

On real-time ray tracing

Ville Rahikainen

University of Tampere

 School of Information Sciences

 Computer Science

 M.Sc. Thesis

 Supervisor: Martti Juhola

 May 2013

ii

University of Tampere

School of Information Sciences

Computer Science

Ville Rahikainen: On real-time ray tracing

M.Sc. Thesis, 67 pages, 3 appendix pages

May 2013

Rendering of increasingly complex and detailed objects and scenes, with physically

correct light simulation, is an important problem for many fields ranging from medical

imaging to computer games. While even the latest graphics processing units are unable

to render truly massive models consisting of hundreds of millions of primitives, an

algorithm known as ray tracing – which by its very nature approximates light transport –

can be used to solve such problems. Ray tracing is a simple but powerful method known

to produce high image quality, but it is also known for its slow execution speed. This

thesis examines parts of the research made to bring ray tracing into the interactive

sphere. Specifically, it explores ray-triangle intersections, ray coherency, as well as kd-

tree building and traversal. Even though these issues are delved into in the context of

interactive graphics, the insights provided by the analyzed literature will also translate

to other domains.

Key words and terms: ray tracing, kd-tree

iii

Contents
1. Introduction .. 1

2. General considerations ... 6

2.1 Triangle intersection ... 6

2.2 Data layout in main memory .. 17

2.3 Shadow rays .. 18

3. Ray aggregation .. 20

3.1 Memory coherency ... 20

3.2 Ray packets ... 22

3.3 Culling methods .. 24

3.4 Ray tracing with stream filtering .. 26

4. Kd-tree building .. 28

4.1 Conventional method .. 28

4.2 Approximations and parallel building .. 39

5. Kd-tree traversal ... 50

6. Conclusions .. 55

References .. 56

Appendix A .. 65

1

1. Introduction

Interactive 3D computer graphics have seen a tremendous improvement in quality since

their inception. The visual realism and image complexity of today‟s state-of-the-art

applications are superior even to anything done just six years ago. With the ongoing

demand for higher detail from different industries this trend is certain to continue.

Figure 1.1 presents a screenshot from an early video game and Figure 1.2 presents a

screenshot from a game from 2007.

 Figure 1.1 Screenshot from 3D Monster Maze Figure 1.2 Screenshot from Crysis

The z-buffer algorithm – first introduced by Wolfgang Strasser, but independently

discovered and generally attributed to Catmull [1974] – is used virtually exclusively to

solve the visibility problem in interactive computer graphics. It has proprietary

hardware known as GPU (Graphics Processing Unit) which makes the present day

graphical quality possible and which has been specifically designed to execute the z-

buffer algorithm fast. Z-buffer is capable of producing spectacularly realistic images,

but it is not without its problems. Without culling its runtime is Ο(N) or asymptotically

linear compared to the number of primitives, which means that the quest for higher

visual realism and more complex scenes will continue to make its execution slower.

Furthermore, z-buffer has problems with many basic effects which are essential for a

truly realistic image, such as shadows, reflections and refractions. To be sure, these

effects can be done, but with limitations and much work. In addition, z-buffer does not

handle well objects which do not purely consist of triangles [Shirley et al., 2008].

Despite these shortcomings z-buffer has been without a viable alternative for decades.

2

However, the same factors – continued rise of processing power and memory combined

with ever better GPUs – which have made it possible for z-buffer to handle increasingly

detailed and complex scenes, now promise to make another algorithm capable of real-

time execution in the foreseeable future. Building on decades of off-line rendering work,

the last decade or so has seen a flurry of research into interactive or real-time ray tracing,

an algorithm which has long been used in the creation of photorealistic images. The

basic idea of ray tracing is to simulate nature, light arrives from some source(s) – be it

the sun, light bulb, TV or a bioluminescent growth, known as esca or illicium, of an

anglerfish – and it is reflected, refracted and shadows are formed to where it does not

shine directly. There are two ways to do ray tracing – forward and backward. In forward

ray tracing each light source shoots out rays in all directions and all of the rays are

traced to see whether or not they reach the image plane and continue on to the eye – eye

is the point from which the scene is viewed. This approach is computationally very

inefficient since even the rays that do not contribute anything to the image are traced.

Due to forward ray tracings‟ infeasibility in image production, ray tracing refers nearly

exclusively to backward ray tracing [Glassner, 1989a].

Backward ray tracing starts by turning the approach around. Since we know that the

rays which reach the eye certainly contribute to the image, we can trace them backwards

from the eye. In different studies these rays have been called with a variety of names,

such as eye rays, pixel rays, primary rays and incident rays. In this study they will be

referred to as eye rays. Once a ray reaches an object in the scene a few things can

happen. In the most basic form of ray tracing, known as ray casting, new rays are

spawned towards each light source from the point of intersection between a ray and an

object. These rays are known as shadow rays, shadow feelers or illumination rays, in

this study they will be referred to as shadow rays. If the shadow ray reaches the light

source then this object is being illuminated by this light source. On the other hand, if the

ray does not reach the intended light source and instead reaches another – occluding –

object, then the object from which the shadow ray starts is not illuminated by this light

source but is in the shadow of the other object [Appel, 1968; Glassner, 1989a; Foley et

al., 1990]. This is not exactly how illumination would work in nature. Further realism

can be achieved by using more computational power to simulate indirect light [Foley et

al., 1990]. Figure 1.3 illustrates backward ray tracing.

3

Figure 1.3 A ray intersecting, reflecting, refracting and forming shadow rays (figure from Glassner [1989a])

 Whitted [1980] expanded the basic model by continuing tracing after the initial

intersection. To make the continuation of tracing possible, reflections and refractions

needed to be incorporated into the model which also means that techniques which

eliminate parts of the scene that are not directly visible cannot be used. Rays which

model refraction are called refraction rays in this study, but they are also known as

transmission rays and transparency rays, reflection is modeled by reflection rays.

Together reflection and refraction rays are known as secondary rays. Depending on the

type of surface material, reflection can be described in two ideal ways. When light is

reflected to a single direction the reflection is known as specular reflection, which

works on shiny surfaces like mirrors, and which is described in its ideal form by the law

of reflection. On the other hand, when the arriving light is reflected to all directions with

equal intensity the reflection is known as diffuse reflection, which works on rougher

surfaces. This ideal form is described by Lambert‟s cosine law. In refraction light bends

as it passes the boundary between two media, this bending is described by Snell‟s law.

As with reflection, there are two types of refraction – specular and diffuse. In ideal

specular refraction light would pass through the medium without any scattering, and in

ideal diffuse refraction it would be equally scattered to all directions. Beer‟s Law can be

used to calculate how light intensity is affected when it travels through a medium. For

refraction there is one additional consideration. If light is trying to travel from a medium

with higher refractive index to one with a lower refractive index at an angle greater than

the critical angle, then instead of being refracted, the light is specularly reflected. This

phenomenon is known as the total internal reflection. There are no materials that are

perfectly specularly or diffusely reflective or refractive. So, it follows that the outcome

produced by using the ideal models is not very realistic. Real materials are better

4

represented with a combination of specular and diffuse reflection or refraction. Fresnel

equations, or Schlick approximation thereof, can be used to determine how much light

is being reflected and refracted. There are models such as the microfacet model which

simulate nature to a greater extent, but at the expense of computational power [Glassner,

1989b; Schlick, 1994; Shirley et al., 2009; Whitted, 1980].

Aliasing arises from the fact that computers handle continuous phenomena with discrete

samples. Spatial aliasing is a product of the uniform pixel grid. What normally looks

like an arc on a screen, is in fact an jumble of square protruding edges when zoomed in

close enough. Another aspect of spatial aliasing is that there are objects so small that

they are missed by rays, but they are not so insignificant that their absence goes

unnoticed. Small objects can also be connected to temporal aliasing when they are, for

example, moving across a screen. An object not intersected by a ray at one location can

be intersected by a different ray in another location. This causes a distracting

phenomenon where an object flickers in and out of existence for seemingly no reason.

Temporal aliasing is also at work when a tire, which is spinning forward fast, seems to

slow down and reverse direction. Another incarnation of temporal aliasing is when an

otherwise constantly moving line suddenly appears to skip forward along its trajectory

while missing a line. These effects are corrected for with anti-aliasing [Glassner, 1989a].

Anti-aliasing can be done by using supersampling. Instead of using a single ray to

sample a pixel, with supersampling we could use, for instance, seven rays to get a better

understanding of a pixel. This does not remove, but simply alleviates, some aliasing

effects. However, there is also another version of ray tracing that does anti-aliasing on

its own – stochastic or distributed ray tracing [Glassner, 1989a]. In addition to anti-

aliasing, distributed ray tracing also creates a more accurate pixel color and enables

many advanced effects. It is able to produce depth of field, motion blur, gloss,

translucency, soft shadows and penumbras. In distributed ray tracing each pixel is

sampled with multiple rays distributed in the same manner as a Poisson disk. Sixteen

rays have been found to be enough for most effects, but there are situations where using

64 rays per pixel helps to reduce excess noise. Poisson disk distribution is a Fourier

transform of the photoreceptor distribution in an extrafoveal region in the eye of a

rhesus monkey. Humans and rhesus monkeys have a similar photoreceptor distribution

and human eyes are not prone to aliasing – they have noise. An effective way to

approximate Poisson disk distribution is to first distribute the rays evenly across a pixel

and then displace each ray on the x- and y-axes by some sufficiently small random

amount, so that the new positions of the rays do not overlap and the rays do not bunch

up. This method is known as jittering and the outcome is mostly noise instead of

aliasing, which is not as distracting for the human visual system. To create the advanced

effects rays need to be distributed in the proper dimension, for instance, in time to create

motion blur [Cook et al., 1984; Cook, 1989; Foley et al., 1990].

While there are a number of architectures which have been proposed as basis for

proprietary hardware implementation of ray tracing, such as SaarCOR, examining these

5

architectures is outside the scope of this thesis. Furthermore, due to space limitations the

only acceleration structure to be considered in depth is kd-tree. Many of the techniques

discussed for kd-trees are, however, also applicable to at least BVHs (Bounding Volume

Hierarchy – a hierarchy which consists of bounding volumes, such as boxes or spheres).

In addition to architectures and other acceleration structures, GPU implementations of

acceleration structures and ray tracing on GPUs in general are outside the scope of this

thesis.

The rest of this thesis is structured as follows: Chapter 2 discusses general efficiency

strategies, known efficient ways of calculating intersections between a ray and a triangle,

data layout and shadow rays, which account for majority of rays in a system [Smits,

1998]. Chapter 3 goes into memory and ray coherency, culling strategies for packets

and ray tracing as a filtering problem. Chapter 4 introduces kd-trees, their different

building strategies and parallelization of building. Chapter 5 examines kd-tree traversal

in its various forms. Finally Chapter 6 draws some concluding remarks.

6

2. General considerations

The most basic optimization for ray tracing is to consider the math involved in the

different computations. There are multiple ways to calculate a ray triangle intersection,

but what holds true to all of them is that taking a square root is a slow operation.

Similarly, multiplication is usually faster than division, while addition, subtraction and

comparison are faster than any of the aforementioned operations. Thus, using a formula

which minimizes the use of square root and division will in most cases speed up

execution [Glassner, 1989a].

Adaptive tree-depth control cuts the tracing of a ray when the contribution of the ray to

the outcome of the pixel color drops below some predetermined level. The color of a

pixel is the sum of the entire ray tree (eye, reflection and refraction rays). The

contribution of an individual ray decreases as the depth of the tree increases. Trees can

basically have any depth, and the contribution of a ray will become increasingly

miniscule [Glassner, 1989a].

Even though ray tracing is capable of supporting a multitude of primitives, supporting

only a single primitive can be a benefit. Triangles can be used to approximate any other

geometric primitive and thus any 3D-scene. Limiting support to triangles only reduces

branching which increases execution speed. It also eliminates the need for different

intersection code for different primitives, which leads to simpler code. Simpler code is

easier to optimize for programmer and compiler alike and it also reduce the likelihood

of mistakes [Wald et al., 2001].

Because of the development in processors, ray tracing is bounded more by transfer

speed between memory and cache than CPU speed. Data is moved to cache as entire

cache lines, and data structures need to be designed so that they occupy entire cache

lines. Doing so will minimize data transfer and increase speed, possibly at the cost of

bigger than needed structures, as they are made to conform to cache line size [Wald et

al., 2001]. Wächter [2004] notes that the usefulness of cache line alignment ultimately

depends on the hardware used, as the P4 coupled with 8-bit level 1 data cache (level 1

data cache is the smallest and fastest cache in the multi-level cache hierarchy of modern

processors, it is the first place a processors looks for data after registers) does not see

the increase in speed reported for the PIII by Wald et al. [2001].

2.1 Triangle intersection

To reach 30 FPS (Frames Per Second) for primary visibility (no shadows, reflections or

refractions) on 1080p resolution without any sort of anti-aliasing, a ray tracer would

need to handle 62M rays per second. Increasing rays per pixel to 16 for anti-aliasing and

advanced effects results in 995M rays per second, again for only primary visibility. It is

thus clear that determining whether or not a ray has an intersection in a scene, and the

speed of the calculation used to resolve the intersection point, are of crucial importance.

7

A ray is defined by

 () () (2.1)

where O is the origin of the ray R(t), D the normalized direction of travel and t the

distance. If t < 0, the intersection is behind the origin of the ray and, thus, rejected.

Furthermore, usually tmin = ε as tmin = 0 could result in self-intersection. The intersection

is also rejected if a closer intersection already exists or the embedding plane of the

triangle and the ray are parallel. A ray is parallel with a plane when the product of the

plane normal and the ray direction equals zero. The special case of the ray being parallel

with the embedding plane while also being on the plane can be ignored because hitting

an edge of a triangle has no effect [Badouel, 1990; Haines, 1989; Möller and Trumbore,

1997; Wald, 2004].

A triangle ∆ ABC is an area bounded by vertices A, B and C. For the ray R(t) to hit a

triangle it has to satisfy the condition tmin ≤ thit ≤ tmax and hit-point H = R(thit) has to be

inside the triangle. There are multiple ways to solve for this problem, but methods

known as Möller-Trumbore, Badouel and Plücker coordinates are currently thought of

as the best [Badouel, 1990; Haines, 1989; Möller and Trumbore, 1997; Wald, 2004].

Badouel‟s algorithm starts by resolving whether or not a ray has an intersection with the

embedding plane of a triangle. The existence of an intersection is ascertained by

calculating the signed distance, , to the embedding plane, and by determining if

 is within the interval where intersections are sought. The signed distance can be

calculated as

()

, (2.2)

where N is the normal of the plane and it is calculated by taking a cross product (N = (B

– A) x (C – A)) [Badouel, 1990; Haines, 1989; Wald, 2004]. If the ray reaches the

embedding plane then the next step is to determine if it intersects the triangle ∆ ABC as

well. The intersection point H is calculated using Equation 2.1 where . The

barycentric coordinates of H can be solved as follows

H = αA + βB + γC, (2.3)

where α + β + γ = 1. H is inside the triangle if α, β and γ all have a value which is ≥ 0

and ≤ 1. The amount of operations can be reduced, as it is enough to check β ≥ 0, γ ≥ 0

and β + γ ≤ 1 [Badouel, 1990; Wald, 2004].

Triangle ∆ ABC and point of intersection H can be projected to one of the primary 2D

planes to increase execution speed, as long as the plane of projection is not orthogonal

to the plane ABC, because projection has no effect on barycentric coordinates. To

8

maintain numerical stability, the projection should be done to the plane where the

triangle has the largest projected area, which is the dimension where N has its maximum

absolute component. After projection to the XY plane, Equation 2.3 has the form

 , (2.4)

which through substitution and rearranging becomes

,

 , (2.5)

where b = C’ – A’, c = B’ – A’ and h = H’ – A’. Additionally here and in Equation 2.7 x

and y represent the two-dimensional coordinates [Badouel, 1990; Wald, 2004; Wächter,

2004]. Execution speed can be improved further by precomputing and storing values

that remain the same for all intersections. The edges of a triangle and the projection

dimension are such values, and so is the normal of a triangle. For normal, a further

consideration is that when the projection dimension k is known, N ∙ k cannot be zero. It

is therefore possible to derive and store N’ by dividing N with N ∙ k which leads to

()

 . (2.6)

Values ,

 and

 are constants,

 and does not need to

be stored. Here u and v represent the two planes where the triangle was not projected to.

Additionally, with the normal known, u and v need not be calculated using a slow

modulo operation (u = (k + 1) mod 3, v = (k + 2) mod 3) since a table lookup ({0, 1, 2, 0,

1}) will suffice. The Newton-Raphson method can be used instead of division to

increase execution speed. Computing β and γ can be simplified in a manner similar to

Equation 2.6

(

 (2.7)

 .

