

Metamodelling and Evaluating Extreme Programming

Sundar Kunwar

University of Tampere

School of Information Sciences

Computer Science

M.Sc. thesis

Supervisor: Eleni Berki

May 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250122457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

University of Tampere

School of Information Sciences

Computer Science

Sundar Kunwar: Metamodelling and Evaluating Extreme Programming

M.Sc. thesis, 70 pages

May 2013

Agile software development methods have drawn the attention of software development

professionals in the past few years. Agile software development methods use iterative

and incremental approaches to address the changing requirements of customers. One of

the well-known agile software development methods is extreme Programming (XP) and

is derived by sets of values including simplicity, communication, feedback and courage.

The extreme practices, variation in composition and interaction between values and the

feedback in XP have made the software system more complex and demands the

improvements and evaluation framework to understand and evaluate the XP practices in

a practical way.

The main aims of this study are to improve some of the extreme practices of XP

through agile modeling and evaluate the XP projects using XP evaluation framework.

Two research questions were set to find out the enabling and limiting factors of extreme

practices of XP and the way to improve the XP software process. An interpretive

research approach was used to conduct a literature review to develop the agile meta-

models and evaluation framework for process improvement. The contribution of thesis

work can be broadly categorized into two parts. The first part deals with modelling the

three most criticized and extreme practices (lightweight requirement, Pair Programming

and onsite customer) of XP and the second part is concerned with developing the

evaluation framework for XP. Use cases are collected from scenario based requirement

engineering practice with stakeholder analysis to address the lightweight requirement of

XP. Problems of Pair Programming are addressed by personal development traits,

Distributed Pair Programming (DPP) and Collaborative Adversarial Pair (CAP)

Programming models. Surrogate customers and multiple customer models are two

alternatives proposed to address the problems of onsite customer in XP. The XP

evaluation framework is a collection of some new and validated metrics used for

evaluating XP projects, XP practices, XP products and some additional factors

concerned with XP.

Key words and terms: Agile, extreme Programming (XP), interpretive research,

Collaborative Adversarial Pair (CAP) and extreme practices.

ii

Acknowledgement

My thesis work would not have been possible without the proper guidance and the

sincere help from several persons who in one way or another contributed and provided

valuable suggestions and feedback in preparing and completing the thesis work.

Foremost, I would like to express my sincere gratitude to my professor and thesis

supervisor Eleni Berki for the valuable guidance and continuous support to my thesis

work. I am thankful for her patience, immense knowledge and motivation. Her

guidance helped me a lot all the time in writing my thesis.

Besides my supervisor, I would like to thank to my professor Zheying Zhang for

arranging the thesis seminar and for providing creative comments on the idea and

progress presentation. I would also like to thank all the attendee of the thesis seminar

for paying attention to my thesis work and for providing the creative and reflective

comments. I would also like to thank my English teacher Robert Hollingsworth who

helped me in making familiarization with thesis writing and academic writing. I would

also like to express my sincere thanks to project teacher Timo Poranen for his

constructive feedback.

Last but not the least, I would like to thank all my family members, friends and

relatives who encouraged and helped me in all the way for making my study possible.

Sundar Kunwar

15
th

 May 2013, Tampere

iii

Table of Contents

1. Introduction .. 1

1.1 Extreme Programming (XP) .. 3

1.2 Scrum ... 4

1.3 Related Work ... 6

1.4 Research Method ... 7

1.5 Thesis Contribution ... 8

1.6 Thesis Structure ... 8

2. Rules and Practices of XP .. 10

2.1 Whole Team .. 10

2.2 Planning Game .. 10

2.2.1. Release Planning ... 11

2.2.2. Iteration Planning .. 11

2.3 Customer Tests .. 12

2.4 Releases ... 12

2.5 Simple Design ... 13

2.6 Pair Programming .. 13

2.7 Test-Driven Development ... 13

2.8 Design Improvement ... 14

2.9 Continuous Integration .. 14

2.10 Collective Code Ownership ... 15

2.11 Coding Standard .. 15

2.12 Metaphor ... 15

2.13 Sustainable Pace .. 16

3. Modelling Approaches ... 17

3.1 System Dynamics .. 17

3.2 Computer Simulation .. 17

3.3. Agile Modelling (AM) ... 18

4. Pitfalls of XP .. 21

4.1 Requirement .. 21

4.2 Onsite Customer .. 23

4.3 Pair Programming .. 23

5. Addressing Pitfalls through Agile Modelling ... 25

5.1 Requirement Model ... 25

5.2 Onsite Customer Model ... 33

5.3 Pair Programming Model .. 35

6. Evaluation of XP .. 40

iv

6.1 Meaning of Measurement .. 40

6.2 Software Metrics ... 41

6.3 Proposed Evaluation Framework for XP ... 42

6.3.1. Project Records ... 43

6.3.2. XP Practices Metrics ... 46

6.3.3. XP Product Metrics ... 50

6.3.4. XP Additional Metrics .. 52

7. Discussion ... 54

8. Conclusion .. 63

References .. 65

1

1. Introduction

Software development approaches have been enhancing significantly all the time. It

simply means that software development methodologies are expanding and are

becoming more complex because software engineering is merged with different diverse

fields. Software development methodologies are the frameworks that are used for

structuring, planning and controlling the processes involved in software development.

Traditional software development methodologies are plan driven heavyweight

methodologies because they consist of sequential series of steps that need to be planned

and documented in detail before implementation. The waterfall model, V shaped model

and Rational Unified Process (RUP) are the most popular traditional software

development methodologies. A lot of money is spent on developing these methods that

have nothing to do with the customers’ requirements. This will certainly increase the

cost of the product. Most of the traditional software development methodologies are

very rigid to change. Changes are only possible if the improvements are brought back to

an earlier stage which is waste of time, money and resources. In simple words, they are

not able to address the changing requirements of the market any more. As a result, new

software development approaches have evolved as agile methodologies to address the

rapid changing requirement of the market. According to the Merriam-Webster [2012]

online dictionary, ‘agile’ is defined as the ability to move quickly and having the

characteristics of being easy, adaptable and resourceful. In agile software development,

‘agile’ means the ability to respond to change. Therefore, it is not simply the size of the

process or the speed of delivery; it is about the flexibility of the process or methods

[Kruchten, 2010]. Kruchten advocates agility as flexibility and adaptability, but according

to Cockburn [2001], "Core to agile software development is the use of light but

sufficient rules of project behaviour and the use of human and communication oriented

rules."

Agile methodologies are the reactions to the traditional methods with

documentation driven and heavyweight software development processes. Agile

methodologies include modification in software development process to make them

faster, more flexible, lightweight and productive. In the late 1990’s, several software

development methodologies drew the attention of the public and each method has a

combination of old ideas, new ideas and transmuted old ideas [Kalermo & Rissanen,

2002]. What was common among all these methodologies was that they all emphasized

personal interaction over process, direct communication, short and frequent release,

iterative process, self organization and code crafting among others.

2

At a summit of seventeen independent practitioners of several programming

methodologies, the agile manifesto was written in February of 2001. The practitioners

were found consensus around the following four values:

i. Individuals and interactions over processes and tools

ii. Working software over comprehensive documentation

iii. Customer collaboration over contract negotiation

iv. Responding to change over following a plan [Agile Manifesto, 2001]

In addition to the four values, the Agile Manifesto also contained the following

twelve principles:

i. Customer satisfaction and continuous software delivery are given high priority.

ii. Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

iii. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

iv. Business people and developers must work together daily throughout the

project.

v. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

vi. The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

vii. Working software is the primary measure of progress.

viii. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

ix. Continuous attention to technical excellence and good design enhances agility.

x. Simplicity-the art of maximizing the amount of work not done--is essential.

xi. The best architectures, requirements, and designs emerge from self-organizing

teams.

xii. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly. [Agile Manifesto, 2001]

There are many agile methodologies in use today. Some of the most popular ones

are extreme Programming (XP), Scrum, Feature Driven Development (FDD), Crystal

Methodologies Family (CMF) and Adaptive Software Development (ASD). FDD is an

iterative and incremental agile software development method. Its practices are all driven

by a client-valued functionality known to be feature. CMF is the collection of

http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://en.wikipedia.org/wiki/Iterative_and_incremental_development

3

lightweight methodologies. ASD is a software development process characterized by

rapid software development. The continuous adaptation of the process to the work at

hand is the normal state of affairs in ASD. Of these, XP and Scrum are the most

commonly used agile software development methodologies.

1.1 Extreme Programming (XP)

One of the well-known methods of Agile is extreme programming (XP in short) and is

driven by a set of values including simplicity, communication, feedback and courage

[Beck, 1999a]. The XP process is characterized by a short development life cycle,

incremental planning, continuous feedback and reliance on communication and

evolutionary design. The core part of XP consists of a simple set of practices including

a planning game, small releases, metaphor, simple design, test driven development

(TDD), refactoring, Pair Programming (PP), collective ownership, continuous

integration, 40 hour week, onsite customer and coding standards [Sfetsos et al. , 2006].

This interesting composition of XP is one of the main reasons that make it successful.

It is necessary to identify and handle the problems such as complexity,

conformity, changeability and invisibility in each type of software process

improvement. According to the software engineering theory, the first question that the

company should ask is what the problems with our current process are and then go for

improvements and changes if necessary [Louridas et al., 2008]. The processes of the

system are mainly dynamic in nature with the involvement of humans as managers,

developers and customers among others. Variation in human observation variation,

instruction, communication, interest, culture, experiences, and inclination make the

process more complex and dynamic [Yong & Zhou, 2009]. It was first Beck [2000] and

Jeffries et al. [2001] who developed the XP as system. Extreme Programming (XP) is a

software development methodology developed to improve the quality of software as

well to respond to the changing needs of customers. Broadly, it advocates short and

frequent small releases to improve productivity and introduces lightweight practices in

software development methodology. It is known from different studies that the ability

to successfully implement the XP process varies from company to company and is

heavily based on tacit knowledge, skill, frequent communication and motivation. Beck

(1999a) stated that XP is an intensely social activity and not everyone can learn it.

However, the variation in composition and interaction between the values and practices

and their feedback in the XP system has made the software system more complex and

needs more knowledge to understand each and every common practice of XP [Beck,

2000]. XP is known to be a lightweight agile software development methodology with

some extreme practices which are lightweight in nature but very difficult and

http://en.wikipedia.org/wiki/Software_development_process

4

sometimes unrealistic to implement practices and there are only a few analytic studies

related to XP. Most of the literature and books have been drafted by the inventors of the

Agile Manifesto and are concerned with the promotion and commercialization of the

agile methods and the services they provide. Therefore, most of the materials seem like

promotional material rather than an analysis of strength and weakness as of agile

software development. Figure 1 shows the general overviews of XP. Release planning

is done with the help of system metaphor obtained architectural spikes and the

requirement specifications obtained from user story. Release plan helps to carry out the

iteration which in turn produces a piece of software. Small releases are released after

the acceptance test approved by customer.

Figure 1: XP release cycle [XP flow Chart, 2013].

1.2 Scrum

Jeff Sutherland created the Scrum process in 1993 [Sutherland, 2004]. The name Scrum

was borrowed from an analogy put forward by a study carried out by Takeuchi and

Nonaka.They have compared high-performing, cross-functional teams to the Scrum

formation used by rugby teams in their study. [Takeuchi & Nonaka, 1986] Scrum is a

lightweight process used for managing and controlling software and the software

development process. It was found that Scrum was practiced before the announcement

of the Agile Manifesto. It was later included into agile methodology because of the

same underlying concepts and principles. Scrum shares the basic concept of agile

methodologies with some project management practices. It is a leading agile software

5

development methodology used by many fortune companies around the world and the

Scrum framework consists of the following components [Scrum Alliance, 2013]:

-A product owner creates prioritized wish lists called ‘product backlogs’. They are a

simplified form of requirement list.

-Some wish lists, most possibly the higher prioritized wish lists, are selected to be

implemented in each sprint, and sprint planning is carried out to decide how to

implement those wish lists.

-A team has a very short time to implement those wish lists and the duration is called

‘sprint’ and generally sprint duration lasts for two to four weeks. Daily meetings are

carried on to know the problems and progress.

-A team leader is called a ‘Scrum master’, who is supposed to focus all the team

members on the Scrum goal.

-At the end of the sprint, it is supposed that the implementation of the wish lists should

be ready to show to the client.

-Finally, the sprint ends with a sprint review and retrospective.

-The next sprint is carried out with the same rules but with different wish lists to

implement.

As explained above, the general overview of the Scrum development cycle is

shown in Figure 2. The development cycle repeats until the logs in the product backlog

have been successfully completed, the budget depleted and the deadline arrives. Scrum

makes sure that the most of the prioritized tasks have been completed before the

termination of the project.

Figure 2: Scrum Overview [Scrum Alliance, 2013].

6

1.3 Related Work

Extreme programming (XP) is widely used in both academic and industry sectors, but

there is only little work done on XP modelling and evaluating to improve the XP

software process. It is very difficult to implement all the practices of XP. A study was

carried out to know about the existing models of XP and what kinds of models are

necessary for future work [Abouelela & Benedicenti, 2010]. System Dynamic model of

XP development process was used to evaluate the development process quantitatively

and XP practices by simulation [Yong & Zhou, 2009]. The controlled experiment with

students was carried out to find the effect of Pair Programming. The students were

divided into groups to find the effects of Pair Programming in XP. Four experiments

were carried out to find the effects of Pair Programming at Poznan University of

Technology. [Nawrocki & Wojciechowski, 2001] After the development of integrative

models of software development project management, Wernick and Hall studied the

impact of Pair Programming on the long term evolution of software systems [Wernick

& Hall, 2004]

A quantitative evaluation framework was proposed for agile methodologies. The

proposed evaluation framework measures the agile methodologies based on the

postulates from Agile Manifesto. For each methodology, four postulates and

corresponding formula are used for quantitative evaluation. [Karla et al., 2010] The

methodologies can be evaluated and constructed using evaluation frameworks and

meta-models and they are referred as meta-methodologies. A comprehensive overview

of building of efficient and cost effective meta-models and evaluation frameworks with

qualities properties identified in scientific and reliable way was provided. [Berki, 2006]

Williams initiated the evaluation framework for XP as a part of her Software

Engineering Research group work in empirical software engineering and it consists of

three parts-context factors, adherence measures and outcome measures [Williams et al.,

2005].

