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Abstract 
For more than two decades, the Intel Corporation has been recognized as a 
leading company in the manufacture of high-quality integrated circuits, most 
remarkably the 80x86 family CPUs for personal computers. Despite occasional 
problems in design, one has to admit that on its way, Intel typically has 
managed to keep a reasonable level of balance between the need for the 
“features of tomorrow” and the pressure for backward compatibility in the 
same time. As a result, some of the software products are even today denoted 
as “i386 ready”, indicating that there actually exists a wide range of processors 
where a given binary image can be executed.  

As components for mainly home and office computers, Intel CPUs were for 
a long time regarded as rather lower-class siblings of their competitors, like 
SPARC, Alpha, PowerPC and PA-RISC, for instance. This was partly also due 
to the fact that until recently the IT industry was lacking a reliable multi-user 
and multi-tasking operating systems for the ‘i386 compatibles’. 

During the mid-nineties, the world changed significantly. With Microsoft 
introducing several of their server-type platforms, and Linux practically 
acquiring the Internet as its de-facto home, the chance for Intel to finally 
penetrate the server market arrived. In a way this is not a big surprise, since a 
server is, from a rather naive perspective, simply a computer running specific 
type of the operating system. On the other hand, addressing the needs for the 
vertical scalability1 of a particular hardware platform raises a question whether 
(and to what extent) Intel CPUs are suitable for this purpose and what the 
constraints to be aware of are. This is the focus of this thesis study. 

 
 

                                                 
1 Increasing the server processing power by adding CPUs. 
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1. Introduction 
This thesis work focuses on essential attributes of bringing the vertical 
scalability into generic computing platforms. The main subject is then the 
design of Symmetric Multi-Processing (SMP) systems as the most common 
approach today. 

As a foundation for demonstrating the theoretical apparatus with real-life 
examples, the contemporary Intel appliances are used. This has two 
fundamental reasons: First, already for many years, the Intel 32-bit processors 
are used as the heart of Linux- or Windows-powered server systems. Taking 
this as given, it might be a good time to ask whether this is only an attempt to 
compete with other traditional UNIX server platforms despite potential 
technical difficulties, or whether the underlying IA-32 foundation is mature 
enough to be used for the SMP purpose2. 

The second reason for studying the Intel portfolio in particular is the fact 
that with recent announcements of the IA-64 architecture also the marketing 
pressure for taking the first two commercially available implementations, the 
‘Merced’ and ‘McKinley’ processors, into the use grows. The question is, 
however, whether the shift into the world of 64-bit computing is necessary, or 
alternatively, what are the optimal areas of application the new processors are 
designed for. Surprisingly enough, this question is left unanswered in many 
available materials as a somewhat irrelevant burden, mainly because today the 
64-bit processors are presented (and promoted) as a natural evolution and the 
next logical step ahead in designing the computing systems. In other words, 
that there is no special reason to question the IA-64 platform, because “the 
future simply comes”. Naturally, for those who really need to understand the 
possible IA-64 advantages, such an explanation isn’t satisfactory. 

Yet, it is needless to point out that Intel CPUs are not the only ones available 
on the market. In the same way as engineers in Santa Clara3, other research 
teams around the world try to tackle the problem of computing efficiency in 
their own ways. Just to mention few of them, MIPS Technologies [MIPS] is 
successfully running their business with a variety of 32- and 64-bit processor 
cores typically licensed to other companies for further use. Similarly, SUN 
Microsystems, for instance, is instantly developing their SPARC family of CPUs 
since the early 90’s, including the UltraSPARC 64-bit CPU family [SPARC]. 
Their systems are, however, rather proprietary and also typically tightly 

                                                 
2 Meaning mainly the server-type of solutions. 
3 Official Intel headquarter: Santa Clara, California, U.S.A. 



 2 

coupled with the Solaris™ operating system. Another example of CPUs 
competing with Intel products might be the PA-RISC processor family [PA-
RISC], developed by HP, delivering a 64-bit performance as of the first PA-8000 
CPU introduction (1996). However, also in this case no other operating system 
than the HP-UX is widely used on PA-RISC servers and workstations. Finally, 
returning to the world of IA-32 compatibles, one shouldn’t forget about a 
company called AMD, whose portfolio [AMD_CPUs] is in many aspects 
overlapping with the Intel offerings, hence creating a competitive market by 
challenging its rivals. 

Thus, there exists a variety of processors (many of them exploiting the RISC 
paradigm), which are used for designing the SMP systems. Yet, for the purpose 
of this thesis the Intel portfolio is the focal point in order to stay close to the 
newly emerging IA-64 architecture and the question of its applicability in the 
real life. 

This study is primarily intended to elaborate around the contemporary Intel 
offerings for the SMP market. However, in some ways the reader might wonder 
why to question or study something, which seems to be quite well justified by 
the recent acceptance of the Linux operating system in the IT industry, for 
instance. The implication is that if Linux is “good enough” as a server-type 
operating system, the underlying hardware must also be suitable for the same 
purpose. 

Not necessarily this is the case. Firstly, dozens of Linux adaptations exist 
around the world, where some of them are quite different on the lower parts of 
the kernel, while still preserving the required user-level API. Secondly, Linux is 
not an equivalent to ‘server’, and vice versa. In other words, the fact that a 
given operating system can run on selected hardware only means that the 
adaptation is possible. By no means does that, however, imply that the 
adaptation is done in an optimal way or that the underlying platform has been 
designed with multi-processing in mind. This makes the initial question (i.e. 
Intel CPUs in SMP systems) research worthy, even though some of the 
surrounding evidences might suggest the opposite. 

In this thesis, the contemporary Intel portfolio is studied from the 
perspective of multi-processor (MP) systems. While doing so, in Chapter 2, the 
basic concepts of multi-processing systems are outlined. Following that, in 
Chapter 3 and Chapter 4 the currently available Intel products are examined in 
terms of its architectural principles and other technical parameters. Finally, in 
Chapter 5 the collected findings are combined into a kind of “CPU model 
suggestion chart” as an outcome of the entire study. 
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2. Basic introduction into multi-processor architectures 
In this section the theoretical aspects of the Multi-Processor (MP) design are 
introduced, as well as the general reasoning why the parallel-execution 
environments are more suitable for the server type of applications. 

2.1. Motivation behind multi-processor design 
As with almost all the computing system dimensioning attributes, the demands 
for the processing power per unit grow every now and then. Depending on what 
is to be understood by the term ‘unit’, the overall execution capabilities in a 
given computing system can be enhanced in various ways: 

1. increasing CPU speed and efficiency, 
2. enhancing the CPU programming model (new instructions, more 

registers, etc.), and 
3. teaming individual CPUs. 

 
While the first two options fall into the category of on-chip improvements, the 
third can be described as an aggregation of the available processing power 
across multiple CPUs. Typically we see a combination of all of the above 
options taking place as the processors evolve over time. In the server market, 
however, the “CPU teaming” approach is used as the most affordable 
alternative mainly due to the following reasons: 

- the CPU chip space is restricted, 
- the CPU core clock rate cannot increase in an unlimited way, 
- on-chip changes are costly, 
- architectural stability is required (enhancing the CPU programming 

model requires a certain learning effort among the programmers and 
system integrators), 

- multi-CPU systems are more fault tolerant (a faulty CPU in a mission-
critical system can be suspended without shutting down the entire 
system), and 

- products built on top of mass-market products are more cost efficient. 
 

Hence, there seem to be good reasons for combining several CPUs into 
harmonized blocks, rather than relying solely on the improvements inside the 
CPUs itself.  
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2.2. Taxonomy of computing platforms 
Based on the way a given computing platform is designed, it falls into one of 
the categories presented in Figure 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Taxonomy of parallel processor architectures 
 
As argued in the previous chapter, in designing standalone servers, the most 
commonly the shared memory MIMD paradigm is used [COMP_ARCH]. This is 
also a subject of this thesis. In contrary, the question of computing clusters is 
left aside, since in this case the solution maturity depends significantly on the 
quality of the used clustering software, rather than on the used hardware 
components. 
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2.3. Hardware-related aspects of multi-processor design 
In this chapter (mainly based on ideas presented in [COMP_ARCH]) a brief 
introduction into hardware-related aspects of the design of multi-processor 
(MP) systems is presented. The goal is to provide a broader view into multi-
CPU architectures as well as an understanding of what is generally known as 
the Symmetric Multi-Processing (SMP) 

2.3.1. CPU teaming 
Whenever a tightly coupled MP system is about to be constructed, several 
agreements have to be made. First of all, participating CPUs should employ the 
same way of signal encoding, the same mode of triggering external actions (e.g. 
edge-triggered memory access) and the same mode of constructing individual 
data units (e.g. little-endian). This is due to the fact that the surrounding 
chipsets are designed for high-speed operations and there is often no time for 
additional data translation whatsoever. Last, but not least, CPUs should also be 
ready to wait if the accessed peripheral is busy. 

A somewhat specific issue is the cache memory size. As this is by definition 
transparent for the programmer, it is up to the CPU itself how the cache 
coherence is achieved among several processors. Consequently, vendor-specific 
recommendations have to be followed when designing any MP system4. In any 
case, neither the operating system nor any other software component should 
make firm assumptions on the CPU internals. Instead, the critical CPU 
attributes should be detected if necessary (especially the delay calibrating 
constants, like BogoMIPS, etc.). 

A commonly discussed topic is also the distribution of the CLK signal, 
which is the “heart beat” of each CPU. Here a common practice is to use the 
same clock signal (i.e. signal derived from the same source) for all components 
within an individual domain as a solution for reducing the noise on 
interconnection buses. On the other hand, this doesn’t yet guarantee that the 
execution is perfectly synchronous on all CPUs as there are many reasons why 
this might not be true (e.g. external interrupts). Therefore, no explicit 
assumptions should be made unless the computing system in question is 
designed as a real-time solution from the beginning. 

No MP system should be designed without a clearly defined booting 
sequence. This is due to the fact that when a CPU is powered on, the content of 
the external (shared) memory might not be initialized for a parallel execution. 
Therefore most of the MP systems first boot the CPU0 (determined and 

                                                 
4 Typically CPUs with exactly the same cache structure are required. 
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controlled by the motherboard), while other CPUs are activated by the 
operating system at some point. Alternatively, on some systems a special system 
guardian processor might be used for controlling all main CPUs. 

2.3.2. Memory subsystem 
The external memory is a critical resource for each CPU. Depending on the 
design goal, the provided memory subsystem can be either dedicated to a certain 
CPU or shared between several processors. While the former option is more 
common in small, special-purpose appliances (e.g. communication processors 
with local buffers), the latter one seems to be more suitable for universal type of 
servers, where the required amount of RAM per each CPU cannot be easily 
estimated in advance. 

