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Rendering of increasingly complex and detailed objects and scenes, with physically 

correct light simulation, is an important problem for many fields ranging from medical 

imaging to computer games. While even the latest graphics processing units are unable 

to render truly massive models consisting of hundreds of millions of primitives, an 

algorithm known as ray tracing – which by its very nature approximates light transport – 

can be used to solve such problems. Ray tracing is a simple but powerful method known 

to produce high image quality, but it is also known for its slow execution speed. This 

thesis examines parts of the research made to bring ray tracing into the interactive 

sphere. Specifically, it explores ray-triangle intersections, ray coherency, as well as kd-

tree building and traversal. Even though these issues are delved into in the context of 

interactive graphics, the insights provided by the analyzed literature will also translate 

to other domains. 
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1. Introduction 

Interactive 3D computer graphics have seen a tremendous improvement in quality since 

their inception. The visual realism and image complexity of today‟s state-of-the-art 

applications are superior even to anything done just six years ago. With the ongoing 

demand for higher detail from different industries this trend is certain to continue. 

Figure 1.1 presents a screenshot from an early video game and Figure 1.2 presents a 

screenshot from a game from 2007. 

 

  
      Figure 1.1 Screenshot from 3D Monster Maze  Figure 1.2 Screenshot from Crysis 

 

The z-buffer algorithm – first introduced by Wolfgang Strasser, but independently 

discovered and generally attributed to Catmull [1974] – is used virtually exclusively to 

solve the visibility problem in interactive computer graphics.  It has proprietary 

hardware known as GPU (Graphics Processing Unit) which makes the present day 

graphical quality possible and which has been specifically designed to execute the z-

buffer algorithm fast. Z-buffer is capable of producing spectacularly realistic images, 

but it is not without its problems. Without culling its runtime is Ο(N) or asymptotically 

linear compared to the number of primitives, which means that the quest for higher 

visual realism and more complex scenes will continue to make its execution slower. 

Furthermore, z-buffer has problems with many basic effects which are essential for a 

truly realistic image, such as shadows, reflections and refractions. To be sure, these 

effects can be done, but with limitations and much work. In addition, z-buffer does not 

handle well objects which do not purely consist of triangles [Shirley et al., 2008]. 

Despite these shortcomings z-buffer has been without a viable alternative for decades.  
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However, the same factors – continued rise of processing power and memory combined 

with ever better GPUs – which have made it possible for z-buffer to handle increasingly 

detailed and complex scenes, now promise to make another algorithm capable of real-

time execution in the foreseeable future. Building on decades of off-line rendering work, 

the last decade or so has seen a flurry of research into interactive or real-time ray tracing, 

an algorithm which has long been used in the creation of photorealistic images. The 

basic idea of ray tracing is to simulate nature, light arrives from some source(s)  – be it 

the sun, light bulb, TV or a bioluminescent growth, known as esca or illicium, of an 

anglerfish – and it is reflected, refracted and shadows are formed to where it does not 

shine directly. There are two ways to do ray tracing – forward and backward. In forward 

ray tracing each light source shoots out rays in all directions and all of the rays are 

traced to see whether or not they reach the image plane and continue on to the eye – eye 

is the point from which the scene is viewed. This approach is computationally very 

inefficient since even the rays that do not contribute anything to the image are traced. 

Due to forward ray tracings‟ infeasibility in image production, ray tracing refers nearly 

exclusively to backward ray tracing [Glassner, 1989a].  

 

Backward ray tracing starts by turning the approach around. Since we know that the 

rays which reach the eye certainly contribute to the image, we can trace them backwards 

from the eye. In different studies these rays have been called with a variety of names, 

such as eye rays, pixel rays, primary rays and incident rays. In this study they will be 

referred to as eye rays. Once a ray reaches an object in the scene a few things can 

happen. In the most basic form of ray tracing, known as ray casting, new rays are 

spawned towards each light source from the point of intersection between a ray and an 

object. These rays are known as shadow rays, shadow feelers or illumination rays, in 

this study they will be referred to as shadow rays. If the shadow ray reaches the light 

source then this object is being illuminated by this light source. On the other hand, if the 

ray does not reach the intended light source and instead reaches another – occluding – 

object, then the object from which the shadow ray starts is not illuminated by this light 

source but is in the shadow of the other object [Appel, 1968; Glassner, 1989a; Foley et 

al., 1990]. This is not exactly how illumination would work in nature. Further realism 

can be achieved by using more computational power to simulate indirect light [Foley et 

al., 1990]. Figure 1.3 illustrates backward ray tracing. 
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Figure 1.3 A ray intersecting, reflecting, refracting and forming shadow rays (figure from Glassner [1989a]) 

 

 Whitted [1980] expanded the basic model by continuing tracing after the initial 

intersection. To make the continuation of tracing possible, reflections and refractions 

needed to be incorporated into the model which also means that techniques which 

eliminate parts of the scene that are not directly visible cannot be used. Rays which 

model refraction are called refraction rays in this study, but they are also known as 

transmission rays and transparency rays, reflection is modeled by reflection rays. 

Together reflection and refraction rays are known as secondary rays. Depending on the 

type of surface material, reflection can be described in two ideal ways. When light is 

reflected to a single direction the reflection is known as specular reflection, which 

works on shiny surfaces like mirrors, and which is described in its ideal form by the law 

of reflection. On the other hand, when the arriving light is reflected to all directions with 

equal intensity the reflection is known as diffuse reflection, which works on rougher 

surfaces. This ideal form is described by Lambert‟s cosine law. In refraction light bends 

as it passes the boundary between two media, this bending is described by Snell‟s law.  

As with reflection, there are two types of refraction – specular and diffuse. In ideal 

specular refraction light would pass through the medium without any scattering, and in 

ideal diffuse refraction it would be equally scattered to all directions. Beer‟s Law can be 

used to calculate how light intensity is affected when it travels through a medium. For 

refraction there is one additional consideration. If light is trying to travel from a medium 

with higher refractive index to one with a lower refractive index at an angle greater than 

the critical angle, then instead of being refracted, the light is specularly reflected. This 

phenomenon is known as the total internal reflection. There are no materials that are 

perfectly specularly or diffusely reflective or refractive. So, it follows that the outcome 

produced by using the ideal models is not very realistic. Real materials are better 
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represented with a combination of specular and diffuse reflection or refraction. Fresnel 

equations, or Schlick approximation thereof, can be used to determine how much light 

is being reflected and refracted. There are models such as the microfacet model which 

simulate nature to a greater extent, but at the expense of computational power [Glassner, 

1989b; Schlick, 1994; Shirley et al., 2009; Whitted, 1980].  

 

Aliasing arises from the fact that computers handle continuous phenomena with discrete 

samples. Spatial aliasing is a product of the uniform pixel grid. What normally looks 

like an arc on a screen, is in fact an jumble of square protruding edges when zoomed in 

close enough. Another aspect of spatial aliasing is that there are objects so small that 

they are missed by rays, but they are not so insignificant that their absence goes 

unnoticed. Small objects can also be connected to temporal aliasing when they are, for 

example, moving across a screen. An object not intersected by a ray at one location can 

be intersected by a different ray in another location. This causes a distracting 

phenomenon where an object flickers in and out of existence for seemingly no reason. 

Temporal aliasing is also at work when a tire, which is spinning forward fast, seems to 

slow down and reverse direction. Another incarnation of temporal aliasing is when an 

otherwise constantly moving line suddenly appears to skip forward along its trajectory 

while missing a line. These effects are corrected for with anti-aliasing [Glassner, 1989a].  

 

Anti-aliasing can be done by using supersampling. Instead of using a single ray to 

sample a pixel, with supersampling we could use, for instance, seven rays to get a better 

understanding of a pixel. This does not remove, but simply alleviates, some aliasing 

effects. However, there is also another version of ray tracing that does anti-aliasing on 

its own – stochastic or distributed ray tracing [Glassner, 1989a]. In addition to anti-

aliasing, distributed ray tracing also creates a more accurate pixel color and enables 

many advanced effects. It is able to produce depth of field, motion blur, gloss, 

translucency, soft shadows and penumbras. In distributed ray tracing each pixel is 

sampled with multiple rays distributed in the same manner as a Poisson disk. Sixteen 

rays have been found to be enough for most effects, but there are situations where using 

64 rays per pixel helps to reduce excess noise. Poisson disk distribution is a Fourier 

transform of the photoreceptor distribution in an extrafoveal region in the eye of a 

rhesus monkey. Humans and rhesus monkeys have a similar photoreceptor distribution 

and human eyes are not prone to aliasing – they have noise. An effective way to 

approximate Poisson disk distribution is to first distribute the rays evenly across a pixel 

and then displace each ray on the x- and y-axes by some sufficiently small random 

amount, so that the new positions of the rays do not overlap and the rays do not bunch 

up. This method is known as jittering and the outcome is mostly noise instead of 

aliasing, which is not as distracting for the human visual system. To create the advanced 

effects rays need to be distributed in the proper dimension, for instance, in time to create 

motion blur [Cook et al., 1984; Cook, 1989; Foley et al., 1990].   

 

 

While there are a number of architectures which have been proposed as basis for 

proprietary hardware implementation of ray tracing, such as SaarCOR, examining these 
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architectures is outside the scope of this thesis. Furthermore, due to space limitations the 

only acceleration structure to be considered in depth is kd-tree. Many of the techniques 

discussed for kd-trees are, however, also applicable to at least BVHs (Bounding Volume 

Hierarchy – a hierarchy which consists of bounding volumes, such as boxes or spheres). 

In addition to architectures and other acceleration structures, GPU implementations of 

acceleration structures and ray tracing on GPUs in general are outside the scope of this 

thesis.     

 

The rest of this thesis is structured as follows: Chapter 2 discusses general efficiency 

strategies, known efficient ways of calculating intersections between a ray and a triangle, 

data layout and shadow rays, which account for majority of rays in a system [Smits, 

1998]. Chapter 3 goes into memory and ray coherency, culling strategies for packets 

and ray tracing as a filtering problem. Chapter 4 introduces kd-trees, their different 

building strategies and parallelization of building. Chapter 5 examines kd-tree traversal 

in its various forms. Finally Chapter 6 draws some concluding remarks.  
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2. General considerations 

The most basic optimization for ray tracing is to consider the math involved in the 

different computations. There are multiple ways to calculate a ray triangle intersection, 

but what holds true to all of them is that taking a square root is a slow operation. 

Similarly, multiplication is usually faster than division, while addition, subtraction and 

comparison are faster than any of the aforementioned operations. Thus, using a formula 

which minimizes the use of square root and division will in most cases speed up 

execution [Glassner, 1989a]. 

 

Adaptive tree-depth control cuts the tracing of a ray when the contribution of the ray to 

the outcome of the pixel color drops below some predetermined level. The color of a 

pixel is the sum of the entire ray tree (eye, reflection and refraction rays). The 

contribution of an individual ray decreases as the depth of the tree increases. Trees can 

basically have any depth, and the contribution of a ray will become increasingly 

miniscule [Glassner, 1989a]. 

 

Even though ray tracing is capable of supporting a multitude of primitives, supporting 

only a single primitive can be a benefit. Triangles can be used to approximate any other 

geometric primitive and thus any 3D-scene. Limiting support to triangles only reduces 

branching which increases execution speed. It also eliminates the need for different 

intersection code for different primitives, which leads to simpler code. Simpler code is 

easier to optimize for programmer and compiler alike and it also reduce the likelihood 

of mistakes [Wald et al., 2001]. 

 

Because of the development in processors, ray tracing is bounded more by transfer 

speed between memory and cache than CPU speed. Data is moved to cache as entire 

cache lines, and data structures need to be designed so that they occupy entire cache 

lines. Doing so will minimize data transfer and increase speed, possibly at the cost of 

bigger than needed structures, as they are made to conform to cache line size [Wald et 

al., 2001]. Wächter [2004] notes that the usefulness of cache line alignment ultimately 

depends on the hardware used, as the P4 coupled with 8-bit level 1 data cache (level 1 

data cache is the smallest and fastest cache in the multi-level cache hierarchy of modern 

processors, it is the first place a processors looks for data after registers) does not see 

the increase in speed reported for the PIII by Wald et al. [2001].   

 

2.1 Triangle intersection 
 

To reach 30 FPS (Frames Per Second) for primary visibility (no shadows, reflections or 

refractions) on 1080p resolution without any sort of anti-aliasing, a ray tracer would 

need to handle 62M rays per second. Increasing rays per pixel to 16 for anti-aliasing and 

advanced effects results in 995M rays per second, again for only primary visibility. It is 

thus clear that determining whether or not a ray has an intersection in a scene, and the 

speed of the calculation used to resolve the intersection point, are of crucial importance.  
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A ray is defined by 

  

  ( )           (         )       (2.1) 

 

where O is the origin of the ray R(t), D the normalized direction of travel and t the 

distance. If t < 0, the intersection is behind the origin of the ray and, thus, rejected. 

Furthermore, usually tmin = ε as tmin = 0 could result in self-intersection. The intersection 

is also rejected if a closer intersection already exists or the embedding plane of the 

triangle and the ray are parallel. A ray is parallel with a plane when the product of the 

plane normal and the ray direction equals zero. The special case of the ray being parallel 

with the embedding plane while also being on the plane can be ignored because hitting 

an edge of a triangle has no effect [Badouel, 1990; Haines, 1989; Möller and Trumbore, 

1997; Wald, 2004].  

 

A triangle ∆ ABC is an area bounded by vertices A, B and C. For the ray R(t) to hit a 

triangle it has to satisfy the condition tmin ≤ thit ≤ tmax and hit-point H = R(thit) has to be 

inside the triangle. There are multiple ways to solve for this problem, but methods 

known as Möller-Trumbore, Badouel and Plücker coordinates are currently thought of 

as the best [Badouel, 1990; Haines, 1989; Möller and Trumbore, 1997; Wald, 2004]. 

 

Badouel‟s algorithm starts by resolving whether or not a ray has an intersection with the 

embedding plane of a triangle. The existence of an intersection is ascertained by 

calculating the signed distance,       , to the embedding plane, and by determining if 

       is within the interval where intersections are sought. The signed distance can be 

calculated as 

 

         
(     )    

     
,        (2.2) 

 

where N is the normal of the plane and it is calculated by taking a cross product (N = (B 

– A) x (C – A)) [Badouel, 1990; Haines, 1989; Wald, 2004]. If the ray reaches the 

embedding plane then the next step is to determine if it intersects the triangle ∆ ABC as 

well. The intersection point H is calculated using Equation 2.1 where          . The 

barycentric coordinates of H can be solved as follows 

 

H = αA + βB + γC,                  (2.3) 

 

where α + β + γ = 1. H is inside the triangle if α, β and γ all have a value which is ≥ 0 

and ≤ 1. The amount of operations can be reduced, as it is enough to check β ≥ 0, γ ≥ 0 

and β + γ ≤ 1 [Badouel, 1990; Wald, 2004]. 

