Gamma et al.,

1994]

A uniform method could be used for

communicating between components.

In the case of the two setups, no agent-specific

communication had to implemented.

41

to the system was simple due to the implementation of the connections (i.e.,
pipes) between agents. The connections were managed with TCP and UDP,
which are common protocols that are interoperable between several
environments and supported by many libraries of program components. For
example, the SMSAgent was implemented in Python programming language.
Integrating the SMSAgent was supported by network functionality in the
standard Python library (i.e., the library included with the distribution of
Python).

The Mediator design pattern was employed in the present framework to
manage changes to the system architecture. Each agent registered to a Broker
and all changes concerning the agent were handled by that Broker. Thus, using
the Mediator pattern kept agents from referring to each other explicitly, which
had several benefits.

First, the Broker stored the behavior that would otherwise have been
distributed. In other words, the Broker kept the architecture of the system
consistent with the overall behavior that is required from the system as a
whole. In the construction of the two test setups, this meant that the individual
filters were joined into an operational system through the Broker. Thus, the
Broker provided a more centralized and manageable method for defining the
system architecture than defining references to other filters separately for every
filter.

Another benefit was the decoupling of filters, that is, the removal of direct
references between filters. As a consequence, the architecture of systems could
be managed in a uniform manner, regardless of the actual filters that formed
these architectures. There was no need to modify the filters that were reused
from the first test setup to the second system. The present framework enabled
the filters to be reused simply by modifying the architecture defined within the
Broker.

Finally, the interactions between individual filters were replaced with
interactions between the filters and the Broker. For example, the DemoAgent in
the heart rate monitoring system provided data for the SMSAgent, the
EmbodiedAgent, and the SerialIOAgent (see Figure 14 in Section 3.4). The
DemoAgent received data from the PulseReaderAgent. In addition to these
agents, the DemoAgent also provided and received data from components of
the graphical user interface, but these connections were not managed by the
Broker. Separating these two types of connections simplified the management
of the relationships between components. As the DemoFrame agent was
responsible for updating the graphical representation of received data and
handling user input, the coupling between the agent and the graphical

42

components was tight. Thus, the Broker did not have to take care of the
architecture associated with interacting with the user.

The quantity of connections was also reduced by removing the interactions
between individual filters. The filters did not have to directly know the
presence and state of any other agent besides the Broker. All of the other agents
were accessed through the Broker. This benefit was augmented further by the
Observer pattern. Any component could obligate the Broker to inform it of
changes to the architecture of the system. The following positive results were
obtained for using the Observer pattern.

In both test systems, a separate component for management of the
architecture was created and registered to the Broker. This component received
notifications each time an agent registered to the system. When all necessary
agents were available, the component asked the Broker to compose the system
architecture. Thus, the time when an individual agent registered to the Broker
could vary without affecting the construction of the system. Also, different
architectures could be rapidly prototyped through the development by
changing the defined architecture only within one component.

The Observer pattern also enabled a uniform method to be used for
communicating between agents. As a result, the Broker did not have to know
how any of the agents had been implemented. In spite of this, it could
efficiently communicate with all of them. As a consequence, both test setups
could be constructed without making any changes to the communication
methods, although components exchanged data at varying levels of
abstraction.

In addition to the results that were presented, it can be argued that the
constructed systems solved the challenges of psychophysiologically interactive
computer systems. These solutions and the challenges that they addressed are
summarized in Table 6.

43

Table 6. Challenges for psychophysiologically interactive computers and the
solutions adopted in the framework (numbered according to Section 2.2.).

Challenge Solution

1. Psychophysiological data is context-

dependent.

The Broker provided a context by storing information about the registered

filters. The context could be inferred from the properties of these filters. The

services of a dedicated context agent could also be automatically provided

for agents that required information about the context.

2. Parameters of data acquisition must be

known in analysis.

The XML-based description of filter capabilities was capable of handling

multiple levels of abstraction, including details of data acquisition. Also,

information of all preceding processing stages could be preserved if the

description was layered (i.e., preceding stages were encapsulated within

succeeding ones).

3. Psychophysiological data is non-specific. The fusion of parallel physiological signals is an effective method for

resolving ambiguities. The framework supported multiple input channels for

every filter, which enabled this fusion.

4. Psychophysiological responses vary

between individuals.

Information about the individual could be included both to the XML-

description of data and to a separate storage (see the solution of the first

challenge).

5. Recognition of psychophysiological events

is unreliable.

Both the fusion of parallel signals and information about the context could

help in resolving ambiguities. See the solutions to the first and third

challenge.

6. Different domains of data and analysis

must be supported.

The framework did not restrict the nature of the data that the filters

processed. The domain could be included to the XML-based description of

filter properties. For example, the description could contain information

about the placement of electrodes, enabling spatial analysis.

7. Systems are often distributed. Placing different filters in different environments did not require any extra

effort. The pipes and the communication between agents were implemented

in a cross-platform manner.

8. Systems must be context-aware and

adaptable.

The Broker provided a central interface to the whole system architecture and

it could be requested to notify when the architecture changed. However,

reacting to these changes was left to the developer.

9. Support for long-term monitoring must be

included.

Context changed during long-term monitoring. Context-awareness and

adaptability of the architecture supported long-term monitoring.

10. Different levels of data processing and

communication should be supported.

The pipes-and-filters architecture was versatile and enabled splitting and

merging the processing flow at any point of processing.

44

4.2. System operation
In addition to the support that the framework provided for the construction of
the test setups, its value is evident in their reliable and robust operation. The
operation of the first system was tested in several scenarios in order to find out
if the collaboration of the agents would result in rational operation of the
whole system. The scenarios were different combinations of succeeding events.
The events and the responses of the system are presented in Table 7.

Table 7. Events and responses from testing the heart rate monitoring system.

Event Response

Heart rate exceeded normal, but remained less

than critical.

The embodied agent instructed the person to

relax and breathe calmly.