Here , and are constants. The same approach can be used for γ, and then it

follows from the properties of barycentric coordinates that α = 1 – β – γ. The resulting β

and γ can also be used, for example, in determining texture-coordinates [Wald, 2004;

Wächter, 2004]. Algorithm 2.1.1 presents Badouel‟s algorithm for ray bundles.

9

Improved Badouel’s algorithm

Algorithm Badouel(O, D, A, B, C)

Input: ray origin O and direction D, vertices A, B and C

Output: no hit or hit at intersection distance, barycentric coordinates beta and gamma

b = C-A; c = B-A; N = c x b;

t_plane = -((O-A) ∙ N) / (D ∙ N);

if (t_plane < Epsilon || t_plane > t_max) then

 return NO_HIT;

end if
if (|N.x| > |N.y|) then

 if (|N.x| > |N.z|) then

 k = 0; /* X */

 else
 k = 2; /* Z */

 end if

else

 if (|N.y| > |N.z|) then

 k = 1; /* Y */

 else

 k = 2; /* Z */

 end if

end if

u = (k + 1) mod 3; v = (k + 2) mod 3;

H[u] = O[u] + t_plane ⦁ D[u];

H[v] = O[v] + t_plane ⦁ D[v];

beta = (b[u] ⦁ H[v] - b[v] ⦁ H[u]) / (b[u] ⦁ c[v] - b[v] ⦁ c[u]);

if (beta < 0) then

 return NO_HIT;

end if

gamma = (c[v] ⦁ H[u] - c[u] ⦁ H[v]) / (b[u] ⦁ c[v] - b[v] ⦁ c[u]);

if (gamma < 0) then

 return NO_HIT;

end if

if (beta+gamma > 1) then

 return NO_HIT;

end if

return HIT(t_plane,beta,gamma);
Algorithm 2.1.1 Projection method [Wald, 2004]

Wächter [2004] notes that by rearranging the distance test to:

 if(!(t > 0.0) || (t > ray.tfar)) continue;

instead of testing if t is negative or larger than ray.tfar, a situation where t = NaN (not a

number) can be avoided altogether. In addition, it is possible to further speed up this

operation while also detecting and handling ±∞, QNaN (quiet NaN) and SNaN

(signaling NaN) without floating-point comparisons. This is done by replacing floating

10

point operations with integer arithmetic, where the previous formulation of the distance

test is replaced by

 if((unsigned int&)t > (unsigned int&)ray.tfar) continue;

and ray.tfar is initialized to 3.3e38f. All negative values of t will pass the test because

they have a sign-bit of 0x80000000, while ray.tfar always has a valid positive floating-

point number. Integer arithmetic is also used in the same way to transform part of the

inside test from u + v > 1.0f to (unsigned int&)uv > 0x3F800000. The entire test could

be done in integer arithmetic, but other optimizations lead to a version where u < 0.0

and v < 0.0 are determined in a different manner.

Wächter [2004] also experimented with other ideas, such as bit-sifting to remove

projection case look-up table dependency, but found that the methods did not impact

execution speed positively, sometimes resulting in a decrease in execution speed. The

lack of improvement could, in some cases, be attributed to the features of the underlying

hardware architecture used in the tests (P4). Furthermore, when converting the C-code

to SIMD (Single Instruction, Multiple Data) it was noticed that some of the

optimizations, like unsigned integer comparisons, were not supported by the versions

available at the time (MMX, SSE(2/3)).

Benthin [2006] notes that Badouel‟s algorithm has an early distance test and a very late

inside test, but the distance test exits only roughly 18% of the time, while the inside test

exits 52 to 68% of the time. As such an algorithm with early inside test, like Plücker,

should see increased performance.

Komatsu et al. [2008] contradict Benthin [2006] and present results showing Plücker

exiting only approximately 21% of the time in the first test. This nearly exactly opposite

result can, however, be explained if their pseudo code is an accurate representation of

their actual code. Going by the pseudo code – which their actual text does not contradict

– Komatsu et al. [2008] seem to have a fundamental misunderstanding of Plücker

coordinates. In their pseudo code Komatsu et al. [2008] perform the distance test first

and the inside test second, when the order should obviously be reversed.

Even though Komatsu et al. [2008] conduct tests without using spatial data structures,

their results are still considerably out of line when compared to those reported

elsewhere in the literature. For Badouel they report only 1.0027x speed increase over

Möller-Trumbore, while for Plücker they get 1.0250x increase over Möller-Trumbore.

Comparison of Badouel and Plücker produces a difference of 1.0222x in favor of

Plücker. All of the results are for eye rays. Wald [2004], on the other hand, reports 2.1x

– 2.3x for eye rays and 1.9x – 2.0x for shadow rays in favor of Badouel over Möller-

Trumbore. Benthin [2006] reports 1.2x increase for Plücker over Badouel. Kensler and

Shirley [2006] report 1.7x increase over Möller-Trumbore for an algorithm that is

slower than either Badouel or Plücker (comparing results from Kensler and Shirley

[2006] to those reported for a version of Badouel by Wald in Havel and Herout [2010],

11

the testing machines are roughly comparable). Based on this it would appear that there

is some sort of a problem with the implementations of Badouel and Plücker by Komatsu

et al. [2008].

Unlike Badouel, Möller-Trumbore does not start by intersecting the embedding plane.

Instead, the triangle to be intersected is translated to the origin and transformed so that it

is aligned with the x-axis. In addition, only triangle vertices are stored and no

precomputation is needed. While this results in memory savings of 25 to 50% for

triangle meshes, it also means slower execution when compared to recent versions of

Badouel and Plücker coordinates [Möller and Trumbore, 1997]. The other advantage

Möller-Trumbore has over Badouel and Plücker is that its conditional checks are

performed earlier, resulting in fewer operations when there is no intersection [Komatsu,

2008]. The following equation describes a point on a triangle in Möller-Trumbore:

 () () . (2.8)

For an intersection to occur u and v must fulfill the same conditions as β and γ in

Badouel. An intersection is calculated as R(t) = T(u, v). Substituting T(u, v) with R(t) in

Equation 2.8 and rearranging the resulting equation leads to

[

]

()
[

()

()
()

] , (2.9)

where , and [Möller and Trumbore, 1997]. Further

optimizations are possible through the use of scalar triple product rules and the

commutative property of cross product:

 [

]

()
[

()
()

()

]

[

 ()

()

]. (2.10)

Edges and and the normal N are constants, and can thus be precomputed

[Komatsu et al., 2008].

By applying scalar triple product rules to Equation 2.10, Möller-Trumbore can be made

more efficient when used with ray frustums:

[

]

[

 ()
 ()

]. (2.11)

Outcome of N ∙ T is a constant for all rays in a frustum, since they are assumed to share

an origin, and can thus be precomputed. Additionally, and are also

12

constants for all rays in a frustum. The precomputed values take 40 bytes of space and

they can be easily arranged so as to take advantage of cache line size. The improved

version also retains the early condition checks of its predecessor [Komatsu, 2008].

Algorithm 2.1.2 describes Möller-Trumbore for ray bundles.

Möller-Trumbore

Algorithm Precomputation triangle(A, B, C)

Input: triangle vertices A, B and C

Output: triangle edges 1 and 2, and triangle normal

 E1 ← B – C

 E2 ← C – A

 N ← E1 x E2

 return (E1, E2, N)

Algorithm Precomputation frustum(O, N, A, E1, E2)

Input: ray origin O, triangle normal N, triangle vertex A, triangle edges 1 and 2

Output: edges 1 and 2 translated to origin, triangle normal at origin

 T ← O – A

 Gu ← –T x E2

 Gv ← T x E1

 f2 ← N ∙ T

 return (Gu, Gv, f2)

Algorithm Intersection(D, N, Gu, Gv, f2)

Input: ray direction D, triangle normal N, triangle edges 1 and 2 at origin, triangle

normal at origin

Output: no hit or hit at distance t and barycentric coordinates u‟ and v‟

 f1 ← N ∙ D

 if f1 ≥ 0 then

 return(No Hit)

 end if
 u‟ ← D ∙ Gu

 if u‟ < 0 then

 return(No Hit)

 end if

 v‟ ← D ∙ Gv

 if v‟ < 0 then

 return(No Hit)

 end if
 if u‟ + v‟ > –f1 then

 return(No Hit)

 end if
 t ← –f2 / f1

 return(Hit, u‟, v‟, t)
Algorithm 2.1.2 Ray bundle Möller-Trumbore [Komatsu, 2008]

Contrary to Badouel, Plücker coordinates have an early inside test and a late distance

test. Plücker coordinates can be used to express a directed 3D line in 6D. A line L which

goes through 3D points X and Y is formulated in Plücker space as ,

from which it follows that a ray R is . Two lines, and

 , intersect if . If then the

lines pass each other counterclockwise, while means that the lines pass

13

each other clockwise. A ray R and a triangle ∆ ABC expressed in Plücker coordinates

intersect, if R ∙ A > 0, R ∙ B > 0 and R ∙ C > 0 or R ∙ A < 0, R ∙ B < 0 and R ∙ C < 0, i.e.,

all the inner products between edges and a ray have the same sign. If all inner products

equal to 0.0, then the ray is coplanar with the triangle and produces no intersection.

[Benthin, 2006; Erickson, 1997; Komatsu et al., 2008; Shoemake, 1998; Wächter, 2004].

Because all rays in a bundle are assumed to share an origin (if the origin is not shared,

then this method is not usable), Plücker can be optimized further for ray bundles by

transferring the ray origin to the origin of the coordinate system. The transfer is

achieved by subtracting O from vertices A and B. This simplifies the inner product

between R and E = [A – B, A x B] to

 (() ()) () (() ())

 (() ()) () (2.12)

 (() ()).

The computations are sped up because () () and similar computations

for the other two edges are constant for all rays in a bundle. As such, each ray only

needs to take three dot products to solve for intersection. After the intersection has been

verified (using either ray bundle or single ray method) t can be calculated using

Equation 2.2. The result is constant for all rays in a bundle and, hence, it can also be

precomputed. If the triangles are, however, dynamic, computing on the fly might be

more efficient [Benthin, 2006; Komatsu, 2008]. Algorithm 2.1.3 presents ray bundle

Plücker test.

14

Plücker test for ray bundles

Algorithm Precompute triangle(A, B, C)

Input: triangle vertices A, B and C

Output: triangle normal N

 E1 ← B – C

 E2 ← C – A

 N ← E1 x E2

 return (N)

Algorithm Precompute frustum(O, N, A, B, C)

Input: ray origin O, triangle normal N, triangle vertices A, B and C

Output: triangle edges BA, CB and AC translated to origin, triangle normal at origin

 T0 ← (B – O) x (A – O)

 T1 ← (C – O) x (B – O)

 T2 ← (A – O) x (C – O)

 f2 ← N ∙ (O – A)

 return(T0, T1, T2, f2)

Algorithm Plücker(D, N, T0, T1, T2, f2)

Input: ray direction D, triangle normal N, triangle edges BA, CB and AC at origin,

triangle normal at origin

Output: no hit or hit at distance t

 α ← D ∙ T0

 β ← D ∙ T1

 γ ← D ∙ T2

 if α, β and γ don‟t have the same sign then

 return(No Hit)

 end if

 f1 ← N ∙ D

 if f1 ≥ 0 then

 return(No Hit)

 end if
 t ← –f2 / f1

 return(Hit, t)

Algorithm 2.1.3 Plücker test modified from [Komatsu, 2008], see Benthin [2006, p.78] for SSE

Another variation of Plücker precomputes scaled normals of p and q (the selected axes)

coordinates: and , scaled p and q coordinates for two edges: , , and

 , p and q coordinates for a vertex: and , and the dot product of the vertex and

scaled triangle normal: d. Index of the discarded axis, r, is also stored, and it is used to

restore the indexing of coordinate components during intersection tests. Using these

values an intersection is calculated as follows

 ()

 ⦁ ()

 ⦁ () (2.13)

15

 [

]

 [

].

The first six lines are used to determine whether or not an intersection happens and the

last line calculates the position of the intersection. Therefore, the slow division

operation is done only if there is an actual intersection. Further improvement is possible

in the case of axis aligned triangles, where two dimensions have a normal which

evaluates to zero (here and) [Havel and Herout, 2010; Shevtsov et al., 2007b].

An algorithm by Havel and Herout [2010] is a combination of Badouel by Wald [2004]

sans the projection to a single plane and the version of Plücker by Shevtsov et al.

[2007b]. While N is calculated as in Badouel, normals for the two other planes are

calculated as

 . (2.14)

The following equations describe how the barycentric coordinates, which are expressed

as scaled distance from their planes, are determined, and used to resolve the inside test.

The resulting values are inserted to the last line of Equation 2.13 to resolve the distance

test and calculate the intersection point:

 (2.15)

 ()

 ⦁ ⦁ (2.16)

 ⦁

 ⦁ .

Kensler and Shirley [2006] use a genetic algorithm to search all known unique ways to

compute an intersection with a volume defined by four points. They then hand tune the

resulting algorithm to produce another algorithm which outperforms Möller-Trumbore

on average by 1.72x to 2.16x (depending on whether or not rays in a bundle share

origin).

Of the approaches presented here Wald [2004], Shevtsov et al. [2007b] and Havel and

Herout [2010] report the highest amount of tests per second. While the algorithm by

Havel and Herout [2010] is the fastest in general, it is comparable or slightly slower

than Wald‟s [2004] and Shevtsov et al.‟s [2007b] in the worst case scenario.

16

All the previous methods compute values for each triangle separately. Typical scenes,

however, consist of meshes where triangles share vertices. Avoiding repeating

unnecessary calculations by applying known values to neighbouring triangles should

increase execution speed.

Triangle fan is a structure with vertices { , …, }, where is the center vertex

[Galin and Akkouche, 2005]. The vertices form a set of triangles, as presented in Figure

2.1.

 Figure 2.1 Closed triangle fan

Triangle values for the fan are calculated using a modification of Möller-Trumbore.

Instead of solving Equation 2.8 to Equation 2.9, we can derive

 [

]

()
[

 ()
()

 ()

]. (2.17)

Here , which is the translation vector to ray origin. Edge vectors and

 are calculated as and , respectively. The first step in the

algorithm is to solve the translation vector, s, and the constant cross product, .

In the second step all edge vectors are calculated and for each vector also a dot product

is determined. These values are calculated in pairs: , ,

 and . If and have the same sign, then there is no intersection,

because both of the vertices are on the same side of a plane that contains the ray and the

center vertex. In this case the next two vertices are evaluated. Because the next triangle

shares a vertex with the first triangle, computations can be shared. The value of vector b

is assigned to vector a and becomes . If, on the other hand, there is an intersection,

then the triangle normal, , and determinant, , are calculated.

A determinant value in an interval close to zero (for instance,) indicates that

the ray is on the triangle plane and, thus, there is no intersection. Otherwise, the

barycentric coordinates and the distance can be calculated as

17

 (), (2.18)

where

. If vertex locations are not needed and are not shared between triangles,

then edges can be precomputed. Similarly, triangle normals can also be precomputed

[Galin and Akkouche, 2005].

Triangle fan building can start from either a closed or an open mesh, and the goal is to

build as large fans as possible while avoiding forming fans with only a single triangle –

also known as degenerate fans. If the mesh is closed, then the first fan is created at a

given candidate vertex c. Afterwards, and in the case of an open mesh, c is selected by

using a fitness function

 () () () (). (2.19)

Here v(c) is used to denote the connectivity of c, r(c) expresses the number of open

edges in the one ring neighbourhood of c, and t(c) indicates the number of degenerate

triangle fans remaining, if a fan were to be created centered on c. Coefficients α, β and γ

are used to adjust the relative weight of each variable of the function and values α = 2, β

= 7 and γ = 11 have been suggested to work well in general. If the starting mesh is

closed, then an open mesh is formed by removing the triangles in the fan, centered at c,

from the mesh. From the now open mesh, the triangles with open edges are placed in a

list and the new candidate is selected by the fitness function from the one ring

neighbourhood of the triangles in the list. If the mesh is not closed, then the algorithm

starts from creating the list of triangles with open edges. The process is repeated until

there are no more triangles left. Using triangle fans speeds up intersection calculations

by nearly 40% [Galin and Akkouche, 2005]. Replacing Möller-Trumbore with the

algorithm by Havel and Herout [2010] should provide a further speedup, as there is no

reason it would be slower for triangle fans when it is faster for single triangles.

Triangle fans can be formed from convex and star polygons. Storing models made from

triangle fans instead of individual triangles decreases the required storage space, as fans

take M + 2 (where M is the number of triangles in the fan) vertices to describe, while

separate triangles require 3M vertices. Loading speed is also increased, since there are

fewer lines to load.