 

Triangle ∆ ABC and point of intersection H can be projected to one of the primary 2D 

planes to increase execution speed, as long as the plane of projection is not orthogonal 

to the plane ABC, because projection has no effect on barycentric coordinates. To 
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maintain numerical stability, the projection should be done to the plane where the 

triangle has the largest projected area, which is the dimension where N has its maximum 

absolute component. After projection to the XY plane, Equation 2.3 has the form 

 

                  ,       (2.4) 

 

which through substitution and rearranging becomes 

 

   
          

          
,    

          

          
 ,      (2.5) 

 

where b = C’ – A’, c = B’ – A’ and h = H’ – A’. Additionally here and in Equation 2.7 x 

and y represent the two-dimensional coordinates [Badouel, 1990; Wald, 2004; Wächter, 

2004]. Execution speed can be improved further by precomputing and storing values 

that remain the same for all intersections. The edges of a triangle and the projection 

dimension are such values, and so is the normal of a triangle. For normal, a further 

consideration is that when the projection dimension k is known, N ∙ k cannot be zero. It 

is therefore possible to derive and store N’ by dividing N with N ∙ k which leads to 

 

    
(   )     

        
           

          
          

  

       
           

           
 .     (2.6) 

 

Values       ,   
   

  

  
 and   

   
  

  
 are constants,   

    and does not need to 

be stored.  Here u and v represent the two planes where the triangle was not projected to. 

Additionally, with the normal known, u and v need not be calculated using a slow 

modulo operation (u = (k + 1) mod 3, v = (k + 2) mod 3) since a table lookup ({0, 1, 2, 0, 

1}) will suffice. The Newton-Raphson method can be used instead of division to 

increase execution speed. Computing β and γ can be simplified in a manner similar to 

Equation 2.6  

 

    
 

          
(                       

       
  

          
    

   

          
    

          

          
    (2.7) 

                        . 

 

Here    ,     and     are constants.  The same approach can be used for γ, and then it 

follows from the properties of barycentric coordinates that α = 1 – β – γ. The resulting β 

and γ can also be used, for example, in determining texture-coordinates [Wald, 2004; 

Wächter, 2004]. Algorithm 2.1.1 presents Badouel‟s algorithm for ray bundles. 
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Improved Badouel’s algorithm 

Algorithm Badouel(O, D, A, B, C) 

Input: ray origin O and direction D, vertices A, B and C 

Output: no hit or hit at intersection distance, barycentric coordinates beta and gamma 

b = C-A; c = B-A; N = c x b; 

t_plane = -((O-A) ∙ N) / (D ∙ N); 

 

if (t_plane < Epsilon || t_plane > t_max)  then 

    return NO_HIT; 

end if 
if (|N.x| > |N.y|) then 

    if (|N.x| > |N.z|) then 

        k = 0; /* X */  

    else 
        k = 2; /* Z */ 

    end if 

else 

    if (|N.y| > |N.z|) then 

        k = 1; /* Y */  

    else 

        k = 2; /* Z */ 

    end if 

end if 

 

u = (k + 1) mod 3; v = (k + 2) mod 3; 

H[u] = O[u] + t_plane ⦁ D[u]; 

H[v] = O[v] + t_plane ⦁ D[v]; 

beta = (b[u] ⦁ H[v] - b[v] ⦁ H[u]) / (b[u] ⦁ c[v] - b[v] ⦁ c[u]); 

 

if (beta < 0) then 

    return NO_HIT; 

end if 

gamma = (c[v] ⦁ H[u] - c[u] ⦁ H[v]) / (b[u] ⦁ c[v] - b[v] ⦁ c[u]); 

if (gamma < 0) then 

    return NO_HIT; 

end if 

if (beta+gamma > 1) then 

    return NO_HIT; 

end if 

return HIT(t_plane,beta,gamma); 
Algorithm 2.1.1 Projection method [Wald, 2004] 

 

Wächter [2004] notes that by rearranging the distance test to:  

 

 if(!(t > 0.0) || (t > ray.tfar)) continue; 

 

instead of testing if t is negative or larger than ray.tfar, a situation where t = NaN (not a 

number) can be avoided altogether. In addition, it is possible to further speed up this 

operation while also detecting and handling ±∞, QNaN (quiet NaN) and SNaN 

(signaling NaN) without floating-point comparisons. This is done by replacing floating 
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point operations with integer arithmetic, where the previous formulation of the distance 

test is replaced by 

 

 if((unsigned int&)t > (unsigned int&)ray.tfar) continue; 

 

and ray.tfar is initialized to 3.3e38f. All negative values of t will pass the test because 

they have a sign-bit of 0x80000000, while ray.tfar always has a valid positive floating-

point number. Integer arithmetic is also used in the same way to transform part of the 

inside test from u + v > 1.0f to (unsigned int&)uv > 0x3F800000. The entire test could 

be done in integer arithmetic, but other optimizations lead to a version where u < 0.0 

and v < 0.0 are determined in a different manner.  

 

Wächter [2004] also experimented with other ideas, such as bit-sifting to remove 

projection case look-up table dependency, but found that the methods did not impact 

execution speed positively, sometimes resulting in a decrease in execution speed. The 

lack of improvement could, in some cases, be attributed to the features of the underlying 

hardware architecture used in the tests (P4). Furthermore, when converting the C-code 

to SIMD (Single Instruction, Multiple Data) it was noticed that some of the 

optimizations, like unsigned integer comparisons, were not supported by the versions 

available at the time (MMX, SSE(2/3)). 

 

Benthin [2006] notes that Badouel‟s algorithm has an early distance test and a very late 

inside test, but the distance test exits only roughly 18% of the time, while the inside test 

exits 52 to 68% of the time. As such an algorithm with early inside test, like Plücker, 

should see increased performance.  

 

Komatsu et al. [2008] contradict Benthin [2006] and present results showing Plücker 

exiting only approximately 21% of the time in the first test. This nearly exactly opposite 

result can, however, be explained if their pseudo code is an accurate representation of 

their actual code. Going by the pseudo code – which their actual text does not contradict 

– Komatsu et al. [2008] seem to have a fundamental misunderstanding of Plücker 

coordinates. In their pseudo code Komatsu et al. [2008] perform the distance test first 

and the inside test second, when the order should obviously be reversed.  

 

Even though Komatsu et al. [2008] conduct tests without using spatial data structures, 

their results are still considerably out of line when compared to those reported 

elsewhere in the literature. For Badouel they report only 1.0027x speed increase over 

Möller-Trumbore, while for Plücker they get 1.0250x increase over Möller-Trumbore. 

Comparison of Badouel and Plücker produces a difference of 1.0222x in favor of 

Plücker. All of the results are for eye rays. Wald [2004], on the other hand, reports 2.1x 

– 2.3x for eye rays and 1.9x – 2.0x for shadow rays in favor of Badouel over Möller-

Trumbore. Benthin [2006] reports 1.2x increase for Plücker over Badouel.  Kensler and 

Shirley [2006] report 1.7x increase over Möller-Trumbore for an algorithm that is 

slower than either Badouel or Plücker (comparing results from Kensler and Shirley 

[2006] to those reported for a version of Badouel by Wald in Havel and Herout [2010], 
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the testing machines are roughly comparable). Based on this it would appear that there 

is some sort of a problem with the implementations of Badouel and Plücker by Komatsu 

et al. [2008].  

 

Unlike Badouel, Möller-Trumbore does not start by intersecting the embedding plane. 

Instead, the triangle to be intersected is translated to the origin and transformed so that it 

is aligned with the x-axis. In addition, only triangle vertices are stored and no 

precomputation is needed. While this results in memory savings of 25 to 50% for 

triangle meshes, it also means slower execution when compared to recent versions of 

Badouel and Plücker coordinates [Möller and Trumbore, 1997].  The other advantage 

Möller-Trumbore has over Badouel and Plücker is that its conditional checks are 

performed earlier, resulting in fewer operations when there is no intersection [Komatsu, 

2008]. The following equation describes a point on a triangle in Möller-Trumbore: 

 

  (   )  (     )       .      (2.8) 

 

For an intersection to occur u and v must fulfill the same conditions as β and γ in 

Badouel. An intersection is calculated as R(t) = T(u, v). Substituting T(u, v) with R(t) in 

Equation 2.8 and rearranging the resulting equation leads to 

 

[
 
 
 
]   

 

(      )     
[

(      )    

(      )   
(      )   

] ,      (2.9) 

 

where       ,        and       [Möller and Trumbore, 1997]. Further 

optimizations are possible through the use of scalar triple product rules and the 

commutative property of cross product: 

 

  

 [
 
 
 
]   

 

(       )    
[

(       )   
(     )    

(     )    

]    
 

     
[

   
 (     )    

(     )    

].  (2.10) 

 

Edges    and    and the normal N are constants, and can thus be precomputed 

[Komatsu et al., 2008]. 

 

By applying scalar triple product rules to Equation 2.10, Möller-Trumbore can be made 

more efficient when used with ray frustums: 

 

[
 
 
 
]    

 

     
[

   
  (       )
  (      )

].      (2.11) 

 

Outcome of N ∙ T is a constant for all rays in a frustum, since they are assumed to share 

an origin, and can thus be precomputed. Additionally,         and        are also 
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constants for all rays in a frustum. The precomputed values take 40 bytes of space and 

they can be easily arranged so as to take advantage of cache line size. The improved 

version also retains the early condition checks of its predecessor [Komatsu, 2008]. 

Algorithm 2.1.2 describes Möller-Trumbore for ray bundles. 

 

Möller-Trumbore 

Algorithm Precomputation triangle(A, B, C) 

Input: triangle vertices A, B and C 

Output: triangle edges 1 and 2, and triangle normal 

    E1 ← B – C 

    E2 ← C – A 

    N ← E1 x E2 

    return (E1, E2, N) 

Algorithm Precomputation frustum(O, N, A, E1, E2) 

Input: ray origin O, triangle normal N, triangle vertex A, triangle edges 1 and 2 

Output: edges 1 and 2 translated to origin, triangle normal at origin  

    T ← O – A 

    Gu ← –T x E2 

    Gv ← T x E1 

    f2 ← N ∙ T 

    return (Gu, Gv, f2) 

Algorithm Intersection(D, N, Gu, Gv, f2) 

Input: ray direction D, triangle normal N, triangle edges 1 and 2 at origin, triangle 

normal at origin 

Output: no hit or hit at distance t and barycentric coordinates u‟ and v‟  

    f1 ← N ∙ D 

    if f1 ≥ 0 then 

        return(No Hit) 

    end if 
    u‟ ← D ∙ Gu 

    if u‟ < 0 then 

        return(No Hit) 

    end if 

    v‟ ← D ∙ Gv 

    if v‟ < 0 then 

        return(No Hit) 

    end if 
    if u‟ + v‟ > –f1 then 

        return(No Hit) 

    end if 
    t ← –f2 / f1 

    return(Hit, u‟, v‟, t) 
Algorithm 2.1.2 Ray bundle Möller-Trumbore [Komatsu, 2008] 

 

Contrary to Badouel, Plücker coordinates have an early inside test and a late distance 

test. Plücker coordinates can be used to express a directed 3D line in 6D. A line L which 

goes through 3D points X and Y is formulated in Plücker space as             , 

from which it follows that a ray R is           . Two lines,            and 

          , intersect if                            . If            then the 

lines pass each other counterclockwise, while            means that the lines pass 
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each other clockwise. A ray R and a triangle ∆ ABC expressed in Plücker coordinates 

intersect, if R ∙ A > 0, R ∙ B > 0 and R ∙ C > 0 or R ∙ A < 0, R ∙ B < 0 and R ∙ C < 0, i.e., 

all the inner products between edges and a ray have the same sign. If all inner products 

equal to 0.0, then the ray is coplanar with the triangle and produces no intersection. 

[Benthin, 2006; Erickson, 1997; Komatsu et al., 2008; Shoemake, 1998; Wächter, 2004]. 

 

Because all rays in a bundle are assumed to share an origin (if the origin is not shared, 

then this method is not usable), Plücker can be optimized further for ray bundles by 

transferring the ray origin to the origin of the coordinate system. The transfer is 

achieved by subtracting O from vertices A and B. This simplifies the inner product 

between R and E = [A – B, A x B] to 

 

         ((   )  (   ))     (    )  ((   )  (   )) 

               ((   )  (   ))    (   )    (2.12) 

               ((   )  (   )). 

 

The computations are sped up because (   )   (   ) and similar computations 

for the other two edges are constant for all rays in a bundle. As such, each ray only 

needs to take three dot products to solve for intersection. After the intersection has been 

verified (using either ray bundle or single ray method) t can be calculated using 

Equation 2.2. The result is constant for all rays in a bundle and, hence, it can also be 

precomputed. If the triangles are, however, dynamic, computing on the fly might be 

more efficient [Benthin, 2006; Komatsu, 2008]. Algorithm 2.1.3 presents ray bundle 

Plücker test. 
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Plücker test for ray bundles 

Algorithm Precompute triangle(A, B, C) 

Input: triangle vertices A, B and C 

Output: triangle normal N 

    E1 ← B – C 

    E2 ← C – A 

    N ← E1 x E2 

    return (N) 

 

Algorithm Precompute frustum(O, N, A, B, C) 

Input: ray origin O, triangle normal N, triangle vertices A, B and C 

Output: triangle edges BA, CB and AC translated to origin, triangle normal at origin  

    T0 ← (B – O) x (A – O) 

    T1 ← (C – O) x (B – O) 

    T2 ← (A – O) x (C – O) 

    f2 ← N ∙ (O – A) 

    return(T0, T1, T2, f2) 

 

Algorithm  Plücker(D, N, T0, T1, T2, f2) 

Input: ray direction D, triangle normal N, triangle edges BA, CB and AC at origin, 

triangle normal at origin 

Output: no hit or hit at distance t 

    α ← D ∙ T0 

    β ← D ∙ T1 

    γ ← D ∙ T2 

    if α, β and γ don‟t have the same sign then 

        return(No Hit) 

    end if 

    f1 ← N ∙ D 

    if f1 ≥ 0 then 

        return(No Hit) 

    end if 
    t ← –f2 / f1 

    return(Hit, t) 

 
Algorithm 2.1.3 Plücker test modified from [Komatsu, 2008], see Benthin [2006, p.78] for SSE 

 

Another variation of Plücker precomputes scaled normals of p and q (the selected axes) 

coordinates:    and   , scaled p and q coordinates for two edges:    ,    ,     and 

   , p and q coordinates for a vertex:    and   , and the dot product of the vertex and 

scaled triangle normal: d. Index of the discarded axis, r, is also stored, and it is used to 

restore the indexing of coordinate components during intersection tests. Using these 

values an intersection is calculated as follows 

 

                     

      (              )  

              ⦁ (       ) 

              ⦁ (       )      (2.13) 
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]   

 

   
 [

  
  
  

]. 