There is no evidence of modelling the XP (building the model of XP) to address

its major pitfalls. Most of the works were only focused on finding the pitfalls of XP and

provided some alternative solutions by comparing with other methodologies such as XP

vs. Capability Maturity Model (CMM), XP vs. Sommerville-Sawyer model and XP vs.

Scrum among others [Nawrocki et al., 2002]. The quantitative framework works only

on four postulates based on the Agile Manifesto and provides the quantitative values

based on that postulates. Evaluation Framework developed by Williams [2005] is more

general and is not only focused to XP. It is a more generalized form of an evaluation

framework for agile methodologies. Therefore, there is a need for more XP focused

7

evaluation framework that basically concentrates on XP practices, XP product and XP

project.

1.4 Research Method

My aim is to gain a thorough understanding of current practices of extreme

programming and to build the agile models of extreme practices addressing the pitfalls

of XP and I also propose the evaluation framework that best suits XP practices. My

work is more concerned with the applicability of XP. I have considered Extreme

Programming as an initial research framework for explaining and evaluating various

aspects of it.

The research questions derived from the research intentions are:

1. What are the enabling and limiting factors of extreme practices of XP?

2. How could it be possible to improve the XP software process?

To attempt to answer the research questions set, I will follow an interpretive

approach to conduct a literature review. A research can be interpretive if it builds on the

assumptions that humans learn about the reality from the meanings they assign to social

phenomena such as language, consciousness, shared experiences, publications, tools,

and other artefacts [David, 2010]. The most fundamental principle of the interactive

research approach is a hermeneutic cycle derived from documents and literary analysis.

The different components of the hermeneutic cycle are illustrated in Figure 3.

Figure 3: Hermeneutic cycle adapted from [Tamminen 1992, 95].

Preunderstanding

Absorption=acquiring information, expansion of

interpretation potential

Theory building=Interpretation, Explanation

attempts, perception of missing pieces
Report

8

The first component of the hermeneutic cycle is concerned about the pre-

understanding of researchers on the subject matter and the second component is

concerned with the absorption of more knowledge from different sources to widen

knowledge to expand the researcher’s interpretation potential. The third component is

concerned with theory building on the basis of an interpretation of knowledge,

explanation attempts and missing knowledge. The last component is concerned with

documenting the new theories and knowledge acquired through interpretive research

approach. [Kalermo & Rissanen, 2000] The same approach of the hermeneutic cycle

will be used for modelling and evaluating Extreme Programming.

1.5 Thesis Contribution

I have used Extreme Programming as my research framework to examine the causes

why 100 percent implementation of XP is not possible and how XP can be evaluated in

an effective and efficient way. Therefore, I followed an interpretive approach to

conduct the literature review and this approach is concerned with the hermeneutic cycle

derived from document and literary analysis. I used the hermeneutic cycle for

modelling and evaluating extreme programming regarding the most criticised practices

of XP. My contribution can be broadly categorized into two sections:

i. Modelling the most criticised and extreme practices of XP.

ii. Developing XP focussed evaluation framework.

Lightweight requirement, onsite customer and Pair Programming are the three

most criticised and extreme practices of XP. Interpretive approach helped me in agile

modelling to address all the pitfalls of the three extreme practices of XP to make it

realistic and practical. The same approach was used in developing the evaluating

framework that is concerned with XP. Speaking more precisely, my contributions are as

follows:

i. Investigate the most criticised and extreme practices of XP.

ii. Make XP practitioners more careful in adopting all the extreme practices of

XP.

iii. Find out the solutions for the most criticised and extreme practices of XP.

iv. Avoid risk for adopting XP practices.

v. Provide a basic idea for adapting the improved practices using agile modelling.

vi. Develop evaluation framework helps to evaluate XP project.

1.6 Thesis Structure

My thesis is structured as: Chapter 1 includes an introduction of traditional and agile

software development methodologies. It also includes the related work, research

9

method, contributions and the structure of the thesis. Chapter 2 explains the rules and

practices of XP. It also shows how these practices are interrelated to each other. Chapter

3 includes the possible modelling approaches that can be employed with XP practices.

It explains dynamic modelling, computer simulation and agile modelling approaches. It

clarifies why an agile modelling approach is suitable to XP. Chapter 4 includes the

explanation of three most criticized and extreme practices of XP-lightweight

requirement (user story), onsite customer and Pair Programming. Chapter 5 includes the

solutions to those criticisms in order to eliminate or reduce them. A scenario based

requirement is presented as an alternative solution to XP lightweight requirement,

multiple customers and surrogate customer is presented as alternative solution to XP

onsite customer practice; and distributed Pair Programming and collaborative Pair

Programming is presented as an alternative solution to XP Pair Programming practice.

Chapter 6 explains the need for and development of the XP evaluation framework. It

includes various validated and few new metrics for XP evaluation. Chapter 7 includes

the discussion about the work done. It also analyzes the result. Chapter 8 concludes the

thesis work. It also includes the limitations of the study and the work that can be

extended in the future.

10

2. Rules and Practices of XP

XP is the lightweight methodology for software development and is oriented towards

the delivering the incrementally growing software products [Yong & Zhou, 2009]. XP

is flexible in nature because strong preference is given to the informal communication

of the development team over written documentation. The rules and practices used in

XP are described below. The interrelations among XP practices are shown in Figure 4:

Figure 4: Interrelation among XP practices [Beck, 1999b].

2.1 Whole Team

The whole team includes all the contributors to an XP project who sit together as

members of one team. This team includes the customer representative who is

responsible for providing the requirements, priorities and the feedbacks, programmers

who are responsible team members in implementing the customer’s requirements,

testers who are responsible for helping the customer to define the customer acceptance

tests, coach or project manager for team management, resource allocation, handling the

external communication, coordinating activities and facilitating the process for smooth

operation [Kalermo & Rissanen, 2002]. The best team has no specialists but only

contributors.

2.2 Planning Game

The main purpose of the planning is to determine what will be done by the date and

then what will be done after that. It consists of three phases-Exploration phase,

Commitment phase and Steering phase. Customer and development team go through

first two phases and after the team has committed to release plan, steering phase

11

commences. The main objective of the planning is steering the project and giving the

right direction towards its goal. The general block diagram illustrating the three phases

of planning game is shown below:

Figure 5: Three phases of Planning Game.

These three phases can be carried are two planning steps in XP and they are

[Kalermo and Rissanen, 2002]:

2.2.1. Release Planning

In release planning the customer presents the desired features to the programmers and

the programmers estimate the difficulty of the release plan. The customer lay out the

plan without the cost estimates and knowledge of the important features. Initial release

plans are generally imprecise and XP teams revise the release plan regularly to make it

more precise and accurate.

2.2.2. Iteration Planning

Iteration planning is mainly concerned with giving right directions to team members

frequently. So, XP team releases small release in every two week iterations and

working piece of software is delivered at the end of the iteration. The customer puts

forward the desired features to be implemented by next iteration. It is the tasks of

programmers to break them into manageable tasks and estimate their costs. Team

members decide the tasks to be performed in current iterations based on the tasks

accomplished in the previous iteration. The number of days and the user stories

completed in an iteration is expressed in term of project velocity. Simply, it measures

Exploration phase

-Write and estimate stories

Commitment phase

-Commits to release plan

 estimate stories

Steering phase

-Control implementation

12

the length and the tasks completed in an iteration. The diagram shown in Figure 6

illustrates how iteration planning is carried out in XP.

Figure 6: Iteration Planning [XP flow Chart, 2013].

The planning steps are very easy and simple with valuable information and the

best part of this type of planning is that the control is in the hand of the customer. The

project progress is clearly visible after two weeks of time. There is no provision to see

the percent of work done. It tells about the completeness of user story. The customer

has a right to cancel the progress of job if a customer thinks that it is not sufficient.

Therefore, customer satisfaction is addressed properly in XP. XP projects are more

concerned with the delivering the more with less stress and pressure.

2.3 Customer Tests

The XP Customer is responsible for defining one or more automated acceptance tests to

ensure that the desired features are working properly. These tests are built by the XP

team and use them to make sure that the implemented features are built according to

wish on the customer. The customer has full authority to accept or reject the

implemented piece of software. An automated acceptance test plays an important role to

skip the manual test which saves time, money and effort. Automated acceptance tests

are always treated like a programmer tests.

2.4 Releases

The XP team makes a practice of small releases in two ways: In all iterations, the team

release running and tested software to business value recommended by the customer

13

and the customer can use this software for evaluation or can even release to end users.

The team work is visible and the customer is responsible for evaluation. The XP team

also releases software to their end users frequently. In XP Web projects releases are

often done daily, in house project monthly and more frequently.

2.5 Simple Design

XP teams make the software simple with adequate design. They start with simple and

through programmer testing and design improvement, it is iterated many times to refine

the design. The XP teams make sure that the current design suits the current

functionality of the system. The design in XP is not a onetime process but it is all the

time process. The design is focussed throughout the whole process of development.

2.6 Pair Programming

Pair Programming (PP) in XP is a software development practice with two

programmers working at single work station and one is a driver who writes the code

while another is the observer who reviews each line of codes and their roles switches

frequently [Williams et al., 2000]. It may be thought that it is inefficient to engage two

programmers for the same job but at the same time the reverse is true. Some studies

have shown that PP is more effective than traditional programming while other studies

have shown that PP is not always practical due lack of resources like small team and

also due to lack of developer’s interest.

2.7 Test-Driven Development

Extreme Programming is facilitated with feedback loops. In the software development

process, good feedback requires good testing procedures. In XP, a test is added to each

short cycle before the coding has started to make it work with the code. This practice is

known as Test Driven Development (TDD) to make sure all the codes are covered with

tests. The diagram below shows activities concerned with the test driven development

[XP flow Chart, 2013].

14

Figure 7: Test Driven Development [XP flow Chart, 2013].

2.8 Design Improvement

XP team puts continuous effort on delivering the business value in all iterations. The

software should be well designed to deliver business value to the customers. Therefore,

XP uses continuous design improvement process called refactoring as explained in a

book called Refactoring: Improving the Design of Existing Code. [Fowler et al., 2002]

Refactoring is the process that focuses on the removal of duplication which is a

sign of poor design, and helps to increase the cohesion of the code lowering the

coupling at the same time. High cohesion and low coupling are recognized as the

hallmarks of well-designed code for at least thirty years. XP always starts with the good

and simple design. Refactoring is strongly supported by the comprehensive testing to be

sure that the design is well prepared. Thus, the customer tests and programmer tests are

the critical enabling factor. [XP flow Chart, 2013]

2.9 Continuous Integration

The system developed using XP is fully integrated all the time. There are multiple

builds in XP projects. If there is no continuous integration in XP, there arise serious

problems in a software project. Continuous integration plays important roles in

delivering good quality work to the customer. The problems that appear after

integration are avoided by practicing continuous integration of work. [Fowler, 2006]

http://www.amazon.com/exec/obidos/ASIN/0201485672/armaties

15

2.10 Collective Code Ownership

Collective Code Ownership is one of the widely accepted practices of XP where

everyone can contribute new ideas to the project. Any developer is free to edit, add, fix

bugs and improve designs in the project. No one acts like a bottle neck for making

changes. Design for next task or failed acceptance test are done with the help of

Component Responsibility Collaborator (CRC) card. CRC card is used in object

oriented software for brainstorming the object-oriented design. The diagram below

shows how the code has relation with other different activities in XP. [XP flow Chart,

2013]

Figure 8: Pair Programming relationship [XP flow Chart, 2013].

2.11 Coding Standard

XP team follows common agreed coding standards which help to keep code consistent

and easy to understand, read and refactor. The codes look like neatly written by a single

competent developer that helps to encourage collective code ownership. [XP flow

Chart, 2013]

2.12 Metaphor

The common vision which determines how the program should work is called a

metaphor. It is more concerned with simple design with certain qualities. It helps to

make the methodology lightweight. It is also concerned with a consistent naming

method for classes and functions. [XP flow Chart, 2013]

http://en.wikipedia.org/wiki/Object-oriented

16

2.13 Sustainable Pace

Sustainable Pace in XP helps to plan the releases and iteration. It also helps to

determine the perfect project velocity that will remain consistent for the whole project.

The pace is determined in such a way to maximize the productivity. XP team is for

winning, not for dying. [XP flow Chart, 2013]

17

3. Modelling Approaches

The common purpose of modelling is to provide a basis for deeper understanding with

experiments, predicting the behaviour of the system and saving the cost of actual case

controlled experiments. There are various techniques and strategies to model the

behaviour of the system.

3.1 System Dynamics

The methodology to analysis the situation that changes over time is system dynamics.

Forrester developed system dynamic in 1951 at MIT. It was used for analyzing the

interrelationship of the world´s economy and the environment. It was promoted by its

own society, conferences and publications [Hayward, 2000].

System dynamic approach is used in complex systems which are dependent,

contains feedback loop, interaction and circular causality. It has already shown good

analysis in applied economics, environmental science, industrial management, theory

building process and many other fields. There are two tools which are widely used in

system dynamics. Stock and flow diagram is used for system structure representation

and causal loop diagram is used for visual representation of feedback loop [Yong &

Zhou, 2009].

In this approach system are defined dynamically by graphical representation over

time. Basically, the systems are represented by first order differential equations. To

represent the system mathematically, one need to have a deeper understanding about the

dynamics of the system and should have a deeper knowledge of mathematics.