2.2 Data layout in main memory

Efficient data layout not only reduces the needed amount of main memory – henceforth

memory – but can also increase traversal performance due to fewer cache misses. Cache

misses can be reduced by storing data elements so that those elements close to each

other in meshes and hierarchies are also close in memory layouts [Moon et al., 2010].

Mapping kd-trees to memory efficiently is complicated, because kd-trees are

multidimensional while memory is primarily one-dimensional. Common strategies,

such as B-trees, cannot be used to describe a kd-tree in memory. There are two principal

18

ways to manage dynamic variables in a memory pool (a continuous block of empty

memory), general memory allocator and fixed-size memory allocator. Of the two,

general memory allocator is more wasteful as it requires two additional pointers for

deallocation, but it is also more flexible. Fixed-size memory allocator does not need

redundant pointers, but it can only be used to allocate memory for variables with same

type and size [Havran, 2001].

A common, but inefficient, way to store kd-trees is known as random representation. It

uses general memory allocation and each node allocates memory for four pointers and

node information. More importantly, node memory address and node location in a kd-

tree have no connection. Another approach is the depth first search (DFS) representation

which produces a linear order for nodes in the memory pool. Due to the use of fixed-

size memory allocation, it has lower memory consumption than random representation.

Memory is allocated for two pointers and node information. Subtree representation also

uses fixed-size memory allocation and generates a linear order for nodes in a memory

pool. Unlike DFS representation, however, each variable allocates cache line size of

memory. The allocated memory is used to store nodes which form subtrees. Subtrees

can be represented in two possible ways: ordinary subtrees and compact subtrees. An

ordinary subtree holds equal sized nodes that have pointers to their two children. A

compact subtree representation only has pointers to subtrees, as node addressing is

provided by the traversal algorithm. The lack of pointers between nodes causes a need

for a specialized traversal algorithm, which is not justified by the limited theoretical

efficiency increase over ordinary subtree representation. While the theoretical speedup

for DFS and ordinary subtree over random representation are 1.62x and 2.5x

respectively, the actual reductions in the cost of a traversal step were, on average, 1.25x

and 1.39x, respectively [Havran, 2001].

2.3 Shadow rays

Unlike other rays, shadow rays need only know if there is an intersection or not. So,

calculating rest of the normal intersection information would be redundant. Because

shadow rays can account for more than 90% of all rays in a system, avoiding

unnecessary work when tracing them obviously produces a major boost in efficiency.

Furthermore, because finding an intersection is sufficient for shadow rays, traversal can

be terminated as soon as an intersection is found [Smits, 1998].

Light Buffer is a method where a point light source can be thought of as being enclosed

by a uniformly subdivided direction cube. The cube is constructed in a preprocessing

step. Each direction cell of the cube is associated with a list that holds all the opaque

objects that can be „seen‟ from the cell. The lists are sorted into ascending order based

on depth. When determining whether or not a point is in shadow, the shadow ray can be

thought of as starting from the light source, piercing a direction cell and continuing on

for the defined length. The list associated with the cell holds all the objects which can

cause the point to be in shadow. The algorithm then makes use of the fact that as long as

19

there is an occluding object, a shadow is confirmed. As there is no need to find the

closest occluding object, the execution can stop as soon as an intersection with an

occluding object is confirmed. The Light Buffer can be improved by culling back facing

polygons from the candidate list because they are known to be in shadow. Lists that

contain only a single polygon can be deleted, as a polygon cannot occlude itself unless it

is back facing. Also, if there is an object which covers the whole direction cell, all

objects which come after the covering object in the list can be culled because the

covering object shades everything in its direction pyramid. A list with a covering object

is specially marked, and all objects with depth greater than the covering object can be

determined to be in shadow without further tests [Arvo and Kirk, 1989]. This approach

obviously only works for stationary light sources and static objects. For dynamic scenes,

all the directional cubes need to be rebuilt for every frame or the cells where there has

been change need to be identified and their lists updated.

Using a single large frustum to trace shadow rays (also applies to eye rays) means that

the frustum cannot be tight. Instead, utilizing multiple smaller frusta, say one frustum

per SIMD, would allow tighter bounds, and also enable individual termination as soon

as all rays have a confirmed intersection. Benthin and Wald [2009] develop such a

system with the now cancelled Larrabee architecture in mind. Their traversal algorithm

is based on common origin of rays inside each frustum, which makes it possible to use

only intervals over ray directions, when interval arithmetic (see Section 3.3) is the

culling method. Using frustum traversal also means that individual rays are only needed

for actual intersection tests, and they can thus be generated on demand. Culling

efficiency of interval arithmetic is dramatically reduced if a direction interval has a zero

in one of the three dimensions (ray directions differ for this dimension). Such a case is

rare, and it can be corrected by intersecting the AABB (Axis-Aligned Bounding Box – a

bounding box is an area defined by six planes surrounding an object) of the ray

direction and the node AABB – assuming the dimension with zero is tight. The increase

in triangle intersection tests caused by frustum traversal can be counteracted by using

further culling – such as back face culling and corner rays – at the leaves.

20

3. Ray aggregation

3.1 Memory coherency

Real-time execution of ray tracing algorithms has for a long time been impossible due to

insufficient computational power of the available processors. However, after the

introduction of the multicore processors sufficient processing power has come within

reach. Developers of interactive ray tracers now face a new obstacle in the form of

limited bandwidth between memory and processor cache [Navrátil et al., 2007; Shirley

et al., 2008; Wald et al., 2001]. Especially inefficient are ray tracers which utilize

depth-first traversal, as they must trace each ray to completion before starting on a new

ray. This leads to incoherent access to scene geometry when possibly multiple primary

rays intersect the same geometry one after another at different points of the rendering

[Navrátil et al., 2007; Pharr et al., 1997]. All geometry and textures can be loaded to

memory provided that the scene is small enough, but this is a slow not to mention

wasteful process as it is possible that not even half of the loaded data is used in the

rendering process. Furthermore, with ever increasing amounts of scene geometry and

textures, it is likely that the scene geometry and textures simply do not fit in memory

[Pharr et al., 1997].

A technique known as TOD (Texture On Demand) offers a way to solve this problem.

Minimizing traffic between disk and memory can be achieved by loading the textures to

memory lazily, i.e., only when needed. Some predetermined amount of memory is set

aside for textures and a texture is loaded when needed. Retaining knowledge of the last

used texture is advisable as the next texture to be requested is often the same as the

previous. Loaded textures remain in memory which is searched first when a texture is

requested. New textures are loaded only if the requested texture is not found. In case the

memory is full the texture to be removed can be determined by utilizing, for instance,

LRU (Least-Recently Used) algorithm [Peachey, 1990; Pharr et al., 1997]. Similarly,

geometry traffic between disk and memory can be minimized by loading geometry only

when it is needed for intersection tests. However, steps to counteract heap fragmentation

caused by reallocation of variable memory block sizes need to be taken. Spatial locality

in 3D-space must be tied with spatial locality in memory to ensure coherency in both

3D-space and memory. While lazy loading of textures and geometry reduces the

memory needed to render a scene, it can also slightly reduces the time the rendering

takes [Pharr et al., 1997].

Ray coherence cannot be exploited while all rays are being traced recursively –

independently and in a fixed order. To make use of ray coherence, rays need to be

traced in groups and when needed. However, if rays are no longer traced from start to

finish, the color of a pixel also needs to be determined in a different way. The color can

be determined by retaining all of the necessary information in the ray and by computing

the outgoing color as a weighted sum of incoming colors. To make use of coherency, a

scene is divided into a voxel grid and each voxel is associated with a queue of rays

21

waiting for an intersection test with the geometry it contains. Each voxel also contains

information about overlapping voxels. Rays are tested for intersection against geometry

in all overlapping voxels. In case an intersection is found, shading is calculated and the

new rays produced by the intersection are added to the queue. On the other hand, if an

intersection is not found the ray is moved to the next voxel which contains geometry

and is on the route of the ray. Because loading new geometry to memory is slow, voxels

to be processed are selected based on a cost (a lot of geometry which currently is not in

memory is costly) benefit (many rays in a single queue move the rendering process

more than just a few rays) approximation [Pharr et al., 1997]. Algorithm 3.1.1 presents

memory coherent traversal.

BFS (Breadth First Search) traversal

Algorithm BFS_traversal
Generate eye rays and place them in queues

while there are queued rays

 Choose a voxel to process

 foreach ray in voxel

 Intersect the ray with the voxel‟s geometry

 if there is an intersection then

 Run the surface shader and compute the BRDF

 Insert spawned rays into the voxel‟s queue

 if the surface is emissive then

 Store radiance contribution to the image

 Terminate the ray

 else

 Advance the ray to the next voxel queue

 end if

 end if

 end foreach

end while

Algorithm 3.1.1 Memory coherent traversal [Pharr et al., 1997]

In Algorithm 3.1.1 bidirectional reflectance distribution function (BRDF) is a function

that describes the angles of incident and reflectance by using cross products of two

hemispheres [Rusinkiewicz, 1997]. The reordering scheme comes with a small overhead,

but as the available memory gets smaller the algorithm is able to render scenes faster

than depth-first ray tracing. However, due to the new formulation of the rendering

equation, adaptive sampling cannot be used. Furthermore, the chosen acceleration

structure – uniform grid – is not able to adapt to different levels of geometry density

which can lead to cache trashes. Moreover, the amount of active rays in the system is

not limited in any way and it is in fact a feature of the algorithm to increase the amount

of active rays fast. Uncontrolled growth in the amount of active rays can lead to cache

trashing [Navrátil, 2010; Navrátil et al., 2007; Pharr et al., 1997].

Rectifying the problem with adapting to geometric density can be done easily by

replacing uniform grid with another acceleration structure. The acceleration structure

used in this study is discussed in Chapters 4 and 5. Cache problems can be solved with

22

an algorithm which can employ memory-to-cache bandwidth efficiently and take cache

size into consideration [Navrátil, 2010; Navrátil et al., 2007].

Instead of queuing rays at all voxels with geometry, the new algorithm queues rays in

the acceleration structure so that the size of the geometry contained in the subtree which

starts from the queue node is not larger than the size of L2 (Level 2) cache. Level 2

cache is a larger version of level 1 cache. It holds recently used data, and it is accessed

if the data the processor needs is not found in level 1 cache. In case there is a leaf with

geometry whose size is larger than L2 cache size, the leaf is treated by loading blocks of

rays and geometry to prevent cache trashing. The algorithm proceeds in generations.

First all eye rays are queued. When a queue is processed, rays traverse the remaining

subtree. Rays are traced until an intersection is found in a leaf or the ray exits the

bounds of the subtree. A ray that has exited a subtree traverses the acceleration structure

until it encounters another queue point – in which case it is queued and another ray from

the previous queue starts traversal – or it exits the scene. After eye rays, shadow rays are

traced in similar manner. Then, starting from the queue point that contains the

intersection point of the eye ray which produced them, reflection and refraction rays are

traced in identical manner. These rays, in turn, produce intersection points from which

new shadow and secondary rays are spawned. This process limits the amount of active

rays in the system. It is continued until there are no more rays to process (be it through

all rays leaving the scene, all rays reaching their source of emission, some

predetermined termination criteria, or a combination of causes). Unlike recursive ray

tracing which seeks to minimize ray traffic, this algorithm seeks to minimize geometry

traffic, because ray traffic is faster as long as all threads remain busy. In simulations the

described algorithm was able to reduce bandwidth consumption – depending on the

scene – by up to 7.8 times compared to packet ray tracing (see Section 3.2) [Navrátil,

2010; Navrátil et al., 2007].

3.2 Ray packets

Many rays traverse a given scene in nearly identical manner, they start from the eye and

intersect the same primitive at nearly the same point. Thus it would seem like a good

idea to reduce repeating the same traversal steps, memory accesses, etc. by somehow

taking advantage of this coherency between rays. Systems such as cone, beam and

pencil tracing were the first to utilize ray coherence, but real renaissance was brought

about by introduction of SIMD architectures and packets [Arvo and Kirk, 1989; Wald et

al., 2001]. SIMD makes it possible to perform the same operation on multiple inputs

simultaneously and the width of a SIMD unit tells how many operations it can perform

simultaneously. First SIMD units were 4-wide, but, for instance, Intel Larrabee was

supposed to have 16-wide SIMD. The idea of a packet – sometimes also known as

bundle – is simple; instead of intersecting rays one at a time with primitives, intersect

multiple rays with the same primitive. With 4-wide SIMD intersection calculations of

four rays with a primitive can be done at the same time resulting in a theoretical

speedup of 4x [Wald et al., 2001].

23

Packets were first introduced to kd-trees by Wald et al. [2001]. Implementation for

grids was presented by Wald et al. [2006] while Mahovsky and Wyvill [2006] and Wald

et al. [2007b] demonstrated the same for BVH. Culling methods (see Section 3.3) have

allowed the size of the packets to expand beyond SIMD size, even up to cache size.

Cadet and Lécussan [2007] suggested combined use of kd-trees and BHVs to take

advantage of the respective better performances of kd-trees on smaller packets and

BVHs on wider packets.

As the packets traverse an acceleration structure some of the rays become inactive (they

no longer intersect with the structure). A situation where all but one ray in the packet is

inactive is possible, which could in turn lead to slower than single ray traversal due to

the overhead introduced by packet traversal. Eye and shadow rays usually exhibit good

coherence, but even with packets which contain only eye rays coherence can decline

rapidly if the scene contains objects that are small enough. Furthermore, reflection and

refraction rays can become totally random in mere three bounces. Because of the

aforementioned reasons, packets were initially researched for eye and shadow rays

exclusively. While the increases in execution speed have been encouraging, neglecting

reflections and refractions misses the whole point of ray tracing. Without reflections and

refractions ray tracing is only a more limited and slower version of rasterization and

thus not worth using. It is therefore clear that to challenge rasterization reflections and

refractions also need to be implemented interactively [Boulos et al., 2007].

Månsson et al. [2007] tested various methods of sorting secondary rays to coherent

packets before tracing them. They concluded that all of the used schemes resulted in

comparable or worse execution speed than not sorting at all. Boulos et al. [2008] note

that determining which rays are coherent before actually tracing them is a difficult task.

Boulos et al. [2007] examined four reordering schemes to determine how well they

worked when used with secondary rays. The first method – named blind – where all

shadow and secondary rays were placed in a single packet was deemed untenable

without testing. The reason, as described in Section 2.3, is that a faster intersection

method for shadow rays exists when they are traced on their own. In addition, reflected

and refracted rays tend to head to wildly different directions and, thus, their coherency

is poor. Another method – named group – in which rays are placed in packets based on

some shared property – like intersected material – was similarly left unexplored. Group

was deemed unfit because depending on the way chosen to divide rays to packets, it

could lead to as many packets as there are rays. Of the remaining two methods runs is

very similar to group. Like group, rays are placed in packets if they share a property, but

in addition their eye rays need to be numerically adjacent. The last method to be

evaluated empirically is known as types. In this method rays are placed in packets based

on type. Of the two evaluated methods types was found to be faster, typically by 10 –

20%. The better outcome of types is attributed to fewer intersection tests as bounce

depth increases and significantly fewer box tests at all bounce depths.

24

Boulos et al. [2008] remove inactive rays from packets to maximize SIMD utilization.

Because this reordering of a packet is a costly operation, they perform it only when

packet utilization (active rays in a packet divided by total rays in a packet) drops below

50%. To improve tightness after reordering, ray origins are moved to their intersection

point with the current AABB and the ray parameter is clipped to the exit point of the

AABB. The scheme produces results that are comparable or slower than packet tracing

on low bounce depths, but become faster than packet tracing between 5
th

 and 10
th

bounce. An increase in SIMD width would have a positive effect on the speed of box

tests, but triangle tests would see only minor speedups because on average only 2 rays

reach a leaf node.

3.3 Culling methods

SIMD size packets increase execution speed considerably, but using even bigger

packets would amortize more operations while saving bandwidth. With culling methods

operations can be applied to an entire packet once, instead of performing them to each

individual ray [Reshetov, 2007].

While interval arithmetic was developed for analyzing tolerances, uncertainties and

rounding errors, it can also be used as a culling method. An interval is a set of points

between two endpoints. Using intervals, a box B in 2D is a cross product of the intervals

on x- and y-axes, and a ray is an interval from origin to ray direction. Intersection with a

box is calculated as

 ()

. (3.1)

The solution for y-axis is obtained similarly. There is an intersection with a box if

 . This is easily expanded to packets by simply using intersection ()

operation on all results. In interval arithmetic less than and greater than comparisons can,

in addition to true and false, also result in undecided. This can happen when intervals of

two variables overlap. Generally if a test evaluates to true or false, a single operation is

needed for all the rays. Undecided, on the other hand, usually means that rays need to be

processed individually [Boulos et al., 2006].

