
Evaluating application generators for
multi-platform mobile application development

Ville Pylkki

University of Tampere

School of Information Sciences

Computer Science

M.Sc. thesis

Supervisor: Zheying Zhang

August 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250122824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Tampere

School of Information Sciences

Ville Pylkki: Evaluating application generators for multi-platform mobile appli-
cation development

M.Sc. thesis, 73 pages

August 2013

Abstract

The mobile application development scene is a difficult target for developers due
to variation in development and distribution methods. Native development re-
quires more effort, but has the best performance and a native look and feel for
the user interface. Web-based solutions are easier to develop and distribute to
several platforms, but suffer from the lack of access to device features. As a result,
several tools have been created to bridge this gap.

Mobile application generators offer a way to access functionality that is native to a
device, while the development is done using common web technologies. Choosing
the most suitable generator could be difficult, due to issues in mobile development
and differences between the tools. The issues in mobile application development
include the lack of asset portability between mobile operating systems and multi-
ple development technologies being used. Therefore, a set of metrics and criteria
were proposed to evaluate mobile application generators, based on previous re-
search and identified characteristics of these tools.

Information about the tools was hard to find. Nevertheless, many differences in
provided functionality were noted, even within a single generator. Some mobile
operating systems had better support, and differences in implementation could
interfere with using the same assets for several target platforms. Three publicly
available mobile application generators were evaluated using the proposed metrics
and criteria. They turned out to be rather similar from the usage perspective,
all capable of generating relatively simple multi-platform applications from user-
created source code. Depending on whether faster multi-platform development
or more efficient applications with a native look and feel are preferred, it is up to
the developer to decide the development method.

Contents

1 Introduction . 1
1.1 Separated platforms . 1
1.2 Research motivation, goals and methods 2

2 Mobile application development methods and issues with multiple
platforms . 5
2.1 Development tools and application distribution 5
2.2 Issues in mobile application development 7

2.2.1 Differences in hardware 7
2.2.2 Challenges for the developers 8
2.2.3 Possible solutions 10

2.3 Application types . 11
2.3.1 Native applications 11
2.3.2 Web-based applications 13
2.3.3 Hybrid applications 15

3 Software reuse . 17
3.1 Why reuse? . 17
3.2 Reuse methods . 18

3.2.1 Components and reuse libraries 18
3.2.2 Software product lines 20

3.3 Reuse issues . 21
4 Application generators . 23

4.1 Application generators in general 23
4.2 Mobile application generators 27

5 Metrics and criteria for mobile application generators 32
5.1 Previous research . 32

5.1.1 Software component evaluation 33
5.1.2 Component information 39
5.1.3 Evaluating mobile application types and approaches 40

5.2 Suggested metrics and criteria 41
5.2.1 Entity, user group and characteristics 41
5.2.2 Measurable concepts and attributes 44
5.2.3 Metrics and criteria 48

5.3 Validation of the metrics and criteria 52
6 Evaluation of existing generators 54

6.1 Appcelerator Titanium . 54

6.2 MoSync . 57
6.3 PhoneGap . 60

7 Conclusions . 63
7.1 Findings . 63
7.2 Future research and limitations 67

References . 69

ii

1 Introduction

Application stores are a common feature of modern smartphones. Since the
launch of Apple’s App Store1 and Google Play2 (previously known as Android
Market) in 2008, the number of available applications has steadily risen. App
Store has over 800 000 applications available, with a total of more than 40 billion
downloads done by January 2013 [Apple, 2013]. Google Play also has more than
800 000 applications by June 20133, with a total of over 48 billion downloads
in May 20134. There are several other application stores for mobile devices, as
different operating systems cannot run the same version of an application, or be-
cause the operating system providers want to increase their profits by controlling
their own store.

1.1 Separated platforms

Different mobile operating systems have their own methods and rules for appli-
cation development, distribution and download. The device-centric model is a
common way for a user to access new applications [Hammershøj et al., 2010].
In this model the device connects directly to the application store provided by
the operating system developers, and a user can install new software with a few
presses of a button. This kind of access to application stores has been made possi-
ble by the advancement of wireless data transfer technologies, which are available
and affordable for the general public.

Some of the operating systems have limitations for application downloads, though.
The top two operating systems at the moment, i.e. iOS by Apple and Android
by Google [Gartner report, 2013], have very different approaches to distribution
and development. For example, Apple limits the acquisition of new software to
their own application store, while devices running the Android operating system
can download applications from any source. In addition to stores provided by
operating system creators, there are also several third-party stores. Development

1https://itunes.apple.com/us/genre/ios/id36?mt=8
2https://play.google.com/store/apps
3http://www.rssphone.com/google-play-store-800000-apps-and-overtake-apple-
appstore/

4http://www.androidauthority.com/google-io-android-activations-210036/

https://itunes.apple.com/us/genre/ios/id36?mt=8
https://play.google.com/store/apps
http://www.rssphone.com/google-play-store-800000-apps-and-overtake-apple-appstore/
http://www.rssphone.com/google-play-store-800000-apps-and-overtake-apple-appstore/
http://www.androidauthority.com/google-io-android-activations-210036/

2

for the iOS is also limited to Apple products, as the software development kit
(SDK) is only provided for the company’s own OS X. Applications must also be
packaged on an Apple computer prior to submitting them. Android development
tools are available for the Linux, OS X and Windows operating systems. Both
approaches have their benefits and drawbacks.

Developing and maintaining mobile applications has become easier from one per-
spective, but more challenging from another. Operating system creators and
device manufacturers provide extensive information on how to access the features
of the device through application programming interfaces (APIs), while third-
party frameworks and components make it easy to integrate additional features
into the application. The devices themselves have evolved and have different ad-
vanced features, such as cameras, GPS receivers and motion sensors, and they
are able to display 3D graphics on high-resolution displays.

Developing an application for one operating system does not mean it is ready to
be distributed on the others. Different operating systems use different application
packages for their native applications, which means that an application will not
run on other systems. By a native application, we mean an application designed
and implemented for a specific operating system. Application developers have
to take the variation between device models and their operating systems into
account and adapt their products accordingly. At the same time optimization
should be taken into account to ensure that the application runs smoothly and
does not drain the device battery more than necessary.

1.2 Research motivation, goals and methods

To address the problems caused by the large number of differences between de-
vice features and mobile operating systems, several mobile application generators
have been developed by different organizations. The goal of these generators is
to limit the development process to a selected programming language (or a set
of languages) so that the created assets can be reused when developing an ap-
plication for multiple target operating systems. In general, the created source
code is then combined with necessary tool-specific additions and packaged in a
container which is native to the target operating system. Some of them work by
translating and packaging applications into native (or native-like) applications.
Other, more simple generators, modify the user interface, usually a web page, to

3

fit the screen of a mobile device. Each type has its own specific capabilities and
limitations.

While there is a large body of research on software reuse, including application
generators (for example by Batory [2004], Biggerstaff [1998], and Smaragdakis
and Batory [2000]), less research specifically on mobile application generators is
available, the found research mostly being whitepapers from generator providers
or informal tests by individuals. The goal of this research is to find out if the
existing generators can address the problem caused by the splintered develop-
ment methods and environments. To this end, some method of measuring mobile
application generators in this regard is needed. Measuring reuse has been the tar-
get of some research (for example Her et al. [2007] and Washizaki et al. [2003]),
but no research was found regarding application generator suitability in certain
situations.

These issues are investigated with the following two research questions:

• Can the reuse of assets created using mobile application generators address
the challenges of developing for multiple platforms?

• How to evaluate mobile application generator suitability for reusing assets
in multi-platform development?

This study relies on previous research done on related topics. First, the main
areas of the research, such as mobile application development, software reuse and
application generators are discussed. Based on existing literature and suitable
characteristics, we try to identify the problems with evaluating mobile applica-
tion generators and suggest a set of metrics and criteria for such evaluation. The
first research question will be discussed by identifying challenges in mobile devel-
opment and analyzing existing generators. The second question will be discussed
by discerning common features of mobile application generators, exploring previ-
ous research on reuse and combining these to form a set of criteria that can be
used in evaluation of mobile application generators.

The research is structured in the following manner. After this introduction, the
second chapter discusses the different methods of developing multi-platform mo-
bile applications and the related issues. The third chapter explains the basics
behind software reuse, which is further discussed with a focus on application
generators in the fourth chapter. The fifth chapter explores previous research
on reuse metrics and proposes a set of metrics and criteria, which are adapted

4

for evaluation of the selected mobile application generators in the sixth chapter.
The final chapter summarizes the findings and suggests further research direc-
tions.

2 Mobile application development methods

and issues with multiple platforms

The mobile application scene has gone through significant changes within a few
years. Applications are now an important part of the mobile experience, and can
even be the factor that makes users choose one device over another. With the
introduction of smartphones, developers have been given more freedom in mobile
application development. There are several target platforms, application formats,
development languages and tools to choose from.

2.1 Development tools and application distribution

All the major mobile operating systems have their own application stores. An-
droid has Google Play, iOS has App Store, BlackBerry has App World1 and
Windows Phone has Windows Phone Store2. In addition, there are third-party
stores, such as the Amazon Appstore for Android3.

None of the operating systems can run applications from another manufacturer’s
store, due to restrictions in application acquisition, application packaging meth-
ods, or several other limitations caused by differences in both software and hard-
ware. This forces application developers to choose which platforms to support.
The exceptions to this rule are BlackBerry’s Android Runtime4, which allows de-
velopers to repackage the software developed for a specific version of Android and
publish it for BlackBerry devices. The upcoming Sailfish OS by Jolla will also
support easy repackaging, since it can run most Android applications without
any changes [SailfishOS wiki, 2013].

When releasing an application for multiple platforms, developers have to use
multiple application publishing portals. Different portals have their benefits and
drawbacks, which a developer has to weigh when choosing the ones to support.
All portals have their own rules for accepting applications in their catalogs.

1http://appworld.blackberry.com/webstore/?
2http://www.windowsphone.com/en-us/store
3http://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
4http://developer.blackberry.com/android/

http://appworld.blackberry.com/webstore/?
http://www.windowsphone.com/en-us/store
http://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
http://developer.blackberry.com/android/

6

When developing applications, the developers are offered a set of default tools for
a specific operating system. For Android there is the Eclipse integrated develop-
ment environment (IDE) with an Android Development Tools plugin5, and Java is
the default programming language. The Android SDK is also available separately,
giving developers the chance to use another IDE. The Android SDK is available
for all the common operating systems, such as Windows, Linux and OS X. For
iOS development, the XCode IDE along with iOS development tools are available
only for some versions of the OS X operating system6. This requires developers
to use virtual machines or third-party development tools on other operating sys-
tems, which might not create native iOS applications. Tools not provided by
Apple might also use programming languages other than Objective-C, which is
the default language for applications running on Apple devices. Developing for
Windows Phone is restricted in the same way. Tools are only provided for the
Windows operating system, the IDE being Visual Studio and the programming
language C#. BlackBerry takes a different approach, selecting the IDE based
on the programming language the developer chooses. All smartphone operating
systems are capable of running applications made with different programming
languages, but one is often preferred and suggested as the default development
language by the operating system provider. BlackBerry SDK is used with a suit-
able IDE, which is usually based on Eclipse. Java, C and C++ among a few
other options are promoted on their web pages as the programming languages for
BlackBerry application development.

It is generally agreed that developers have many options to choose from, when it
comes to development languages [Hammershøj et al., 2010, Gavalas & Economou,
2011]. Besides the languages promoted by the operating system providers, there
are several third-party options as well. Java ME and Qt used to be common in
mobile development before smartphones became popular. Both are still used on
mobile devices, though, since they support portability [Java documentation, 2013,
Qt documentation, 2013]. As with all third-party frameworks, they might not be
able to access all the features of the platform they are running on, and they cannot
be expected to run on all operating systems. Gavalas and Economou [2011] note
that at least Java ME requires modified versions of an application to be created
in order to run on different platforms, reducing the efficiency of reuse. They also

5http://developer.android.com/tools/sdk/eclipse-adt.html
6https://developer.apple.com/downloads/index.action# (requires login)

http://developer.android.com/tools/sdk/eclipse-adt.html
https://developer.apple.com/downloads/index.action#

7

mention that ultimately the choice of language is dependent on the platform and
the requirements set for the applications.

Holzer and Ondrus [2011] state in their article that developers are attracted by
platforms with a large user base, while users are attracted to platforms supported
by a large number of developers. This can be a problem for those platform
developers who do not manage to attract either developers or users. It could be
helped slightly by making high quality development tools, which might increase
developers’ interest towards the platform.

2.2 Issues in mobile application development

Mobile applications differ from desktop applications in some ways. There are
limitations caused mainly by hardware, but application developers also have the
opportunity to use functionality that is not normally present in desktop comput-
ers.

2.2.1 Differences in hardware

The most obvious differences between mobile and desktop application develop-
ment exist due to the limitations set by portable devices. Battery life is always
an issue and has been made more prominent by modern smartphones with more
powerful processors, better displays, and more memory. Moore’s Law, which
states that the number of transistors on integrated circuits doubles every two
years, making them more efficient, seems more or less true when it comes to the
capabilities of mobile devices, with the exception of their batteries. Although
there have been improvements in battery technology, these improvements have
not been able to keep up with the advancements of other components. The im-
provements made are also often negated by the fact that device manufacturers
choose to use the advancement in battery technologies to create smaller batteries
in order to get thinner devices. Admittedly, the advances in component tech-
nologies have made mobile device components more energy-efficient, but not as
much as to significantly reduce the energy consumption caused by applications
with high processing requirements. Other special considerations include online
connectivity and performance, which are dependent on the software and hardware
installed in the device.

8

Due to the large number of different devices, there is also a large number of
hardware configurations. Developers can utilize sensors and input methods avail-
able on the device. These physical aspects should be taken into account when
choosing a target platform. Carefully selecting the target platforms helps the
developer to make high quality applications on all of them [Abrahamsson et al.,
2004]. Therefore, testing should not be limited only to emulators, which are read-
ily provided by operating system creators, but it should also happen on actual
devices, preferably several different ones, to provide more accurate information
[Wasserman, 2010]. Testing is identified as an important factor and is one of the
main tasks in the Mobile-D method generated by Abrahamsson et al. [2004] to
achieve deployment on multiple platforms. Prototypes resembling the final prod-
uct as much as possible are suggested by de Sá et al. [2008] to help in designing
applications for mobile platforms. They also say that tests should be performed
in settings and situations where the applications are going to be used, instead of
relying on virtual testing environments.