 

The first six lines are used to determine whether or not an intersection happens and the 

last line calculates the position of the intersection. Therefore, the slow division 

operation is done only if there is an actual intersection. Further improvement is possible 

in the case of axis aligned triangles, where two dimensions have a normal which 

evaluates to zero (here    and   ) [Havel and Herout, 2010; Shevtsov et al., 2007b].  

 

An algorithm by Havel and Herout [2010] is a combination of Badouel by Wald [2004] 

sans the projection to a single plane and the version of Plücker by Shevtsov et al. 

[2007b]. While N is calculated as in Badouel, normals for the two other planes are 

calculated as 

  

     
         

    
                  

     
         

    
                .      (2.14) 

 

The following equations describe how the barycentric coordinates, which are expressed 

as scaled distance from their planes, are determined, and used to resolve the inside test. 

The resulting values are inserted to the last line of Equation 2.13 to resolve the distance 

test and calculate the intersection point:  

 

                

                      (2.15) 

               

 

           

      (     ) 

        ⦁      ⦁          (2.16) 

               ⦁    

               ⦁   . 

 

Kensler and Shirley [2006] use a genetic algorithm to search all known unique ways to 

compute an intersection with a volume defined by four points. They then hand tune the 

resulting algorithm to produce another algorithm which outperforms Möller-Trumbore 

on average by 1.72x to 2.16x (depending on whether or not rays in a bundle share 

origin). 

 

Of the approaches presented here Wald [2004], Shevtsov et al. [2007b] and Havel and 

Herout [2010] report the highest amount of tests per second. While the algorithm by 

Havel and Herout [2010] is the fastest in general, it is comparable or slightly slower 

than Wald‟s [2004] and Shevtsov et al.‟s [2007b] in the worst case scenario. 
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All the previous methods compute values for each triangle separately. Typical scenes, 

however, consist of meshes where triangles share vertices. Avoiding repeating 

unnecessary calculations by applying known values to neighbouring triangles should 

increase execution speed. 

 

Triangle fan is a structure with vertices {  , …,   }, where    is the center vertex 

[Galin and Akkouche, 2005]. The vertices form a set of triangles, as presented in Figure 

2.1.  

   

                                         
                Figure 2.1 Closed triangle fan 

 

Triangle values for the fan are calculated using a modification of Möller-Trumbore. 

Instead of solving Equation 2.8 to Equation 2.9, we can derive 

 

 [
 
 
 
]   

 

(         )    
[

 (          )   
(     )      

 (     )    

].     (2.17) 

 

Here         , which is the translation vector to ray origin. Edge vectors    and 

      are calculated as        and         , respectively. The first step in the 

algorithm is to solve the translation vector, s, and the constant cross product,       .  

In the second step all edge vectors are calculated and for each vector also a dot product 

is determined. These values are calculated in pairs:          ,            , 

        and        . If   and    have the same sign, then there is no intersection, 

because both of the vertices are on the same side of a plane that contains the ray and the 

center vertex. In this case the next two vertices are evaluated. Because the next triangle 

shares a vertex with the first triangle, computations can be shared. The value of vector b 

is assigned to vector a and    becomes   . If, on the other hand, there is an intersection, 

then the triangle normal,         , and determinant,           , are calculated. 

A determinant value in an interval close to zero (for instance,        ) indicates that 

the ray is on the triangle plane and, thus, there is no intersection. Otherwise, the 

barycentric coordinates and the distance can be calculated as 
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                         (     ),    (2.18)     

 

where   
 

   
. If vertex locations are not needed and are not shared between triangles, 

then edges can be precomputed. Similarly, triangle normals can also be precomputed 

[Galin and Akkouche, 2005]. 

 

Triangle fan building can start from either a closed or an open mesh, and the goal is to 

build as large fans as possible while avoiding forming fans with only a single triangle – 

also known as degenerate fans. If the mesh is closed, then the first fan is created at a 

given candidate vertex c. Afterwards, and in the case of an open mesh, c is selected by 

using a fitness function 

  

  ( )      ( )     ( )     ( ).      (2.19) 

 

Here v(c) is used to denote the connectivity of c, r(c) expresses the number of open 

edges in the one ring neighbourhood of c, and t(c) indicates the number of degenerate 

triangle fans remaining, if a fan were to be created centered on c. Coefficients α, β and γ 

are used to adjust the relative weight of each variable of the function and values α = 2, β 

= 7 and γ = 11 have been suggested to work well in general. If the starting mesh is 

closed, then an open mesh is formed by removing the triangles in the fan, centered at c, 

from the mesh. From the now open mesh, the triangles with open edges are placed in a 

list and the new candidate is selected by the fitness function from the one ring 

neighbourhood of the triangles in the list. If the mesh is not closed, then the algorithm 

starts from creating the list of triangles with open edges.  The process is repeated until 

there are no more triangles left. Using triangle fans speeds up intersection calculations 

by nearly 40% [Galin and Akkouche, 2005]. Replacing Möller-Trumbore with the 

algorithm by Havel and Herout [2010] should provide a further speedup, as there is no 

reason it would be slower for triangle fans when it is faster for single triangles.  

 

Triangle fans can be formed from convex and star polygons. Storing models made from 

triangle fans instead of individual triangles decreases the required storage space, as fans 

take M + 2 (where M is the number of triangles in the fan) vertices to describe, while 

separate triangles require 3M vertices. Loading speed is also increased, since there are 

fewer lines to load. 

 

2.2 Data layout in main memory 
 

Efficient data layout not only reduces the needed amount of main memory – henceforth 

memory – but can also increase traversal performance due to fewer cache misses. Cache 

misses can be reduced by storing data elements so that those elements close to each 

other in meshes and hierarchies are also close in memory layouts [Moon et al., 2010]. 

Mapping kd-trees to memory efficiently is complicated, because kd-trees are 

multidimensional while memory is primarily one-dimensional. Common strategies, 

such as B-trees, cannot be used to describe a kd-tree in memory. There are two principal 
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ways to manage dynamic variables in a memory pool (a continuous block of empty 

memory), general memory allocator and fixed-size memory allocator.  Of the two, 

general memory allocator is more wasteful as it requires two additional pointers for 

deallocation, but it is also more flexible. Fixed-size memory allocator does not need 

redundant pointers, but it can only be used to allocate memory for variables with same 

type and size [Havran, 2001].  

 

A common, but inefficient, way to store kd-trees is known as random representation. It 

uses general memory allocation and each node allocates memory for four pointers and 

node information. More importantly, node memory address and node location in a kd-

tree have no connection. Another approach is the depth first search (DFS) representation 

which produces a linear order for nodes in the memory pool. Due to the use of fixed-

size memory allocation, it has lower memory consumption than random representation. 

Memory is allocated for two pointers and node information. Subtree representation also 

uses fixed-size memory allocation and generates a linear order for nodes in a memory 

pool. Unlike DFS representation, however, each variable allocates cache line size of 

memory. The allocated memory is used to store nodes which form subtrees. Subtrees 

can be represented in two possible ways: ordinary subtrees and compact subtrees. An 

ordinary subtree holds equal sized nodes that have pointers to their two children. A 

compact subtree representation only has pointers to subtrees, as node addressing is 

provided by the traversal algorithm. The lack of pointers between nodes causes a need 

for a specialized traversal algorithm, which is not justified by the limited theoretical 

efficiency increase over ordinary subtree representation. While the theoretical speedup 

for DFS and ordinary subtree over random representation are 1.62x and 2.5x 

respectively, the actual reductions in the cost of a traversal step were, on average, 1.25x 

and 1.39x, respectively [Havran, 2001]. 

 

2.3 Shadow rays 
 

Unlike other rays, shadow rays need only know if there is an intersection or not. So, 

calculating rest of the normal intersection information would be redundant. Because 

shadow rays can account for more than 90% of all rays in a system, avoiding 

unnecessary work when tracing them obviously produces a major boost in efficiency. 

Furthermore, because finding an intersection is sufficient for shadow rays, traversal can 

be terminated as soon as an intersection is found [Smits, 1998].  

 

Light Buffer is a method where a point light source can be thought of as being enclosed 

by a uniformly subdivided direction cube. The cube is constructed in a preprocessing 

step. Each direction cell of the cube is associated with a list that holds all the opaque 

objects that can be „seen‟ from the cell. The lists are sorted into ascending order based 

on depth. When determining whether or not a point is in shadow, the shadow ray can be 

thought of as starting from the light source, piercing a direction cell and continuing on 

for the defined length. The list associated with the cell holds all the objects which can 

cause the point to be in shadow. The algorithm then makes use of the fact that as long as 
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there is an occluding object, a shadow is confirmed. As there is no need to find the 

closest occluding object, the execution can stop as soon as an intersection with an 

occluding object is confirmed. The Light Buffer can be improved by culling back facing 

polygons from the candidate list because they are known to be in shadow. Lists that 

contain only a single polygon can be deleted, as a polygon cannot occlude itself unless it 

is back facing. Also, if there is an object which covers the whole direction cell, all 

objects which come after the covering object in the list can be culled because the 

covering object shades everything in its direction pyramid. A list with a covering object 

is specially marked, and all objects with depth greater than the covering object can be 

determined to be in shadow without further tests [Arvo and Kirk, 1989]. This approach 

obviously only works for stationary light sources and static objects. For dynamic scenes, 

all the directional cubes need to be rebuilt for every frame or the cells where there has 

been change need to be identified and their lists updated. 

 

Using a single large frustum to trace shadow rays (also applies to eye rays) means that 

the frustum cannot be tight. Instead, utilizing multiple smaller frusta, say one frustum 

per SIMD, would allow tighter bounds, and also enable individual termination as soon 

as all rays have a confirmed intersection.  Benthin and Wald [2009] develop such a 

system with the now cancelled Larrabee architecture in mind. Their traversal algorithm 

is based on common origin of rays inside each frustum, which makes it possible to use 

only intervals over ray directions, when interval arithmetic (see Section 3.3) is the 

culling method. Using frustum traversal also means that individual rays are only needed 

for actual intersection tests, and they can thus be generated on demand. Culling 

efficiency of interval arithmetic is dramatically reduced if a direction interval has a zero 

in one of the three dimensions (ray directions differ for this dimension). Such a case is 

rare, and it can be corrected by intersecting the AABB (Axis-Aligned Bounding Box – a 

bounding box is an area defined by six planes surrounding an object) of the ray 

direction and the node AABB – assuming the dimension with zero is tight. The increase 

in triangle intersection tests caused by frustum traversal can be counteracted by using 

further culling – such as back face culling and corner rays – at the leaves. 
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3. Ray aggregation 

3.1 Memory coherency 
 

Real-time execution of ray tracing algorithms has for a long time been impossible due to 

insufficient computational power of the available processors. However, after the 

introduction of the multicore processors sufficient processing power has come within 

reach. Developers of interactive ray tracers now face a new obstacle in the form of 

limited bandwidth between memory and processor cache [Navrátil et al., 2007; Shirley 

et al., 2008; Wald et al., 2001]. Especially inefficient are ray tracers which utilize 

depth-first traversal, as they must trace each ray to completion before starting on a new 

ray. This leads to incoherent access to scene geometry when possibly multiple primary 

rays intersect the same geometry one after another at different points of the rendering 

[Navrátil et al., 2007; Pharr et al., 1997]. All geometry and textures can be loaded to 

memory provided that the scene is small enough, but this is a slow not to mention 

wasteful process as it is possible that not even half of the loaded data is used in the 

rendering process. Furthermore, with ever increasing amounts of scene geometry and 

textures, it is likely that the scene geometry and textures simply do not fit in memory 

[Pharr et al., 1997].  

 

A technique known as TOD (Texture On Demand) offers a way to solve this problem. 

Minimizing traffic between disk and memory can be achieved by loading the textures to 

memory lazily, i.e., only when needed. Some predetermined amount of memory is set 

aside for textures and a texture is loaded when needed. Retaining knowledge of the last 

used texture is advisable as the next texture to be requested is often the same as the 

previous. Loaded textures remain in memory which is searched first when a texture is 

requested. New textures are loaded only if the requested texture is not found. In case the 

memory is full the texture to be removed can be determined by utilizing, for instance, 

LRU (Least-Recently Used) algorithm [Peachey, 1990; Pharr et al., 1997]. Similarly, 

geometry traffic between disk and memory can be minimized by loading geometry only 

when it is needed for intersection tests. However, steps to counteract heap fragmentation 

caused by reallocation of variable memory block sizes need to be taken. Spatial locality 

in 3D-space must be tied with spatial locality in memory to ensure coherency in both 

3D-space and memory. While lazy loading of textures and geometry reduces the 

memory needed to render a scene, it can also slightly reduces the time the rendering 

takes [Pharr et al., 1997]. 

 

Ray coherence cannot be exploited while all rays are being traced recursively – 

independently and in a fixed order. To make use of ray coherence, rays need to be 

traced in groups and when needed. However, if rays are no longer traced from start to 

finish, the color of a pixel also needs to be determined in a different way. The color can 

be determined by retaining all of the necessary information in the ray and by computing 

the outgoing color as a weighted sum of incoming colors. To make use of coherency, a 

scene is divided into a voxel grid and each voxel is associated with a queue of rays 
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waiting for an intersection test with the geometry it contains. Each voxel also contains 

information about overlapping voxels. Rays are tested for intersection against geometry 

in all overlapping voxels. In case an intersection is found, shading is calculated and the 

new rays produced by the intersection are added to the queue. On the other hand, if an 

intersection is not found the ray is moved to the next voxel which contains geometry 

and is on the route of the ray. Because loading new geometry to memory is slow, voxels 

to be processed are selected based on a cost (a lot of geometry which currently is not in 

memory is costly) benefit (many rays in a single queue move the rendering process 

more than just a few rays) approximation [Pharr et al., 1997]. Algorithm 3.1.1 presents 

memory coherent traversal.  