3.2 Computer Simulation

Computer simulation is the process of designing the model of the real system and then

implementing the model with a computer program for the purpose of conducting

experiments to understand the behaviour of the system or to evaluate the operations or

processes of the system. Computer simulations are the means to get answers about what

if question from different stakeholders of the system. A system can be classified as

stochastic or deterministic based upon the degree of randomness behaviour of the

system. A system is said to be stochastic if the system is concerned with random

behaviours and conversely, deterministic system is not based on the random behaviour.

Based on the activities occurring in the system, it can be classified as a continuous or

discrete system. [Melis, 2006]

18

i. Continuous System

In continuous system, system behaviour is modelled as the sequence of events that

changes continuously with time. For example, the change in supply chain of product

through time. Smooth changes in continuous time are focused rather than individual

events. It is modelled using the smooth changes of the variable with the help of suitable

continuous equation and then implemented using computer program. This type of

simulation is known as a continuous system simulation. [Pidd, 1994]

ii. Discrete System

In discrete system, entity’s behaviour is modelled as the sequence of events which state

changes with point of time. For example, a customer in the bank may arrive (event),

he/she get services from the bank (event), service will end (event) and so on. Modelling

is done to capture the behaviour by distinct logic of these events and implemented using

computer program. This kind of simulation is known as discrete system simulation.

The time interval for discrete event is irregular and is modelled using the concept of

random number generation. The irregularity of the time interval of events leads to the

stochastic behaviour of the system. [Pidd, 1994]

3.3. Agile Modelling (AM)

An initial group of seventeen different methodologies was formed to address the

challenges of software development and changing requirements of customers and is

called Agile Software Development Alliance (www.agilealliance.org) and later it was

simply referred as Agile Alliance [Ambler, 2002]. The interesting fact was that all the

group members came from different background and agreed on the issues that the

methodologies did not agree on [Fowler, 2000]. This group defined the manifesto to

encourage the better way of developing the software and based on the manifesto, the

criteria for agile software development such as Agile Modelling was introduced for the

first time [Ambler, 2002].

Agile Modelling (AM) is the chaordic, practice based methodology for effective

modelling and documentation of software based systems. AM methodology is the

collections of practices guided by the principles and values for software professionals

for applying on day to day basis [Ambler, 2002]. AM does not tell about how to build

the model, but it tells about how to be effective as modelers. In other word it is not

prescriptive process. AM is chaordic because it blends the chaos of simple modelling

practices and blends it with the order inherent in software modelling artefacts. AM is

simple, fast and touch freely modellingapproach and anyone can do it. It is more art

than science.

http://www.agilealliance.org/

19

Agile software development methodologies such as eXtreme Programming (XP),

Scrum and Dynamic System Development Method (DSDM) effectively use the

modelling activities. Some of the most common modelling techniques in XP are user

stories, Component Responsibility Collaborator (CRC) cards, and sketches for other

different activities. Prescriptive software process such as Unified Process (UP) also

effectively uses the modelling activities. There are Agile Modelling has specially three

goals [Ambler, 2002]:

i. It is used for defining and showing how to put into practice the collection of

values and principles in lightweight modelling. Modelling techniques such as a

use case model, data model and interface model acts as a catalyst for clear

understanding of a system and its improvement.

ii. It is used for showing how to apply modelling techniques for software process

development following the agile approach. Sometimes an agile modelling

approach helps the developers to get a new idea or compare various alternatives

which significantly reduce the complexity of solving problem.

iii. It is also used for improving the existing system with the modelling activities

following the agile modelling approach.

Basically, AM focuses on the effective modelling and documentation. Although

AM models are proven by the code, it does not include the programming activities. It

also does not include the testing activities but may include the testability of the model.

Other activities like project management, system deployment, system operation, or

system support is not included in AM. It includes only the software processes; however

it can be used with other full fledge processes such as XP, Scrum, DSDM or UP.

Figure 9: Agile Modelling and Base Software Process.

Figure 9. shows the base software processes such as XP, Scrum, UP or your own

personal process which can be tailored with AM. The best part of the AM is that it is

possible to pick the best features from different existing software process and can be

modelled it using AM to make your own process according to your own necessity. AM

Your own method

Your own process

 Your own process

Agile Modelling (AM)

Base Software Processes

XP, DSDM, UP………

20

is independent of other processes such as XP or UP, but it plays a significant role in

enhancing those processes.

Any person who follows the agile methodology applying the AM practices with

its principle and values are agile modellers. An agile developer is who follows the agile

approach to software development. Therefore, agile modellers are agile developers but

not all the agile developers are not agile modellers.

21

4. Pitfalls of XP

XP is a lightweight agile methodology with four core values: simplicity,

communication, feedback and courage [Beck, 1999a]. Although XP has many

interesting practices such as planning game, very short releases and test first coding

among others, it is not free of pitfalls. Some of the most common pitfalls from the

software point of views are discussed below:

4.1 Requirement

Requirements engineering is the process of specifying requirements by studying

stakeholder needs and the process of systematically analyzing and refining those

specifications [Jones, 1996]. Specifications are the concise and clear statements that

serve as a requirement that the software should satisfy [Macaulay, 1996]. Requirement

engineering must include four activities: elicitation, modeling, validation, and

verification to produce clear and faultless requirements. Unclear and deficient

requirement is one of the biggest causes of software failure [Hofmann, 2001].

According to study done in several hundred organizations by Jones [1996], it was

discovered that requirement was deficient in more than 75 percent of organization.

Requirements are the mutual agreement and determination of customer needs, user

needs, and supplier specifications of software product before it is produced. The

requirements define the “what” of a software product [Westfall, 2006] :

• What the software must do?

The answer to this question is the functional requirements.

• What the software must be?

The answer to this question is the non-functional requirements.

• What limitations there are about the choices?

The answer to this question is constrained or limitation of the software product.

Different levels and types of requirement as adopted from Wiegers [2004] are

shown in Figure 10:

22

Figure 10: Different levels and type of requirements [Wiegers, 2004].

Figure 10 shows the classification of requirement in different levels and types that

helps practitioners to gain better and deeper understanding needed to elicit, analyze,

specify, and validate the requirements of software product before development.

Business requirements are concerned with the business needs to be addressed by the

software product. In general, the goal of business requirements is to clarify the reasons

of the software product being developed. User requirements are concerned with the

functionality of the software product from the user’s perspective. It talks more about

the user functionalities of software products. Product requirements are more concerned

with the software functionalities to be built into the product to accomplish the overall

objectives of user, product and business. [Westfall, 2006]

The requirement process in XP is different than the traditional methodologies. In

XP, requirements are the user stories that consist of a few sentences (1-3 sentences)

written on an index card which describes the functionality of the customers' values. It

serves as the starting point for developers and customers generate more precise detail

[Fowler, 2000]. And then the developer decomposes the user story on a card into

manageable chunks of tasks recording each task and its status on the card. As there is

no analysis of stakeholders and their roles in requirement process, it is very difficult to

know the specific requirements of the specific stakeholder.

Information about the requirements of the whole system by a single customer may

lead unclear and deficient requirements because single customer does not know all the

requirements of the concerned stakeholders. A stakeholder is defined as any group or

individual who can affect or is affected by the achievement of the organization’s

objectives. One of the best solutions to avoid unclear and deficient requirement is to

collect use scenarios and perform stakeholder analysis. A use scenario is the

23

implemented description of techniques that helps to understand the task related

activities and also facilitates communication among stakeholders and experts.

Stakeholder analysis is an approach for understanding a system by identifying the

stakeholders in the system, and assessing their respective interests in, or influence on

the system.

Another big problem in XP requirement is that the customer wishes high

expectations exaggerating the computer capacity and proposes the more functionalities

request and hope that the developers deliver the product in very short time. This usually

happens if the customer is unknown about the new technology and available platforms

for development. Another major problem in XP is paying less attention towards the

changing requirements which leads to project stagnation, modification on finished work

and even abandon the finished work. [Li-li et al., 2011]

Modifications to the XP requirements process are reported by many researches

and studies. There are various solutions suggested by different studies. But, most of the

suggestions are based on the comparative studies. Scenario Based Requirement

Engineering (SBRE) practice is proposed in this study.

4.2 Onsite Customer

The customer is supposed to be present on the development site with the developers and

has the ability; knowledge and courage make a decision. It is believed that the customer

involvement is a key factor for XP project success. However, it is very difficult to

implement onsite customer in real practice. In real practice the scope of software

development expands to different stakeholders with their own responsibilities. So, what

would be the outcome of the development process where requirements, specifications,

testing and business decisions are given by the single person representing the respective

stakeholder? Another problem is that the present customer representative is often not

the end user of the system and the end user is often not capable of making business

decisions. [Cao et al., 2004] Multiple customer and Surrogate customer models are

proposed as solution to onsite customer practice of XP.

4.3 Pair Programming

Pair Programming (PP) is agile software development practice with two programming

working at single work station and one is a driver who writes the code while another is

the observer who reviews each line of codes and their roles switches frequently

[Williams et al., 2000]. PP is one of the emerging, popular and the most controversial

practice in the field of software engineering [Swamidurai & Umphress, 2012]. Some

studies have shown that PP is more effective than traditional programming while other

24

studies have shown that PP is not always practical due lack of resources like small

team and also due to lack of developer’s interest. Many studies and researches have

shown that it is a good practice, but is not true for all cases [Curtis et al., 1988]. In

reality, most of the developers do not like to code in pairs, because they are habitual of

solo coding [Cao et al., 2004]. One of the practices of XP that draws the ire of XP

critics is Pair Programming. The most common criticism is that two developers working

together cannot have the same level of maturity and cannot equally contribute to the

productivity of the product. However, several studies show Pair Programming is

beneficial to traditional programming. The cost of project rises if two developers are

assigned to the same tasks at the same time. It is proved statistically that the cost of Pair

Programming is 15% higher than traditional programming. It is a hard task to follow the

Pair Programming effectively because it depends on the cultivation of personalities

within the development team. Another the most common criticism of Pair Programming

is that it can be slow process if there raises a lot of disagreement between two

developers. But, it can be countered balanced by other practices such as use of common

metaphor to describe the problem, simple design, unit testing and coding standard.

[Williams et al., 2000] The most common critics of Pair Programming are listed below:

a. The practice is not realistic in a big organization because developers are

working concurrently with many projects at the same time and is also not realistic

to small organization because there is always lack of resources like human

resources. For example, one developer has to work for many projects at the same

time [Swamidurai & Umphress, 2012].

b. It requires good management system to make sure that the pair working

together is more fruitful to the organization than they work separately. It requires

efficient and effective evaluation method to measure tangible properties like

number of features implement and intangible properties like quality of code

[Swamidurai & Umphress, 2012].

c. The Pair Programming largely depends upon the personal traits of the

developer sitting for Pair Programming. A study carried out with 196 software

professionals in three countries forming 98 pairs have shown that the personality

traits have modest predictive value on Pair Programming performance [Hannay et

al., 2010].

Personality traits development training, Distributed Pair Programming (DPP)

[Dou et al., 2009] model and Collaborative Adversarial Pair Programming (CAPP)

[Swamidurai & Umphress, 2012] model are proposed as alternative to traditional Pair

Programming (PP).

25

5. Addressing Pitfalls through Agile Modelling

Why Agile Modelling approach was used in modellingXP? The answer is very simple;

Agile Modelling is a part of XP. It uses many Agile Modelling techniques such as User

story, Component Responsibility Collaborator (CRC) cards, models and sketches.

There are mainly two primary purposes for using modelling approach. First is to

understand and make others understand what is being built and what are the processes

involved in it. Second is to analyze the requirement and present detail design of the

system. My work is concerned with both of the primary purposes of using

modellingapproaches. I have used Agile Modelling for clarifying the necessity and

analyzing them in term of agile models. I have used Agile Modelling approach for

requirement modelling and Pair Programming modelling; and conceptual modelling

approach to onsite customer practice to make them realistic and practical in real XP

project.

5.1 Requirement Model

Requirements play significant role to make any project successful. However, unclear

and deficient requirements in software development often lead to disappointment with

an unreliable product which may even results dangerous accidents. So with unclear and

deficient requirements usually create more problem than they solve. One of the major

determining factors to make the software development organization successful is how

well they understand and manage their requirements. Requirement engineering is the

process of developing requirements through an iterative co-operative process of

analyzing the problems, documenting the resulting observations in a variety of

representation formats and checking the accuracy of the understanding gained [Pohl,

1995]. One of the major problems when dealing with the requirement in XP is that it is

very difficult to find someone who can be the real representative of client business

[Janeiro, 2001]. Different stakeholders have different interests or perception of

business. A single person is not supposed to take decision regarding all the aspects of

business. There are always high chances of unclear and deficient requirements collected

from a single representative of an organization.

My proposal is to collect use scenarios to get clear and adequate requirements.

Use scenarios can be defined as the implemented description of techniques that helps to

understand the task related activities and also facilitates communication among

stakeholders and experts. The effectiveness of using scenarios in several subjects can

work as the capability of simulating thinking. In simple words, scenarios are the

representation of the real world and can be generalized for requirement analysis to

produce the required models which are familiar to requirement engineers or software

26

engineers. Figure 11 shows how requirement specifications are related to real world

scenarios and how real world scenarios can be used for designing rational models and

concept prototypes which helps to extract real requirements from the real world. The

best ways of obtaining requirement specifications from usage scenarios are inspection

and observation which helps in brainstorming to get the real requirement of the project.

Figure 11: Roles of scenarios and their relationship with requirements [Sutcliffe, 2003].

There are four basic components [Sutcliffe, 2003] in this relationship and they are

discussed below:

i. Real World Scenarios

It is the real world of interest that is inspected or observed. Real worlds are always

concerned with problems, behaviours and system context. Close inspection and

observation helps in brainstorming to derive the real requirement specifications of the

system.

ii. Design Rationale-Models Specifications

The real world scenarios can be generalized to rational models with generalized

specifications derived from real world scenarios. Possibly, it is a future vision of a

designed system with generalized specifications of behavioural and contextual

description.

iii. Storyboard-Concept demonstrator prototype

It is a story or example of real world events or grounded theory abstracted from real

world experience.

iv. Designed Artefact Scenarios

It is the final designed artefact scenarios derived from the real world scenarios. It is the

use case collected from the real world scenario and can be represented in a variety of

27

formats. It can be sequences of use case diagrams or list of use case requirement

specifications.

