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Abstract  

Background  
 T-cells are involved in many immune functions. Each function is carried out by specific sub-

set of T-cells. All T-cell sub-types originate from one stem cell and the fate of each cell is dictated 

by its pattern of gene expression. The pattern of gene expression is the direct outcome of genetic 

regulatory network which can be visualized as a network containing nodes (genes) with edges 

(interaction) between them.  Simulation of the dynamics of gene regulatory networks reveals 

several attributes of not only the network itself but also the pattern of gene expression of different 

developmental or differentiation processes. Since gene regulatory networks often include thousands 

of genes, the network has to shrink or contain only a small subset of possible states of the large 

networks can be explored through the simulation. Therefore, different methods are needed to extract 

information from gene regulatory network. 

 

Methods  
 Central T-cell Network (the main gene regulatory network in T-cells) is used to start the 

simulation with customized random Boolean networks. Because of large scale of the network an 

initiative approach was used to reduce the number of possible states which were needed to be 

explored. Graph theory was used to find the attractors. GO analysis was used to find information in 

attractors. Clustering methods were applied on attractors in order to find groups of interesting gene 

states. Finally, data mining and microarray data analysis were utilized to verify the simulation 

system. 

 

Results  
 Forty experiments resulted in 833 attractors (with period 2 or 4). GO analysis (performed on 

most frequent attractors) resulted in no significance in T-cell differentiation processes. Clustering 

methods classified each type of attractors to exactly two different clusters. The simulated gene 

expression divided the genes into 3 groups, and GO analysis did not show significance in any 

differentiation process. The result of gene expression ratio of CD4+ and CD8+ cells showed a 

significant difference between the microarray data experiments and simulated gene expression 

ratios. Finally, the result of data mining suggested that CD4+ cells were located in one of the 

clustered attractors. 

 

Conclusion  
A new environment was developed to simulate the dynamics of the gene regulatory network 

in T-cells. A novel approach was used to reduce the state space and in finding attractors. The 

resulting attractors were analyzed by several experiments. Although the genes involved in 

differentiation processes were distributed sporadically on the attractor clusters, CD4+ related genes 

were clustered in one group. This indicates the usability of the system for distinguishing different 

cell types. The result also indicates that the system can be used not only for T-cells but also for any 

biological network. A conclusion can be drawn that this new system is applicable for different 

networks but more experiments with different parameters are needed to verify the simulation 

system.



 

Table of Content

1. INTRODUCTION ........................................................................................................................................................ 1 

2. LITERATURE REVIEW ............................................................................................................................................. 2 

2.1 IMMUNE SYSTEM ...................................................................................................................................................... 2 
2.1.1 Innate immune system ...................................................................................................................................... 2 
2.1.2 Adaptive immune system .................................................................................................................................. 3 
2.1.3 T-Cells .............................................................................................................................................................. 3 

2.2 BOOLEAN NETWORKS AND DYNAMICS OF A SYSTEM ................................................................................................. 8 
2.2.1 Random Boolean Networks .............................................................................................................................. 9 
2.2.2 Features of dynamical systems ....................................................................................................................... 11 
2.2.3 Attractors in Boolean network ....................................................................................................................... 11 
2.2.4 Different types of RBNs .................................................................................................................................. 12 
2.2.5 Applications of RBNs...................................................................................................................................... 13 

2.3 MICROARRAY DATA ANALYSIS ................................................................................................................................ 13 
2.3.1 Introduction .................................................................................................................................................... 13 
2.3.2 Microarray chip preparation .......................................................................................................................... 14 
2.3.3 Image analysis and data pre-processing ........................................................................................................ 14 
2.3.4 Data normalization ........................................................................................................................................ 15 
2.3.5 Data analysis .................................................................................................................................................. 15 
2.3.6 Software packages .......................................................................................................................................... 16 

2.4 GENE ONTOLOGY .................................................................................................................................................... 17 
2.4.1 Gene Ontology enrichment analysis ............................................................................................................... 17 
2.4.2 GO Tools ........................................................................................................................................................ 18 

2.5 CLUSTERING METHODS .......................................................................................................................................... 18 
2.5.1 K-Means ......................................................................................................................................................... 19 
2.5.2 UPGMA clustering method ............................................................................................................................ 20 

2.6 GRAPH THEORY ...................................................................................................................................................... 20 
2.6.1 Introduction .................................................................................................................................................... 20 
2.6.2 Graph analysis ............................................................................................................................................... 21 

2.7 STATISTICS .............................................................................................................................................................. 22 
2.7.1 Hypothesis testing .......................................................................................................................................... 22 
2.7.2 Pearson correlation coefficient ...................................................................................................................... 23 
2.7.3 Distance between two vectors ........................................................................................................................ 24 

OBJECTIVES ................................................................................................................................................................. 25 

3. MATERIALS & METHODS ..................................................................................................................................... 26 

3.1 SETTING UP THE ENVIRONMENT .............................................................................................................................. 26 
3.2 SIMULATION ............................................................................................................................................................ 28 
3.3 FINDING PARAMETERS ............................................................................................................................................ 32 
3.4 FINDING ATTRACTORS ............................................................................................................................................ 33 
3.5 ANALYZING ATTRACTORS ...................................................................................................................................... 35 

3.5.1 Different state of genes and GO analysis ....................................................................................................... 35 
3.5.2 Attractors frequency ....................................................................................................................................... 36 
3.5.3 Attractor clustering ........................................................................................................................................ 37 

3.6 SIMULATION ENVIRONMENT ................................................................................................................................... 39 

4. RESULT ....................................................................................................................................................................... 39 

4.1 INITIAL VALUES ....................................................................................................................................................... 39 
4.2 FINDING PARAMETERS............................................................................................................................................. 39 
4.3 ATTRACTORS ANALYSIS ......................................................................................................................................... 43 

5. DISCUSSION .............................................................................................................................................................. 63 

6. CONCLUSION ........................................................................................................................................................... 66 

REFERENCE .................................................................................................................................................................. 67 

APPENDIX 1 ................................................................................................................................................................... 75 

APPENDIX 2 ................................................................................................................................................................... 89 



 

Abbreviation 

Natural Killer NK  

T cell receptors TCR  

T helper cells type 1 TH1-Cells  

Major Histocompatibility Complex MHC  

allergic airway disease AAD  

Follicular Helper CD4 T Cells TFH  

Cytotoxic T-cells CTL  

reactive oxygen species ROS  

Regulatory T-cells Treg  

Natural Killer T-cells NKT  

central memory T cells TCM cells  

effector memory T cells TEM cells  

Protein-Protein Interaction PPI  

Matthews’s correlation coefficient MCC  

Central T cell Network CTN  

Cellular Automata CA  

Random Boolean Networks RBN  

classical RBN CRBN  

Asynchronous Random Boolean Networks ARBNs  

Deterministic Asynchronous Random Boolean Networks DARBNs  

Generalized Asynchronous Random Boolean Networks GARBNs  

Deterministic Generalized Asynchronous Random Boolean 

Networks 

DGARBNs  

Discrete Dynamical Networks DDN  

Probabilistic Boolean Networks PBN  

Pearson correlation coefficient PCC  

Rank correlation coefficient RCC  

support vectors machine SVM  

significance analysis of microarrays SAM  

false discovery rate FDR  

Gene ontology GO  

enrichment score ES  

Visualization and Integrated Discovery DAVID  

unweighted pair group method with arithmetic mean UPGMA  

effect components EC  

random components RC  



 

1 

1. Introduction 

 The human body consists of several types of cell each of which performs different functions 

which are critical for survival of the living organism. The immune system which performs the role 

of attacking pathogens is one of the most crucial systems in almost all organisms. This system in 

humans consists of several types of cell which act together to ensure human survival. One the most 

interesting subsets of these cells are called T-cells. T-cells also have several subtypes which can be 

distinguished by their specific functions and pattern of gene expression.  

 

 Differentiation is the process of acquiring specialized functions from a general cell (stem 

cells). Since T-cells and many human cells are derived from the same stem cells, finding the fate of 

each cell in different conditions is of great importance. That is because cell differentiation usually 

takes place in different conditions and the differentiation itself is directly affected by the pattern of 

gene expression. Therefore, finding the genes involved in the differentiation process is a great help 

for predicting the fate of cells. By finding this pattern, not only can one predict cell conditions but 

also that information can be used for treatment of many diseases such as cancer. The pattern of 

genes expression is the result of genes regulatory network where there may be several thousand 

genes interacting in a highly interconnected network. The genes may regulate their descendants 

through a directed link and may be regulated by neighboring genes through undirected network 

genes interaction called co-regulatory network. The state of a gene in this network is not only 

dependent on the neighboring genes, but also on genes throughout the whole network. Because the 

number of expressed genes in each cell that participate in this network is often extremely large, 

computational methods are used to reduce the number of required genes for experimental analysis. 

Computational methods are also utilized to predict the fate of cells by the pattern of gene 

expression. 

 

 The main goal of this study is to find the genes involved in T-cells differentiation by 

simulation of dynamics of the most important gene regulatory network in the T-cells. Since the 

genes involved in T-cell differentiation (e.g. stem cells) are almost well characterized, the study 

focuses on finding not only finding genes involved in T-cell differentiation from the stem cells, but 

also the genes which cause T-cells to differentiate into sub-types.  The ultimate goal of this thesis is 

to propose a new approach for simulating of dynamics of any experimentally pre-defined biological 

network and proposing a solution for limitations of other previously known approaches for 

simulation of specific and customized network. Since this network is not a usual network which is 

used by normal modeling techniques, special approaches were used to simulate and find 

information in order to find the genes which are involved in the differentiation process and also 

verifying the simulation system. 
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2. Literature review 

2.1 Immune System 

The aim of this chapter is to briefly introduce the mechanism in the immune system 

which is responsible for protecting the body from threats posed by pathogens. Pathogens can be 

regarded as any harmful microorganisms such as bacteria, viruses and parasites which frequently 

threaten the body and cause disease. For example, cholera, AIDS and trichinosis are caused by 

bacteria, viruses and parasites, respectively. After a pathogen threatens the body, the immune 

system has two major tasks; first, detection of the pathogen and second, elimination or killing of it. 

These two principal works are done by a multilayer, hierarchical system which consists of two 

major parts called innate and adaptive immune systems. Both of these systems are described in the 

next sections. The complete description of the immune system is out of the scope of this thesis so 

for preliminary introduction readers are advised to use available textbooks. 

 2.1.1 Innate immune system 

 Pathogens wanting to attack a body have to pass the first line of defense which is the skin. 

Skin provides a barrier to invading microbes and is usually only permeable through cuts or 

abrasions. Digestive and respiratory systems are also ways which microbes enter the body. 

Microbes which try to enter the body through nose or lung usually trigger sneezing which pushes 

them out of the body. The ones which try to enter through digestive system will face a strong acid 

that destroys many of them and even if they can survive they have to pass through the walls of the 

digestive system which makes many of them unable to enter the destination tissues. If a few 

pathogens can pass the first line of defense, they will face the second line of defense which is 

philological conditions such as temperature, PH and oxygen tension which limit the microbial 

activity and growth. The third layer is the innate immune system which is not specific to a particular 

pathogen (unlike the adaptive system). This system provides the first rapid attack against pathogens 

by several mechanisms such as complement, endocytic and phagocytic systems. The complement 

system has two major tactics which are called lysis and opsonization. Lysis is a process of rupturing 

a bacterial membrane resulting in the bacteria’s destruction. In opsonization, bacteria are covered 

with complement allowing macrophages to easily detect them. Macrophages are cells which has 

several critical roles in the body, in immunity they engulf the detected bacteria (identified either 

through their receptor or complement) and destroy them. Another way of activating macrophages is 

by binding to cytokines which have a signaling role in the body. Cytokines are secreted by many 

cells (not only immune cells) in the body and they usually cause an inflammatory response in 

infected or damaged tissue. Inflammation in turn causes increased local blood flow (causes 

attracting more immune cells) and temperature (fever) which is beneficial by reducing activity of 

pathogens or increasing the intensity of adaptive immune response. The innate immune system has 

another weapon which is called interferon. These proteins are secreted when cells are infected by 

viruses and they inhibit viral replication and also activate Natural Killer (NK) cells. Natural Killer 

cells bind the normal cells and receive an inhibitory signal which keeps them inactive. This signal is 

produced by normal cells but infected cell cannot inhibit NK cells and they become activated and 

trigger apoptosis (programmed cell death) which kills the infected cells. Innate immunity is not only 

defending the body but giving adaptive immune system time to build up stronger response to 

pathogens. If pathogens can survive the innate system, they will face the final line of defense which 

is specifically built for each of them. 
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2.1.2 Adaptive immune system 

 As its name suggests, the adaptive immune system can learn to detect specific kinds of 

pathogens. When a pathogen which has been not encountered yet is detected by the immune system 

the learning process starts. It usually takes several days to a few weeks, to clear an infection and 

learn that specific pathogen. After that, if that pathogen is encountered again the second response 

will be very rapid and often with no indications of infection. Adaptive immunity consists of a type 

of white blood cells called a Lymphocyte. On the surface of Lymphocytes there are proteins called 

receptor which recognize and bind epitopes on the surface of pathogens. These receptors are 

specific to a few similar epitopes on different pathogens. They may differ between Lymphocytes but 

are identical on a single Lymphocyte, making each one specific to particular pathogen. A 

Lymphocyte gets activated only when it binds to a pathogen by high affinity and this makes them 

general to many similar pathogens. As mentioned, the adaptive immune system must first detect the 

pathogen and then learn and remember the pathogen for the next response. Both of these issues are 

addressed by a type of Lymphocyte called a B-cell. After activation, B-cells move to lymph nodes 

where the adaptation process occurs through cell division. B-cells are subject to mutation, termed 

somatic hypermutation. Each B-cell clone binds to captured pathogenic epitopes. If they have high 

affinity, they will be released and differentiate into plasma or memory B-cells. Otherwise they will 

die after a short period. Plasma B-cells are able to secrete antibodies which have critical roles in 

immunological defense either by marking pathogens (opsonization) which makes them easier 

targets for phagocytes (white blood cells) or by neutralizing them. Memory B-cells will proliferate 

after a successful response and in doing so they promote defense against type of epitopes they 

previously recognized for the second response. They are also able to act against similar pathogens 

and so similar infections can be treated in a short time. There is one important issue associated with 

the adaptation to pathogens through somatic hypermutation which is called autoimmunity.  This 

happens when the immune system attacks self-cells. Handling of this problem is the responsibility 

of another type of Lymphocytes which are called T-Cells. This type of cell has many mechanisms 

which are described in the next section. 