 

BFS (Breadth First Search) traversal 

Algorithm BFS_traversal 
Generate eye rays and place them in queues 

while there are queued rays 

    Choose a voxel to process 

    foreach ray in voxel 

        Intersect the ray with the voxel‟s geometry 

        if there is an intersection then 

            Run the surface shader and compute the BRDF 

            Insert spawned rays into the voxel‟s queue 

            if the surface is emissive then 

                Store radiance contribution to the image 

                Terminate the ray 

            else 

                Advance the ray to the next voxel queue 

            end if 

        end if 

    end foreach 

end while 

Algorithm 3.1.1 Memory coherent traversal [Pharr et al., 1997] 

 

In Algorithm 3.1.1 bidirectional reflectance distribution function (BRDF) is a function 

that describes the angles of incident and reflectance by using cross products of two 

hemispheres [Rusinkiewicz, 1997]. The reordering scheme comes with a small overhead, 

but as the available memory gets smaller the algorithm is able to render scenes faster 

than depth-first ray tracing. However, due to the new formulation of the rendering 

equation, adaptive sampling cannot be used. Furthermore, the chosen acceleration 

structure – uniform grid – is not able to adapt to different levels of geometry density 

which can lead to cache trashes. Moreover, the amount of active rays in the system is 

not limited in any way and it is in fact a feature of the algorithm to increase the amount 

of active rays fast. Uncontrolled growth in the amount of active rays can lead to cache 

trashing [Navrátil, 2010; Navrátil et al., 2007; Pharr et al., 1997]. 

 

Rectifying the problem with adapting to geometric density can be done easily by 

replacing uniform grid with another acceleration structure. The acceleration structure 

used in this study is discussed in Chapters 4 and 5. Cache problems can be solved with 
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an algorithm which can employ memory-to-cache bandwidth efficiently and take cache 

size into consideration [Navrátil, 2010; Navrátil et al., 2007].  

 

Instead of queuing rays at all voxels with geometry, the new algorithm queues rays in 

the acceleration structure so that the size of the geometry contained in the subtree which 

starts from the queue node is not larger than the size of L2 (Level 2) cache. Level 2 

cache is a larger version of level 1 cache. It holds recently used data, and it is accessed 

if the data the processor needs is not found in level 1 cache. In case there is a leaf with 

geometry whose size is larger than L2 cache size, the leaf is treated by loading blocks of 

rays and geometry to prevent cache trashing. The algorithm proceeds in generations. 

First all eye rays are queued. When a queue is processed, rays traverse the remaining 

subtree. Rays are traced until an intersection is found in a leaf or the ray exits the 

bounds of the subtree. A ray that has exited a subtree traverses the acceleration structure 

until it encounters another queue point – in which case it is queued and another ray from 

the previous queue starts traversal – or it exits the scene. After eye rays, shadow rays are 

traced in similar manner. Then, starting from the queue point that contains the 

intersection point of the eye ray which produced them, reflection and refraction rays are 

traced in identical manner. These rays, in turn, produce intersection points from which 

new shadow and secondary rays are spawned. This process limits the amount of active 

rays in the system. It is continued until there are no more rays to process (be it through 

all rays leaving the scene, all rays reaching their source of emission, some 

predetermined termination criteria, or a combination of causes). Unlike recursive ray 

tracing which seeks to minimize ray traffic, this algorithm seeks to minimize geometry 

traffic, because ray traffic is faster as long as all threads remain busy. In simulations the 

described algorithm was able to reduce bandwidth consumption – depending on the 

scene – by up to 7.8 times compared to packet ray tracing (see Section 3.2) [Navrátil, 

2010; Navrátil et al., 2007]. 

 

3.2 Ray packets 
 

Many rays traverse a given scene in nearly identical manner, they start from the eye and 

intersect the same primitive at nearly the same point. Thus it would seem like a good 

idea to reduce repeating the same traversal steps, memory accesses, etc. by somehow 

taking advantage of this coherency between rays. Systems such as cone, beam and 

pencil tracing were the first to utilize ray coherence, but real renaissance was brought 

about by introduction of SIMD architectures and packets [Arvo and Kirk, 1989; Wald et 

al., 2001]. SIMD makes it possible to perform the same operation on multiple inputs 

simultaneously and the width of a SIMD unit tells how many operations it can perform 

simultaneously. First SIMD units were 4-wide, but, for instance, Intel Larrabee was 

supposed to have 16-wide SIMD. The idea of a packet – sometimes also known as 

bundle – is simple; instead of intersecting rays one at a time with primitives, intersect 

multiple rays with the same primitive. With 4-wide SIMD intersection calculations of 

four rays with a primitive can be done at the same time resulting in a theoretical 

speedup of 4x [Wald et al., 2001].  
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Packets were first introduced to kd-trees by Wald et al. [2001]. Implementation for 

grids was presented by Wald et al. [2006] while Mahovsky and Wyvill [2006] and Wald 

et al. [2007b] demonstrated the same for BVH. Culling methods (see Section 3.3) have 

allowed the size of the packets to expand beyond SIMD size, even up to cache size. 

Cadet and Lécussan [2007] suggested combined use of kd-trees and BHVs to take 

advantage of the respective better performances of kd-trees on smaller packets and 

BVHs on wider packets. 

 

As the packets traverse an acceleration structure some of the rays become inactive (they 

no longer intersect with the structure). A situation where all but one ray in the packet is 

inactive is possible, which could in turn lead to slower than single ray traversal due to 

the overhead introduced by packet traversal. Eye and shadow rays usually exhibit good 

coherence, but even with packets which contain only eye rays coherence can decline 

rapidly if the scene contains objects that are small enough. Furthermore, reflection and 

refraction rays can become totally random in mere three bounces. Because of the 

aforementioned reasons, packets were initially researched for eye and shadow rays 

exclusively. While the increases in execution speed have been encouraging, neglecting 

reflections and refractions misses the whole point of ray tracing. Without reflections and 

refractions ray tracing is only a more limited and slower version of rasterization and 

thus not worth using. It is therefore clear that to challenge rasterization reflections and 

refractions also need to be implemented interactively [Boulos et al., 2007].  

 

Månsson et al. [2007] tested various methods of sorting secondary rays to coherent 

packets before tracing them. They concluded that all of the used schemes resulted in 

comparable or worse execution speed than not sorting at all. Boulos et al. [2008] note 

that determining which rays are coherent before actually tracing them is a difficult task.  

 

Boulos et al. [2007] examined four reordering schemes to determine how well they 

worked when used with secondary rays. The first method – named blind – where all 

shadow and secondary rays were placed in a single packet was deemed untenable 

without testing. The reason, as described in Section 2.3, is that a faster intersection 

method for shadow rays exists when they are traced on their own. In addition, reflected 

and refracted rays tend to head to wildly different directions and, thus, their coherency 

is poor. Another method – named group – in which rays are placed in packets based on 

some shared property – like intersected material – was similarly left unexplored. Group 

was deemed unfit because depending on the way chosen to divide rays to packets, it 

could lead to as many packets as there are rays. Of the remaining two methods runs is 

very similar to group. Like group, rays are placed in packets if they share a property, but 

in addition their eye rays need to be numerically adjacent. The last method to be 

evaluated empirically is known as types. In this method rays are placed in packets based 

on type. Of the two evaluated methods types was found to be faster, typically by 10 – 

20%. The better outcome of types is attributed to fewer intersection tests as bounce 

depth increases and significantly fewer box tests at all bounce depths. 
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Boulos et al. [2008] remove inactive rays from packets to maximize SIMD utilization. 

Because this reordering of a packet is a costly operation, they perform it only when 

packet utilization (active rays in a packet divided by total rays in a packet) drops below 

50%. To improve tightness after reordering, ray origins are moved to their intersection 

point with the current AABB and the ray parameter is clipped to the exit point of the 

AABB. The scheme produces results that are comparable or slower than packet tracing 

on low bounce depths, but become faster than packet tracing between 5
th

 and 10
th

 

bounce. An increase in SIMD width would have a positive effect on the speed of box 

tests, but triangle tests would see only minor speedups because on average only 2 rays 

reach a leaf node. 

 

3.3 Culling methods 
 

SIMD size packets increase execution speed considerably, but using even bigger 

packets would amortize more operations while saving bandwidth. With culling methods 

operations can be applied to an entire packet once, instead of performing them to each 

individual ray [Reshetov, 2007]. 

 

While interval arithmetic was developed for analyzing tolerances, uncertainties and 

rounding errors, it can also be used as a culling method. An interval is a set of points 

between two endpoints. Using intervals, a box B in 2D is a cross product of the intervals 

on x- and y-axes, and a ray is an interval from origin to ray direction. Intersection with a 

box is calculated as  

 

              

    (      )
 

  
.        (3.1) 

 

The solution for y-axis is obtained similarly. There is an intersection with a box if 

               . This is easily expanded to packets by simply using intersection ( ) 

operation on all results. In interval arithmetic less than and greater than comparisons can, 

in addition to true and false, also result in undecided. This can happen when intervals of 

two variables overlap. Generally if a test evaluates to true or false, a single operation is 

needed for all the rays. Undecided, on the other hand, usually means that rays need to be 

processed individually [Boulos et al., 2006].  

 

A set of four rays can be used to form a convex shaft which bounds all the other rays 

inside a packet. These rays can be actual rays in a packet or purely virtual rays. A single 

SIMD operation can be used to trace the rays. In leaves with triangles, each triangle is 

tested against the four rays and if a single test fails for all four rays then there can be no 

intersection with any of the rays in the packet. On the other hand, if no tests fail for all 

four rays, then the possibility of an intersection exists. The indexes of these triangles 

can be grouped into a “relevant triangle list” to be tested against later [Boulos et al., 

2006; Dmitriev et al., 2004] 
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Reshetov et al. [2005] have demonstrated that the previous approach is flawed in some 

cases, and can lead to incorrect traversal choices. Another method would be to utilize 

frustum culling from raster graphics. In this case a convex hull of rays would be used to 

test for an intersection with axis-aligned boxes. When applied to ray tracing this 

approach succumbs to ever increasing amounts of trivial rejects as their amount 

increases with AABB size. To counteract the increase of failures, roles of the frustum 

and AABBs can be reversed: AABB planes are used to separate it from a frustum. 

While this does not eliminate failed trivial rejects, they become rarer because an AABB 

cross section is usually much larger than a frustum cross section. An added advantage of 

this process is that the rays in a packet do not have to have a shared origin, because 

rectangular bounds of each axis-aligned plane are used instead of frustum plane normal. 

While the algorithm does indicate intersections with AABBs where there are none, most 

of the resulting unnecessary intersection tests can be handled by using two simple tests 

at leaf nodes: 

 

1. (minimum of y-entry values) > (maximum of x-exit values) 

2. (minimum of x-entry values) > (maximum of y-exit values). 

 

Even though not all redundant intersections are avoided, the remaining calculations do 

not produce a large negative impact on performance [Reshetov et al., 2005]. 

 

Reshetov [2007] presents further improvements in frustum culling. When a packet 

arrives at a leaf, a frustum – named transient frustum – is computed for the active rays. 

Thus the frusta are specially made for each situation, which allows them to be very tight. 

For frustum building, the biggest prevalent axis of rays is used, since using it increases 

performance by 30% but does not affect the accuracy of computations. Rays in a packet 

are intersected with two planes on the chosen axis of a leaf. Two axis-aligned rectangles, 

which contain the intersections for each plane, are computed on the planes, and a 

frustum is formed between them. The frustum contains intersections between rays and a 

leaf AABB. If x is the prevalent axis, then the first rectangle is defined by values    , 

   ,    ,    ,     and the second rectangle by values    ,    ,    ,    ,    . It then 

follows that the bottom plane normal is  

 

    (                           )  (                           )  

                          (        )(        )   (        )(        ) .  (3.2) 

 

Determining whether or not a vertex              is on the outside of the bottom 

plane can be done by solving the following equation, because               lies in the 

bottom plane. The equation can be simplified further by removing the first multiplier 

(        ), because only the sign of the calculation is needed. A negative result means 

that v is on the outside. Values for the left, right and top plane can be computed 

similarly. If the value is negative for one or more planes, then the vertex is on the 

outside of the plane(s) as well as the frustum. If all three vertices of a triangle are on the 

outside of a frustum then there is no intersection between the frustum and the triangle 

[Reshetov, 2007]: 
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                         (        )).       (3.3) 

 

If a triangle passes the first test, then it can be tested against a near plane to find out if it 

is behind all ray origins and a far plane to determine if it is further away than the 

previous intersection. It can also be evaluated for an intersection against corner rays to 

identify if the frustum is separated from the triangle by any of the triangle edges. The 

remaining triangles are tested for an intersection with rays in a packet using a ray 

triangle intersection test. This approach makes it possible to reduce the amount of nodes 

in a kd-tree by more than 10x and consequently increase the amount of triangles in leaf 

nodes to hundreds, while still culling more than 90% of all potential ray triangle 

intersection tests. The reduction in node count is significant, because building a 

shallower tree should be faster and shallower trees should also increase SIMD 

utilization. In addition, with hundreds of triangles at leaves it is possible to form meshes 

at leaves and thus share computations between triangles. For secondary rays, frustum 

size increases due to diverging rays, which leads to decrease in efficiency as the larger 

frustum is more likely to intersect with AABBs [Reshetov, 2007]. 

 

Overbeck et al. [2008] extend frustum culling to secondary rays, by using two planes to 

bind all rays in a packet. A far plane is chosen from the scene AABB in the positive 

direction of the dominant ray direction axis. A near plane is chosen from the AABB 

bounding ray origins, in the negative direction of the same axis. Barycentric coordinates 

are used to compute intervals for both planes. Corner ray directions are computed as the 

difference between extremal intersection points with the far plane and extremal 

intersection points with the near plane. The approach increases performance by 1.2 to 

1.3x. 

 

3.4 Ray tracing with stream filtering 
 

RayStream is actually a method and an architectural design, but here the design will be 

ignored. In RayStream ray tracing is considered as a filtering problem. A stream of 

some size is passed on to a filter. The filter operates by utilizing SIMD to process N 

amount of rays in parallel. Each ray in a stream is independent, so the order in which the 

rays are processed has no bearing on the outcome. Each ray is tested against a condition 

set by the filter. The rays that pass the condition are active and are therefore appended 

to an output stream which contains only active rays. Rays that do not pass the condition 

are inactive and they are thus removed from further processing. In case of traversal the 

filter would test whether or not rays in a stream intersect the current node [Gribble and 

Ramani, 2008; Ramani et al., 2009; Wald et al., 2007a].  

 

New output streams are produced until rays intersect geometry in a leaf or the stream 

runs out of rays that pass the filter condition. In the same fashion the intersection test 

outputs a stream of rays which intersect with the geometry. For shading, input streams 
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are passed through a filter stack to generate output streams of rays requiring similar 

actions – for example not intersecting geometry or intersecting a light source. Stacks are 

used because they produce higher SIMD efficiency when used with long streams and 

shading has long streams. On the other hand, intersection streams are short and 

consequently would not benefit from using stacks [Gribble and Ramani, 2008; Ramani 

et al., 2009; Wald et al., 2007a]. 

 

While the results obtained from this system are only simulations and not based on actual 

tests, they still give a rough idea of what could eventually be expected. A scene 

consisting of 2124001 primitives, ideal diffuse reflection and being lighted with 2 light 

sources was rendered at 15.65 FPS when using 16 wide SIMD and 64x64 ray streams. 