The major role of scenario is to act as a model to stimulate the designer’s

imagination. It can help as a guide to support reasoning in the process of designing

[Carroll, 2000] but it is not always true. As shown in Figure 12, scenarios play

significant starting roles in modelling and contribute in many design processes.

Scenario of uses explains system tasks at various stage and context scenarios add

necessary information about real world scenario such as the physics system and

environment. There are three significant roles of scenarios in requirement and design.

[Sutcliffe, 2003]

i. The first task is to describe the unsatisfactory state present in the current system

which should be solved by the new system.

ii. Vision of operation of new system.

iii. Describe the behaviours and then representing the users and the existing

system.

Figure 12: Roles of scenario in requirement and design [Sutcliffe, 2003].

There is always the possibility of eliciting or creating of misuse cases that

describes the threats to the system [Alexander, 2002]. The advantages of scenario based

requirement are that they provide ground arguments and reasoning in each specification

with examples. In scenario based requirement, the patterns of the real world is studied

to analyze and then modelled to extract the knowledge. This is quite similar to the

28

requirement elicitation process which collects the necessary information to extract

requirements.

There are two methods in scenario based requirement engineering: (i) ScenIC

method, and (ii) SCRAM method [Misra & Kumar, 2005].

i. ScenIC Method

It was proposed by Colin Potts in 1999 and it consists of goals, objective, task, actor

and obstacle [Potts, 1999]. The overwiew of ScenIC method is shown in Figure 13.

Scenarios are made up of episode and actions. Man or machines can be actors and goals

can one of the following-achieving states, maintaining states or avoiding states.

Obstacles show the successful completion of tasks. In this method, every cycle involves

in criticism and inspection of the scenarios that helps to further refine the requirement

specifications. General guidelines are provided to format scenario narratives and to

identify goals, actions and obstacles. Goals are achieved in episodes and episodes are

evaluated with goals achieved. Goals are achieved with the help of system tasks which

are carried out by actors. Dependencies are examined among goals, actors, tasks and

resources to make sure that all the requirements of the system are met. [Misra &

Kumar, 2005]

Figure 13: Overview of ScenIC method [Misra & Kumar, 2005].

ii. SCRAM Method

SCRAM stands for Scenario Based Requirement Analysis and this method does not

explicitly provide modelling and specification. It works in parallel with software

engineering methodology chosen by the practitioner. It is used for requirement

elicitation with reasoning about the problem extracted from scenario about use context

29

[Sutcliffe, 2003]. It is usually done after preliminary design. The general overview of

SCRAM is shown in Figure 14:

Figure 14: SCRAM overview [Misra & Kumar, 2005].

As shown in Figure 14, SCRAM consists of following four phases [Sutcliffe,

2003]:

i. Initial Requirement Capture and Domain Familiarization

This is the initial stage of SCRAM and initial requirements capturing and domain

familiarization is done by conducting conventional interviewing and fact finding

techniques. Sufficient information is captured to build first concept demonstrator and it

is done after 1-2 client visits.

ii. Storyboarding and Design Visioning

This serves as an early vision for the new system to be designed. The storyboarding

explains about the new system in walk-through fashion to get feedback from users.

iii. Requirement Exploration and Validation

Requirement exploration and validation uses the concept demonstrators and early

prototyping to come up with more detail design to the users and semi- interactive

demonstration are carried out to criticize and validate the requirements.

iv. Prototyping and Requirement Validation

Prototyping and requirement validation is the final iterative process for developing

functional prototypes with requirement refinement until prototypes are agreeing to be

accepted by the users.

There are some difficulties that should be taken into consideration before

following this approach as requirement engineering. The major problem with the

approach is that each person has their own individual view of the use context so it is

30

difficult to filter or generalize the common use context from diverse individual views.

Another major problem is volatile human memory. People tend to forget abnormal and

rarely occurring problems and the problems that occur frequently and recently are

recalled first regardless of their importance and difficulty. There can be a lack of

sufficient information to solve the problems encountered.

There are a few scenario based requirement tools that will help to make the

process agile. Lexical approaches can be employed for checking and formatting

consistency of scenario based requirements [Leite et al., 2000]. CREWS SAVRE

version 2.1 built on a Window NT platform using Microsoft Visual C++ and Visual

Access supports scenario based requirement engineering with some striking features

such as incremental specification of use cases and high-level requirements, automatic

scenario generation from use case, description of use cases and scenario of historical

data, user walk-through and validation support and so on [Sutcliffe et al., 1998]. It can

be effectively used for developing use cases that describe the projected or historical use

of the system and then uses a set of algorithms to generate scenarios from the use cases.

Furthermore, it can be used for detecting event patterns in scenario by the use of

validation frames present in the tool. This helps to provide semi automatic critiques

with suggestions for the requirements of a specific scenario. As automated tools are

present to facilitate the scenario based requirements, it can be successfully implemented

into XP without making it heavy weight methodology.

After requirements are collected from scenario based requirement engineering

process, the next step is to identify the stakeholders and perform analysis. As scenario

based requirements are focused on collecting and validating the requirements,

stakeholders for proposed system needs to be identified and analyzed. Stakeholder

identification and analysis are critical first steps to be taken in the participatory

planning process and is an area where various approaches can be applied [Renard,

2000]. There are various approaches for identifying stakeholders. Stakeholders might

fall under one of the following three categories-internal stakeholders (project member),

external stakeholders (not project member but from same organization) and internal to

organize but external to both project team and organization. These are the broad

classifications of stakeholders. In 2000, Macaulay identified four categories of

stakeholder in computer related application domain and they are listed below [Sharp et

al., 1999]:

i. People involved in design and development

ii. People involved in financial support and are responsible for sale and purchase

iii. People involved in the introduction and maintenance

iv. People involved in using the product.

31

There are many other approaches to identify the stakeholders. From the viewpoint

of software and requirement engineering, following are the most appropriate

stakeholders staked with the software end product and software development processes:

Figure 15: Different types of stakeholders.

Stakeholder analysis is a technique of understanding a system by identifying the

stakeholders staked to the system and assessing their relationships, interests and

expectation from the system or project. Following are the general steps of stakeholder

analysis [de Baar, 2006]:

Figure 16: Stakeholder analysis process [de Baar, 2006].

i. Stakeholder Identification

This is the first step of stakeholder analysis process and it is concerned with the

question “Who are the stakeholders?” There are various approaches used for

identification of stakeholders and some of the most common are:

32

a. Checklist

 b. Self selection through documents study

 c. Experts

 d. Identified stakeholders through brainstorming and interviews

ii. Stakeholder Profiling

Stakeholder profiling is concerned with recording the stakeholder concerns and interest

to the system. After stakeholders have been identified, the possible interests and

concern of identified stakeholders are considered and methods like interview,

observation, workshop, document studies can be used for creating profiling of

stakeholders. There are various templates available for creating stakeholders’ profiling.

iii. Stakeholder prioritization

The third step of stakeholder analysis is to assess the influence and importance of

stakeholders so that they can be prioritized according to their influence and importance.

Influence is mainly concerned with the power that the stakeholders have over a project.

Power over project means the formal control over the decision making process.

Influence / importance grids can be used to prioritize the importance and influence of

stakeholders. It is shown in Figure 17.

Figure 17: Influence and importance grid.

Why stakeholder analysis is necessary in XP? The requirement engineering

process in XP is the most criticized subjects in most of the studies [Li-li et al.,

2011][Woit, 2005][Janeiro, 2001]. It is not a difficult process to identify the

stakeholders and their roles from scenario based requirement process, but the identified

33

stakeholders and their roles are not dealt in detail. This helps to make the stakeholder

analysis easier as it makes practitioners to identify stakeholders and their role through

their inspection and observation. The only task is to create a stakeholders’ profile and

prioritize their influence and importance based on stakeholder analysis practice.

Shakeholder prioritization can be done with the help of Influence and importance grid

as shown in Figure 17. Stakeholders are prioritized on the basis of interest and power

influence in the grid. Stakeholder involvement helps to avoid the expectation gap

between development team and concerned stakeholders. In XP, the requirement is

obtained through intensive communication process. This would definitely help to

improve the requirement process in XP. Keeping in mind the importance and roles of

different stakeholders, a detail user e-story is drafted by XP team. This study demands

detail drafted user story and should be available on the web so that it can be referred

and documented for future reference. The user e-story contains the detail information

about the story description, story number, story priority, story drafted date, risk in story,

name of developers responsible for implementation, estimation time, changes in story

with date and completed date. This will also helps in requirement tracking.

All the above discussed changes are modelled in the release cycle of XP and are

shown in Figure 18. The requirement changes are carried out in three stages-collect user

scenarios, stakeholder identification and analysis; and detail user e-story.

Figure 18: Requirement model in release cycle.

5.2 Onsite Customer Model

Onsite customer is one of the requirements of XP. A customer is not only there to help

development team but also he is a part of the development team as well. Onsite

customer in XP is responsible for the following roles [Williams et al., 2007]:

i. To help to develop stories that defines requirements.

34

ii. To help to prioritize the features to be implemented in each release.

iii. To help to develop the acceptance test to make sure that the system meets the

desired requirements.

iv. To make a decision when required.

The roles of onsite customer are very important in XP but the question is not in

the roles. The full time availability, domain knowledge of customer and decision

making authority are the most criticized points in onsite customer practice in XP. There

are very few empirical validated studies on onsite customer. Although the availability

of a customer may be valuable, it is not always possible. Wallace et al. [2005] has listed

three possible locations of customers: onsite customer, offsite customer and remote

customer. Planning in advance is needed if the customer is not present on site. This will

help to minimize the risk in the project. It is noted that onsite customers are not only the

factor that make XP project successful. There are many other interleaved factors

associated with each other to make XP project successful. Beck and Fowler [2000]

assumed that the onsite customers are good enough to understand the domain, know

how software can provide the business value, and have courage to make decision and

willing to take responsibilities for failure and success of the project. Farrell et al. [2002]

stated “it is critical to have a high degree of customer involvement in the process”.

Stephens and Rosenberg states “the trouble with onsite customer done the XP way is

that if the onsite customer is a single person, she becomes a single point of failure in an

incredibly difficult, stressful, high-profile position of great responsibility". Some

studies and researches show that XP onsite customer practice is difficult, costly,

impractical and demanding. An empirical controlled XP case study where the customer

was present nearly 100% of development time showed that only 21% of his work effort

was required to assist the development team [Koskela & Abrahamsson, 2004]. There

are many alternative solutions to onsite customer extreme practice of XP. Some of the

most common and frequently practiced by practitioners are discussed below.

i. Multiple Customer Representative Model

The general assumption in extreme programming is that an expert customer

representative is always remains present to development site but is it is not always

possible in the real world [Wallace et al., 2005]. With this technique, single XP

development team deals with multiple customers which help to get detail about domain

knowledge. The idea is to deal with those customers who have detail and enough

information about the domain that the development team is looking for. Multiple

customers are contacted or visited on the basis of the priority as set in stakeholder

analysis. Multiple customers are not required to be present all the time in the

development site. Customers are contacted (or visited or sometimes asked to visit if

35

necessary) by developers to know about the domain knowledge he/she is working with.

This will help with development team to get the right information and decision from the

customers. The customers having the highest priority is contacted or visited first and the

lowest at last.

ii. Surrogating customer model

Customer involvement is one of the key factors for success of XP projects. However it

is very difficult and sometimes even impossible to practice in outsourcing projects. The

complexity of the application domain is beyond the expertise and experiences of a

single customer in a large scale organization [Cao et al., 2004]. Therefore, the scope of

software development is not limited to single customers. Its scope includes a variety of

stakeholders who have been identified and analyzed. Development team now includes

all the concerned stakeholders. The problem is that it is very tedious and costly to

access all the stakeholders and it does not necessarily mean that all the accessible

stakeholders are end users of the system.

When the real customers are in accessible especially in a large and complex

project, the use of domain expert as a customer would be a reasonable solution to the

problem. The act of representing domain expert as the customer is segregating expert as

a customer. This practice is very common in outsourcing projects. Surrogating customer

model in XP makes outsourcing organization implement XP methodology to develop

software.

5.3 Pair Programming Model

Proponents of Pair Programming (PP) claim that PP improves the software

development in many perspectives. There are large numbers of studies conducted to

prove this claim. However it is one of the extreme practices of XP that has been

criticized for a long time. The most common criticism is that two developers working

together cannot have the same level of maturity and cannot equally contribute to

productivity of same two developers working in parallel [Dick & Zarnett, 2002].

Figure 19: Pair Programming.

36

As shown in Figure 19, two programmers are involved in Pair Programming (PP)

working at single work station with same product requirements and software

specicifications, and the role of pair programmers changes frequently. Driver is a

programmer who writes the code while another is the navigator who reviews each line

of codes.

i. Personal Trails Development Training

Effective Pair Programming requires the cultivation of two personalities within the

development team. The success of Pair Programming depends upon the personal traits

of the persons involved in Pair Programming. So, the successful pairing with good

personal trails makes Pair Programming work effectively and efficiently. PP critics

claim that the constant disagreement between two developers would slow down the

coding task. Dick and Zarnett appointed two senior developers (having development

experience of more than 2 years) and four junior developers (have development

experience of less than one year) as pair programmers and noted following observations

[Dick & Zarnett, 2002].

a. No dynamic interchange between junior and junior pair as well as senior and

junior pair

b. Project velocity was slow as expected because of a breakdown in interactions.

So the pairing was temporarily eliminated after fourth iteration and solo

programming was introduced and the developer was responsible for his own work

and it worked better.