2.1.3 T-Cells 

 T-cells are so-called because they mature in the thymus. They can be distinguished from 

other lymphocytes by the presence of T cell receptors (TCR) on their surface. There are four sub-

types of T-cells, namely, Helper, Cytotoxic, Memory, Regulatory and Natural Killer T-cells.  

2.1.3.1 Helper T-cells 

 Helper T-cells can be distinguished from other sub-type by the presence of CD4 protein on 

their surface. They differentiate to six different sub-types, TH1, TH2, TH9, TH17, TH22, and TFH. 

The major role of these cells is providing assistance to other immune cells in biological processes. 

As discussed in the previous section, Helper T-cells help B-cells to solve the autoimmunity issue. 

Many of the self-epitopes are available in thymus and T-cells are exposed to them. If a T-cell is 

activated by binding to one the presented self-epitopes it will die by a process called negative 

selection. Those cells which survive in this process will leave the thymus and undertake their 

responsibilities. B-cells mature in bone marrow and this is not enough to ensure they are not self-

reactive. That’s because of hyper-mutation process which may cause B-cells to be auto reactive. T-

cells will help B-cells handle this problem by a process called co-stimulation. Intuitively, a specific 

subset of T-cells called T helper cells type 1 (TH1-Cells) are involved in this process. They are 

produced when naive T helper cells differentiate into TH1-Cells in presence of Interleukin 12 (IL-

12) [1]. Specifically, B-cells have to receive two different signals to get activated. The first signal 
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will be received when B-cells bind to the target of high binding affinity and the second signal will 

be emitted by TH1-Cells. After B-cells recognize and bind to their target. They engulf the pathogen 

peptide and present the peptide on their surface, using a molecule called Major Histocompatibility 

Complex (MHC).  If TH1-Cells bind MHC on the surface of a B-cell it ensures that B-cell has 

selected a non-self-peptide, it can receive the second signal and become activated. In rare cases 

even TH-cells can be auto reactive and bind the self-peptides. So there is another co-stimulation 

process for TH1-cells in which they require two signals to be activated. One signal is provided by 

binding affinity threshold and another signal is given by cells of innate immune system. 

TH2-cells are another type of helper T cell which stimulates macrophage when they are affected by 

bacteria in their vesicles. TH2-cells are produced by naive T helper cell differentiation in presence 

of Interleukin 4 (IL-4) [1] and they are involved in immune responses against intra-cellular 

pathogens whereas TH1-cells are involved against extra-cellular pathogens. 

 Naive T helper cells differentiate into T Helper-cell type 9 (TH9-cells) in presence 

Interleukin 9 (IL-4) [2]. TH9-cells play many roles in different diseases such as contributing to 

inflammation and allergic disease they also have a role in allergic airway disease (AAD) [3]. It also 

has been shown that they are involved in immunity against Helminth infections and intestinal 

parasites [4] [5]. 

 T Helper-cells type 17 is established when TGF-β and IL-6 are presented in a cell [6]. The 

main function of this category of T helper cells is to clear pathogens which cannot be removed by 

other immune systems because their clearance needs strong inflammatory response [7]. Reportedly, 

TH17-cells also have important effects in many diseases, especially they play a “pro-inflammatory” 

role against autoimmune diseases but they also have role against fungi and parasites [8]. 

 TH22-cells are another type of TH-cells which are expressed when naive TH-cells 

differentiate in presence of TNF-ɑ and IL-6 [9]. Increased innate immune response and regeneration 

are caused by IL-22 which is produced by TH22-cells in many tissues such as skin and liver [10]. 

 The last type of TH-cells is called Follicular Helper CD4 T Cells (TFH) which are generated 

by TH-cells differentiation in presence of B-cell CLL/lymphoma 6 (Bcl6), IL-6, IL-21 and 

CXCL13. Similar to the TH-cell, TFH-cells provide help to B-cells (through direct physical 

interaction) and also allow them to form plasma and long-lived memory B-cells. GC TFH-cells 

have a role in regulation of B-cells differentiation [11] and they are also involved in autoimmune 

diseases such as systemic lupus erythematosus [12]. 

2.1.3.2 Cytotoxic T-Cells 

 Cytotoxic T-cells (CTL) are a class of T-cells which kill other infected cells. Their targets 

can be virus infected cells, cancer cells or the cells infected by intra-cellular pathogens. They can be 

distinguished from other T-cells by presence of CD8 molecule on their surface. They recognize and 

bind infected cells using TCRs which are specific to particular antigens that cause stimulation of 

CD8+ cells. As discussed in the previous section, MHC helps TH-cells to confirm B-cells have 

engulfed non-self-cells and then give the second signal to B-cells to become fully activated. There 

is another class of MHC called MHC I molecule. These molecules are present inside almost all of 

the cells in the body. When cells are infected by intra-cellular pathogens such as virus, they present 

inside peptides (antigens) on the surface of cells. CD8+ cells recognize and bind to the combination 

of MHC I and peptides (pMHC I) through a CD8 glycoprotein which also plays an important role 

for differentiation of naive T-cells to CD8+ cells. After binding to the target cells, they kill the 

infected cells by utilizing two mechanisms. First, when they bind to the cells, cytoplasmic granules 

are discharged and perforin molecules are injected into plasma membrane of the target cells. Next, 

granzymes enter the cells through pore created by the perforin injection. Granzymes which are 

serine proteases cut the peptide bonds and have two classes, A and B. Granzyme A goes to 
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mitochondria and kills the cells by producing reactive oxygen species (ROS). Granzyme type B 

causes apoptosis by activation of the caspase cascade. The second mechanism of CTLs is based on 

Fas ligand (FASL) protein. FASL is a transmembrane protein which is expressed on the surface of 

Cytotoxic T-cells. When CTLs bind to the target, the interaction between FASL and FAS protein 

(which is expressed on the target surface) triggers apoptosis, killing the infected cell [13]. Cytotoxic 

T-cell activation is also regulated through two signals. The first signal is given by the cell receptor 

when bound to MHC I. The second signal is presented by a co-stimulatory mechanism, specifically 

by CD80 and CD86 proteins which are detected by CD25 protein on the T-cells surface. Similar to 

T helper cells, if the cell receives only one type of signal it will undertake apoptosis. This type of 

cell also plays an important role in many disorders such as hepatitis B [14] and autoimmune 

diseases [15] 

2.1.3.3 Regulatory T-Cells 

 As discussed earlier, T-cells are exposed to most self-peptides to make sure that they are not 

auto-reactive and don’t bind self-components. Although this process is very strict some auto-

reactive cells may escape negative selection. Also, when a successful response is given to 

pathogens, effector T-cells have to become inactivated, otherwise they may hurt the body. 

Regulation of immune system cells is the major role of Regulatory T-cells. Regulatory T-cells 

(Treg) are regarded as a major regulator of the immune system. They have a pivotal role in 

preventing autoimmunity and diseases such as type 1 diabetes [16]. The most important factor for 

their development and function is forkhead box P3 (FOXP3) but they also express CD25 and cell 

surface CTLA-4. It also has been shown that Interleukin 2 (IL-2) is a critical factor involved in 

Tregs development and function. Tregs are divided into three sub-types called natural Treg cells 

(nTreg, also called CD4+CD25+), induced Treg cells (iTreg) and T-helper 3 (Th3) cells. nTregs are 

developed in the thymus and their major function is inhibiting other T-cells from binding to self-

components. iTregs are thought to be derived from CD4+ T-cells. They are most abundant in 

mucosal surfaces but have variety of roles in different tissues. For example in Placenta, they prevent 

the mother’s immune system from attacking the fetus. Th3 cells are regarded as mediators of oral 

tolerance and apply their effect by secreting transforming growth factor-β [17]. 

There are four mechanisms which are used by Tregs to perform their regulatory roles: suppression 

by inhibitory cytokines such as IL-10, IL-35 and TGFβ; cytolysis through secretion of granzyme A 

and perforin; metabolic disruption not only through depleting of IL-2 which T-cells need to survive 

but by expression of the CD39 and CD73 which in turn causes generation of adenosine and 

suppression of effector T-cells; finally they suppress other immune cells through modulation of 

dendritic-cells which affects T-cell activation [18]. Deficiency in regulatory T-cells may cause 

many diseases, especially autoimmune diseases. They play important roles in cancer, diabetes, 

infectious diseases [19] [20] [21]. 

2.1.3.4 Natural Killer T-cells 

 Natural Killer T-cells (NKT) are another type of immune cells which are characterized by 

having TCRs which recognize glycolipid antigen (presented by CD1d molecule) and also having 

characteristics of natural killer cells (NK) by possessing their receptors. Several researchers have 

provided different sub-types of NKT-cells but the main classification divides NKT-cells to two 

different groups called type I and type II. Type I natural killer T-cells express invariant Vα24Jα18 in 

human and type II presents more diverse Vα24Jα18. NKT-cells are thought to form a bridge 

between the innate and adaptive immune systems. On one hand, they present limited TCRs which 

are specific to lipids allowing them to recognize presented lipids which are not detectable by other 

members of adaptive immune system. But on the other hand, they have the characteristic of rapid 
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response which is an attribute of innate immune system. They also play a regulatory role in which 

they call other immune cells such as members of innate system and CTLs and TH-cells in adaptive 

immune system. Upon activation, NKT-cells produce a substantial amount of TH1 and TH2 

cytokines which in turn causes pro-inflammatory and immunosuppressive effects. NKT-cells also 

produce CD40L and FASL which are effector molecules and play a role in suppression of tissue 

destruction and autoimmunity.  

Both types of NKT-cells have a variety of roles in disorders and infections such as bacterial and 

parasitic infections, endocrine diseases, neurologic and rheumatologic diseases, murine tumor, and 

type I diabetes [22] [23] [24]. 

2.1.3.5 Memory T-cells 

 As discussed earlier, when a body is re-infected by the same or similar pathogens, the 

immune response will be stronger and faster. This is because the immune system uses memory cells 

to identify pathogens which it has previously encountered. The mechanism is almost the same as 

that of B-cells, but in T-cells there are two type of memory cells called central memory T cells 

(TCM cells) and effector memory T cells (TEM cells) each of which can be either CD4+ or CD8+ 

cells. TCM cells express CCR7 and CD62L receptors and are located in secondary lymphoid. They 

do not have effector ability but when they face antigens they quickly proliferate and differentiate to 

effector T-cells so they have common ability with stem T-cells. TEM cells don’t express either of 

CCR7 or CD62L, but they can move to peripheral tissues and have effector activities [25]. They 

apply their effector role by secretion of cytokine [26]. The differentiation process of memory T-

cells is not fully understood but they are two proposed models. In the first model which is also 

called linear model, memory T-cells are directly derived from effector T-cells (CD4+ and CD8+). 

At the earliest stage, naive T-cells differentiate to effector T-cells in presence of antigens. After 

clearance of pathogen, the majority of effector T-cells will die and the remaining cells go to the 

third and final stage which is differentiation to memory T-cells. But in certain cases such as 

presence of inflammatory milieu, T-cells can differentiate to memory type without going to the 

effector cells differentiation stage [27]. 

2.1.3.6 T-cells Differentiation  

 Cellular differentiation is a process by which general cells become more specialized cell 

types. The human genome contains more than 20,000 genes which code for proteins. Cells of any 

specific type normally express 10 to 20 percent of the whole genome’s coding genes. Expression of 

a particular sub-set of genome depends on several factors such as cell function or its environment 

and tissue. Each cell type is defined by a specific pattern of gene expression and switching between 

different gene expression patterns can often cause a transition between different cell types. Gene 

expression is the result of a gene regulatory network wherein a gene receives input signals and may 

be inhibited or expressed. There are several networks for different sets of functions in cells. The 

composite of all networks constitutes the regulatory network of the cell. The result of a genetic 

regulatory network is that some genes which are expressed in almost all of the cell types 

(housekeeping genes) and some genes are specific to different cells or different developmental 

stages (cell type specific genes) [28].  The cells which are capable of differentiating into all cell 

types are called totipotents and the cells which can differentiate into a slightly more limited scope, 

all except extraembryonic cell types are called pluripotents (stem cells). This cell type is able to 

produce other stem cell for maintaining their population and also generate more specialized stem 

cells (multipotents) such as blood stem cells which are themselves capable of producing red blood 

and white blood cells.  Multipotents generate specialized cell types for different tissues or 

structures. The differentiation process starts from totipotent (such as zygote), passes pluripotent 
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stage to multipotent and finally finishes at the most specific cell types. 

 The process of specialization of the T-cells starts from pluripotents stem cells where they 

differentiate into less general lymphoid stem cells (multipotents).  Lymphoid cells become more 

specialized and divide into T, B and natural killer (NK) lymphocytes. NK cells a final stage of 

specialization and will not differentiate further. Naive B lymphocytes differentiate into plasma and 

memory B cells and T-lymphocyes divide into naive CD4+/CD8+, memory, regulatory, and natural 

killer T-cells.  Naive T-lymphocyes will also differentiate into very specialized types of cells with 

the responsibility of acting against pathogens (figure 2.1).  

 

 
Figure 2.1. T-cell Differentiation 

 

2.1.3.7 T-cells Main Regulatory Network 

 Since this study focuses on Protein-Protein Interaction (PPI) in T-cells, this section is 

devoted to the work that has been done by Gabriel Teku and others [29] where they characterized 

the most important gene interaction network in T-cells. PPI means contact between several proteins 

at their functional sites. PPIs can be part of cellular context, cell-type, and tissue specific. Study of 

dynamics and structures of PPIs can reveal many aspects of protein function and regulatory process 

in the body.  

 A PPI network can be represented by a set of nodes and connecting edges between them. 

Since they can be shown using a graph, there are several approaches for studying them by graph 

theory methods. As protein interactions in many organisms are extremely complex, in many cases 

study of the entire network is infeasible. Many articles have shown that sub-graphs in the complex 

networks may be related to specific biological processes, different transduction and even disease 

pathways [30] [31]. There are many techniques for identifying sub-graphs related to different 

cellular process or signal networks [32] [33]. Unfortunately, due to large scale of networks in many 

organisms, these approaches are infeasible in many cases. An interesting approach introduced by 

[33] identifies cell-type specific sub-graphs in the large network without having computational 

complexity problem (a description to the approach is given but for a comprehensive description sees 

[29]). 