Furthermore, the authors state that the approach could possibly be combined with 

culling strategies and memory coherent ray tracing [Ramani et al., 2009]. 

  



28 

 

4. Kd-tree building 

A kd-tree – also known as k-d tree, k-dimensional binary search tree, multidimensional 

binary search tree and bin tree – is a form of BSP-tree (Binary Space Partitioning tree, a 

method of space subdivision) with 0 to k – 1 dimensions. Each node has two pointers, a 

discriminator and a key. The discriminator is the splitting dimension of the node. In 3D 

scenes k = 3 – one dimension for each of the x, y and z axes. Subtrees are built such that 

the left subtree has values which are lower than the roots along the splitting dimension 

and the right subtree contains values which are higher [Bentley, 1975; Fussell and 

Subramanian, 1988]. Keys hold the splitting plane of a node. Splitting planes are axis-

aligned because an intersection calculation with an arbitrary plane is more complex and, 

thus, also slower to execute [Fussell and Subramanian, 1988; Havran, 2001].  

  

Building acceleration structures manually is not only prohibitively slow, but the 

resulting trees are grossly suboptimal for use in ray tracing [Goldsmith and Salmon, 

1987]. There are a number of ways to guide construction of a kd-tree, such as spatial 

median or object median using round robin or maximum extent, empty space 

maximizing and cost models or heuristics. Where the spatial median method divides a 

node in two halves of equal size, object median divides a node so that both resulting 

subnodes have an equal amount of triangles [Havran, 2001; Wald, 2004]. Round robin 

selects the next splitting dimension 

 

 Dim = l modulo k,        (4.1) 

 

where l is any level in the tree [Fussell and Subramanian, 1988]. In maximum extent the 

dimension with the largest extent is chosen as the splitting dimension. While maximum 

extent has generally been thought of as an improvement over round robin, Wald [2004] 

experimentally demonstrated the preconception as wrong. Early research opined that a 

balanced tree, produced by the object median method, was essential for efficient 

traversal [Fussell and Subramanian, 1988]. This view has been shown to be false both 

empirically as well as theoretically. Theoretically the reason is twofold: firstly, 

probability of accessing each leaf is not equal and, secondly, the search does not 

necessarily end when the first leaf is reached [Havran, 2001; Wald, 2004].    

 

Of all the currently known methods the most efficient to traverse trees are produced by 

using a cost model known as surface area heuristic (SAH) [Goldsmith and Salmon, 

1987; Wald, 2004]. Thus, this discussion will be limited to the different ways of 

building kd-trees with SAH and how the building process can be parallelized effectively.  

 

4.1 Conventional method 
 

SAH is an automatic way to determine how to construct a tree. It is based on the 

knowledge that while three assumptions hold – all rays intersect the scene, the rays are 

uniformly distributed, and none of the rays intersect an object – the probability of an 
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arbitrary ray intersecting a convex object is proportional to the surface area of said 

object. Additionally, if convex object X contains another convex object Y (X ∩ Y = Y) 

then the probability of an arbitrary ray intersecting Y is the surface area of Y divided by 

the surface area of X. For trees this means that the probability of an arbitrary ray, which 

fulfills these assumptions, intersecting a node can be calculated by dividing the surface 

area of a node with the surface area of the root. Intersection estimates for an arbitrary 

ray can then be calculated as follows 

 

 

∑
  ( )

  (    )

  
            (4.2) 

 

 

∑
  ( )

  (    )

  
   , and        (4.3) 
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   ,      (4.4) 

 

where    = number of interior nodes,    = number of leaves, N(l) = number of objects 

stored in leaf l, SA(i) = surface area of interior node i and SA(l) = surface area of leaf 

node l [Goldsmith and Salmon, 1987; MacDonald and Booth, 1990; Havran, 2001].  

These equations can be combined to a single equation, which can be used to determine 

the total cost of an arbitrary ray if the costs of the operations involved are known:  

 

   ⦁ ∑   ( )     ⦁ ∑   ( )     ⦁ ∑   ( ) ⦁  ( )
  
   

  
   

  
   

  (    )
,    (4.5) 

 

where     = cost of traversing an interior node,    = cost of traversing a leaf and    = 

cost of testing an object for intersection. Because rays are assumed to not intersect any 

objects, the derived estimate is an upper bound [MacDonald and Booth, 1990; Harvan, 

2001]. Due to the prohibitively expensive cost of determining a globally optimal tree for 

anything but the most minimal of scenes, a local greedy approximation – which assumes 

that both children produced by the subdivision become leaves – is usually used. The 

local version is described as  

 

      (
   

  (    )
      

   

  (    )
    ),     (4.6) 

 

where    = cost of a traversal step,     = surface area of the left node,     = surface 

area of the right node,    = triangles in the left node and    = triangles in the right node. 

An inefficient tree is built if two special cases are not accounted for. Firstly, a triangle 

may overlap a voxel in only a point or a line and it should thus get culled. Secondly, 

triangles lying in a plane should not end up in both new voxels. These cases can be 

accounted for by dividing triangles into three groups: those which are to the left of the 

plane (  ) , those which are to the right of the plane (  ), and those which are on the 
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plane (  ). Equation 4.6 is then separately evaluated with     +    and    +    and the 

lowest cost is selected [Wald and Havran, 2006]. Mailboxing (see third paragraph down 

from this one) can be accounted for by subtracting the number of objects that overlap 

the splitting plane times the probability that a ray traverses both child nodes from 

Equation 4.6. This simple optimization reduces ray-primitive intersections by about 

30% on average, improves tracing time by few percent while moderately increasing the 

number of traversal steps [Hunt, 2008a]. 

 

The original equations, while accepting the practical importance of the matter, assume 

that no object is placed so as to be split by a plane and thus ending up in both of the new 

nodes. While this assumption holds it can be shown that the split position with the 

lowest cost estimate can be found between object and spatial medians [MacDonald and 

Booth, 1990; Harvan, 2001]. Havran [2001] demonstrated that if the previous 

assumption is discarded for a more realistic one where some objects are assumed to 

straddle the splitting plane, then the lowest cost estimate can be found either at the 

boundaries of the real objects or at the boundaries of the objects‟ bounding box. These 

are known as events or split candidates. When using this cost estimate, searching for the 

minimum value between spatial and object medians produces a 3% decrease in traversal 

time. 

 

The assumption that rays do not intersect any object is clearly impractical and means 

that the algorithm is based on considering the worst case scenario. Thus equations 

which describe the situation more realistically might lead to better traversal 

performance. A more accurate cost model was developed by Havran [2001]. The tests 

conducted with three different configurations of the new model showed that at best it 

could achieve a reduction of 1% in traversal time and at worst it considerably slowed 

down traversal. The fastest configuration of the new method involved sampling in 

addition to more complex calculations during construction leading to an increase in 

building time.  

 

An object does not necessarily reside inside a single voxel. When an object has parts of 

it inside two or more voxels, it will also have multiple, unnecessary, intersection tests 

with the same ray. This can be prevented by using a mailbox. Each object has a mailbox 

which stores the unique ID of a ray and the result of the intersection test with the ray. 

Before executing an intersection test with a ray, the ID of the ray and the ID stored in 

the mailbox are compared. If they match then the stored result can be used as is. 

Otherwise, an intersection calculation needs to be performed [Arvo and Kirk, 1989; 

Wald, 2004].  This simple approach is not valid for multiple threads, as changing a 

single value in the triangle data would invalidate an entire cache line in the other 

processors. Instead of storing the mailbox with the triangle data, storing it (it holds both 

the ray and triangle ID) as a hash table with the thread has been suggested. While this 

does solve the problem, the solution is not as fast as standard mailboxing [Shevtsov et 

al., 2007b; Wald et al., 2001; Wald, 2004].  Inverse mailboxing seeks to rectify the 

speed problem by storing the IDs of the last eight triangles visited by a ray packet in a 

ring buffer. The data is thread-local and allows traversal by multiple threads 
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simultaneously. The results show an increase in execution speed of 9.7 to 23.4% (tested 

on three models) [Shevtsov et al., 2007b] 

 

Most scenes will have some measure of empty space in them. BVHs do not process this 

space by virtue of only encompassing objects. On the other hand, space subdivision 

measures such as kd-tree process the entire scene. Empty space, however, does not need 

to be traversed. Guiding the construction of a kd-tree so that empty space is collected to 

leaf nodes on the upper levels of a kd-tree should make it possible to skip large parts of 

the scene during traversal [Havran, 2001]. Havran [2001] experimented with three ways 

to cut of empty space and concluded that when automatic termination as described in 

the paper is used, the tested methods are not likely to provide increased performance. 

An easy way to cut of empty space is to encourage SAH to choose splits where the right 

or left subnode is empty, by reducing the cost of such splits by some constant amount. 

The following rule is a suggestion for setting the constant [Hurley et al., 2002; Wald 

and Havran, 2006]: 

 

 λ(p) = {
                              
                                                

     (4.7) 

 

While Hurley et al. [2002] report a 5% improvement in traversal using this method, 

Bikker [2007] observes only a minimal improvement.  Algorithm 4.1.1 describes the 

SAH evaluation process with empty space cutting. 

 

SAH evaluation 

Algorithm  Cost(probabilityL, probabilityR, trianglesLeft, trianglesRight) 

Input: probability of left subvoxel, probability of right subvoxel, number of triangles                

left subvoxel, number of triangles in right subvoxe 

Output: cost of plane position 

    return λ(p)(    +   (probabilityL ⦁ trianglesLeft + probabilityR ⦁ trianglesRight))  

 

Algorithm SAH(plane,V,trianglesLeft,trianglesRight,trianglesPlane) 

Input: plane position, voxel V, triangles to the left, right and on the plane position 

Output: best plane position 

    (VL,VR) ← splitBox(V,plane) 

    probabilityL ← SA(VL)/SA(V) 

    probabilityR ← SA(VR)/SA(V) 

       ← Cost(probabilityL, probabilityR, trianglesLeft + trianglesPlane, trianglesRight) 

       ← Cost(probabilityL, probabilityR, trianglesLeft, trianglesPlane + trianglesRight) 

    if    <    then 

        return  (  , left) 

    else 

        return (  , right) 

     end if 

Algorithm 4.1.1 SAH [Wald and Havran, 2006] 
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A situation where the node and object bound boxes intersect without the actual object 

intersecting the node bound box is possible. In such a situation there will be 

unnecessary ray-object intersection tests. In addition, the trees that are produced are of 

inferior quality for traversal, as the tree building process will be skewed due to an 

inaccurate cost estimate. Three ways – post processing, intersection tests also in interior 

nodes and split clipping – have been suggested to correct this defect. Of the three, split 

clipping is considered to be the most viable one. In split clipping, when an object 

straddles a splitting plane the extent of the objects bounding box on both sides of the 

splitting plane is minimized. While these perfect splits increase traversal performance 

by 9% on average, they also correspondingly increase tree building time by 140% 

[Havran, 2001; Havran and Bittner, 2002; Wald and Havran, 2006]. A detailed 

description and code of a significantly faster split clipping method is given by Soupikov 

et al. [2008]. Their implementation also retains the increased traversal performance of 

the original method. Figure 4.1 depicts the idea behind split clipping.     

 

 
               Figure 4.1 Split clipping 

 

 

Determining when to stop subdivision has traditionally been done by defining a 

maximum depth or a maximum number of objects for a node. A node becomes a leaf 

when either of these user defined constants is reached. Limiting the tree depth to a 

predefined constant clearly cannot be optimal for every possible scene, but it does have 

the advantage of bounding memory use to a known value [Havran, 2001]. Havran 

[2001] develops an automatic termination criteria based on previous research, which has 

shown that every scene has a maximum tree depth after which further subdivision 

provides no additional benefit. This point depends on the scene. The equation of the 

criteria depends on two constants which are determined experimentally and it does 

improve traversal performance. However, for the tests the constants were determined by 

experimenting on the test scenes. So, it is unclear how well this approach would work 
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on different scenes. Hurley et al. [2002] and Wald [2004], on the other hand, propose 

simply comparing the cost of traversing a split object and the cost of not splitting a 

voxel and subdividing if the cost of traversing is lower than the cost of not splitting. 

However, it is possible to get stuck in local minima if the problem is not accounted for 

[Wald and Havran, 2006]. Reshetov et al. [2005] note that even with automatic 

termination, creation of small cells most likely to be missed by a single ray, should be 

prevented. 

 

Plane selection is a slow process as the amount of possible split positions is (in 

principle) infinite. Even when using only the planes which define the bounding box of a 

triangle, each voxel with N triangles has 6N split candidates which need to be 

considered. The most straightforward way to find the best split position is to iterate over 

all triangles in a voxel and compute the cost estimate for each split candidate [Wald and 

Havran, 2006]. Algorithm 4.1.2 describes this O(  ) approach. 
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O(  ) plane selection 

Algorithm PerfectSplits(t, V) 

Input: triangle t, voxel V 

Output: clipped object 

    B ← Clip t to V {consider “perfect” splits} 

    return k ← 1..3((k,Bmin,k) OR (k,Bmax,k)) 

 

Algorithm Classify(T, VL,VR,plane)  

Input: list of triangles T, voxels to the left and right of the splitting plane, the              

splitting plane 

Output: counts of triangles to the left, right and on the plane  

       ←    ←    ←  ; 

    foreach triangle t in T 

        if t lies in plane AND Area(plane OR V ) > 0 then 

                ←    OR t 

        else 

            if Area(t AND (VL NOT plane)) > 0 then  

                   ←    OR t 

            end if 

            if Area(t AND (VR NOT plane)) > 0 then  

                   ←    OR t 

            end if 

        end if 

    end foreach 

    return   ,   ,     

 

Algorithm NaıveSAH::Partition(T, V) 

Input: list of triangles T, voxel V 

Output: best splitting plane, triangles to left and right of the plane, one OR‟d with 

triangles on the plane 

    foreach triangle t in T 

        bestCost ← ∞ 

        bestPlaneside ←   {initialize search for best node} 

        foreach plane in PerfectSplits(t, V ) 

            (VL, VR) ← split V with plane 

            (TL, TR, TP ) ← Classify(T, VL, VR, plane) 

            (cost, planeside) ← SAH(V, plane, |TL|, |TR|, |TP |) 

            if cost < bestCost then 

                ( bestCost, bestPlaneside ) ← (cost, planeside) 

            end if 

        end foreach 

    end foreach 

    (TL, TR, TP) ← Classify(T, VL, VR, plane) 

    if (bestPlaneside ← LEFT) then 

        return (bestPlane, TL OR TP, TR) 

    else 

        return (bestPlane, TL, TR OR TP) 

    end if 

Algorithm 4.1.2 O(  ) plane selection [Wald and Havran, 2006] 