A set of four rays can be used to form a convex shaft which bounds all the other rays

inside a packet. These rays can be actual rays in a packet or purely virtual rays. A single

SIMD operation can be used to trace the rays. In leaves with triangles, each triangle is

tested against the four rays and if a single test fails for all four rays then there can be no

intersection with any of the rays in the packet. On the other hand, if no tests fail for all

four rays, then the possibility of an intersection exists. The indexes of these triangles

can be grouped into a “relevant triangle list” to be tested against later [Boulos et al.,

2006; Dmitriev et al., 2004]

25

Reshetov et al. [2005] have demonstrated that the previous approach is flawed in some

cases, and can lead to incorrect traversal choices. Another method would be to utilize

frustum culling from raster graphics. In this case a convex hull of rays would be used to

test for an intersection with axis-aligned boxes. When applied to ray tracing this

approach succumbs to ever increasing amounts of trivial rejects as their amount

increases with AABB size. To counteract the increase of failures, roles of the frustum

and AABBs can be reversed: AABB planes are used to separate it from a frustum.

While this does not eliminate failed trivial rejects, they become rarer because an AABB

cross section is usually much larger than a frustum cross section. An added advantage of

this process is that the rays in a packet do not have to have a shared origin, because

rectangular bounds of each axis-aligned plane are used instead of frustum plane normal.

While the algorithm does indicate intersections with AABBs where there are none, most

of the resulting unnecessary intersection tests can be handled by using two simple tests

at leaf nodes:

1. (minimum of y-entry values) > (maximum of x-exit values)

2. (minimum of x-entry values) > (maximum of y-exit values).

Even though not all redundant intersections are avoided, the remaining calculations do

not produce a large negative impact on performance [Reshetov et al., 2005].

Reshetov [2007] presents further improvements in frustum culling. When a packet

arrives at a leaf, a frustum – named transient frustum – is computed for the active rays.

Thus the frusta are specially made for each situation, which allows them to be very tight.

For frustum building, the biggest prevalent axis of rays is used, since using it increases

performance by 30% but does not affect the accuracy of computations. Rays in a packet

are intersected with two planes on the chosen axis of a leaf. Two axis-aligned rectangles,

which contain the intersections for each plane, are computed on the planes, and a

frustum is formed between them. The frustum contains intersections between rays and a

leaf AABB. If x is the prevalent axis, then the first rectangle is defined by values ,

 , , , and the second rectangle by values , , , , . It then

follows that the bottom plane normal is

 () ()

 ()() ()() . (3.2)

Determining whether or not a vertex is on the outside of the bottom

plane can be done by solving the following equation, because lies in the

bottom plane. The equation can be simplified further by removing the first multiplier

(), because only the sign of the calculation is needed. A negative result means

that v is on the outside. Values for the left, right and top plane can be computed

similarly. If the value is negative for one or more planes, then the vertex is on the

outside of the plane(s) as well as the frustum. If all three vertices of a triangle are on the

outside of a frustum then there is no intersection between the frustum and the triangle

[Reshetov, 2007]:

26

 () ()(()

 ()). (3.3)

If a triangle passes the first test, then it can be tested against a near plane to find out if it

is behind all ray origins and a far plane to determine if it is further away than the

previous intersection. It can also be evaluated for an intersection against corner rays to

identify if the frustum is separated from the triangle by any of the triangle edges. The

remaining triangles are tested for an intersection with rays in a packet using a ray

triangle intersection test. This approach makes it possible to reduce the amount of nodes

in a kd-tree by more than 10x and consequently increase the amount of triangles in leaf

nodes to hundreds, while still culling more than 90% of all potential ray triangle

intersection tests. The reduction in node count is significant, because building a

shallower tree should be faster and shallower trees should also increase SIMD

utilization. In addition, with hundreds of triangles at leaves it is possible to form meshes

at leaves and thus share computations between triangles. For secondary rays, frustum

size increases due to diverging rays, which leads to decrease in efficiency as the larger

frustum is more likely to intersect with AABBs [Reshetov, 2007].

Overbeck et al. [2008] extend frustum culling to secondary rays, by using two planes to

bind all rays in a packet. A far plane is chosen from the scene AABB in the positive

direction of the dominant ray direction axis. A near plane is chosen from the AABB

bounding ray origins, in the negative direction of the same axis. Barycentric coordinates

are used to compute intervals for both planes. Corner ray directions are computed as the

difference between extremal intersection points with the far plane and extremal

intersection points with the near plane. The approach increases performance by 1.2 to

1.3x.

3.4 Ray tracing with stream filtering

RayStream is actually a method and an architectural design, but here the design will be

ignored. In RayStream ray tracing is considered as a filtering problem. A stream of

some size is passed on to a filter. The filter operates by utilizing SIMD to process N

amount of rays in parallel. Each ray in a stream is independent, so the order in which the

rays are processed has no bearing on the outcome. Each ray is tested against a condition

set by the filter. The rays that pass the condition are active and are therefore appended

to an output stream which contains only active rays. Rays that do not pass the condition

are inactive and they are thus removed from further processing. In case of traversal the

filter would test whether or not rays in a stream intersect the current node [Gribble and

Ramani, 2008; Ramani et al., 2009; Wald et al., 2007a].

New output streams are produced until rays intersect geometry in a leaf or the stream

runs out of rays that pass the filter condition. In the same fashion the intersection test

outputs a stream of rays which intersect with the geometry. For shading, input streams

27

are passed through a filter stack to generate output streams of rays requiring similar

actions – for example not intersecting geometry or intersecting a light source. Stacks are

used because they produce higher SIMD efficiency when used with long streams and

shading has long streams. On the other hand, intersection streams are short and

consequently would not benefit from using stacks [Gribble and Ramani, 2008; Ramani

et al., 2009; Wald et al., 2007a].

While the results obtained from this system are only simulations and not based on actual

tests, they still give a rough idea of what could eventually be expected. A scene

consisting of 2124001 primitives, ideal diffuse reflection and being lighted with 2 light

sources was rendered at 15.65 FPS when using 16 wide SIMD and 64x64 ray streams.

Furthermore, the authors state that the approach could possibly be combined with

culling strategies and memory coherent ray tracing [Ramani et al., 2009].

28

4. Kd-tree building

A kd-tree – also known as k-d tree, k-dimensional binary search tree, multidimensional

binary search tree and bin tree – is a form of BSP-tree (Binary Space Partitioning tree, a

method of space subdivision) with 0 to k – 1 dimensions. Each node has two pointers, a

discriminator and a key. The discriminator is the splitting dimension of the node. In 3D

scenes k = 3 – one dimension for each of the x, y and z axes. Subtrees are built such that

the left subtree has values which are lower than the roots along the splitting dimension

and the right subtree contains values which are higher [Bentley, 1975; Fussell and

Subramanian, 1988]. Keys hold the splitting plane of a node. Splitting planes are axis-

aligned because an intersection calculation with an arbitrary plane is more complex and,

thus, also slower to execute [Fussell and Subramanian, 1988; Havran, 2001].

Building acceleration structures manually is not only prohibitively slow, but the

resulting trees are grossly suboptimal for use in ray tracing [Goldsmith and Salmon,

1987]. There are a number of ways to guide construction of a kd-tree, such as spatial

median or object median using round robin or maximum extent, empty space

maximizing and cost models or heuristics. Where the spatial median method divides a

node in two halves of equal size, object median divides a node so that both resulting

subnodes have an equal amount of triangles [Havran, 2001; Wald, 2004]. Round robin

selects the next splitting dimension

 Dim = l modulo k, (4.1)

where l is any level in the tree [Fussell and Subramanian, 1988]. In maximum extent the

dimension with the largest extent is chosen as the splitting dimension. While maximum

extent has generally been thought of as an improvement over round robin, Wald [2004]

experimentally demonstrated the preconception as wrong. Early research opined that a

balanced tree, produced by the object median method, was essential for efficient

traversal [Fussell and Subramanian, 1988]. This view has been shown to be false both

empirically as well as theoretically. Theoretically the reason is twofold: firstly,

probability of accessing each leaf is not equal and, secondly, the search does not

necessarily end when the first leaf is reached [Havran, 2001; Wald, 2004].

Of all the currently known methods the most efficient to traverse trees are produced by

using a cost model known as surface area heuristic (SAH) [Goldsmith and Salmon,

1987; Wald, 2004]. Thus, this discussion will be limited to the different ways of

building kd-trees with SAH and how the building process can be parallelized effectively.

4.1 Conventional method

SAH is an automatic way to determine how to construct a tree. It is based on the

knowledge that while three assumptions hold – all rays intersect the scene, the rays are

uniformly distributed, and none of the rays intersect an object – the probability of an

29

arbitrary ray intersecting a convex object is proportional to the surface area of said

object. Additionally, if convex object X contains another convex object Y (X ∩ Y = Y)

then the probability of an arbitrary ray intersecting Y is the surface area of Y divided by

the surface area of X. For trees this means that the probability of an arbitrary ray, which

fulfills these assumptions, intersecting a node can be calculated by dividing the surface

area of a node with the surface area of the root. Intersection estimates for an arbitrary

ray can then be calculated as follows

∑
 ()

 ()

 (4.2)

∑
 ()

 ()

 , and (4.3)

∑ () ⦁ () ()

 , (4.4)

where = number of interior nodes, = number of leaves, N(l) = number of objects

stored in leaf l, SA(i) = surface area of interior node i and SA(l) = surface area of leaf

node l [Goldsmith and Salmon, 1987; MacDonald and Booth, 1990; Havran, 2001].

These equations can be combined to a single equation, which can be used to determine

the total cost of an arbitrary ray if the costs of the operations involved are known:

 ⦁ ∑ () ⦁ ∑ () ⦁ ∑ () ⦁ ()

 ()
, (4.5)

where = cost of traversing an interior node, = cost of traversing a leaf and =

cost of testing an object for intersection. Because rays are assumed to not intersect any

objects, the derived estimate is an upper bound [MacDonald and Booth, 1990; Harvan,

2001]. Due to the prohibitively expensive cost of determining a globally optimal tree for

anything but the most minimal of scenes, a local greedy approximation – which assumes

that both children produced by the subdivision become leaves – is usually used. The

local version is described as

 (

 ()

 ()
), (4.6)

where = cost of a traversal step, = surface area of the left node, = surface

area of the right node, = triangles in the left node and = triangles in the right node.

An inefficient tree is built if two special cases are not accounted for. Firstly, a triangle

may overlap a voxel in only a point or a line and it should thus get culled. Secondly,

triangles lying in a plane should not end up in both new voxels. These cases can be

accounted for by dividing triangles into three groups: those which are to the left of the

plane () , those which are to the right of the plane (), and those which are on the

30

plane (). Equation 4.6 is then separately evaluated with + and + and the

lowest cost is selected [Wald and Havran, 2006]. Mailboxing (see third paragraph down

from this one) can be accounted for by subtracting the number of objects that overlap

the splitting plane times the probability that a ray traverses both child nodes from

Equation 4.6. This simple optimization reduces ray-primitive intersections by about

30% on average, improves tracing time by few percent while moderately increasing the

number of traversal steps [Hunt, 2008a].

The original equations, while accepting the practical importance of the matter, assume

that no object is placed so as to be split by a plane and thus ending up in both of the new

nodes. While this assumption holds it can be shown that the split position with the

lowest cost estimate can be found between object and spatial medians [MacDonald and

Booth, 1990; Harvan, 2001]. Havran [2001] demonstrated that if the previous

assumption is discarded for a more realistic one where some objects are assumed to

straddle the splitting plane, then the lowest cost estimate can be found either at the

boundaries of the real objects or at the boundaries of the objects‟ bounding box. These

are known as events or split candidates. When using this cost estimate, searching for the

minimum value between spatial and object medians produces a 3% decrease in traversal

time.

The assumption that rays do not intersect any object is clearly impractical and means

that the algorithm is based on considering the worst case scenario. Thus equations

which describe the situation more realistically might lead to better traversal

performance. A more accurate cost model was developed by Havran [2001]. The tests

conducted with three different configurations of the new model showed that at best it

could achieve a reduction of 1% in traversal time and at worst it considerably slowed

down traversal. The fastest configuration of the new method involved sampling in

addition to more complex calculations during construction leading to an increase in

building time.

An object does not necessarily reside inside a single voxel. When an object has parts of

it inside two or more voxels, it will also have multiple, unnecessary, intersection tests

with the same ray. This can be prevented by using a mailbox. Each object has a mailbox

which stores the unique ID of a ray and the result of the intersection test with the ray.

Before executing an intersection test with a ray, the ID of the ray and the ID stored in

the mailbox are compared. If they match then the stored result can be used as is.

Otherwise, an intersection calculation needs to be performed [Arvo and Kirk, 1989;

Wald, 2004]. This simple approach is not valid for multiple threads, as changing a

single value in the triangle data would invalidate an entire cache line in the other

processors. Instead of storing the mailbox with the triangle data, storing it (it holds both

the ray and triangle ID) as a hash table with the thread has been suggested. While this

does solve the problem, the solution is not as fast as standard mailboxing [Shevtsov et

al., 2007b; Wald et al., 2001; Wald, 2004]. Inverse mailboxing seeks to rectify the

speed problem by storing the IDs of the last eight triangles visited by a ray packet in a

ring buffer. The data is thread-local and allows traversal by multiple threads

31

simultaneously. The results show an increase in execution speed of 9.7 to 23.4% (tested

on three models) [Shevtsov et al., 2007b]

Most scenes will have some measure of empty space in them. BVHs do not process this

space by virtue of only encompassing objects. On the other hand, space subdivision

measures such as kd-tree process the entire scene. Empty space, however, does not need

to be traversed. Guiding the construction of a kd-tree so that empty space is collected to

leaf nodes on the upper levels of a kd-tree should make it possible to skip large parts of

the scene during traversal [Havran, 2001]. Havran [2001] experimented with three ways

to cut of empty space and concluded that when automatic termination as described in

the paper is used, the tested methods are not likely to provide increased performance.

An easy way to cut of empty space is to encourage SAH to choose splits where the right

or left subnode is empty, by reducing the cost of such splits by some constant amount.

The following rule is a suggestion for setting the constant [Hurley et al., 2002; Wald

and Havran, 2006]:

 λ(p) = {

 (4.7)

While Hurley et al. [2002] report a 5% improvement in traversal using this method,

Bikker [2007] observes only a minimal improvement. Algorithm 4.1.1 describes the

SAH evaluation process with empty space cutting.

SAH evaluation

Algorithm Cost(probabilityL, probabilityR, trianglesLeft, trianglesRight)

Input: probability of left subvoxel, probability of right subvoxel, number of triangles

left subvoxel, number of triangles in right subvoxe

Output: cost of plane position

 return λ(p)(+ (probabilityL ⦁ trianglesLeft + probabilityR ⦁ trianglesRight))

Algorithm SAH(plane,V,trianglesLeft,trianglesRight,trianglesPlane)

Input: plane position, voxel V, triangles to the left, right and on the plane position

Output: best plane position

 (VL,VR) ← splitBox(V,plane)

 probabilityL ← SA(VL)/SA(V)

 probabilityR ← SA(VR)/SA(V)

 ← Cost(probabilityL, probabilityR, trianglesLeft + trianglesPlane, trianglesRight)

 ← Cost(probabilityL, probabilityR, trianglesLeft, trianglesPlane + trianglesRight)

 if < then

 return (, left)

 else

 return (, right)

 end if

Algorithm 4.1.1 SAH [Wald and Havran, 2006]

32

A situation where the node and object bound boxes intersect without the actual object

intersecting the node bound box is possible. In such a situation there will be

unnecessary ray-object intersection tests. In addition, the trees that are produced are of

inferior quality for traversal, as the tree building process will be skewed due to an

inaccurate cost estimate. Three ways – post processing, intersection tests also in interior

nodes and split clipping – have been suggested to correct this defect. Of the three, split

clipping is considered to be the most viable one. In split clipping, when an object

straddles a splitting plane the extent of the objects bounding box on both sides of the

splitting plane is minimized. While these perfect splits increase traversal performance

by 9% on average, they also correspondingly increase tree building time by 140%

[Havran, 2001; Havran and Bittner, 2002; Wald and Havran, 2006]. A detailed

description and code of a significantly faster split clipping method is given by Soupikov

et al. [2008]. Their implementation also retains the increased traversal performance of

the original method. Figure 4.1 depicts the idea behind split clipping.