When dealing with shared memory models, designers have to decide 
whether all the CPUs will be given access to the same range of physical 
addresses or not5. In practice, this can be widely affected by the way each of the 
CPUs is physically attached to the common bus. Nevertheless, the most 
common case is that all the CPUs can address the same range of external 
memory, and that the same logical-to-physical address mapping is used across 
the entire computing platform. Such systems are then denoted as systems with 
symmetric memory access emphasizing that other options exist as well. 

Finally, depending on the memory response time for different request 
initiators, systems with similar latencies across the whole memory range are 
known as the uniform memory access systems, while systems exposing variations 
are known as non-uniform memory access (NUMA) systems. From the designer’s 
perspective, the former ones have typically all the memory chips assigned to a 
common inter-CPU bus, while the latter ones make use of various bus 
converters (e.g. PCI transparent bridge), and even switching technologies (e.g. 
InfiniBand), in order to logically combine several memory subsystems into a 
commonly addressed workspace. Figure 2.2 illustrates the conceptual difference 
between both the UMA and NUMA systems: 

                                                 
5 Note that since the memory chips are in fact peripherals utilized by the surrounding 

CPUs, neither the actual memory size nor the addressing schema is in a direct relation to the 

internal processor architecture. 
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Figure 2.2: UMA vs. NUMA systems  
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2.3.3. System peripherals 
From the CPU perspective, peripherals represent another types of addressable 
objects (targets), either dedicated or shared between several CPUs. This 
scenario is similar to the concept of memory subsystem, except that peripherals 
can typically serve only a limited amount of simultaneous I/O sessions (if not 
limited single session only). Therefore, while accessing them, a controlled 
concurrency solution is needed, most commonly implemented using exclusive 
or shared locks (more information in Section 2.4.3). 

Ensuring an exclusive access for a given peripheral isn’t, however, the only 
issue to take care of, because there exist several scenarios for how the actual I/O 
transaction can be performed. As we shall see in the following sections, an 
individual peripheral device can be treated as a serial device, parallel device or 
as an independent transfer initiator. Furthermore, since the same data and 
address bus is typically used for addressing both the memory and peripheral 
subsystems6, the influence of the CPU-local cache memory has to also be 
evaluated case by case. 

 
The Direct Port-I/O Access 
The mode of the Direct Port I/O can be described as a serial type of transmission 
where, at most, a single CPU word7 is transferred at a time. A typical 
transaction is composed of the following steps: 

 
Example of Port Input: 
1. CPU places the address of the target device into the address bus. 
2. CPU indicates that this is an input operation by defining the value of the 

RD,/WR signal. 
3. CPU confirms the validity of the address by asserting special control line 

called strobe (/STRB). 
4. Upon receiving the “address valid signal”, each attached controller 

(device) compares the received address with its own, while the one who 
finds the match takes further actions. 

5. The addressed device (target) writes one CPU word to the shared data 
bus and confirms its validity by asserting a specific signal line. 

                                                 
6 Using the same external buses for handling memory and peripherals is a more 

economic solution concerning the amount of necessary motherboard connections and the 

overall I/O subsystem complexity. 
7 i.e. as many bits as the data bus width. 
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6. CPU reads the data from the data bus and once ready releases the 
“address valid signal”. As of that moment, the I/O cycle is completed 
and every peripheral device is expected to remove any of its signals 
from the control and data bus. 

 
Even though conceptually straightforward, the entire Direct Port I/O sequence is 
rather long and therefore also impractical for large data blocks. Furthermore, 
due to the required in-order-delivery, the CPU is not allowed to apply any 
techniques of speculative execution that might eventually cause the I/O 
operations to happen in an order different from what the programmer expects. 

While performing the Direct Port I/O, the CPU-local data caches are 
assumed to be inactive, since efficient hardware-driven cache synchronization 
is in fact unfeasible between CPUs and serial devices. In practice this is 
achieved using special instructions for performing the Direct Port I/O. 

From the Multi-Processing point of view, the Direct Port I/O causes minimal 
problems, because during the I/O instruction execution an exclusive access to 
the shared buses has to be granted to the initiating CPU. This also ensures that 
each elementary I/O transfer will be atomic by nature, and therefore no further 
synchronization technique is necessary. On the other hand, such a guarantee 
doesn’t exist for any transaction composed of two or more I/O operations. 
Therefore in most cases some type of OS-originated synchronization is 
necessary anyway. 

 
Memory-mapped I/O 
The memory-mapped I/O mode tries to overcome the problem of low resource 
utilization, in the Direct Port I/O, by assuming that within a typical CPU-to-
device transaction a relatively larger amount of data is exchanged before any 
real action is taken. Therefore, the principle of the in-order-delivery doesn’t 
have to be obeyed all the time, in particular, before the “commit” operation 
happens. 

The underlying mechanics behind the memory-mapped I/O concept is that 
the end device is active on a whole sub-range of memory addresses, rather than 
allocating a single I/O address only. As soon as any data is written into this 
address range, it is captured by the device’s bus interface (e.g. latch registers) 
and eventually forwarded and stored in some sort of local buffers, around the 
same way as any ordinary memory chip would do. Similarly, should a read 
operation be initiated, the end-device’s logic fetches or constructs the data and 
propagates it into the data bus. The actual order of transferring the 
communicated information is not essential, except that all the pending I/Os 
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have to be completed before the entire transaction is committed by the 
peripheral device itself. This approach has the following advantages: 

- As the in-order-delivery is not required all the time, the CPU can take 
full advantage of speculative execution and parallel processing (in fact, 
the CPU assumes that the target location is memory). 

- The CPU cache can be involved in the normal way as long as there exists 
a possibility of flushing all the dirty data in a later phase of the 
transaction. 

 
At the same time, it is, however, important to keep in mind the following 

issues: 
- Treated as a memory area, the interface circuits and the device-internal 

buffers (if used) have to be of a comparable speed as the real memory 
chips are. 

- By deploying the memory-mapped I/O, the originally continuous 
memory address space becomes fragmented into individual memory 
areas served by their respective owners. Furthermore, “empty holes” (i.e. 
address ranges not served by any peripheral device nor the system 
memory) might exist as well (see Figure 2.3 for details). 

- Even though addressed as a memory block, the internal semantics of the 
read and write operation might not necessarily be identical. In other 
words, the data being read might differ from that which was written 
earlier. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.3: Memory fragmentation in case of memory-mapped I/O  
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As a conclusion, what we see is a transaction model suitable for bulk data 
transfer, in which the data amount clearly exceeds the frequency of individual 
actions. 

Finally, it is needless to say, there also exist devices, which operate in a 
rather continuous way, hence not requiring an explicit “commit” indication 
after each buffer transfer. One such class of devices are various types of display 
adapters, typically allowing the entire screen buffer (or its portions) to be 
modified directly at the speed comparable to the standard memory access. 
Certainly, for such devices, the Direct Port I/O approach wouldn’t be 
satisfactory. 

 
Direct Memory Access (DMA) 
Even though the memory-mapped I/O is a significant step ahead, on the way 
between its source and destination, the data has to traverse the system bus 
twice. For example, when reading a disk I/O block, the CPU has to read the 
data from the memory buffer provided by the respective disk drive controller, 
and write the data later into the pre-defined memory location. This results into 
two I/O transfer per each transferred unit. 

In order to tackle this efficiency problem, the Direct Memory Access (DMA) 
mode of operation has been developed. The leading idea here is that a DMA-
capable device only receives information about where in the system memory a 
particular data block should be stored (or alternatively read from) and the 
device will carry the transfer independently from the CPU. Figure 2.3 depicts 
this situation: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4: Example of the DMA read operation  
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From the system bus perspective, as well as from the Memory Subsystem 

standpoint, both the CPU and the peripheral device in question are considered 
to be the transaction initiators, and are therefore treated equally. On the other 
hand, since the DMA controllers do not participate as regular CPUs in the 
multi-processor system, those are given a subordinate role only, meaning that 
they typically do not perform any data transfer unless instructed to do so. 

2.3.4. Interrupt subsystem 
The interrupt subsystem was originally developed as a primary way for the 
peripheral devices to attract attention whenever necessary. Because in earlier 
times no generic frame protocols for passing data between peripherals and the 
main CPU had been developed, a set of dedicated wires was used for arranging 
the necessary signaling. In a UP system, the interrupt subsystem mechanics is 
as follows: 

1. When a given peripheral has a need for communicating with the main 
CPU, it generates an Interrupt Request (IRQ) by asserting one of the 
available IRQ lines. 

2. The signal is propagated to the Interrupt Controller, which solves the 
priority issue, ignores certain IRQs if configured so, and finally forwards 
the request to the main CPU (again using dedicated signal lines in early 
times). 

3. The main CPU interrupts the current task at the first possible occasion 
and executes the corresponding interrupt handler routine in order to 
satisfy the peripheral device’s needs. 

4. As one of the last operations, the interrupt handler routine will typically 
indicate to the interrupt controller that the IRQ request was served and 
hence another one can be accepted. 

5. Finally, the main CPU resumes the task it was originally executing. 
  

As mentioned in Step 2, according to the severity of the event, different 
priority levels can be assigned to the individual IRQ sources. The most 
common rule here then is that once a certain IRQ is initiated, all other requests 
with lower priority are placed on-hold, while higher priority requests can still 
be passed through, possibly interrupting the course of execution of an already 
active IRQ handler. 
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Taking a closer look at the design of MP systems, the above-described way 
of handling interrupt requests is not sufficient. First of all, in multi-CPU 
systems a certain IRQ distribution policy has to be applied if there are several 
CPUs to handle those. While doing so, one of the possibilities is to direct all the 
incoming IRQs towards a pre-defined CPU only (i.e. the “I/O processor”). 
Alternatively, one might also decide to establish a static mapping between a 
particular IRQ and its target CPU. The most sophisticated approach is a 
dynamic signal routing between all the CPUs based on the recent event flow 
pattern in the system. These advanced techniques, however, call for additional 
intelligence inside the IRQ subsystem on itself. 

Another issue to be aware of in the MP systems is the fact that not only 
peripherals, but also individual CPUs might need to interrupt each other in 
order to solve emergency situations. Therefore the CPUs used for building MP 
systems should support some sort of Inter-Processor Interrupt (IPI) interface, 
allowing short messages to be routed between individual CPUs or eventually 
broadcasted to all of them. In practice, this imposes yet another requirement on 
the interrupt controller itself. In the later chapters we will see how this problem 
is solved with the Intel chipset. 

2.3.5. Hardware model assumed by the Linux SMP kernel 
For any widely applicable (i.e. portable) operating systems, certain realistic 
assumptions have to be made regarding the underlying hardware architecture 
in order to address most of the target platforms. In case of the Linux kernel the 
contemporary implementations typically make the following assumptions 
[Linux Kernel]: 

- all CPUs have the same internal architecture, 
- all CPUs have equal chances to access the underlying memory and 

peripherals, both in terms of the addressing and the throughput, 
- all CPUs are capable of receiving all IRQ requests if configured so, 

and 
- inter-CPU messages cover all involved CPUs and are passed along 

with other IRQ requests. 
 