2.2.2 Challenges for the developers

Having several device and operating system providers increases competition and
pushes them to innovate, and it gives application developers the chance to choose
the platform with the features that they want and need. However, the different
combinations of hardware and software are a source of difficulties for the de-
velopers [Mikkonen & Taivalsaari, 2011]. Studies by Hammershøj et al. [2010],
Heitkötter et al. [2012], Holzer and Ondrus [2011], and König-Ries [2009] have all
identified this problem. Developing for several platforms takes more resources,
which smaller companies might not have. A survey conducted by Wasserman
[2010] revealed that most of the mobile application development teams had only
one or two members in them. On the other hand, the average application size was
also relatively small. It is not enough for an application to run on a specific oper-
ating system, it also has to run on different versions of the system. This adds to
the difficulties in optimizing performance, which, according to Wasserman [2010],
is a problem. For example, out of all the Android operating system versions
currently in use, there are three versions with a share of 25% or more each, as
shown in Table 2.1. Nevertheless, optimization should be done on all targeted
platforms, despite being expensive and resource consuming [Holzer & Ondrus,
2011], otherwise possible incompatibility problems might be encountered. Abra-

9

hamsson et al. [2004] and Heitkötter et al. [2012] also note that the hardware
and software used on mobile devices are evolving at a fast pace, which makes it
difficult for developers to keep up with all the changes when targeting multiple
systems. The authors mention that platform-specific skills are needed to cope
with these changes.

Table 2.1: Market shares of different versions of Android [Android report, 2013].

Online portals for applications also mean worldwide markets, which requires de-
velopers to internationalize and localize their applications, causing even more
fragmentation, even when an application is released on a single operating system
[Mikkonen & Taivalsaari, 2011]. Developers wanting to maximize the number
of potential users for their application have no choice but to develop for several
platforms. [Heitkötter et al., 2012]

Wasserman [2010] notes that different operating systems have their own look and
feel, which should be preserved in applications, if possible, in order not to disori-
ent the users. He continues that interface components and input methods from
the operating system should be used in an application as well, since style guides,
recommendations and best practices are provided and based on the research and
experience from the operating system providers. For example Android7 and Ap-
ple8 provide such documentation.

7http://developer.android.com/guide/topics/ui/index.html
8https://developer.apple.com/library/ios/navigation/#section=Topics&topic=
User%20Experience

http://developer.android.com/guide/topics/ui/index.html
https://developer.apple.com/library/ios/navigation/#section=Topics&topic=User%20Experience
https://developer.apple.com/library/ios/navigation/#section=Topics&topic=User%20Experience

10

2.2.3 Possible solutions

To conclude, mobile application development issues originate from the fragmented
operating systems and their different development and distribution methods. In
addition to the operating system-specific application markets, some third-party
markets also exist. However, some operating systems limit the sources where
applications can be downloaded, and they set restrictions for using different de-
velopment environments for native applications. From the users’ perspective these
limitations can simplify matters and increase general usability, but on the other
hand they limit the possibilities for the developers. Although developing for a
single operating system keeps the process simpler, those wanting a larger audi-
ence need to make their applications available for as many operating systems as
possible. Developers have to take into account not only the differences between
operating systems but also the different versions of them. The differences in hard-
ware only add to this. While some features, such as the camera, are installed on
nearly all mobile devices nowadays, Wi-Fi and near field communication (NFC)
chips might be excluded, especially on budget devices. Developers also have to
take into account different screen sizes, user interface components and interaction
methods.

According to Hammershøj et al. [2010], Android was developed to answer the
fragmented hardware problem by providing an open source operating system that
any mobile device can run, making the development platform unified while being
hardware-independent. The article also mentions that the vision was to create the
system in such a way that applications could be run online in cloud services. This
would make it easy for developers to create web-based applications, making the
applications highly portable, since the hardware restrictions would not become as
large an issue. Gavalas and Economou [2011] say that the software architecture
of Android promotes reuse, which would help developers to create applications
faster and cheaper with available libraries and components. The same authors
mention, however, that an application may have difficulties in running on different
versions of Android. This is problematic, since several versions are still in active
use. Holzer and Ondrus [2011] mention that open source in general promotes
reuse. The shorter time-to-market achieved through reuse can be important for
application developers, as it can provide a competitive edge [Abrahamsson et al.,
2004]. Nevertheless, Android has managed to become the most popular mobile
operating system, as is seen in Table 2.2, and is used on devices such as phones

11

and tablets, which come from a number of different manufacturers and in different
price ranges.

Table 2.2: Market shares of different mobile operating systems [Gartner report,
2013].

Wasserman [2010] points out that while most of the mobile applications are small
and used for entertainment, business-critical applications are more complex and
need good development practices to ensure quality. He also mentions that tradi-
tional development practices can often be used in mobile development, but there
are some areas that need special attention. Gavalas and Economou [2011] state
that a developer cannot easily write an application and publish it for several plat-
forms. They suggest standardization and stricter enforcement of these standards
to combat this issue.

2.3 Application types

One of the key choices a developer has to make is selecting the “form” of the
application. Mobile applications can be roughly divided into three categories,
i.e. native, web-based and hybrid. When deciding to create an application,
the developer has to weigh the differences between them and choose the most
appropriate one [Huy & vanThanh, 2012].

2.3.1 Native applications

Native applications are such applications that are installed and run on the device
itself. The developer has better control over the distribution, and native appli-

12

cations are therefore easier to monetize, as they are usually distributed through
controlled portals [Mikkonen & Taivalsaari, 2011]. From the developers’ perspec-
tive, one of the main reasons to develop a native application is better performance
[Charland & LeRoux, 2011]. Since the native API is used, there are no extra lay-
ers between the application and the operating system. The native API is often
a product of years of development by domain experts with optimization knowl-
edge. Especially applications requiring a substantial portion of processing power,
such as games containing complex graphics, should be native applications. The
native API also grants direct access to all features available for that operating
system [Mikkonen & Taivalsaari, 2011]. These APIs are thoroughly documented
by operating system providers. Charland and LeRoux [2011] say that a suc-
cessful application takes into account all the given possibilities for interaction.
Different methods of interaction are a part of the user experience. User expe-
rience is an important factor for application users [Charland & LeRoux, 2011].
Huy and vanThanh [2012] say that the best user experience is gained through
native applications. With the native API, developers can create user interfaces
matching the default behavior of the operating system [Heitkötter et al., 2012,
Mikkonen & Taivalsaari, 2011].

However, native applications are always developed for a specific operating system
with the operating system-specific SDK [Heitkötter et al., 2012, Huy & vanThanh,
2012, Mikkonen & Taivalsaari, 2011]. Since a native application uses an API
specifically made for that operating system, the same application cannot be used
on another system without modifications. Charland and LeRoux [2011] address
the portability issues, and they note that native applications are expensive to
develop and maintain on several platforms. Native user interfaces need to be
customized for each operating system, as they are based on different APIs.

Different platforms require their own code base, and additional platforms to sup-
port mean more source code to maintain. Heitkötter et al. [2012], and Huy
and vanThanh [2012] also note this, saying that native applications require more
effort to create, especially when compared to web-based applications. This is
probably due to the advanced programming skills that are needed to use the
APIs effectively and correctly. Heitkötter et al. [2012] also mention that native
development technologies often have good support given by the operating system
provider. Successfully distributed native applications use product line manage-
ment methods to control the development [Mikkonen & Taivalsaari, 2011]. Tools

13

supporting the development, such as error reporting and distribution tools, facil-
itate the development process for multiple operating systems.

Native applications could be used, for example, in sport activity monitoring. Such
applications usually need access to a device’s motion sensor and GPS receiver,
while displaying route information on a map in real time. In addition to the data
coming from the phone’s own sensors, it is possible that the application needs
to process data coming from a heart rate monitor. The combination of needed
device features and processing power suggests that a native application should
be used in this case.

2.3.2 Web-based applications

Web-based applications have been proposed as a solution to the fragmented plat-
forms problem. Heitkötter et al. [2012] say that web-based applications are
essentially web pages optimized for mobile devices and provide a good starting
point for multi-platform development due to good browser support on all oper-
ating systems and the maturity of web standards. They also mention the ease of
development due to common and easily learnable technologies, making a fast start
possible. The authors note, however, that in case device-specific functionality or
application store distribution is required, some other solution is needed. While
native applications can be used to access information online, they still do their
processing on the user’s device [Huy & vanThanh, 2012]. According to Mikkonen
and Taivalsaari [2011], native applications with online access are nowadays the
most popular way of using online services. They also mention that using a native
application requires downloading and installing files, and later possibly updat-
ing them. This requires actions from the user, decreasing the user experience
slightly. Web-based applications, on the other hand, are deployed on servers and
accessed with the device’s web browser. Most—if not all—modern devices have
a web browser with the capability to handle HTML 5 pages. For this reason,
updates can often be handled on the server side, without any actions from the
user [Mikkonen & Taivalsaari, 2011].

Common technologies for web-based applications include HTML 5, CSS and
JavaScript. If the application does not require the use of advanced device features,
these commonly used and straightforward technologies might be preferred over
the ones used by native applications [Huy & vanThanh, 2012]. As the application

14

is running on a server, most of the application logic resides there, minimizing the
need for native source code specific to one operating system [Wasserman, 2010].
This means less source code to maintain and availability for all devices.

Due to remote processing, it is suitable to implement content delivering applica-
tions, such as blogs, as web-based applications [Huy & vanThanh, 2012]. When
complex information and continuous, real-time input and feedback are required,
web-based applications might not be suitable. Although Charland and LeRoux
[2011] mention that performance differences are noticeable only with processor-
heavy applications, they also note that native applications are faster than those
using JavaScript. However, the article mentions that since it is faster to write
the program logic for multiple platforms with web technologies, this is a sacrifice
the developers might be willing to make. Additionally, the authors note that
performance is not the only issue, but web-based applications are also subject
to slow connections and network problems. They cannot be distributed through
applications stores, making control over the distribution difficult.

According to Charland and LeRoux [2011], web-based applications cannot access
all the device features, since they have no access to the necessary APIs. The
authors mention that the lack of API access affects the user experience, since the
user interface elements native to that operating system cannot be accessed, but
HTML and CSS have to be used instead. The article also mentions that the easily
manageable source code is no consolation for the user, who expects native-like
controls. Therefore, the authors suggests that when native user interface ele-
ments are not available, the developers might want to modify the usage to match
the native controls. Although this requires taking into account the limitations
of the used techniques, as well as more skills in user interface design, controls
matching the native ones are entirely possible. Differences in interaction meth-
ods between applications made by different developers can cause fragmentation
even within one operating system [Mikkonen & Taivalsaari, 2011]. Therefore,
common practices and styles should be followed.

While bringing some advances to traditional web technologies, HTML 5 is still
not fully capable of executing the same functionality as native applications. It
is suggested, though, that eventually web technologies will catch up with native
ones, when it comes to performance [Charland & LeRoux, 2011, Huy & van-
Thanh, 2012]. Huy and vanThanh [2012] list some functionality, also mentioned
by Mikkonen and Taivalsaari [2011], which is added with HTML 5. This added

15

functionality includes audio and video playback, geolocation, offline mode, and a
simple local data storage. Such advances help in bridging the gap between native
and web-based applications. In addition to that, the World Wide Web Consor-
tium also has a working group that is developing an API for client devices, which
enables access to advanced device features [W3C documentation, 2013]. Cur-
rently web standards suffer from slow development times, though, making them
lag behind native applications.

A web-based application could be the best solution when data is collected from
different online sources and displayed to a user. For example, an application
that goes through specified blogs, summarizes information from their most recent
entries for easy previewing on a small display, and provides links to these entries,
can be implemented as a web-based application. The data shown on the mobile
device could be gathered and formatted remotely, and the links would take the
user to the actual site of the blog. Since there is no need for real-time processing
on the device, a web-based application is a working solution.

2.3.3 Hybrid applications

Development methods addressing the multi-platform development issues have
been created. The main challenge is to allow developers to target different plat-
forms while offering opportunities to utilize the advanced capabilities of smart-
phones [Heitkötter et al., 2012]. Hybrid applications aim to provide such a so-
lution. They are a mix of native and web-based applications, trying to offer the
benefits of both. Usually hybrid applications are implemented with web tech-
nologies, such as JavaScript, wrapped inside a native container providing access
to additional features, and run on the device. Another possibility is described
by Huy and vanThanh [2012], where the work the application does is divided in
three parts, a client, an application server, and a database. Every major operat-
ing system has its own API different from others, but they share the capability
of having their browser engines used to display web application content on the
screen, without any typical browser user interface elements [Charland & LeRoux,
2011]. This means that a hybrid application can use the deployment methods
used by native and web-based applications.

However, hybrid applications have their weaknesses too. Additional layers be-
tween the operating system and the application reduce performance, making them

16

less suitable for processor-heavy tasks. Depending on the frameworks and tools
used, the hybrid methodology can provide native-like user interfaces, but not in all
cases. Using a framework also requires a developer to learn the concepts behind
it. If the developer needs more functionality than what the current framework
provides, they might have to switch to another one, which they have to learn and
understand. Learning to use one framework can help in understanding others,
but specific functions are very rarely directly transferable.

When an organization that has several different mobile devices in use wants an
application that has to be portable, but also able to run on all devices and
access some device features, while requiring some real-time processing, a hybrid
application can be used. An example of such an application could be combining
calendar and contacts data with a map.

As we can note, all platforms have their advantages and drawbacks. Table 2.3
summarizes the areas where a specific development method is strong when com-
pared against the other methods, along with some other summarized information.
It should be noted, however, that the comparison only applies to the popular de-
velopment methods and especially hybrid applications can vary depending on the
tools and frameworks used to create them.

Table 2.3: A comparison between native, web-based and hybrid mobile applica-
tions.

3 Software reuse

Software reuse is thought of as a method to speed up the development process
by recycling previously created assets or even whole products. Reusable assets
are not limited to the source code, but can also include documentation or organi-
zational practices. Modern programming languages provide support for reusing
large portions of source code with classes, modules and frameworks. [Frakes &
Kang, 2005, Jha & O’Brien, 2009, Mili et al., 1995]

Although reuse often happens on the fly, for example by copying a snippet of
source code to other functions, systematic reuse helps developers reap the most
benefits [Hsieh & Tempero, 2006]. Therefore, if reuse is going to be used in an
organization, it should be planned ahead. Several ways to reuse assets exist,
some of which will be described in this chapter. Software frameworks, document
templates, asset libraries and design patterns are commonly used in case recurring
tasks are encountered.

3.1 Why reuse?

The main objective of reuse is to increase software quality and productivity,
thus increasing the potential profit an organization can make. As software sys-
tems become more complex, starting from scratch every time can take too much
resources to be feasible [Frakes & Kang, 2005, Jha & O’Brien, 2009]. Reuse
eliminates unnecessary re-implementation and reduces the time-to-market. The
benefits of reuse are often not realized immediately and setting up a reuse pro-
gram can extend the time-to-market of the first projects in the reuse program
[Biggerstaff, 1998]. This is due to the time and resources it takes to set up a
reuse program.

Reuse addresses the issue of scale by taking development from component level to
architecture level. Instead of defining functions at the component level, in theory
reuse allows developers to work closer to the system architecture level by con-
structing systems out of ready-made components [Mili et al., 1995]. Development
becomes adapting and fitting suitable components together to build the system,
not writing detailed application logic. Sztipanovits and Karsai [2002] agree that
composition of this kind and composition-based design are tools for managing
complexity, if the components have clearly defined, standardized interfaces and

18

connection methods. They say, however, that development on the architecture
level works only with small systems with a low number of components, or with
coarse-grained components with custom source code connecting them together.
Building large systems is more difficult, since customizable components (either
through parametrization of the components or selecting a specific implementation
method) can cause brittleness in the developed product.