 Figure 4.1 Split clipping

Determining when to stop subdivision has traditionally been done by defining a

maximum depth or a maximum number of objects for a node. A node becomes a leaf

when either of these user defined constants is reached. Limiting the tree depth to a

predefined constant clearly cannot be optimal for every possible scene, but it does have

the advantage of bounding memory use to a known value [Havran, 2001]. Havran

[2001] develops an automatic termination criteria based on previous research, which has

shown that every scene has a maximum tree depth after which further subdivision

provides no additional benefit. This point depends on the scene. The equation of the

criteria depends on two constants which are determined experimentally and it does

improve traversal performance. However, for the tests the constants were determined by

experimenting on the test scenes. So, it is unclear how well this approach would work

33

on different scenes. Hurley et al. [2002] and Wald [2004], on the other hand, propose

simply comparing the cost of traversing a split object and the cost of not splitting a

voxel and subdividing if the cost of traversing is lower than the cost of not splitting.

However, it is possible to get stuck in local minima if the problem is not accounted for

[Wald and Havran, 2006]. Reshetov et al. [2005] note that even with automatic

termination, creation of small cells most likely to be missed by a single ray, should be

prevented.

Plane selection is a slow process as the amount of possible split positions is (in

principle) infinite. Even when using only the planes which define the bounding box of a

triangle, each voxel with N triangles has 6N split candidates which need to be

considered. The most straightforward way to find the best split position is to iterate over

all triangles in a voxel and compute the cost estimate for each split candidate [Wald and

Havran, 2006]. Algorithm 4.1.2 describes this O() approach.

34

O() plane selection

Algorithm PerfectSplits(t, V)

Input: triangle t, voxel V

Output: clipped object

 B ← Clip t to V {consider “perfect” splits}

 return k ← 1..3((k,Bmin,k) OR (k,Bmax,k))

Algorithm Classify(T, VL,VR,plane)

Input: list of triangles T, voxels to the left and right of the splitting plane, the

splitting plane

Output: counts of triangles to the left, right and on the plane

 ← ← ← ;

 foreach triangle t in T

 if t lies in plane AND Area(plane OR V) > 0 then

 ← OR t

 else

 if Area(t AND (VL NOT plane)) > 0 then

 ← OR t

 end if

 if Area(t AND (VR NOT plane)) > 0 then

 ← OR t

 end if

 end if

 end foreach

 return , ,

Algorithm NaıveSAH::Partition(T, V)

Input: list of triangles T, voxel V

Output: best splitting plane, triangles to left and right of the plane, one OR‟d with

triangles on the plane

 foreach triangle t in T

 bestCost ← ∞

 bestPlaneside ← {initialize search for best node}

 foreach plane in PerfectSplits(t, V)

 (VL, VR) ← split V with plane

 (TL, TR, TP) ← Classify(T, VL, VR, plane)

 (cost, planeside) ← SAH(V, plane, |TL|, |TR|, |TP |)

 if cost < bestCost then

 (bestCost, bestPlaneside) ← (cost, planeside)

 end if

 end foreach

 end foreach

 (TL, TR, TP) ← Classify(T, VL, VR, plane)

 if (bestPlaneside ← LEFT) then

 return (bestPlane, TL OR TP, TR)

 else

 return (bestPlane, TL, TR OR TP)

 end if

Algorithm 4.1.2 O() plane selection [Wald and Havran, 2006]

35

Algorithm 4.1.2 is too slow to be used in any meaningful scene. The time complexity of

the process can be reduced to O(N log
2
 N) by changing how NL, NR and NP are

determined. For each dimension all triangles are iterated over and it is determined

whether a triangle is axis-aligned. Axis-aligned triangles produce a “planar event” (p
|
),

and other triangles produce a “start event” (p
+
) and an “end event” (p

-
). Each event

keeps track of its type, plane position and the triangle that generated it. The list of

events (E) is then sorted to ascending order by plane position. In case of equal plane

positions the order of events is end, plane, start. All that is left is to sweep over the

possible plane positions and determine the best split position. At the start of the sweep

NL, NR and NP have values

()

()

()

The counts are updated with the following rules:

()

()

()

()

()

Algorithm 4.1.3 describes this plane selection process.

36

O(N N) plane selection

Algorithm FindPlane(T, V)

Input: list of triangles T, list of voxels V

Output: best plane position

 bestCost ← ∞, bestPlane ←

 for k ← 1 to 3 do

 eventlist E ← empty

 foreach triangle t in T

 B = AABB(t)

 if B is planar then

 E.add(event(t, , |

 else

 E.add(event(t, , +)

 E.add(event(t, , −)

 end if

 end foreach

 sort(E,<E) {sort all planes according to <E}

 trianglesLeft ← 0, trianglesPlane ← 0, trianglesRight ← |T|

 for i ← 0 to i < |E| do

 plane ←

 trianglesStarting ← trianglesEnding ← trianglesLying ← 0

 while i < |E| && Ei,planePos = planeplanePos && Ei,type = ending

 trianglesEnding++

 i++

 end while

 while i < |E| && Ei,planePos = planeplanePos && Ei,type = lying

 trianglesLying++

 i++

 end while

 while i < |E| && Ei,planePos = planeplanePos && Ei,type = starting

 trianglesStarting++

 i++

 end while

 trianglesPlane ← trianglesLying

 trianglesRight ← trianglesRight - trianglesLying - trianglesEnding

 (cost,planeside) ← SAH(V, plane,NL,NR,NP)

 if cost < bestPlanecost then

 (bestCost,bestPlane,bestPlaneside) = (cost, plane, planeside)

 trianglesLeft ← trianglesLeft + trianglesLying + trianglesRight

 trianglesLying ← 0

 end if

 end for

 end for

 return (bestPlane, bestPlaneside)

Algorithm 4.1.3 O(N N) plane selection [Wald and Havran, 2006]

37

Algorithm 4.1.3 is also too slow for use in real-time applications. The lower limit O(N

log N) of sorting based algorithms can be reached if an event list containing events for

each dimension is sorted only once and the plane finding algorithm is applied to the

sorted list. The events are sorted based on plane position as before and the same sort

order is maintained, but events of same dimension are stored together [Wald and Havran,

2006]. Algorithm 4.1.4 describes this process.

O(N log N) best plane

pre: E is <E-sorted

Algorithm FindPlane(N, V , E)

Input: list of triangles T, list of voxels V, presorted list of events E

Output: best plane position

 bestCost ← ∞

 bestPlane ← none

 foreach dimensions k

 trianglesLeftk ← 0, trianglesPlanek ← 0, trianglesRightk ← |T|

 end foreach

 for i ← 0 to i < |E| do

 plane ← (Ei,plane, Ei,k)

 trianglesStarting ← trianglesEnding ← trianglesLying ← 0

 while i < |E| && Ei,k = planek && Ei, planepPos = planeplanePos && Ei,type = ending

 trianglesEnding++

 i++

 end while

 while i < |E| && Ei,k = planek && Ei, planepPos = planeplanePos && Ei,type = lying

 trianglesLying++

 i++

 end while

 while i < |E| && Ei,k = planek && Ei, planepPos = planeplanePos && Ei,type = starting

 trianglesStarting++

 i++

 end while

 trianglesPlanek ← trianglesLying

 trianglesRightk ← trianglesRightk - trianglesLying - trianglesEnding

 (cost,planeside) ← SAH(V, plane,NL,NR,NP)

 if cost < bestCost then

 (bestCost,bestPlane,bestPlaneside) = (cost, plane, planeside)

 trianglesLeftk ← trianglesLeftk + trianglesLying + trianglesRight

 trianglesLyingk ← 0

 end if

 end for

return (bestPlane, bestPlaneside)

Algorithm 4.1.4 O(N log N) best plane selection [Wald and Havran, 2006]

38

To maintain O(N log N) time complexity classification and building of the event lists of

subnodes has to be done without sorting. To do this all triangles are first marked as

belonging to group „both‟. The event list is then iterated over and events which match

the classification of or are marked as belonging to their respective groups. The

event list is then split into two sorted sublists – the sublists are sorted because E is

sorted – one containing left only events () and the other containing right only events

(). Triangles marked both are split clipped and they form two new unsorted lists –

one for left side and one for right. These lists can be sorted in O(N) time due to the

assumption that O(√) triangles overlap the splitting plane. The sorted lists can then be

merged in O(N) [Wald and Havran, 2006]. Algorithm 4.1.5 describes this process.

Triangle classification

Algorithm ClassifyLeftRightBoth(T,E, bPlane)

Input: list of triangles T, presorted list of events E, splitting plane bPlane

Output: -

 foreach triangle t in T

 tside ← both;

 end foreach

 foreach event e in E

 if etype = ending && ek = bPlanek && eplanePos ≤ bPlaneplanePos then

 t[et]side ← LeftOnly

 end if

 else if etype = starting && ek = bPlanek && eplanePos ≥ bPlaneplanePos then

 t[et]side ← RightOnly

 end if

 else if etype = lying && ek = bPlanek then

 if(eplanePos < bPlaneplanePos || (eplanePos = bPlaneplanePos && bPlaneside = left)) then

 t[et]side ← LeftOnly

 end if

 if(eplanePos > bPlaneplanePos || (eplanePos = bPlaneplanePos && bPlaneside = right)) then

 t[et]side ← RightOnly

 end if

 end if

 end foreach

Algorithm 4.1.5 Triangle classification [Wald and Havran, 2006]

Even though the combined use of Algorithms 4.4 and 4.5 reaches the asymptotic lower

bound of sorting based approaches, the building times are not fast enough for use in

real-time applications. Just doing 30 rebuilds per second requires that each rebuilding

takes 33.33 ms and to reach 60 rebuilds per second each rebuilding can take only 16.67

ms. Building a kd-tree for a model with 804 triangles with Algorithms 4.4 and 4.5 took

30 ms and for a more reasonable model of ~69k triangles the building time was 3.2 s

[Wald and Havran, 2006].

39

4.2 Approximations and parallel building

The first attempt to build an acceleration structure in parallel was done by Benthin

[2006]. He parallelized the conventional construction algorithm by dividing split

candidate lists into sublists with the amount of threads. The threads then proceed to sort

the sublists and the sorted sublists are merged into one. Kd-tree building phase was

parallelized by splitting the first levels with one thread and then building the remaining

sub kd-trees with individual threads. This scheme reached 2x speedup on a dual core

system.

To further increase building speed, algorithms which approximate SAH have been

developed. Even though most of the following scanning based algorithms have a time

complexity of O(N log N) the constant factors of scanning based approaches are lower

than those of sorting, which leads to better performance. Scanning also defers work to

leaf nodes so greater amount of unneeded work is avoided if lazy building is used.

Popov at al. [2006] developed a streaming construction algorithm which uses triangle

AABBs instead of the actual triangles and utilizes both BFS and DFS building. The

algorithm starts with BFS building and proceeds to some predefined depth after which a

switch to the conventional DFS algorithm (as described by Wald and Havran [2006]) is

performed. The switch depth is chosen such that the DFS algorithm can retain locality

and, thus, overcome performance degradation caused by the random memory access

pattern of triangle classification stage. In the BFS section of the algorithm memory

access is sequential because triangle AABBs are stored in a continuous memory array.

Nodes of the current level are associated with a partition from the array. The array is

swept and, for each sample, the amount of AABBs which end between the sample and

the one preceding it, as well as the ones which start between the sample and the one

following it, are recorded. There are 1024 uniformly distributed samples for all three

axes. Uniform distribution is used because sample indexes of events can be calculated

from event positions. AABB count updates are performed as follows:

 (4.8)

where
 = number of AABBs to the left of sample i,

 = number of AABBs to the

right of sample i, = number of AABBs that start between samples i and i + 1 and

= number of AABBs that end between samples i and i + 1. Once the best split has been

determined, triangles which are to the left (resp. right) of the splitting plane are copied

to a partition of the left (resp. right) node in a second array, and the ones straddling the

plane are clipped and copied to both. The cost function is sampled during the copy.

Further refinement of the cost estimate would be possible by using adaptive resampling.

The overall upper bound of the cost function would be set to be the minimum upper

bound found at the sample points. Intervals with a lower bound higher than the overall

upper bound would be eliminated from further processing and the remaining intervals

would be resampled. The process can be repeated until only one split location remains.

Because their method, as compared to exact SAH evaluation, only slowed traversal at

40

most by 2.2%, Popov et al. [2006] did not implement adaptive resampling. The

algorithm does not manage much better than the conventional algorithm on small

presorted scenes with even sized triangles (models produced by 3D scanning). With

increased size and no presorting the algorithm reaches up to 48% speedup in building

time. The approach was parallelized by using single threads to build trees in the DFS

part of the algorithm. The achieved speedup was at best 2.43x on 4 cores. Algorithm

4.2.1 describes streaming build.

O(N log N) streaming SAH build

Algorithm UPDATESAMPLESTATISTICS(aabb, statistics)

Input: axis-aligned bounding boxes, counter

Output: -

 lxyz ← indexes of samples just below min point of aabb

 uxyz ← indexes of samples just above max point of aabb

 foreach dimension do

 Increase statistics.ob jStart[l[dim]]

 Increase statistics.ob jEnd[u[dim]]

 end foreach

Algorithm GETSPLITLOCATION(stat)

Input: number of starting and ending aabbs

Output: best split location

 stat.oLe f t[0] ← 0

 stat.oRight[0] ← #objects

 for i ← 0 to len(stat) do

 stat.oLe f t[i] ← stat.oLe f t[i − 1] + stat.ob jStart[i]

 stat.oRight[i] ← stat.oRight[i − 1] − stat.ob jEnd[i]

 end for

 Evaluate the cost function at stat

 return The best found split location at stat

Algorithm construct(root_node, boxes)

Input: root node, bounding boxes of all triangles

Output:-

aabbIn ← boxes

stat ← 0

UPDATESAMPLESTATISTICS(aabbIn, stat)

levelNodesIn ← {root_node,GETSPLITLOCATION(stat)}

while levelNodesIn != null do

 nextLevelAABB ← null

 nextLevelNodes ← null

 foreach {node, split} in levelNodesIn do

 if #objects in node < threshold then

 Run conventional build routine for subtree

41

 end if

 curAABBIn ← node‟s partition of aabbIn

 lenr, lenl ← #objects in the subtrees of node

 Allocate lenl + lenr space at end of nextLevelAABB

 statl ← 0

 statr ← 0

 foreach aabb in curAABBIn do

 if left then

 Add aabb to left child‟s partition in nextLevelAABB

 if not completely to the right of the split plane then

 clip aabb if necessary

 end if

 UPDATESAMPLESTATISTICS(aabb, statl)

 else

 Add aabb to right child‟s partition in nextLevelAABB

 if not completely to the left of the split plane then

 clip aabb if necessary

 end if

 UPDATESAMPLESTATISTICS(aabb, statr)

 end if

 end for

 Create nodes Nl ,Nr for the two subtrees

 nextLevelNodes ←+ {Nl ,GETSPLITLOCATION(statl)}

 nextLevelNodes ←+ {Nr,GETSPLITLOCATION(statr)}

 end for

 levelNodesIn ← nextLevelNodes

 aabbIn ← nextLevelAABB

end while

Algorithm 4.2.1 O(N log N) streaming SAH build [Popov et al., 2006]

Another approach, by Hunt et al. [2006], samples , , and at q uniformly

distributed locations per axis to produce approximations of the cost function. As the cost

function can have discontinuities, a second scan over the primitives is done. Additional

q samples per axis are taken during the second scan from segments (segments are the

range between sample points in the initial scan) with a large change in . Hunt

et al. [2006] suggest that q = 8 is an adequate number of samples. This means that that a

total of 2q samples are taken per axis. For each axis can have n different

values, for each such value a bin is created to mark a sample location. The amount of

adaptive samples dedicated for a segment is determined by the amount of changes

within a segment. When crosses a bin boundary (the value changes) within a

segment the amount of samples for the segment is increased by one. The resulting

samples per segment are placed at the sample locations so that they are evenly spaced

within the segment. The resulting evaluations are then used to generate a piecewise

quadratic approximation of the cost function and the split plane is positioned at the

minimum of the approximation. This minimum does not need to reside at a previously

42

sampled location. Memory accesses of the algorithm as well as the number of

performed scans can be reduced by doing the cost evaluation in SIMD fashion and by

maintaining additional containers for and values associated with additional

sample points. Scan combining is beneficial until all temporary variables fit in registers.

The algorithm switches to exact SAH evaluation when a node contains 36 or fewer

AABBs. The Bunny model (see Appendix A) is built in 110 to 250 ms on a single 2.4

GHz core depending on whether the longest axis, all axes or a combination of the two is

used. The increase in tracing time ranges from 0.33% to 7.90% depending on scene size

and the combination of axes used during building. Hunt et al. [2006] assert – but have

yet to demonstrate – that the algorithm can be run in parallel by dividing AABBs to

threads which then evaluate the splits. A gather operation would combine the results.