Heart rate continued to accelerate and became

critical.

The DemoAgent instructed the SMSAgent to

send a message to the health care personnel.

The message contained the relevant medical

history of the patient. At the same time, the

embodied agent informed the person that

medical personnel had been contacted and

continued to calm him or her down.

Heart rate decelerated to less than critical. The embodied agent told the patient that

relaxation was working and gave further

instructions for relaxation.

Heart rate returned to normal. The embodied agent told the patient that the

heart rate was again normal, but suggested

that it would be better to avoid further stress

for a while.

The system responded consistently to each event, whether it was due to
heart rate changes induced by voluntary breathing patterns or by parameters
being adjusted to trigger the event. It was possible to adjust the parameters so
that an event was only produced by voluntarily induced heart rate changes.

Figure 16 shows the operation of the heart rate monitoring system as a
sequence diagram. The PulseReaderAgent constantly provided heart rate data
to the DemoAgent. The DemoAgent decided when the situation was no longer
normal and informed the EmbodiedAgent accordingly. The EmbodiedAgent
provided the appropriate feedback, depending on the current and previous
states of physiological functioning.

45

If the heart functioning did not normalize and situation was assessed
critical, the DemoAgent sent an alarm to health care personnel through the
SMSAgent. Then, the DemoAgent informed the EmbodiedAgent of this, and it
provided the appropriate feedback, which included assurance that help was
already on its way. The EmbodiedAgent was also informed when the heart
functioning was no longer critical and when it returned to normal.

The second system was required to handle a larger amount of data than the
first test setup, as both electromyographic (EMG) and electrocardiographic
(ECG) data were registered. In addition, markers for the onset and offset of
each experimental task were collected as well. The timing error in these
markers was at most 25 milliseconds, which was more than acceptable
considering that the parameters of interest (i.e., heart rate and heart rate
variability) were inspected and analyzed during time periods of 30 seconds.

Although there were no architectural changes to be made during its
operation, the second system was required to adapt according to the EMG
signal power and the heart signal data it received. The mode of the operation
had to be changed when the power of the EMG signal reached the required
target level of activation intensity during a task. The system started an internal

: PulseReaderAgent : DemoAgent : EmbodiedAgent

heart rate

: SMSAgent

heart rate

heart rate

heart rate

heart rate high

send(recipient, message)

heart rate critical

heart rate high

heart rate normal

Figure 16. The operation of the heart rate monitoring system.

46

timer in order to end the task after certain period of activity. Also, the type of
signal that the wireless electrodes provided could require the system to take
the initiative. If heart rate data was received instead of raw ECG signal, the
ExperimentAgent requested the raw signal from the ECG electrodes.

However, these adaptations could be performed by individual agents.
Thus, there were no specific events triggered and no associated messages to be
passed to other agents, as was the case in the first test setup. Consequently,
visualizing the operation of the system with sequence diagrams (see Figure 16)
would not clarify the described behavior.

In addition to the results that were specific to one of the systems, there was
some generic support that the framework provided for the operation of both
systems (see Table 5). First, the chosen implementation of the Pipes and Filters
pattern enabled the construction of recursive processing architectures. Filters
that were placed at later stages of the processing pipeline could provide
feedback to previous filters.

As an example of the benefits of these kinds of architectures, the
DemoAgent of the first system could request the mode of the wireless electrode
system to be changed. This request was sent to the SerialIOAgent that provided
the heart signal. Events were extracted from the heart signal and the
DemoAgent used these events to decide when the mode should be changed.
The communication between the ExperimentAgent and the SerialIOAgent in
the second test setup was performed in an equivalent manner. The two
collaborating agents were situated at different levels of the processing flow and
the latter agent dealt with relatively high-level data. Nonetheless, the two
agents could communicate due to the support that the framework offered for
abstract communication. This support was the result of a number of solutions
that were adopted into the framework. These solutions included the method
that was used to implement the pipes, the abstract and extensible language for
inter-agent communication, the use of the Mediator pattern, and the use of the
Observer pattern [Buschmann et al., 1996; Gamma et al., 1994].

Second, the efficiency of systems was promoted by implementing the
common parts of processing as filters. Due to the chosen implementation for
the pipes and the filters, these filters could be used in several parallel
processing flows. For example, in the empirical setup the PulseReaderAgent
provided the electrocardiographic (ECG) signal both to the FileWriter and the
ExperimentAgent. Thus, the extraction of ECG signal from the encoded signal
provided by the wireless electrodes had to be performed only once. As another
example, the system used in the empirical study contained a filter that
transformed electromyographic (EMG) signal into activation intensity (i.e.,

47

signal power) data. The filter provided this data to three software components.
One of these components showed the data to the person whose facial activity
was being monitored. Another component stored the data into a log file and
the third component monitored the intensity level of activity. Depending on
the level of activity and elapsed time, this component initiated and ended
experimental tasks. In this example, it was necessary to compute the power
only once. All three components could use this data without converting or
otherwise modifying it, saving processing resources of the system.

Third, the operation of systems was flexible due to the implementation of
the filters. The filters were active, that is, they actively received and sent data
whenever a sufficient amount was available [Buschmann et al., 1996]. In other
words, there were no idle periods in the operation of systems. This resulted in
the system responding rapidly to changes in the physiological parameters.
Actually, the reported 25 millisecond timing error in the second setup was due
to the intrinsic limitations in the acquisition of the electromyographic data,
instead of limitations imposed by the framework.

Finally, the adaptability of system architecture was evident when the
operation of the two setups was at its beginning. The operation of a system was
started by putting the Broker into operation. Then, the operation of individual
agents was started in an arbitrary order. In other words, the system was
operational before agents registered to the Broker, although the system did not
perform any functionality until a suitable set of agents was available.