3.2 Reuse methods

When creating reusable assets, the asset developer has to keep in mind the high
quality expected from them. The asset should also answer a common need and
be understandable. For the asset to answer a common need, its functionality
should be made more abstract, so that it is applicable in different situations. The
asset can be made more understandable with appropriate documentation. These
requirements are often difficult to achieve together, as increasing understandabil-
ity can require implementing less abstraction, while increased abstraction can
decrease understandability. Abstraction means that some domain-specific func-
tionality has to be re-implemented before the asset is used, which makes the
component less usable and possibly less understandable as well. Therefore, the
asset developer needs to find balance between the two. [Mili et al., 1995]

When the developer knows that the asset will be used by others, more effort
should be made to ensure that the asset does what is promised. Otherwise the
errors are reflected across all the systems using it. There is also the possibility
that the asset users report fixes or improvements to the original asset provider,
helping to further increase the quality of the asset. Studies have shown that defect
density in reused assets can be as much as eight times lower when compared to
assets developed using traditional methods [Biggerstaff, 1998]. There does not
seem to be a statistically significant difference in this regard between unchanged
assets and slightly modified assets [Biggerstaff, 1998, Frakes & Terry, 1996].

3.2.1 Components and reuse libraries

There are several approaches to reusing assets systematically. Biddle and Tem-
pero [1998] note that when an asset is developed, the developer should decide
whether or not to improve its reusability for future use. They also say that mod-

19

ifying an asset to be reusable rather than creating it as reusable from the start
takes more resources. Therefore, knowledge of potential reuse should be taken
into account even before the development starts. Washizaki et al. [2003] state
that reusability is an important attribute when comparing reusable components.
They define it as the degree at which a component can be reused, decreasing
the amount of needed implementation effort. The authors also say that there is
an issue with how users can detect the most reusable component from a pool of
several similar ones, which is why reusability needs to be measured in order to
use the components effectively.

Reusing existing assets is called the building blocks approach, and it is defined
as a method where assets are made and reused, the reuse done with or without
modification. A basic form of systematic reuse is a library consisting of assets.
The library is used to store, search, represent and assess its contents [Frakes &
Kang, 2005, Jha & O’Brien, 2009]. Although the concept of a reuse library is
simple, creating and maintaining one is more difficult. First of all, the library has
to provide some basic functionality, as the assets will only be reused if finding,
analyzing and integrating them takes less resources than developing a similar
component from scratch [Biddle & Tempero, 1998, Caldiera & Basili, 1991]. Mili
et al. [1995] mention that the costs of initial development, including the assets in
the library and the use of the component, are issues to consider, along with the
expected frequency of use. They conclude that tool support for finding, analyzing
and integrating assets is needed in order to make the process more efficient for the
eventual users. The cost of these activities can be measured [Caldiera & Basili,
1991]. This makes it easier to evaluate the library and can help in finding more
efficient methods of its usage.

Mili et al. [1995] state that reusing a component can be divided into black box
and white box reuse. In black box reuse the asset is used without modifications
or considerations to its inner workings, usually because the asset is in such a form
that its functionality cannot be accessed. In white box reuse, the functionality
can be accessed and the component is adapted to the new environment with the
necessary modifications. White box reuse must be weighed against creating the
component from scratch and is only cost-effective if the modifications are minor
or planned.

Component reliability, which is the degree to which a component can be trusted
to do what it is claimed to do, can be an issue. Therefore, components need thor-

20

ough documentation. However, some developers do not test integrated reusable
components separately, but only as a part of a product [Jha & O’Brien, 2009].
Understanding the functionality of a component becomes crucial, since develop-
ers need to be aware of the possibilities and limitations set by the component.
This is important in black box reuse, since the user cannot check the specifics
from the source code [Mili et al., 1995].

According to Bertoa and Vallecillo [2002], component-based software develop-
ment (CBSD) and commercial off-the-shelf (COTS) components have enabled
developers to move from application development to application assembly. As
with other reuse methods, the goal is to reduce effort, in this case by minimizing
the implementation work. Bertoa et al. [2003] also mention that CBSD helps in
multi-platform development, since it enables using components that have already
been tested and validated. The authors also note that a common rule in CBSD
is that if more than 20% of the component has to be altered to fit its new envi-
ronment, it is better to develop it from scratch. In multi-platform development,
developers need to create or modify components specific to a platform.

3.2.2 Software product lines

Software product lines are another common method of reuse. They are used
to create sets of products that are based on common assets. The amount of
assets that can be reused in the product line depends on the similarity of the end
products [Frakes & Kang, 2005, Jha & O’Brien, 2009]. According to Her et al.
[2007], the success of a product line depends on the reusability of available core
assets.

Experience in the product line is needed in order to identify functionality that can
be shared between products [Jha & O’Brien, 2009]. Such functionality can be in-
directly measured and identified by counting the number of times these functions
are used with in the product line. Functions found this way are good candidates
to be included in core assets, if it is assumed that often used components are also
easily reusable [Caldiera & Basili, 1991]. Domain models are one way to store
knowledge of the application domain and can help in identifying reuse opportuni-
ties [Mili et al., 1995]. In order to preserve the quality of core assets, a continuous
investment is needed, and the number of products in the product line should be
kept at a manageable level [Jha & O’Brien, 2009].

21

3.3 Reuse issues

Although a potentially powerful technology, reuse has never been counted among
the most interesting software topics. Aspects that hinder reuse include the lack of
maturity of software development as a scientific or engineering discipline, the lack
of training in software development and reuse, inadequate management structures
and practices, and the lack of tools to support reuse [Mili et al., 1995]. There is no
single working strategy for reuse due to the differences in programming languages,
development technologies, reuse technologies, the scale of components, breadth
of domain applicability, feature variability, performance requirements, shelf-life
of reuseable assets, the management structures and processes of a company, and
so forth [Biggerstaff, 1998].

Object-oriented languages have been promoted as a solution for easier reuse. Mili
et al. [1995] note, however, that object oriented languages merely enable reuse
but do not guarantee it, and if used wrongly, can lead to bad class structures,
awkward method names and unsafe inheritance, as well as unpredictable behavior.
Therefore, good and proven practices need to be followed. The authors also say
that well-documented assets give more information on opportunities for reuse,
without the user having to look at the actual source code. The lack of reusable
components also hampers reuse. Although the software market is large, reuse
libraries are not common or available to everyone [Caldiera & Basili, 1991].

Jha and O’Brien [2009] have identified some disadvantages with product lines.
The initial investment and maintenance costs are something organizations might
hesitate to pay, as there is a risk of getting no return. Another risk is the de-
pendencies that form between the domain and product engineering units. Reuse
might also reduce innovation, if the usage of old assets is encouraged. There
should be a balance between creating new, more efficient components when needed
and reusing old ones, when they still satisfy the requirements. Caldiera and Basili
[1991], and Mili et al. [1995] identified other problems, including the maintenance
costs of the development team and the asset library, as well as the higher devel-
opment costs of generalized assets due to their more complex nature.

Reusing assets does not in itself guarantee improvements. In order to be suc-
cessful, reuse needs planning and resources before any benefits are realized. Big-
gerstaff [1998] notes that domain effect, which is the amount of domain-specific
content in an asset, is the most important factor for reuse success. He also says

22

that the reuse technologies used, such as library infrastructure or generative meth-
ods, may be different between projects, but domain specific strategies increase
the chances of success due to greater gains in reuse. He notes, however, that the
technology does matter and is needed, but it does not ensure success, since it is
not the most important factor in reuse strategies, with technologies often being
interchangeable in terms of reuse effect. The author states that successful cases of
reuse include domain-specific, necessarily large components and that there is no
substitute for engineering domain content capturing the operational knowledge.
This implies that abstracting components can start being counterproductive at
some point, since it removes functionality meant for a specific domain, which has
to be re-implemented later.

4 Application generators

Application generators are tools that can create desired assets according to speci-
fications given to them. Besides reusing assets, application generators provide an
approach to concept reuse. The reusable knowledge is captured in an application
generator that can be programmed by domain experts using a domain-specific
language that supports application generation. Generators are mostly used in
well-defined domains. In theory, the output can be anything from an application
to specifications for another generator.

4.1 Application generators in general

When a more automated reuse process is desired, application generators can
be used. A well understood process can be automated [Smaragdakis & Batory,
2000]. Programming tasks that are too mundane for human developers to perform
can be given to application generators, which will generate generic source code.
An application generator is left to decide how to implement a problem that is
described to it.

When building an application generator, the domain knowledge plays a key role,
making application generators similar to core assets in product line engineering in
this regard. Cleaveland [1988] divides the development of an application generator
between a domain analyst, who specifies the requirements for the generator, and
a domain designer, who implements the generator based on the requirements.
A generator should decrease the amount of work a system designer has to do
by generating parts of the developed system. Mili et al. [1995] say that an
application is not always complete after a generator is used, which should be
taken into account in the building process. Parts that are made by the generator,
parts that are customized by hand, and interfaces between those two must be
identified. Software assets can have parts that exist in all products and parts
that vary, and these parts need to be identified and separated. Generating the
common parts of software assets is the main purpose of a generator. These
common parts need to be defined by the generator developer. The input method,
meaning the form that the input has, also has to be defined.

Cleaveland [1988] proposes some general requirements for application generators.
An application generator should be user-friendly, even so far that it is usable by a

24

nonprofessional programmer. Other factors specified by the author are reduction
in software errors, support for fast prototyping, and the ability to easily imple-
ment standardized interfaces. Some of these requirements can be met with the
used input languages, since they are easier to write when compared to traditional
programming languages. Mili et al. [1995] add increased productivity to the re-
quirements, meaning that generating an application should take significantly less
time than creating an application with more traditional development methods.
They also note that testing the output might be problematic, as expected and
actual output need to be compared, but with generators the knowledge whether
the expected output is correct also needs to be verified.

Application generators are not the solution for every problem, as they have some
drawbacks. A generator can usually be used only in a very specific domain, which
limits the number of possible uses. The difficulty of building one is also a signifi-
cant issue, especially when taking into account the fact that usage possibilities are
limited. Building a generator requires knowledge in both the application domain
and language translators. [Cleaveland, 1988]

When using a generator, the specification for an application is usually given as a
domain-specific language, which is often a language designed for a specific task,
and is not a general-purpose language [Smaragdakis & Batory, 2000]. Domain-
specific languages often have their own syntax and do not resemble conventional
programming languages [Biggerstaff, 1998]. The generator takes the specification
and generates an application in a desired implementation language [Mili et al.,
1995]. The problem with domain-specific languages is the cost of developing the
semantic foundations they use along with tools that support them, which includes
generators [Sztipanovits & Karsai, 2002].

According to Smaragdakis and Batory [2000], a typical application generator
consists of three parts, as seen in Figure 4.1. A front-end is responsible for creating
an internal (intermediate) representation (such as a flow graph or an abstract
syntax tree) of the input, which is usually in a textual form. Therefore, a lexical
analyzer and a parser are needed. The second part is a transformation engine,
which in turn transforms the internal representation into an executable program,
which is still in the form of an intermediate representation. The last part, the
back-end, is responsible for generating a product as the final result, a high-level
programming language version of the original input. Czarnecki [1999] says that
the input needs to include both the properties of the platform as well as the

25

application, in order to make the physical properties of the platform computable
and analyzable.

Figure 4.1: Different parts of an application generator [Smaragdakis & Batory,
2000].

Smaragdakis and Batory [2000] identify four variations points in the transfor-
mation processes in the existing generators. Generators can be stand-alone or
general transformation systems. Stand-alone generators work as tools that work
by themselves, while general transformation systems are a collection of trans-
formations under a general system. General transformation systems are depen-
dent on a complicated infrastructure, but can offer services to a broader domain
than stand-alone generators. Transformations can be done as programmatic or
pattern-based transformations. Programmatic transformations work by using
separate programs for manipulating parts of the code. Pattern-based transfor-
mations use pattern languages to search for patterns in the code and replace
them with suitable equivalents. Further, the transformation can be syntax- or
flow-directed. Syntax-directed transformations make the transformations based
on an internal intermediate representation. Flow-directed transformations use a
control flow representation. Finally, the number of transformations applicable
during the transformation process can vary between processes. Different trans-
formation processes use a different number of transformations, depending on the
methods that are used.

These transformation methods can be further divided into refinements or opti-
mizations. Refinement implements concrete implementations according to an ab-
stract specification, while optimization attempts to add efficiency while maintain-
ing the abstraction level. The point of generators is refinement, where abstraction
is transformed into a concrete implementation. Algorithm derivation is the most
important refinement method. It takes declarative specifications and turns them
into operational procedures that produce output according to specifications. An-

26

other method is data type refinement, which selects proper implementations for
data types in the specification. [Smaragdakis & Batory, 2000]

In comparison to compilers, generators tend to offer more opportunities for opti-
mization. Smaragdakis and Batory [2000] state that optimization transformations
can be categorized in partial evaluation or incremental optimization. They de-
scribe partial evaluation as a method that takes a fragment of the source code
and optimizes it under the assumption that its parameters satisfy certain condi-
tions. In practice it means that abstract portions are specialized to fit the con-
text in which they are used, if certain parameters are met. The authors describe
incremental optimization as a method which performs complex optimization in
increments. They continue that while code restructuring is usually a part of com-
pilers, it can also be found in generators. Code restructuring works by removing
dead code, unrolling loops and moving unrelated statements out of loops.

Biggerstaff [1998] says that optimization is needed especially for source code,
since generators frequently create source code that a person would never write.
He notes that optimization focusing on a specific part of source code can encounter
problems with dependencies when two separately located but otherwise related
parts of source code are handled. Therefore, global dependencies should also be
taken into account in addition to local information when changes are made. The
article mentions, however, that optimization methods which work on higher level
domain notations can recognize optimization opportunities that are not present
at the source code level. Some reasons why generators can produce more efficient
output than human programmers are also listed. The fact that a generator can
go through several different implementations faster than a human can is a major
factor. Some optimization methods take more time from humans, which might
not make manual implementation worth the time.

According to Biggerstaff [1998], the key factor in reuse success is domain knowl-
edge. What makes a generator so effective is that it takes product line and other
relevant information into account when input specification and transformation
methods are decided [Frakes & Kang, 2005]. A component library might get too
large when the applications that use it get more complex. In such cases genera-
tors are a better choice, as they can produce the components a component library
would contain, but take less space [Smaragdakis & Batory, 2000]. Biggerstaff
[1998] also notes that since the exact form of the output is not known during the
transformation, it is not feasible to enter every possible output the generator can

27

produce into a library. Advocates of generators prefer them over libraries when
a product is designed for reuse or the target domain shows systematic variability
[Smaragdakis & Batory, 2000].