Further improvement in building times can be achieved by combining a scanning based

approach with a lazy building from hierarchy. Unlike the conventional building

algorithm which must process all N primitives in a scene during the sort of the first split,

scanning based algorithms can consider only a part of the scene. Thus, with scanning a

scene can be built lazily. A lazy system builds the acceleration structure only for the

visible primitives of the scene. Scene acceleration structures are generally completely

rebuilt for every frame. This approach is based on the view that a scene can undergo a

total transformation from frame to frame. However, using for example an acceleration

structure of a previous frame as a kind of presort of scene geometry would allow a

linear time building of the new acceleration structure. These two approaches produce an

asymptotic time complexity of O(v + log N) where v is the number of visible primitives.

Impact on trace time is small (1302 ms for the new algorithm against 1283 ms for the

conventional algorithm on a scene with N = 541023 and v = 9392 on a single 2.667 GHz

core) while building time is greatly improved (116ms for the new algorithm versus

12270ms for the conventional, N and v as before) [Hunt et al., 2006; Hunt et al., 2007].

Another approximation approach was presented by Shevtsov et al. [2007a]. They used

min-max binning (also known as pigeonhole sorting and bucket sorting) on AABBs.

AABBs are stored as structures of arrays of bounds. For each level of the tree, 32 bins

function as counters. The bins could also store primitive references, but counters are

more efficient. Two sets of bins are used: a bin in the first set is updated where an

AABB begins and, correspondingly, one bin in the second set is updated where an

AABB ends. At the higher levels of the tree only every l-th (l = log10(M), M = number

of primitives in the current node) primitive is considered. SAH is estimated at bin

boundaries with min-bins representing primitives to the left of the split and max-bins

those to the right of the split. The position of the splitting plane is adjusted if it is

warranted by empty space consideration and then the primitives are divided to subnodes.

Switch to using the conventional algorithm is done when the amount of primitives in the

current node is less than or equal to the number of bins used. The tree is stored as

chunks which are linked into lists. Each chunk has a start pointer, chunk size and an end

pointer.

43

The building process is parallelized by dividing the scene into disjoint regions in

parallel in a phase called initial clustering. Initial clustering uses 512 * T bins, where T

is the number of threads. Higher amount of bins is used because no rebinning is done

during initial clustering. Arrays of primitives for each region are then created in parallel.

Construction of the local kd-tree is split into smaller tasks and threads insert and fetch

jobs from a shared task pool. While this method builds the Bunny model in 104 ms on a

single 3 GHz core and achieves a 3.9x speedup on 4 cores, reaching a building speedup

of 120-300x over a highly optimized kd-tree, the tracing speed is only 70% of that of

exact SAH evaluation. This is because on the upper levels of a tree the algorithm uses

object median split. Object median is used until building of the local kd-trees starts,

because it produces subtrees of equal size effectively load balancing the parallel phase

and because accurate SAH is more important at the deeper levels of a tree [Shevtsov et

al., 2007a].

Although methods which build top levels of a tree with a single core until there are

enough subtrees to utilize all cores have achieved some limited parallelization speedups,

the lack of demonstrated near linear scalability with higher core counts while retaining

trace speed is not their only problem. Another issue is that as the amount of cores keeps

increasing, the level at which all cores can be utilized gets further and further down in

the tree. With sufficient increase in the amount of cores, the building process will be

mostly done before all cores are utilized. Therefore an algorithm which is capable of

using more cores on the top levels of a tree is needed [Choi et al., 2010].

In the conventional algorithm (see Algorithms 4.1.4 and 4.1.5) node level parallelism

can be complemented with geometry level parallelism. FindBestPlane is executed in

three phases. First, the event list is divided into continuous chunks. For each chunk, the

amount of start and end edges is counted in parallel. Secondly, a single thread

determines the correct NL and NR values at the beginning of each chunk by summing the

totals of previous chunks with the current chunk. Lastly, SAH value for each chunk is

determined as in the first phase, after which the overall minimum SAH is easily

deduced. ClassifyTriangles stage is not parallelized, because due to false-sharing the

resulting performance improvement proved insignificant. FilterGeom stage is handled

similarly to FindBestPlane stage. Geometry is separated into chunks and the number of

triangles lying to left and to right of the splitting plane in each chunk is determined in

parallel. All chunks are then updated by a single thread so that it is known how many

triangles exists to the left and to the right of the splitting plane before this chunk. As the

starting position of each chunk is now known, arrays for triangles to the left and to the

right of the splitting plane can be updated in parallel. Triangles which straddle the

splitting plane are copied to both arrays. This approach – called nested algorithm – was

tested on a 32 core 2 GHz system. It built the Bunny in 68 ms, achieving over 5x

speedup on 20 cores. At best the algorithm was able to reach 8x speedup on 20 cores

when building the Angel model (see Appendix A). The results, however, showed that

the algorithm had already reached its peak performance and that it exhibited decreased

performance with increased core count past 20 cores. When run on all 32 cores, all test

scenes showed decreased performance past 20 cores. Additionally, because the

44

algorithm is sequential, like the conventional algorithm it is based on, its maximum

speedup is bounded by Amdahl‟s Law [Amdahl, 1967; Choi et al., 2010]. Also like in

the conventional algorithm, there is a lot of data movement when triangle and event lists

are shifted from a parent to its children [Choi et al., 2010].

To counteract the negative aspects of their nested algorithm, Choi et al. [2010] also

developed another algorithm called in-place. Data movement problem from nested

algorithm is solved by associating nodes with triangles instead of triangles with nodes.

This means that triangles track which nodes they belong to and events have a pointer to

the triangle that generated them. Triangles are stored as a structure-of-arrays, where

elements have pointers to their six events and a list of the current level‟s nodes to which

it belongs. The algorithm proceeds in four phases: FindBestPlane, NewGen,

ClassifyTriangles and Fill. While NewGen generates the next level of a tree and Fill

translates the tree to the format produced by the sequential algorithm, most of the work

is done by FindBestPlane and ClassifyTriangles. As in-place is a BFS algorithm, it

processes entire levels at a time, where nodes at the current level are known as “live”.

FindBestPlane considers all “live” nodes in parallel and determines a split for those that

do not become a leaf. ClassifyTriangles updates triangle node lists which can be done in

parallel because all the required information is local. Once the current level has enough

nodes, a switch to the parallel DFS building is made (see, e.g., Benthin [2006]). While

this approach achieves at most 7x speedup (on the Fairy model – see Appendix A) on

the same hardware as nested, building the Bunny in 50 ms, it achieves its peak later, at

24 cores. It only encounters a slight drop in performance with increased cores, unlike

nested which saw a drop from 8x to 7x speedup when moving from 20 cores to 32. Choi

et al. [2010] state that in-place does not actually saturate at 24 cores but is instead

hampered by limited system resources. To confirm this they ran additional tests which

according to them verified the hypothesis. Unfortunately the test results are not included

in the paper [Choi et al., 2010]. Algorithm 4.2.2 presents in-place.

45

In-place algorithm

Input: list of triangles in the scene

Output: pointer to the root of the constructed kd-tree

live ← {root ← new kdTreeNode() };

foreach triangle t in T do

 t.nodes ← {root};

end foreach

while nodes at current level < cores do

 foreach e in E[x] && e in E[y] && e in E[z] do

 foreach node in e.t.nodes do

 SAH ← CalculateSAH(e, node.extent);

 if SAH is better than node.bestSAH then

 node.bestEdge ← e ;

 node.bestSAH ← SAH ;

 end if

 end foreach

 end foreach

 nextLive ← { };

 foreach node in live do

 if node.bestEdge found then

 nextLive ←+ (node.left ← new kdTreeNode()) ;

 nextLive ←+ (node.right ← new kdTreeNode()) ;

 end if

 end foreach

 foreach t in T do

 oldNodes ← t.nodes ;

 clear ← t.nodes ;

 foreach node in oldNodes do

 if no node.bestEdge found then

 insert t in node.triangles ;

 else

 if t left of node.bestEdge then

 insert node.left in t.nodes ;

 end if

 if t right of node.bestEdge then

 insert node.right in t.nodes ;

 end if

 end if

 end foreach

 end foreach

 live ← nextLive;

end while

foreach t in T do

 foreach node in t.nodes do

 insert t in node.triangles;

 end foreach

end foreach

return root

Algorithm 4.2.2 In-place by Choi et al. [2010]

46

Instead of using all threads to either building or tracing, Yang et al. [2008] suggest

dedicating a portion of the threads to building and using the rest for tracing. Their

system does not require a new kd-tree for every frame, but instead, counts on deforming

a tree until quality deterioration forces a rebuild. Whether to update or rebuild is

determined by their “rebuild heuristic”. The heuristic works by comparing the current

SAH value of a node (current SAH values are stored in each node) with the SAH value

the node would receive now and rebuilding if the value is above some threshold. The

authors claim – citing Lauterbach et al. [2006] – that the approach works because

quality degradation is not bad for the first few frames. However, no such statement for

kd-trees can be found in the Lauterbach et al.‟s [2006] article. Instead, when talking

about updating, the article references spatial kd-trees [Lauterbach et al., 2006]. The

system consists of tracing and building threads which are connected to a shared memory

buffer. The buffer contains vertex positions and kd-tree nodes. The tracing threads work

with the current kd-tree until a new tree is finished, and the new tree is passed to the

tracing threads as they finish the current frame. For every frame, vertices need to be

updated and the SAH cost of intersected nodes is recomputed. Rebuilding the entire tree

is not necessary, as the system can also rebuild just a subtree [Yang et al., 2008].

Many articles on interactive ray tracing start from the assumption that all primitives in a

scene can undergo totally random motion. While such an approach is laudable,

primitives can be categorized into at least four groups: static, hierarchical movement,

unstructured movement and PCM (short for piecewise coherent movement) [Günther et

al., 2006]. Static objects neither move nor deform and so their acceleration structure

does not need to be rebuilt. Parker et al. [1999] combined static and dynamic objects by

placing static objects in an acceleration structure and by leaving dynamic objects

outside of the acceleration structure altogether, to be tested by each ray individually.

Bikker [2007] built separate kd-trees for static and dynamic objects, but noted that

tracing performance would degrade as each ray would have to traverse both trees.

Unstructured motion is totally random and thus the acceleration structure of such

objects needs rebuilding. In hierarchical motion all triangles that undergo the same

transformation can be used to form a single object, as such primitives do not move

relative to each other. Furthermore, instead of transforming the object and rebuilding its

acceleration structure every frame, it is possible to inversely transform a ray and

intersect the ray with an untransformed object. This way only the transformation matrix

of a hierarchical object needs to be updated and the acceleration structure needs to be

built only once. While this results in millions of matrix-vector multiplications per frame,

such operations are relatively low cost – especially when utilizing SIMD instructions

[Lext and Akenine-Möller, 2001; Wald et al., 2003]. Static, unstructured and

hierarchical objects can be combined efficiently by building a two-level kd-tree, where

the top level kd-tree contains local kd-trees of objects. Local acceleration structures of

static and hierarchical objects need not be rebuilt at all. Acceleration structures of

objects subject to unstructured motion can be rebuilt independently. The top level kd-

tree needs to be rebuilt when there is hierarchical or unstructured motion in the scene as

it is invalidated. The rebuilding cost is, however, low, since it is determined by the

number of objects – not triangles – in the scene [Wald et al., 2003].

47

Like in hierarchical motion, a two level kd-tree and inverse transformation of rays can

also be used for PCM. In PCM animation is assumed to be defined as deformations of a

base mesh, i.e., animations consist of predetermined poses and the amount of poses is

bounded. The connectivity of a base mesh of an object remains the same during all

known deformations of the mesh and local motion is assumed to be coherent. In

addition to local (residual) motion, triangles undergo common motion defined by affine

transformations. Thus, motion is applying affine transformations plus residual motion to

a rest pose. A rest pose is selected from all known poses and it minimizes residual

motion over all clusters and time steps. Residual motion of vertices is bounded by a box

known as a fuzzy box. A fuzzy box of a triangle is a union of the fuzzy boxes of the

vertices of the triangle in question. A kd-tree is built over fuzzy boxes instead of the

triangles. As in any kd-tree the extent of the boxes needs to be minimized because large

and overlapping boxes would more likely cause intersection calculations. Residual

motion can be minimized through motion decomposition by subtracting common

motion from an animation. To subtract as much common motion as possible, a mesh is

clustered into submeshes which undergo coherent deformations, using generalized

Lloyd relaxation. Lloyd relaxation is an algorithm for sorting data points into groups

[Du et al., 1999; Lloyd, 1982; Günther et al., 2006a; Günther et al., 2006b].

Minimized residual motion is used as a cost function for clustering. In each iteration

step triangles are assigned to a cluster in which their residual motion is the smallest.

Clustering starts with a single cluster and new clusters are inserted until triangles no

longer change their cluster or when the overall residual motion drops below a threshold.

To stabilize the clustering procedure, each cluster has a seed triangle which represents

common motion of the cluster. New clusters are formed by selecting as a seed the

triangle with largest residual motion and combining it with its neighbours, so that a

unique coordinate system is defined. Concurrently, in already existing clusters the

triangle with the smallest residual motion is chosen as a seed triangle. Clustering time

increases linearly in number of time steps and candidate rest poses and for the test

scenes takes anything from 20 to 95 minutes. While building the fuzzy tree needs to be

done only once in a preprocessing step, the clustering times are still quite long. When

compared with an animation rendered using prebuilt static kd-trees, the static kd-tree is

faster by a factor of 1.2 to 2.6. Still, test scenes were rendered at 5 to 15 FPS on a single

2.8 GHz core. This approach also has the problem of only being applicable to

predetermined animations and it is thus unable to handle, for instance, animation

produced by a character animation system known as euphoria [Günther et al., 2006a;

Günther et al., 2006b; NaturalMotion, 2012].

The need to know the animation in advance can be overcome by using information from

skeletal animation. In skeletal animation an object (even though the name would seem

to imply that the object needs to have a skeletal structure, in reality skeletal animation

can be used to animate pretty much anything) has a twofold structure. The animation is

handled by a hierarchy of interconnected bones, which are covered by a mesh. The

mesh – also known as a skin – depicts the actual look of the object. The rest pose of a

48

skeletal animation model is the original mesh defined by the artist. Vertices are

influenced by one or more bones. However, the amount of bones influencing a given

vertex can be considered limited, as generally only neighboring bones influence vertices.

Fuzzy boxes can be made to account for all possible motion of each bone. Doing so,

however, produces large boxes and thus lower traversal performance. Smaller boxes can

be achieved by restricting bone rotation relative to its parent and by applying joint limits.

While this might seem to lead to a more realistic outcome – as no arbitrary rotations are

possible [Günther et al., 2006b] – it would also mean that animations such as breaking

an arm at the elbow could not be done. Further restrictions on motion can be applied by

considering only certain animations. As the size of a fuzzy box additionally depends on

the cluster it belongs to, fuzzy boxes are considered as part of each bone to determine

where their residual motion is minimized. Sampling time is roughly linear in the amount

of triangles as before, but since the rest pose of a model is known, the sampling time is

considerably reduced when compared to the previous approach (50.4s for a 271k model

opposed to the tens of minutes for a ~5k model when using the previous approach)

[Günther et al., 2006a; Günther et al., 2006b].

A gkDtree is similar in idea to two-level kd-trees – it is a group hierarchy. The

hierarchy is constructed by recursively traversing a scene graph and groups of the

hierarchy keep track of their level. Scene graph nodes with only a single child are

merged with the child to avoid duplicate AABBs. A group has an AABB which

includes all the AABBs of the primitives of the group. Each group can have a different

data structure and be processed by a different algorithm. Static and dynamic groups are

separated by using a flag. Static groups are built once and their transform matrices need

not be updated. Dynamic groups, on the other hand, update their transform matrix each

frame. Furthermore, static groups which are on level 1 or next to the root, form a two-

level hierarchy instead of a multi-level one. Unlike kd-trees, variables of each group

point to local data. Due to the multi-level hierarchy, construction of the tree is rapid,

because group node boundaries act as split candidates. Primitive boundaries need to be

used only in the leaf nodes. To effectively parallelize reconstruction of dynamic groups

of a tree in a multi-level hierarchy, dependencies between nodes need to be removed.