Especially the assumption on equal chances makes the system symmetric 

from the kernel perspective, and therefore the entire subsystem is often referred 
to as the Symmetric Multi-Processing (SMP). 
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Figure 2.5: Logical model of SMP systems  
 

Note that even though the system is symmetric from the logical point of 
view, by employing various transparent switching and bridging techniques the 
actual “hardware reality” might be different. On the other hand, the experience 
shows that in most cases it is an easier job to take care of the low-level signal 
replication rather than implementing various “case branches” in the kernel (e.g. 
‘CPU6 cannot address more than 5GB’). Therefore the logical model presented 
above is sufficient for most of the SMP systems. 

2.4. Software and operating system related issues 
In the previous sections mainly hardware-related aspects of teaming 
independent processors and peripherals together were explained. In contrast, in 
this section we explore what other assumptions and prerequisites are imposed 
by multi-tasking operating systems, and what additional implications it brings 
regarding the type of the CPUs to be used [IA-64; sections on the Linux kernel]. 

2.4.1. Concept of Virtual Memory 
In a typical general-purpose operating system, each of the user-level processes 
is provided with an illusion of running in a dedicated sandbox environment, 
with all the required resources it needs (exclusive locks, network sockets, files, 
runtime data, etc.). 

As long as both the resource allocation and its usage happens via the 
provided kernel API, an efficient way of process isolation and resource 
management can be implemented at the operating system level. The situation 
is, however, different when it comes to the System Memory, or let’s say, the 
memory assigned to a given process. When seen as a resource, the system 
memory is somewhat specific because it can be accessed directly, for instance 

Device 
#0 

CPU 0 CPU 1 CPU *N 
System 

Memory 

Device 
#1 

Device 
#2 

Device 
# N 



 15 

by using instructions like ‘mov reg,[addr]’¨. As the kernel API is bypassed in 
this case, additional help is needed from the CPU itself in order to implement 
efficient process isolation. This results in the idea of Virtual Memory. 

The Virtual Memory concept is based on an assumption that each user-level 
process is given a fictive memory space, which is as large as the addressing 
model of a given CPU will allow. For instance, in case of a 32bit CPU, each 
process can, at least in theory, address up to 4GB of RAM starting at the 
location 0x00000000 and expanding all the way up to, and including, the logical 
address 0xffffffff. On the other hand, what the process is not aware of is that at 
the CPU level the actual logical address is translated into the corresponding 
physical address, which in most cases differs from the original one. However, 
since the same address mapping is applied for both the read and write 
operations, the entire address translation is transparent for the user-level 
applications, and therefore no additional adjustments in the program code are 
necessary. On the other hand, for the operating system, the concept of Virtual 
Memory is a key factor for treating the physical memory (RAM) as yet another 
resource with firmly defined access and sharing policies. 

The address translation can be implemented entirely on the software level 
or partly with the hardware assistance. While doing so, the entire logical and 
physical address space is divided into bigger allocation units known as ‘memory 
page frames’. 

Memory page frames are of a fixed size (e.g. 4kB; an integer power of 2), 
and depending on the address origin they are called logical (belonging to the 
virtual address space) and physical (parts of the physical RAM) frames 
respectively. As soon as the frame size is defined, it is then a task for the 
operating system to provide the mapping information between the physical 
and logical frame IDs whenever necessary. In reality, this is done using an 
optimized piece of the kernel code. 

Obtaining the mapping information in the above-described way is, 
however, a time consuming process. Therefore, most of the CPUs make use of 
the so-called Transaction Lookaside Buffer (TLB), which can be seen as a CPU-
local temporary storage for the collected frame mapping information. If taken 
into use, the OS-level virtual memory handler is invoked only in case the required 
mapping information is not found in the TLB buffer. This situation is 
commonly denoted as the “TLB miss”. As a result, the frequency of the 
operating system calls can be significantly reduced, depending on the frame 
size and the size of the TLB buffer itself. Figure 2.6 describes the final memory 
mapping process: 
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Figure 2.6: High-level schema of virtual-to-physical memory address mapping 
 
On some CPUs the “TLB miss” situation can be solved by means of the 

hardware-level assistance, which effectively postpones the need for to invoke 
an OS-level virtual memory handler till the latest possible moment. The 
implementation is, however, subject to a given CPU type and therefore we will 
discuss this option in the respective chapters later. 

Typically a single virtual memory mapping schema exists per each user-
level process in the system. This approach brings the following advantages: 

- Individual user processes can be completely isolated from each other. 
- By introducing “security bits”, memory frames maintained by the kernel 

or other processes can be shared as write-protected virtual memory 
areas. 

- Memory frames can also be shared with full access if necessary. 
- As the Virtual Memory Unit is involved in every address translation, it 

can leave traces on what data blocks are used frequently and what have 
not yet been accessed. This is a key issue for efficient implementation of 
more advanced concepts like paging and swapping. 

 
The concept of virtual memory is a vital part of every multi-tasking system 

and therefore it is required from every CPU in the SMP system. 

2.4.2. Context switching 
In a multi-user environment, our goal is to run several tasks in a parallel 
fashion allowing a high number of users to be served simultaneously. While 
this wouldn’t be a problem if the number of CPUs was greater or equal to the 
number of active processes, in reality we often have to run a higher number of 
processes on a modest number of CPUs only. This naturally calls for the 
concept of context switching as a way of emulating a parallel execution. 
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In simple words, the context switching means that whenever a currently 
active thread is about to be temporarily suspended, its context information is 
stored in a safe place, while similar context information from a previously 
deactivated thread is uploaded to the CPU. At the final stage the new thread 
execution is resumed. In this way, the currently active thread and one of the 
inactive threads swap roles. In a wider context, if such a change takes place 
regularly within a short period of time (e.g. 20ms), the user is given an 
impression that the execution happens in parallel. 

Context switching is typically triggered by the process scheduler, which based 
on the status and management information selects processes from an 
appropriate execution queue for each CPU. As this is a rather generic task, it is 
also platform independent. On the other hand, on the bottom line certain 
support from the actual CPU is necessary in either case, typically in a form of 
the relevant instructions and the necessary ‘know how’. 

From the system performance viewpoint, the faster the context switching 
can be achieved, the more CPU time is given to the ‘real work’. Therefore, when 
selecting a CPU model for multi-threaded systems attention should be paid to 
the ease of context switching as well unless we can afford CPUs dedicated to 
single tasks only. 

2.4.3. Atomic operations and process synchronization 
The problem of concurrency is crucial in any parallel execution environment 
regardless of whether considering networks, multi-CPU servers or several 
threads running on the same processor. On a higher level, our goal is to ensure 
that certain types of shared resources will be accessed by a controlled number 
of processes only. For that purpose, typically shared or exclusive locks are used. 

Technically speaking, “locks” are memory objects with a given value and 
with an associated well-known name or address. In the case of exclusive locks, 
the convention is that the default lock value is zero and that a process, which 
first raises the value to one, is granted permission to access the associated 
resources. Meanwhile, the other processes competing about the same lock are 
put into the sleep mode for a given period of time or until the lock is released. A 
very simplified version of a lock obtaining algorithms could be the following: 

1:   while (lock != 0) sleep(n); 

2:   lock = 1; 

3:   ... /* performing the desired action */ 

4:   lock = 0; 

Figure 2.7: Naive implementation of an ‘exclusive lock’ 
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Even though correct from the single-thread point of view, this approach 
fails in a multi-threaded environment as there is no explicit guarantee that the 
lock value doesn’t change between the time the expression ‘lock != 0’ (line 1) is 
evaluated as negative, and the time when the lock value is updated to ‘1’ (line 
2). At this point, unless we can stop all the other CPUs for a while8 as well as 
prevent context switching on the local processor, the problem cannot be solved 
using conventional programming languages. Consequently, the whole situation 
leads to the requirement of CPU-provided compound type of atomic 
operations, like “read-and-update”, executed with exclusive access to the 
memory location where the lock value is stored. CPUs without this ability 
cannot be used in a parallel-execution environment at all.  

2.4.4. Exceptions handling 
In general, CPUs are state machines executing a single thread at a time. 
Furthermore, by making use of context switching, the CPU time can be divided 
according to the various rules between several pseudo-parallel user processes 
as well as the kernel on itself. On the other hand, this also implies that even 
though loaded in the memory, the kernel is actually not governing the CPU all 
the time. In fact, assuming an application performing an excessive in-memory 
data processing, the kernel might not be invoked for a long period of time at all. 

Now, let’s suppose a critical error occurs. For example, the currently 
running process might attempt to access an unprivileged memory area or a 
division by zero is initiated. Under such conditions, the CPU is typically 
expected to invoke a specific part of the kernel code in order to take further 
action on the event. These raised events are called Exceptions, and the respective 
routines to be launched are known as Exception handlers. 

Again, unless another process-control mechanism is employed (e.g. a CPU 
experiencing failure might simply be stopped), support for the exception 
handling is required from any CPU to be used in an SMP environment. 

2.4.5. Wall-clock Time with High Resolution 
Even though it might look like a minor issue, in many operating systems 
timestamps play an important role in ensuring in-order-delivery and detecting 
timeouts. Therefore it is important to make sure that also inside MP systems a 
consistent reference time is available on each CPU. 

Typically, timestamps are defined as the amount of milliseconds elapsed 
since January 1st 1970, the date also known as the ‘UNIX epoch’. Assuming that 
each CPU is equipped with a local interrupt generator (e.g. rising 1024 signals 

                                                 
8 Which, by the way, requires another locking if implemented on the software level. 
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per second), an independent local time can be maintained by each processor. 
This is, however, undesirable due to possible drifts in each CPU. That’s why  
Linux, for example, defines one of the processors as the time master, providing 
that all the other servers simply adapt the centrally distributed time signal and 
use it as needed. Consequently, the “central time” might be defined as the 
maximal time stamp among all participating CPUs, which ensures that the local 
time on any of the units never drifts backwards. 

The achievable time accuracy is slightly less than 1 millisecond if a 1024Hz 
interrupt signal is used. This, however, might be not enough on the CPUs with 
clock rates reaching 1GHz and above, if we consider that between individual 
timestamp updates more than million instructions might be executed9. 
Therefore in addition to standard time stamps, fine-grain local timestamps are 
generated for each CPU, typically using the processor-local clock cycle 
counters. When combined with sophisticated algorithms for inter-processor 
synchronization, the achievable accuracy is close to 1 microsecond (see [IA-64]). 
The only requirement then is to have any kind of high-speed counter available 
in each processor. 

2.5. Summary 
In Chapter 2 the specific aspects in designing multi-processor systems were 
outlined, including assumptions related to Symmetric Multi-Processing systems. 
Furthermore, additional generic requirements put on CPUs intended for 
parallel execution environments were explained in the corresponding chapters. 
As a result, we should be now ready to explore and evaluate various Intel CPU 
families with respect to their eventual applicability for building up SMP 
systems. 