The size of the generated assets also makes a difference. Generation techniques
are better at a subsystem level (tens of thousands of lines of source code), but
after that composing systems from concrete components gives greater benefits.
At a low scale, concrete components have several shortcomings, such as poor
performance, difficulties in fitting with other components, missing functionality
and the cost of customization. At a low level, generation-based reuse is more
beneficial over concrete components. The best strategy seems to be generative
reuse up to the subsystem level and composition with concrete components after
that. [Biggerstaff, 1998]

The logic of an application is something that will probably not change between
application versions for different operating systems. Therefore, an application
generator could be a suitable tool for developing the logic of multi-platform mo-
bile applications. An application can be ported for another mobile operating
system, if the generator supports different types of output. The user interface
and interaction methods are variation points between operating systems, which
makes them parts that could need manual customization.

4.2 Mobile application generators

Several mobile application generators, such as RhoMobile Suite1 and Sencha2,
are available online. Although several studies about application generators have
been done, research focusing on mobile application generators is difficult to find.
The research on mobile application generators is mostly limited to informal blog
entries lacking a systematic approach. The methods mobile application genera-
tors employ often differ from the descriptions of generators used in the scientific
literature. A well-designed generator could speed up development when multiple
operating systems are targeted.

1http://www.motorolasolutions.com/US-EN/Business+Product+and+Services/
Software+and+Applications/RhoMobile+Suite

2http://www.sencha.com/

http://www.motorolasolutions.com/US-EN/Business+Product+and+Services/Software+and+Applications/RhoMobile+Suite
http://www.motorolasolutions.com/US-EN/Business+Product+and+Services/Software+and+Applications/RhoMobile+Suite
http://www.sencha.com/

28

Since the domain is clear (mobile applications), application generators are a well-
grounded solution. Generated applications can have any kind of content, but
some more specific domains, such as mobile games, have their own, more domain-
specific tools and frameworks available. The application logic can be shared be-
tween operating systems, while the user interface and interaction methods would
be modified to match the used operating system. In an ideal situation, a devel-
oper would be able to define the user interface components for the generator in a
generic manner, which would then automatically be transformed into operating
system-specific solutions. This appears to be something the generator developers
are aiming towards, but due to the differences between user interface components,
there are several exceptions which need to be taken into account during appli-
cation development. For example, the button widget provided by Appcelerator
Titanium has four states3. Android devices can set a different background color
for each of the states, but on iOS this functionality is not available. In case an ap-
plication developer wants to use such operating system-dependent functionality in
their Android application, they will have to make a separate version of it for their
iOS application. Optimally, the generator would recognize such cases and default
to some basic functionality on operating systems that do not support specific
features. The current method limits the developer to use common functionality,
if the same source code is to be used for several operating systems.

One advantage of using mobile application generators is the possibility to use
the same tools to create separate products for multiple operating systems. The
tools themselves are often available for different computer operating systems, as
opposed to the native tools from for example Apple and Microsoft, where the
development tools are provided only for the company’s own desktop operating
systems. On the other hand, companies like Google and BlackBerry, which are
not as strongly attached to the desktop operating system market, provide their
mobile device development tools for several desktop operating systems.

Development with mobile application generators seems to be done with program-
ming languages other than the languages native to mobile operating systems.
Some mobile application generators offer an option to create user interfaces with
common mark-up languages, such as HTML and XML, which means that at least
some knowledge about mark-up languages is needed. Mark-up languages are in
general easier to use than actual programming languages and they are easily

3http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.UI.Button

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.UI.Button

29

scaled to different screen sizes, which in this case makes building user interfaces
a more user-friendly task. The users often need to possess some programming
knowledge in order to finish the application, though, as mark-up languages can-
not contain rich interaction. This might change in the future with the progress of
the HTML 5 standard. The use of domain-specific languages was not observed.
Graphical user interface (GUI) builders, which generate source code for user in-
terface components, are rare for mobile applications, despite being common in
desktop application development.

HTML 5 is a popular mark-up language with application generators, due to the
additional functionality it provides when making web-based applications. Al-
though the functionality is not as rich as with native applications, it is sufficient
for content-driven purposes. The World Wide Web Consortium is working on an
API which would allow web-based applications to better access advanced device
features, such as the calendar, camera and different sensors.

The output type produced by mobile application generators is one additional
variable. The output can be a native, web-based or hybrid application. There
is some discussion what can be considered a native mobile application, and the
term “native” is used relatively loosely when talking about the output of mobile
application generators. This can be credited to the lack of clarity with the defi-
nition of the term. Generator developers can also use the term more loosely and
assume different meanings for it to promote their products. The output is usually
a finished application, since any customization can be done before the generator
is used. The choice of the application type should be made according to the end
user and developer requirements.

In general, mobile application generators take input in the form of non-native
source code, as is seen in Figure 4.2. Since the studied generators are domain-
specific, the input contains domain-specific elements, such as user interface com-
ponents and interaction techniques. If a native application is generated, the
non-native input is created using a specific API, which the generator uses to map
the functionality to a native equivalent. As mobile application generators often
use web technologies as their input, web-based applications are usually created
using standard web technologies, but an application run on a server is optimized
for mobile devices. Hybrid applications are packaged inside a native container
along with necessary API components. The native container interprets the ap-
plication’s functions so that they can be run on the device.

30

Figure 4.2: The simplified structure of a mobile application generator.

As there are several mobile application generators, each with its own working
mechanism, describing the method with which they support reuse in a way that
would cover all cases, is difficult. Generators creating native or hybrid applica-
tions enable reuse by providing a way to use one set of assets that is transformed
into assets usable by different target operating systems. Thus, an application
developer has to create only an abstract version of an application using tools and
languages that are supported by a generator. The generator will then replace
abstract implementations with target operating system-specific implementations.
The application type also affects reuse. For example, web-based applications can
use the same application logic, located on a server, across all target operating
systems.

Some generators that modify web pages enable reuse in a similar way, but due
to the generation process being more simple, the reuse effect is not as extensive.
These generators simply transform existing HTML pages into another version,
which is more suitable for mobile devices. Any functionality on the page remains
the same, meaning that any functional logic can be used on both versions.

Examining some of the existing generators, a few characteristics were identified.
The generators support different target operating systems, while being available
for several desktop operating systems. The available functionality depends on the
target operating system, the completeness of the generator and the application
type. As stated earlier, native look and feel is important for the application users,
so being able to provide that is an advantage. Therefore, some generators are
advertised as such. The development languages also vary between generators,
although HTML and JavaScript seem to be rather common. API documentation
is structured, and videos and examples are often available. These help in learning

31

and understanding the tool and its usage. Together with the easily learnable and
common implementation languages, this speeds up development times.

5 Metrics and criteria for mobile applica-

tion generators

There are several tools available to help with mobile application development for
multiple platforms. Although these tools share some features, there are always
differences that might make one tool a better candidate for the users’ needs. Some
previous research exists that evaluates different aspects of reuse in software devel-
opment, but research on application generator evaluation specifically is difficult
to find.

Multi-platform development can be similar to the use of software product lines,
making reuse a suitable approach. If a developer can create an application capable
of running on different operating systems by using the same core parts in all of
them, these core parts are considered to be reused and that decreases the overall
effort. We first look into previous research and try to identify evaluation methods
and attributes which would also be relevant when evaluating mobile application
generators.

In this chapter, the terms entity, information need (or characteristic), measurable
concept, attribute, metric, and criteria are used. This thesis uses the following
definitions for them. Entity is considered to be the target product of the evalua-
tion [Kitchenham et al., 1995]. Information need (or characteristic) is a common
feature in the product, something that is common to similar entities. Measur-
able concepts are sub-characteristics of the information need, further defining it.
Attributes are the measurable aspects, with a value assigned according to the
method described by a metric or criterion.

5.1 Previous research

Previous research on reuse evaluation is concentrated around software compo-
nents, which is reflected in this section. Our approach is to adapt the findings
from component evaluation research to mobile application generators.

33

5.1.1 Software component evaluation

Washizaki et al. [2003] suggest metrics that can be used to evaluate the reusabil-
ity of software components. Their research focuses on black-box components,
which rules out inspecting internal functionality. Black-box components are a
common way to distribute commercial components, often leaving the control over
the component functionality solely to its creator. In their paper, three tiers for
representing different activity levels during development are defined as seen in
Figure 5.1. These tiers are factors, criteria and metrics, and they represent the
management level (as nonfunctional requirements), the application design level,
and the product level respectively.

Figure 5.1: A model for component reusability [Washizaki et al., 2003].

Three factors are selected by Washizaki et al. [2003] to represent component
reusability by examining activities during black-box component reuse. These are
understandability, adaptability and portability. According to the authors, these
were chosen only to analyze the reusability of the components, and no other
quality aspects were included. The authors mention that understandability is an
important factor for developers, since the knowledge whether the component ful-
fills the requirements set for it is needed. Understandability is based on the effort
needed to understand the concepts behind the component and how applicable the
component is in a given situation. Adaptability is the effort needed to integrate
the component into a new environment, which can be outside the context of the
component’s original and intended use. Portability is simply the effort required
to use the component in a new environment.

34

Understandability is divided into existence of meta-information and observability
criteria. Meta-information helps the users of the component to learn and un-
derstand the component’s functionality. Therefore, it is important to know if
such information is provided together with a component. Observability is eval-
uated, since black-box components cannot be thoroughly investigated by exam-
ining their source code. The only way to get information on what a black-box
component contains is by observing the input parameters and the form of the out-
put. Available read methods are mentioned as an important element in black-box
observation. [Washizaki et al., 2003]

The adaptability factor consists of the customizability criterion, which means
the built-in customizing and configuring capabilities of the component. These
capabilities are handled through write methods, which manipulate the internal
features of the component. [Washizaki et al., 2003]

Lastly, portability is defined by the external dependency criterion. It indicates
how independent the component is from the system in which it was originally
used. [Washizaki et al., 2003]

Washizaki et al. [2003] assign a metric for each criterion. The metric for the exis-
tence of meta-information is called with the same, existence of meta-information
(EMI). As their research focuses on JavaBeans components, the value of the met-
ric is zero or one, depending on whether the component has a BeanInfo class
delivered with it. The function of the BeanInfo class is to provide a developer
with information about the component’s usage. This metric is very specific and
usable only with JavaBeans components, but it clearly states the need for docu-
mentation when using reusable components.

The rate of component observability (RCO) is proposed as a metric for observ-
ability. It is the percentage of readable properties available for the fields in a
class. It is noted, though, that a high observability rating could make finding the
relevant readable fields difficult due to the large number of properties available.
Rate of component customizability (RCC) is the metric for customizability and
works similarly as the rate of component observability, but read methods are re-
placed with write methods. A high rate of component customizability also has its
drawbacks, since it can break the rules of encapsulation and give the user of the
component more control than they should have. [Washizaki et al., 2003]

35

External dependency is measured with metrics called the self-completeness of
a component’s return value (SCCr) and the self-completeness of a component’s
parameter (SCCp). They are used to analyze business methods, which are the
methods not categorized as read or write methods. Self-completeness of a compo-
nent’s return value indicates the percentage of business methods without return
values out of all business methods. Similarly, self-completeness of a component’s
parameter is the percentage of business methods without parameters. Meth-
ods without return values or parameters are said to be less likely to depend on
external sources. The proposed approach is said to facilitate the development
with reusable components by aiding in the evaluation process. [Washizaki et al.,
2003]

Bertoa and Vallecillo [2002] have researched quality attribute information suitable
for evaluating COTS components. Bertoa et al. [2003] define COTS components
as finished commercial components sold or licensed to other users. Bertoa and
Vallecillo [2002] say that there are no generally agreed upon characteristics avail-
able for the purpose of evaluation. The authors mention that there is a lack of
quality metrics (also mentioned by Bertoa et al. [2003]). Her et al. [2007] note
that current quality models are too conceptual to be used in actual projects, due
to abstract metrics only usable as subjective measures. Another issue identified
by Bertoa and Vallecillo [2002] is that component vendors often leave such quality
information out of their documentation, making it difficult for potential users to
evaluate the components. Any existing standards are difficult to apply as well,
since they are too general and cannot be directly applied to specific domains.
In order to address these issues, the aim of the paper is to propose a set of at-
tributes that vendors could use in their product descriptions to help developers
and designers in assessing the components they are interested in.

The proposal made by Bertoa and Vallecillo [2002] is based on the ISO/IEC 9126
[ISO, 1991] quality model. According to Her et al. [2007], the standard was de-
signed to assess complete applications, making it less suitable for the evaluation
of components. Bertoa et al. [2003] define a quality model as a set of char-
acteristics and their relations that provide a basis for quality requirements and
evaluation. They also define characteristics as a set of properties which describe
the quality of the product and can be used in evaluation. The characteristics
proposed for COTS components by Bertoa and Vallecillo [2002] include function-
ality, reliability, usability, efficiency and maintainability. Sub-characteristics are
divided into runtime and lifecycle categories. Runtime sub-characteristics are de-

36

scribed as performance-related. Lifecycle sub-characteristics are present during
different steps of the development process (for example maintainability). The
authors also list measurable attributes for each sub-characteristic. The list will
not be completely covered here, and only the attributes relevant to this thesis will
be explained. The relevant attributes are shown in Table 5.1. All of the selected
sub-characteristics come from the lifecycle category.

Table 5.1: Attributes relevant to this thesis based on the work of Bertoa and
Vallecillo [2002].

The most interesting attributes from the study regarding reuse are coverage, ser-
vice implementation coverage and user documentation. These attributes have a
darker background in Table 5.1. Coverage and service implementation coverage
are attributes that help to determine if a component contains the needed or ex-
pected functionality, while user documentation provides information on how easy
it will be to comprehend the possibilities and limitations of a component.

Coverage is an attribute measuring the suitability sub-characteristic, giving the
percentage of functionality that is provided by a component, when compared
against the functionality required from the component. Another interesting at-
tribute for suitability is the service implementation coverage, which compares the
amount of functionality implemented by a component against the functionality
specified by a standard (or some other specification) applied to the component.
The next attribute falls under the understandability sub-characteristic, which is
related to learnability. It is said that in order to learn how to use a component,
it has to be understood first. User documentation measures the quality of the
available user documentation, not the amount. [Bertoa & Vallecillo, 2002]

37

While not directly connected to reusing components, the following attributes are
considered relevant to reuse. The maturity of a component is measured with
evolvability, which is the number of the marketed versions of the component.
The learnability sub-characteristic has two interesting attributes, which are time
to use and time to configure. The first one is the average time for a user to learn
how to use the component, while the second one measures the average time to
understand the configuration parameters and actually configuring the component.
Training indicates if courses on the use of the component are available, and it
falls under the understandability sub-characteristic.