This is achieved by updating AABBs of dynamic primitives before rebuilding of local

acceleration structures. The updating is done by assigning group nodes to threads level

by level from the bottom up using round-robin. Acceleration structures of groups can

then be rebuilt in parallel. While node primitive count would be a good way to load

balance, it would be too time consuming on the upper levels of a tree. A simple load

balancing scheme assigns groups to threads from the bottom up level by level. The

scheme works because groups on the same level, while not equal, have similar

computational loads. The parallelization approach obviously works only when there is a

sufficient amount of groups for all threads. In case there are too few groups, for instance,

in-place algorithm by Choi et al. [2010] can be used. When compared to a kd-tree

gkDtree has an update performance of 1.1x to 166.4x and even when comparing to a

binned kd-tree by Shevtsov et al. [2007a] it reaches 0.4x to 96.9x speedup (1.1x and

0.4x on a scene with a single dynamic group). With six threads parallelization speedup

ranges from about 3.5 to about 5, when discounting the scene with only a single

49

dynamic group. All of the reported numbers are results without the initial building time

of gkDtree [Kang et al., 2011].

50

5. Kd-tree traversal

The most obvious way of traversing a kd-tree – discounting the sequential algorithm

due to its gross inefficiency – is the recursive ray traversal algorithm. The idea is

simple: if both child nodes need traversing, then store the other in a stack and traverse

the other. If an intersection is found in the first branch then the algorithm is done. On

the other hand, if no intersection is found, then a new node is popped from the stack.

The algorithm then continues by recursing until an intersection is found or the stack is

empty. If the stack empties and no intersection has been found, then the ray has no

intersections. The first traversed child node is selected based on the position of the ray

origin with regards to the splitting plane, the “near” child is traversed first. If, at each

node, only one child node needs to be traversed then recursion is done until a leaf is

encountered [Havran, 2001].

Basic recursive traversal is not a robust algorithm, because it can generate an incorrect

image in two cases. When the ray entry point is on the splitting plane and the ray

continues to either side of the splitting plane both child nodes get the same value.

Selecting one side results in the correct image while the other causes an incorrect one.

However, if the ray stays on the splitting plane until the exit point, then selecting either

side will produce the correct result. The problem cases can be corrected for by

comparing both the entry and exit points of a ray to the node splitting plane. If the entry

and exit point coordinates are less than or equal to the splitting plane coordinates then

the left child is selected. The right child is selected in the remaining case [Havran, 2001].

Generally, when traversing a kd-tree, packets are populated with rays that have the same

sign, which might lead to underuse of SIMD as packet size decreases due to packet

splitting. In this case the traversal ends when a node that is occluded by previous

node(s) is encountered. If the packet were to include incoherent rays, then packet

splitting would be unnecessary and SIMD utilization would increase. In this case a

completely occluded node would not terminate traversal, but simply lead to popping the

next node until the stack is empty. This approach reduces traversal steps by 2x for eye

rays and 1.5x for secondary rays by 9
th

 bounce. Performance improvement for eye and

shadow rays decreases with bounce depth from 2x to 0.9-1.2x [Reshetov, 2006].

By using frustum culling algorithm (see Section 3.3), there is no need to conduct an

exhaustive search for intersection points from the root. A ray frustum acts as a proxy for

any number of randomly arranged rays as long as the following two conditions are

satisfied:

1. For any given axis-aligned plane, compute a rectangle inside this plane,

which contains all possible ray/plane intersection points. This rectangle does

not have to be tight.

2. All rays go in the same direction.

51

The frustum can then be used to traverse the tree looking for a common entry point

deeper in the tree for all the rays it represents. The traditional intersection search is

started from this common entry point. The goal of the entry point search is thus not to

find an actual intersection, but leaves where there is a possibility of an intersection. The

possibility of an intersection exists when a leaf or leaves with objects, is or are fully or

partially overlapped by a proxy frustum. If a proxy frustum overlaps a single leaf

without overlapping any splitting planes, then the leaf is the entry point. On the other

hand, if multiple leaves are overlapped, then the entry point is the common ancestor of

the overlapped leaves. An entry point search starts with a stack known as a “bifurcation

stack”. It holds nodes, and their corresponding AABBs, which can be entry points. A

tree is traversed from the root using a frustum culling algorithm in a depth first manner.

While traversing, all nodes and their corresponding AABBs, with both children to be

traversed, are placed in the bifurcation stack. The traversal ends when the first potential

intersection is encountered, after which no new entries are added to the bifurcation stack

and the current node is marked as an entry point candidate. The algorithm continues by

popping a new node from the bifurcation stack. The previously unexplored branch

under each node is traversed as before. This is continued until the bifurcation stack is

empty. If, during the subsequent traversals, a new leaf node with potential intersections

is found, then the node from which this leaf node was reached is marked as the current

entry point candidate. When the bifurcation stack is empty, the current entry point and

the AABB associated with it are returned as the entry point for all rays in the frustum

[Fowler et al., 2009; Reshetov et al., 2005]

As a frustum represents many rays, some of which may diverge from the others, finding

truly deep entry points for the frustum might be impossible. In such situations deeper

entry points can be found by increasing ray coherency by dividing the frustum. For

primary rays an image is easily divided into tiles of equal size. Such a division is also a

common way to parallelize tracing of an image on a multicore system. Splitting or not

splitting a tile can be decided by using the following parameters [Reshetov et al., 2005]:

1. Initial Tile Size (ITS)

2. Minimum Tile Size (MTS), which automatically triggers intersection point

search

3. Split Factor (SF), which defines how many pieces to split a tile into.

Tiles that are larger than MTS are split automatically if the entry point is not a leaf.

Otherwise – based on measurements on over 2500 models – varying values of ITS,

MTS and SF affects performance by about 10%. As such it is possible to use a single set

of parameters for all scenes and still reach roughly optimal results. Currently best

known results have been reached with ITS = 128x128 pixels and direct division to 16

subtiles as needed. This approach is known as Multi-Level Ray Tracing Algorithm or

MLRTA and it is able to increase performance by 3.25x for eye rays and 2.75x for eye

and shadow rays [Reshetov et al., 2005].

52

A further improvement to MLRTA is known as AEPSA (Advanced Entry Point Search

Algorithm). It is based on observations on the candidate find and entry point selection

phases. For preparing the candidates Reshetov [2007] observed that even though a

frustum reaches a leaf with objects, the probability that the rays intersect an object is

low. Therefore, freezing the bifurcation stack as soon as a leaf with objects is found is

premature. Instead, the stack is frozen when a leaf with an object overlapping the

frustum is found. The existence of an intersection is easily ascertained by determining

whether or not all triangles of an object are on the outside of a plane formed by a

frustum face. Such a test easily extends to SIMD usage for all four planes

simultaneously. Whether or not triangle vertices are on the same side of a plane is

determined by comparing the signs of their dot products [Fowler et al., 2009].

In the entry point selection phase MLRTA must, for all nodes in the bifurcation stack,

traverse from a node to an occupied leaf. Because candidate nodes are ordered by depth,

nodes deeper in the tree are in subtrees of nodes on higher levels. Thus, all nodes below

the current one in the candidate list can be culled, if both subtrees of the current node

are determined to have leaves which are not overlapped by the frustum. This means that

AEPSA will visit as many or fewer nodes when compared to MLRTA. These

improvements produce a speedup of up to 18% [Fowler et al., 2009]. Algorithm 6.1

presents AEPSA.

53

AEPSA algorithm

Algorithm aepsa(tree, frustum)

Input: tree to search for entry points in, frustum representing rays

Output: entry point for all rays

 queue

 find_candidates(root(tree), frustum, queue)

 while !empty(queue) do

 node = dequeue(queue)

 if traverse_to_leaf(frustum, node) along path to leaf not taken

 overlaps non-empty leaf then

 return node

 end if

 end while

 return null

Algorithm find_candidates(node, frustum, queue)

Input: root node of a tree, frustum representing rays, queue for candidate nodes

Output: current entry point candidate, queue with nodes to search

 if node is leaf then

 i = intersect(frustum, leaf);

 if i == TRUE then

 enqueue(stack, node);

 return current node, queue;

 end if

 end if
 s = find_candidates(left(node) OR find_candidates(right(node));

 if s == TRUE then

 enqueue(queue, node)

end if
Algorithm 5.1 AEPSA from Fowler et al. [2009]

Ray tracing is inherently a parallel process, as pixels are independent and the used data

structures are read-only when the actual tracing is done. Near linear scalability has been

observed, for example, by Parker et al. [1999] for 128 processors. The process is

simple: all primary rays are placed in a queue, then individual threads lock the queue,

pop a ray and unlock the queue. This is repeated until the queue is empty. Processing

singular rays causes synchronization overhead, so rays are bundled into groups which in

turn are placed in a queue. As a load balancing measure, the groups have decreasing

size [Parker et al., 1999]. A locking based approach is not the only way to implement

access control to the shared queue. A lock-free approach, using for example the

Compare-and-Swap atomic synchronization described in Algorithm 5.2, is also a

possibility. A lock-free system should work better than a lock based system if

contention is high. Another possible method is to distribute tasks to thread local queues,

for instance using round robin [Nunes and Santos, 2009].

54

Compare-and-Swap algorithm

Algorithm CAS(location, cmpVal, newVal)

Input: memory location, compare value, new value

Output: whether location and compare value were the same

 if location == cmpVal then

 location = newVal

 return true

 end if

 return false
 Algorithm 5.2 Compare-and-Swap from Nunes and Santos [2009]

55

6. Conclusions

This thesis has explored some aspects of ray tracing and research done to push these

aspects towards real-time execution. Even though ray tracing as a whole is such a large

field that covering everything is impossible, space limitations have made it so that

covering even all integral parts – for instance ray-AABB intersection, see, e.g., Haines

[1989], Williams et al. [2005] and Eisemann et al. [2007] for discussions on this topic –

of a ray tracer in this thesis, has not been possible. Apart from the topics cut at the end

of Chapter 1, shadow rays have been discussed on a basic level, but examining more

advanced methods, such as volumetric occluders – see, for example, Djeu et al., [2009]

– and different methods for producing soft shadows – see, for instance, Johnson et al.

[2009] and Laine et al. [2005] – has been omitted. Moreover, further discussion of data

layouts, such as Yoon and Manocha [2006], was cut. Exploration of other triangle

structures in addition to triangle fans, such as triangle strips and clusters – see, for

instance, Lauterbach et al. [2007] and Garanzha [2009] – was also left undone. A

similar decision was made regarding other ray-triangle intersection methods, such as the

one presented by Segura and Feito [2001]. Compression, see, e.g., Hubo et al. [2006], is

also left unexplored. Use of multiple different types of data structures for different

purposes – see, for instance, Hunt [2008b] – is likewise unexplored.

Ray tracing has seen impressive efficiency increases since 2000, but it still has ways to

go before it can challenge rasterization in real-time applications. While there are serious

discussions about whether some features, or ray tracing as a whole, is desirable or even

needed at all in interactive graphics, ray tracing is experiencing a boom of interest

[PcPerspective, 2011; Stratton, 2013]. Real-time ray tracing is not just an academic

exercise anymore, as Intel and nVIDIA have active research projects and have released

demos showing their technology at work. First dedicated ray tracing hardware, though

not for real-time execution, has also been released [Imagination, 2013]. But the most

impressive proof of concept, that can run in real-time on hardware available to

consumers today, is Brigade path tracer [Brigade, 2013]. Capability to render billions of

triangles at 30 FPS at 720p resolution with global illumination is a sight to behold, even

if it is a little noisy [Lapere, 2013]. With all the recent advancements and ongoing

research in ray tracing theory, this is truly an intriguing time to be interested in ray

tracing – whether or not real-time execution becomes a reality within the decade or

century.

56

References

[Amdahl, 1967] Gene M. Amdahl, Validity of the single processor approach to

achieving large scale computing capabilities. In: AFIPS ’67, (1967), 483-485.

[Appel, 1968] Arthur Appel, Some techniques for shading machine renderings of solids.

In: AFIPS '68, (1968), 37-45.

[Arvo and Kirk, 1989] James Arvo and David Kirk, A survey of ray tracing acceleration

techniques. In: Andrew S. Glassner (ed.), An Introduction to Ray Tracing. Academic

Press, 1989, 201-262.

[Badouel, 1990] Didier Badouel, An efficient ray-polygon intersection. In. Andrew S.

Glassner (ed.), Graphics Gems. Academic Press, 1990, 390-393.

[Benthin, 2006] Carsten Benthin, Realtime ray tracing on current CPU architectures.

Ph.D. thesis, Saarland University.

[Benthin and Wald, 2009] Carsten Benthin and Ingo Wald, Efficient ray traced soft

shadows using multi-frusta tracing. In: Proc. Conference on High Performance

Graphics 2009, (2009), 135-144.

[Bentley, 1975] Jon Louis Bentley, Multidimensional binary search trees used for

associative searching. Comm. ACM 18 (1975), 509-517.

[Bikker, 2007] Jacco Bikker, Real-time ray tracing through the eyes of a game

developer. In: Proc. 2007 IEEE Symposium on Interactive Ray Tracing, (2007), 1-10.

[Boulos et al., 2007] Solomon Boulos, Dave Edwards, J. Dylan Lacewell, Joe Kniss,

Jan Kautz, Peter Shirley, and Ingo Wald, Packet-based whitted and distribution ray

tracing. In: Proc. Graphics Interface 2007, (2007), 177-184.

[Boulos et al., 2008] Solomon Boulos, Ingo Wald, and Carsten Benthin, Adaptive ray

packet reordering. In: Proc. 2008 IEEE Symposium on Interactive Ray Tracing, (2008),

131-138.

[Boulos et al., 2006] Solomon Boulos, Ingo Wald, and Peter Shirley, Geometric and

arithmetic culling methods for entire ray packets. Technical Report No UUCS-06-10,

University of Utah.

[Brigade, 2013] Brigade path tracer, http://igad.nhtv.nl/~bikker/. 2013. Checked

5.5.2013.

http://igad.nhtv.nl/~bikker/

57

[Cadet and Lécussan, 2007] Gilles Cadet and Bernard Lécussan, Coupled use of BSP

and BVH trees in order to exploit ray bundle performance. In: Proc. 2007 IEEE

Symposium on Interactive Ray Tracing, (2007), 63-71.

[Catmull, 1974] Edwin Catmull, A subdivision algorithm for computer display of

curved surfaces. Ph.D. thesis, University of Utah.

[Choi et al., 2010] Byn Choi, Rakesh Komuravelli, Victor Lu, Hyojin Sung, Robert L.

Bocchino, Sarita V. Adve, and John C. Hart, Parallel SAH k-d tree construction. In:

Proc. Conf. High Performance Graphics 2010, (2010), 77-86.

[Cook, 1989] Robert L. Cook, Stochastic sampling and distributed ray tracing. In:

Andrew S. Glassner (ed.), An Introduction to Ray Tracing. Academic Press, 1989, 161-

199.

[Cook et al., 1984] Robert L. Cook, Thomas Porter, Loren Carpenter, Distributed ray

tracing. Computer Graphics 18 (1984), 137-145.

[Djeu et al., 2009] Peter Djeu, Sean Keely, and Warren Hunt, Accelerating shadow rays

using volumetric occluders and modified kd-tree traversal. In: Proc. Conf. High

Performance Graphics 2009, (2009), 69-76.

[Dmitriev et al., 2004] Kirill Dmitriev, Vlastimil Havran, and Hans-Peter Seidel, Faster

ray tracing with SIMD shaft culling. Research Report MPI-I-2004-4-006, Max-Planck-

Institut Für Informatik.

[Du et al., 1999] Qiang Du, Vance Faber, and Max Gunzburger, Centroidal voronoi

tessellations: Applications and algorithms. SIAM Review 44 (1999), 637-676.

[Eisemann et al., 2007] Martin Eisemann, Thorsten Grosch, Stefan Müller, and Marcus

Magnor, Fast ray/axis-aligned bounding box overlap tests using ray slopes. J. Graphics

Tools 12 (2007), 35-46.

[Erickson, 1997] Jeff Erickson, Plücker coordinates.

http://tog.acm.org/resources/RTNews/html/rtnv10n3.html#art11. 1997. Checked

18.3.2013.

[Foley et al., 1990] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.

Hughes, Computer Graphics: Principles and Practice, 2
nd

 ed. Addison-Wesley, 1990.

[Fowler et al., 2009] Colin Fowler, Steven Collins, and Michael Manzke, Accelerated

entry point search algorithm for real-time ray-tracing. In: SCCG ’09, (2009), 59-65.

http://tog.acm.org/resources/RTNews/html/rtnv10n3.html%23art11

58

[Fussell and Subramanian, 1988] Donald Fussell and K. R. Subramanian, Fast ray

tracing using k-d trees. Technical report, Tx78712-1188, The University of Texas at

Austin, 1988.

[Galin and Akkouche, 2005] Eric Galin and Samir Akkouche, Fast processing of

triangle meshes using triangle fans. In: 2005 International Conference on Shape

Modeling and Applications (2005), 326-331.