48

5. Discussion
This thesis presented a framework for the construction of
psychophysiologically interactive computer systems. The framework was
created in order to address challenges developers face due to both the nature of
psychophysiological signals and the special characteristics of
psychophysiological human-computer interaction. The framework was tested
by constructing two different systems with it. The first system was developed
for remote heart rate monitoring with a wireless electrode system. The second
system was used in an empirical study and registered both
electrocardiographic and electromyographic data.

The results showed that the framework supported the construction and
operation of these two different systems. The heart rate monitoring system
provided direct feedback to the monitored person, adapted its operation
according to extracted events, and contacted other persons when it assessed the
situation as hazardous. Thus, it covered the three classes of
psychophysiological human-computer interaction that were presented in this
thesis: biofeedback-based, biocybernetically adaptive and extended interaction.
The setup for the empirical study supported both biofeedback-based and
biocybernetically adaptive interaction. The former was implemented by
displaying the electromyographic data to the monitored person. The latter was
supported in order to change the experimental task after a certain period of
controlled activity.

The level and amount of processed data also varied within and between the
systems. The first test setup registered only heart related data and based its
actions on present activity only. The second setup registered the activity of
both the heart and the facial muscles. It also derived the power of facial
activations from electromyographic data. The derivation of this measure
required a longer period of time compared to the derivation of the heart rate
performed by the first system.

The second system also required support for multiple levels of data
abstraction. The EMG and the ECG data were acquired by the system as
individual samples. They were later processed to derive the heart rate and the
power of the EMG. The first system also handled high-level data, as
information of the medical history of a (virtual) patient was contained in the
SMS messages at a relatively high level of abstraction.

The contexts in which the two test setups operated were stable. Thus, there
was no need to adapt their architectures once a system was constructed.
Nonetheless, the systems did provide some preliminary results that indicate

49

that the framework does support the run-time adaptation of the system
architecture and that this adaptation can be managed through a single interface
(i.e., the Broker). In both systems, agents were registered to a Broker in an
arbitrary order. As soon as the suitable set of agents was available, a software
component was informed and it instructed the Broker to construct the
architecture. Thus, the system was operational during this whole period of
registration, although it did not yet perform any external task. Internally, the
system was active and sensitive to changes in the software environment, that is,
the availability of components.

In any case, the coverage of the two test setups was limited, when the
adaptability of systems is considered. There was no need to reconfigure the
architecture once it had been defined. Thus, although the two test cases
brought out only positive results from the use of the three design patterns,
there are also potential drawbacks that have to be considered especially in the
future development of the framework and psychophysiologically interactive
computer systems.

First of all, the Pipes and Filters design pattern that was used in the
framework is not efficient if a large amount of global data has to be shared
[Buschmann et al., 1996]. Considering the software architectures of
psychophysiologically interactive computer systems, contextual information
could be considered global data. Generally speaking, the context is an
important source of information in the analysis of psychophysiological data
[Cacioppo et al., 2000]. However, the context is mainly significant as an
additional source of information for data fusion. Thus, earlier processing stages
do not require information about the context, which relieves the efficiency
requirements posed on the sharing of contextual information. This assessment
is supported by the empirical results from comparing feature-level fusion with
semantic-level fusion that were presented in Section 2.2 [Busso, et al., 2004;
Zeng et al., 2004].

Other global data that is significant for psychophysiological human-
computer interaction consists of data acquisition parameters, such as sampling
rates and electrode locations. These parameters affect the operation of the
associated filters. For example, analysis of heart rate variability requires a
larger number of samples at a time than measuring the mean amplitude of the
raw ECG signal. Due to the varying requirements of filters, the rate at which
the information flows through a pipe cannot be defined by the producer of the
data, that is, the filter at the transmitting end of a pipe.

One solution to this problem would be to have a separate pipe for every
connection between two filters. Each of these pipes would provide data for the

50

receiver at the rate that it processes it. However, this would be inefficient, as
storing copies of or references to the same data items would increase the
required memory and processing capabilities. Another possibility would be to
upkeep a common history buffer for each filter that stores the processing items
that the filter produces [Ilmonen and Kontkanen, 2003]. This would require
that the receivers are active in reading the buffer. When distributed systems are
considered, querying new processing items would have to be performed either
with a high-level language or by executing remote procedure calls, both of
which add a significant overhead and are tied to a particular software
environment.

The present implementation of the framework employs buffers in order to
take care of receiving and sending processing items through pipes. The
developer retrieves incoming processing items from a buffer that is a part of
the filter itself. The results from processing are placed in another buffer and
sent when a sufficient amount of data is available. Each filter is responsible for
flushing these outbound buffers when they are full. The receiving filters are
active, that is, they read data whenever it is available [Buschmann et al., 1996].
This reduces the time required for the system to respond, compared to systems
that use passive filters. Passive filters act only when forced by external stimuli.

As a result of implementing active filters, the filter that produces the data
controls the rate at which it is sent. This requires that the filter is informed
about the requirements of its recipients. Also, the capabilities of the
transmission channel (i.e., pipe) have to be taken into consideration and thus
also available for a sender. Although informing every component that sends
data of these parameters requires an investment of processing resources, the
parameters are not subject to frequent changes. Thus, information about the
components can be stored into one central location, where it is available to
every component. This enables the system to rapidly react to changes in
hardware and software environment.

In the present framework, the Broker acts as the storage for these
parameters. It upkeeps a list of all filters that form the system. This makes it
possible to evaluate and compare the possible compositions of pipes and filters
(i.e., architectures). Other components can register to the Broker as listeners in
order to receive notifications when the environment changes in some way.
Thus, the Broker implements the Observer design pattern as it stores and
provides global data for the whole system [Gamma et al., 1994].

If this global data is seen as the context, the role of the Broker is similar to
the context-manager in the Embassi system, the discourse memory in the
multimodal SmartKom system, and the dialog manager in the work of Flippo

51

and others [Elting et al., 2003; Reithinger et al., 2003; Flippo et al., 2003]. These
systems focus on multimodal dialogue for controlling individual applications.
The context that these systems manage consists of different hardware devices
and software components. In this sense, they are comparable to
psychophysiologically interactive computer systems. From the results that have
been acquired from these systems, it seems that having a single component that
provides context is efficient and easy to manage.