In another study by Bertoa and Vallecillo [2004], the authors focus on finding
usability metrics that would help users in selecting software components. They
note more issues with the existing methods, such as the fact that one attribute
is often assigned to a single characteristic. According to the authors, this is not
the case, since an attribute may affect several characteristics. For example, the
size of the component may affect both maintainability and learnability. They
also say that a metric needs to be connected to an attribute or a characteristic
which it is measuring. This is something most proposals do not accomplish.
The different characteristics and attributes are clearly defined in the study by
creating a deep categorization structure from an entity to metrics. It is stated
that the goal of the measurement process is to satisfy the information need by
identifying necessary entities and their attributes. Attributes are the measurable
aspects of the entity. Attributes are external when they are dependent on the
environment in which they operate, or internal when there are no environmental
dependencies. Attributes are measured with metrics which have a set scale and a
unit. External attributes are suitable for black-box evaluation, although internal
attributes can still provide indirect information about external characteristics
[Bertoa & Vallecillo, 2002].

Bertoa and Vallecillo [2004] claim that the ISO/IEC 9126 standard metrics are
ill-defined, as metrics are assigned to sub-characteristics without any reference or
justification. Nevertheless, the authors choose the standard as a base for their
usability metrics. They also say that since usability depends on the intended
use as well as the user, the intended use and user need to be specified. The
authors also try to achieve a balance between information required to get the
metrics and information provided by component developers, as information about
a component is usually difficult to find. Over thirty metrics are assigned to the
quality of documentation and complexity of the design concepts. Some issues

38

with these metrics are also identified, such as the subjectivity of some of them,
and possible ambiguities in the terminology used. However, the authors plan on
improving the research in the future.

A study by Her et al. [2007] aims to find a method for evaluating the core assets in
software product line engineering. In order to achieve this, they first identify the
common characteristics of core assets. Based on these common characteristics,
the authors define a set of quality attributes used in core asset evaluation. Two
of the attributes they assign to the characteristics are based on the ISO/IEC
9126 standard, five others are created by the authors based on the common
characteristics they identified in product lines. The characteristics, attributes
and metrics relevant to this study are the only ones explained here, and are
shown in Table 5.2.

Table 5.2: Attributes relevant to this thesis based on the work of Her et al. [2007].

The first attribute they define is functional commonality, which is used to evaluate
the commonality of an asset’s functionality in the applications of a product line.
Another attribute, applicability, measures the possibility of applying a core asset
to other product line members. Component replaceability is an attribute for
measuring the possibility of swapping one component for another without having
to make changes in the software architecture. Finally, understandability measures
the ease of learning and understanding the use of a component. [Her et al.,
2007]

Interesting metrics regarding reuse include functional commonality and overall
understandability. They are marked with a darker background in Table 5.2.
Functional commonality is relevant to reuse because commonality can indicate
opportunities for reuse. Overall understandability helps users of a component

39

to use it correctly and efficiently. Functional commonality is measured with the
functional coverage metric. This metric uses the number of products in a product
line and the number of applications using a functional feature to get a percentage
value. Understandability is measured with overall understandability, which is
defined as the number of comprehensible elements divided by the total number
of elements. In this case the elements are items that help in understanding the
component, such as manuals, specifications and guides. When understandability
is low, it might slow down the use of the component. [Her et al., 2007]

The following metrics are less relevant to reuse, but they provide additional in-
formation that can be used when evaluating components. The metric for ap-
plicability, called cumulative applicability, is more complicated, as it uses other
metrics as a composition to determine the final value. The metrics for the compo-
sition are functional commonality, non-functional commonality (used to measure
non-functional requirement commonality), and coverage of variability (used to
measure variability richness). These three metrics are optionally weighted with
values according to a formula or by an assessor familiar with the characteristics of
the project in which the components are used. Component replaceability can be
measured with component compliance, which is the number of replaceable com-
ponents in an asset divided by the total number of components in the asset. A
high number of replaceable assets makes it easier to find components to replace.
[Her et al., 2007]

5.1.2 Component information

A study by Bertoa et al. [2003] concentrates on CBSD, which is assembling
components into working software. Components are defined as a collection of
functions with interfaces for interaction with other components. The study is
aimed at comparing the quality information given by the component providers
against the information required to analyze the components. Several issues were
identified. A major issue was the difficulty of obtaining information about the
provided products, since there was no standard place for it in the documentation.
This rules out the possibility of gathering the information automatically. The
information that was found was in some cases already processed and ready to be
used, while in the rest of the cases the information needed processing in order
to acquire the desired attributes and their values. The authors also note that
only a small percentage of all the products provided values for their metrics. The

40

research also discovered that data on self-tests and test suites were often lacking.
This requires the user to retest the component, thus losing some of the benefits
of CBSD. The authors concluded that the provided quality information should
be well organized to enable automatic comparison.

5.1.3 Evaluating mobile application types and approaches

The study done by Heitkötter et al. [2012] is different from the others, since it
does not propose metrics for reusable components, but compares the different ap-
plication types currently used in mobile application development. The authors do
not propose direct metrics, but rather subjectively evaluated criteria. The criteria
for the comparison were created according to discussions with domain experts,
along with the help of the experience gained making prototype applications. The
generated fourteen criteria were divided between infrastructure and development
perspectives, where infrastructure criteria cover the lifecycle of the application,
including its usage, operation and functionality. Development criteria cover the
development process, including testing and development tools.

Of the infrastructure criteria, license and cost is defined first. This criterion eval-
uates the distribution license, whether or not commercial software can be created
with that license, and possible costs regarding the use of the application type.
Supported target operating systems are also evaluated, which is done by consid-
ering the number and importance of the ones that the method supports. The
evaluation also takes into account the equality with which the target operating
systems are treated. Next, access to advanced device-specific features is evalu-
ated by comparing the features available through an API. Basic functionality is
covered by most frameworks, which is why access to advanced features, such as
NFC and accelerometer, is focused on. The look and feel of the created applica-
tions is also evaluated, as it is an important factor for users expecting behavior
found in native applications. [Heitkötter et al., 2012]

With these criteria, Heitkötter et al. [2012] evaluated native and web-based appli-
cations, along with hybrid applications created with PhoneGap and Appcelerator
Titanium. The evaluation was done together with experienced developers, while
also being based on the research done by the authors. A grade from very good to
very poor was assigned, as well as a verbal explanation of the matters affecting
the grade. All development methods were found to have their strengths and weak-

41

nesses, although cross-platform approaches can be the most efficient even when
only a single mobile operating system is targeted. According to the authors, the
efficiency of cross-platform approaches comes from the used development techolo-
gies, which are common and easily learned, requiring application developers to
learn less platform- and framework-specific skills.

5.2 Suggested metrics and criteria

Most evaluation proposals, as well as the ISO/IEC standards 9126 [ISO, 1991]
and 25010 [ISO, 2011], categorize their metrics in some way. The research done
by Bertoa and Vallecillo [2004] says that most of the software quality evaluation
methods they have studied do not pay enough attention to the quality character-
istics that they are assessing or the attributes that are measured. The authors
suggest a collection of metrics with a deep category structure. This can be useful
for developers wanting to study a specific aspect of a product, since they can pick
the suitable attribute or concept at the necessary level and apply the metrics that
fall under that category.

Therefore, an approach to identify attributes and characteristics for mobile appli-
cation generators is assumed to be a suitable one, when new evaluation metrics
are defined. The metrics and criteria are meant to be used in a black-box man-
ner, since information about the internal functionality of some of the generators
is difficult to find. Although some generators are open-source, we feel that going
through the source code of a generator can be too time-consuming and requires
extensive programming knowledge. The aim is to create a relatively lightweight
set of metrics and criteria that can be used to assess the generators based on user
needs. Most of the information needed for the evaluation of a generator should
come from the documentation and include as little of actual generator use as pos-
sible. Configuring potential generators for testing purposes can take a significant
amount of resources, especially when they might have to be configured to work
with a number of target operating system.

5.2.1 Entity, user group and characteristics

As a base for the quality metrics we use the structure which Bertoa and Vallecillo
[2004] introduced in their study. The structure will not be completely identical,

42

though, since it is consider to be too heavy due to its large number of indirect
metrics assigned to attributes by using an indicator category. The number of
category layers is too large for the smaller number of criteria and metrics defined
here. However, the target entity, its characteristics (or information need, as they
are called by the authors), measurable concepts, assessable attributes, and their
criteria or metrics will be defined based on the discussion of issues in mobile ap-
plication development, current mobile application generators, and prior research
on software and reusability metrics. Table 5.3 shows the outline of the attributes
considered important when developing for multiple mobile platforms using mobile
application generators with asset reuse as an objective.

Table 5.3: Attributes assigned to mobile applications generators.

According to the ISO/IEC 9126 standard, a quality model needs to have a target
user group. Here the suggested metrics and criteria are meant to be used by the
developers of multi-platform mobile applications. The intended use is to evaluate
mobile application generators for their suitability for multi-platform development
for mobile devices. An entity is an object which can be observed in the real world
and is the target of the evaluation [Kitchenham et al., 1995]. In this case, the
entity is a mobile application generator.

After defining what, for whom, and for what purpose the metrics are created, we
can select the characteristics that are relevant. To this end, we use the character-
istics described in the ISO/IEC 25010 standard. The ISO/IEC 25010 standard,

43

which succeeded ISO/IEC 9126, defines a product quality model which is appli-
cable to software products. The characteristics of interest from this standard are
functional suitability, usability, reliability, and portability. Functional suitabil-
ity and usability are the most relevant to identify reuse opportunities and reuse
effectiveness.

Functional suitability will be used to assess the degree to which the tool provides
the functionality that is required by the developer. Evaluating a set of generators
from the suitability perspective allows a developer to estimate which generators
offer the best coverage of device functionality access and how much adaptation
is needed for each target operating system. Functional suitability also helps to
evaluate the extent at which the developer can reuse created source code assets,
when targeting several systems. If the input needs only minimal modifications in
order to be used by the generator to create applications for several target systems,
input assets can be reused.

Usability is the effectiveness and efficiency of the generator’s use. In order to
enable reuse, a generator needs to be understandable and users need to know
how to use it. Documentation has a large role in these matters. The actual use
of the generator needs to be efficient or possible reuse benefits are lost and native
applications could be developed instead.

Reliability is used to assess if a generator performs in an expected manner, as
well as the state of the generator’s development. Since one of the benefits of
reuse is increased quality, properly tested and mature generators are more likely
to produce applications that work as expected. Errors in the generation process
can cause systematic errors in the generated applications, which makes generator
quality an important factor.

Portability determines how restricted the use of the generator is and how well
it supports different operating systems (desktop operating systems running the
generator). We feel that developers need to know what the external limitations
(not directly caused by the generator itself) for using a generator are. Applica-
tion developers are probably interested in using the generator on their preferred
operating system, as well as having control over the licensing of the generated
application.

When mobile application generators are used for multi-platform development,
the user has to note that a generator might provide more functionality for some

44

target operating systems. Therefore, functional suitability was chosen to eval-
uate how well a generator supports the functionality that a developer requires
in their applications. Functional suitability will also help in determining what
kind of output types the generator offers, and if that output can match the user
interaction methods of native applications. Usability will help in evaluating how
effectively the generator can be used and how long it takes to learn how to use
it. Like with all tools, the user needs to understand their usage, making usabil-
ity a factor also for mobile application generators. If the tool is not effective,
its users could as well develop native applications separately for each platform.
Reliability is thought to be an important factor, as mobile application genera-
tors are a relatively new phenomenon. Especially organizations might want tools
that they can rely on and use in professional development. For example, tools
in their beta stages can change dramatically between release versions, which can
cause problems. Portability is evaluated, since some tools are not available on all
desktop operating systems or they have licenses that are not suitable for the user,
making such generators useless, even though the other criteria are met. Thus it
is considered a factor when choosing a tool.

5.2.2 Measurable concepts and attributes

As Bertoa and Vallecillo [2004] suggest, measurable concepts are defined next.
These are based on the sub-characteristics defined in the ISO/IEC 25010 stan-
dard, but with the definitions modified to fit the evaluation of application gener-
ators. Functional suitability is further divided into functional completeness and
functional portability. The purpose of functional completeness is to examine the
functions provided by the generator in order to find out how comprehensive the
provided functionality is when compared to functionality required by the gener-
ator user or the native functionality of the target operating system. Functional
portability examines how well the generated applications can be ported to differ-
ent mobile operating systems, as well as the types of applications the generator
can produce. Usability is divided into learnability, accessibility and operability.
Learnability is used to assess the used technologies, documentation, guides, and
other material created by the generator developer to help users in understand-
ing what they can do with the generator and how their tasks can be completed.
Accessibility is used to determine what are the skills required from the user. Op-
erability examines the ease of use of the generator and what kind of support is

45

provided. Reliability is measured with maturity, which tells how evolved the gen-
erator is. Portability is evaluated with installability, which examines how easy
the generator is to acquire, install and configure before use.

The goal of setting these attributes is to evaluate the potential for reuse as well
as the general usefulness of a generator. Especially functional completeness and
functional portability are characteristics that help in identifying how well the
created assets can be reused to create applications for several target operating
systems. For example, the supported target operating systems attribute tells how
widely the assets can be applied. A generator that supports four target operating
systems wanted by an application developer is more more efficient than using two
separate generators that together support the same four target operating systems.
In the first case the developer only has to create input for one generator, while
in the second case two different inputs are needed.

Learnability is considered important for reuse because it evaluates the ease of
comprehending what the generator does and how tasks can be completed with
using the generator. If the functionality of the generator is not clearly understood,
it is possible that the output contains errors or is inefficient. The rest of the
characteristics are not as directly connected to reuse, but help to determine if the
generator is appropriate for a user.

The next step is to divide the concepts into attributes, which can be measured
or evaluated. We start with functional completeness and assign the attributes
functional coverage and total functional coverage to it. Functional coverage is
the portion of the generator functionality that the user requires. This attribute
is based on the coverage attribute suggested by Bertoa and Vallecillo [2002]. Due
to the differences in support mobile application generators provide for different
mobile operating systems, functional coverage works best if a value is assigned
separately to each target operating system. Total functional coverage is based on
service implementation coverage, also suggested by Bertoa and Vallecillo [2002].
It has similarities with functional coverage defined by Her et al. [2007]. Total
functional coverage is defined similarly to functional coverage, except that it com-
pares the functionality a generator provides to the functionality provided by the
native API of a mobile operating system. The total functional coverage can re-
quire immense effort to determine and it would be best if the evaluation was done
by the generator provider, as they are the most familiar with the functionality
of the generator. This attribute also works best if used separately for different

46

mobile operating systems. To clarify, functional coverage is targeted more to-
wards application developers, while total functional coverage should be used by
generator providers.