                                                 
9 On a 1GHz CPU with an average CPI=1.0, about 1.000.000 instructions can be executed 

every millisecond. 



 20 

3. Intel family processors 
In the past, Intel has experienced turbulent times. At the beginning of what is 
today known as the ‘computing age’, the company was puzzled with instantly 
growing software requirements causing changes in the core CPU architecture 
every now and then. For instance, the very early 8086/80186 architecture 
(originally designed for IBM; 1978) was regarded as too simple and basically 
outdated as soon as the idea of multi-tasking on the PC platform came into the 
spotlight. The reason being was that the architecture didn’t provide any process 
isolation at the hardware level. 

As an answer to that, Intel came up with the i80286 CPU (1982), which is the 
first of their processors supporting the concept of Virtual Memory denoted as 
the Protected Mode. 

The protected mode was a significant step ahead for the company, even 
though it was actually nothing new on the market10. What Intel, however, didn’t 
anticipate with enough accuracy was the required size of the virtual address 
space. As the "80286" architecture was based on the 16bit compound addressing 
model, it was soon clear that additional architectural improvements are needed. 

Neither were the next two models, i80386SX and i80386DX (1985), the final 
stage. The challenge to be answered at that time was whether the external data 
buses should be 16 or 32 bits wide. Even though from today’s perspective the 
answer is quite clear, the IT industry needed some time to make the shift into 
the true “32bit world”. 

On the other hand, by defining the “i386 execution model”, Intel had finally 
reached the stage when the logical address space was large enough for almost 
any application, and individual processes could be isolated in an effective way 
by the means of the virtual memory subsystem. In other words, the 80386 
processors can be considered as the first true multi-tasking CPUs of their kind. 

The next generation of processors brought to the spotlight another question, 
which was cast aside for quite some time. The question was whether the float-
point execution unit (FPU) should be located on the same chip as the main 
processor or not. As the actual decision was not only a technical issue, the ‘SX’ 
and ‘DX’ versions of the i80486 processor were developed (1989), where the 
former one makes use of an external FPU, and the latter comes with the FPU 
on-die. 

                                                 
10 For instance, the Motorola 68k processors did provide virtual memory capabilities 

already in the first implementations. 
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Finally, around the year 1993 Intel launched the Pentium family of 
processors that were backward compatible with all their predecessors including 
the non-protected mode CPU models. 

One remarkable moment is that the Pentium architecture introduced a 64bit 
external data bus even though the register width was 32 bits for integer 
numbers and 80 bits for floating-point arguments. In other words, the Pentium 
family processors were the first ones driven by the need for performance 
improvements, rather than introducing significant architectural changes. 

The Pentium CPU was a success not only from a marketing point of view, 
but also from the technological perspective. Perhaps that’s also one of the 
reasons why the company decided to preserve the name, and instead of 
inventing new “6-based” names they have brought processors like Pentium II, 
Pentium III and Pentium 4 into the market11. 

Nevertheless, Intel CPUs were still recognized as the processors for ‘small’ 
computers, hardly ever considered as valid competitors on the enterprise server 
market. This is mainly due to the fact that the entire IA-32 family implements 
the CISC (Complete Instruction Set Computing) paradigm12, which is pronounced 
to be generally slower due to the inherent microcode complexity and the wide 
range of implemented instructions. Perhaps that’s also one of the motivations 
why in the mid-90’s Intel began a joint development of the next generation IA-
64 CPU architecture together with HP. This new architecture is then supposed 
to deliver a RISC-grade performance in the native mode, whilst still preserving 
backward binary compatibility with the IA-32 and PA-RISC software. As a 
result, both the legacy software, as well as the software specifically written for 
IA-64 computers, should be running on the same system hardware if required. 

 

                                                 
11 A detailed timeline of Intel CPU models is available e.g. from [Intel CPUs]. 
12 Note that internally even some of the x86 CPUs, like Pentium III and better, operate the 

RISC way internally. 
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The current Intel CPU portfolio contains the following processor models: 
 

Name Arch. Max. 
RAM 

Max. 
Cache 

Max.Core 
Freq. 

Intended 
for 

Pentium Celeron IA-32 4GB 256 kB (L2) 1.8 GHz P, D, E 
Pentium II IA-32 4GB 256 kB (L2) 333 MHz P, D, E 
Pentium III IA-32 64GB 512 kB (L2) 1.4 GHz D, S, W 
Pentium III Xeon IA-32, HTT 64GB 512 kB (L2) 1 GHz S, W 
Pentium 4 IA-32, HTT 64GB 512 kB (L2) 3 GHz D, P 
Intel Xeon IA-32, HTT 64GB 512 kB (L2) 2.8 GHz S, W 
Intel Xeon DP/MP IA-32, HTT 64GB 2MB (L3) 2 GHz S, W 
Itanium IA-64 16TB 4MB (L3) 800 MHz S, W 
Itanium 2 IA-64 4096TB  3MB (L3) 1 GHz S, W 
      

Table 3.1: Contemporary Intel CPU portfolio 
 

Legend: 
      HTT = Hyper-Threading Technology 

 P = (P)ortables, E = (E)mbedded, D = (D)esktops, 
 W = (W)orkstations, S = (S)ervers 

 
 
What we see in the table above is that processors prior to the Pentium III are 
considered to be rather low-power ones. Beginning from the Pentium III, the 
processors can be used basically in any area. However, for servers and 
workstations the Intel Xeon and the IA-64 type of CPUs would be  
recommended, whilst the Pentium 4 is meant mainly for desktops. This might 
also imply certain deviations, like additional registers, etc. On the other hand, 
as long as the underlying “80x86” architecture is preserved, any of the CPUs 
can be basically used for any role, if the performance and power consumption 
is satisfactory from the designer’s perspective. 
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3.1. IA-32 architecture 
The IA-32 CPUs represent the CISC type of processors with two possible modes 
of operation. The first one is known as the real mode and is compatible with the 
8086 and 80186 processors. As this mode enforces an unprotected memory 
access for all the active threads, it is of a very little interest to us. Perhaps the 
only thing to remember, is that even today this mode is the default when the 
80x86 CPUs start. 

The second mode, in contrast, is the protected mode [IA-32], which offers 
several advanced features like virtual memory, context switching, paging, etc., 
making it more suitable for parallel-execution environments with logically 
isolated tasks. Protected mode is activated by changing content of the register 
CR0. 

3.1.1. The program execution environment 
From the programmer’s perspective, the processor offers eight universal 
registers (32bit), and six selectors (16bit), with the following roles: 

 
---- universal registers ---- 
EAX = Accumulator (target of many arithmetic operations) 
EBX = General purpose (GP) register 
ECX = Counter / GP register 
EDX = GP register 
ESI = GP register / source index for streamlined operations 
EDI = GP register / destination index for streamlined operations 
EBP = GP register / index / stack frame indicator 
ESP = Stack pointer (in combination with SS) 
---- selectors --- 
CS = Code Segment selector 
SS = Stack Segment selector 
DS = Data Segment selector 
ES, FS, GS = General Purpose selectors 
---- special registers --- 
EIP = Instruction pointer (in combination with CS) 
EFLAGS = Binary array of control and status indicating bits 
…. and other 
 

Figure 3.1: IA-32 basic register set 
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Note that by no means this listing is complete, as there exist plenty of other 
additional control registers associated with various execution units inside the 
processor. 

The table also indicates one important aspect of the CISC instruction set, 
which is its non-orthogonal design. This meaning that not all the index 
registers, for instance, can be used as arguments for an arbitrary memory-
manipulating instruction, and so on. These restrictions are consequences of the 
legacy, as well as certain design trade-offs inside a given CPU itself. 

Another issue not mentioned in the previous chapter is the group of 
floating-point registers ST(0)..ST(7), which are found as a part of the 
independent FPU unit. Registers are organized as a low-depth stack, and their 
content is, as well as the actual FP operations, controlled using special 
instructions with the ‘ESC’ prefix (11011b) in the binary code. In practice, 
whenever any FPU-related instruction is being executed, the main CPU waits 
until the FPU has completed its task13. This in turn makes FPU operations rather 
slow, even though it is still faster than when emulated by the software. 

3.1.2.  Virtual Memory Subsystem 
The IA-32 architecture makes use of a hardware-assisted page frame mapping 
between virtual and physical addresses. Individual logical addresses are 
composed of the selector (16bit) and the offset (32bit) part, where the selector is an 
index into the table of segment descriptors, and the offset part is simply added to 
the 32bit base address found in the table (see Figure 3.2 for details). In this way 
a logical address is transformed into a corresponding linear address. Should the 
required mapping information be missing from the table, a system-level 
exception is raised in order to resolve the situation. 

 

                                                 
13 This is a heritage from the time when the FPU used to be an additional external 

peripheral attached to the system bus. Obviously, the main CPU had then to stop any activity 

over that bus until the FPU operation in question is completed. 



 25 

In the system there exists a single Global Descriptor Table (GDT) and several 
Local Descriptor Tables (LDTs)14. As described in Figure 3.2, while performing a 
memory access, the choice between the GDT and the currently active LDT is 
made based on the ‘TI’ bit value in the used selector:  

 
 
 
 
 
 
 
 
 
 

Figure 3.2: IA-32 Logical-to-Linear address mapping 
 
Note that the term Linear Address (LA) is more correct in this context, 

because at a later phase this address may be also passed through the paging 
unit and hence transformed once again. As a result, the Physical Address of the 
final data location might also differ even from the LA in question. 
 
Implementing access rights 
The descriptor tables can contain up to 8192 items, 64 bits each. Among those 
the DPL (Descriptor Privilege Level) field plays an important role when 
implementing data and code protection. In practice it is used in the following 
way: 

Each of the running processes is given a Current Privilege Level (CPL), being 
a numeric value between 0 (highest priority) and 3 (lowest priority) inclusive15. 
Furthermore, any given process can also alter its access rights toward a lower 
privilege level by supplying the desired privilege level in the RPL field in the 
selector part of the accessed logical address. The final Effective Privilege Level 
(EPL) is then calculated as a numerical maximum of both the CPL and the RPL. 

Whenever a memory access is performed, the EPL value is checked against 
the DPL value inside the chosen segment descriptor (item in the descriptor 
table). While doing so, the following rules apply: 

 

                                                 
14 Typically single LDT per each process is used. 
15 For the active process the CPL value is stored in the CS selector. 
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1. Data access is allowed into blocks with a lower or equal DPL. 
2. Code access (that is “execution”) is allowed to the block on the same 

privilege level or, if configured so, to the block with a numerically lower 
DPL. While doing so, the CPL of the calling process won’t change. 

3. The only way to change the CPL is to pass a call through a special 
execution gate. 

 
In other words, the processor architecture ensures that data on a higher 

privilege level can be accessed only via a provided API, and that such an API 
cannot be “enhanced” by callback functions from unknown binaries located in 
an unknown or a non-trusted binary block. Any violation of the above-stated 
rules causes a kernel-level exception. After that, it’s up to the operating system 
to take any necessary corrective actions. 