 In this project the researchers obtained 1323 proteins from Immunome Knowledge Base 
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(IKB) [34] and the KEGG Pathways database [35]. After obtaining protein interactions from 

iRefIndex database [36], 353 proteins which did not have any interaction with other proteins in the 

data-set are removed.  Links between proteins were supplemented by the Pearson correlation 

coefficient (see statistics section) of gene expression information from microarray studies of T-cells 

using many microarray data analysis techniques (see microarray data analysis section).  After 

retrieving 22 time series experiments (containing 262 data-sets), they separated two-color, non-

affymetrix experiments and the experiments for which raw data was not available into different 

groups. Afterwards, normalization methods for each of the experiments were performed (on each 

group with different methods) and effect size of the individual experiments was calculated. Outliers 

were removed using k-means and 19 remaining experiments were used to find gene correlation 

value. A series of steps were performed on each of the 19 experiments, except as noted otherwise:  

First, a Pearson correlation coefficient for gene pairs was computed. Second, Fisher's z 

transformation Reference Average Weighted Effect Size for gene pairs was. Then, Average 

Weighted Effect Size for all 22 data-sets was calculated resulting in 22 tables. Euclidean and 

weighted Manhattan distances algorithms were applied on the tables to find the outliers (using 

clustering methods). Finally, after removing 3 data sets, the gene correlation coefficient values were 

computed based on 19 remaining tables (for formula and complete description see the original 

article). 

 So far, a large network of 617 proteins and links between them (associated with gene 

expression correlation value) has been made. They performed network decomposition with an 

iterative algorithm that starts with PPI network and identifies a link with least weight (correlation 

value) and remove it. Afterward, the algorithm checks if there are disconnected nodes in the 

network and removes them. In the final step the algorithm measures four scores to find out if it can 

finish the process. The first score E measures the effectiveness of information transfer between 

nodes of a network. The C score is the global clustering coefficient which is the probability of 

adjacent nodes having the potential to form a loop. It is calculated by using two measures, number 

of triangles (three fully connected nodes) and number of triples (three nodes which are accessible 

from each other). Matthews’s correlation coefficient (MCC) is also calculated for each cycle. All 

measures are plotted and a cut-off value is decided based on properties of the plot (such as elbow 

point or if the network is falling apart). The remaining network contains the most important 

proteins, or “Central T cell Network (CTN)”, in T-cells. To verify, gene ontology term enrichment 

analysis was performed and the result showed enrichment in T-cells related terms. They also 

mapped the network onto TCR, JAK-STAT and MAPK signaling pathways. The result presented 

that most of the proteins comprising the important pathway for signaling of T-cells are present in 

the network. Therefore, 1323 proteins and 2095 links were reduced to 254 proteins 196 links. This 

approach has potential problems. First, it needs several microarrays for the target tissue and each 

data set has to include at least three samples. Second, this approach needs at least one protein as the 

input and one output component in the essential signal transduction pathways. But regardless of 

these limitations this great reduction makes analysis of this network much easier such that it can be 

processed and validated by many algorithms such as Boolean networks. 

2.2 Boolean Networks and dynamics of a system 

Cellular Automata (CA) is an abstract computational system, a computational problem 

solver, and a tool which is a representation of dynamics in many fields such as physics and system 

biology. The concept behind CA is simple but it can be applied to extremely complex problems. A 

CA consists of an N-dimensional lattice of entities which are called cells (also called atoms). Each 

cell can only be in one of the finite states at discrete time t. At each time step t+1, the states of all 

the cells are updated according to an update rule which is based on the neighboring cells. So in each 
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time step a new grid is produced. The pattern produced by this process can be further analyzed to 

find a possible solution for the problem. This is a very limited definition of CA. Cellular automata 

can be much more complex than has been described [37], but further explanation is out of the scope 

of this thesis. Instead, an extension CA which is called Random Boolean Networks (RBN) is 

described in the next section. RBNs have been adapted to biological system and they are 

generalization of CAs. 

2.2.1 Random Boolean Networks 

A Random Boolean Networks (RBN) was originally proposed by Kauffman [38] as a model 

of genetic regulatory network. Since the idea behind the model is based on Boolean attributes (such 

as function and value), this model is well-adapted to many real life systems because their states can 

be determined by threshold. Kauffman proposed that living systems are created based on randomly 

combined elements rather than with previously defined components. The classic RBN consists of d 

number of nodes (shown by N) with links between them where N= {n1, n2, n3… nd}. Associated with 

each node ni, is a value vi which can be 1 (on) or 0 (off). A state of the system is determined by a 

vector of the all values called V where V= {v1, v2, v3…vn}. Considering these variables, the notion 

of dynamics can be applied to the system. Dynamics can be described simply as time. This means 

that if a variable (say t) is added to V then the state of a system at time t can be represented by Vt = 

{v1t, v2 t,v3t …vnt} which denotes a vector of the state of all nodes at time t. The state of the system 

at time t+1 is determined based on the state at time t. This can be formally described by Vt+1=f(Vt) 

where f  is a function which maps the previous state of the system to the current state. Intuitively, 

when a RBN is created, the connections between nodes are randomly generated with a pre-defined 

input degree (number of incoming connection for each node). Afterwards, a set of Boolean function 

is randomly generated and one function is assigned to each node (in random).Mathematically, a set 

of functions F are generated in which F= {f1, f2, f3 ,…, fn}. This Boolean function dictates the state of 

a node at time t+1 based on the state of the neighbors of this node at time t. The two sets of 

connections and functions are only generated one time (before the simulation) and remain constant 

during the calculation. After the initialization, a state 1V (at time 1) is generated randomly and the 

system keeps updating the state of the network until it finds a state which was previously 

encountered. In this step, the algorithm generates another state at random and does the same 

updating process. The algorithm finishes when all the possible states of the nodes are generated. 

The flowchart of this process is depicted in figure 2.2. 
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Figure 2.2. RBN simulation flowchart. 

 

The network of states produced by the dynamics of system is called state transition network 

and as its name suggests, the system constantly updates its state until it is caught in loops. Since 

classical RBNs are deterministic and there are finite number of states 2
n

 (n number of nodes), the 

system eventually encounters repeated states. A state in RBN transition network can only have one 
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successor but many predecessors and this causes system to get caught in loops which are repeated 

during the simulation.  These loops are called attractors. When encountering a loop, there are two 

possibilities. First, the current state is repeated right after itself which means there are no states 

between the repeated states. In this case the period of the loop or attractor is one. The second 

possibility is when the period of attractor is more than one which means there are one or more states 

between two repeats. The first loop is called a singleton, or point attractor, and the second loop is 

called a cycle attractor. The sequence of states which end in an attractor is called the basin of 

attractor. These attractors are of the greatest importance and will be covered later in more detail.  

2.2.2 Features of dynamical systems 

 Dynamical systems often can be classified using a measure called phase. Specifically, 

systems can be divided into ordered, chaotic, and critical phases. In the ordered regime, the system 

begins with an unstable pattern of nodes, but after some time it falls into the stable pattern in which 

simulation does not change the state of the system. It means, at the beginning, the nodes values are 

constantly changing and then the frequency of changes decreases until a stable pattern is found. 

After that, the system will not dramatically change its state. By contrast, in the chaotic phase the 

system tends to change constantly and will not stabilize its state. Critical or “edge of chaotic” 

happens when the system switches its state from ordered to chaotic. These regimes can be used to 

measure the stability of the system. For instance, in determining how sensitive the system is to the 

initial condition or how damage spreads across the whole state space. This can be done in several 

ways. For example, one can flip nodes values (one or more nodes) or changes the links between 

nodes or even change the Boolean function and observe how this change affects the system 

comparing with the normal conditions. It has been shown that, any changes to the normal conditions 

of the system will spread more rapidly and strongly when system is in the chaotic phase, and the 

reason for this relationship is that in the ordered phase, the stable states do not spread the change 

but in the chaotic regime spreading will occur much more easily. Therefore, chaotic systems are 

more sensitive to initial conditions, damage, and changes [39]. Living systems need both features to 

survive. They have to be stable in order to retain information and they need to be flexible to adapt to 

the changing environment. So the preference of the living organisms is to be in a the critical phase 

(or in the ordered state near the critical regime). Since RBNs are used to model dynamics of 

systems in living organisms, many studies have been done to find parameters involved in balancing 

the system between chaotic and ordered regimes (for a comprehensive review see [40]). It has been 

shown that phase transition between ordered and chaotic regimes depends on two parameters K and 

P (where K is input degree of nodes and P is used when the functions which are associated with 

nodes have probability of being one or zero). In general, it has been shown that when K ≤ 2 the 

system is in ordered phase and when K ≥ 3 the system tends to be in chaotic regime. Therefore one 

can assume the system will be in critical point when K= 2 [40]. 

2.2.3 Attractors in Boolean network 

 As mentioned earlier, attractors will be encountered in any network simulated using RBNs. 

Kauffman proposed that the state of the network in attractors is potentially related to cell types and 

the period of attractors (and basin) may be related to developmental process of cells. Many studies 

have approved his findings [41]. For example, [42] showed point attractors related to differentiation 

and apoptosis states of cells, and [43] wrote that singleton attractors are related to the steady state of 

cells. Several studies have also been done not only to find attractors but also on their properties, 

such as number, length, and their basins [44]. For example, there has been a great debate on the 

relationship between number of attractors and different parameters in network, such as number of 
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nodes. For instance, Kauffman showed the total number of attractors can be √N where N is the 

number of nodes. Since the number of states in a network grows exponentially (2
N
), there is no 

exact way for a complete statistical analysis of such networks. Basically, the problem of finding all 

of the attractors is NP-Hard [45]. So in many cases, researchers only explore small subset of the 

network (by sampling the state space) or only use small networks (less than 20 nodes). Although 

some of the attractors will be missed it can still be a reasonable approach given that living systems 

never try all possible configurations. The second case would be useful only for limited cases 

because many real biological networks are extremely complex. 

 There exist several algorithms which have been proposed to have lower computational 

complexity compared with the original problem. For example, [46] proposed an algorithm for 

finding singleton attractors. Using this algorithm, a partial state is extended toward a complete state. 

If the partial state cannot be part of an attractor, it would be left out. So this approach reduces the 

state space by removing the paths which are not potentially part of an attractor. They also extended 

this notion for finding small cycle attractors. In both of these cases the time complexity of the 

algorithm is not less than 1.13
N
 for singleton attractors (in real cases) and therefore 1.23

N
 for 

finding cycle attractors. So this method is only feasible when working on average size network. 

 The second algorithm was proposed by [47]. First, a propositional formula, for an unfolded 

transition relation of the network for k steps is generated and solved by using SAT-solver [48]. The 

satisfying assignment for this formula is an open path which is further expanded to an attractor. 

Next, k is increased for a different path with different length. Since SAT-solver has low time 

complexity for solving formulas with many variables, this approach works well for large networks 

but also has two limitations. First, its performance highly depends on length of the attractors and 

second, it cannot to be utilized in customized Boolean networks which their propositional formulas 

are not solvable by SAT-solver. 

 There are other approaches which have nearly the same performance, compared with the 

previously described approaches (for a complete review see [49]). For instance, [50] also uses 

partial state to find the attractors, but it is more efficient than [46]. But altogether, none of these 

algorithms are optimal and they cannot find all attractors in free-scale networks. Specially, when 

RBN is not deterministic, network analysis will be more difficult. Different types of RBN are 

covered in the next section. 

2.2.4 Different types of RBNs 

 Random Boolean networks have several sub-types with regard to the updating rules. The 

previously introduced RBN is called classical RBN (CRBN) because it was the original model. In 

CRBN the state of the network at t+1 is assigned by synchronously updating values of all the nodes 

at time t. The major criticism to CRBN is that they are not realistic because the states of all genes in 

living organisms do not change synchronously. This criticism caused invention of Asynchronous 

Random Boolean Networks (ARBNs). In ARBNs, the state of the network at time t+1 is dictated by 

updating functions which update the value of only one node in at time t. Since this target node is 

selected randomly, ARBNs often behave stochastically and so only singleton attractors can be found 

in ARBNs and therefore there are no cyclic attractors [51]. Three other classes of CRBNS were 

proposed by [53] which are not regarded as new methods as only the parameters are changed in 

order to restrict or loosen the ARBNs domain. Deterministic Asynchronous Random Boolean 

Networks (DARBNs) are a type of ARBNs which do not update each node at random. Instead, 

selecting a node is restricted to two parameters p and q that indicate at what time a particular node 

can be selected and updated. A node is updated when “modulus of time t over p is equal to q”. If 

two nodes are selected at the same time, the first node will be updated and then the second node will 

be selected by taking the new state of the network into account. This modification enables ARBNs 
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to work in a deterministic way. Generalized Asynchronous Random Boolean Networks (GARBNs) 

is a generalization of DARBNs in which any number of nodes for may be updated. Deterministic 

Generalized Asynchronous Random Boolean Networks (DGARBNs) are nearly the same as 

DARBNs, but when more than one node is selected at the same time, the nodes will be updated 

synchronously. Finally, there are Discrete Dynamical Networks (DDN) [54] which are assumed to 

be the most general of all types of Boolean networks. Figure 2.2.2 shows how Boolean networks are 

derived according to [53]. 

 

 
Figure 2.2.2. Boolean networks hierarchy. 

2.2.5 Applications of RBNs. 

 Random Boolean networks have several applications not only in biology but also in many 

other computational sciences. They are used to investigate evolution through interpretation of how 

the networks themselves iteratively evolve [54]. Robotics and neural networks are two non-

biological examples of applications of RNBs. As discussed earlier, the most important application 

of Boolean networks is to study genetic regulatory mechanisms in living organisms. A derivative of 

RBNs is called Probabilistic Boolean Networks (PBN) which has been successfully applied for 

finding gene functions [55]. Biological aspects of random Boolean networks can be assessed using 

several bioinformatics tools. In the next two sections two tools for extracting information from 

RBNs are described. 

2.3 Microarray Data analysis 

2.3.1 Introduction 

 Microarrays are one the most important tools for finding gene expression level in an 

organism. There are several types of microarray which are used for different purposes. For instance, 

gene expression profiling microarrays are used for finding expression level of several genes [56], 

comparative genomic hybridization is used when assessment of genome in different cells is needed 

[57], and SNP detection is used for identifying single nucleotide polymorphisms within or between 

populations. Microarray technology can be divided into two different devices, single and dual 

channel. In the single channel, only one cDNA is loaded and the array is used to find absolute levels 
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of RNA expression. In dual-channel microarrays, two cDNAs from different conditions are loaded 

at the same time. The devices are utilized to determine relative levels of cDNA expression. Each of 

these technologies has advantages and disadvantages. The major advantages of single channel chips 

are that it does not suffer from contamination by a second sample. However, in dual-channel, 

comparison of the two sources (conditions) is easier but it is more error prone. The rest of this 

section is devoted to dual channel microarrays for gene expression profiling which is more related 

to the thesis but most of the ideas are applicable to single channel microarrays as well.  