However, due to the complexity of psychophysiological phenomena, the
analysis of psychophysiological data might need additional contextual
information. This information might concern the time of day, the physiological
characteristics of a person, and the temperature, for example (see, e.g., [Ward
and Marsden, 2003]). This can quickly add up to an unmanageable amount of
information, which is why other multimodal systems are not directly
comparable to psychophysiologically interactive computer systems. The agent-
based architecture of the present framework enables the management of
context to be distributed among multiple agents. This might be necessary in
large-scale systems. Thus, one way in which the framework supports the future
development of systems is by enabling the development of agents that manage
some specific sub-context.

Currently, only components that reside in the same software environment
can request notifications from a Broker. However, in some cases components
have to be informed of changes to global parameters, regardless of the
environment where these parameters are stored. As an example, a Broker
dedicated to handling a person’s digital calendar would have to inform remote
agents that require information of the person’s meeting schedule in order to
minimize interruptions.

This is why remote listeners have to be implemented in the future
development of the framework. The language used for inter-agent
communication provides support for adding this new functionality. Due to the
extensibility of the language, new message types can be defined without
compromising the operability of existing components. The language also
enables the description of an agent’s output channel to incorporate the earlier
processing stages. This way, the data acquisition parameters can be preserved
through the whole processing pipeline.

Another possible negative consequence from the use of the Pipes and Filters
pattern could be a large overhead in processing due to data transformations
[Buschmann et al., 1996]. These transformations are the result of using a single
data type for all filter input and output. However, when using the present
framework, it is easy to avoid this drawback. Support for exchanging data was

52

implemented for only the most basic data type, that is, a byte. Other data types
can be implemented on top of this type, preserving the support for all types of
data. Actually, most psychophysiological data consists of discrete numeric
values that can be readily handled as bytes. Furthermore, the communication
between components is also supported by the XML-based description they
provide when registering to the system. The description of a filter can specify
the type of data it provides or accepts as input. This helps the system to
evaluate which filters can interact with each other.

The presented results from the experimental setup demonstrated this
support for the interoperability of components. In this setup, ECG and EMG
power data were provided to multiple components. These components could
readily handle the data without performing any preprocessing on the data,
including data transformations. In addition to this finding, the experimental
setup also demonstrated that exchanging filters was simple due to this
interoperability. The component that provided data from the EMG acquisition
equipment could be replaced with a component that provided simulated EMG
data. This finding also supports the notion that the Pipes and Filters design
pattern enables the rapid prototyping of systems, as proposed by Buschmann
and others [1996].

In addition to the possible overhead that might be imposed by data
transformations, also the chosen method of inter-agent communication may
hinder performance. In the current implementation of the framework the
connections between agents are managed with the TCP and the UDP protocols.
Despite their advantages, the TCP and UDP protocols may hinder the
performance of components that are located in the same software environment.
These protocols require data to be packaged prior to transmitting it via a
network connection. This packaging imposes a small overhead for transmitting
data. It would be easy to add support for other types of connections in addition
to TCP and UDP streams. These connections could include those native in Unix
variants (see Section 2.3) or connections based on shared memory. Shared
memory could be used to construct pipelines, if the filters shared the same
environment. This would eliminate the overhead from the network protocol
including, for example, the construction of packages and the necessity to buffer
processing items before sending them through a pipe.

However, the TCP and UDP protocols are common protocols that support
interoperability between environments and this interoperability supports the
construction of distributed systems. These protocols are also supported by
many libraries of software components. As an example, the integration of the
SMSAgent with the rest of the system was supported by network functionality

53

in the standard Python library (i.e., the library included with the distribution
of Python). Thus, it seems that no single protocol is superior compared to other
protocols. Several protocols for inter-component communication should be
supported in order to provide a suitable method for each case, depending on
where components are located. It should be noted that both components should
be able to handle the method. Thus, components that support methods that are
not commonly supported will have difficulties in connecting with other agents.

Actually, interoperability between environments was assessed to be an
important characteristic for psychophysiologically interactive computer
systems that are often wearable, mobile, and distributed. Thus, the support
offered for distributability was why TCP and UDP protocols were chosen as
the first implemented inter-component communication method. This was also
one of the main reasons for deciding to use the Pipes and Filters design pattern
in the framework [Buschmann et al., 1996]. However, the resulting
distributability and efficiency could not be conclusively verified in the present
work as both test systems were run on a single computer due to their small
scale.

The basic Pipes and Filters pattern enables only linear processing flows.
However, in the present work this pattern was extended to handle more
complex processing flows. Pipes were implemented using buffers that were
specific for each filter. This enabled the construction of systems that have
several parallel and overlapping processing flows. Also processing flows that
form cycles were possible. The ability to split processing flows enabled the
common parts of algorithms to be implemented as shared filters and computed
only once. The ability to form cycles supported the adaptability of systems, as
feedback from later stages of processing could be provided to earlier stages.
This enabled the two test setups to request certain type of signal from the
wireless ECG measurement system, for instance. This functionality could not
have been readily implemented using previous tools, such as the PhysioToolkit
[2003]. These tools do not provide a method for providing feedback to earlier
processing stages and neither does the UNIX shell that is used in executing
these tools.

Although the framework does seem, based on the previous discussion, to
address the potential drawbacks of the Pipes and Filters design pattern, other
architectures could be more appropriate for some psychophysiologically
interactive systems. For instance, Buschmann and others [1996] suggested that
if the drawbacks associated with the Pipes and Filters design pattern are
assumed to pose great risks to a system, the Layers pattern could be considered
as a replacement. The Layers pattern simply arranges the components to

54

different levels of abstraction. In the case of psychophysiologically interactive
systems, this would require the use of feature-level fusion. However, feature-
level is not a suitable method for all signal processing. In addition, the reuse of
different components (e.g., implementing common parts of algorithms) is
limited to the same processing layer. If the system has many common parts, the
layers are an inefficient architecture for it.