Functional portability is divided into supported target operating systems, capa-
bility for native user interfaces, output application types and operating system
specificity of assets. In multi-platform development, the number of supported
target operating systems is a key issue. Having a generator supporting several
target systems makes multi-platform development easier, since the same tools
can be used during the development process, while there is a possibility that
some created assets can be reused. The supported target operating systems at-
tribute is similar to supported platforms described by Heitkötter et al. [2012] and
adaptability in the ISO 25010 standard. Capability for native user interfaces is
measured, since Charland and LeRoux [2011] state that the lack of native user
interface components worsens the user experience. For that reason the capability
of the generator to create native user interfaces is considered important. This
attribute is similar to the look and feel criterion suggested by Heitkötter et al.
[2012]. Output application types is an attribute used to determine if the gener-
ated application type (native, web-based or hybrid) suits the needs of the user.
A specific type might be preferred by the application developer, although other
types would not necessarily limit the functionality of the application directly. For
example, a simple web-based application could contain the required functionality,
but the developer might not want to maintain a server to run it. The attribute
is not based on any previous research, but we recognize it as a characteristic
of mobile applications and application generators. Lastly, the operating system
specificity of assets evaluates if some of the functionality provided by the gener-
ator is tied to some specific target operating system. If not, those assets could
be easily recycled for other operating systems. Reusability in the ISO 25010
standard and applicability suggested by Her et al. [2007] are similar to this at-
tribute. These attributes were chosen, as reusability is considered important in
multi-platform development. Washizaki et al. [2003] note that reusability needs
to be measured efficiently.

Learnability has attributes for documentation and guides, training, and develop-
ment languages. Documentation and guides evaluates the number and quality
of documents that are provided to understand and learn the usage of the gen-
erator. Development with a tool can be enhanced with good documentation.
Especially API documentation is important, since it is the main source of infor-

47

mation on what can be done and how. This attribute is chosen based on the
user documentation attribute by Bertoa and Vallecillo [2002], and the existence
of meta-information attribute by Washizaki et al. [2003]. Training is an addi-
tional method of learning to use the tool, and for example organizations can be
interested if the generator providers offer formal training. For this reason, there is
a dedicated attribute set for this aspect of learnability. It is based on the training
attribute set by Bertoa and Vallecillo [2002]. Development languages are a factor
for application developers, since they might be familiar with some of them. It is
placed in the learnability category, as we feel it primarily affects the familiarity of
development, whereas functional portability is more about the output of the gen-
erator. No mention of similar attributes was found in the previous research, but
we identified it as a characteristic of mobile application generators and selected
it to be used here.

The accessibility concept has just one attribute, programming skills required. This
attribute is used to determine whether the generator can be used without prior
programming skills. Generators that can be used without programming knowl-
edge could take input specifications in the form of HTML or the output from a
user interface builder. The created applications could be simple in their function-
ality but enough for the purposes of some users. The attribute is based on the
accessibility in the ISO/IEC 25010 standard and the suggestion by Cleaveland
[1988], which states that generators should not require programming skills from
their users.

General usability, customer support and community availability are the attributes
for operability. General usability is used to assess how easy it is to use the
generator and its related tools. This is important for efficient use of the tool,
and is similar to the general usability characteristic in ISO/IEC 9126 and 25101
standards. Customer support can help the user in case of problems with using
the tool, which again is important for organizations wanting formal solutions.
For others, community availability is a more important attribute. Sometimes the
fastest solutions come from other users, who can help users of the generator to
understand issues outside of the official documentation. The last two attributes
are not noted in any previous research, but such features were noted to have been
made available by several generator providers.

Versions is the only attribute for maturity. It can be used to determine whether
the generator has been in steady development for long enough, so that it does not

48

have major flaws due to a short time of public usage and feedback. Experimental
tools might provide advanced functionality, but can also be a risk if the final
product is not what was expected. Again, organizations looking for professional
development tools are probably more interested in tools that have been in devel-
opment for some time, as they are less likely to have critical programming errors
present. The same attribute has been noted by Bertoa and Vallecillo [2002] as
evolvability.

The installability concept is important in cases where an organization uses a
number of different operating systems and hardware for development. It is divided
into setup time, license and supported operating systems attributes. Setup time
tells the user about the ease of installing and configuring the generator prior to
its use. Some tools might be difficult to set up, making them deficient for smaller
development projects. This attribute is modified as the combination of time to
use and time to configure attributes described by Bertoa and Vallecillo [2002].
The type of the license the generator is distributed under might pose limits to
its usage. Therefore, it is set as a separate attribute. For example, low budget
projects might prefer open source solutions, while those with more resources can
purchase commercial products with better support options. The same attribute
was suggested by Heitkötter et al. [2012]. Finally, since the generators can be
used on different operating systems, the information saying which ones it can be
installed on is important. As mentioned earlier, since some native development
tools are limited to one specific operating system, mobile application generators
could help here, if they can be used to develop cross-platform applications for
those systems. Previous research does not mention this attribute, but due to
the varied operating systems used by organizations and the possibility to bypass
operating system restrictions, it was selected.

5.2.3 Metrics and criteria

In the final part of defining the evaluation method, a metric or criterion is as-
signed to each of the attributes. These criteria are based on previous research,
if such research has been available. Table 5.4 summarizes the metrics. The sug-
gested criteria and metrics are meant to be lightweight. Calculating values such
as number of documentation pages and their images, as suggested by Bertoa and
Vallecillo [2004], are considered to be too heavy on the user, especially if met-
rics with complicated formulas are used. Less strict criteria might require more

49

expertise to be assessed correctly and can be more subjective. However, the as-
sessor can take into account the specific needs and requirements of the project,
similarly to the criteria suggested by Heitkötter et al. [2012]. If suitable genera-
tors are identified, they can be selected for a closer inspection with more precise
evaluation methods.

Table 5.4: Attributes with their metrics and criteria.

The metric for functional coverage is essentially the same as the metric for cover-
age proposed by Bertoa and Vallecillo [2002]. Instead of interfaces, functionality
is used and the metric is defined as the intersection of functionality needed by
the developer and provided by the generator, divided by the needed functionality.
The specific formula can be seen in Table 5.4. This metric is rather simple to use
when the requirements for an application are known. If exploring available gen-
erators in general, the metric for total functional coverage is defined as provided
functionality divided by all functionality available for that operating system. The
formula is displayed in Table 5.4. The metric is also similar to the one suggested
by Bertoa and Vallecillo [2002] for service implementation coverage. Although this
metric is simple to calculate, the fact that generator developers do not list the
provided functionality in the same manner as mobile operating system providers
do makes it difficult to gather the necessary information. Therefore, in an op-
timal situation, this metric is calculated by a generator provider, as mentioned
earlier.

50

The criterion for supported target operating systems is simply a list of mobile
operating systems. This information is usually easily available in the generator
documentation. A list is used instead of the number of supported operating
systems, since it is not considered to be much more work to determine and list
them. Heitkötter et al. [2012] do not define their criterion in the same way,
as they give a grade for a development method’s suitability for multi-platform
development. The definition by the same authors also affected the next criterion,
the capability for native user interface components, although they evaluate it
with a grade, and in this thesis a simple yes/no choice is used. The information
required to get the result should be relatively easily found in the documentation
for the generator, as well as by examining example applications. The criterion for
output application types is also presented as a list. It might be difficult to find
the information from the generator documentation, since the difference between
a native and hybrid application can be hard to detect, and the documentation
can use ambiguous terminology in this matter. For this purpose it could be easier
to examine the output of the generator, if possible. Operating system specificity
of assets is evaluated with a grade from one to five (although this type of grading
can be changed to suit the user, for example from one to three could be just as
good), one meaning assets are tightly connected to a specific operating system
and five meaning that the assets are operating system-independent. The main
factor in specificity is the generator’s API and the way it provides its functionality
and customization. The metric can be evaluated through documentation. The
applicability metric by Her et al. [2007] is considered unfitting in this context,
since it uses a combination of other metrics, which are not used here, to get the
final value.

The evaluation of documentation and guides is done with a grade from one to
five, one standing for lacking and unstructured information and five meaning good
quality and well-structured information. The metric proposed by Washizaki et al.
[2003] for meta-information only checks if meta-information exists, but the metric
for user documentation by Bertoa and Vallecillo [2002] is essentially the same as
the one we use here. Training is evaluated as either yes or no, depending whether
the generator provider offers formal training on how to use the generator. The
metric is the same as the one used by Bertoa and Vallecillo [2002] for training.
The criterion for development languages is a list of languages that can be used
as input for the generator.

51

Required programming skills is another criterion with a yes or no value. This
information should be easily deductible from the development languages and the
possible API documentation available. However, the generator can provide an
application builder, which does not require programming skills, as an optional
way of making applications. Therefore, this criterion is evaluated separately
from the used development languages.

General usability is measured by assigning a grade from one to five, one being
almost or completely unusable and five standing for good usability enabling effi-
cient use of the generator and the related tools. The same measurement is used
by Bertoa and Vallecillo [2002], called effort for operating in their article. The
evaluation can be done based on the fact that the generator tools can be based on
existing software. Otherwise, the evaluation requires using the generator. Cus-
tomer support is evaluated to a yes or a no, depending on its existence. Generator
providers often promote such possibility with different subscriptions of their ser-
vices, making this information easy to find. The same applies to community
availability, which is assessed in the same way.

The version metric is measured with the number of different versions that have
been available publicly, since the official release. The ease of finding this informa-
tion depends on the documentation provided by the generator developers. Open
source tools might also have such information available in their repositories. The
method of measurement is the same as the one used by Bertoa and Vallecillo
[2002].

Setup time is measured with the time it takes to install and configure the tools
for development. The necessary information can be acquired by completing the
setup and configuring processes. Setup time is measured in the same manner as
the metrics for time to use and time to configure by Bertoa and Vallecillo [2002].
The time is dependent on the hardware, software and internet connection speeds,
which means that the measurements of different tools should be performed on
the same machine. The metric is meant to give some idea of the time it takes to
make the generator usable, and probably will not be the most important aspect
of the evaluation. Minor differences could be caused by a number of factors.
The criterion gives some idea on how much effort it will take to install and
configure the generator in an organization with several workstations. Heitkötter
et al. [2012] evaluate license type as a grade, based on its impact on development
and distribution, but in this study the used license type is simply listed. The

52

evaluation of the license type’s impact can be done later or by other stakeholders.
The license type is usually well documented by the developers. Finally, supported
operating systems are evaluated as a list. This information can probably be found
before starting the installation process needed for the setup time metric, from the
source where the tool is acquired.

5.3 Validation of the metrics and criteria

In order to justify using the proposed metrics and criteria, they have to be vali-
dated. Research on validating software metrics can be found, but information on
how to validate criteria is more difficult to find. For this thesis, the validation will
be done as Kitchenham et al. [1995] suggested, although it is meant for metrics
alone. We will apply their method to the criteria as well as possible. In addition,
evaluation will be done through practically applying the proposed metrics and
criteria to existing mobile application generators in the next chapter.

First, Kitchenham et al. [1995] argue that for the measurement to be valid,
the set attributes have to be exhibited by the entity. This is to be done to all
attributes without regard to whether they are directly or indirectly measured. In
this case all the attributes are considered to be present, if not in the generator
itself, then in the additional services the generator developers provide, since they
are also part of the generator assessment. No indirect measures are used.

The next step is unit validity, which aims to determine if the unit used in mea-
surement of an attribute is appropriate. Some of the attributes are measured with
a grade, which is thought to be appropriate in those cases, since the attributes
reflect the opinion of the person performing the evaluation, making a calculable
value impossible. Other criteria have units based on previous research and are de-
fined through the characteristics and measurable concepts, making them proper
units for the attributes.

Instrument validity requires the measurement acquisition method to be well-
founded. In this case, the acquisition relies on the user to find the required
information and interpret it correctly. Most of the attributes are evaluated as
criteria instead of metrics, as there are some problems in defining clear metrics
for them. For example, the easiest way to get the information whether the target
operating system is supported by the tool is to check if that operating system

53

exists on a list of the supported systems. A metric could possibly be invented,
but whether that is practical is another matter.

Finally, a measurement protocol needs to be defined. In this case, the tool needs
to have a public, generally available version. The generator also needs to have
some documentation, although the quality of it is part of the evaluation. Basic
information, such as supported operating systems and development languages,
needs to be available, or they cannot be evaluated. It should be noted, though,
that even if the developer provides, for example, training, but the users cannot
find information about it, training could as well be thought not to exist. Gen-
erator providers that get profit from extra services such as training would suffer
from such hidden information.

6 Evaluation of existing generators

In order to further evaluate the proposed metrics and criteria, they will be applied
to existing mobile application generators. Three generators were chosen. Free-
ware and open source solutions were preferred, since it was expected that more
information would be publicly available on such tools. The chosen generators
have also been in development for some time now, as we wanted to be sure that
they are mature enough for evaluation. The number of generators was limited
to three to keep the amount of work at a reasonable level, but more generators
should be used in the future to get a better idea whether the metrics and criteria
work as intended. As the used solutions are open source, anyone can acquire the
necessary information from the source code, if needed.

For the sake of functional coverage, we chose five requirements for functionality
and two target operating systems. This functionality includes NFC, Bluetooth,
camera, GPS and access to contacts. We aimed to demonstrate how generators
support features that are advanced or commonly used (or both), and we feel
that the chosen functionality consists of such features. As the target operating
systems, Android and BlackBerry OS were chosen. Android was chosen due
to its significant market share, while BlackBerry OS was chosen to represent less
popular operating systems that are still being developed. The functional coverage
will be calculated separately for each operating system.

6.1 Appcelerator Titanium

Appcelerator Titanium1 is promoted as an open source solution for mobile devel-
opment. It was originally released in 2008, with the most recent update published
in May 2013. The generator has its own SDK, which is used for application de-
velopment, meaning that the users have to familiarize themselves with it prior to
using it. The tool also comes with its own IDE, called Studio.

There is no clear and up-to-date information available on how the generator
actually works. According to an old entry in the development blog2, the generator
works by packaging the user-created JavaScript source code as a binary file with

1http://www.appcelerator.com/
2http://developer.appcelerator.com/blog/2010/12/titanium-guides-project-js-
environment.html

http://www.appcelerator.com/
http://developer.appcelerator.com/blog/2010/12/titanium-guides-project-js-environment.html
http://developer.appcelerator.com/blog/2010/12/titanium-guides-project-js-environment.html

55

the Titanium API, which is interpreted at runtime by a JavaScript engine. The
used engine depends on the target operating system. Included with the engine is
a namespace that contains the necessary API information. Table 6.1 shows the
evaluation of the Appcelerator Titanium tools. Version 3.1.1 was used for the
evaluation.

Table 6.1: Evaluation of the Appcelerator Titanium tools.

The primary reuse mechanism of Appcelerator Titanium is creating multi-platform
applications from a single code base. An architecture solution called Alloy is
offered. Alloy provides a model-view-controller architecture, where views are cre-
ated with XML and CSS-based TSS files. This framework for developing applica-
tions allows reusing the application architecture and lets a developer concentrate
on the actual requirements of the application without having to pay as much
attention to the application information flow.

For Android, Appcelerator Titanium provides functionality for NFC, camera,
GPS and contacts. Bluetooth can be used with modules developed by third
parties and are available on the marketplace. They are not free, though. The
value for provided functionality is therefore four. Thus, the value for functional
coverage is 80%. There was no support for BlackBerry OS with the selected

56

functionality, since the BlackBerry OS support is not yet complete. As mentioned
earlier, total functional coverage is an attribute that is best delivered by the
generator developer and will not be calculated here.