 



35 

 

Algorithm 4.1.2 is too slow to be used in any meaningful scene. The time complexity of 

the process can be reduced to O(N log
2
 N) by changing how NL, NR and NP are 

determined. For each dimension all triangles are iterated over and it is determined 

whether a triangle is axis-aligned. Axis-aligned triangles produce a “planar event” (p
|
), 

and other triangles produce a “start event” (p
+
) and an “end event” (p

-
). Each event 

keeps track of its type, plane position and the triangle that generated it. The list of 

events (E) is then sorted to ascending order by plane position. In case of equal plane 

positions the order of events is end, plane, start. All that is left is to sweep over the 

possible plane positions and determine the best split position. At the start of the sweep 

NL, NR and NP have values 

  

                                       
( )

          
( )

          
( )

         

 

The counts are updated with the following rules: 
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Algorithm 4.1.3 describes this plane selection process. 
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O(N      N) plane selection 

Algorithm  FindPlane(T, V) 

Input: list of triangles T, list of voxels V 

Output: best plane position 

    bestCost ← ∞, bestPlane ←    

    for k ← 1 to 3  do 

        eventlist E ← empty 

        foreach  triangle t in T 

            B = AABB(t ) 

            if B is planar then 

                E.add(event(t,      , | 

            else 

                E.add(event(t,      , +) 

                E.add(event(t,      , −) 

            end if 

        end foreach 

        sort(E,<E) {sort all planes according to <E} 

        trianglesLeft ← 0, trianglesPlane ← 0, trianglesRight ← |T|  

        for i ← 0 to i < |E| do 

            plane ←          

            trianglesStarting ← trianglesEnding ← trianglesLying ← 0 

            while i < |E| && Ei,planePos = planeplanePos && Ei,type = ending 

                trianglesEnding++ 

                i++ 

            end while 

            while i < |E| && Ei,planePos = planeplanePos && Ei,type = lying 

                trianglesLying++ 

                i++ 

            end while 

            while i < |E| && Ei,planePos = planeplanePos && Ei,type = starting 

                trianglesStarting++ 

                i++ 

             end while 

            trianglesPlane ← trianglesLying 

            trianglesRight ← trianglesRight - trianglesLying - trianglesEnding 

            (cost,planeside) ← SAH(V, plane,NL,NR,NP) 

            if cost < bestPlanecost then 

                (bestCost,bestPlane,bestPlaneside) = (cost, plane, planeside) 

                trianglesLeft ← trianglesLeft + trianglesLying + trianglesRight 

                trianglesLying ← 0 

            end if 

        end for 

    end for 

    return (bestPlane, bestPlaneside) 

Algorithm 4.1.3 O(N      N) plane selection [Wald and Havran, 2006] 



37 

 

 

Algorithm 4.1.3 is also too slow for use in real-time applications. The lower limit O(N 

log N) of sorting based algorithms can be reached if an event list containing events for 

each dimension is sorted only once and the plane finding algorithm is applied to the 

sorted list. The events are sorted based on plane position as before and the same sort 

order is maintained, but events of same dimension are stored together [Wald and Havran, 

2006]. Algorithm 4.1.4 describes this process. 

  

O(N log N) best plane 

pre: E is <E-sorted 

Algorithm FindPlane(N, V , E) 

Input: list of triangles T, list of voxels V, presorted list of events E 

Output: best plane position 

    bestCost ← ∞ 

    bestPlane ← none 

    foreach dimensions k 

        trianglesLeftk ← 0, trianglesPlanek ← 0, trianglesRightk ← |T| 

    end foreach 

    for i ← 0 to i < |E| do 

        plane ← (Ei,plane, Ei,k) 

        trianglesStarting ← trianglesEnding ← trianglesLying ← 0 

        while i < |E| && Ei,k = planek && Ei, planepPos = planeplanePos && Ei,type = ending 

            trianglesEnding++ 

            i++ 

        end while 

        while i < |E| && Ei,k = planek && Ei, planepPos = planeplanePos && Ei,type = lying 

            trianglesLying++ 

            i++ 

        end while 

        while i < |E| && Ei,k = planek && Ei, planepPos = planeplanePos && Ei,type = starting 

            trianglesStarting++ 

            i++ 

        end while 

        trianglesPlanek ← trianglesLying 

        trianglesRightk ← trianglesRightk - trianglesLying - trianglesEnding 

        (cost,planeside) ← SAH(V, plane,NL,NR,NP) 

        if cost < bestCost then 

            (bestCost,bestPlane,bestPlaneside) = (cost, plane, planeside) 

            trianglesLeftk ← trianglesLeftk + trianglesLying + trianglesRight 

            trianglesLyingk ← 0 

        end if 

    end for 

return (bestPlane, bestPlaneside) 

Algorithm 4.1.4 O(N log N) best plane selection [Wald and Havran, 2006] 
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To maintain O(N log N) time complexity classification and building of the event lists of 

subnodes has to be done without sorting. To do this all triangles are first marked as 

belonging to group „both‟. The event list is then iterated over and events which match 

the classification of    or    are marked as belonging to their respective groups. The 

event list is then split into two sorted sublists – the sublists are sorted because E is 

sorted – one containing left only events (   ) and the other containing right only events 

(   ). Triangles marked both are split clipped and they form two new unsorted lists – 

one for left side and one for right. These lists can be sorted in O(N) time due to the 

assumption that O(√ ) triangles overlap the splitting plane. The sorted lists can then be 

merged in O(N) [Wald and Havran, 2006]. Algorithm 4.1.5 describes this process. 

 

Triangle classification 

Algorithm ClassifyLeftRightBoth(T,E, bPlane) 

Input: list of triangles T, presorted list of events E, splitting plane bPlane 

Output: - 

    foreach triangle t in T 

        tside ← both; 

    end foreach 

    foreach event e in E 

        if etype = ending && ek = bPlanek && eplanePos ≤ bPlaneplanePos then 

            t[et]side ← LeftOnly 

        end if 

        else if etype = starting && ek = bPlanek && eplanePos ≥ bPlaneplanePos then 

            t[et]side ← RightOnly 

        end if 

        else if etype = lying && ek = bPlanek then 

            if(eplanePos < bPlaneplanePos || (eplanePos = bPlaneplanePos && bPlaneside = left)) then 

                t[et]side ← LeftOnly 

            end if 

            if(eplanePos > bPlaneplanePos || (eplanePos = bPlaneplanePos && bPlaneside = right)) then 

               t[et]side ← RightOnly 

            end if 

        end if 

    end foreach 

Algorithm 4.1.5 Triangle classification [Wald and Havran, 2006] 

 

Even though the combined use of Algorithms 4.4 and 4.5 reaches the asymptotic lower 

bound of sorting based approaches, the building times are not fast enough for use in 

real-time applications. Just doing 30 rebuilds per second requires that each rebuilding 

takes 33.33 ms and to reach 60 rebuilds per second each rebuilding can take only 16.67 

ms. Building a kd-tree for a model with 804 triangles with Algorithms 4.4 and 4.5 took 

30 ms and for a more reasonable model of ~69k triangles the building time was 3.2 s 

[Wald and Havran, 2006].  
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4.2 Approximations and parallel building 
 

The first attempt to build an acceleration structure in parallel was done by Benthin 

[2006]. He parallelized the conventional construction algorithm by dividing split 

candidate lists into sublists with the amount of threads. The threads then proceed to sort 

the sublists and the sorted sublists are merged into one. Kd-tree building phase was 

parallelized by splitting the first levels with one thread and then building the remaining 

sub kd-trees with individual threads. This scheme reached 2x speedup on a dual core 

system. 

 

To further increase building speed, algorithms which approximate SAH have been 

developed. Even though most of the following scanning based algorithms have a time 

complexity of O(N log N) the constant factors of scanning based approaches are lower 

than those of sorting, which leads to better performance. Scanning also defers work to 

leaf nodes so greater amount of unneeded work is avoided if lazy building is used. 

Popov at al. [2006] developed a streaming construction algorithm which uses triangle 

AABBs instead of the actual triangles and utilizes both BFS and DFS building. The 

algorithm starts with BFS building and proceeds to some predefined depth after which a 

switch to the conventional DFS algorithm (as described by Wald and Havran [2006]) is 

performed. The switch depth is chosen such that the DFS algorithm can retain locality 

and, thus, overcome performance degradation caused by the random memory access 

pattern of triangle classification stage. In the BFS section of the algorithm memory 

access is sequential because triangle AABBs are stored in a continuous memory array. 

Nodes of the current level are associated with a partition from the array. The array is 

swept and, for each sample, the amount of AABBs which end between the sample and 

the one preceding it, as well as the ones which start between the sample and the one 

following it, are recorded. There are 1024 uniformly distributed samples for all three 

axes. Uniform distribution is used because sample indexes of events can be calculated 

from event positions. AABB count updates are performed as follows: 

 

  
         

         

  
         

               (4.8) 

 

where   
  = number of AABBs to the left of sample i,    

  = number of AABBs to the 

right of sample i,    = number of AABBs that start between samples i and i + 1 and     

= number of AABBs that end between samples i and i + 1. Once the best split has been 

determined, triangles which are to the left (resp. right) of the splitting plane are copied 

to a partition of the left (resp. right) node in a second array, and the ones straddling the 

plane are clipped and copied to both. The cost function is sampled during the copy. 

Further refinement of the cost estimate would be possible by using adaptive resampling.  

The overall upper bound of the cost function would be set to be the minimum upper 

bound found at the sample points. Intervals with a lower bound higher than the overall 

upper bound would be eliminated from further processing and the remaining intervals 

would be resampled. The process can be repeated until only one split location remains. 

Because their method, as compared to exact SAH evaluation, only slowed traversal at 
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most by 2.2%, Popov et al. [2006] did not implement adaptive resampling. The 

algorithm does not manage much better than the conventional algorithm on small 

presorted scenes with even sized triangles (models produced by 3D scanning). With 

increased size and no presorting the algorithm reaches up to 48% speedup in building 

time. The approach was parallelized by using single threads to build trees in the DFS 

part of the algorithm. The achieved speedup was at best 2.43x on 4 cores. Algorithm 

4.2.1 describes streaming build. 

 

O(N log N) streaming SAH build 

Algorithm UPDATESAMPLESTATISTICS(aabb, statistics) 

Input: axis-aligned bounding boxes, counter  

Output: - 

    lxyz ←  indexes of samples just below min point of aabb 

    uxyz ← indexes of samples just above max point of aabb 

    foreach dimension do 

        Increase statistics.ob jStart[l[dim]] 

        Increase statistics.ob jEnd[u[dim]] 

    end foreach 

 

Algorithm GETSPLITLOCATION(stat) 

Input: number of starting and ending aabbs 

Output: best split location 

    stat.oLe f t[0] ← 0 

    stat.oRight[0] ←  #objects 

    for i ← 0 to len(stat) do 

        stat.oLe f t[i] ← stat.oLe f t[i − 1] + stat.ob jStart[i] 

        stat.oRight[i] ← stat.oRight[i − 1] − stat.ob jEnd[i] 

    end for 

    Evaluate the cost function at stat 

    return The best found split location at stat 

 

Algorithm construct(root_node, boxes) 

Input: root node, bounding boxes of all triangles 

Output:- 

aabbIn ←  boxes 

stat ← 0 

UPDATESAMPLESTATISTICS(aabbIn, stat) 

levelNodesIn ← {root_node,GETSPLITLOCATION(stat)} 

 

while levelNodesIn != null do 

    nextLevelAABB ← null 

    nextLevelNodes ← null 

    foreach {node, split} in levelNodesIn do 

        if #objects in node < threshold then 

            Run conventional build routine for subtree 
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        end if 

        curAABBIn ←  node‟s partition of aabbIn 

        lenr, lenl  ← #objects in the subtrees of node 

        Allocate lenl + lenr space at end of nextLevelAABB 

        statl ← 0 

        statr ← 0 

        foreach aabb in curAABBIn do 

            if  left then 

                Add aabb to left child‟s partition in nextLevelAABB 

                    if not completely to the right of the split plane then 

                        clip aabb if necessary 

                    end if 

            UPDATESAMPLESTATISTICS(aabb, statl) 

            else 

                Add aabb to right child‟s partition in nextLevelAABB 

                    if not completely to the left of the split plane then 

                        clip aabb if necessary   

                    end if 

                UPDATESAMPLESTATISTICS(aabb, statr) 

            end if         

        end for 

        Create nodes Nl ,Nr for the two subtrees 

        nextLevelNodes ←+ {Nl ,GETSPLITLOCATION(statl)} 

        nextLevelNodes ←+ {Nr,GETSPLITLOCATION(statr)} 

    end for 

    levelNodesIn ← nextLevelNodes 

    aabbIn ← nextLevelAABB 

end while 

Algorithm 4.2.1 O(N log N) streaming SAH build [Popov et al., 2006] 

 

Another approach, by Hunt et al. [2006], samples   ,   ,     and     at q uniformly 

distributed locations per axis to produce approximations of the cost function. As the cost 

function can have discontinuities, a second scan over the primitives is done. Additional 

q samples per axis are taken during the second scan from segments (segments are the 

range between sample points in the initial scan) with a large change in       .  Hunt 

et al. [2006] suggest that q = 8 is an adequate number of samples. This means that that a 

total of 2q samples are taken per axis. For each axis         can have n different 

values, for each such value a bin is created to mark a sample location. The amount of 

adaptive samples dedicated for a segment is determined by the amount of changes 

within a segment. When        crosses a bin boundary (the value changes) within a 

segment the amount of samples for the segment is increased by one. The resulting 

samples per segment are placed at the sample locations so that they are evenly spaced 

within the segment. The resulting evaluations are then used to generate a piecewise 

quadratic approximation of the cost function and the split plane is positioned at the 

minimum of the approximation. This minimum does not need to reside at a previously 
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sampled location. Memory accesses of the algorithm as well as the number of 

performed scans can be reduced by doing the cost evaluation in SIMD fashion and by 

maintaining additional containers for    and    values associated with additional 

sample points. Scan combining is beneficial until all temporary variables fit in registers. 

The algorithm switches to exact SAH evaluation when a node contains 36 or fewer 

AABBs. The Bunny model (see Appendix A) is built in 110 to 250 ms on a single 2.4 

GHz core depending on whether the longest axis, all axes or a combination of the two is 

used. The increase in tracing time ranges from 0.33% to 7.90% depending on scene size 

and the combination of axes used during building. Hunt et al. [2006] assert – but have 

yet to demonstrate – that the algorithm can be run in parallel by dividing AABBs to 

threads which then evaluate the splits. A gather operation would combine the results. 