3.1.3. Context switching 
Context switching is implemented in a relatively easy way. Each of the tasks are 
expected to maintain a dedicated Task State Segment (TSS) table (described in 
Figure 3.3), which is used as a storage for all important registers, should a 
context switch occur. The table has to be at least 104 bytes long (see [IA-32]), 
however the upper limit is not explicitly given. This allows also some 
additional data to be stored along with the CPU status information. 

The address of the active TSS (that is, the TSS belonging to the task being 
executed) is stored in the TR register (16bit). Should context switching occur, 
the following steps are performed: 

1. The logical context of the current task is written into the active TSS, and 
all the pending cache writes are completed. 

2. The TR register gets updated with the value associated with the TSS of 
the new process. 

3. The TR value of the previous task is written at the end of the newly 
activated TSS. 

4. The execution context of the new process is activated inside the 
processor. 

5. The task execution continues (is resumed) at the instruction referred by 
the CS:IP register pair of the activated process. 

 
The context switching can be triggered in four different ways: 

• using the CALL (long call) instruction to the TSS segment, 
• using the JMP (long jump) instruction, 
• using the IRET instruction with the ‘NT’ flag set to ‘1’, or 
• via an interrupt handler directed to the TSS segment. 
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The last option (that is, performing a context switching as a reaction to the 
INT or IRQ request) is an especially interesting one, since in this case all 
registers of the interrupted process are saved automatically prior to the 
interrupt handler activation. Therefore, the interrupt handler is released of this 
context saving burden. Finally, since the TR of the previous task was stored in 
the active TSS during the IRQ/INT invocations, returning to the interrupted 
process is a matter of a single instruction, this being IRET with ‘NT=1’. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: IA-32 Task State Segment and its addressing 

 
User data (optional) 

GDT 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Return TSS (selector) 
ESP (level 0) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS (level 0) 
ESP (level 1) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS (level 1) 
ESP (level 2) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS (level 2) 
CR3 (DBA) 

EIP 
EFLAGS 

EAX 
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EDX 
EBX 
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EBP 
ESI 
EDI 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ES 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CS 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DS 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FS 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GS 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LDT 

I/O port map offset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T TR 
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3.1.4. Atomic operations and process synchronization 
As mentioned previously, atomic operations are essential for implementing SMP 
or single-CPU multi-tasking systems. When identifying these, the following 
rules apply on the IA-32 platforms: 

- Assembly language operation that makes zero or one memory access is 
atomic (e.g. mov ax,[addr]). 

- Read/modify/write-type of instructions, such as inc or dec, are atomic if 
no other CPU operates the system bus (that is, in UP systems only). 

- Simple instructions featuring the lock prefix are atomic by definition 
because the prefix implies exclusive access to the memory bus 
throughout the entire instruction execution period. However, 
instructions with the rep prefix (string operations) are not explicitly 
atomic, because while executing the earlier mentioned instructions, CPU 
keeps on sampling incoming IRQ lines, and hence the main program 
course might get interrupted at any time. 

 
Thus, from an SMP design perspective, only the single memory access and 

lock-prefixed instructions are interesting. Fortunately, the Pentium CPU, for 
instance, offers as many as 18 instructions accepting the lock prefix. In addition 
there also exist a few more instructions, like xchg, which imply an atomic 
execution as well. 

3.1.5. Interrupts and Exceptions handling 
Interrupt and Exceptions are basically events requiring immediate action. The 
first being reactions on external events (typically the signal arriving over the 
IRQ line), and therefore asynchronous by nature. The second are consequences 
of failures inside the CPU itself, and therefore also synchronous with the main 
application execution. Both of them are, however, served the same way: 

As soon as the respective event occurs, the CPU interrupt subsystem 
calculates a number within the range 0 thru 255 (inclusive) identifying the 
event source. After this it performs a table lookup operation at the address 
specified by the IDTR register, and fetches the address of the handler to be 
used for serving a given event. Next, the currently running application is 
interrupted and the desired interrupt handler is invoked. Lastly, at the end of its 
run the interrupt handler is expected to perform a couple of  clean up 
operations in order to restore the execution environment of the original 
application. 

Despite its simplicity, the above-described concept works an acceptable way 
only for CPU-internal events, that is, for handling CPU exceptions. On the other 
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hand, the experience shows that effective IRQ handling requires more 
sophisticated event re-ordering and prioritization, and hence it is not a good 
idea to “hard-wire” individual IRQ lines directly to the CPU pins. Therefore in 
early times an external Programmable Interrupt Controller (PIC) was used. Most 
commonly this was the 8259A chip. 

The 8259A is an integrated circuit capable of a selective interrupt source 
inhibition (“masking”), as well as an elementary event priority re-classification. 
However, since the chip features only eight individual IRQ input lines, its 
capabilities are limited already in a single-CPU environment, not mentioning 
any server-class systems. Therefore, especially for the SMP systems, Intel has 
developed a distributed interrupt handling solution known as the Advanced 
Programmable Interrupt Controller (APIC) [Linux Kernel; interrupt subsystem]. 

APIC isn’t a single chip, though. Instead, it is a distributed messaging 
system composed of two types of substantially different circuits. As indicated 
in Figure 3.4, the first type of circuits, called ‘I/O-APIC’, is a programmable hub 
handling the incoming IRQ requests and generating related event indication 
messages on-demand. On the other side, the respective message receiving part 
is called ‘Local APIC’ (L-APIC) and is located inside each CPU. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: Distributed IRQ handling 
 
Messages between the APIC circuits are passed via a shared data block 

inside the system memory (typically 2MB). Among other things, this concept 
allows a given IRQ request not only to be directed towards a predefined CPU, 
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but also easily re-routed to other one if necessary. A load-balanced I/O 
handling can be then implemented in a rather straightforward way. 

Finally, one remarkable feature is also that the Local APICs only enhances 
the already existing interrupt subsystems of their respective CPUs, while the 
original IRQ lines are still preserved. In practice that means that an APIC-
enabled CPU will work efficiently in a multi-CPU system as well as in a legacy 
uni-processor setup with IRQ lines connected directly to the CPU itself. 

3.1.6. Summary 
In Section 3.1 the IA-32 architecture was introduced with a special accent on the 
features necessary for implementing multi-CPU architectures. As a short 
conclusion of this evaluation, the IA-32 seems to be mature enough to be used 
in SMP implementations in one example. 

3.2. ’Dual-core’ CPUs 
During the year 2001, Intel launched two new types of processors known as the 
‘Pentium III Xeon’ and the ‘Intel Xeon’ respectively, which are CPUs featuring 
the so-called Multi-Threading technology. 

The idea of Multi-Threading is based on the fact that even with a binary code 
optimized for parallel execution, still about 30% of the time certain units inside 
the CPU execution engine are idle. Consequently, if we cannot achieve better 
efficiency within the same thread (that is, with further code optimization), it 
might make sense to run another thread on the same chip. 

Going back to the very essence of the CPU design, what gives an “identity” 
to any processor is the content of its internal registers, while the actual 
“processing power” is determined by the quality of the surrounding execution 
engine. The more independent register sets present, the more Logical CPUs are 
identified in the system. This is also the principle idea behind the Xeon 
processors, providing that by introducing yet another set of registers on the 
very same chip (see Figure 3.5), the resource utilization of the underlying 
execution engine is increased up to the maximal achievable level. As a result, 
the Xeon processors deliver two logical CPUs on a single circuit board (a more 
elaborate description of the Hyper-Threading architecture is available from 
[HyperThreading]): 
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Figure 3.5: Intel Hyper-Threading Architecture  
 
Introducing an additional Logical CPU is a relatively easy task, at least on a 

conceptual level. On the other hand, what must be remembered is that the 
capacity of the underlying execution engine doesn’t change, and therefore any 
performance gain of the “new CPU” certainly won’t be more than the spare 
capacity of the original one. This is also why the term ‘Dual Core CPU’, used 
mainly in marketing material, is not exactly correct when referring to Hyper-
Threading enabled processors. 

From the SMP architecture point of view, using the HTT-enabled CPUs 
doesn’t bring about any significant changes, except that the effective capacity of 
the underlying execution engines should be considered when distributing tasks 
between all involved physical CPUs16. On the other hand, the fact that each 
logical CPU is identified and counted separately brings the following 
advantages: 

1. No changes to the user-level applications are necessary. 
2. There is no need to modify the operating system except for a few 

recommended adjustments to the task scheduler part (otherwise 
operations in an “ordinary SMP” environment are assumed). 

3. There is no difference in the booting sequence, since as in any other MP 
system, all logical CPUs, except the CPU0, will be suspended by the 
BIOS in the early booting phase. 

                                                 
16 The conceptual difference between physical and logical CPUs is already considered in 

the scheduler implementation of the most recent Linux kernels, for instance. 
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Therefore, unless Intel makes architectural changes inside the execution 
engine itself, multi-threaded CPUs are as much valid members of SMP systems 
as their respective single-threaded equivalents. 

3.3. IA-64 architecture 
The IA-64 concept is a joint effort between Hewlett Packard and Intel intended 
to define a next generation processor architecture exploiting Instruction Level 
Parallelism (ILP) for achieving the maximal CPU resource utilization [IA-64WP]. 

The principal idea of ILP is that by involving the compiler in the process of 
composing parallel-executable instruction groups, the result will be more 
efficient from the performance point of view compared to the situation where 
the CPU would try to discover parallel-executable instruction groups 
independently. This is mainly due to the fact that the compiler has a much 
wider contextual knowledge of the entire application, and therefore it can 
produce a more efficient binary code. Besides, since the instruction-level 
parallelism is expressed explicitly, the traditionally used re-ordering engine can 
be removed from the CPU entirely, or at least simplified a significant way. 

No code can, however, be produced without a detailed architectural 
knowledge of the target platform. As we will see later, unlike its predecessors, 
the IA-64 processors make use of the Explicit Parallel Instruction set Coding 
(EPIC), which is substantially different from the other alternative known as the 
Very Long Instruction Word (VLIW). The main difference is that the VLIW 
requires a more detailed knowledge about the target platform in terms of the 
quantity and type of internal execution units located inside the CPU, while the 
EPIC paradigm makes the assumption that the number of internal execution 
units is unlimited by definition [EPIC]. Consequently, should a given binary 
code be moved between different VLIW processors, it has to be re-compiled 
with new assumptions about the target platform. In contrary, the EPIC-
composed code can be running on any processor of the same architectural 
family. This is because the EPIC concept is more focused on defining the 
execution framework (i.e. ‘how to express’), rather than on forcing 
implementation details. As a result, in the long run we might expect several 
types of CPUs with internal differences, yet still compliant with the common 
IA-64 architecture. Naturally, those CPUs can then be priced according to their 
capabilities and the market segment they are intended for. 