Currently, Appcelerator Titanium supports four mobile operating systems. These
are Android, BlackBerry OS, iOS and Tizen. However, the BlackBerry OS func-
tionality is in a beta phase, with some features still missing and under develop-
ment. Native user interface components and native application types are men-
tioned in the documentation, but there is some argument whether interpreted
languages are truly native. Native applications are said to require compilation.
If not native, applications produced with Appcelerator Titanium are hybrid, but
it also supports web-based applications. However, some of the provided function-
ality can be operating system-specific. User interface components are different
in all of the target operating systems, which requires generator providers to offer
functions that are able to create components for all target operating systems.
Otherwise, application developers need to take these differences into account.
The previously mentioned button example applies here.

Learning to use the generator is supported by a good amount of documentation,
guides, examples and videos. Especially the API documentation and guides are
well-structured and seem up-to-date. There are many examples and videos, al-
though the videos have not been updated to reflect the changes made recently.
Training is also available, but only as classroom courses in selected cities, and
it is organized by the generator providers or authorized partners. More flex-
ible solutions, such as streamed lectures, might be available but could not be
found.

Using the generator requires programming skills. The user interface is built with
a markup language, which connects to program logic made with JavaScript. Op-
tionally, JavaScript can be used to create the user interfaces, as well. As a more
advanced solution, Alloy is offered. The general usability of the generator and the
related tools is good, especially for those who have used the Eclipse IDE, since the
Titanium Studio is based on it. Installing the generator and the additional tools
is largely automated. Updates for the generator are also automatically detected
and installed with a few clicks. Testing an application with the Android emulator
was also easy. Support is available with a paid subscription during working hours
or even 24/7 from the support team, depending on the type of the subscription.
A free subscription user has to rely on the community forums and a wiki.

57

At this moment, Appcelerator Titanium was found to have had thirteen releases.
A release was considered to be a version with numbering X.Y, while more detailed
version numbers were regarded as fixes. The information was gathered from the
repository of the generator. The Titanium SDK, Titanium CLI and Alloy are
distributed under the Apache Public License v2, while Titanium Studio is pro-
prietary software. If a user wants to submit, for example, a fix for one of the
open source products, they cannot submit the source code directly to the repos-
itory, but have to request the Appcelerator developers to retrieve and apply the
changed source code. The generator is available for all the major operating sys-
tems, meaning Linux, OS X and Windows support. Installing and setting up the
development environment for Android applications took about 25 minutes, most
of the time spent downloading updates. The whole process was easily managed
and required little input from the user.

6.2 MoSync

MoSync3 is another open source tool and has been in development at least since
the year 2010, when version 2.0 was released. The current version is 3.3 and it
was released in May 2013. The generator comes with its own IDE.

Again, there is no recent documentation on how the generator works, but there is a
blog entry from 20104 describing the transformation process in detail. According
to the description, the transformation process starts from compiling the user-
made source code with a modified GCC compiler into MoSync’s own code, called
MoSync IL. This code is combined with the compiled MoSync standard libraries
using a pipetool. The pipetool produces either Java code or a binary version of
the MoSync IL code. The Java source code is compiled with Java ME or Android
runtime, depending on the target device. Binary MoSync IL sources are bundled
with a runtime depending on the target device. Table 6.2 shows the evaluation
of the tool, where version 3.3 was used.

3http://www.mosync.com/
4http://www.mosync.com/blog/2010/01/under-hood

http://www.mosync.com/
http://www.mosync.com/blog/2010/01/under-hood

58

Table 6.2: Evaluation of the MoSync tools.

MoSync provides support for reuse similarly as Appcelerator Titanium. A single
code base can be used to create multi-platform applications. There are, however,
several more target operating systems available making the potential for reuse
greater. The API enables reuse of the application architecture, but not to the
same extent as for example modern web frameworks.

With the same requirements for functional coverage as with Appcelerator Tita-
nium, functional coverage for Android was found to be 100%. BlackBerry OS
support was lacking, since only Bluetooth and access to contacts were supported.
Finding this information was relatively easy, since MoSync has a feature/platform
support table, listing which classes and functions are available for different oper-
ating systems. Total functional coverage was not measured.

MoSync supports a wide range of mobile operating systems. These are Android,
BlackBerry OS, iOS, Java ME, Moblin, Symbian, Windows Mobile and Windows
Phone. It should be noted that Moblin, Symbian and Windows Mobile are not
developed anymore, making them less meaningful targets for application devel-
opers. Support for the newest versions of BlackBerry OS and Windows Phone is
lacking. The documentation states that native user interfaces are available, but

59

this is largely dependent on the target operating system. Android seems to have
the best support in this regard. The created applications can be native or hybrid
when MoSync SDK is used, while MoSync Reload is meant for web-based appli-
cation development. MoSync Reload can also be used together with the MoSync
SDK Wormhole JavaScript API, which enables the usage of native functionality.
Some operating system specificity can be found in the API, but this seems to be
limited to a small percentage of the components. This could also be due to the
fact that some functionality has very limited availability on different operating
systems.

The API documentation is well-structured, but some functionality lacks exam-
ples and the descriptions can be short. Function-specific examples could help in
learning how the function should be applied in practice. There are some guides,
example applications and videos, though. Classroom training is available for a
fee, while customer support is available with paid subscriptions. In addition,
support from the community is available on a forum. The generator supports C,
C++, JavaScript, HTML and CSS as possible input languages. An application
developer can use C, C++, or JavaScript along with HTML, or a combination of
those in their applications. This is possible with the Wormhole functions, which
work as a bridge between JavaScript and C/C++ source code. HTML and CSS
are used for creating user interfaces. Therefore, programming skills are necessary
to make applications with any functionality beyond basic navigation. The IDE
that comes with the SDK is based on Eclipse, making it easy to learn for those
who have used it before. The installation and setup processes were simple, since
most of the tasks were automated.

Seven releases were identified, when the same criteria for a release as with Appcel-
erator Titanium were used. This information was acquired from the repository,
although judging from the version numbers, the generator has been in devel-
opment for several more versions. The time to get the generator in working
condition for Android development takes around 10 minutes. The MoSync SDK
is available for OS X and Windows, while MoSync Reload is available also for
Linux. MoSync SDK and MoSync Reload can be used with the GPL2 license,
if the resulting applications are shared as open source. Otherwise a proprietary
license is required.

60

6.3 PhoneGap

PhoneGap5 is a distribution of the Apache Cordova project. The development
started in 2008 and has reached version 2.9 in June 2013. This will also be
the version used for the evaluation. In 2011, the PhoneGap source code was
submitted to the Apache Software Foundation (ASF) for incubation, which is a
way for projects from outside Apache to become full ASF projects. The developers
believe that the web is the best solution for multi-platform development, and are
aiming to make it a better development platform by providing support in areas
where it is lacking.

A blog post from May 20126 explains how PhoneGap works. The user interface is
created inside an instance of the device’s browser view. This view does not contain
any typical browser interface components, just the content area. The provided
PhoneGap API allows a developer to access the native functionality of the device.
The created source code is packaged as a binary application archive, which is
native to the target operating system. Table 6.3 summarizes the information
found on PhoneGap.

5http://phonegap.com/
6http://phonegap.com/2012/05/02/phonegap-explained-visually/

http://phonegap.com/
http://phonegap.com/2012/05/02/phonegap-explained-visually/

61

Table 6.3: Evaluation of the PhoneGap tools.

Similarly to the previous mobile application generators, PhoneGap also enables
reuse by creating multi-platform applications from the input source code along
with the architecture. A client-server architecture is common, according to the
previously mentioned blog post, when data-driven applications are made. The
client-server architecture allows a developer to reuse the application logic and the
data handling on the server and only the client applications potentially have to
be modified for each target operating system.

Out of the same functionality inspected before, Bluetooth was not implemented in
PhoneGap. All other functionality was available for both Android and BlackBerry
OS. There were some third-party plugins for Bluetooth, but they had not been
updated for the newer versions of the tool. NFC functionality was also lacking in
the official API, but an up-to-date version was available as a third-party plugin. A
table with operating system-specific compatibility helped in finding the necessary
information.

The generator supports Android, Bada, BlackBerry OS, iOS, Symbian, WebOS
and Windows Phone. Some functionality is missing for some of the operating
systems, but in general the functionality provided by the generator can be used on

62

all capable target operating systems. There is some specificity in the component
attributes, which may cause issues if used. These are well documented in the
appropriate API entries, though. Due to the fact that the views are rendered in
an instance of the device’s browser view, native user interface components are
not available. The output applications are not native for the same reason.

The API documentation is well-structured and there are examples to help in
understanding the provided functionality. There are not that many guides, while
video tutorials and example applications are not provided at all. There are guides
made by users, but these guides are often old and contain deprecated information.
The structured API and its examples are valued higher, making the grade three.
Training is available for all subscribers, and a free of charge subscription exists.
Subscribers have access to recordings of old training sessions and are able to
participate in future online training sessions, which makes up for the lack of
guides and videos. The development languages are JavaScript, HTML and CSS.
This means that programming skills are required from the application developer.
Customer support is available, with the amount of support methods and times
dependent on the type of the subscription. There is a content-wise small wiki
available, while a forum is available only for subscribers. The tool does not come
with its own IDE implementation but uses Eclipse instead.

Information gathered from the repository suggests that there have been 20 major
versions of the tool. Distribution is done under the Apache License version 2.0.
While Linux, OS X and Windows are supported, some tools are not available for
all operating systems. For example, BlackBerry OS development is not possible
with Linux. The setup process requires some advanced system knowledge. Com-
mand line tools need to be used for the generator-specific tools, while Eclipse and
Android Development Tools are downloaded separately. Unfortunately, after sev-
eral tries, the tools could not be successfully installed on a PC running Windows.
Although the command line tools seemed to install the generator without errors,
the generator failed to respond to any usage attempts. Therefore the setup time
could not be accurately measured, but it can be estimated to take around 20
minutes, when the completed tasks are compared to the tasks in the provided
setup guide.

7 Conclusions

The goal of this research was to identify the problems behind application de-
velopment for multiple mobile operating systems and see if mobile application
generators could help with these issues. A set of metrics and criteria was created
to evaluate existing tools in this regard.

The differences between mobile application types have to be weighed by appli-
cation developers to find the best solution. For example, games requiring more
processing power should be implemented with more efficient native technologies,
while content-driven applications benefit from the easily maintained web-based
methods. In order to solve this problem, reuse technologies in the form of ap-
plication generators have been created. These tools allow developers to output
different types of applications, and even native-like applications can be developed
simultaneously for several target operating systems using the same source code
as a base for each application. Application developers should identify their needs
as early as possible to be able to choose the best tool to support the development
process.

To evaluate these tools some metrics and criteria have to be used. However,
there is not much research available on the matter, since previous studies have
not focused on mobile application generator evaluation. Previous research from
other areas of reuse along with characteristics identified in mobile development
and application generators were used as a base for a set of metrics and criteria
to evaluate existing generators. These metrics and criteria were then applied to
existing generators to see how well they address the multi-platform development
issues.

7.1 Findings

As previous research has already noted, the mobile application scene is splintered
due to the large number of development, distribution and execution methods.
While native applications are preferred by users due to their consistent look and
feel, developers are looking for easier solutions to cover as many platforms as
possible. Native applications are not necessarily the best solution for multi-
platform development due to the large number of technologies that would have
to be learned and used.

64

Finding information on some of the generators proved to be difficult. This was
noted also by Bertoa et al. [2003] when examining software components. Al-
though such information is important for a generator user, the availability of
clear and up-to-date documentation about the transformation process and the
exact nature of the output is limited. This information could help an application
developer to select the right generator.

The differences in the functionality offered by a single generator between different
target operating systems were surprising. The supported functionality should be
clearly presented for each mobile operating system in order to have this infor-
mation available to the developers. MoSync provides a helpful feature in their
IDE that lets users to select functionality they prefer to have or even require
in an application, and the tool shows which operating systems support the se-
lected functionality. MoSync and PhoneGap also have good documentation in
this regard, as they provide tables clearly showing the differences in the offered
functionality between the target operating systems. MoSync goes somewhat fur-
ther with their table, since it separates the classes and functions available for
each target operating system.

To analyze these differences between tools, a set of metrics and criteria was sug-
gested for evaluating functional suitability, usability, reliability and portability.
When analyzing the generators with these metrics and criteria, it was found that
the generators are the most suitable when applications using only a few device
features are developed, as there is no guarantee that advanced functionality is
supported. Even though good support for features might exist today, new fea-
tures added on a device tomorrow might not be immediately available through
these third-party generators. The learning curve for the evaluated generators is
thought to be more moderate than learning the native development methods for
several platforms. It is up to the application developer to decide whether faster
development or more efficient applications with native look and feel are desired.
One more benefit the generators provide is that applications can be developed
on operating systems that are not usually supported. For testing and packaging,
however, native tools might be required.

Because of the faster development methods, mobile application generators could
be used for fast prototyping. It is said, though, that although modern tools
simplify the creation of mobile applications, they are too focused on single devel-
opers getting their implementation done swiftly [Wasserman, 2010]. Heitkötter et

65

al. [2012] state that the available tools are mature enough to be used instead of
native solutions. The authors continue that due to the lower development skill re-
quirement, these solutions might be preferred even instead of native applications,
although advanced functionality might still require a native application.

Mobile application generators can address some of the issues in mobile application
development. In case an application does not require advanced functionality,
generators can make the development process shorter. Some generators also have
the capability to produce different application types, which makes it easy to use
the same tool for different applications. The need for learning several development
languages is also largely eliminated.

As for the suggested metrics and criteria, we feel that they are a good starting
point for generator evaluation. They provide a fast way to eliminate tools that
are not suitable as application generators in the light of the users requirements.
However, some of the criteria are subjective, making the evaluation specific to one
developer’s needs. For example, the value for general usability can vary between
persons doing the evaluation.

We feel that the functional suitability is a good way of evaluating whether the
generator provides enough features for an application developer, as well as defin-
ing if assets using those features are portable to other target operating systems.
Reusing developed assets to generate multi-platform applications lowers the total
development time when compared to application development with native meth-
ods. When selecting a generator, functional suitability is an important matter
because without proper functionality support an application developer cannot
create applications with required features.

Usability can help in assessing how much effort will be needed to understand
the usage of the generator. Application developers need to understand how the
generator works, if they wish to get all benefits. For example, if it is unclear how
assets should be adapted to different target operating systems, the final product
might not have the expected quality. Application developers are likely to be able
to adapt to new technologies, but if familiar technologies can be used, developed
products are finished faster and are less likely to contain errors.

It is not enough that the input is error-free, but the generator also needs to func-
tion as expected. One of the goals of reuse is increasing quality by decreasing
the number of defects in the final product. This cannot be achieved if the gener-

66

ator has an error that creates systematic defects in the applications it produces.
Therefore, an application developer needs to know that the product is tested and
fixes are applied when necessary. When selecting a generator, those that are
updated regularly could be preferred, as they can be considered to contain less
errors.