Nonetheless, the present framework does offer a method for arranging the
filters into different layers, if the developer should so desire. Different layers
can be grouped under their respective Brokers. Then, these Brokers should
register to a central Broker that manages the architecture as a whole. Actually,
it is possible to add a second layer or an arbitrary number of layers by
grouping layers together, under a yet another Broker. Thus, the Layer pattern
can be implemented without extending or modifying the existing framework.
This way, the system can gain the advantages offered by the Layer pattern,
while preserving some of the flexibility and efficiency offered by the Pipes and
Filters pattern.

For example, in the present framework they were implemented using a
method that enabled more complex processing flows in addition to linear ones,
as was previously discussed. If the filters forming these flows were grouped
into layers, the structures of these flows would be preserved. The layers would
only add an additional level of abstraction.

In addition to the Pipes and Filters pattern, the other design patterns in the
framework have potential drawbacks that have to be considered. The
framework uses the Broker as a Mediator, which might increase its complexity
and consequently decrease its maintainability in the future [Gamma et al.,
1994]. This will happen if the communication between agents becomes
increasingly complex. To prevent this, it is essential to limit the extent of the
services offered by the Broker to a bare minimum. For example, it would be
tempting to include services for the automatic configuration of systems to the
Broker. In the present framework, the Broker is a passive mediator that
connects components only when explicitly requested. This keeps the Broker
simple and maintainable. The automatic configuration, on the other hand, can
be performed by a separate agent. Thus, the future development of the
framework should focus on extending it with new agents, instead of adding
functionalities to the existing ones.

The Broker is also a part of the Observer pattern, performing the role of the
Subject. A Subject notifies Observers that have subscribed to it in order to
receive notifications when the Subject changes. In the present framework, the
Broker manages the architecture and notifies registered components when the

55

architecture changes. The potential drawback of this pattern is that components
are unaware of each other’s presence and might request changes that are costly
for other components. This can be avoided by assigning only one component to
modify the architecture through the Broker. This suggests that the present
support for local Observers is sufficient and supporting remote listeners is
actually undesirable.

However, remote listeners might be required for efficient management of
distributed systems. For example, as previously argued, it is necessary to share
contextual and other global data in order to process psychophysiological data.
Remote listeners are an intuitive method for keeping track of changes to this
data. As a more concrete example, the physiology of a person might be
monitored at a remote location. The acquired measures could be shown on a
mobile device that the operator of the system carries with her. If the operator
would then notice clues indicating that one of the measures is giving spurious
data, she could request other measures to be collected to confirm this
observation. This would require the remote components to communicate with
the Broker in order to modify the architecture accordingly. Both the part of the
system that monitors the signals and the part of the system that displays them
on the mobile device would have to be modified.

On the other hand, managing a large distributed system from one central
location (i.e., Broker) might be complicated. Keeping the information about
components up to date requires that all components have the means to
communicate with the Broker, which might be located in a completely different
remote environment. Furthermore, the Broker might form a bottleneck if the
architecture consists of a large number of filters and architectural changes are
committed very often [Moran et al., 1998].

Although supporting the use of several brokers was not a specific concern
when designing the framework, the framework does enable their use. Several
brokers can be employed using a similar method as when implementing the
Layers design pattern, as previously was described. First, the system is divided
into smaller manageable subsystems, all of which are managed by a separate
broker. Then, the brokers that manage subsystems are registered to one central
broker as filters. This way, the management of the system can be distributed,
but there is always one central interface for managing and inspecting the
system architecture (i.e., a central Broker). Furthermore, if support for remote
listeners is added to the framework, the cost of changing the architecture can
be controlled by permitting only other Brokers to commit changes to the whole
architecture.

56

It should be noted that the manager of the architecture does not have to be
human, as was the case in the two test setups. A software agent could take the
place of the system’s operator, replacing human input with its own goal-
oriented decisions. The goal of the agent would be to find an architecture that
is optimal according to some criteria. It can be argued that management should
actually be automatic when proactive systems are considered. Humans should
only supervise the actions of a system, instead of constantly interacting with
the system [Tennenhouse, 2000]. Proactive systems can make (architectural)
decisions at a rate much faster than human judgement. This is why requiring
constant human input would hinder the performance of a system.

Furthermore, as discussed in the introductory chapter of this thesis,
psychophysiologically interactive computer systems have a natural disposition
towards proactivity. Thus, it is desirable to design architectures that retain the
advantages gained from the characteristics of proactive computing. One of
these characteristics is the ubiquity of computing [Tennenhouse, 2000].
Ubiquitous computing supports human activity by interrupting the person as
seldom as possible [Weiser, 1993]. Explicit management of the system would
require the user to constantly interrupt the task or focus on the architecture and
the task simultaneously, limiting the system’s applicability to ubiquitous tasks.
Of course, this distraction could be eliminated by dedicating another person to
managing the system. However, this would be unnecessary waste of human
resources.

In conclusion, it was shown in the present thesis that the construction of
psychophysiologically interactive computer systems could be supported with
the implemented framework. The results from two test setups showed that the
framework enabled systems to be constructed of software components that
operated in different environments. The framework also promoted the
reusability of software components and supported signal processing that did
not depend on the abstraction level of the data. The systems created with the
framework were extensible, due to the ability to effortlessly join new
components to existing system and the possibility to extend the framework
itself. Thus, it was shown that using the framework reduces the effort of
creating robust computing applications that utilize physiological data.
Furthermore, software applications that are constructed with the framework
can evolve from prototype systems to real-word applications, as the framework
relieves the possible drawbacks of the chosen architectures and the design
patterns implemented within them.

57

6. Summary
This thesis presented a software framework to support the construction of
psychophysiologically interactive computer systems. Psychophysiologically
interactive systems collect physiological signals and extract
psychophysiological measures to be used in human-computer interaction. The
extracted measures can be used to select appropriate feedback to the monitored
person and adapt the operation of the system.