 33 

3.3.1. The program execution environment 
The IA-64 architecture can be, from a programmer’s perspective, thought of as 
a RISC CPU model with a massive amount of registers [IA-64]. Like any other 
RISC architecture it employs the load/store methodology where any individual 
data item has to be first loaded into a designated register before it can be 
further used (see [RISC_Ref]). 

 
Basic IA-64 properties 
The instruction format for most IA-64 instructions includes the instruction code 
(that is, an identification of the operation to be performed), two source 
operands and a single destination identifier (target). The architecture is fully 
predicated, meaning that individual instructions are executed only if all 
indicated predicates (i.e. control bits) are set to the active value. If not, the 
instruction is simply skipped. In total, 64 predicates are defined, whose value 
can be controlled either explicitly (using appropriate instructions) or as a result 
of other instructions. In addition, the predicate p0 is said to be always valid 
(true), which eliminates the need for defining “special cases” in the instruction 
coding. In general, predicates reduce the number of necessary branch 
instructions, hence improving overall CPU performance. 

IA-64 architecture offers 128 general-purpose registers (65 bits each), and 
128 floating-point registers (82 bits each), making programming really 
comfortable. The “excess bits” associated with numeric registers are used for 
encoding symbols like NaT or NaVal (“Not a Thing” and “Not a Value” 
respectively), used mainly as guides during speculative code execution. Even 
though these additional bits aren’t typically problematic during the normal 
application course, attention has to be paid when manipulating affected 
registers during the context switch, for instance.  

Finally, IA-64 architecture also defines a set of control registers and 
performance counters whose purpose and content might differ depending on 
the actual processor model.  

 
Instruction format 
On the IA-64 platform instructions are organized in so-called bundles (128 bits 
each), which are the nominal binary code units. Each bundle provides space for 
three instruction slots and the template field. Most of the IA-64 instructions make 
use of a single 41bit instruction slot, while there also exist few instructions 
spanning across two slots simultaneously. 

The five bits wide template field is used for indicating the target execution 
unit per each enclosed instruction. Furthermore, some of the template field 
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values are also encoding the “stop” sign, which is used as a border marker 
separating individual instruction groups in the code. See Figure 3.6 for details: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6: IA-64 instruction bundle and format of the ‘template’ field  
 
Instructions between two consecutive “stop” signs are considered to be 

mutually exclusive and therefore ready to be executed simultaneously. This 
also implies that, no instruction from the next instruction group may be 
executed unless all instructions from the previous one are processed. 

Even though the above-described rules are in fact nothing new in the ILP 
world, what makes the IA-64 approach different is the fact, that thanks to the 
carefully designed format of the template field, individual instruction groups can, 
by definition, span across several instruction bundles regardless of what the 
target CPU model is. As a result, the binary code is compatible with any former 
or future IA-64 implementation, and yet it is optimized from the ILP point of 
view. This level of freedom is certainly a significant step ahead comparing to 
the VLIW world, where the CPU-dependent bundle size also matches with the 
size of instruction groups. 

 

 
Template 

 
0x00 
0x01 
0x02 
0x03 
0x04 
0x05 
0x08 
0x09 

instruction slot 2 instruction slot 1 instruction slot 0 template 

41 bits 41 bits 41 bits 5 bits 

Slot 
  0 1 2 

 
M I I  
M I I  ;; 
M I  ;; I 
M I  ;; I  ;; 
M L X 
M L X  ;; 
M M I 
M M I  ;; 

 
Template 

 
0x0a 
0x0b 
0x0c 
0x0d 
0x0e 
0x0f 
0x10 
0x11 

Slot 
  0 1 2 

 
M  ;; M I 
M  ;; M I  ;; 
M F     I 
M F I  ;; 
M M F 
M M F  ;; 
M I B 
M I B  ;; 

 
Template 

 
0x12 
0x13 
0x16 
0x17 
0x18 
0x19 
0x1c 
0x1d 

Slot 
  0 1 2 

 
M B B 
M B B  ;; 
B B B 
B B B  ;; 
M M B 
M M B  ;; 
M F B 
M F B  ;; 

Legend: M = Memory Unit 
  I = Integer Unit 
  B = Branch Unit 
  F = Floating-point Unit 
  X = Extended Format Unit (unit for handling two-slot instructions) 
  L = placeholder for the second instruction in the X-unit pair 
  ;; = stop sign (instruction group separator) 
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Floating-point and integer calculations 
As mentioned earlier, the FPU unit provides 128 floating-point registers. Each 
register is divided into the sign bit, 17 bits of exponent (biased against the value 
65535), and 64 bits of the significant part of the number. The exact formula for 
converting into a human-readable form is: 

 
          F(sign,exp,significant) = (-1)sign.2(exponent-65535).significant/263 

 
Besides its basic function, floating-point registers can also contain standard 

64bit integer values, if the sign bit is ‘0’ and exponent is set to ‘0x1003e’. This, in 
consequence, allows extremely fast conversions between floating-point and 
integer registers, as well as logically extending the integer register file by yet 
another 128 registers from the floating-point register area if necessary. 

Two floating-point registers have special meaning: The register f0 is always 
read as ‘0.0’, and the register f1 is always read as ‘1.0’. This eliminates the need 
for passing the numerical constants along with the instruction code, which 
would be a very inefficient solution. Updating registers f0 and f1 is forbidden. 

Regarding the instruction repertoire, the IA-64 aims at providing only such 
floating-point instructions, which cannot be implemented in a more efficient 
way in the software. Like many other RISC architectures, the IA-64 doesn’t 
provide instructions for arithmetic division, implying that a reciprocal 
approach has to be used if necessary. On the other hand, instructions like 
‘multiply-and-add’ (i.e. “projection and offset shift”) are present in order to 
facilitate single-precision complex calculations and graphical transformations. 

 
Modulo-scheduled loops 
Moving data blocks between different memory locations is a very common 
activity in many programs. While doing so, however, less than half of the time 
is typically spent in reading the data from the source, and about the same time 
is used for writing the data to the new location. The rest of the time is then the 
management overhead necessary for operations in a controlled loop. In a very 
simple form this situation is depicted in Figure 3.7: 

1:   start: ld8 r32 =  [ptr1], 8  ;; 
2:          st8 [ptr2] = r32, 8  
3:          br.loop start   

Figure 3.7: Data replication using traditional methods 
 
Assuming that the pointers ‘ptr1’ and ‘ptr2’ are in reality special-purpose 

registers incremented with every “loop” command, this code fragment will 
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copy data from one location until the loop-controlling counter reaches its zero 
value. However, as there exists a WAR (Write-After-Read) dependency 
between the first two lines, the “stop” sign is necessary in order to split the 
entire loop into two instruction groups. As a result, the CPU spends only half of 
the time reading and half of the time writing, while in theory it would be 
capable of both activities simultaneously.  

In order to address this performance problem, the IA-64 architecture 
introduces the concept of rotating registers with the following semantics: 

1. Using the alloc instruction, a certain portion of the register file can be 
denoted as “rotating registers”. 

2. Whenever the counted loop instruction is reached, at the end of the clock 
cycle the values in registers designated as rotating are shifted one 
position ahead. 

 
Using these assumptions, the very same loop can be rewritten in the 

following way: 
 
1:   start: ld8 r32 =  [ptr1], 8  
2:          st8 [ptr2] = r33, 8  
3:          br.ctop start  

 
 

Figure 3.8: Data replication using modulo-scheduled loops on IA-64 
 
The modulo-scheduled loops work as follows: By the time a new value is 

read into the register r32, the value acquired during the previous iteration 
(propagated as r33) is written back to the location indicated by ‘ptr2’. This all 
happens during a single clock cycle only, since there is no logical dependency 
between the registers r32 and r33. In other words, the CPU is reading and 
writing simultaneously and hence the internal resources are utilized in the 
maximal possible way17. 

 
The Register Stack Engine 
The Register Stack Engine (RSE) is yet another innovation inside the IA-64 
providing a virtually unlimited amount of LIFO-organized registers with the 
help of a limited number of physical registers (‘Register Backing Store’) and the 
external memory. The underlying concept is as follows: 

                                                 
17 Note that the code used in Figure 3.8 is not complete as the prolog and epilog parts are 

omitted. Those can be found from [IA-64]. 
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1. Using a predefined instruction (e.g. alloc), a certain range of registers 
(starting with r32 and lasting up to r127 inclusive) within the user space 
is designated as being served by the RSE. This is known as the register 
frame. 

2. As soon as the allocation happens, the RSE tries to allocate the same 
amount of physical registers from its private space. 

3. Any consequent br.call instruction causes the RSE pointers to be 
adjusted so, that the content of current register frame is made 
inaccessible, while the called function is free to allocate a new frame for 
itself (in the RSE terminology, the current frame has been pushed on top 
of the register stack). 

4. The br.ret instruction restores the previous register frame by moving the 
related pointers back to the state they were before the br.call instruction 
occurred. 

 
The net effect is that the program doesn’t have to care about protecting the 

content of the local registers whenever any nested function is called. In the 
same way, there is also no need for any excessive context savings should an 
interrupt handler be launched or should any exception handling take place. 

Internally the RSE is implemented so, that as long as there are enough 
physical registers available inside the RSE subsystem, they will be used for 
holding the register stack date. Should this one become full, the “oldest” data is 
copied to the external memory and the physical registers are recycled. 
Conversely, by releasing the allocated frames (i.e. returning from procedures), 
the original register content is loaded back from the memory into the RSE 
physical registers. All of these operations, however, happen on the hardware 
level and therefore also transparently from the main program perspective. 

3.3.2. Virtual Memory Subsystem 
The Virtual Memory Subsystem operates in a somewhat different way than in 
the IA-32 case, even though the basic idea is preserved [IA-64/VMM]: The 
user-level application is (at least in theory) capable of addressing the entire 
logical address space, while on the bottom line, logical addresses are translated 
into physical ones with the help of the operating system. The translation is 
transparent for the user application in question. 

The IA-64 CPUs are not required to implement the entire 64-bit address 
space [IA-64]. Instead, each implementation must support between 50 to 60 bits 
of the lower part as well as the three most significant bits (MSBs) of the logical 
address. This effectively splits the entire virtual address space into eight virtual 
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regions, where each of them contains the same portion of the implemented and 
unimplemented addresses (see Figure 3.9).  

 
 
 
 
 

Figure 3.9: Format of the IA-64 virtual address 
 
In a similar way as the logical addresses, the physical addresses do not need 

to be implemented for all the 64 bits either. Instead, an IA-64 compliant CPU 
must define between 33 and 63 bits (inclusive). In addition, the most significant 
address bit (i.e. bit 63) is used as an explicit indicator whether the addressed 
data can be kept in the CPU-local cache or not. As a result, this schema creates 
two regions with certain portions of implemented and unimplemented address 
space where both the ‘implemented’ parts are in fact aliases for each other (see 
Figure 3.10). 