 

Further improvement in building times can be achieved by combining a scanning based 

approach with a lazy building from hierarchy. Unlike the conventional building 

algorithm which must process all N primitives in a scene during the sort of the first split, 

scanning based algorithms can consider only a part of the scene. Thus, with scanning a 

scene can be built lazily. A lazy system builds the acceleration structure only for the 

visible primitives of the scene. Scene acceleration structures are generally completely 

rebuilt for every frame. This approach is based on the view that a scene can undergo a 

total transformation from frame to frame. However, using for example an acceleration 

structure of a previous frame as a kind of presort of scene geometry would allow a 

linear time building of the new acceleration structure. These two approaches produce an 

asymptotic time complexity of O(v + log N) where v is the number of visible primitives. 

Impact on trace time is small (1302 ms for the new algorithm against 1283 ms for the 

conventional algorithm on a scene with N = 541023 and v = 9392 on a single 2.667 GHz 

core) while building time is greatly improved (116ms for the new algorithm versus 

12270ms for the conventional, N and v as before) [Hunt et al., 2006; Hunt et al., 2007].   

 

Another approximation approach was presented by Shevtsov et al. [2007a]. They used 

min-max binning (also known as pigeonhole sorting and bucket sorting) on AABBs. 

AABBs are stored as structures of arrays of bounds. For each level of the tree, 32 bins 

function as counters. The bins could also store primitive references, but counters are 

more efficient. Two sets of bins are used: a bin in the first set is updated where an 

AABB begins and, correspondingly, one bin in the second set is updated where an 

AABB ends. At the higher levels of the tree only every l-th (l = log10(M), M = number 

of primitives in the current node) primitive is considered. SAH is estimated at bin 

boundaries with min-bins representing primitives to the left of the split and max-bins 

those to the right of the split. The position of the splitting plane is adjusted if it is 

warranted by empty space consideration and then the primitives are divided to subnodes. 

Switch to using the conventional algorithm is done when the amount of primitives in the 

current node is less than or equal to the number of bins used. The tree is stored as 

chunks which are linked into lists. Each chunk has a start pointer, chunk size and an end 

pointer. 
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The building process is parallelized by dividing the scene into disjoint regions in 

parallel in a phase called initial clustering. Initial clustering uses 512 * T bins, where T 

is the number of threads. Higher amount of bins is used because no rebinning is done 

during initial clustering. Arrays of primitives for each region are then created in parallel. 

Construction of the local kd-tree is split into smaller tasks and threads insert and fetch 

jobs from a shared task pool. While this method builds the Bunny model in 104 ms on a 

single 3 GHz core and achieves a 3.9x speedup on 4 cores, reaching a building speedup 

of 120-300x over a highly optimized kd-tree, the tracing speed is only 70% of that of 

exact SAH evaluation. This is because on the upper levels of a tree the algorithm uses 

object median split. Object median is used until building of the local kd-trees starts, 

because it produces subtrees of equal size effectively load balancing the parallel phase 

and because accurate SAH is more important at the deeper levels of a tree [Shevtsov et 

al., 2007a]. 

 

Although methods which build top levels of a tree with a single core until there are 

enough subtrees to utilize all cores have achieved some limited parallelization speedups, 

the lack of demonstrated near linear scalability with higher core counts while retaining 

trace speed is not their only problem. Another issue is that as the amount of cores keeps 

increasing, the level at which all cores can be utilized gets further and further down in 

the tree. With sufficient increase in the amount of cores, the building process will be 

mostly done before all cores are utilized. Therefore an algorithm which is capable of 

using more cores on the top levels of a tree is needed [Choi et al., 2010]. 

 

In the conventional algorithm (see Algorithms 4.1.4 and 4.1.5) node level parallelism 

can be complemented with geometry level parallelism. FindBestPlane is executed in 

three phases. First, the event list is divided into continuous chunks. For each chunk, the 

amount of start and end edges is counted in parallel. Secondly, a single thread 

determines the correct NL and NR values at the beginning of each chunk by summing the 

totals of previous chunks with the current chunk. Lastly, SAH value for each chunk is 

determined as in the first phase, after which the overall minimum SAH is easily 

deduced. ClassifyTriangles stage is not parallelized, because due to false-sharing the 

resulting performance improvement proved insignificant. FilterGeom stage is handled 

similarly to FindBestPlane stage. Geometry is separated into chunks and the number of 

triangles lying to left and to right of the splitting plane in each chunk is determined in 

parallel. All chunks are then updated by a single thread so that it is known how many 

triangles exists to the left and to the right of the splitting plane before this chunk. As the 

starting position of each chunk is now known, arrays for triangles to the left and to the 

right of the splitting plane can be updated in parallel. Triangles which straddle the 

splitting plane are copied to both arrays. This approach – called nested algorithm – was 

tested on a 32 core 2 GHz system. It built the Bunny in 68 ms, achieving over 5x 

speedup on 20 cores. At best the algorithm was able to reach 8x speedup on 20 cores 

when building the Angel model (see Appendix A). The results, however, showed that 

the algorithm had already reached its peak performance and that it exhibited decreased 

performance with increased core count past 20 cores. When run on all 32 cores, all test 

scenes showed decreased performance past 20 cores. Additionally, because the 
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algorithm is sequential, like the conventional algorithm it is based on, its maximum 

speedup is bounded by Amdahl‟s Law [Amdahl, 1967; Choi et al., 2010]. Also like in 

the conventional algorithm, there is a lot of data movement when triangle and event lists 

are shifted from a parent to its children [Choi et al., 2010].  

 

To counteract the negative aspects of their nested algorithm, Choi et al. [2010] also 

developed another algorithm called in-place. Data movement problem from nested 

algorithm is solved by associating nodes with triangles instead of triangles with nodes. 

This means that triangles track which nodes they belong to and events have a pointer to 

the triangle that generated them. Triangles are stored as a structure-of-arrays, where 

elements have pointers to their six events and a list of the current level‟s nodes to which 

it belongs. The algorithm proceeds in four phases: FindBestPlane, NewGen, 

ClassifyTriangles and Fill. While NewGen generates the next level of a tree and Fill 

translates the tree to the format produced by the sequential algorithm, most of the work 

is done by FindBestPlane and ClassifyTriangles. As in-place is a BFS algorithm, it 

processes entire levels at a time, where nodes at the current level are known as “live”.  

FindBestPlane considers all “live” nodes in parallel and determines a split for those that 

do not become a leaf. ClassifyTriangles updates triangle node lists which can be done in 

parallel because all the required information is local. Once the current level has enough 

nodes, a switch to the parallel DFS building is made (see, e.g., Benthin [2006]). While 

this approach achieves at most 7x speedup (on the Fairy model – see Appendix A) on 

the same hardware as nested, building the Bunny in 50 ms, it achieves its peak later, at 

24 cores. It only encounters a slight drop in performance with increased cores, unlike 

nested which saw a drop from 8x to 7x speedup when moving from 20 cores to 32. Choi 

et al. [2010] state that in-place does not actually saturate at 24 cores but is instead 

hampered by limited system resources. To confirm this they ran additional tests which 

according to them verified the hypothesis. Unfortunately the test results are not included 

in the paper [Choi et al., 2010]. Algorithm 4.2.2 presents in-place. 
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In-place algorithm 

Input: list of triangles in the scene 

Output: pointer to the root of the constructed kd-tree 

live ← {root ← new kdTreeNode() }; 

foreach triangle t in T do 

    t.nodes ← {root}; 

end foreach 

while nodes at current level < cores do 

    foreach e in E[x] && e in E[y] && e in E[z] do 

        foreach node in e.t.nodes do 

            SAH ← CalculateSAH(e, node.extent); 

            if SAH is better than node.bestSAH then 

                node.bestEdge ← e ; 

                node.bestSAH ← SAH ; 

            end if 

        end foreach 

    end foreach 

    nextLive ← { }; 

    foreach node in live do 

        if node.bestEdge found then 

            nextLive ←+ (node.left ← new kdTreeNode()) ; 

            nextLive ←+ (node.right ← new kdTreeNode()) ; 

        end if 

    end foreach 

    foreach t in T do 

        oldNodes ← t.nodes ; 

        clear ← t.nodes ; 

       foreach node in oldNodes do 

           if no node.bestEdge found then 

               insert t in node.triangles ; 

           else 

               if t left of node.bestEdge then 

                   insert node.left in t.nodes ; 

               end if 

               if t right of node.bestEdge then 

                   insert node.right in t.nodes ; 

               end if 

           end if 

       end foreach 

    end foreach 

    live ← nextLive; 

end while 

foreach t in T do 

    foreach node in t.nodes do 

        insert t in node.triangles; 

    end foreach 

end foreach 

return root 

Algorithm 4.2.2 In-place by Choi et al. [2010] 
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Instead of using all threads to either building or tracing, Yang et al. [2008] suggest 

dedicating a portion of the threads to building and using the rest for tracing. Their 

system does not require a new kd-tree for every frame, but instead, counts on deforming 

a tree until quality deterioration forces a rebuild. Whether to update or rebuild is 

determined by their “rebuild heuristic”. The heuristic works by comparing the current 

SAH value of a node (current SAH values are stored in each node) with the SAH value 

the node would receive now and rebuilding if the value is above some threshold. The 

authors claim – citing Lauterbach et al. [2006] – that the approach works because 

quality degradation is not bad for the first few frames. However, no such statement for 

kd-trees can be found in the Lauterbach et al.‟s [2006] article. Instead, when talking 

about updating, the article references spatial kd-trees [Lauterbach et al., 2006]. The 

system consists of tracing and building threads which are connected to a shared memory 

buffer. The buffer contains vertex positions and kd-tree nodes. The tracing threads work 

with the current kd-tree until a new tree is finished, and the new tree is passed to the 

tracing threads as they finish the current frame. For every frame, vertices need to be 

updated and the SAH cost of intersected nodes is recomputed. Rebuilding the entire tree 

is not necessary, as the system can also rebuild just a subtree  [Yang et al., 2008]. 

 

Many articles on interactive ray tracing start from the assumption that all primitives in a 

scene can undergo totally random motion. While such an approach is laudable, 

primitives can be categorized into at least four groups: static, hierarchical movement, 

unstructured movement and PCM (short for piecewise coherent movement) [Günther et 

al., 2006]. Static objects neither move nor deform and so their acceleration structure 

does not need to be rebuilt. Parker et al. [1999] combined static and dynamic objects by 

placing static objects in an acceleration structure and by leaving dynamic objects 

outside of the acceleration structure altogether, to be tested by each ray individually. 

Bikker [2007] built separate kd-trees for static and dynamic objects, but noted that 

tracing performance would degrade as each ray would have to traverse both trees. 

Unstructured motion is totally random and thus the acceleration structure of such 

objects needs rebuilding. In hierarchical motion all triangles that undergo the same 

transformation can be used to form a single object, as such primitives do not move 

relative to each other. Furthermore, instead of transforming the object and rebuilding its 

acceleration structure every frame, it is possible to inversely transform a ray and 

intersect the ray with an untransformed object. This way only the transformation matrix 

of a hierarchical object needs to be updated and the acceleration structure needs to be 

built only once. While this results in millions of matrix-vector multiplications per frame, 

such operations are relatively low cost – especially when utilizing SIMD instructions 

[Lext and Akenine-Möller, 2001; Wald et al., 2003]. Static, unstructured and 

hierarchical objects can be combined efficiently by building a two-level kd-tree, where 

the top level kd-tree contains local kd-trees of objects. Local acceleration structures of 

static and hierarchical objects need not be rebuilt at all. Acceleration structures of 

objects subject to unstructured motion can be rebuilt independently. The top level kd-

tree needs to be rebuilt when there is hierarchical or unstructured motion in the scene as 

it is invalidated. The rebuilding cost is, however, low, since it is determined by the 

number of objects – not triangles – in the scene [Wald et al., 2003].   
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Like in hierarchical motion, a two level kd-tree and inverse transformation of rays can 

also be used for PCM. In PCM animation is assumed to be defined as deformations of a 

base mesh, i.e., animations consist of predetermined poses and the amount of poses is 

bounded. The connectivity of a base mesh of an object remains the same during all 

known deformations of the mesh and local motion is assumed to be coherent. In 

addition to local (residual) motion, triangles undergo common motion defined by affine 

transformations. Thus, motion is applying affine transformations plus residual motion to 

a rest pose. A rest pose is selected from all known poses and it minimizes residual 

motion over all clusters and time steps. Residual motion of vertices is bounded by a box 

known as a fuzzy box. A fuzzy box of a triangle is a union of the fuzzy boxes of the 

vertices of the triangle in question. A kd-tree is built over fuzzy boxes instead of the 

triangles. As in any kd-tree the extent of the boxes needs to be minimized because large 

and overlapping boxes would more likely cause intersection calculations. Residual 

motion can be minimized through motion decomposition by subtracting common 

motion from an animation. To subtract as much common motion as possible, a mesh is 

clustered into submeshes which undergo coherent deformations, using generalized 

Lloyd relaxation. Lloyd relaxation is an algorithm for sorting data points into groups 

[Du et al., 1999; Lloyd, 1982; Günther et al., 2006a; Günther et al., 2006b].  

 

Minimized residual motion is used as a cost function for clustering. In each iteration 

step triangles are assigned to a cluster in which their residual motion is the smallest. 

Clustering starts with a single cluster and new clusters are inserted until triangles no 

longer change their cluster or when the overall residual motion drops below a threshold. 

To stabilize the clustering procedure, each cluster has a seed triangle which represents 

common motion of the cluster. New clusters are formed by selecting as a seed the 

triangle with largest residual motion and combining it with its neighbours, so that a 

unique coordinate system is defined. Concurrently, in already existing clusters the 

triangle with the smallest residual motion is chosen as a seed triangle. Clustering time 

increases linearly in number of time steps and candidate rest poses and for the test 

scenes takes anything from 20 to 95 minutes. While building the fuzzy tree needs to be 

done only once in a preprocessing step, the clustering times are still quite long. When 

compared with an animation rendered using prebuilt static kd-trees, the static kd-tree is 

faster by a factor of 1.2 to 2.6. Still, test scenes were rendered at 5 to 15 FPS on a single 

2.8 GHz core. This approach also has the problem of only being applicable to 

predetermined animations and it is thus unable to handle, for instance, animation 

produced by a character animation system known as euphoria [Günther et al., 2006a; 

Günther et al., 2006b; NaturalMotion, 2012].  

 

The need to know the animation in advance can be overcome by using information from 

skeletal animation. In skeletal animation an object (even though the name would seem 

to imply that the object needs to have a skeletal structure, in reality skeletal animation 

can be used to animate pretty much anything) has a twofold structure. The animation is 

handled by a hierarchy of interconnected bones, which are covered by a mesh. The 

mesh – also known as a skin – depicts the actual look of the object. The rest pose of a 
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skeletal animation model is the original mesh defined by the artist. Vertices are 

influenced by one or more bones. However, the amount of bones influencing a given 

vertex can be considered limited, as generally only neighboring bones influence vertices. 