2.3.2 Microarray chip preparation 

 For preparing a chip, RNA molecules need to be extracted from two conditions. The first 

condition can be an infected a cell or tissue which has not been under normal conditions and the 

second condition a reference and it can be cells with normal condition (no diseases and no 

treatments). After that, an enzyme called reverse transcriptase is used to convert RNA to cDNA. 

Both cDNA molecules from two conditions are labeled by different colors (green for normal and 

red for the other condition).  Next, samples are allowed to hybridize onto the same slide. This slide 

contains genomic DNA or a short stretch of oligonucleotide strands (corresponding to a gene) which 

are fixed to thousands of locations that are called spots. Each spot may contain millions of the same 

DNA fragment. cDNAs from samples will hybridize to their complimentary strands on each spot 

and the slide is then scanned by using a laser to detect the red and green dyes. The amount of 

emitted fluorescence color from the slide will show the relative level of gene expression in different 

samples. If a gene in normal condition is more expressed the spot will be green, if it is more 

abundant in the test condition the spot will be red, if the expression level is the same in both 

samples, the spot will be yellow, and if the gene is not expressed in either of samples the color will 

be black. After scanning, the system will generate a TIFF image which needs to be analyzed to 

determine gene expression levels for both samples.  

2.3.3 Image analysis and data pre-processing  

 When the scanning process is done and an image is produced, the image needs be analyzed. 

The image processing can be divided into three different procedures. First, sub-arrays which contain 

a set of spots are identified. Next, spots are identified either by estimating locating of spot centers. 

Finally, the median background color intensity values are subtracted from the median value of 

pixels within a spot. Using this method, the values are less sensitive to anomalous fluorescence 

values. 

 When background subtracted value for all spots (for two channels) are detected, the relative 

expression ratio can be calculated using formula
i

i

i

R
E

G
  where iR  is median expression level for 

gene i in red channel after subtracting background intensity of the red channel and iG  is median 

expression level for gene i in green channel subtracted by background intensity of the green 

channel. 

 This expression ratio is highly sensitive when one has to compare up-regulate vs. down-

regulated genes. This sensitivity is rooted in that facts that up-regulated genes are mapped between 

1 and infinity but down-regulated genes lie between 0 and 1. Therefore, transformation is required 

to map both measures between comparable, and the same, scales. There are many transformation 

methods such as inverse transformation and log transformation. Inverse transformation converts an 

expression ratio into a fold change in which if expression ratio is less than 1, the folds change is 

multiplied by -1, otherwise the fold change remains the same. The pseudo-code for conversion is 

given below:  
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IF Ei>=1 THEN 

 Ei=Ei 

               IF Ei<1 

 Ei=-1/Ei 

Using this approach, one can map fold change to the same interval. Log transformation has an 

advantage comparing inverse transformations, the capability of handling continuous space. Log 

transformation can simply be done by taking logarithm base 2 of the expression ratio. Using log 

transformation, one can treat equally differential up-regulation and down-regulation. The most 

important disadvantage of transformation method is that it completely removes information about 

expression level of genes.  

2.3.4 Data normalization 

 The next step after transformation is normalization. Normalization involves removing 

systematic variation from the data [58] [59]. These errors can be detected when measuring genes 

which are supposed to have similar expressions (such as housekeeping genes which are considered 

to have expression ratio 1). Systematic variation can be caused by factors such as labeling 

inefficiency and mRNA materials.  

 Housekeeping gene expression is the first filter used to remove variation. This is done by 

isolating these genes and calculating normalization factor for the set of genes (which all have 

similar expression). Next, the calculated factor will be used for normalizing the other genes. There 

are several methods for normalizing the data. Total intensity normalization is used with the 

assumption that the number of RNAs in both samples is the same and also that the same number of 

molecules from both samples hybridizes on the chip. Considering this assumption, the 

normalization factor is calculated using the isolated gene set and intensities are rescaled. Mean 

centering normalization assumes that log ratio means of the gene set are equal to zero and a 

normalization factor is computed and intensities are rescaled using this factor. One of the most 

widely utilized methods is called locally weighted linear regression (lowess) normalization [60]. 

Using this method, one can assume that the dye bias is dependent on spot intensity. It fits a curve 

through all of the data points and adjusts the value of each point with regard to the curve. There are 

also other methods such as Quantile normalization or linear regression which are beyond the scope 

of the thesis.  

2.3.5 Data analysis 

 Having transformed and normalized data, biological knowledge needs to be extracted from 

the data. This involves performing many experiments such as finding genes with different 

expression patterns, gene expression profile between two samples, or functional annotation etc. 

There are several methods for extracting information from microarray data and the selection of a 

method is highly dependent on the biological question which needs be answered.  

 Expression ratios can be represented as a matrix where each row represents expression ratios 

of a single gene in all samples and a column shows expression ratios for all of the genes in a single 

sample. Using the matrix, the problem of finding differences in expression profiles within the genes 

and between samples is converted to problem of finding distance or correlation between two vectors 

(either a genes vector of two samples or a samples vector of two genes). One of the most commonly 

available methods is called Euclidean distance. This method measures the square root of the sum of 

the squares of the distances between the values. There are other distance measurement methods 
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such as  Hamming distance and Minkowski distance which are less used compared to Euclidean 

distance (for formulas, see statistics section). A Pearson correlation coefficient (PCC) computes 

difference in shape of expression profile (not its magnitude). PCC produces a value in the range of -

1 to 1. The value 1 means the genes (samples) have quite similar expression profiles and -1 means 

they have exactly opposite profiles. If there are no inferable relationships between the profiles PCC 

would produce zero. Often a cut-off value is considered for decrementing between similar and 

different profiles but choosing this value is highly dependent on the data-set.  PCC is assumed to be 

a highly reliable measurement and is broadly used in microarray data analysis (For description and 

formula see statistics section). There are other measures such as Rank correlation coefficient (RCC), 

Shannon’s entropy which are not covered in this text but readers are referred to related articles [61] 

[62] 

 Finding differences between two samples is not informative in many cases. That is because 

microarrays contain thousands of genes and many samples so finding distance between two 

samples, or two set of genes, is not an effective way to find patterns in data. Machine learning 

methods are often utilized to find patterns in data. Machine learning methods are divided to two 

categories, supervised and unsupervised methods. The first class is called supervised because 

external sources of information are used to classify genes to different classes. For example, one can 

gather information for expression of genes in different disease conditions and normal conditions 

and then assign the genes or sample to different groups. The unsupervised approach is used when 

there does not exist external information and data needs to be clustered only by considering 

relationships between data points. Compared with supervised approaches, unsupervised methods 

need more sophisticated techniques because in supervised approaches the system can be trained 

using available information but in unsupervised approaches there is no information to learn from. 

There are several algorithms for performing supervised analysis of microarray. Several machine 

learning methods such as support vectors machine (SVM), k-Nearest Neighbors, and Fisher 

Discriminant Analysis work perfectly on microarrays when external information is available. The 

aim of all of these methods is to learn from training data and decide on classification of unseen data 

(for complete descriptions see [63]). T-test and significance analysis of microarrays [64] (SAM) are 

also used to measure differentially expressed genes in several samples. Since thousands of genes 

may be assessed at the same time, multiple T-tests or hypothesis testing may produce error. 

Therefore, errors need to be handled, for example by false discovery rate (FDR) controlling [65]. 

Unsupervised clustering methods are classified to two general categories called hierarchical and 

non-hierarchical. Clustering methods are described in a separated section.  

 Analysis of microarrays often results in a huge number of genes which have to be 

biologically interpreted. There are several tools for annotating microarray analysis results. For 

example, some databases provide information regarding genes, and gene products, which can be 

used for gene enrichment analysis and gene set enrichment analysis. Both of these aspects are 

covered later in a separate section.  

2.3.6 Software packages 

Since microarrays are widely used, there are many software packages and websites 

available which are dedicated to performing specific analyses on chips. Some beneficial tools are 

described below: 

Bioconductor [66] probably is the most well-known programming packages for performing 

different analyses on microarrays.  Bioconductor is open source software which contains hundreds 

of packages for analysis and comprehension of genomic data and many microarrays methods have 

their own package. Because Bioconductor can be used in R programming environment, at least an 

intermediate knowledge of R is required to utilize this package. Gene Expression Pattern Analysis 
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Suite (GEPAS) [67] provides a web interface for doing many microarrays analysis from pre-

processing to functional profiling. Tm4 [68] also provides a java application for performing 

different analysis. It offers tools for microarray data analysis, ranging from image processing to 

functional profiling of genes. Microarray data can be obtained from several sources. Gene 

Expression Omnibus (GEO) [69] and Arrayexpress [70] are among the biggest databases but there 

are also several other publicly available resources such as ArrayTrack, Stanford Microarray and 

MUSC databases. Most of the data are provided in two forms. One form is raw format which has 

been not processed and the second form is processed format (which is usually in matrix format) 

where pre-processing and normalization have been done on the data.  

 Microarrays data analysis is a very broad subject and several aspects of them, such as 

deferential analysis and comparing microarrays, are beyond the scope of this thesis. For more 

comprehensive introductions readers are referred to several available textbooks (see for example 

[64]).  

2.4 Gene Ontology 

2.4.1 Gene Ontology enrichment analysis 

 Many biological analysis tools such as microarrays produce large sets of gene (in different 

conditions or with different expressions). The next step is to determine if any subset of the genes is 

significant in any specific terms (e.g. biological functions). Since studying each gene individually is 

not feasible because of the huge number of genes or subjects under study, an automatic approach is 

needed to handle this problem. Gene Ontology [71] database provides centralized knowledge about 

known genes and allows researchers to annotate their genes list. Gene ontology (GO) provides 

relationships of biological terms to the genes which are known to be part of the terms. The database 

is regularly updated and new associations are created either manually by curators or automatically.  

 GO is organized in a hierarchical way by directed acyclic graph (DAG). Each term is related 

to its successors by either “part of” or “is a” relationships. Using DAG structure, each term can 

have zero or more children and one or more parents. GO terms are categorized into three groups 

called cellular component, molecular function and biological process. Cellular component shows 

the location where each gene (product) is acting. Molecular function represents the functions of 

gene products and biological process can be described as biological phenomena or events which are 

carried out by a set of molecular functions. 

 GO can be used in many approaches. The most common problem is that given a set of 

reference genes, a subset of genes which are under study has to be found using different methods 

such as clustering. This subset, and the reference set, has to be analyzed in order to find out if a set 

of terms which is most common is significantly different from others or it occurred only by chance. 

This process is a typical enrichment testing which asks if assigned to a particular GO term are over 

represented (not by chance), compared to genes assigned to that term in the reference set. Using 

hypothesis testing, the null hypothesis that there is no difference between genes associated to a 

particular term in test and reference sets. Therefore, alternative hypothesis can be “genes are either 

over or under represented in the target set”. A p-value is then calculated which shows how likely 

different terms are associated to the genes by chance. 

 Gene Set Enrichment Analysis [72] (GSEA) is another approach used to identify term 

significance in a subset of genes by taking into account the expression ratio of each gene in 

different conditions (samples). GSEA uses about 1300 gene sets from different databases such as 

pathways or GO. This is particularly useful when one wants to find out if a subset of genes is 

significantly different in distinct conditions. The mechanism of GSEA is more complicated than 

simple gene enrichment analysis. Four different inputs are given to the algorithm: a set of 
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expression data for genes and samples, ranking procedure and profile of interest (such as sick and 

healthy), a set of independently derived genes (e.g. genes sharing the same GO category), and a 

control variable for the weight of the step. Next, an enrichment score (ES) is calculated by first rank 

ordering genes according to their correlation of expression in the selected profile (phenotypes). A 

cumulative sum over ranked genes is calculated in which if a gene is in the set the number is 

increased and otherwise it is decreased. The changes are weighted by gene correlation with selected 

profile. Finally, ES is calculated as the maximum deviation from zero. The significance of gene 

expressions is estimated by permutation of phenotypes and recalculation of ES score, resulting in a 

P-value. The next step compares the original ES score to the created distribution by the permutation 

process and adjusts the significance level to count for multiple hypothesis testing. This is done by 

normalizing ES scores for each gene set and will result in a normalized enrichment score (NES).  

The proportion of false positives is then controlled by calculating FDR of each NES.   

2.4.2 GO Tools 

 Since GO itself is a database of genes and their associated terms, many online and 

standalone tools have been provided for doing different research on gene sets. As mentioned earlier, 

Bioconductor provides several tools for high-throughput genomic data such as microarrays and 

sequence. Bioconductor uses the R programming environment and contains more than 400 different 

packages. It provides annotation browser, term enrichment, text mining etc. Specifically, topGO 

[73] package provides semi-automated enrichment analysis for Gene Ontology by using several 

algorithms such as a combination of elim and weight algorithms which have been provided by [74]. 

Since Bioconductor is associated with R, basic knowledge of this programming language is required 

for using its packages.  

 The Database for Annotation, Visualization and Integrated Discovery (DAVID) [75] [76] is 

an online tool and web service which is widely used by many researchers. The major functions of 

DAVID are identifying enriched GO terms and enriched functional related gene groups, Clustering 

annotation terms, visualizing KEGG pathway. This tool has a friendly interface and also provides 

web service for programmatic access to the available tools.  

 G: Profiler [77] [78] provides an easy to use interface through 5 applications for analyzing 

Gene Ontology (GO) terms, KEGG and REACTOME pathways etc. G: Profiler supports 85 species 

such as mammals, fungi and plants. There are many other tools available for GO analysis but their 

functions are nearly the same as the tools mentioned.  Regardless of their mechanism, these tools 

usually provide enrichment score and P-value for different subset of GO terms and associations. So 

researchers can select the most desirable result among enriched terms. Using this information, 

researchers determine if an interesting, or target subset, of genes grown in different conditions is 

associated with a particular process and how they affect state of the organism. 