 
 
 
 
 

Figure 3.10: Format of the IA-64 physical address 
 
Since the width of the implemented address space is defined by the CPU 

model, applications are not allowed to make any explicit assumptions on the 
size of the address space. Instead they should rely on information provided by 
the operating system. In the case of the Linux/ia64, the reference constants are 
called IMPL_VA_MSB for the virtual address space and IMPL_PA_MSB for 
the physical address space. Effectively these stand for the logical number of the 
most significant bit in the address space they represent. In case of the first 
Itanium CPU, the IMPL_VA_MSB equals to 50 and IMPL_PA_MSB is 42. 

 
Page tables 
In order to maintain the entire address space, the virtual as well as the physical 
memory area is divided into individual memory page frames of a fixed size. 
Unlike the IA-32, however, on the IA-64 platform it is the actual operating 
system that is responsible for selecting the most suitable memory space 

vrn unimplemented implemented 
63   61 IMPL_VA_MSB 0 

vrn = Virtual Region Number 

uc unimplemented implemented 
63 IMPL_PA_MSB 0 

uc = Cache flag 
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granularity (naturally, out of the offered options18) as well as defining and 
maintaining all the necessary tables, and providing the mapping information to 
the CPU whenever necessary. In other words, the IA-64 processors achieve 
more flexibility in virtual memory management by enforcing a software-based 
memory mapping, rather than implementing a hardware-based solution. 

Like many other CPUs, also the IA-64 makes use of the Translation Lookaside 
Buffer (TLB). This hardware-implemented buffer is explored during each virtual 
memory access, and only in the case where a required virtual page frame 
number is not found, a respective kernel routine is called, which is generally 
known as the TLB miss exception. It is then up to the operating system to 
provide the missing mapping information19. Alternatively, the user-level 
application can also be terminated should an unprivileged memory access be 
detected. 

In addition to what was described above, the IA-64 also supports an 
optional feature called the VHPT walker, which is intended for solving TLB miss 
events partly in the hardware itself. The idea is that for those memory regions 
where the hardware support is explicitly activated, a memory-resident table of 
physical entries can be “walked through” in order to find the required 
information before the kernel-level TLB miss handler is eventually invoked. In 
order to exploit this feature, the table of mapping information must be linear, 
and its address must be supplied in the page table address (PTA) register. 

3.3.3. Context switching 
The context switching can be on AI-64 implemented with a minimal effort from 
the programmer’s perspective. First of all, using the Register Stack Engine (as 
explained in Section 3.2.1) eliminates the need for excessive register dumps 
during the context change.  In addition, the CPU also provides auxiliary bits for 
identifying changes in certain register files. For instance, the float-point register 
file is divided into two halves where for each of them a single status bit exists 
indicating whether any of the registers was modified during the application 
course. Naturally, registers not modified during the application run do not 
need to be saved, as the in-memory copy remained identical with the current 
CPU state. 

A somewhat specific issue is the handling of the TLB table. As described in 
Section 2.4.1, the cached TLB entries describe the relation between virtual and 
                                                 

18 In case of Itanium the supported page sizes are 4kB, 8kB, 16kB, 256kB, 1MB, 4MB, 

16MB, 64MB and 256MB. 
19 Note that TLB miss events are executed in the kernel space with the virtual memory 

option disabled. Thus there is no risk of several nested TLB miss events at this point. 
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physical page frames within a certain task. Should context switching happen 
(and should the next activated thread belong to another task) it has to be 
ensured that those TLB entries belonging to the previous task wouldn’t be used 
during the new task’s course. 

A very simple way of ensuring the task isolation would be to flush the 
entire TLB table up on a task switch. On the other hand, considering that upon 
a return to the same task most of the entries might need to be re-uploaded 
again, this approach is clearly insufficient from the performance point of view. 
In order to tackle this problem, the IA-64 makes use of the three most 
significant address bits known as the Virtual Region Number (see Section 3.2.2 for 
details).  

In short, the ‘vrn’ value is used as an index into the rr0-rr7 register array, 
holding the Region ID for each of the eight virtual regions. With every memory 
access, the obtained rid (the result of the rr0-rr7 table lookup) is used as a part 
of the search key when the TLB buffer is examined, implying that only TLB 
entries with the same rid are taken into account. Consequently, TLB entries 
belonging to a different task are ignored and turned inactive simply by 
changing the content of the Region ID registers into values valid for the 
currently active task. Therefore, no excessive TBL flushing is necessary should a 
context switch take place. 

As a brief summary, it is quite obvious that a high design effort has been 
made in order to minimize the context-switching overhead on the IA-64 
platform. Combined with the fact that that certain registers can be at the 
compilation time denoted as “fixed” (that is, unavailable for the user 
processes), the achievable results are quite impressive.  

3.3.4. Atomic operations and process synchronization 
For implementing atomic operations, the IA-64 platform defines two types of 
instruction families implemented by the Memory unit (M): 

 
       cmpxchg{1,2,4,8} r1 = [r2], r3, ar.cvv 

fetchadd{4,8}  r1 = [r2], n 
 

Figure 3.11: Atomic instructions on IA-64 
 
Instructions are by definition atomic, and as their name indicates, they 

manipulate the respective memory content in slightly different ways. In either 
case, however, on top of this platform-dependent foundation all other 
abstractions like locks and semaphores can be implemented. On the other hand, 
the IA-64 architecture doesn’t provide an explicit lock prefix for managing the 
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shared system bus, and hence the programmer has to manage with the above-
enlisted instructions only. 

3.3.5. Interrupts and Exception handling 
The design of the IA-64 interrupt subsystem follows traditional architectural 
principles like the interruption at the first possible occasion (to be determined 
by the CPU), in-order-delivery and respect for event prioritization. In addition, 
there also exists a requirement of precise interruptions, which basically means 
that all the instruction bundles loaded into the CPU have to be executed before 
the interrupt handler is activated, while no other instruction bundle of the 
interrupted application should be loaded whilst the interrupt service handler is 
active. In other words, it may happen that a particular instruction group (that is 
the group of instructions possibly executed in parallel) will be partitioned into 
subgroups executed ”before” and ”after” the interrupt occurred, hence not in 
parallel as intended originally. On the other hand, a positive outcome is that at 
the interrupt handler execution time it is possible to easily identify what the IP 
(instruction pointer) value is for the instruction bundle to be executed next20 [IA-
64].  

From the software perspective, the IA-64 CPU defines 68 different 
interrupts with their respective interrupt service code located in the 32kB 
memory block at a location designated by the iva register. Out of these 
interrupts, the first twenty interrupt handlers have pre-allocated space for 64 
bundles (1042 bytes), while the remaining 48 handlers can use up to 16 bundles 
(256 bytes) for immediate interrupt serving. Any other longer execution 
sequences have to be implemented using code branching as necessary. 

                                                 
20 In contrast, if the addressed unit would be an individual instruction instead of the 

whole instruction bundle, it might easily occur that the next instruction executed ‘after’ the 

interrupt, is physically located in the middle of its respective bundle. Naturally, it would be 

quite a difficult task to “explain” this to the CPU some way. 
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Table 3.2: Interrupts and Exceptions on IA-64  
 
As seen in Table 3.2, not all possible vectors are defined at this point. 

Therefore, the corresponding locations in the IVT (Interrupt Vector Table) are 
required to be left empty in current OS implementations. The other issue of 
particular interest is the fact that the External Interrupts (index 12) are all 
propagated via the same interrupt handler. This is clearly a better solution 
compared to the IA-32 approach, where the Exception and IRQ vectors are 
somewhat mixed, which often makes it difficult to identify what the real event 
initiator was. In contrast, in the case of the IA-64 platform, whenever the 
interrupt #12 occurs, the only thing to do is to query the IRQ controller about 
the actual event source identification, and to act accordingly. Furthermore, 
using the same interrupt handler for all external events makes it easier to 
implement the kernel-level synchronization if necessary. 

 
Propagating the External Interrupts 
The way of handling external interrupts on IA-64 platforms is quite similar to 
the IA-32 SMP approach described in Section 3.1.5, that is, using the APIC 
architecture in combination with a shared memory block. Only in this case are 
the used integrated circuits denoted as “streamlined”, resulting into the new 
names ‘LSAPIC’ and ‘IO-SAPIC’ respectively. On the other hand, what makes a 
difference is that the IA-64 processors do not provide traditional ‘IRQ’ pins as 
there are no legacy reasons for that.  

# Offset Name 
0 0x0000 VHPT Translation 
1 0x0400 Instruction TLB 
2 0x0800 Data TLB 
3 0x0c00 Alternate Instr. TLB 
4 0x1000 Alternate Data TLB 
5 0x1400 Data Nested TLB 
6 0x1800 Instruction Key Miss 
7 0x1c00 Data Key Miss 
8 0x2000 Dirty-Bit 
9 0x2400 Instr. Access-Bit 
10 0x2800 Data Access-Bit 
11 0x2c00 Break Instruction 
12 0x3000 External Interrupt 
20 0x5000 Page Not Present 
21 0x5100 Key Permission 
22 0x5200 Instr. Access Rights 

# Offset Name 
23 0x5300 Data Access Rights 
24 0x5400 General Exception 
25 0x5500 Disabled FP-Register 
26 0x5600 NaT Consumption  
27 0x5700 Speculation vector 
29 0x5900 Debug vector    
30 0x5a00 Unaligned Reference  
31 0x5b00 Unsupported Data Ref. 
32 0x5c00 Floating-point Fault 
33 0x5d00 Floating-point Trap 
34 0x5e00 Lower-Priv.Transfer 
35 0x5f00 Taken Branch Trap 
36 0x6000 Single Step Trap   
45 0x6900 IA-32 Exception   
46 0x6a00 IA-32 Intercept 
47 0x6b00 IA-32 Interrupt   
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3.3.6. Summary 
As demonstrated in the previous chapters, the IA-64 architecture brings several 
advanced features. Besides those intended for the “programmer’s convenience” 
(e.g. RSE), the fact that a chip-level scalability (in terms of internal execution 
unit quantities) is explicitly included in the EPIC concept makes it theoretically 
possible to choose (and pay for) different CPU models according to the 
expected system load. Yet, the question is, whether a non-oriented customer 
can really catch the point and act accordingly, especially when so far the 
messages and myths around IA-64 CPUs are rather high-flying. Furthermore, 
no miracles should be expected when a non-native code (like IA-32 or PA-RISC 
programs) is to be executed, as these applications can barely make any use of 
the IA-64 architectural enhancements. On the other hand, it is fair to say that 
the IA-64 architecture is ready to be used in SMP environment, simply because 
it’s been designed for that purpose. 



 44 

4. The performance insight 
So far, both the IA-32 and IA-64 CPU families were described mainly with 
focus on the CPU internal properties, architecture and the programming model. 
As this description is only a part of the whole, let’s now have a closer look at 
the surrounding components directly affecting the overall system performance. 