The possible reasons why Pair Programming did not work in those pairs and

concluded that personality traits were lacking in development team and suggested

following personal traits needs to be improved for pair programmers [Dick & Zarnett,

2002].

a. Communication

The most important personality trait that is essential for success in Pair Programming is

communication. Communication plays important role in every sector. The pair

programmer should be able to clearly communicate with each other to discuss and

analyze the problem encountered, testing strategy and the bugs found by navigator.

There should be no barrier to communicate between driver and navigator in Pair

Programming.

b. Comfortable

The navigator and drivers should be comfortable with working environment and with

each other. Comfortable pairs can suggest intriguing suggestions and interesting

strategies with their knowledge and work of implementing it. Sometime different

37

working ethic and professional etiquette also affects the comfortable working

environment.

c. Confidence

The development team should be confident in their competency and abilities.

Confidence in their work such as manipulation of design and code make the confident

product. The pair programmers must be confident in their skills to add new features and

judge the existing feature.

d. Compromise

The ability to compromise is important personal traits for Pair Programming.

Developers who are over confident often lack the compromising traits and are

argumentative. Compromise trait helps developer to pick up the best design regardless

of its source. The primary idea is to make the pair programmers more flexible for

discussion on various suggestions from various approaches and pick up the best one.

Above discussed four personality traits makes the person suitable to Pair

Programming. Developers who do not have experience with Pair Programming or feel

uncomfortable with the Pair Programming need appear in a training to develop personal

traits before pair up. The personal traits training can be provided by the developers who

have long and good experiences in PP or by experts.

ii. Improvements in Pair Programming

Following are the proposed models of Pair Programming to improve the XP process.

They can be practiced simultaneously.

a. Distributed Pair Programming (DPP) Model

Sitting side by side and having face to face interaction of two programmers in Pair

Programming now fails to meet the requirement of global software development. This

pointed the necessity of development of platform where developers from different

locations can collaborate to solve the same problem. This approach is known to be

Distributed Pair Programming (DPP) and is one of the research areas where a lot of

experiments are being carried out. DPP is similar to PP in many ways but the

developers join virtually to collaborate on the specified tasks from their own computer,

keyboard and mouse which help them to work independently. DPP is a derivative of

Pair Programming (PP) in a distributed context as emerging development method to

support communication and enhance the improvements in PP when developers are

geographically apart.

b. Collaborative Adversarial Pair (CAP) Programming Model

Collaborative Adversarial Pair (CAP) Programming is an alternative to Pair

Programming and the main objective is to take the merits of Pair Programming while at

the same time downplay with its demerits. The main idea is to design together,

38

construct test and code independently and then test together. An empirical study

conducted with twenty six computer science and software engineering senior and

graduate at Auburn University in fall 2008 and spring 2009. There were CAP

experimental group and PP control group with random distribution of subjects. The

subjects were concerned with programming tasks with different level of complexity and

used Eclipse and JUnit to perform programming tasks. The result was in favour of CAP

and the claim of PP such as reduced time for software development, cost effective,

correctness and program quality was supported. [Swamidurai & Umphress, 2012]

Figure 20: Collaborative Adversarial Pair [Swamidurai & Umphress, 2012].

With the help of agile modelling personal trait development training and

collaborative adversarial pair is integrated into XP practice. The agile modelling helps

to strengthen the weaknesses of PP that ultimately improves the XP software process.

Figure 21 shows the modification on Pair Programming in XP. Personal traits

development training and improved Pair Programming are embedded to traditional Pair

Programming. The next chapter is concerned with the XP evaluation framework.

39

Figure 21: Modification on traditional Pair Programming in XP.

40

6. Evaluation of XP

As software development processes are used in many domains and come with different

shapes and sizes, it is one of the complex human endeavour [Krebs et al., 2011]. We

need to measure various aspects of software development methodology and final

product to evaluate and understand the effectiveness of the development process. To

evaluate the XP, a framework that contains various metrics to capture information about

development team, development process, development tools and the final product is

designed. This is useful to those organizations which have adapted or willing to adapt

XP methodology. The main aim is to build the software process improvement model

that can be used for evaluating XP values and practices. Now, the software metrics have

become key factors for success of software projects. Measurement is important in

software projects because it keeps us involved in it, informs about the current status and

provides the guidelines to process further. There are many evaluation frameworks

available to evaluate different practices of XP. Usually measurement encompasses of

qualitative evaluation and measures in term of numerical values to show the assessment

results [Ahmad, 2011]. Karla et al. [2010] proposed a quantitative evaluation

framework for agile methodologies and was based on the four postulates of Agile

Manifesto. The quantitative evaluation framework based on four postulates of Agile

Manifesto cannot evaluate the practices of methods on which it is used. It can only tell

about the agility of the agile methods evaluated. The evaluation framework initiated by

Willian [2005] is more general agile evaluation framework with no XP focused

features. The proposed XP evaluation framework in this study is XP focused and

evaluates the XP project, product and practices.

6.1 Meaning of Measurement

According to Fenton and Pfleeger [1997], "measurement is the process by which

numbers or symbols are assigned to attributes of entities in the real world in such a way

as to describe them according to clearly defined rules". An entity can be anything like

time, event, commodity, thing, place or person. Measurement is extensively used in

most of the production and manufacturing area to estimate costs, calibrate equipment,

assess quality and monitor inventories. [Westfall, 2009] Science and engineering

disciplines are incomplete without measurement tools and techniques. Why

measurements are used? The most general four reasons for measurements are: to

characterize, evaluate, predict and improve the existing or proposed system. As shown

in Figure 22, attributes of the entity are taken into consideration for the propose of

measurement and are assigned with numbers or symbols.

41

We need to first determine the entity to be measured. For example, a person is

selected as an entity to be measured. Once we select the entity, the attributes of the

entity must be selected to measure. For example, personality attributes height and

weight can be taken into consideration to be measured. Finally the standardized

mapping system must be used to express the quantitative measure of the entity. The

height of the person is 5.9 and weight of person is 65. This measurement does not give

any meaning unless we express with the mapping system like height is 5.9 feet and

weight is 65 kg.

Figure 22: Measurement of entity [Westfall, 2005].

6.2 Software Metrics

Software metrics are the integral part of the state of the practice of software

engineering. Many customers specify software and quality metrics as a part of their

contractual requirements. [Westfall, 2005] As all the attributes of software are difficult

to measure, software measurements do not seem to have fully penetrated into industry

practices.

Figure 23: Software Metrics [Westfall, 2005].

42

A metrics is a quantifiable measurement of software products, process, or project

that is directly observed, calculated, or predicted. As shown in Figure 23, software

metrics are the measurement based techniques applied to software process, products and

services to supply or to improve the engineering and management information. Metrics

facilitates to measure the different aspects of an entity that helps us to determine

whether or not we are moving towards our specified objective. So, software metrics

essentially measure the software product and the processes by which it is developed.

They serve as quantifiable indices that determine the current status of the product and

the processes by which it is developed. They are useful in predicting outcomes as well

as decisions when required. Metrics need to be defined clearly before using it.

Following are the elements that should be clearly defined before using metrics.

[Ahmad, 2011]

i. Metrics Name: Appropriate name that has something to do with its

functionalities should be given.

ii. Metrics Description: Description of what is being measured.

iii. Measurement Process: How metrics is used for measurement?

iv. Measurement Frequency: How often measurement is used?

v. Threshold Estimation: How are thresholds calculated?

vi. Current Thresholds: Current range of values considered normal for metrics.

vii. Target Value: Best possible value of the metrics.

viii. Units: Units of measurement.

6.3 Proposed Evaluation Framework for XP

The measurement of software and software development process is more complicated

as compared to the physical measurement system. The measurements in physical

systems are rigidly defined and do not require more effort to quantify them. However,

the measurements in software engineering are not so rigidly defined as in physical

systems and take a lot of effort to quantify them. Software engineers make very

difficult and critical decisions based on the result of such measurements. The evaluation

framework for extreme programming is basically based on the assessment and

evaluation of various project characteristics, extreme programming characteristics,

product characteristics and other additional characteristics. The metrics used for

assessments and evaluations of XP are designed to be simple, precise, understandable,

economical, timely, consistent, accountable, unambiguous, suitable and reliable.

The proposed extreme programming evaluation framework consists of four

sections with numbers of subsections. The general block diagram of the proposed XP

evaluation framework is shown in Figure 24:

43

Figure 24: Proposed XP evaluation framework.

Proposed XP evaluation framework design is more specific to extreme

programming. It is a collection of some validated and proposed metrics. As illustrated

in the figure, proposed XP evaluation framework consists of four sections with some

subsections. Subsections of each section are more concerned with both validated and

proposed metrics. The first section is Project evaluation which is used for recording and

measuring the project and project members’ details. The second section is XP practice

metrics which contains validated as well as proposed metrics for assessment and

evaluation of XP practices used for software development process. The third section is

XP product metrics which contains validated as well as proposed metrics for final

product assessment and evaluation. The fourth section is Additional XP metrics which

contains some validated as well as some proposed metrics for assessment and

evaluation of additional information on XP that are not covered in other sessions of

proposed XP evaluation framework.

6.3.1. Project Records

Project records are designed in order to evaluate the project and member details.

Personnel and team makeup are documented as top risk factors in software development

[Boehm, 1991]. Similarly, other factors such as team size, education, work experience

and specialization substantially affects the outcome of the project. Following

information are recorded in the project records:

6.3.1.1 Project Detail

Project details are recorded in order to assess and evaluate the XP projects in term of

cost, schedule and size.

i. Project Name:

It keeps the record of project name.

XP Project
Records

• Project Detail

• Member
Detail

• Client Detail

XP Practice
metrics

• Various
validated and
proposed
matrics for
XP practices

XP Product
metrics

• Product
detail

• Product
Quality

• Product
productivity

Additional XP
metrics

• Additional
metrics

44

Record The name of the project should be relevant. It is either proposed by

client or decided by team members working on it. General naming

convention can be used.

Example: Snake and Ladder for Window Phone 7

ii. Project Duration

It quantifies project duration in term of working days and the starting and ending date

of the project.

Quantify The duration of projected is included in terms of days with starting

date and ending date of the project.

Example: Duration:150 days

 Starting date: 2013/1/1 Ending date: 2013/4/1

iii. Domain

It keeps the record of the domain name of the application built for. Several risks are

associated with different domain and important decisions such as selection of languages

and database are largely influenced by domain.

Record Records the domain in which the application is built for.

Example: Mobile application

iv. Personal Working Hours

This metrics measure the individual working hours contributed to the project. Full time

as well as part time workers can be taken into consideration.

Quantify It quantifies the individual working hours contributed to the

project.

Example: Sundar Kunwar [Fulltime] 120h

v. Time Passed

Time passed metrics measures the overall time spent for project work. The unit of the

elapsed may vary from project to project. If the project duration is long, it can be

measured in months otherwise it can be measured in days.

45

Quantify It quantifies the overall time spent for the project work. Units of

measurements can be days or months.

Example: Time passed 120 days.

vi. Remaining Time

The metrics which measures the time left to complete the project. Time passed deducted

from the project duration results remaining time. The units can be days or months

depending upon the duration of the project.

Quantify It quantifies the time left to complete the project. It can be

calculated as

Remaining time=Project duration-Elapsed time

Example: Remaining time 100 days

viii. Life

It is the life expectancy of the product. In other words, the expected working period of

the final product is the life of that product.

Quantify It quantifies the life expectancy of the final product. Generally, it is

expressed in numbers of years.

Example: Life 5 years

ix. Project Tools

It records all the project tools used during project work. Project tools play a vital role to

make a project successful and timeliness.

Records It lists all the project tools used in the project.

Example:

Project tools Purpose

1. Balsimiq Mockups Design

6.3.1.2 Member Detail

Member detail maintains the detail records about the current permanent group member

working on the project. It is designed to keep the records of following details:

46

Project Name:

Project Duration: From: To:

Project Group Name:

Name Age Gender Education Specialization Experiences Current

Position

Mr.

Shyam

Thapa

30 Male Master in

Computer

Science

Mobile and

Internet

Computing

5 years as

Web

Developer

Senior

Developer

6.3.1.3 Client Detail

It keeps record about the client name, position, organization, address and the proper

way of contacting the client.

Project Name:

Project Duration: From: To:

Client Name:

Client Position:

Client’s Organization

Client contact address Email:

Fax:

Phone:

Mobile:

Preferred way of contact

6.3.2. XP Practices Metrics

XP has its roots spread in information technology system development where it make

the development process more responsive to changing business requirements [Meszaros

et al., 2002]. The fourteen principles of XP are: Humanity, Economics, Mutual Benefit,

Self Similarity, Improvement, Diversity, Reflection, Flow, Opportunity, Redundancy,

Failure, Quality, Baby Steps, and Accepted Responsibility. [Beck and Andres, 2004]

However, there are no any measuring means to assess all these practices and principles.

Therefore, the proposed XP practice metrics play a vital role to assess the effectiveness

of these practices and they are discussed below:

47

i. Sit Together Attendee

Sit together is one of the simplest but most difficult XP practices. XP advocates the

entire team members must be present but it is not always possible. Therefore, sit

together attendee records the name and of the absentee team member.in the meeting.

Records It records the name and roles of absentees.

Example:

Absentee/s Roles

Laxmi Shrestha Developer

ii. Number of Requirements (User Stories)

The size of the project mainly depends upon the number of user stories which serve as a

lightweight requirement to software development process. Simply, it counts the number

of user stories in the project.

Quantify It quantifies the user stories present in the project.

Example: Number of user stories: 20

iii. Requirement Complexity

Requirement complexity qualifies how complex is each user story to implement. It can

be qualified as low, medium and high.

Qualify It qualifies the complexity of the each user story. Programmers are

responsible to implement the user story to source code. So,

depending upon the effort spent on each user story, programmers

can qualify each user story from 1 to 10. Complex user story are

garded higher.

iv. XP Stakeholders

It is used for recording all the concerned stakeholders and their roles in the XP project.