[Garanzha, 2009] Kirill Garanzha, The use of precomputed triangle clusters for

accelerated ray tracing in dynamic scenes. Computer Graphics Forum 28 (2009), 1199-

1206.

[Georgia Tech, 2013] Georgia Institute of Technology, Large geometric models archive.

http://www.cc.gatech.edu/projects/large_models/. 2013. Checked 6.4.2013.

[Glassner, 1989a] Andrew S. Glassner, An overview of ray tracing. In: Andrew S.

Glassner (ed.), An Introduction to Ray Tracing. Academic Press, 1989, 1-31.

[Glassner, 1989b] Andrew S. Glassner, Surface physics for ray tracing. In: Andrew S.

Glassner (ed.), An Introduction to Ray Tracing. Academic Press, 1989, 121-160.

[Goldsmith and Salmon, 1987] Jeffrey Goldsmith and John Salmon, Automatic creation

of object hierarchies for ray tracing. IEEE Computer Graphics and Applications 7

(1987), 14-20.

[Gribble and Ramani, 2008] Christiaan P. Gribble and Karthik Ramani, Coherent ray

tracing via stream filtering. In: Proc. 2008 IEEE Symposium on Interactive Ray Tracing,

(2008), 59-66.

[Günther et al., 2006b] Johannes Günther, Heiko Friedrich, Hans-Peter Seidel, and

Philipp Slusallek, Interactive ray tracing of skinned animations. The Visual Computer

22 (2006), 785-792.

[Günther et al., 2006a] Johannes Günther, Heiko Friedrich, Ingo Wald, Hans-Peter

Seidel, and Philipp Slusallek, Ray tracing animated scenes using motion decomposition.

Computer Graphics Forum 25 (2006), 517-525.

[Haines, 1989] Eric Haines, Essential ray tracing algorithms. In: Andrew S. Glassner

(ed.), An Introduction to Ray Tracing. Academic Press, 1989, 33-77.

[Havel and Herout, 2010] Jirí Havel and Adam Herout, Yet faster ray-triangle

intersection (using sse4). In: IEEE Trans. on Visualization and Computer Graphics,

(2010), 434-438.

http://www.cc.gatech.edu/projects/large_models/

59

[Havran, 2001] Vlastimil Havran, Heuristic ray shooting algorithms. Ph.D. thesis,

Czech Technical University.

[Havran and Bittner, 2002] Vlastimil Havran and Jirí Bittner, On improving kd-trees for

ray shooting. In: Proc. WSCG 2002, (2002), 209-216.

[Hubo et al., 2006] Erik Hubo, Tom Mertens, Tom Haber, and Philippe Bekaert, The

quantized kd-tree: Efficient ray tracing of compressed point clouds. In: Proc. 2006

IEEE Symposium on Interactive Ray Tracing, (2006), 105-113.

[Hunt, 2008a] Warren Hunt, Corrections to the Surface Area Metric with Respect to

Mail-Boxing. In: Proc. 2008 IEEE Symposium on Interactive Ray Tracing, (2008), 77-

80.

[Hunt, 2008b] Warren Hunt, Data structures and algorithms for real-time ray tracing at

the University of Texas at Austin. Ph.D. thesis, The University of Texas at Austin.

[Hunt et al., 2007] Warren Hunt, William R. Mark, and Don Fussell, Fast and lazy build

of acceleration structures from scene hierarchies. In: Proc. 2007 IEEE Symposium on

Interactive Ray Tracing, (2007), 47-54.

[Hunt et al., 2006] Warren Hunt, William R. Mark, and Gordon Stoll, Fast kd-tree

construction with an adaptive error-bounded heuristic. In: Proc. 2006 IEEE Symposium

on Interactive Ray Tracing, (2006), 81-88.

[Hurley et al., 2002] Jim Hurley, Alexander Kapustin, Alexander Reshetov, and Alexei

Soupikov, Fast ray tracing for modern general purpose CPU. In: Proc. 2002

International Conference GraphiCon, (2002).

[Imagination, 2013] Imagination, Caustic. https://www.caustic.com/. 2013. Checked

5.5.2013.

[Johnson et al., 2009] Gregory S. Johnson, Allen Hux, Christopher A. Burns, Warren A.

Hunt, William R. Mark, and Stephen Junkins, Soft irregular shadow mapping: Fast,

high-quality, and robust soft shadows. In: Proc. 2009 Symposium on Interactive 3D

Graphics and Games, (2009), 57-66.

[Kang et al., 2011] Yoon-Sig Kang, Jae-Ho Nah, Woo-Chan Park, and Sung-Bong

Yang, gkDtree: A group-based parallel update kd-tree for interactive ray tracing. J.

Systems Architecture 59 (2013), 166-175.

[Kensler and Shirley, 2006] Andrew Kensler and Peter Shirley, Optimizing ray-triangle

instersection via automated search. In: Proc. IEEE Symposium on Interactive Ray

Tracing 2006, (2006), 33-38.

https://www.caustic.com/

60

[Komatsu et al., 2008] Kazuhiko Komatsu, Yoshiyuki Kaeriyama, Kenichi Suzuki,

Hiroyuki Takizawa, and Hiroaki Kobayashi, A fast ray frustum-triangle intersection

algorithm with precomputation and early termination. IPSJ Online Transactions 1

(2008), 1-11.

[Laine et al., 2005] Samuli Laine, Timo Aila, and Ulf Assarsson, Soft shadow volumes

for ray tracing. In: SIGGRAPH ’05, (2005), 1156-1165.

[Lapere, 2013] Samuel Lapere, Ray tracey‟s blog. http://raytracey.blogspot.co.nz/. 2013.

Checked 5.5.2013.

[Lauterbach et al., 2007] Christian Lauterbach, Sung-Eui Yoon, and Dinesh Manocha,

Ray-strips: A compact mesh representation for interactive ray tracing. In: Proc. IEEE

Symposium on Interactive Ray Tracing 2007, (2007), 19-26.

[Lauterbach et al., 2006] Christian Lauterbach, Sung-Eui Yoon, and David Tuft, RT-

DEFORM: Interactive ray tracing of dynamic scenes using BVHs. In: Proc. IEEE

Symposium on Interactive Ray Tracing 2006, (2006), 39-46.

[Lext and Akenine-Möller, 2001] Jonas Lext and Tomas Akenine-Möller, Towards

rapid reconstruction for animated ray tracing. In: Eurographics 2001 – Short

Presentations, (2001).

[Lloyd, 1982] Stuart P. Lloyd, Least squares quantization in PCM. IEEE Trans.

Information Theory 28 (1982), 129-137.

[MacDonald and Booth, 1990] J. David MacDonald and Kellogg S. Booth, Heuristics

for ray tracing using space subdivision. The Visual Computer 6 (1990), 153-166.

[Mahovsky and Wyvill, 2006] J. Mahovsky and B. Wyvill, Memory-conserving

bounding volume hierarchies with coherent ray tracing. Computer Graphics Forum 25

(2006), 173-182.

[Månsson et al., 2007] Erik Månsson, Jacob Munkberg, and Tomas Akenine-Möller,

Deep coherent ray tracing. In: Proc. 2007 IEEE Symposium on Interactive Ray Tracing,

(2007), 79-85.

[Möller and Trumbore, 1997] Tomas Möller and Ben Trumbore, Fast, minimum storage

ray/triangle intersection. J. Graphics Tools 2 (1997), 21-28.

[Moon et al., 2010] Bochang Moon, Yongyoung Byun, Tae-Joon Kim, Pio Claudio,

Hye-Sun Kim, Yun-Ji Ban, Seung Woo Nam, and Sung-Eui Yoon, Cache-oblivious ray

reordering. ACM Trans. Graphics 29 (2010), article 28.

http://raytracey.blogspot.co.nz/

61

[NaturalMotion, 2012] NaturalMotion, euphoria.

http://www.naturalmotion.com/products/euphoria/. 2012. Checked 15.9.2012.

[Navrátil, 2010] Paul Arthur Navrátil, Memory-efficient, scalable ray tracing. Ph.D.

thesis, The University of Texas at Austin.

[Navrátil et al., 2007] Paul Arthur Navrátil, Donald S. Fussell, Calvin Lin, and William

R. Mark, Dynamic ray scheduling to improve ray coherence and bandwidth utilization.

In: Proc. 2007 IEEE Symposium on Interactive Ray Tracing, (2007), 95-104.

[Nunes and Santos, 2009] Miguel Nunes and Luís Paulo Santos, Workload distribution

for ray tracing in multi-core systems. In: Proc. 17º Encontro Português de Computação

Gráfica, (2009).

[Overbeck et al., 2008] Ryan Overbeck, Ravi Ramamoorthi, and William R. Mark,

Large ray packets for real-time whitted ray tracing. In: Proc. 2008 IEEE Symposium on

Interactive Ray Tracing, (2008), 41-48.

[Parker et al., 1999] Steven Parker, William Martin, Peter-Pike J. Sloan, Peter Shirley,

Brian Smits, and Charles Hansen, Interactive ray tracing. In: Proc. I3D ’99, (1999),

119-126.

[PcPerspective, 2011] PcPerspective, John Carmack interview: GPU race, Intel graphics,

ray tracing, voxels and more!. http://www.pcper.com/reviews/Editorial/John-Carmack-

Interview-GPU-Race-Intel-Graphics-Ray-Tracing-Voxels-and-more. 2011. Checked

7.5.2013.

[Peachey, 1990] Darwyn Peachey, Texture on demand. Technical Memo #217, Pixar

Animation Studios.

[Pharr et al., 1997] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan,

Rendering complex scenes with memory-coherent ray tracing. In: SIGGRAPH ’97,

(1997), 101-108.

[Popov et al., 2006] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp

Slusallek, Experiences with streaming construction of SAH kd-trees. In: Proc. 2006

IEEE Symposium on Interactive Ray Tracing, (2006), 89-94.

[Ramani et al., 2009] Karthik Ramani, Christiaan P. Gribble, and Al Davis, StreamRay:

A stream filtering architecture for coherent ray tracing. In: ASPLOS '09, (2009), 325-

336.

[Reshetov, 2006] Alexander Reshetov, Omnidirectional ray tracing traversal algorithm

for kd trees. In: Proc. 2006 IEEE Symposium on Interactive Ray Tracing, (2006), 57-60.

http://www.naturalmotion.com/products/euphoria/
http://www.pcper.com/reviews/Editorial/John-Carmack-Interview-GPU-Race-Intel-Graphics-Ray-Tracing-Voxels-and-more
http://www.pcper.com/reviews/Editorial/John-Carmack-Interview-GPU-Race-Intel-Graphics-Ray-Tracing-Voxels-and-more

62

[Reshetov, 2007] Alexander Reshetov, Faster ray packets - triangle intersection through

vertex culling. In: Proc. 2007 IEEE Symposium on Interactive Ray Tracing, (2007),

105-112.

[Reshetov et al., 2005] Alexander Reshetov, Alexei Soupikov, and Jim Hurley, Multi-

level ray tracing algorithm. In: SIGGRAPH ’05, (2005), 1176-1185.

[Rusinkiewicz, 1997] Szymon Rusinkiewicz, A survey of BRDF representation for

computer graphics. http://www.cs.princeton.edu/~smr/cs348c-97/. 1997. Checked

6.4.2013.

[Schlick, 1994] Christophe Schlick, An inexpensive BRDF model for physically-based

rendering. Computer Graphics Forum 13 (1994), 233-246.

[Segura and Feito, 2001] Rafael J. Segura and Francisco R. Feito, Algorithms to test

ray-triangle intersection. Comparative study. In: WSCG (Short Papers) 2001, 2001, 76-

81.

[Shevtsov et al., 2007a] Maxim Shevtsov, Alexei Soupikov, and Alexander Kapustin,

Highly parallel fast kd-tree construction for interactive ray tracing of dynamic scenes.

Computer Graphics Forum 26 (2007), 395-404.

[Shevtsov et al., 2007b] Maxim Shevtsov, Alexei Soupikov, and Alexander Kapustin,

Ray-triangle intersection algorithm for modern CPU architectures. In: Proc. 2007

International Conference GraphiCon, (2007).

[Shirley et al., 2009] Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R.

Marschner, Erik Reinhard, Kelvin Sung, William B. Thompson and Peter Willemsen,

Fundamentals of Computer Graphics. A K Peters, 2009.

[Shirley et al., 2008] Peter Shirley, Kelvin Sung, Erik Brunvand, Alan Davis, Steven

Parker, and Solomon Boulos, Fast ray tracing and the potential effects on graphics and

gaming courses. Computers & Graphics 32 (2008), 260-267.

[Shoemake, 1998] Ken Shoemake, Plücker coordinate tutorial.

http://tog.acm.org/resources/RTNews/html/rtnv11n1.html#art3. 1998. Checked

18.3.2013.

[Smits, 1998] Brian Smits, Efficiency issues for ray tracing. J. Graphics Tools 3 (1998),

1-14.

[Soupikov et al., 2008] Alexei Soupikov, Maxim Shevtsov, and Alexander Kapustin,

Improving kd-tree quality at a reasonable construction cost. In: Proc. 2008 IEEE

Symposium on Interactive Ray Tracing, (2008), 67-72.

http://www.cs.princeton.edu/~smr/cs348c-97/
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html%23art3

63

[Stanford, 2013] Stanford University, The Stanford 3D scanning repository.

http://graphics.stanford.edu/data/3Dscanrep/. 2013. Checked 6.4.2013.

[Stratton, 2013] Josh Stratton, State of ray tracing (in games).

http://www.cs.utah.edu/~jstratto/state_of_ray_tracing/. 2013. Checked 7.5.2013.

[Utah, 2013] The University of Utah, The Utah 3D animation repository.

http://www.sci.utah.edu/~wald/animrep/. 2013. Checked 6.4.2013.

[Wächter, 2004] Carsten Wächter, Realtime ray tracing. Ph.D. thesis, Universität Ulm.

[Wald, 2004] Ingo Wald, Realtime ray tracing and interactive global illumination. Ph.D.

thesis, Saarland University.

[Wald, 2007] Ingo Wald, On fast construction of SAH-based bounding volume

hierarchies. In: Proc. 2007 IEEE Symposium on Interactive Ray Tracing, (2007), 33-40.

[Wald et al., 2003] Ingo Wald, Carsten Benthin, and Philipp Slusallek, Distributed

interactive ray tracing of dynamic scenes. In: Proc. IEEE Symposium on Parallel and

Large-Data Visualization and Graphics 2003, (2003), 77-85.

[Wald et al., 2007b] Ingo Wald, Solomon Boulos, and Peter Shirley, Ray tracing

deformable scenes using dynamic bounding volume hierarchies. ACM Trans. Graphics

26 (2007), article 6.

[Wald et al., 2007a] Ingo Wald, Christiaan Gribble, Solomon Boulos, and Andrew

Kensler, SIMD ray stream tracing – SIMD ray traversal with generalized ray packets

and on-the-fly re-ordering. Technical report #UUSCI-2007-012, University of Utah.

[Wald and Havran, 2006] Ingo Wald and Vlastimil Havran, On building fast kd-trees

for ray tracing, and on doing that in O(N log N). In: Proc. 2006 IEEE Symposium on

Interactive Ray Tracing, (2006), 61-69.

[Wald et al. 2006] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G.

Parker, Ray tracing animated scenes using coherent grid traversal. In: SIGGRAPH ’06,

(2006), 485-493.

[Wald et al., 2001] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner,

Interactive rendering with coherent ray tracing. Computer Graphics Forum 20 (2001),

153-165.

[Williams et al., 2005] Amy Williams, Steve Barrus, R. Keith Morley, and Peter Shirley,

An efficient and robust ray-box intersection algorithm. In: SIGGRAPH ’05, (2005),

Article No. 9.

http://graphics.stanford.edu/data/3Dscanrep/
http://www.cs.utah.edu/~jstratto/state_of_ray_tracing/
http://www.sci.utah.edu/~wald/animrep/

64

[Whitted, 1980] Turner Whitted, An improved illumination model for shaded display. C.

ACM 23 (1980), 343-349.

[Yang et al., 2008] Xin Yang, Duan-qing Xu, and Lei Zhao, Ray tracing dynamic

scenes using fast kd-tree base on multi-core architecture. In: 2008 IEEE Inter. Conf. on

Comp. Sci. and Software Eng., (2008), 1120-1123.

[Yoon and Manocha, 2006] Sung-Eui Yoon and Dinesh Manocha, Cache-efficient

layouts of bounding volume hierarchies. Computer Graphics Forum 25 (2006), 507-516.

65

Appendix A

The Angel model, 474048 triangles [Georgia Tech, 2013].

66

The Bunny model, 69451 triangles [Stanford, 2013].

67

The Fairy Forest model, 174117 triangles [Utah, 2013].