Psychophysiological human-computer interaction faces many challenges
due to the diversity of its applications, the characteristics of
psychophysiological signals, and the complexity of psychophysiological
phenomena. When designing the framework, several applications were
inspected in order to identify these challenges. After these challenges were
identified, existing software tools for addressing them were evaluated.

Based on this evaluation, a software framework that enables developers of
psychophysiologically interactive computer systems to address the associated
challenges was developed. The framework supported the construction of
modular software architectures by utilizing with the Pipes and Filters design
pattern. The framework also enabled systems to adapt during their operation.
This adaptability was supported by the use of software agent technology.

The framework was implemented in Java and C++ programming
languages. Then, two systems were constructed with the framework in order to
evaluate the support it offers for the construction of psychophysiologically
interactive computer systems. The first system was a remote heart rate
monitoring system. The second system was constructed for performing an
empirical study involving both facial electromyographic and wireless
electrocardiographic measurements. The first system was tested by four
subjects who performed scenarios of voluntarily induced heart rate changes.
Measurements from twenty-seven participants were collected with the second
system. The results showed that the framework supported the construction of
these systems and their accurate and reliable operation. The results also
suggested that the framework supports extending these prototypes into robust
real-world systems.

Acknowledgement
This research was supported by the Academy of Finland (project number
1202183).

58

References
[Allanson, 2002] Allanson, J. (2002). Electrophysiologically interactive

computer systems. IEEE Computer Journal, 35 (3), 60-65.
[Allanson and Fairclough, 2004] Allanson, J. and Fairclough, S. H. (2004). A

research agenda for physiological computing. Interacting with Computers,
16, 857-878.

[Arroyo and Childers, 1982] Arroyo, A. A. and Childers, D. G. (1982). A
modular software real-time brain wave detection system. In Proceedings of
the 20th Annual Southeast Regional Conference, 126-131.

[Bernardi et al., 2000] Bernardi, L., Wdowczyk-Szulc, J., Valenti, C., Castoldi,
S., Passino, C., Spadacini, G., and Sleight, P. (2000). Effects of controlled
breathing, mental activity and mental stress with or without verbalization
on heart rate variability. Journal of the Americal College of Cardiology, 35,
1462-1469.

[Binkley, 2003] Binkley, P. F. (2003). Predicting the potential of wearable
technology. IEEE Engineering in Medicine and Biology Magazine, 22 (3), 23-
27.

[Böcker et al., 1994] Böcker, K. B. E., van Avermaete, J. A. G., and van den
Berg-Lenssen, M. M. C. (1994). The international 10-20 system revisited:
cartesian and spherical co-ordinates. Brain Topography, 6, 231-235.

[Bodymedia, 2005] Bodymedia. (2005). Our Products in the Marketplace.
Retrieved March 15, 2005, from
http://www.bodymedia.com/consumer/overview.jsp.

[Bondmass et al., 1999] Bondmass, M., Bolger, N., Castro, G., and Avitall, B.
(1999). The effect of physiologic home monitoring and telemanagement
on chronic heart failure outcomes. The Internet Journal of Asthma, Allergy
and Immunology, 3 (2). Retrieved April 5th, 2005, from
http://www.ispub.com/ostia/index.php?xmlFilePath=journals/ijanp/vo
l3n2/chf.xml.

[Brownley et al., 2000] Brownley, K. A., Hurwitz, B. E., and Schneiderman, N.
(2000). Cardiovascular psychophysiology. In Cacioppo, J. T., Tassinary, L.
G., and Berntson, G. G. (Eds.). The handbook of psychophysiology, 2nd ed.
(pp. 224-264). New York: Cambridge University Press.

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H.,
Sommerland, P., and Stal., M. (1996). Pattern-Oriented Software
Architecture. Chichester, England: John Wiley & Sons.

[Busso et al., 2004] Busso, C., Deng, Z., Yildirim, S., Bulut, M., Lee, C. M.,
Kazemzadeh, A., Lee, S., Neumann, U., Narayanan, S. (2004). Analysis of
emotion recognition using facial expressions, speech and multimodal

http://www.bodymedia.com/consumer/overview.jsp.
http://www.ispub.com/ostia/index.php?xmlFilePath=journals/ijanp/vo

59

information. In Proceedings of the sixth international conference on Multimodal
interfaces, 205-211.

[Cacioppo et al., 2000] Cacioppo, J. T., Tassinary, L. G., and Berntson, G. G.
(2000). Psychophysiological science. In Cacioppo, J. T., Tassinary, L. G.,
and Berntson, G. G. (Eds.). The handbook of psychophysiology, 2nd ed. (pp. 3-
23). New York, USA: Cambridge University Press.

[Chao et al., 2004] Chao, D. L., Balthrop, J., and Forrest, S. (2004). Adaptive
Radio: Achieving consensus using negative preferences. Technical Report
TR-CS-2004-08. The University of New Mexico, Department of Computer
Science. Albuquerque, USA. Retrieved March 24th, 2005, from
http://www.cs.unm.edu/~dlchao/radio/.

[Chen and Vertegaal, 2004] Chen, D. and Vertegaal, R. (2004). Using mental
load for managing interruptions in physiologically attentive user
interfaces. In Extended abstracts of the 2004 conference on Human factors and
computing systems, 1513-1516.

[Cohen, 2000] Cohen, A. (2000). Biomedical Signals: Origin and Dynamic
Characteristics; Frequency-Domain Analysis. In Bronzino, J. D. (Ed.) The
Biomedical Engineering Handbook, 2nd ed. Boca Raton, USA: CRC Press LLC.

[Cohen et al., 1997] Cohen, P. R., Johnston, M., McGee, D., Oviatt, S., Pittman,
J., Smith, I., Chen, L. and Clow, J. (1997). QuickSet: multimodal
interaction for distributed applications. In Proceedings of the Fifth ACM
International Multimedia Conference 1997, 31-40.