Records Project Name: Virtual Patient

Stakeholders Names Roles

Ramesh Karki Project Manager

48

v. Project Velocity

Project velocity is the measure of the time taken (in days) and the number of stories

completed in a single iteration. It measures the length of the iteration in days and the

tasks completed.

Quantify It quantifies the duration and the number of stories completed in

each iteration.

Example:

 Iteration no. 1

 Duration: 14 days

 No of stories completed: 2

vi. Automated Unit Tests per User Story

It quantifies the total number of automated unit tests carried out per user story. The

main objective of this metrics is to know how many unit tests are created for each user

story before they are implemented.

Quantify It quantifies automated unit test classes per user story.

Example:

User Story No. Automated unit Tests

1 4

2 2

vii. Frequency of Automated Unit Test

It shows how often the automated unit tests are carried out. It can be calculated as

FAUT= (total number of unit tests/total number of classes) per user story*100%

Quantify It quantifies the frequency of automated unit test.

Example: FAUT=5%

viii. Acceptance Tests

It keeps all the necessary information about acceptance tests.

49

Records It records the information of acceptance test. It records:

How many acceptance tests are written?

Who wrote acceptance tests?

Who run the acceptance tests?

How often acceptances are run?

Are all acceptance tests automated?

ix. Number of iterations per user story

Implementation of a user story may or may not be fully implemented in iteration.

Therefore, it measures the numbers of iterations taken by user story to get fully

implemented.

Quantify It quantifies the number of iterations carried out to implement each

user story. It helps to estimate the effort required and the complexity

of the user story.

Example:

User story no. Number of iterations

1 4

2 2

x. Onsite Customer Availability

Onsite is very simple but difficult practice of XP. It is the measure of how often the

customer is available on onsite of development. It can be qualified as Full time, Part

time and Never.

Qualify It qualifies the customer availability on the development site with the

development team.

Example:

Customer Availability: Full time

xi. Pairing Frequency

In Pair Programming, one programmer is driver who writes code while the other is

observer or navigator who reviews the code as it is typed in. The two programmers

switch roles frequently. Pairing frequency measures how often the role of driver and

navigator changes in Pair Programming.

http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Code_review

50

Quantify It quantifies the frequency of role changing during Pair

Programming in XP. If there is 1 pair and role changes 2 times then

pairing frequency =1/2*100%=50%.

6.3.3. XP Product Metrics

XP product metrics are concerned with measuring the product related measurements.

i. Number of Component, Methods and Lines of Codes

Number of components, methods and lines of codes determine the size of the project.

Quantify It quantifies the requirements, components, methods and lines of

code in the project which helps to determine the size of the project.

Example:

Number of requirements 25

Number of components 50

Number of methods 150

Number of lines of code 10000

ii. Productivity Metrics

Halstead proposed the coding productivity metrics and the idea was to determine the

productivity from the numbers and types of words used in the program. It is also

referred as a token count measure. It can be calculated using the following formula.

[Halstead, 1997]

Volume = length*log2 (vocabulary)

Where length = N1 + N2

Vocabulary = n1 + n2

n1 = the number of unique operators

n2 = the number of unique operands

N1 = the total number of operators

N2 = the total number of operands

Quantify It quantifies the coding productivity of the program.

Example:Volume=68

51

iii. Difficulty and Effort Metrics

IBM researchers developed difficult metrics which measure the effort required to

understand code and maintain a piece of software. It is calculated as follows.

[Andersson, 1990]

Difficulty = n1/2*N2/n2

Effort=difficulty*volume

Where,

n1 = the number of unique operators

n2 = the number of unique operands

N2 = the total number of operands

Volume = length*log2 (vocabulary)

Quantify It quantifies the level of difficulty and the effort required to

understand code and maintain a piece of software.

Example:

Difficulty=40

Effort=65

iv. Defect Removal Effectiveness

Defect Removal Effectiveness (DRE) is defined as the ratio of defects removed during

the development phase to defects latent in the product and it is usually expressed in

percentage [Kan, 2003].

Quantify It quantifies the ratio of defects removed during the development

phase to defects latent in the product.

DRE=defects removed during development phase/defects latent in

the product *100%

Example: DRE=40%

v. Failure Rate

Failure Rate is the ratio of the number of failures to execution time. It was used by

Motorola for finding the purpose of assessing the reliability of the product [Kan, 2003].

52

Quantify It quantifies the failure rate and is evaluated as

Failure Rate=number of failures/Execution time

 Example:Failure Rate=5.5

vi. Constraint

Constraints are the limitations or restrictions present in the project. It lists all the known

present in the system.

Records It records the constraints present in the project.

Example: 1. No provision of automated feedback.

6.3.4. XP Additional Metrics

There are many metrics that can be put under additional metrics which can be used for

evaluating and measuring various aspects of XP. Metrics can be added according to

need and necessity principle. Some of them are discussed below:

i. Customer Problem Metrics

The customer problem metrics is generally expressed in terms of problems per user

month (PUM).

PUM = Total problems that customers reported (true defects and non-defect-

oriented problems) for a time period /Total number of licenses-months of the software

during the period

Quantify It quantifies the problems of customer and usually expressed in

terms PUM.

 Example: PUM=20

ii. Customer Satisfaction Metrics

Customer satisfaction is measured in term of results obtained from customer surveys.

The result is analyzed in term of following five levels: Very satisfied, Satisfied, Neutral,

Dissatisfied and Very dissatisfied.

Qualify It qualifies the customer satisfaction in five levels: Very satisfied,

Satisfied, Neutral, Dissatisfied and Very dissatisfied.

iii. Estimation of Number of Defects

It was first proposed by Jones [1998] for the estimation of the number of defects based

on the numbers of functional points of the system. It is calculated as:

53

Potential Number of Defects=FP
1.25

Where FP is the functional points of the system

Quantify It quantifies the estimates of the number of defects and is expressed

as:

 Potential Number of Defects=FP
1.25

 Example: Potential Number of Defects=159

iv. Halstead Metrics for Effort

It was Halstead [1997] who proposed an effort metrics to determine the effort spent. It

is calculated as:

E=V/L

where,

E = effort

L=NLog2n

V=Program Volume

N=Program Length

n=Program Vocabulary

Quantify It quantifies the effort spent in system and it is expressed as

E=V/L

 Example:34

54

7. Discussion

Several studies have shown that there are enabling as well as limiting factors in extreme

practices of XP. A detail study about the rules and practices of XP was carried out

through interpretive approach and some enabling and limiting factors were discovered

and the most criticized factors such as lightweight requirements, onsite customer and

Pair Programming are taken into account to make XP practices more realistic and

practical. As Agile Modelling is a part of extreme programming, Agile Modelling is

used as modelling approach for two practices: lightweight requirements and Pair

Programming and conceptual modelling approach was used for onsite customer

practice. An evaluation framework for XP is proposed for evaluating XP projects. The

framework is only concerned with XP projects. This introduces several validated and

some proposed metrics to evaluate the XP projects. The proposed evaluation framework

consists of four sections: XP project records to record project detail, member's detail

and client detail, XP Practice metrics to evaluate the practices of XP, XP product

metrics to evaluate the XP product and Additional XP metrics to evaluate the additional

factors of XP such as defects, efforts, customer satisfaction and so on. Metrics can be

added to Additional XP metrics section according to need and demand. Broadly, this

study is concerned with following two fields of XP projects:

i. Modelling the most three criticized practices of XP

ii. Proposing the evaluation framework for XP

The lightweight requirement is one of the most criticized extreme practices of XP.

Several studies that demand the necessity of requirement engineering practices in XP

are being carried out. Various approaches are suggested in several studies. This study

proposes the scenario based requirements engineering practices for XP with stakeholder

analysis to overcome the defects in the requirement practices of XP. It is known fact

that the unclear and deficient requirements create more problem than they solve. As

very lightweight requirement engineering practices are followed in drafting requirement

in XP, there is always danger of drafting unclear and defective requirements. The

unclear and defective requirements result the propagation of error throughout the

software development cycle. This may result final product with undiscovered errors

which is one of the risk factors for customers and software developers. The most

common enabling and limiting factor of the requirement process in XP is listed below:

Enabling factors of requirement in XP

 -Lightweight process.

 -Divide and conquer approach.

-Less effort and time.

-Emphasis on oral communication over written documentation.

55

Limiting factors of requirement in XP

-It is very difficult to find the real representative of customer business.

-Single person (onsite customer) is responsible for making decisions about the

business.

-High chances of unclear and defective requirement collected from a single

person.

-Bypassing the requirements engineering practices.

The limiting factors seem to affect more than an enabling factor of the

requirement process in XP. Therefore, to eliminate all the limiting factors, new

approach for collecting requirements in XP is proposed in this study and the approach is

called scenario based requirement engineering process where all the related use cases

are collected from the real world working environment. The realistic scenarios are

generalized for requirement analysis to get the requirements from it. However, there are

some difficulties that should be taken into consideration to follow this approach. The

major problem is the diverse individual perception and difficulty in generalizing into

common context. Another common problem is the volatile human memory. Human

often forgets abnormal and rarely occurring problems and remember the frequently and

recently occurring problems regardless of their importance and difficulty. There are

some scenario based tools that make the process more organized and simple. As

automated tools are present to facilitate the scenario based requirements, it can be

successfully implemented into XP without making it heavyweight methodology. For

example CREW SAVRE version 2.1 built on Window NT platform supports scenario

based requirement engineering such as incremental specification of use cases and high

level requirements, automatic scenario generation from use cases, description of use

cases and scenario of historical data, user walk-through and validation support among

others [Maiden et al., 1998]. With the scenario based approach stakeholder

identification and analysis becomes easier and simpler. In most of the cases, it is

possible to identify and analyze the stakeholders and their roles from real world

scenarios. This makes the requirements stronger and realistic. Stakeholder analysis is

performed to understand the system with stakeholders staked to it, their relationships,

interests and expectation. It helps to avoid the expectation gap between developers and

customers with different interests. As the requirement is obtained through intensive

communication process in XP, it will definitely help to improve the requirement

process in XP. And then the detail user story is drafted in electronic form that is made

available through web pages which will act as written requirement specification in

future.

56

Onsite customer practice is also one of the most criticized extreme practices of

XP. Onsite customer is responsible for drafting a user story, sitting together with the

whole team. User story acts as requirement specification in XP. He/she is also

responsible for user story prioritization that defines the priority of user story to be

implemented and development of acceptance tests with developers. It is also believed

that onsite customer is courageous enough to make a business decision.

Many studies show that onsite customer practice is effective but unrealistic and

impractical. The most common enabling and limiting factors of onsite customer are

listed below:

Enabling factors of onsite customer

 -Team oriented practices.

 -Provides business values.

 -Timely decision.

 -Bearing responsibilities for failure or success of project.

Limiting factors of onsite customer

 -Full time availability.

 -Inadequate domain knowledge.

 -Decision making authority on single people.

There were not so many studies performed relating onsite customer extreme

practices of XP. Out of several alternative solutions to onsite customer, two conceptual

models were taken into consideration. First is multiple customer representative models

where single customer is replaced by a multiple concerned customers who can provide

all the necessary information that the developer is looking for. Second is segregating

customer model where the domain experts act as customer in case real customer are

inaccessible. Especially, it can be practiced in outsourcing projects.

Pair Programming (PP) is another the most criticized extreme practice of XP. It

has been claimed that PP improves software development process in many ways.

However, some studies and researches show that two developers working together

cannot be productive, economical and chances of delay if developers have strong

disagreements on some issues. During my study, I found that there are some basic

things to be improved. Personal traits plays significant role in PP. Hence personal traits

development training to pair programmers is essential. Two alternative solutions to Pair

Programming: Distributed Pair Programming Model and Collaborative Adversarial Pair

(CAP) Programming model are proposed in this study.

Enabling factors of Pair Programming

 -Collaborative and supportive effort.

57

-Feel of code ownership.

-Reluctant to interruption-single person can be easily interrupted than a pair.

-Pairs are less likely to go down Gopher Holes and Blind Alleys.

 -Two minds are always better than single.

Limiting factors of Pair Programming

 -Differences in programming and communication skills.

 -Antisocial or anti personalities.

 -Perception of cost and time.

-Common schedule and agreement.

-Discourage in pairing.

The personal traits development training is proposed to inexperienced and

resistant programmers to help in cultivation of two personalities making them right pair.

It helps to improve communication skills, to make more comfortable, confident and

comprising which are suitable personal traits for Pair Programming. Two models for

improving Pair Programming were proposed. First is Distributed Pair Programming

(DPP) when programmers are located geographically apart and the second is a

Collaborative Adversarial Pair (CAP) to take the merits and downplay the demerits of

PP.

There are some studies that examine the enabling or/and limiting factors of XP.

Some of the analytical studies present the alternative solution to limiting factors of XP

to improve the XP software process. Table 1 shows the analyzed enabling and limiting

factors of User Story of XP. Similarly, Table 2 shows the analyzed enabling and

limiting factors of Pair Programming and Table 3 shows the analyzed enabling and

limiting factors of onsite customer.

58

XP Practices Enabling Factors Limiting Factors Remedy/Remedies References

User Story Clear vision:

The customer has a

clear vision of business

processes, product
requirements and

product background.

Deficient Requirement:

Customers are not able to

give complete requirements

to developers.

Flood Requirement:

Customer has high

expectations exaggerating
the capacity of computer.

Frequent Changes:
Frequent changes in
requirement will lead

stagnation, modify and even

abandon the finish work.

Negative Influence

The contradiction between

customers and developers
has a negative influence on

the demand of high quality.

i. Kano Model Analysis

for measuring customer

feeling and measuring

effects of the product or
software quality.

ii. High Quality

Requirement Analysis to
measure the customer wish

and developer need.

iii. XP Demand Module

It is established with Kano

Model thinking and High

Quality Requirement
Analysis to explore the

high quality requirements

with customer awareness
and reduce the

misunderstanding in

software development
process and hidden threats.