2.5 Clustering Methods 

 Machine learning methods are classified into two main categories called supervised and 

unsupervised methods. Given a problem without data for training, unsupervised approaches are 

used to find possible patterns in data. Specifically, clustering which are known as unsupervised 

methods are used to classify data into different groups (called clusters) based on the similarity 

between data points. Clustering methods also are divided into two categories called hierarchical and 

non-hierarchical methods. Hierarchical clustering approach behaves in two different ways with 

nearly the same mechanisms. Given a set of vectors, similarity between pairs of vectors is 

calculated by one of the distance measurement methods, resulting in a matrix which shows distance 

between pairs of vectors. In the bottom-up approach (which is also called agglomerative), the 
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algorithm starts with an assumption that each data point (value) is one cluster itself. In each 

iteration, the two closest clusters are combined and replace the two participating clusters. This 

process continues until all of the data points belong to one common cluster. In contrast, using top-

down approaches (which are also called divisive), all of the data points are assumed to be in a large 

cluster and then in each iteration this cluster is split to different clusters (based on similarity) until 

each point is in its own cluster. There are several methods for performing hierarchical clustering 

such as neighbor joining and unweighted pair group method with arithmetic mean (UPGMA). One 

the most important properties of these approaches are called linkage method. A linkage method is a 

way that the algorithm calculates distance between two clusters. There are several linkage methods, 

such as complete linkage, average linkage and single linkage.  Complete linkage is measured by the 

maximum distance which can be found out between one point in one cluster and another point in 

other cluster.  Average linkage is the measure of average distance between all the pairs in two 

clusters.  Single linkage is defined by distance of the most similar (opposite to complete linkage) 

member between both clusters. Using different criteria, one may end up in different clusters and 

distances. Non-hierarchical approaches start with a predefined number of clusters in which each 

data point is (in general) randomly assigned to only one cluster. Given a criterion, the algorithm 

keeps moving points to a different cluster and optimizing this criterion. This process continues until 

no improvement can be made to the criterion. Since trying all possible assignments to the cluster is 

computationally infeasible (an NP-Hard problem), heuristic methods are employed to decrease the 

state space of the problem. Many devised algorithms, K-means, K-nearest neighbors, and many 

derivatives of k-means such as fuzzy k-means, are mostly used for computational biology analysis. 

Each algorithm can use many criteria such as Mahalanobis squared distance and Within-class 

dispersion. The first criterion maximizes Mahalanobis squared distance between groups and the 

second criterion minimizes determinant of within class dispersion matrix. UPGMA and K-means 

are described in the two next sections.  

2.5.1 K-Means 

 K-means [79] is one of the non-hierarchical clustering methods with a simple mechanism.  

For using k-means, the number of clusters K (also called centroid) needs be defined before starting 

the algorithm. Having the number of clusters and a set of data points (vectors), initial place of 

centroids are defined. This is a very crucial step in k-means algorithm because the initial places of 

centroids have a dramatic effect on the output of the algorithm. Centroid values are often chosen 

randomly and far away from each other. For example, having two centroids, one can choose two 

data points which are far away from each other in random space and place the centroid exactly on 

these points. After initialization, each data point is assigned to only one centroid in which the 

distance between the point and corresponding centroid is minimized.  When all of the data points 

are assigned, the new position of centroids is calculated as the mean of distances between the 

centroid and its associated data points. This process is repeated until no more change can be made 

to the location of the centroids. The result is one possible classification of data point to k clusters. 

Specifically, k-means aims to minimize the objective function below: 
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This equation calculates the sum of distances between each data points and their corresponding 

clusters. K-means objects to minimization of this function, but this algorithm is not optimal. K-

means has several limitations. The first problem is that the result of clustering is highly dependent 

on the initial placement of centroids and there is no exact way to find the optimal value for them. 

Another limitation is selecting the number of clusters. Because in many applications such as 
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phylogenetic trees the number of clusters cannot be defined, applying k-means is not feasible or will 

not give a satisfactory result. There are a few methods such as elbow method which can be used to 

find one possible number of clusters, but manual inspection and a smooth curve after plotting J are 

required. Other limitations such as choosing reasonable distance measure and empty clusters need 

be considered when k-means is used. Considering the limitations, K-means always terminates by 

producing some clusters, but usability and correctness of the clusters must be evaluated manually. 

2.5.2 UPGMA clustering method 

 UPGMA is the simplest method which performs hierarchical clustering. It starts with a 

distance matrix which contains distances between the objects under study. It finds the closest pair of 

objects in the table (say m and n), and combines them to form a new cluster (say u). Next, it 

eliminates the two combined objects and u is added to the table, objects making this cluster are 

connected to a point called a common ancestor. Distance between the new cluster and other object 

is computed by using one of mentioned linkage methods (usually average linkage). This process 

continues until the last two clusters are grouped. For instance, if u= {m, n} and the table contains 

another object say a, distance between u and a is calculated as follows (Using average linkage): 

 D(u ,a)=
D(m ,a)+D(n ,a )

2  

D is a function which returns the distance between two objects. UPGMA produces a rooted tree in 

which each edge is associated with the average distance of two pairs making the corresponding 

branch. UPGMA is widely used in phylogenetics, but it has a drawback. It cannot handle molecular 

clock hypothesis. Therefore, the algorithm assumes the same evolutionary speed on all branches 

[80]. This problem is efficiently handled by other clustering algorithms such as neighbor joining 

method [81]. 

2.6 Graph Theory 

2.6.1 Introduction 

 Graph theory is an efficient way of representing and manipulating of networks in computer 

science. Since many systems are characterized by their interacting components, graphs can be used 

in many applications such as decision making in machine learning, modeling biological network, 

and traffic controls. A graph consists of a set of nodes (vertexes) and a set of edges (links) which 

connect the nodes to each other. A graph can be directed or undirected which means if links between 

nodes have direction toward one of the nodes (or both of them). Formally, a graph G can be shown 

by a pair ( , )G V E that consists of a set of nodes V in which iv V and a set of edge pairs in which

( , )i jv v E .       

 An undirected graph is described by ( , ) ( , )i j j iv v v v E  and ( , ) ( , )i j j iv v v v . Otherwise, it is a 

directed graph.  In an undirected graph the degree of a node is the number of nodes which are 

connected to this node. In contrast, nodes in directed graphs have two different degrees which are 

called in-degree and out-degree. The out-degree of a node is the number of edges which points from 

the current node toward other nodes. The in-degree of a node is the number of edges which point to 

the current nodes.  Formally, In-degree and out-degree of a node iv are shown as follows: 
in-degree: numberof edges(vi , v j)∈E  

    out-degree:number of edge(vk ,vi)∈E   
 

There are several notations which need to be considered when dealing with graphs:  



 

21 

 Order of a graph is the number of nodes it has.  

 Two nodes are said to be adjacent if there exists an edge in E which connects them.  

 Adjacent nodes of iv are its neighbors.  

 A path in a graph is described by ( , )p pP V E G  where 1 2 3{ , , ,..., }p mV v v v v  

(distinct nodes) and 1 2 2 3 1{( , ),( , ),..., ( , )}p m mE v v v v v v .  

 A cycle is a path in which one node occurs twice. So a cycle has one additional edge 

1( , )mv v  which connects the last node to the first node. 

 A sub-graph of a directed graph is called a strongly connected component if there 

exists a directed path between any two nodes of the sub-graph. 

 Graphs can be weighted such that with each edge is associated one value. This value 

is the weight of traversing between the nodes connected by the edge (other 

assumptions are possible). 

 A directed graphs without cycles are called directed acyclic graph (DAG) 

 

 Finally, graphs can be represented using many approaches such as unordered edge sequence, 

adjacency arrays, adjacency lists, and adjacency matrices. Each approach has its own advantages for 

example, adjacency arrays are used for static graphs, adjacency lists are utilized for dynamic graphs 

and matrices are easy to read, and they are also used in many graph analysis applications. For 

example an adjacency matrix of an N ordered graph is given by
n n

ijA a     where:  

 

aij={
1 if (v i , v j)∈E

0     otherwise}  

2.6.2 Graph analysis 

 Applicability of networks and trees in many practical applications is not a new concept. 

Graphs are broadly used in numerous applications, ranging from biological network (e.g. gene 

interactions) to making an intelligent decision by artificial neural networks. This diversity of 

applications causes several problems in this field. Some problems are only specific to a particular 

concept, and others are nearly common in many applications. Given a set of vertices, graphical 

enumeration is the problem of counting specific directed or undirected graphs [82]. The routing 

problem is probably the most common and the most studied problem in graph theory. Traveling 

salesman problem (TSP), Hamiltonian path, and shortest path problems are among the most well-

known concepts in the routing problem. One of the most exciting areas in graph theory (which is 

related to path finding) is cycle detection in a given directed or undirected graph. Cycle detection 

can be handled by depth-first search (DFS) algorithm in which if DFS finds an edge to an observed 

vertex a cycle is found. Cycle detection is also efficiently handled by many topological sorting 

algorithms, but no algorithm exists to identify all the cycles in a network. Since cycles in a network 

have very interesting properties such as capturing the dynamics of that network, many algorithms 

have been proposed to find cycles in different types of graph [83] [84] [85] [86].  Tarjan proposed 

an efficient algorithm [83] for enumerating elementary circuits in a directed graph. An elementary 

circuit is a cycle in which no vertex appears twice but the first and last vertexes. The algorithm 

accepts an adjacency list A which is shown by A(v)  which is a set of all the nodes which have edges 

to node v. The algorithm uses a point stack which denotes an elementary path. The elementary path 

starts with node s and since algorithm assumes nodes are numbered, every node on this path needs 

to satisfy s v  condition. In additional to the stack, this algorithm utilizes a list which is called 
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“marked list” which contains the nodes that are on the elementary path or the nodes that if all the 

paths passing from them to s intersects with p at any nodes other than s. Considering these concepts, 

the procedure starts by generating all the elementary paths which have s at the beginning and 

contain the nodes which are not numbered with an integer less than s. A cycle is found when the last 

node on the elementary path is adjacent to the first element of the path. The important point is that a 

node is only used in the path if it is not marked and also is not deleted from the stack. This 

algorithm has at least O(n. e(c + 1)) time complexity. Tarjan's algorithm is the successor of the 

algorithm presented by [86]. Another algorithm is presented by [86] and improved time complexity 

of Trajan’s and TIERNAN's algorithms to O(n + e). Its mechanism is almost the same as [83] [85] 

but it adds two more features to these algorithms in order to improve accuracy and time complexity. 

First, to avoid duplicating cycles, vertex v is blocked when it is added to an elementary path starting 

with s and is held blocked until no path from v to s intersects the current path at no nodes (other 

than s). Second, a vertex will not become a root vertex on an elementary path unless it appears at 

least on one elementary circuit. This algorithm does not find cycles with period one (loops). These 

modifications make this algorithm faster than the previously mentioned approaches, but given a 

graph, there is no feasible solution for finding of all of the cycles, and this remains an open problem 

for further investigations. 

2.7 Statistics 

2.7.1 Hypothesis testing 

 Hypothesis testing is a popular method for finding out if there is enough evidence in favor of 

a hypothesis with regard to a parameter. A test consists of two hypotheses. The first hypothesis 

which is called the null hypothesis (H0) and means the favored assumption regarding the parameter 

and the second belief is called alternative hypotheses (H1 or HA) and means an assumption that will 

be accepted if there exists enough evidence to the contrary of H0. There are four possibilities when 

one draws a conclusion regarding hypotheses. There are two types of error when applying 

hypothesis testing. The first and most important error occurs when the null hypothesis is correct but 

alternative hypothesis is favored. This error is called type I error and its probability is shown by 

Greek symbol α. The second error occurs when the alternative hypothesis is incorrectly rejected. 

This error is called type II error and its probability is shown by β. Other two possibilities occur 

when correct decision is made. The conditional equations for both of the errors are shown below: 

 α = P (H1 is judged | H0  is true )  

 β = P (H0 is judged | H1  is true )  

 Clearly both of the probabilities are favored to be small, but it is a tradeoff between α and β. 

When α is decreased, β is naturally increased and vice versus.  Hypothesis testing approach tries to 

keep α as small as possible (not too small such that β is increased). That is because the favored 

assumption is H0 and decreasing α means more evidence is needed in order to reject H0. There are 

two commonly used values for α, 0.05 and 0.01. α is also called significance level which is used to 

find the rejection region for the null hypothesis. The mechanism of hypothesis testing begins with 

stating a hypothesis and conditions for the rejection. Normally a hypothesis is based on the 

difference between the sample mean and the population mean (other parameters can also be 

included). For instance, H0 : μ = μ0 can be a representation of equality between the sample mean 

(μ) and population mean (μ0) which means the null hypothesis is true when observed sample mean 

is equal to the population mean. Against H0 is the alternative hypothesis which can be either one 

sided or two sided. In one sided experiments only one side of the mean rejects H0 (H1 : μ < μ0 or  

H2 : μ > μ0). Two sided experiments only state that H1 : μ ≠  μ0 which means if μ lies on either 

sides of μ0 the null hypothesis is rejected. The framework for comparing the means is provided by 
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t-test: 

t=
x̄ − μ0

s

√n  
Where x , s, n are the sample mean, standard deviation and number of entities, respectively. If the 

original data is normally distributed, t can be either from t-distribution with n-1 degree of freedom 

or not. If t comes from t- distribution, then H1 would not be accepted. Otherwise, H0 would be 

rejected, and this means that difference between population and sample means is large and cannot 

be described by t-distribution. This largeness can be indicated by α. Specifically, this cut off (c) is 

identified by critical t-values table with chosen α level and degree of freedom n-1. For instance, if t 

is greater or less than c (in two sided experiments), H0 would be rejected. This means that H0 is 

rejected with 100a percent probability of making an error.  

 Results of the test are highly dependent on α value. It means that when decreasing α, it 

becomes more likely that the null hypothesis is accepted. P-value is the probability of wrongly 

rejecting H0. This value is the probability of observing T-test value more extreme than which was 

observed if the null hypothesis is true.  So smaller the P-value, more likely H0 is rejected. Usually 

0.05 or less can be regarded as strong evidence against H0. Finally, there are several important 

aspects one has to consider for performing hypothesis testing: 

 Data distribution has to be normal or at least it should not highly deviate from the normal 

distribution. If the data lightly deviates from normal, other testing formulas such as 

bootstrap testing can be considered. If the data is highly skewed then one might want to 

consider other parameters and not the mean. 

 Power of the test is calculated by 1-β. This is the probability of rejecting H0 when H0 is 

actually false. 

 Sample size (n) is a very important aspect of hypothesis testing. Usually larger the sample 

size, the more reliable the test would be. Retrieving more samples may be a difficult task in 

some problems. Therefore, many authors suggested a sample size of more than 30. 

 Multiple hypothesis testing is a special case of normal test in which one wants to test 

different samples (different hypotheses). This means a test would be done several times. 

Since each experiment produces a small amount of error and because a test is taken several 

times, the probability of having one false in the tests can be much higher than one 

experiment. So one has to have control over different errors such as family wise error rate 

(FWER) or false discovery rate (FDR). This is especially used for microarray data analysis 

where thousands of genes are tested. So performing ordinary hypothesis tests will produce 

unreliable results. 