Portability helps selecting generators that run on devices used in development.
The generator is useless if an application developer cannot refine the input into
an application. Licensing factors are also considered, as application developers
might want to choose the license of an application themselves, instead of using
one forced by the generator providers. Usually a commercial license is required
for using an open source generator to create closed source applications.

The use of the suggested metrics and criteria was relatively simple in the cases
where the generator providers offered clear documentation. For example, the
previously mentioned functionality tables offered by MoSync and PhoneGap made
evaluating functional coverage easy. Usable development languages were also
clearly stated by all the analyzed generators. On the other hand, the number of
versions that have been available was more difficult to determine and required
examining the repositories of the generators. The value for this metric could be
impossible to determine for closed source generators, if the generator providers
remove information about past versions from their web pages.

Some of the issues with reuse can be reduced with mobile application generators.
Generators themselves are tools that support reuse and enable using the same
assets to develop an application for multiple platforms. When compared to soft-
ware product lines, application generators can decrease the needed investments
by reducing the work an application development team would normally do. Mo-
bile application generators include target operating system-specific modifications
in the input, while system-specific features are interpreted and implemented by
the generator. This reduces—if not eliminates—the need for application develop-
ment teams. Additionally, since mobile application generators often use common
programming languages or web technologies as input, and the input already con-
tains domain-specific fragments, the generalized input can be less complex when
compared to more general reusable assets or core assets used in software product
lines. As Biggerstaff [1998] notes, domain specificity is also a key component in
reuse success.

67

7.2 Future research and limitations

Some of the metrics and criteria could be altered to measure the attributes in
a different way. For example, maturity could be determined as the difference in
time between a generator’s original release date and the date of the most recent
update. The date of the most recent update could also be used as a separate
metric for maturity. This would tell for how long the generator has been in
development, and if the generator has been recently updated. The number of
versions used in the analysis does not tell whether the tool has had any recent
updates, which could indicate whether the generator can support the most recent
changes in a target operating system’s functionality.

More precise metrics and criteria can also be created. Development languages
could be divided between user interface- and application logic development lan-
guages. This change would make it easier to understand if a development language
can be used to create a complete application or not. For example, HTML 5 can
be used to create web-based applications, but if a generator creates just native
applications, it is more likely that HTML 5 is used to define only the user in-
terface. General usability can also be analyzed more thoroughly with the use
of existing usability heuristics. It should be noted, though, that adding more
metrics and criteria while refining the existing ones to be more specific can make
them more cumbersome and time-consuming to use.

Cleaveland [1988] suggested that application generators should be usable without
programming knowledge. All of the evaluated generators required programming
skills for the application logic. There are some generators advertised as not
requiring any programming. For example Magmito1 is one such generator. The
applications are created with a simple GUI builder, but they are content-based
and cannot access any device features. In general, generators that do not use
programming languages as input seem to generate applications which have limited
functionality but can be less prone to errors, while generators using programming
languages as input provide better access to device features, but the applications
can be more prone to errors due the potential mistakes present already in the
user-written input.

1http://www.magmito.com/

http://www.magmito.com/

68

The metrics and criteria described here were applied only to existing generators
that were very similar in functionality. To get better results, evaluation should
be done on more generators, especially on those with a different approach, such
as Magmito or AppsGeyser2. They are advertised as being usable even without
programming skills, making them very different from the ones evaluated here.
They were not evaluated here due to not being open source and having minimal
documentation. The HTML 5 standard could also have a significant impact on
mobile development. Furthermore, the proposed metrics and criteria were largely
based on previous research on reuse metrics. More relevant information could be
acquired if the metrics were developed by someone that is experienced in mobile
application development as well as in using application generators.

Generators could also be investigated based on how they actually work. As was
discovered, up-to-date information about the internal functionality is difficult to
find, but at least the open source solutions could be examined more thoroughly.
Another way to compare the generators would be to create a similar application
with different tools and compare the quality of the output. However, the output
should be tested on several physical devices, since emulation might not show
accurate results.

While the goal was to create a set of metrics and criteria that would be easy to
use, the measurement process could also be modified to accommodate more exact
measurements. For example, as Bertoa and Vallecillo [2004] say, attributes could
be divided to affect more than one measurable concept. For example, commu-
nity availability could also measure learnability. More objective measurements
could be also used, as subjective measurement is difficult to automate [Bertoa &
Vallecillo, 2004]. Automation could be difficult, though, as relevant information
cannot be found in any standard places.

Bertoa et al. [2003] mention that component developers should provide quality
information about their products, although it may be unlikely to happen. Many
metrics and criteria have been suggested by different authors, but it is unlikely
to get component developers to agree on a specific set, since they are likely to
emphasize the ones that show their own products in a favorable way [Bertoa &
Vallecillo, 2002]. Since different tools are competing for users, we feel that these
statements also apply to generators.

2http://www.appsgeyser.com/

http://www.appsgeyser.com/

References

[Abrahamsson et al., 2004] Pekka Abrahamsson, Antti Hanhineva, Hanna
Hulkko, Tuomas Ihme, Juho Jäälinoja, Mikko Korkala, Juha Koskela, Pekka
Kyllönen, & Outi Salo. Mobile-D: an agile approach for mobile application
development. In Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications, OOPSLA
’04, pages 174–175, New York, NY, USA, 2004. ACM.

[Android report, 2013] Android report. Dashboards, May 2013. Avail-
able as http://developer.android.com/about/dashboards/index.html. Checked
30.5.2013.

[Apple, 2013] Apple. Apple updates iOS to 6.1, January 2013. Avail-
able as http://www.apple.com/pr/library/2013/01/28Apple-Updates-iOS-to-6-
1.html. Checked 16.7.2013.

[Batory, 2004] Don Batory. The road to utopia: A future for generative program-
ming. In Christian Lengauer, Don Batory, Charles Consel, & Martin Odersky,
editors, Domain-Specific Program Generation, volume 3016 of Lecture Notes in
Computer Science, pages 1–18. Springer Berlin Heidelberg, 2004.

[Bertoa & Vallecillo, 2002] Manuel F. Bertoa & Antonio Vallecillo. Quality at-
tributes for COTS components. I+D Computación, 1(2):128–144, November
2002.

[Bertoa & Vallecillo, 2004] Manuel F. Bertoa & Antonio Vallecillo. Usability
metrics for software components. Proceedings of the 8th ECOOP Work-
shop on Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE’04), 2004.

[Bertoa et al., 2003] Manuel F. Bertoa, José M. Troya, & Antonio Vallecillo. A
survey on the quality information provided by software component vendors.
In Proceedings of the 7th ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering (QAOOSE 2003), pages 25–30, July
2003.

[Biddle & Tempero, 1998] Robert L. Biddle & Ewan D. Tempero. Towards tool
support for reuse. In Proceedings of the 1998 International Conference on
Software Engineering: Education & Practice, pages 126–133, January 1998.

70

[Biggerstaff, 1998] Ted J. Biggerstaff. A perspective of generative reuse. Annals
of Software Engineering, 5:169–226, 1998.

[Caldiera & Basili, 1991] Gianluigi Caldiera & Victor R. Basili. Identifying and
qualifying reusable software components. Computer, 24(2):61–70, February
1991.

[Charland & LeRoux, 2011] Andre Charland & Brian LeRoux. Mobile applica-
tion development: Web vs. native. Queue, 9(4):20–28, April 2011.

[Cleaveland, 1988] J. Craig Cleaveland. Building application generators. Soft-
ware, IEEE, 5(4):25–33, July 1988.

[Czarnecki & Eisenecker, 1999] Krzysztof Czarnecki & Ulrich W. Eisenecker.
Components and generative programming. In Oscar Nierstrasz & Michel
Lemoine, editors, Software Engineering – ESEC/FSE ’99, volume 1687 of Lec-
ture Notes in Computer Science, pages 2–19. Springer Berlin Heidelberg, 1999.

[de Sá et al., 2008] Marco de Sá, Luís Carriço, Luís Duarte, & Tiago Reis. A
framework for mobile evaluation. In CHI ’08 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’08, pages 2673–2678, New York, NY,
USA, 2008. ACM.

[Frakes & Kang, 2005] William B. Frakes & Kyo Kang. Software reuse research:
status and future. IEEE Transactions on Software Engineering, 31(7):529–536,
July 2005.

[Frakes & Terry, 1996] William Frakes & Carol Terry. Software reuse: metrics
and models. ACM Comput. Surv., 28(2):415–435, June 1996.

[Gartner report, 2013] Gartner report. Gartner says Asia/Pacific led worldwide
mobile phone sales to growth in first quarter of 2013, May 2013. Available as
http://www.gartner.com/newsroom/id/2482816. Checked 1.6.2013.

[Gavalas & Economou, 2011] Damianos Gavalas & Daphne Economou. Develop-
ment platforms for mobile applications: Status and trends. Software, IEEE,
28(1):77–86, January–February 2011.

[Hammershøj et al., 2010] Allan Hammershøj, Antonio Sapuppo, & Reza Taday-
oni. Challenges for mobile application development. In 2010 14th International
Conference on Intelligence in Next Generation Networks (ICIN), pages 1–8,
October 2010.

71

[Heitkötter et al., 2012] Henning Heitkötter, Sebastian Hanschke, & Tim A. Ma-
jchrzak. Comparing cross-platform development approaches for mobile appli-
cations. In 8th International Conference on Web Information Systems and
Technologies, pages 299–311, 2012. Unpublished.

[Her et al., 2007] Jin Sun Her, Ji Hyeok Kim, Sang Hun Oh, Sung Yul Rhew, &
Soo Dong Kim. A framework for evaluating reusability of core asset in product
line engineering. Information and Software Technology, 49(7):740–760, 2007.

[Holzer & Ondrus, 2011] Adrian Holzer & Jan Ondrus. Mobile application mar-
ket: A developer’s perspective. Telematics and Informatics, 28(1):22–31, 2011.

[Hsieh & Tempero, 2006] Min-Sheng Hsieh & Ewan Tempero. Supporting soft-
ware reuse by the individual programmer. In Proceedings of the 29th Aus-
tralasian Computer Science Conference, volume 48 of ACSC ’06, pages 25–33,
Darlinghurst, Australia, 2006. Australian Computer Society, Inc.

[Huy & vanThanh, 2012] Ngu Phuc Huy & Do vanThanh. Evaluation of mo-
bile app paradigms. In Proceedings of the 10th International Conference on
Advances in Mobile Computing & Multimedia, MoMM ’12, pages 25–30, New
York, NY, USA, 2012. ACM.

[ISO, 1991] ISO. ISO/IEC 9126:1991 Software enginnering - Product quality,
December 1991.

[ISO, 2011] ISO. ISO/IEC 25010:2011 Systems and software engineering - Sys-
tems and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models, March 2011.

[Java documentation, 2013] Java documentation. About Java ME, 2013.
Available as http://www.oracle.com/technetwork/java/javame/about-java-me-
395899.html. Checked 31.5.2013.

[Jha & O’Brien, 2009] Meena Jha & Liam O’Brien. Identifying issues and con-
cerns in software reuse in software product lines. In Stephen H. Edwards &
Gregory Kulczycki, editors, Formal Foundations of Reuse and Domain Engi-
neering, volume 5791 of Lecture Notes in Computer Science, pages 181–190.
Springer Berlin Heidelberg, 2009.

72

[Kitchenham et al., 1995] Barbara Kitchenham, Shari Lawrence Pfleeger, & Nor-
man Fenton. Towards a framework for software measurement validation. IEEE
Transactions on Software Engineering, 21(12):929–944, 1995.

[König-Ries, 2009] Birgitta König-Ries. Challenges in mobile application devel-
opment. Information Technology, 51(2):69–71, February 2009.

[Mikkonen & Taivalsaari, 2011] Tommi Mikkonen & Antero Taivalsaari. Apps
vs. open web: the battle of the decade. In Proceedings of the 2nd Workshop on
Software Engineering for Mobile Application Development, 2011.

[Mili et al., 1995] Hafedh Mili, Fatma Mili, & Ali Mili. Reusing software: Is-
sues and research directions. IEEE Transactions on Software Engineering,
21(6):528–562, June 1995.

[Qt documentation, 2013] Qt documentation. Supported platforms, 2013. Avail-
able as https://qt-project.org/doc/qt-5.0/qtdoc/platform-details.html. Checked
31.5.2013.

[SailfishOS wiki, 2013] SailfishOS wiki. Wiki - QA, 2013. Available as
https://sailfishos.org/wiki/QA. Checked 30.5.2013.

[Smaragdakis & Batory, 2000] Yannis Smaragdakis & Don Batory. Application
generators. Encyclopedia of Electrical and Electronics Engineering, 2000. J.G.
Webster (ed.), John Wiley and Sons.

[Sztipanovits & Karsai, 2002] Janos Sztipanovits & Gabor Karsai. Generative
programming for embedded systems. In Don Batory, Charles Consel, & Walid
Taha, editors, Generative Programming and Component Engineering, volume
2487 of Lecture Notes in Computer Science, pages 32–49. Springer Berlin Hei-
delberg, 2002.

[W3C documentation, 2013] W3C documentation. Device APIs working group,
2013. Available as http://www.w3.org/2009/dap/. Checked 3.6.2013.

[Washizaki et al., 2003] Hironori Washizaki, Hirokazu Yamamoto, & Yoshiaki
Fukazawa. A metrics suite for measuring reusability of software components.
In Proceedings of the Ninth International Software Metrics Symposium, 2003,
pages 211–223, 2003.

[Wasserman, 2010] Anthony I. Wasserman. Software engineering issues for mobile
application development. In Proceedings of the FSE/SDP Workshop on Future

73

of Software Engineering Research, FoSER ’10, pages 397–400, New York, NY,
USA, 2010. ACM.

	1 Introduction
	1.1 Separated platforms
	1.2 Research motivation, goals and methods

	2 Mobile application development methods and issues with multiple platforms
	2.1 Development tools and application distribution
	2.2 Issues in mobile application development
	2.2.1 Differences in hardware
	2.2.2 Challenges for the developers
	2.2.3 Possible solutions

	2.3 Application types
	2.3.1 Native applications
	2.3.2 Web-based applications
	2.3.3 Hybrid applications

	3 Software reuse
	3.1 Why reuse?
	3.2 Reuse methods
	3.2.1 Components and reuse libraries
	3.2.2 Software product lines

	3.3 Reuse issues

	4 Application generators
	4.1 Application generators in general
	4.2 Mobile application generators

	5 Metrics and criteria for mobile application generators
	5.1 Previous research
	5.1.1 Software component evaluation
	5.1.2 Component information
	5.1.3 Evaluating mobile application types and approaches

	5.2 Suggested metrics and criteria
	5.2.1 Entity, user group and characteristics
	5.2.2 Measurable concepts and attributes
	5.2.3 Metrics and criteria

	5.3 Validation of the metrics and criteria

	6 Evaluation of existing generators
	6.1 Appcelerator Titanium
	6.2 MoSync
	6.3 PhoneGap

	7 Conclusions
	7.1 Findings
	7.2 Future research and limitations

	References