As there exist plenty of CPUs across the entire Intel portfolio, for the 
purpose of this study we will restrict our scope to the latest CPU models 
intended for the server and workstation design. Namely these are: 

• Pentium III, 
• Pentium III Xeon, 
• Pentium 4, 
• Intel Xeon, 
• Itanium, and 
• Itanium 2 (McKinley). 

 
Furthermore, should there exist several alternatives within each family (e.g. 

various clock rates and cache sizes), let’s take the most advanced product into 
consideration, rather than exploring in-depth each and every alternative. 

4.1. The Core CPU clock rate 
The CPU ‘core speed’ is often a somewhat overloaded term. Even though it 
surely relates to the circuit-level technological maturity of a given processor, 
what is often cast aside is the fact that the main motivation for pushing the 
system clock frequency higher is, in many cases, not of actual real benefit for 
the user, but rather the complexity of the execution engine on itself.  

The fundamental reason for maintaining a high frequency timing signal 
inside CPU is for the smooth instruction and data flow between all involved 
internal execution units. As each of them might require a different number of 
clock cycles to process the incoming data21, in order to maintain a sustained and 
harmonized event flow across the entire CPU, it makes sense to drive each of the 
units at different speeds. In practice then, a common high-speed core clock signal 
is provided to all of them, and it is up to the unit in question to derive its own 
internal timing signal with respect to the complexity of the action to be 
performed. 

                                                 
21 Storing an integer value into internal registers can be achieved within fewer clock 

cycles comparing to a float-point multiplication, for instance. 
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Dividing the clock signal is certainly an easier operation than implementing 
high-speed data buffers (or latch registers) between individual units whenever 
necessary. That’s why a high frequency clock signal is used. On the other hand, 
from the user perspective, the actual CPU core clock rate is a rather minor factor, 
since it doesn’t necessarily relate to the achievable processor data throughput. 
Besides, higher core frequencies mean higher power consumption, higher heat 
dissipation and often also a higher level of sensitivity on interfering electrical 
signals outside the CPU itself. Therefore, the frequency figures should be 
always read and used with certain cautions. 

4.2. System bus technical parameters 
In contrary to the CPU clock rate, the design and quality of the system bus is in 
direct connection to the achievable data throughput. 

As with any parallel bus, the idea is that with every clock cycle as many 
data bits can be transmitted, as many data wires are present. For example, a 
CPU with 64-bit system bus can transmit eight bytes (64 bits) of information per 
each clock cycle, and so on. Unfortunately, the bus clock rate cannot scale in an 
unlimited way, because what we are talking about is a high-frequency signal 
distributed over copper wires. This, in order to be delivered successfully, must 
comply with certain modulation requirements and quality standards of the 
underlying wiring. Most remarkably then, the maximal bus length is often 
limited to relatively short distances. 

In contemporary Intel CPU implementations, the system bus clock signal is 
often rated between 100 to 133MHz. This figure doesn’t, however, necessarily 
indicate the final symbol frequency, as the actual signal encoding plays an 
important role as well. For instance, by using the so-called ‘quad-pumped physical 
encoding schema’, many of the Intel processors achieve as much as four 
information bits transferred during each clock cycle. Table 4.1 offers a quick 
summary of the studied CPU models. 

 
 
 
 
 
 
 
 
 

Table 4.1: System Bus Technical Parameters 
 

     System bus parameters 
Model   width f(clk/data)  transfer N-way 
Pentium III  64bit  100/400MHz 3.2 GB/s 2 CPUs 
Pentium III Xeon 64bit  133/533MHz 4.3 GB/s 2 CPUs 
Pentium 4   64bit  133/533MHz 4.3 GB/s 2 CPUs 
Intel Xeon DP  64bit  133/533MHz 4.3 GB/s 2 CPUs 
Intel Xeon MP  64bit  100/400MHz 3.2 GB/s 32+ CPUs 
Itanium   128bit 266/266MHz 2.1 GB/s 512 CPUs 
Itanium 2   128bit 100/400MHz 6.4 GB/s 4 CPUs 
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As seen in Table 4.1, even though positioned as the leading technology of 
today, the first Itanium chip is clearly an evaluation release only, since it 
doesn’t implement the quad-pumped data-encoding model. On the other hand, 
the supported system scalability is remarkable22 and generally unmatched. 

With regards to Itanium2, this product seems to be rather mass-market 
targeted. Supporting up to four CPUs is a quite natural choice, considering that 
at the beginning, servers with rather modest number of CPUs are to be 
expected. 

Regarding the overall system bus throughput, the Itanium 2 processor is 
still slightly behind the other products, however, this might be only a short-
term issue. On the other hand, the 128-bit system bus will definitely make the 
IA-64 CPUs a leader in massive memory-based operations like statistical and 
scientific calculations in a long run. Yet, the performance gain doesn’t have to 
be the same in the case of the device I/O transactions, since not all the 
peripherals might be necessarily ready for 128bit operations for a long time. 

4.3. On-chip cache memory 
As shown in Table 3.1, Intel processors are delivered with different amounts of 
the on-chip cache memory. This memory represents an extremely fast CPU-
local storage, used for storing frequently accessed data and instructions. This 
happens transparently from the programmer’s perspective. 

Server-type CPUs are typically equipped with 512kB of cache memory, or 
more. Since the on-chip cache is an associative type of memory, basically all the 
information needs to be indexed and internally organized, which increases 
requirements on higher core clock rates and/or increased intelligence on the 
circuit-design level. Therefore, designing a solid cache subsystem is a 
challenging task, and the cache size increments are rather modest, comparing to 
other CPU parameters and their growth.  

Even with a small amount of cache, however, the performance gains are 
tremendous. Most remarkably this is valid for read-only types of memory 
objects like static constants and the instruction code. As these don’t typically 
change with time, the CPU in charge can keep them in a local cache, and in this 
way eliminate unnecessary memory access cycles. The gained system bus 
capacity can then be used for manipulating the production data instead. 

Ironically enough, the cache memory can also be contra-productive in 
certain situations. In order to maintain the cache-to-memory coherence, with 
                                                 

22 Note, however, that typically only up to four CPUs can reside on a single bus. Systems 

with more than four CPUs have to be physically divided into several groups (sometimes called 

‘cells’) with appropriate inter-bus bridging circuits in place. 
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the growing number of CPUs, the inter-CPU traffic increases as well. As this 
brings an additional data traffic for the system bus itself, in some cases the 
synchronization overhead might be to high and simply beyond acceptable 
limits. 

Evaluating various access patterns and consequent performance 
contributions of the cache subsystem might deserve a separate study and yet 
we might not necessarily hit the reality. Thus, in the real life we should perhaps 
follow the advice of those who are directly involved in CPU design, as well as 
maintain our own realistic view into expectable results. Facing the usual 
situation, a very safe-side estimate would be that with doubling the cache size 
the overall system performance increases about 30-50% on a light-I/O system23. 

4.4. Chipset design 
Intel CPUs are typically well documented, and practically anyone can use them 
in his/her design straight away. On the other hand, since there exist quite high 
requirements on the quality of the surrounding instrumentation, as a 
supplementary products Intel also offers the heavy-duty server and 
workstation infrastructure components commonly known as ‘chipsets’. 

As the name indicates, chipsets are groups of integrated circuits designed to 
work together and support a particular type of CPU. In the case of Intel-
manufactured chipsets, the typical chipset architecture follows the schema 
depicted in Figure 4.1: 

                                                 
23 The ‘light-I/O’ requirement is relevant in this case, because device I/O operations 

typically bypass the cache memory anyway. 
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Figure 4.1: Typical architecture of Intel chipsets 
 
As seen from the picture, components closely related to the CPUs are 

physically separated from the “real” I/O devices. This brings advantages that 
both the CPU and the I/O subsystems can be scaled independently from each 
other, namely not affecting electrical conditions on the underlying buses found 
on either side. In addition, the participating hubs may also take a 
supplementary role, like ECC checking or device co-ordination at the time of 
booting. On the other hand, by definition those hubs should be transparent 
(that is, not performing any data or address transformations) and designed 
with minimal latency. In other words, even though very important for the SMP 
design, data hubs are practically invisible from the CPU perspective24. 

4.5. Summary 
In Chapter 4 the CPU-external aspects in relation to the SMP platform design 
were outlined. As perhaps expectable, a great emphasis is put on the signal-
level compatibility, and a transparent and non-blocking design of the 
intermediate signal switching. On the other hand, the core CPU clock rate, for 
instance, has been found to be a “relative technology improvement indicator” 
within a given processor family, rather than a reference quality figure across 
the entire portfolio. 

A somewhat problematic issue is the justification of the used cache sizes. 
Even though of a great influence in uni-processor designs, a certain level of 
balance has to be established should a massive MP system be designed. 
                                                 

24 Examples of real chipset schematics are available in section “Appendices”. 
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Considering that there are typically only up to four CPUs attached to the same 
system bus, with the help from the operating system, one performance 
improving solution is to distribute tasks between individual CPUs so that the 
process synchronization traffic seldom crosses the inter-bus interface. 
Supplementary to that, technologies like Multi-Threading might be an 
interesting direction, since in this case the number of simultaneously executed 
threads increases, while the synchronization traffic between individual physical 
CPUs grows only when caused by the executed code. As one of the possible 
consequences, in the long run we might expect MTT CPUs with not only two, 
but possibly even more logical CPUs on a single board25. 
  

                                                 
25 The limiting factor in this case is the execution engine capacity as well as the system 

bus bandwidth. 
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5. Summary and conclusions 
This thesis work started with the initial question of whether or not Intel has 
reached the technological maturity and concept quality required for building 
SMP types of computing systems. 

As a conclusion, it is fair to say that the company in question has actually 
been in charge of SMP design for several years already, which, combined with 
the latest improvements in the integrated circuit arena, has helped them to 
position their products as architectural and quality leader on the market. As a 
clear affirmative indication of this fact, the world today is breathlessly awaiting 
the new Itanium family of CPUs as the presumed next generation computing 
platform. To prove and thoroughly evaluate the IA-64 concept (including the 
business aspects) might, however, take more time than any other technology 
before, because in some cases the IA-64 processors might be simply “too good” 
(and consequently also too expensive) to be used in a massive way. Based on 
the fact outlined in this study, Figure 5.1 presents the likely expectable usage of 
individual Intel CPU models: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: Logical positioning of Intel-manufactured CPUs 
 
As seen above, there is no clear winner whatsoever. Furthermore, either of 

the CPUs can actually be used the same way in an UP as well as in an MP/SMP 
environment. The final choice is therefore a matter of the expected load, the 
type of the application to be operated, and naturally also the CPU price. 
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Appendices 

Appendix A: Intel E8870 chipset (for Itanium 2) 
 

 
 

 

Appendix B: Intel 850E chipset (for Pentium 4) 
 

 
 