 T-test is performed when population standard deviation is unknown, and z-test is performed 

when population standard deviation is known. 

2.7.2 Pearson correlation coefficient 

 As mentioned earlier in microarray data analysis section, Pearson Correlation Coefficient 

(PCC) is used to measure the similarity between two vectors. In microarrays, these vectors can be 

gene expression values (normalized) between two different samples or expression ratio of two 

genes in different samples. Having two vectors which are denoted by A=[a1, a2, a3...a N1] and
B=[b1, b2, b3. ..bN2] , PCC is calculated as follows: 

 

1. Means of two vectors are calculated. M1 and M2 are means of A and B, respectively. 
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M 1=
∑ ai

N1  

 

M 2=
∑ bi

N2  
        2. The vectors are mean centered (minus sign is element-wise). 

 Ac=A−M1  

 Bc=B−M2  
            So 

    
1 2 3

[ , , ,... ]
nc c c c cA a a a a   

    
1 2 3

[ , , ,... ]
nc c c c cB b b b b   

3. Element-wise multiplication of two vectors are computed as follows: 

       
EM=∑ (ac i

∗aci
)

  
4. Sum of each of the mean centered vector is calculated: 

     
S A=∑ ac i  

    
SB=∑bci  

5. Finally, PCC is computed as follows: 

     

PCC=
EM

S A∗SB   
The last 3 steps actually calculate the cosine of the angle between two vectors. As previously 

mentioned, PCC produces a number which is an indication of the similarity between two vectors 

Some software packages also calculate a p-value which denotes how reliable the PCC is. There are 

other methods for finding out relationships between vectors such as Rank correlation coefficient 

(RCC) which are not covered in this thesis. 

2.7.3 Distance between two vectors 

 Measuring distance between two sets of values is widely used in many applications such as 

phylogenetics. There are several methods for measuring the difference between two vectors such as 

rectilinear distance, Hamming distance and Euclidean distance.  

 Given two vectors 1 2 3[ , , ,..., ]nA a a a a and 1 2 3[ , , ,..., ]nB b b b b , Euclidean distance is 

calculated as the square root of the sum of the square of difference between entities in each vector: 

D( A ,B)=√∑ (a i−bi)
2

 
Hamming distance is a special case of Euclidean distance where A and B only contain binary 

values.  Both of these methods are derivatives of Minkowski distance which is calculated as 

follows: 

D(A,B)=
pow

√∑(ai−bi)
pow

 
As mentioned, applying distance methods [87] is very common in many areas such as clustering, 

retrieval problems, and phylogenetics and choice of the method often changes the result of the 

algorithms.  
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Objectives 

 The main purpose of this study is to find the genes which are involved in T-cell 

differentiation, but the ultimate goal of this project is to provide a general framework for simulation 

of gene co-regulatory networks. In order to solve the problems, following analysis need to be done: 

 

 Defining an approach in order to simulate gene regulatory networks. 

 Defining an updating function for determining state of a gene in different times. 

 Finding initial values in order to reduce the space and time complexity of the simulation. 

 Finding different parameters for random and effect part of the updating function in which 

the randomness and effect of neighboring genes are balanced. 

 Performing simulation for a reasonable number of runs. 

 Detecting attractors using graph theory algorithms. 

 Analyzing most frequent and probable attractors in order to find T-cell differentiation 

related genes. 

 Clustering attractors and analyzing different clusters. 

 Finding gene expressions in different clusters, identifying differentially expressed genes, 

and analyzing them in order to find T-cell differentiation related genes. 

 Verifying the system by comparing simulated gene expressions with actual microarrays 

experiments. 
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3. Materials & Methods 

 As previously described, "the Central T cell Network, CTN" which contains the most 

important genes and their interactions in T-cells was proposed by [29]. This network consists of 254 

genes (nodes) with 196 links (edges) with average node degree 1.5, and the network is separated 

into 61 clusters where the largest one has 73 nodes and 74 links, and the smallest ones have two 

nodes and one link (table A1.1 and figure A1.1 in appendix 1). With each edge is associated a 

correlation coefficient value of expression between two genes which are linked by that edge (table 

A1.2 in appendix 1). The network assumes no directions on edges, so the result is a co-regulatory 

network which means if two genes are connected they may regulate each other depending on 

whether each gene is expressed or not. Expression of one gene is not only dependent on the 

expression of its neighbors, but also on the correlation between the neighbors of the gene. 

Simulation of the dynamics of such a network needs special treatment not only because one has to 

consider the correlation values, but also stochasticity of the cell environment needs to be taken into 

account. This is because a cell may behave in a way which is unknown or it may have different 

states in different conditions. For simulating the system behavior, a modified version of random 

Boolean network is used to model dynamics of the system. Because RBN and its derivatives and 

similar methods such as PBN, work only on systems with Boolean functions with predefined level 

of stochasticity, they cannot handle special networks with correlation values. The next section 

provides the modified version of RBN which is used to handle these problems. 

3.1 Setting up the environment 

 For initializing an RBN, one needs to randomly assign connection between nodes. Because 

CTN network has its own connections, this step is skipped. RBNs also need randomly assigned 

Boolean function to each node. Since the network provided by [29] is characterized by correlation 

values between genes, non-Boolean functions need be considered for finding the state of each gene 

at different time.  

 Considering these problems, dynamics of CTN can be simulated by using the following 

system: 

Similar to RBNs, a state of the system at time t+1 is shown by a vector of 254 genes where each 

gene can take value 1 or 0 which means gene is expressed (on) or not expressed (off), respectively. 

So the state of the network S at time t is shown by S t  as follow: 

 

v1  v2  v3  ... v254  

 

Where {0,1}iv  . Dynamics of the network are shown by the state transition network where each 

node is one possible state of the network at time t followed by its descendant which is the state of 

the network at time t+1. 

1 2 3 254{ ( ), ( ), ( ),..., ( )}tS v t v t v t v t

  

  1 1 2 3 254{ ( 1), ( 1), ( 1),..., ( 1)}tS v t v t v t v t     

 

 

Value of a node iv  at time t+1 is a function of its neighbors at time t: 

1 1 2 3 254{ ( ), ( ), ( ),..., ( )}t t t t tS f v f v f v f v    

The functions which undertake mapping from tS to 1tS  have principle differences to RBN's functions 

in which instead of having several functions which are randomly assigned to each gene, a general 
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function is used to perform the mapping. This function consists of two parts which are named the 

effect and the random components (EC and RC, respectively).  
f t(vi)=EC (vi)+RC (vi)  

The effect component applies the effect of neighboring genes on the current gene in which if a 

neighbor is on at time t, it has a positive effect and otherwise its effect is negative. Neighbors apply 

their effect on gene i by using their expression correlation coefficient value with the gene i. 

Specifically, effect component (EC) is calculated as follows: 
EC (vi)=∑ (rij×sij(t))  

Where ijr   is the correlation value between neighboring gene j and gene i. ( )ijs t is computed as 

follow: 

sij(t)={
1 if v j(t)=1

−1 if v j(t )=0}  

This equation means if jth neighbor of node i has value 1 at time t, ( )ijs t
 
is 1, meaning that this 

neighbor has a positive effect on the current gene and promotes expression of the gene i. If the 

neighboring gene has value of zero, -1 is assigned to ( )ijs t
 
which means that neighbor has an 

inhibitory effect on gene i and suppresses expression of the gene.  So the effect of the EC is the sum 

of positive or negative effect which neighboring genes apply on the current gene i and determine 

whether the current gene being expressed or inhibited. Effect component regulates current gene 

only based on the correlation values. Using this part alone, one completely ignores the possible 

error in correlation values. Also, the stochasticity of the cell environment is completely ignored. 

This causes the dynamics to flow deterministically, and contrasts with all of the proposed methods 

for simulation of system dynamics. To handle this problem, the random component (RC) is added to 

the equation. RC is meant to add a controlled random effect to EC, causing the system not behaving 

fully deterministic. RC is computed as follow: 
RC=C i×P×R  

Where 
( )

1

L neighbors

i i j

j

C r


  is the sum of all correlation values between the current gene i and all of its 

neighbors (indexed by j). R is a random number in the range of [-1, 1] which shows if the random 

component has negative or positive effect and also indicates the extent of this effect. R is 

reproduced for each gene when updating the state of the network. P is power of the random 

component which remains constant in the simulation process and indicates how much the random 

component can affect the whole equation. This number is in the range of [0, 1] where 1 means that 

the system may behave quite random (depending on R), and 0 means that there is no randomness in 

the system.  

 The following equation is used to find the state of a gene (node) at time t+1: 
f t(vi)=∑ (rij×sij(t))+(C i×P×R)  

Since this equation only shows the effect of neighbors on the current node, the binary state of a 

gene at time t is a computed as follows: 

vi(t )={
1 if f t(vi)>0

0 if f t(vi)⩽0}  

For example, considering following network where with each link is associated one correlation 

value. 
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State of the network at time t is shown by { , , }tS A B C . If a state at time 1 is assumed to be 

1 {1,0,1}S   and P is 0.1, state of the network at time 2 (t+1) is computed as follows (R is generated 

randomly for each equation): 

           va=(1×1.6)+(1.6×0.1×0.4324)=1.669184  
v B=(1×0.7)+(0.7×0.1×(−1))=0.63  

                                 vc=((1×1.6)+(−1×0.7))+((1.6+0.7)×0.1×0.32)=0.9736  
 

As it is shown, all of the equations resulted in numbers greater than 0, so the state of the network at 

time 2 (t+1) is 2 {1,1,1}S  .  

 Considering this function and the PPI, dynamics of the network can be simulated by RBN.  

Using RBN, the system has to produce all of the possible states of the network which in this case 

exists. Since this is a very large number and cannot be handled by even the fastest supercomputers, 

one has to figure out an approach to reduce the state space to a reasonable size. Another issue is 

selecting the P parameter which controls the power of the random component. This parameter is 

crucial for the system to work optimally. For example, if P is highly increased in the example (say 

to 1), the state of the node b will be switched to off (0). These two problems are addressed in the 

next two sections. 

3.2 Simulation 

 In order to simulate dynamics of a network, random Boolean networks need to generate all 

the possible states of the network. Biological networks are often extremely large and impossible to 

be directly simulated using RBNs. This is because even considering only the binary state of the 

genes, 2N  possible states have to be generated, and this number is often very large and cannot be 

handled using current computing power. As mentioned, several algorithms have been proposed to 

handle this problem. Having a reasonable number of genes (nodes), they are able to find the 

attractors of large networks. The CTN network consists of 254 nodes and so for the purpose of 

simulation one needs to generate 2542 states. Since this number is large, state space has to be 

reduced. As described in the random Boolean section, the sampling approach is an option which 

picks a subset of states, but it cannot guarantee if one can select a good subset which is true in 

nature. Also because the number of the states is very large, a reasonable (computationally 

applicable) subset of states is still too small to be a representative of the whole network. Other 

proposed algorithms also do not work in case of CTN because of two main reasons. First, they need 

Boolean functions for each node. Second, The CTN functions are not stable. This means that 

because of the random component, it is possible that the network flow changes direction at any 

time. Specifically and in contrast with RBNs, each state of CTN transition network can have more 

than one parent and several children. This may remind the asynchronous RBNs, but they are two 

different subjects. In ARBNs, changing direction is predictable, because the state of the parents are 

regarded as stable (switching one gene always results in one specific state so in case of selecting 

one gene for updating, there are n possible next states which the current state can flow to) but in the 
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case of CTN, randomness (e.g. error possibility) is added to the state of the parents and the CTN 

network can behave in completely unpredictable manner. So it is not possible to use ARBNs 

approaches to simulate the network. 

 As Kauffman proposed, biological systems often do not explore all of their possible states 

(e.g. 2542  possible state of genes in T-cells). Therefore, if one assumes that a state of a network is 

already known, the process can be started from the known state and then network dynamics flows 

as many states as possible to generate more states starting from the initial condition. The best way 

to find the initial state is to utilize microarray gene expression data and make a consensus state 

between different samples for all genes. 

 From 22 microarray time series, which contain 353 data sets and were retrieved by [29], 

nine time series are isolated (table 4.1). The isolation is based on whether they contain all the genes 

in CTN or not. The isolated experiments contain 47 samples (All of the experiments were 

previously normalized by Bioconductor and Robust Multi-Arrays algorithm). For each sample, a 

histogram diagram is made (figures 3.1 and 3.2 shows examples of both distributions). Considering 

the histograms, normally distributed samples and those without normal distribution are separated 

into two different sets of samples. Mean and median of each sample (based only on CTN gene 

expression) are calculated (difference between the mean and the median is shown in figures A1.3 

and A1.4 in appendix 1 for normal and non-normal distribution, respectively) and it is assumed that 

if a gene has expression greater than the mean or median it is expressed or on (1) and otherwise it is 

off (0). The calculations result to 4 vectors of length 254. The consensus vector (between 4 vectors) 

is calculated as follow: 

 

1) Align 4 vectors (A, B, C, D) which are corresponding to (Boolean transformed)  

mean of the data with normal distribution, mean of the data without normal 

distribution, median of the data with normal distribution and mean of the data 

without normal distribution, respectively. 

2) An empty vector (say T) of 254 lengths is created in which each cell is 

corresponding to a gene. 

3) 
1 ( ) 2

0 ( ) 2

i i i i

i

i i i i

if A B C D
T

if A B C D

    
  

      
 Where i is the index of each cell in the vectors. 

If the result is equal to 2, the most frequent number (1 or 0) in all vectors is selected 

for that place. 

 

 The result of these steps is a vector of one and zeros. This vector is used as the initial value 

for starting the simulation. 

 

 

  Table 3.1 Isolated time series. 

Database ID Title 

E-MEXP-549 Transcription profiling time series of gene expression following 

irradiation to identify P53 activity [89] 

GSE2770 Transcriptional profiles of Th cells induced to polarize Th1 and Th2 

direction in the presence or 

absence of TGF [90] 

GSE7497 Influence of TGF on human resting CD4+ T cells [91] 

GSE11755  Gene expression profiling in pediatric meningococcal sepsis reveals 
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  Table 3.1 Isolated time series. 

Database ID Title 

dynamic changes in NK-cell 

and cytotoxic molecules [92] 

GSE12079  Molecular profiling of CD3- CD+ T cells from patients with the 

lymphocytic variant of 

hypereosinophilic syndrome [93] 

GSE14330 Comparison of stable human Treg and Th clones by transcriptional 

profiling- experiment I [94] 

GSE15928  Influence of anti-CD25 mAb on the transcriptome of activated 

Peripheral blood mononuclear cell 

(PBMC) [95] 

GSE24634  Expression data from developing regulatory T cells [96] 

GSE27291 Expression data from human TCRV(+) T lymphocytes [97] 

  

 
Figure 3.1. An example of normally distributed microarray data which is used to find initial values. 