[Li-li et al., 2011]

User Story Not stated Single Customer

The assumption that, in the

planning game, the business
could be represented by just

one customer.

Non-functional

requirements

The lack of consideration of

non-functional requirements
from the standpoint of the

business.

Linkage

The lack of explicit links

between stories and tasks

cards to the code

Process

The lack of a process for

producing stories and tasks.

i. A process and a

representation are

proposed for writing the
stories and tasks cards.

ii. Also include non

functional requirements as
user stories.

iii. The word should be

underlined to show that it
has an explicit link with

other underlined word.

iv. The process is
described using SADT

diagram to verification

and validation.

[Janeiro, 2001]

User story Rapid

Rapid response to

changing requirements.

Defects

Less predictable, less stable,

less reliable and less quality
assurance requirements.

Informal requirements

definition

 User stories drafted by

customer are prioritised, but

no formal documentation.

Mapping extreme

practices to ISO Process

Model

[Erharuyi, 2007]

User story Unambiguous,

Correct, and

Understandable

Modifiable, Verifiable

and Annotated by

Relative Importance

Complete and Concise

Requirements

Not Stated Not Necessary [Duncan, 2001]

Table 1: Enabling and Limiting factors of user story found in different studies.

59

XP Practices Enabling Factors Limiting Factors Remedy/Remedies References

Pair
Programming

Counter Balance

The detrimental effects

of paired programming

are counterbalanced by
other XP best practices

such as common

metaphor, simple
design, unit tests,

coding standard and the

reverse is true.

Productivity

Two developers working

together cannot equal the

productivity of the same two
developers working in

parallel.

Cost

It has been statistically

shown that paired

programming costs
approximately 15% more

time than traditional

programming

Personal Characteristics

Effective paired

programming is difficult to
achieve and requires a

careful cultivation of

personalities within the
development team.

Dynamic interchange

The dynamic interchange
of roles is one major

problem in PP.

Personalities Traits

It was noticed that certain

personality traits are

beneficial for paired
programming.

Improvement in

interview technique

It can be used for ensuring

the traits of pair

programmers during their
interviews.

[Dick & Zarnett,

2002]

Pair

Programming
Defects

The end defect content
is statistically lower.

Faster

The pair solves the
problem fast.

Code Review

Mistakes can be found
during coding.

Learning

People learn more
about the system and

software development.

Communication

It provides an

opportunity to improve
the communication

skills.

Understanding

Project end with many

people understanding

the software product.

Cost

The development cost for
Pair Programming enabling

factors is only 15%.

Wrong Perception

Managers view programmers

as a scarce resource, and are

reluctant to "waste" such by
doubling the number of

people needed to develop a

piece of code.

Tradition

Programming has

traditionally been taught and
practiced as a solitary

activity.

Reluctant

Many experienced

programmers are very
reluctant to program with

another person.

It is only the study of cost

and benefits of Pair
Programming.

No remedy is provided to

address its costs.

[Cockburn &

Williams, 2002]

Pair
Programming

Better code

Its premise—that

of two people, one

computer—is that two
people working

together on the same

task will likely produce
better code than one

person working

individually

Benefits

Faster software

development, higher
quality code, reduced

overall software

development cost,
increased productivity,

better knowledge

transfer, and increased
job satisfaction are

some benefits of PP.

Time schedule and

agreement

It requires that the two

developers be agreed for the
same place at the same time.

Management prospective

It requires an enlightened
management that believes

that letting two people work

on the same task will result
in better software than if they

worked separately.

Cost

The cost of Pair

Programming is higher than

that of sole programming.

Paring Up

Novice-expert and expert-

expert pairs have not been
demonstrated to be effective.

Collaborative

Adversarial pair (CAP)

programming

The main objective is to
take the merits of Pair

Programming while at the

same time downplay with
its demerits. The main idea

is to design together,

construct test and code
independently and then

test together.

[Swamidurai et al.,

2012]

Table 2: Enabling and Limiting factors of Pair Programming found in different studies

60

XP Practices Enabling Factors Limiting Factors Remedy/Remedies References

Onsite Customer Consultation

The onsite customer

practice offered the

team a unique situation
to consult with others

whenever needed.

Demand

It was found out that

the role of XP onsite

customer requires a
strong ability to resolve

issues rapidly.

Work Commitment

The development team

perceived onsite

customer as a strong
demonstration of

organization’s

commitment to their
work.

Noisy Environment

The onsite customer found

Pair Programming quite

noisy activity and this may
have disturbing influence for

the customer's real work

especially if the customer is
accustomed to work alone in

a quiet office.

Full time onsite customer

Onsite customer was nearly

100% present with the

development team, but only
21% of his work effort was

required to assist the

development team in the
development.

Noisy environment could
be solved by moving the

customer's place of work

nearby XP project room.

This study concluded that

full time availability is not
necessary in XP. However,

the role of the onsite

customer is demanding.

[Koskela et al.,

2004]

Onsite customer Participation in the

software development

processes.

Communication

bridge among

developers, end users
and managers

Has vital role in

drafting user stories
and running tests.

Partially onsite customer

Management difficulty in

frequently changing in
requirements.

Semantic gap between

customer and developer.
It is hard to convince

management.

Non-appointed customers

may create problem.

Time limitation of the

customer.
Varying motivation of

customer

Location of customer

Product

Management Team

(PMT) can reduce the
onsite customer practice’s

problems effects.

[Mohammadi,

2008]

Onsite customer Decision

Onsite customer has

ability, knowledge and
courage for decision

making.

Difficulty

It is difficult to get customer

who has knowledge of all
domains necessary for

development.

Scope

The scope of software

development expands to

include a variety of
stakeholders.

End user

An accessible customer is
often not the end users of the

system.

The onsite customer in
FinApp is surrogated by

product managers who
have direct contacts with

customers.

[Cao et al., 2004]

Table 3: Enabling and Limiting factors of onsite customer found in different studies.

During this study, I have noticed following are the most remarkable enabling and

limiting factors of user story (lightweight requirement), onsite customer and Pair

Programming extreme practices of XP. Alternative solutions are proposed to limiting

factors to improve the XP software process. It is shown in Table 4.

61

Extreme

Practices

Enabling factors Limiting factors Remedy/Remedies Remarks

Lightweight

Requirements

(User story)

Lightweight process

Divide and conquer

approach

Less effort and time

Emphasis on oral

communication over

written documentation.

High chances of unclear

and defective requirement

collected from a single

person.

Bypassing the Requirement

Engineering Practices.

Requirement

Specifications are

collected from

Scenario Based

Requirement

Engineering (SBRE)

Practices.

SBRE is not so

heavyweight method.

Processes are simple

and easy to practice.

However, it is not as

simple as user story.

Further improvements

and modifications are

necessary to make the

process lightweight.

Onsite customer Team oriented practices.

Provides business values

Timely decision

Bearing responsibilities

for failure or success of

project

Full time availability.

Inadequate domain

knowledge.

Decision making authority

on single people

Multiple Customers

Representative

Model

Surrogate Customer

Model

Multiple customers

having adequate

domain knowledge are

dealt based on their

priority.

Customers are

surrogated by domain

experts according to

need and necessity.

Pair

Programming

Collaborative and

supportive effort

Feel of code ownership

Reluctant to

interruption-single

person can be easily

interrupted than a pair

Pairs are less likely to go

down Gopher Holes and

Blind Alleys.

Two minds are always

better than single.

Differences in

programming and

communication skills

Antisocial or anti

personalities

Wrong perception of cost

and time

Common schedule and

agreement

Discourage in pairing

Personality traits

development

trainings to pair

resistant.

Distributed Pair

Programming (DPP)

Model.

Collaborative

Adversarial Pair

Programming

(CAPP) Model

Training is only

provided to those who

are found to be pair

resistant.

DPP is practices when

the developers are

geographically apart.

CAPP is validated

model to take the

merits and downplay

the demerits of Pair

Programming.

Table 4: Remarkable Enabling and Limiting factors observed with alternative solutions.

Measurement is necessary in almost all areas to estimate, calibrate, assess and

monitor. Science and engineering without measurement tools and techniques cannot be

imagined. So, measurement is equally important in software development methodology

to evaluate and improve the effectiveness of the development process. The framework

that measures or records the information about development team, development

process, development tools and final product of XP is proposed with some new and

some validated metrics. The proposed framework is more concerned with the XP

projects and it measures and records information about XP projects such as project

detail, project member's detail and client detail, XP practices such as various new and

validated metrics to measure the practices of XP, XP product such as product detail,

product quality, product productivity and additional XP metrics such as effort metrics,

defect metrics, customer satisfactions and so on. Measurement helps to improve the XP

software process. Measurement system makes it possible to consider the weak aspects

62

of XP and helps to estimate the considerable amount of effort required to be spent on

them to improve and strengthen them.

SWOT analysis was done to evaluate the Strengths, Weaknesses, Opportunities,

and Threats involved in this work. It identifies the internal and external factors that are

favourable and unfavourable to achieve the main aim of the thesis. It includes the

following factors [Boyd, 2005]:

Strengths: internal project characteristics that provides advantages

Weaknesses: internal project characteristics that provides disadvantages.

Opportunities: external project characteristics that provides opportunities.

Threats: external project characteristics that causes problems or troubles.

S .No. Strengths Weaknesses Opportunities Threats

1.
Introduces requirement

engineering practice-

SBRE which is not

heavyweight.

Some sort of

documentation oriented

practices are proposed

This study is an opportunity

to widen the knowledge in

the field of agile software

development methodogies.

Doumentation oriented

Chances of misusing

cases

2.
Requirement

speicifications are well

understood from real

scenario.

Extra effort is always

required implementing the

new practices.

Proposed alternative solution

improves the requirement

engineering practices of XP.

Chances of lengthening

the project duration since

extra effort is always

required to implement the

proposed practices.

3.
Impractical and unrealistic

extreme onsite customer is

made practical and

realistic.

Difficult to manage

multiple customers and

find the right surrogate

customer.

The proposed practice is

realistic and practical in all

cases.

Not timely decisions.

4.
CAPP takes merits and

downplay demerits of PP.

Oriented towards solo

programming

Balance environment to both

solo and pair programmers.

Change in real meaning of

Pair Programming

5.
Provides XP focussed

evaluation framework

All the metices are XP

oriented so cannot be used

for other methodologies.

Evaluate and assess the XP

project to improve XP

software process.

Heavyweight and methods

focussed.

Table 5: SWOT analysis of the thesis.

63

8. Conclusion

Agile software development methodologies came into existence to fulfil the changing

needs of customers. Agile methodologies are characterized by personal interaction over

process, direct communication, short and frequent release, iterative and incremental

process, self organization, code crafting and many more. Extreme Programming (XP) is

one of the well known agile software development methodologies with sets of values

including simplicity, communication, feedback and courage. It is characterized by short

development life cycle, incremental planning, and continuous feedback and depends on

communication and evolutionary design. The core part of XP consists of a simple set of

practices including planning game, small releases, metaphor, simple design, test driven

development (TDD), refactoring, Pair Programming (PP), collective ownership,

continuous integration, 40 hour week, onsite customer and coding standard.

Lightweight processes are introduced in XP with some extreme practices such as

lightweight requirement (user story), onsite customer, Pair Programming, test driven

development and metaphor among others. The extreme practices and composition

variation has made the software development process more complex. Three the most

criticized extreme practices-lightweight requirement, onsite customer and Pair

Programming were taken into consideration for the study and agile modelling for

lightweight requirement and Pair Programming, and conceptual modelling for onsite

customer was performed to overcome the pitfalls found during the study. Models need

to be validated which can be further studied in future. Another important section of

study is the development of XP evaluation framework which uses some new and some

validated metrics for evaluating the XP projects, XP practices, XP products and some

additional information about XP which can be modified according to changing

requirements.

There are many numbers of enabling as well as limiting factors in XP. This study

is concerned only with some extreme practices of XP although there are many other

extreme practices to be studied. The study concentrates on only three the most criticized

practices-lightweight requirement, onsite customer and Pair Programming of XP. In

future, further study about other extreme practice can be carried out to refine the

practices and make them simple, practicable as well as effective. The study proposes

evaluation framework for evaluating XP project with different existing and proposed

metrics in order to evaluate it. The evaluation framework consists of enough room to

include the desired metrics on specific field of XP project. It is more concerned with the

XP project which can not be applied for other methodologies. Software metrics were

chosen or porposed to evaluate the XP practices. However, the agility of agile software

development methodologies can be somehow affected by the XP evaluation framework.

64

The proposed XP evaluation framework comprehensive tools for agile software

development to evaluate XP practices without imposing excessive burden. With the

improvement in XP practices and process, the metrics can also be further modified or

added. An active continuation of research is needed for refining and validating the XP

evaluation framework to make it possible to implement practically in real projects. This

can be done through the international collaboration with software industries to refine

and validate the study. After the refinement and validation, it can be used as standard

XP evaluation framework in real projects.

The study focused on three extreme practices of XP and development of XP

evaluation framework. There is need of similar studies and researches to discover the

enabling and limiting factors of other extreme practices and provide the alternative

solutions to limiting factors to improve the XP software processes. The XP evaluation

framework facilitates XP practitioner for evaluation XP project, XP practices and XP

product.

65

References

 [Abouelela & Benedicenti, 2010] Abouelela, M., & Benedicenti, L. (2010). Bayesian

Network Based XP Process Modelling. International Journal of Software

Engineering and Application, 1(3), 1–15.

[Agile - Definition, 2013] Agile - Definition and More from the Free Merriam-Webster

Dictionary. (2013). Retrieved February 18, 2013, from http://www.merriam-

webster.com/dictionary/agile

[Agile Manifesto, 2001] Agile Alliance, The Agile Manifesto. (2001). Retrieved

February 18, 2013, from http://www.agilealliance.org/the-alliance/the-agile-

manifesto/

[Ahmad, 2011] Ahmad, N. (2011). Software Measurement and Metrics: Role in

Effective. International Journal of Engineering Science and Technology (IJEST),

3(1), 671–680.