 [CollabNet, 2004] CollabNet, Inc. (2004). The Bean Builder: A BeanBox for the
new Millennium. Retrieved April 5th, 2005, from https://bean-
builder.dev.java.net/.

[Compumedics, 2005] Compumedics Ltd. (2005). Product Detail: Siesta.
Retrieved March 23rd, 2005, from
http://www.compumedics.com/product_detail.asp?id=13&item=produc
t.

[Davies and Gellersen, 2002]Davies, N and Gellersen, H.-W. (2002). Beyond
prototypes: challenges in deploying ubiquitous systems. IEEE Pervasive
Computing, 1 (1), 26-35.

[Dey, 2001] Dey, A. K. (2001). Understanding and using context. Personal and
Ubiquitous Computing, 5, 4-7.

[Elting et al., 2003] Elting, C., Rapp, S., Möhler, G., and Strube, M. (2003).
Architecture and implementation of multimodal plug and play. In
Proceedings of the 5th International Conference on Multimodal Interfaces, 93-100.

http://www.cs.unm.edu/~dlchao/radio/.
http://www.compumedics.com/product_detail.asp?id=13&item=produc

60

[Felzer and Freisleben, 2000] Felzer, T. and Freisleben, B. (2000). HaWCoS: the
"handsfree" wheelchair control system. In Proceedings of the 5th
International ACM Conference on Assistive Technologies, 127-134.

[Fisher and Dourish, 2004] Fisher, D. and Dourish, P. (2004). Social and
temporal structures in everyday collaboration. In Proceedings of the 2004
conference on Human factors in computing systems, 551-558.

[Fitzmaurice et al., 2003] Fitzmaurice, G. W., Khan, A., Buxton, W., Kurtenback,
G., and Balakrishnan, R. (2003). Sentient data access via a diverse society
of devices. ACM Queue, 1 (8), 53-62.

[Flippo et al., 2003] Flippo, F., Krebs, A., and Marsic, I. (2003). A framework for
rapid development of multimodal interfaces. In Proceedings of the 5th

International Conference on Multimodal Interfaces, 109-116.
[Fridlund and Cacioppo, 1986] Fridlund, A. J. and Cacioppo, J. T. (1986).

Guidelines for human electromyographic research. Psychophysiology, 23,
567-589.

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994).
Design patterns: elements of reusable object-oriented software. Reading, USA:
Addison-Wesley.

[Garcia-Palacios et al., 2002] Garcia-Palacios, A., Hoffman, H. G., Carlin, C.,
Furness, T. A. III, Botella, C. (2002). Virtual reality in the treatment of
spider phobia: A controlled study. Behaviour Research and Therapy, 40, 983-
993.

[Gratton, 2000] Gratton, G. (2000). Biosignal processing. In Cacioppo, J. T.,
Tassinary, L. G., and Berntson, G. G. (Eds.). The handbook of
psychophysiology, 2nd ed. (pp. 900-923). New York, USA: Cambridge
University Press.

[Hinterberger et al., 2004] Hinterberger, T., Neumann, N., Pham, M., Kübler,
A., Grether, A., Hofmayer, N., Wilhelm, B., Flor, H., and Birbaumer, N.
(2004). A multimodal brain-based feedback and communication system.
Experimental Brain Research, 154 (4), 521 -526.

[Hjortskov et al., 2004] Hjortskov, N., Rissén, D., Blangsted, A. K., Fallentin, N.
Lundberg, U., and Søgaard, K. (2004). The effect of mental stress on heart
rate variability and blood pressure during computer work. European
Journal of Applied Physiology, 92 (1-2), 84-89.

[Ijsselsteijn et al., 2004] Ijsselstein, W., de Kort, Y., Westerink, J., de Jager, M.,
and Bonants, R. (2004). Fun and sports: enhancing the home fitness
experience. Lecture Notes in Computer Science, 3166, 46-56.

61

[Ilmonen and Kontkanen, 2003] Ilmonen T. and Kontkanen, J. (2003). Software
architecture for multimodal user input - FLUID. Lecture Notes in Computer
Science, 2615, 319-338.

[Johnson, 1997] Johnson, R. E. (1997). Frameworks = (Components + Patterns).
Communications of the ACM, 40 (10), 39-42.

[Lisetti and LeRouge, 2004] Lisetti, C. and LeRouge, C. (2004). Affective
computing and tele-home health. In Proceedings of the 37th Hawaii
International Conference on System Sciences, 148-155.

[Lisetti and Nasoz, 2002] Lisetti, C. And Nasoz, F. (2002). MAUI: a multimodal
affective user interface. In Proceedings of the tenth ACM international
conference on Multimedia, 161-170.

[Mainardi et al., 2000] Mainardi, L. T., Bianchi, A. M., and Cerutti, S. (2000).
Digital biomedical signal acquisition and processing. In Bronzino, J. D.
(ed.) The Biomedical Engineering Handbook, 2nd ed. Boca Raton, USA: CRC
Press LLC.

[Marti and Lee, 2000] Marti, S. and Lee, K. H. (2000). The adaptive song
selector or locator (ASSOL). Retrieved March 24th, 2005, from
http://web.media.mit.edu/~stefanm/ass/ASSOL_20001219h_color3rd.p
df.

[Millán, 2003] Millán, J. del R. (2003). Adaptive Brain Interfaces.
Communications of the ACM, 46 (3), 74-80.

[Moran et al., 1998] Moran, D. B., Cheyer, A. J., Julia, L. E., Martin, D. L., and
Park, S. (1998). Multimodal user interfaces in the Open Agent
Architecture. Knowledge-Based Systems, 10, 295-303.

[Neuman, 2000a] Neuman, M. R. (2000). Biomedical sensors. In Bronzino, J. D.
(ed.) The Biomedical Engineering Handbook, 2nd ed. Boca Raton, USA: CRC
Press LLC.