 

 
Figure 3.2. An example of non-normally distributed microarray data which is used to find initial values. 
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As briefly described, RBNs start with a randomly generated state and then keep updating 

this state until a state appears twice (it goes back and generates another random state) or all of the 

possible states are generated (which is the end simulation). Considering the proposed system for 

CTN without the RC in the formula, the system starts with the initial values and keeps updating the 

state (creating state transition network) until a state appears again. At this point, the algorithm stops 

and the system process will be terminated because as previously mentioned, the algorithm assumes 

that CTN has one initial state and so no states are randomly generated. Another reason is that in 

CRBNs (or CTN without RC component), the updating function is deterministic and this means that 

a state in the state transition network can have only one child but many parents. So, if the system 

visits a state twice, it means that if the latest visited state is updated again, the system will pass the 

same path between the previously encountered repeats. For example, suppose the initial state is 

called 1S  and the system keeps updating the sequence of states after 1S  regardless of the 

encountering repeats. If in this process, a state called rS
 
appears twice, a path between two states

S
r will be explored repeatedly. This can be depicted as follow: 

 

 
S 1→S 2→ S3→ ...→ Sr →S r+1→S r+2→ ...→ S r→ Sr+1→S r+2→...→S r→ Sr+1→S r+2→...→S r→ ...  

 

 

 

 

 

 

This process is the same as RBNs. Once a repeat is encountered no more new states (previously not 

encountered) will be produced, this is what a single iteration of random Boolean network updating 

algorithm does. This means that no more variation is added to the state transition network and the 

produced network has only one attractor and its basin. 

 When the complete equation (EC+RC) is taken into account, the condition is completely 

changed. Since the equation has randomness, it cannot guarantee that a state has only one child. So 

a state can have more than one parent and also more than one child. This means that if a repeat is 

encountered in the updating process, the system will not keep updating the repeated state, it will 

always get caught on the same loop (path). This is because the randomness in the equation may 

cause the system to change its direction at any time with some probability. This process is shown 

below: 

 

 

 S 1→S 2→ S3→ ...→S r→ S r+1→S r+2→ ...→S r →S r+i →S r+i+1→ ...→ S I  
 

 

 

 

 

 

As it is obvious from the figure above, the system is not caught in a loop, and it easily passes the 

repeat and goes until the defined number of states is generated (shown by I). In the process starting 

from state 1S
 
to IS ,

 
there may be several repeated states and several unique states. The number of 

Repeat Repeat 

A path between a repeated state 

(say path A) 

Path A is repeated until stopping 

the algorithm 

Repeat Repeat 

A path between a repeated state 

(say path A) 

Different path from A 

Until threshold I 
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repeats and unique states directly depends on parameters P and I in which if both of parameters are 

increased, the number of unique and repeats have the potential to be increased. This is because 

when I is increased, the system produces more states and when P is increased, the system tends to 

update the states more randomly. Because of the huge number of possible state, encountering 

repeats is rare. Thus, a good balance between I and P is critical for the system to be able to produce 

reasonable variation for covering of the state space as well as steady states which are indications of 

some behavior of the system (see next section). When choosing P and I, the algorithm finds I 

possible states starting from one initial value. The pseudocode of the algorithm is as follow: 

 

 function simulation (I, P) 

  begin 

   array initialValues[254]=initializer() 

   array tempValues= initialValues 

   dynamic array states[] 

   states.append(tempValues) 

   For 1 to I do 

    begin 

      tempValues=updateState( tempValues, P) 

      states.append( tempValues) 

    end 

 

  Return ( states) 

  end 

 The pre-defined initial state is assigned to a variable, and this variable is added to the list of 

produced states. In the loop, the algorithm updates the current value with an updating function, 

assigns the current variable to the next state of the system, and finally saves it to the list of produced 

states. This process is repeated I times and after that the function terminates and returns a sequence 

of generated states (a transition list instead of transition network). This list will then be used to 

finding attractors and in making the state transition network. 

3.3 Finding Parameters 

 The power of the RC parameter (P) and the number of iterations (I) are very important for 

the algorithm to output a better result. Both of the parameters have their own impact on the number 

of unique states. Obviously when the number of iterations is increased, the system tends to generate 

more states, but this cannot be done without having a good P value. The problem of finding the 

number of iterations is solved using 3 different approaches: 

 

1. The simplest and the most straightforward solution is to let the system progress as 

much as the computational power allows. Using this approach, the system keeps 

updating the states until the computer system terminates the process. So the system 

produces as many states as possible.  

2. The second approach is letting the system be completely random (P=1) and then 

performing several experiments while increasing I in each experiment. The objective 

will be to see if there is an elbow point in the plotted number of unique states in 

which the system behaves in a different way compared to other experiments. Using 

this mechanism, it is possible to find out what potential the system has for producing 

more states while increasing the number of iterations. Due to randomness in the 

system, this approach can be unfeasible. This is because the system may not end up 
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with a normal distribution shape. So detecting an elbow point is a difficult task. To 

address this problem, several experiments are done (with the same range of 

iterations), where in each iteration, the standard deviation between the experiments is 

plotted. This measure represents whether the pattern of produced states is stable in 

many different experiments. The lowest standard deviation (or an elbow point) is 

selected as the number of iterations. 

3. The last approach is nearly the same as the second approach with the minor 

difference that P is increased in each experiment. Therefore, both I and P are 

changed at the same time and the resulting number unique states are plotted in each 

iteration. Since there are several possible ways to combine different Ps and Is, this 

way may not result in a reasonable conclusion. The next chapter shows that using 

this approach, the curves are not plotted in a sensible way, and the behaviors of the 

system may be quite unpredictable. So this approach is not recommended for finding 

parameters. 

 

 Having the number of iterations, the power of the random component is computed using an 

arbitrary initial value (a very small value is preferred). The number needs be small enough (while 

not zero) such that the number of produced unique states is constant in several experiments. After 

that, P is increased, and the experiments are performed again. This process is repeated until the 

system starts to produce variation (not constant number unique states in all the experiments). When 

the system produces variations, the number of unique states is plotted and the same approach which 

is used to find iteration number (the second method for parameter I) is used to find a suitable power 

of the random component. It is very important to have a P value which produces a good variation 

and also prevents the system from being completely random. 

3.4 Finding Attractors 

 Because of randomness, and also non-Boolean functions associated with each node, none of 

the described algorithms will work for finding attractors. This is because the state transition 

network may change its direction at any time and so become completely unpredictable. The 

proposed approach for finding network dynamics (starting from an initial value) results in a 

sequence of states called a state transition list or sequence. The list may contain several repeats and 

many unique states depending on the parameters I, R and P. For making a network from this list the 

following approach is used: 

 

1) Find unique states in the network and number them (e.g. zero to N). 

2) Generate a set of N nodes, one node for each isolated state in the step 1. 

3) For each node iv , explore the state list from the beginning and set a directed edge 

which goes from iv to a node jv which is a state that appears exactly after iv on the 

list.  

 

For example, consider the following state list and the corresponding network: 

 N={A , B,C ,D}  
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 At the first stage, a node is generated and named A. The array is explored to find the 

locations of A and a node which appears exactly after the occurrence of A is selected and a directed 

edge is drawn which points from A to the selected nodes (B and D). This process is repeated for 

every unique node in the list. The pseudocode of the algorithm is as follow: (adjacency matrix 

representation is used for making a graph): 

 

function graph_maker (list) 

 begin 

  uniqueStates= retriveUnique(list) 

  uniqueStatesLength= length (uniqueStates) 

  matrix adjacecnyMatrix[uniqueStatesLength] [uniqueStatesLength] 

  for i= 1 to  uniqueStatesLength do 

   for j= 1 to  uniqueStatesLength do: 

     adjacecnyMatrix[i][j]=0 

 

  for each  item in  uniqueStates do 

   begin 

   indexesOfUniqueState= locations(item, list) 

   for each index in indexesOfUniqueState do 

    if(index!=  length( list)) 

     begin 

      itemAfterUnique= list[ index + 1] 

      indexOfChild= locattions(itemAfterUnique, 

uniqueStates) 

      indexOfParent= locattions(item, uniqueStates) 

      adjacecnyMatrix[ indexOfParent] [indexOfChild]=1 

     end 

   end 

 return adjacecnyMatrix 

 

function retriveUnique(list) 

 begin 

 vector uniqueStates 

  for each item in list 

   if item is not in uniqueStates 

    uniqueStates.append(item) 

 return  uniqueStates 

 

At first, an adjacency matrix with dimensions of the length of the unique states list is generated and 

all the cells are set to zero. For each state v in the unique states list, if the state is not the last state of 
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the transition states list, the location of the state w (in the unique states list) which occurs exactly 

after v (in the state transition list) is retrieved and the cell with row index of location of v and 

column index of location of w in the unique states is set to 1. Therefore, if a cell c with indexes i 

and j is set to 1, there is a directed link from ith node to jth node (in the unique state list) in the state 

transition network. The state transition matrix is then converted to an adjacency list and passed to 

the algorithm proposed by [86]. This algorithm finds elementary circuits of a graph which are 

attractors of the state transition network. Since the algorithm ignores the singleton attractors, the 

state transition matrix is utilized to find singleton attractors in which if a cell with indexes i and i 

(the same row and column) is 1, this is a self-link between the ith state of the unique states list and 

itself. The output the process is sets of indexes of nodes in the unique state list in which a set starts 

and ends with the same state, and a sequence of states is in between that is the period of an attractor 

(regarding singleton attractors, the set contains only two states which are the same). So, the 

generated sets can be converted back to sets of vectors. Each set is an attractor and each vector 

contains states of all the genes in the network at a specific time. The final step is to extract 

information from the attractors. The next section covers the methods which are used to find out if 

attractors are biologically attractive. 

3.5 Analyzing Attractors 

 The resulting attractors from the previous step need to be analyzed to find out if they are 

related to specific biological processes. In the rest of this chapter, it is assumed that an attractor is a 

set of (the same length) vectors. A vector is a set of binary numbers and each number shows state of 

a gene at the corresponding period. For example, assuming the gene regulatory network (say G) 

contains 4 nodes A, B, C, and D and the state transition graph has one cycle (attractor), an attractor 

L with period 4 and state of the genes at different period i can be shown as follow: 

 G={A, B,C , D}  
 L1={1,0,1,1}  

 L2={0,0,1,1}  

 L3={1,0,0,0}  

 L4={1,0,1,1}  
So the states of the genes in this attractor are as follow: 

 

 A={1,0,1,1}  

 B={0,0,0,0}  

 C={1,1,0,1}  

 D={1,1,0,1}  
  This study proposes three approaches to investigate biological roles of states of different 

genes in attractors. 

3.5.1 Different state of genes and GO analysis 

 The simplest and the most straightforward analysis is performing one experiment and 

isolating the attractors. Next, the states of each gene in different attractors are extracted, and 

different gene sets with different patterns of state are analyzed separately. Three distinct patterns of 

gene states can be defined: 

 Genes which are constantly one (1) in an attractor. 

 Genes which are constantly zero (0) in an attractor. 

 Genes which switch their states in the period of an attractor, so they have both zeros 

and ones in their state pattern. 
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 Considering 3 groups of genes, if the number of genes is small, one can manually look for 

the role of each gene in the cells and find out if most of the genes in each group have the same 

biological function (or if they are in the same pathway). If the number of genes is large, gene 

ontology term enrichment is performed by taking a whole set of genes as the reference and each 

mentioned group as the target. Using this approach, it can be seen what process in each group of 

genes is most likely to be involved in desired processes. 

3.5.2 Attractors frequency 

 The simulation process has reasonable randomness and it also covers only a small subset of 

all the possible states in the state transition network, especially in large gene interaction networks. 

The result of any one experiment is not statistically significant and also is highly likely to be 

random. A sensible solution is to perform many experiments and analyze the attractors which are 

present in most of the experiments. As mentioned earlier, many authors proposed that more than 30 

samples are regarded as significant. Considering this fact, P and I are set based on more than 30 

experiments. Using the parameters, more than 30 simulations are performed, and attractors are 

extracted for all of the experiments. Afterward, the most frequent attractors are found as follows: 

 

1) Attractors are unfolded, such that, periods (vectors) in an attractor are joined into a 

larger vector which consists of the state of the genes in one attractor. For instance, 

considering following attractor: 
L1={1,0,1,1}  
L2={0,0,1,1}  

      L3={1,0,0,0}   
L4={1,0,1,1}  

  Unfolded version of the attractor is: 

  LU={1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,1}  
 

                                 1 2 3 4                         L L L L   

2) All the unfolded attractors are stored in an array. The array is then explored from the 

beginning such that the first attractor A is selected, and the array is explored again 

(excluding the selected item) and for each attractor if its similarity with A is greater 

than a threshold (95%), the attractor counter is increased. Since there may be several 

types of attractors (different lengths), there are two possible ways for defining the 

similarity between two attractors:  

 

a) Separate attractors based on their periods and compare an 

attractor only with the attractors which have the same period. 

Because the attractors are all 1 and 0 and the have the same 

length, either Hamming distance or Euclidean distance is 

utilized to measure the distance between two attractors. 

 

b) The more challenging option is to use all of the attractors for 

comparison. So, there is no separation, and an attractor is 

compared to all the other attractors either with or without the 

same period. This is done by using the algorithm presented in 

[100]. 
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 Both approaches have some advantages. The first approach takes into account the period of 

the attractors, so it assumes that different attractors with different period may have different 

biological roles. The second approach focuses on the state of genes and ignores the period of the 

attractor. Using this approach, one can only see if genes involved in the cycles are also involved in 

the specific biological functions. Regardless of the type of similarity measure, the result is a vector 

of frequency of attractors in all experiments. The vector of attractors is sorted based on the 

frequency vector and the most frequent attractors are analyzed using the described methods such as 

GO. The pseudocode of the algorithm for finding the most frequent attractor is as follows: 

 

function mostFrequent(attractorsVector, treshold) 

      begin 

 int frequencies [length(attractorsVector) = 0 

      for i=1 to  length(attractorsVector) 

  for j=1 to  length(attractorsVector) 

      if(i!=j) 

   if(similarity( attractorsVector[i],attractorsVector[j])>threshold)) 

     frequencies[i]+=1 

 ascendingsSortBasedOn( attractorsVector, frequencies) 

 return ( attractorsVector) 

3.5.3 Attractor clustering 

 Large numbers of attractors are often generated by performing several experiments. 