[Alexander, 2002] Alexander, I. (2002). Initial Industrial Experience of Misuse Cases in

Trade-Off Analysis. Proceedings of the IEEE Joint International Conference on

Requirement Engineering (RE’02).

 [Ambler, 2002] Ambler, S. (2002). Agile Modeling; Effective Practices for Extreme

Programming and the Unified Process. Retrieved February 7, 2013, from

http://www.scribd.com/doc/37142147/Agile-Modeling-Effective-Practices-for-

Extreme-Programming-and-the-Unified-Process#outer_page_99

[Andersson, 1990] Andersson, T. (1990). A Survey on Software Quality Metrics. Åbo

Akademi University, Department of Computer Science. Report D-1990-12,

December 1990. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.7502

[Boehm & Ross, 1989] Boehm, B. W., & Ross, R. (1989). Theory-W Software Project

Management: Principles and Examples. IEEE Transactions on Software

Engineering, 15(7), 902–916.

[Beck, 1999a] Beck, K. (1999). Embracing Change with Extreme Programming. IEEE,

32(10).

[Beck, 1999b] Beck, K. (1999). Extreme Programming Explained. Addison-Wesley

Longman Publishing Co., Inc.

[Berki, 2006] Berki, E. (2006). Examining the Quality of Evaluation Frameworks and

MetamodellingParadigms of IS Development Methodologies. In: E. Duggan & J.

Reichgelt (Eds.), Measuring Information Systems Delivery Quality, 265-290.

66

 [Boyd, 2005] Boyd. (2005). December 2005 Newsletter. SRI Alumni Association,

(December), 1–16.

[Cao et al., 2004] Cao, L.,Kannan,M., Xu P. & Balasubramaniam, R. (2004) How

Extreme does Extreme Programming Have to be ? Adapting XP Practices to

Large-scale Projects. Proceedings of the 37th Hawaii International Conference on

System Sciences.

[Carroll, 2000] Carroll, J. M. (2000). Five reasons for scenario-based design.

Interacting with Computers, 13(1), 43–60.

[Cockburn, 2001] Cockburn, A. (2001). Agile Software Development (Vol. 3b). The

Agile Software Development Series.

[Cockburn & Williams, 2000] Cockburn, A., & Williams, L. (2000). The Costs and

Benefits of Pair Programming. In Extreme Programming and Flexible Processes

in Software Engineering XP2000 (pp. 1–11).

[Curtis et al., 1988] Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the

software design process for large systems. Communications of the ACM, 31(11),

1268–1287.

[David, 2010] David, E. (2010). Research Methods for Political Science: Quantitative

and Qualitative Approaches (Google eBook) (p. 425). M.E. Sharpe. Retrieved

from http://books.google.com/books?id=8PJYznDXQIcC&pgis=1

[de Baar, 2006] de Baar, B. (2006). Using Stakeholder Analysis in Software Project

Management. Retrieved May 21, 2013, from

http://www.theicpm.com/blog/item/186-using-stakeholder-analysis-in-software-

project-management

[Dick & Zarnett, 2002] Dick, A. J., & Zarnett, B. (2002). Paired Programming &

Personality Traits. Proceedings of the 2002 Workshops on Database Theory

[Dou et al., 2009] Dou, W., Hong, K., & Zhang, X. (2009). A Framework of

Distributed Pair Programming System. IEEE, 1–4.

[Duncan, 2001] Duncan, R. (2001). The Quality of Requirements in Extreme

Programming. CrossTalk, Software Defence Engineering, 19–22.

[Erharuyi, 2007] Erharuyi, E. (2007). Combining Extreme Programming with ISO

9000 : 2000 to Improve Nigerian Software Development Processes, (March).

[Fenton & Pfleeger, 1997] Norman E Fenton and Shari Lawrence Pfleeger (1997).

Software Metrics A Rigorous and Practical Approach. International Thomson

Computer Press

67

[Fowler, 2000] Fowler, M. (2000). Planning Extreme Programming Kent Beck (pp. 1–

105). Addison Wesley.

[Fowler, 2006] Fowler, M. (2006). Continuous Integration. Retrieved May 16, 2013,

from http://martinfowler.com/articles/continuousIntegration.html

[Fowler et al., 2002] Fowler, M., Beck, K., Brant, J., & Opdyke, W. (2002).

Refactoring: Improving the Design of Existing Code. Retrieved from

http://www.cs.umss.edu.bo/doc/material/mat_gral_137/M.Fowler et al -

Refactoring - Improving the Design of Existing.pdf

[Halstead, 1997] Halstead, M. H.(1997). Elements of Software Science. Elsevier North-

Holland, Inc.

[Hannay et al., 2010] Hannay, J. E., Arisholm, E., Engvik, H., & Sjøberg, D. I. K.

(2010). Effects of Personality on Pair Programming. IEEE Transactions on

Software Engineering, 36(1), 61–80.

Hayward, 2000Hayward, J. (2000). Introduction to System Dynamics. University of

Glamorgan.

[Hofmann, 2001] Hofmann, H. F. (2001). Requirements Engineering as a Success

Factor in Software Projects. IEEE Software, 1(August), 58–66.

[Janeiro, 2001] Janeiro, R. De. (2001). Extreme Requirements (XR). Proceedings of

the 2001 Requirements Engineering Conference Applied Science (pp. 1–13).

[Jones, 1998] Jones, C. (1998). Software Estimation Rules of Thumb. Proceedings of

the 1998 IFPUG conference (pp. 1–11).

[Kalermo & Rissanen, 2002] Kalermo, J., & Rissanen, J. (2002). Agile software

development in theory and practice.University of Jyväskylä, Department of

Computer Science and Information Systems, Report A-2002-8.

 [Kan, 2003] Kan, S. (2003). Metrics and Models in Software Quality Engineering (p.

528). Addison-Wesley Professional.

[Karla et al., 2010] Karla, E., Pablo, C., & Estevez, F. (2010). A Quantitative

Framework for the Evaluation of Agile Methodologies. Journal of Computer

Science and Technology, 10(2), 68–73.

[Klasky, 2003] Klasky, H. B. (2003). A Study of Software Metrics. The State

University of New Jersey, Graduate School-New Brunswick Rutgers.

[Koskela & Abrahamsson, 2004] Koskela, J., & Abrahamsson, P. (2004). Onsite

Customer in an XP Project : Empirical Results from a Case Study Related

research. In proceedings of the 2004 EuroSPI.

68

[Krebs et al., 2011] Krebs, W., Ho, C., Williams, L., Layman, L., & Carolina, N.

(2011). Rational Unified Process Evaluation Framework Version 1.0. IBM

Corporation.

[Kruchten, 2010] Kruchten, P. (2010). Agility and Architecture: Can They Coexist?

IEEE Software, 27(2), 16–22.

[Louridas et al., 2008] Louridas, P., Spinellis, D. & Vlachos, V. (2008). Power laws in

software. ACM Trans. Softw. Eng. Methodol.

[Leite et al., 2000] Leite, J. C. S. do P., Hadad, G. D. S., Doorn, J. H., & Kaplan, G. N.

(2000). A Scenario Construction Process. Requirements Engineering, 5(1), 38–61.

 [Li-li et al., 2011] Li-li, Z., Lian-feng, H., & Qin-ying, S. (2011). Research on

Requirement for High-quality Model of Extreme Programming. Proceedings of the

2011 International Conference on Information Management, Innovation

Management and Industrial Engineering (pp. 518–522). IEEE Computer Society.

[Lumpur, 2009] Lumpur, K. (2009). Review of Agile Methodologies in Software

Development. International Journal of Research and Reviews in Applied Sciences,

1(1), 1–8.

[Maiden et al., 1998] Maiden, N. A.M., Minocha, S., Manning, K.& Ryan, M.(1998).

CREWS-SAVRE: Systematic Scenario Generation and Use. Proceeding in the

1998 third international conference on Requirements Engineering, 1998.

Proceedings. 1998 Third International Conference (pp.148,155).

 [Maurer & Martel, 2002] Maurer, F., & Martel, S. (2002). Extreme Programming

Rapid Development for Web-Based Applications. IEEE Internet Computing.

 [Melis, 2006] Melis, M. (2006). A Software Process Simulation Model of Extreme

Programming. Retrieved May 21, 2013, from

http://www.diee.unica.it/DRIEI/tesi/18_melis.pdf

[Meszaros et al., 2002] Meszaros, G., Andrea, J., & Smith, S. (2002). Framework XP –

Building Frameworks using XP. The Pennsylvania State University.

[Misra & Kumar, 2005] Misra, S., & Kumar, V. (2005). Goal-oriented or scenario-

based requirements engineering technique - what should a practitioner select?

Canadian Conference on Electrical and Computer Engineering, 2005., (May),

2288–2292.

[Mohammadi, 2008] Mohammadi, S. (2008). An analytical survey of “ onsite customer

” practice in Extreme Programming. International Symposium on Computer

Science and its Application, 1–6.

69

[Nawrocki et al. , 2002] Nawrocki, J., Jasinski, M., Walter, B., & Wojciechowski, A.

(2002). Extreme programming modified: embrace requirements engineering

practices. Proceedings in the 2002 IEEE Joint International Conference on

Requirements Engineering. IEEE Computer Society.

[Nawrocki & Wojciechowski, 2001] Nawrocki, J., & Wojciechowski, A. (2001).

Experimental Evaluation of Pair Programming. Proceeding in the 12th European

Software Control and Metrics Conference ESCOM. Shanker Publishing.

[Pidd, 1994] Pidd, M. (1994). An Introduction to Computer Simulation. Proceedings in

the 26th conference on Winter simulation. Society for Computer Simulation

International.

[Pohl, 1995] Pohl, K. (1995). Requirements Engineering : An Overview. Encyclopedia

of Computer Science and Technology, 36, 1–40.

 [Potts, 1999] Potts, C. (1999). ScenIC: a strategy for inquiry-driven requirements

determination. Proceedings IEEE International Symposium on Requirements

Engineering (Cat. No.PR00188), 58–65.

[Renard, 2000] Renard, Y. (2000). Guidelines for Stakeholder Identification and

Analysis. Caribbean Natural Resources Institute.

[Scrum Alliance, 2013] Scrum Alliance - What Is Scrum? (2013). Retrieved March 14,

2013, from http://www.Scrumalliance.org/pages/what_is_Scrum

[Sfetsos et al., 2006] Sfetsos, P., Angelis, L., & Stamelos, I. (2006). Investigating the

extreme programming system–An empirical study. Empirical Software

Engineering, 11(2), 269–301.

[Sharp et al., 1999] Sharp, H., Finkelstein, A., & Gala, G. (1999). Stakeholder

Identification in the Requirements Engineering Process. IEEE, 387–391.

[Sutcliffe, 2003] Sutcliffe, A. (2003). Scenario-based requirements engineering.

Proceedings of the 11th IEEE International Conference on Requirements

Engineering, 320–329. IEEE Computer Society.

[Sutcliffe et al., 1998] Sutcliffe, A. G., Maiden, N., Minocha, S., & Manuel, D. (1998).

Supporting scenario-based requirements engineering. IEEE Transactions on

Software Engineering, 24(12), 1072–1088.

[Sutherland, 2004] Sutherland, J. (2004). Agile Development : Lessons Learned from

the first Scrum. Cutter Agile Project Management Advisory Service, 5(20).

[Swamidurai & Umphress, 2012] Swamidurai, R., & Umphress, D. (2012).

Collaborative-Adversarial Pair Programming. ISRN Software Engineering, 1–11.

70

 [Takeuchi and Nonaka, 1986] Takeuchi and Nonaka. (1986). The New New Product

Development Game. Harvard Business Review.

[Wiegers, 2004] Wiegers, K. E. (2004). Software Requirements. Microsoft Press.

[Harrison, 1987] Michael A. Harrison, Introduction to Formal Language Theory.

Addison-Wesley, 1978.

[Wallace et al., 2005] Wallace, N., Bailey, P., & Ashworth, N. (2005). Managing XP

with Multiple or Remote Customers. Synop Pty Ltd.

[Wernick & Hall, 2004] Wernick, P., & Hall, T. (2004). The Impact of Using Pair

Programming on System Evolution : a Simulation-Based Study. IEEE Software

Maintenance, (2003).

[Westfall, 2006] Westfall, L. (2006). Software Requirements Engineering: What, Why,

Who, When, and How. The Westfall Team.

[Westfall, 2009] Westfall, L. (2009). The Certified Software Quality Engineer

Handbook (p. 640). ASQ Quality Press.

[Westfall, 2005] Westfall, L. (2005). 12 Steps to Useful Software Metrics. Proceedings

of the Seventeenth Annual Pacific Northwest Software Quality Conference.

[Williams et al., 2000] Williams, L., Carolina, N., Kessler, R. R., & Cunningham, W.

(2000). Strengthening the Case for Pair Programming, 19–25.

[Williams et al., 2005] Williams, L., Krebs, W., Layman, L., Antón, A. I. &

Abrahamsson, P. (2005). Toward a Framework for Evaluating Extreme

Programming. Empirical Software Engineering.

[Williams et al., 2007] Williams, M., Packlick, J., Bellubbi, R., & Coburn, S. (2007).

How We Made Onsite Customer Work - An Extreme Success Story. IEEE

Computer Society, 334–338.

[Woit, 2005] Woit, D. M. (2005). Requirements interaction management in an extreme

programming environment: a case study. Proceedings. 27th International

Conference on Software Engineering, 2005. ICSE 2005., 489–494.

[XP flow Chart, 2013] XP flow Chart. (2013). Retrieved February 18, 2013, from

http://www.extremeprogramming.org/map/project.html

[Yong & Zhou, 2009] Yong, Y., & Zhou, B. (2009). Evaluating Extreme Programming

Effect through System Dynamics Modeling. Proceedings of the 2009 International

Conference on Computational Intelligence and Software Engineering, 1–4.