Fuzzy boxes can be made to account for all possible motion of each bone. Doing so, 

however, produces large boxes and thus lower traversal performance. Smaller boxes can 

be achieved by restricting bone rotation relative to its parent and by applying joint limits. 

While this might seem to lead to a more realistic outcome – as no arbitrary rotations are 

possible [Günther et al., 2006b] – it would also mean that animations such as breaking 

an arm at the elbow could not be done. Further restrictions on motion can be applied by 

considering only certain animations. As the size of a fuzzy box additionally depends on 

the cluster it belongs to, fuzzy boxes are considered as part of each bone to determine 

where their residual motion is minimized. Sampling time is roughly linear in the amount 

of triangles as before, but since the rest pose of a model is known, the sampling time is 

considerably reduced when compared to the previous approach (50.4s for a 271k model 

opposed to the tens of minutes for a ~5k model when using the previous approach) 

[Günther et al., 2006a; Günther et al., 2006b]. 

 

A gkDtree is similar in idea to two-level kd-trees – it is a group hierarchy. The 

hierarchy is constructed by recursively traversing a scene graph and groups of the 

hierarchy keep track of their level. Scene graph nodes with only a single child are 

merged with the child to avoid duplicate AABBs. A group has an AABB which 

includes all the AABBs of the primitives of the group. Each group can have a different 

data structure and be processed by a different algorithm. Static and dynamic groups are 

separated by using a flag. Static groups are built once and their transform matrices need 

not be updated. Dynamic groups, on the other hand, update their transform matrix each 

frame. Furthermore, static groups which are on level 1 or next to the root, form a two-

level hierarchy instead of a multi-level one. Unlike kd-trees, variables of each group 

point to local data. Due to the multi-level hierarchy, construction of the tree is rapid, 

because group node boundaries act as split candidates. Primitive boundaries need to be 

used only in the leaf nodes. To effectively parallelize reconstruction of dynamic groups 

of a tree in a multi-level hierarchy, dependencies between nodes need to be removed. 

This is achieved by updating AABBs of dynamic primitives before rebuilding of local 

acceleration structures. The updating is done by assigning group nodes to threads level 

by level from the bottom up using round-robin. Acceleration structures of groups can 

then be rebuilt in parallel. While node primitive count would be a good way to load 

balance, it would be too time consuming on the upper levels of a tree. A simple load 

balancing scheme assigns groups to threads from the bottom up level by level. The 

scheme works because groups on the same level, while not equal, have similar 

computational loads. The parallelization approach obviously works only when there is a 

sufficient amount of groups for all threads. In case there are too few groups, for instance, 

in-place algorithm by Choi et al. [2010] can be used. When compared to a kd-tree 

gkDtree has an update performance of 1.1x to 166.4x and even when comparing to a 

binned kd-tree by Shevtsov et al. [2007a] it reaches 0.4x to 96.9x speedup (1.1x and 

0.4x on a scene with a single dynamic group). With six threads parallelization speedup 

ranges from about 3.5 to about 5, when discounting the scene with only a single 
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dynamic group. All of the reported numbers are results without the initial building time 

of gkDtree [Kang et al., 2011]. 
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5. Kd-tree traversal 

The most obvious way of traversing a kd-tree – discounting the sequential algorithm 

due to its gross inefficiency – is the recursive ray traversal algorithm. The idea is 

simple: if both child nodes need traversing, then store the other in a stack and traverse 

the other. If an intersection is found in the first branch then the algorithm is done. On 

the other hand, if no intersection is found, then a new node is popped from the stack. 

The algorithm then continues by recursing until an intersection is found or the stack is 

empty. If the stack empties and no intersection has been found, then the ray has no 

intersections. The first traversed child node is selected based on the position of the ray 

origin with regards to the splitting plane, the “near” child is traversed first. If, at each 

node, only one child node needs to be traversed then recursion is done until a leaf is 

encountered [Havran, 2001].  

 

Basic recursive traversal is not a robust algorithm, because it can generate an incorrect 

image in two cases. When the ray entry point is on the splitting plane and the ray 

continues to either side of the splitting plane both child nodes get the same value. 

Selecting one side results in the correct image while the other causes an incorrect one. 

However, if the ray stays on the splitting plane until the exit point, then selecting either 

side will produce the correct result. The problem cases can be corrected for by 

comparing both the entry and exit points of a ray to the node splitting plane. If the entry 

and exit point coordinates are less than or equal to the splitting plane coordinates then 

the left child is selected. The right child is selected in the remaining case [Havran, 2001]. 

 

Generally, when traversing a kd-tree, packets are populated with rays that have the same 

sign, which might lead to underuse of SIMD as packet size decreases due to packet 

splitting. In this case the traversal ends when a node that is occluded by previous 

node(s) is encountered. If the packet were to include incoherent rays, then packet 

splitting would be unnecessary and SIMD utilization would increase. In this case a 

completely occluded node would not terminate traversal, but simply lead to popping the 

next node until the stack is empty. This approach reduces traversal steps by 2x for eye 

rays and 1.5x for secondary rays by 9
th

 bounce. Performance improvement for eye and 

shadow rays decreases with bounce depth from 2x to 0.9-1.2x [Reshetov, 2006]. 

 

By using frustum culling algorithm (see Section 3.3), there is no need to conduct an 

exhaustive search for intersection points from the root. A ray frustum acts as a proxy for 

any number of randomly arranged rays as long as the following two conditions are 

satisfied:  

 

1. For any given axis-aligned plane, compute a rectangle inside this plane, 

which contains all possible ray/plane intersection points. This rectangle does 

not have to be tight. 

2. All rays go in the same direction. 
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The frustum can then be used to traverse the tree looking for a common entry point 

deeper in the tree for all the rays it represents. The traditional intersection search is 

started from this common entry point. The goal of the entry point search is thus not to 

find an actual intersection, but leaves where there is a possibility of an intersection. The 

possibility of an intersection exists when a leaf or leaves with objects, is or are fully or 

partially overlapped by a proxy frustum. If a proxy frustum overlaps a single leaf 

without overlapping any splitting planes, then the leaf is the entry point. On the other 

hand, if multiple leaves are overlapped, then the entry point is the common ancestor of 

the overlapped leaves. An entry point search starts with a stack known as a “bifurcation 

stack”. It holds nodes, and their corresponding AABBs, which can be entry points. A 

tree is traversed from the root using a frustum culling algorithm in a depth first manner. 

While traversing, all nodes and their corresponding AABBs, with both children to be 

traversed, are placed in the bifurcation stack. The traversal ends when the first potential 

intersection is encountered, after which no new entries are added to the bifurcation stack 

and the current node is marked as an entry point candidate. The algorithm continues by 

popping a new node from the bifurcation stack. The previously unexplored branch 

under each node is traversed as before. This is continued until the bifurcation stack is 

empty. If, during the subsequent traversals, a new leaf node with potential intersections 

is found, then the node from which this leaf node was reached is marked as the current 

entry point candidate. When the bifurcation stack is empty, the current entry point and 

the AABB associated with it are returned as the entry point for all rays in the frustum 

[Fowler et al., 2009; Reshetov et al., 2005] 

 

As a frustum represents many rays, some of which may diverge from the others, finding 

truly deep entry points for the frustum might be impossible. In such situations deeper 

entry points can be found by increasing ray coherency by dividing the frustum. For 

primary rays an image is easily divided into tiles of equal size. Such a division is also a 

common way to parallelize tracing of an image on a multicore system. Splitting or not 

splitting a tile can be decided by using the following parameters [Reshetov et al., 2005]: 

 

1. Initial Tile Size (ITS) 

2. Minimum Tile Size (MTS), which automatically triggers intersection point 

search 

3. Split Factor (SF), which defines how many pieces to split a tile into. 

 

Tiles that are larger than MTS are split automatically if the entry point is not a leaf. 

Otherwise – based on measurements on over 2500 models – varying values of ITS, 

MTS and SF affects performance by about 10%. As such it is possible to use a single set 

of parameters for all scenes and still reach roughly optimal results. Currently best 

known results have been reached with ITS = 128x128 pixels and direct division to 16 

subtiles as needed. This approach is known as Multi-Level Ray Tracing Algorithm or 

MLRTA and it is able to increase performance by 3.25x for eye rays and 2.75x for eye 

and shadow rays [Reshetov et al., 2005]. 
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A further improvement to MLRTA is known as AEPSA (Advanced Entry Point Search 

Algorithm). It is based on observations on the candidate find and entry point selection 

phases. For preparing the candidates Reshetov [2007] observed that even though a 

frustum reaches a leaf with objects, the probability that the rays intersect an object is 

low. Therefore, freezing the bifurcation stack as soon as a leaf with objects is found is 

premature. Instead, the stack is frozen when a leaf with an object overlapping the 

frustum is found. The existence of an intersection is easily ascertained by determining 

whether or not all triangles of an object are on the outside of a plane formed by a 

frustum face. Such a test easily extends to SIMD usage for all four planes 

simultaneously. Whether or not triangle vertices are on the same side of a plane is 

determined by comparing the signs of their dot products [Fowler et al., 2009]. 

 

In the entry point selection phase MLRTA must, for all nodes in the bifurcation stack, 

traverse from a node to an occupied leaf. Because candidate nodes are ordered by depth, 

nodes deeper in the tree are in subtrees of nodes on higher levels. Thus, all nodes below 

the current one in the candidate list can be culled, if both subtrees of the current node 

are determined to have leaves which are not overlapped by the frustum. This means that 

AEPSA will visit as many or fewer nodes when compared to MLRTA. These 

improvements produce a speedup of up to 18% [Fowler et al., 2009]. Algorithm 6.1 

presents AEPSA. 
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AEPSA algorithm 

Algorithm aepsa(tree, frustum) 

Input: tree to search for entry points in, frustum representing rays 

Output: entry point for all rays 

    queue  

    find_candidates(root(tree), frustum, queue) 

    while !empty(queue) do 

        node = dequeue(queue) 

        if traverse_to_leaf(frustum, node) along path to leaf not taken 

           overlaps non-empty leaf then 

            return node 

        end if 

    end while 

    return null 

 

Algorithm find_candidates(node, frustum, queue) 

Input: root node of a tree, frustum representing rays, queue for candidate nodes 

Output: current entry point candidate, queue with nodes to search 

    if node is leaf then 

        i = intersect(frustum, leaf); 

        if i == TRUE then 

            enqueue(stack, node); 

            return current node, queue; 

        end if 

    end if 
    s = find_candidates(left(node) OR find_candidates(right(node)); 

    if s == TRUE then 

        enqueue(queue, node) 

end if 
Algorithm 5.1 AEPSA from Fowler et al. [2009] 

 

Ray tracing is inherently a parallel process, as pixels are independent and the used data 

structures are read-only when the actual tracing is done. Near linear scalability has been 

observed, for example, by Parker et al. [1999] for 128 processors. The process is 

simple: all primary rays are placed in a queue, then individual threads lock the queue, 

pop a ray and unlock the queue. This is repeated until the queue is empty. Processing 

singular rays causes synchronization overhead, so rays are bundled into groups which in 

turn are placed in a queue. As a load balancing measure, the groups have decreasing 

size [Parker et al., 1999]. A locking based approach is not the only way to implement 

access control to the shared queue. A lock-free approach, using for example the 

Compare-and-Swap atomic synchronization described in Algorithm 5.2, is also a 

possibility. A lock-free system should work better than a lock based system if 

contention is high. Another possible method is to distribute tasks to thread local queues, 

for instance using round robin [Nunes and Santos, 2009]. 
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Compare-and-Swap algorithm 

Algorithm CAS(location, cmpVal, newVal) 

Input: memory location, compare value, new value 

Output: whether location and compare value were the same 

    if location == cmpVal then 

        location = newVal 

       return true 

    end if 

    return false 
 Algorithm 5.2 Compare-and-Swap from Nunes and Santos [2009]  

  



55 

 

6. Conclusions 

This thesis has explored some aspects of ray tracing and research done to push these 

aspects towards real-time execution. Even though ray tracing as a whole is such a large 

field that covering everything is impossible, space limitations have made it so that 

covering even all integral parts – for instance ray-AABB intersection, see, e.g., Haines 

[1989], Williams et al. [2005] and Eisemann et al. [2007] for discussions on this topic – 

of a ray tracer in this thesis, has not been possible. Apart from the topics cut at the end 

of Chapter 1, shadow rays have been discussed on a basic level, but examining more 

advanced methods, such as volumetric occluders –  see, for example, Djeu et al., [2009] 

– and different methods for producing soft shadows – see, for instance, Johnson et al. 

[2009] and  Laine et al. [2005] – has been omitted. Moreover, further discussion of data 

layouts, such as Yoon and Manocha [2006], was cut. Exploration of other triangle 

structures in addition to triangle fans, such as triangle strips and clusters – see, for 

instance, Lauterbach et al. [2007] and Garanzha [2009] – was also left undone. A 

similar decision was made regarding other ray-triangle intersection methods, such as the 

one presented by Segura and Feito [2001]. Compression, see, e.g., Hubo et al. [2006], is 

also left unexplored. Use of multiple different types of data structures for different 

purposes – see, for instance, Hunt [2008b] – is likewise unexplored. 

 

Ray tracing has seen impressive efficiency increases since 2000, but it still has ways to 

go before it can challenge rasterization in real-time applications. While there are serious 

discussions about whether some features, or ray tracing as a whole, is desirable or even 

needed at all in interactive graphics, ray tracing is experiencing a boom of interest 

[PcPerspective, 2011; Stratton, 2013]. Real-time ray tracing is not just an academic 

exercise anymore, as Intel and nVIDIA have active research projects and have released 

demos showing their technology at work. First dedicated ray tracing hardware, though 

not for real-time execution, has also been released [Imagination, 2013]. But the most 

impressive proof of concept, that can run in real-time on hardware available to 

consumers today, is Brigade path tracer [Brigade, 2013]. Capability to render billions of 

triangles at 30 FPS at 720p resolution with global illumination is a sight to behold, even 

if it is a little noisy [Lapere, 2013]. With all the recent advancements and ongoing 

research in ray tracing theory, this is truly an intriguing time to be interested in ray 

tracing – whether or not real-time execution becomes a reality within the decade or 

century.    
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Appendix A 

 

The Angel model, 474048 triangles [Georgia Tech, 2013]. 
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The Bunny model, 69451 triangles [Stanford, 2013]. 
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The Fairy Forest model, 174117 triangles [Utah, 2013]. 

 
 

 

 

 

 

 

 