[Neuman, 2000b] Neuman, M. R. (2000). Biopotential electrodes. In Bronzino, J.
D. (ed.) The Biomedical Engineering Handbook, 2nd ed. Boca Raton, USA: CRC
Press LLC.

[Nigay and Coutaz, 1993] Nigay, L. and Coutaz, J. (1993). A design space for
multimodal systems: concurrent processing and data fusion. In
Proceedings of the SIGCHI conference on Human factors in computing systems,
172-178.

[OMG, 2004] Object Management Group. (2004). UML™ Resource Page.
Retrieved April 5th, 2005, from http://www.uml.org/.

[Oviatt and Cohen, 2000] Oviatt, S. and Cohen, P. (2000). Perceptual user
interfaces: multimodal interfaces that process what comes naturally.
Communications of the ACM, 43 (3), 45-53.

http://web.media.mit.edu/~stefanm/ass/ASSOL_20001219h_color3rd.p
http://www.uml.org/.

62

[Partala and Surakka, 2004] Partala, T. and Surakka, V. (2004). The effects of
affective interventions in human-computer interaction. Interacting with
Computers, 16, 295-309.

[Pentland, 2000] Pentland, A. (2000). Perceptual intelligence. Communications of
the ACM, 43 (3), 35-44.

[PhysioNet, 2003] PhysioNet. (2003). PhysioToolkit. Retrieved April 5th, 2005,
from http://www.physionet.org/physiotools/.

[Polar, 2004] Polar Electro. (2004). Fitness segment. Retrieved March 23rd,
2005, from http://www.polar-uk.com/html/segments/Fitness.html.

[Rangayyan, 2001] Rangayyanm R. M. (2001) Biomedical Signal Analysis: A Case-
Study Approach. Wiley.

[Reithinger et al., 2003] Reithinger, N., Alexandersson, J., Becker, T., Blocher,
A., Engel, R., Löckelt, M., Müller, J., Pfleger, N., Poller, P., Streit, M., and
Tschernomas, V. (2003). SmartKom: adaptive and flexible multimodal
access to multiple applications. In Proceedings of the 5th International
Conference on Multimodal Interfaces, 101-108.

[Russell and Norvig, 1995] Russell, S. and Peter, N. (1995). Artificial Intelligence:
A Modern Approach. New Jersey, USA: Prentice Hall.

[Schmidt et al., 1996] Schmidt, D. C., Fayad, M., and Johnson, R. E. (1996).
Software Patterns. Communications of the ACM, 39 (10), 37-39.

[Smart, 2004] Smart, J. (2004). wxWidgets: Cross-platform GUI library.
Retrieved April 5th, 2005, from http://www.wxwidgets.org/.

[Strike and Steptoe, 2003] Strike, P. C. and Steptoe, A. (2003). Systematic
review of mental stress-induced myocardial ischaemia. European Heart
Journal, 24, 690-703.

[Sugar, 2005] Sugar, D. (2005). GNU Common C++ Resources. Retrieved
January 12th, 2005, from http://www.gnu.org/software/commoncpp/.

[Sun, 2004] Sun Microsystems, Inc. (2004). Desktop Java: JavaBeans. Retrieved
April 5th, 2005, from http://java.sun.com/products/javabeans/.

[Surakka et al., 2004] Surakka, V., Illi, M., and Isokoski, P. (2004). Gazing and
frowning as a new human-computer interaction technique. ACM
Transactions on Applied Perception, 1 (1), 40-56.

[Tassinary and Cacioppo, 2000] Tassinary, L. G. and Cacioppo, J. T. (2000). The
skeletomotor system: Surface electromyography. In Cacioppo, J. T.,
Tassinary, L. G., and Berntson, G. G. (Eds.). The handbook of
psychophysiology, 2nd ed. (pp. 163-199). New York, USA: Cambridge
University Press.

[Teller, 2004] Teller, A. (2004). A platform for wearable physiological
computing. Interacting with Computers, 16, 917-937.

http://www.physionet.org/physiotools/.
http://www.polar-uk.com/html/segments/Fitness.html.
http://www.wxwidgets.org/.
http://www.gnu.org/software/commoncpp/.
http://java.sun.com/products/javabeans/.

63

[Tennenhouse, 2000] Tennenhouse, D. (2000). Proactive computing.
Communications of the ACM, 43 (5), 43-50.

[Vehkaoja and Lekkala, 2004] Vehkaoja, A. and Lekkala, J. (2004). Wearable
wireless biopotential measurement device. In Proceedings of the Proactive
Computing Workshop PROW 2004, 29-31.

[VRMC, 2005] Virtual Reality Medical Center. Retrieved March 16, 2005, from
http://www.vrphobia.com/index.htm.

[W3C, 2004] World Wide Web Consortium. (2004). Extensible Markup
Language (XML). Retrieved April 5th, 2005, from
http://www.org/XML/.

[Ward and Marsden, 2003] Ward, R. D. and Marsden, P. H. (2003).
Physiological responses to different WEB page designs. International
Journal of Human-Computer Studies, 59, 199-212.

 [Wolpaw et al., 2002] Wolpaw, J. R., Birbaumer, N., McFarland, D. J.,
Pfurtscheller, G., and Vaughan, T. M. (2002). Brain-computer interfaces
for communication and control. Clinical Neuropsychology, 113, 767-791.

[Zeng et al., 2004] Zeng, Z., Tu, J., Zhang, T., Rizzolo, N., Zhang, Z., Huang, T.
S., Roth, D., and Levinson, S. (2004). Bimodal HCI-related affect
recognition. In Proceedings of the sixth international conference on Multimodal
interfaces, 205-211.

[Zhai, 2003] Zhai, S. (2003). What’s in the Eyes for Attentive Input.
Communications of the ACM, 46 (3), 34-39.

http://www.vrphobia.com/index.htm.
http://www.org/XML/.