Focusing only on a few of the most frequent attractors may miss important states of the genes in 

other attractors. Attractor clustering provides a solution for focusing on the state of genes in all 

attractors.  Using either of the similarity measurement approaches (in this case Euclidean distance), 

the distance between each pair of attractors is calculated, and the result is stored in a distance 

matrix. Using a distance matrix, a clustering method (UPGMA) is used to cluster the attractors into 

different groups. This method generates a tree (or more depending on similarity measure) which 

starts at a root and divides the attractors into the largest subgroups. Each subgroup has its own root 

which again separates its attractors into different groups. These sub-trees continue until terminating 

at the leaves which are the attractors. The pseudocode for preparing distance matrix is as follow: 

 

function distanceMatrix(attractorsList) 

 begin 

  uniqueStates=retreiveUniqe( attractorsList) 

  matrix DMatrix=[length( uniqueStates)][length( uniqueStates)] 

  for i=1 to length( uniqueStates) 

   for j=1 to length( uniqueStates) 

    if(i==j) 

      DMatrix[i][j]=0 

    else 

      DMatrix[i][j]=similarity( uniqueStates[i], uniqueStates[j]) 

      DMatrix[j][i]=similarity( uniqueStates[j], uniqueStates[i]) 

 tree=UPGMA(DMatrix) 

 

The variable tree is the clustering result produced by UPGMA method. The tree has a one sub 

variable denoted as child. This variable shows of descendants of the current root. For example, 
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considering the variable tree in the pseudocode, tree->child[1] is the first cluster under the main 

root of the tree. This sub-cluster may be a root itself or it may be a leaf. Having a tree, this text 

proposes two methods for further investigations: 

 

1. Bottom-Up approach: This approach is similar to breadth first search (BFS). The 

algorithm starts from the main root and traverses its children. The attractors 

classified under each child are stored. This means that the largest sub groups of 

attractors are separated. The percent of simulated gene expression (percent of being 

one) under each group are calculated. Only differentially expressed genes are 

selected and the log2 ratio of their expression is calculated and the genes are sorted 

based on the ratio. Considering the sorted gene expression, the genes which are 

mostly on (1) in one group and off (0) in the other cluster are regarded as one group 

and the genes which have the same situation regarding the other group are also 

selected and finally the rest of genes which is not highly overexpressed in one of the 

clusters are grouped. GO analysis is performed, taking all the genes in all the groups 

as the reference and each group as the target. If a satisfactory result is not seen, 

breadth first search goes one step further, and the process regards each child of the 

main root as a root, and the whole process is repeated for that child. The only 

difference is that one can use the whole gene set under the first root of the tree or use 

the genes under each root as a reference. This process is repeated either until a 

satisfactory result is seen (e.g. two groups which are significant in T-cell 

differentiation of CD8+ and CD4+) or no more clusters are left.  

 

2. Top-Down approach: Instead of focusing on the state of genes in attractors and 

finding out the possible biological process of different clusters, the top-down 

approach assumes that the clusters are related to predefined cell subtypes (e.g. CD8+ 

and CD4+ in case of T-cells). Two microarrays (table 3.2) were extracted and 

normalized using the methods presented in section 2.3. Log2 ratios of percentage of 

gene expressions in different clusters are extracted (the same as the previous 

method). Log2 ratios of the same genes in different subtypes of the T-cells are also 

calculated from the microarray experiments. The result is two sets of vectors, one set 

for the simulation and the other set for each of the actual experiments. Each set may 

contain one or more vectors, depending on the clustering result and defined number 

of subtypes. PCC of each pair of vectors (in two different sets) is calculated. If the 

PCC between two vectors is high enough, it is either the sign of involvement of the 

gene states in two different clusters for cell differentiation (or their processes) or 

indication of a reasonable relationship between simulated and experimental gene 

expressions. Specifically, the expression ratio of gene k between clusters i and j is 

shown by ( )i jr k  and the experimental ratio of gene k between two cell subtypes i 

and j is represented by ( )ije k . PCC is calculated between two vectors of simulated 

and experimental ratios of N genes:   

  R={r(1)ij , r(2)ij , r(3)ij ,... , r(N)ij}  

  E={e(1)ij , e(2)ij , e(3)ij ,... , e(N)ij}  
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Table 3.2. Microarrays used for the ratio of gene expression comparison.  

ID   Title 

GSE14926 Analysis of the impact of the method of cell selection on the 

gene expression profile of human CD4 and CD8 T cells [98] 

GSE16130 Gene expression of TCR-alpha/beta CD4- CD8- human T cells 

[99] 

 

 These two methods can also complement each other. For example, if PCC between two 

clusters is high compared with other clusters, one can do the first bottom-up approach only for the 

interesting cluster.  

3.6 Simulation Environment  

 Results of the computations are stored in a SQL database for further analysis and reference. 

Since performing several experiments with the large number of iterations is computationally 

extensive, four programs were developed using Java, C++, python and R programming languages. 

Due to well adapted nature Java language to database systems, a Java program is used to initialize 

the SQL database with interaction data, initial values and parameters for each experiment. Since 

C++ is fast for several types of calculation especially on supercomputers and for highly parallel 

algorithms, the C++ program performs the simulation (using parallelization of the present 

algorithm) and passes the data to the java program to store the data to the database. Python has 

several libraries for working on strings and vectors; therefore, a program developed in this language 

is used to analyze the attractors. The result is passed to R for further statistical and microarray 

analysis. The next section provides the results of performing the simulation on the T-cell PPI. 

4. Result 

4.1 Initial values 

 Using the described method in the section 3, the initial states of 254 genes are calculated. 

The resulting vector was an array of length 254  in which each cell corresponds to a gene and can 

take value either one or zero, meaning that the gene is on or off, respectively (153 genes were 

expressed and 101 genes were not expressed).  

4.2 Finding parameters 

 Considering P is set to one, 40 different experiments (statistically significant) were 

performed, and the number of unique states was plotted. Figure 4.1 shows 4 examples of 40 

experiments. The number of iterations ranges from 10000 to 70000 (the maximum iterations the 

computer allows) with step size 5000. As the figure shows, behavior of the system to produce the 

states is random. This situation was the same for all 40 experiments. Therefore, stable patterns were 

not generated in the experiments. The number of unique states may have several peaks or no peaks 

with minor fluctuations. The system is supposed to produce more states when I is increased, but in 

many figures (as the curve shows) when the number of iterations is increased, number of unique 

states is decreased. But even this pattern is not stable because there are several peaks at different 

(and even far away) number of iterations. For example, there are 3 peaks at 15000, 30000 and 

50000 iterations in experiments number 3 (in figure 4.1). The only observable pattern in the data is 

that when number of iterations is increased, the system produces fewer jumps between different 

numbers of unique states. Because the system is supposed to produce more states (and with higher 

jumps) when I is increased, and this is not apparent in the diagrams and the curves are smoother in a 
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large number of iterations, it is assumed that the generated number of states in large iterations are 

more desirable. But the behavior of the system is still random and there is no pattern between the 

iteration number and number of produced states. So, log2 of standard deviation (SD) of each 

iteration number within all the experiments is computed (figure 4.2) in order to see which number 

of iterations has fewer fluctuations. 

 

 

 
Figure 4.1. Unique States Produced By Different Iterations. 
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Figure 4.2. Standard Deviation in all experiment with different iterations. 

 

  

The SD values from 10000 to 50000 show a stable pattern in which SD increases and decreases 

within two different iterations with small size. This pattern stops at 60000 iterations value and the 

SD suddenly drops. It is assumed that the behavior of the system changes at that point. So, the 

60000 iterations level which was selected, and the same process was repeated for different P 

parameters and 60000 iterations. The only difference is that instead of plotting different P in several 

number of iterations, a constant number of iterations (60000) is selected and the plot is drawn by 

taking into account the number of unique state in each of the experiments (figure 4.3). 

 

.  
Figure 4.3 Number of unique state (P is less that 0.006) 

 

 Figure 4.3 shows that the number of unique states is constant when P is very small. This is 

because when P is small, the random component is almost zero. Therefore, RC does not affect the 

equation and the system produces the same states for the genes at different times. Since small step 
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size does not have a remarkable effect on the number of the states, the step was selected to be 0.05 

and the system was set to start from 0.01 and go to an arbitrary number 0.3, and number of 

generated unique states was plotted. As it is obvious in figure 4.4, the behavior of the system is 

totally random in 40 different experiments (only one result for P 0.1 is shown, but the situation is 

the same in other P values). 

 

Figure 4.4. Number of unique state produced with 60000 iterations and P parameter=0.1. 
 

Since no steady pattern was observed when performing 40 different experiments with different P 

parameters starting from 0.01 to 0.3, standard deviation is calculated for each P in 40 experiments 

(figure 4.5). 

 

 
Figure 4.5. Standard Deviation for different standard deviation for different P parameter. 
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As it is shown in the figure 4.5, randomness is increased when P is increased. This result is 

exactly the behavior that is expected from the system with different P values. This is because large 

P adds more randomness to the equation and the system produce larger deviations. Two interesting 

points have the potential to be good P parameters. Parameter 0.1 can be selected because at that 

point, the curve starts to behave differently, and 0.25 can be chosen because the standard deviation 

is decreased. Forty experiments were performed (P and I were set to 0.1 and 60000, respectively), 

and the result was 40 different networks. Figure 4.6 shows an example of the state transition 

network (a directed graph) for one of the experiments. As it became apparent, there are several 

attractors (either singleton or cyclic) in the network. The networks were then analyzed in order to 

identify the attractors. 

4.3 Attractors Analysis 

 Eight hundred and thirty three (833) attractors were identified. There were two types of 

attractor with 2 or 4 periods. The frequency of each attractor was computed within all the 

experiments. The most frequent attractors were selected (with 26 and 21 repeats with periods 4 and 

2, respectively). Since networks with less than 4 nodes are not interesting (due to the fact that they 

may not be informative), only genes in sub-networks with more than 4 nodes were considered (135 

genes). The states of the selected genes were extracted. Since only two attractors with period 2 and 

4 were chosen, the state of a gene in an attractor is a vector (with length the same as attractor period 

number) in which each entity in the vector is the state of the gene at a specific time within the 

attractor period. Genes with three different patterns of state in two different attractors were 

separated. The result was 10 genes with a pattern of only “1” (arrays of genes were always 

expressed), 49 genes with a pattern of combined number of “1” and “0” (arrays of genes were 

sometimes expressed and sometimes not), and 76 genes with a pattern of only “0” (arrays of genes 

that were not expressed). The pattern of expression in attractors with period 4 was: 10 genes with 

“1”, 50 genes with combined, and 75 genes with “0”. The percentage of states of each gene in the 

other (831) attractors verified that the result was completely consistent. GO term enrichment 

analysis was performed on the 3 sets of gene for each attractor. Table 4.1 and 4.2 show the top hit 

(complete table is in appendix 2) of GO analysis for attractors with period 2 and 4, respectively.  
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 Figure 4.6. State transition network when P is set to 0.1 and number of iterations is 60000. 
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Table 4.1. Go Analysis for attractor with period 2. 

Term Count % P-Value Genes 
List 

Total 

 Only Ones Pattern  

regulation of system process 4 40.0 .0162 2771, 5781, 1956, 5604 9 

 Only Zeros Pattern 

Leukocyte transendothelial 

migration 
20 27.03 .0030 

5747, 8503, 5175, 7409, 7414, 3683, 

1499, 3383, 5290, 4478, 387, 3689, 

2185, 71, 81, 60, 5294, 5829, 5295, 

5296 

72 

Combined Pattern 

protein kinase cascade 22 48.89 .0142 

7535, 6714, 8517, 1147, 6774, 5618, 

6772, 6464, 7124, 5058, 5608, 8651, 

7189, 6416, 3480, 1399, 2688, 2885, 

8737, 4793, 3654, 10746 

50 

 

Table 4.2 Go Analysis for attractor with period 4. 

Term Count % P-Value Genes 
List 

Total 

Only Ones Pattern 

regulation of system process 4 40.0 0.0162 2771, 5781, 1956, 5604 9 

Only Zeros Pattern 

Leukocyte transendothelial 

migration 
20 27.78 0.0024 

5747, 8503, 5175, 7409, 7414, 

3683, 1499, 3383, 5290, 4478, 

387, 3689, 2185, 71, 81, 60, 

5294, 5829, 5295, 5296 

71 

Combined Pattern 

regulation of kinase activity 14 28.57 0.0122 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 7410, 5590, 

2688, 8737, 3654, 10746 

44 

  

The results indicate that none of the groups is significant in T-cell differentiation. Although some 

processes are well described by different groups of genes, the result is not verification of 

significance in T-cell differentiation terms. Therefore, 833 attractors were separated into 2 sets of 

568 and 265 attractors with 2 and 4 periods, respectively. UPGMA clustering was performed on 

each set; the resulting trees are shown in figures 4.7 and 4.8. At the main root of the both trees, 

attractors are classified into two different clusters (a small and a large cluster). One branch of each 

main root has two children (inner top and bottom branches), but the other branch has more children 

and its size is different between the two figures. The number of ones and zeros in the attractors 

clustered under the main branches of the two clustering results was calculated. The percentage of 

“ones” is calculated for each gene, and the genes which were oppositely (with 5% error 

compensation) expressed in two main clusters was selected, and log2 ratio was computed between 

each pair of the same genes in two main clusters. The resulting vector (of ratios) was sorted, and the 

gene expression (percentage) was ordered based on the sorted ratio vector (figures 4.9 and 4.10).   
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Figure 4.7. Clustering result of period 4 attractors using UPGMA method. 

L
arg

er C
lu

ster o
f attracto

r w
ith

 p
erio

d
 4

 
S

m
aller C

lu
ster o

f attracto
r 

w
ith

 p
erio

d
 4

 

M
ain

 b
o
tto

m
 b

ran
ch

 w
h
ich

 

is in
terestin

g
 fo

r fu
rth

er 

ex
p
lo

ratio
n
 

M
ain

 to
p
 b

ran
ch

 w
h
ich

 is 

n
o
t in

terestin
g
 fo

r fu
rth

er 

ex
p
lo

ratio
n
 

Inner top branch 

Inner bottom branch 



 

47 

 
Figure 4.8. Clustering result of period 2 attractors using UPGMA method. 
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Figure 4.9. Gene expression percentage shows 3 separate groups of genes in different clusters in attractor with period 

2. 
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Figure 4.10. Gene expression percentage shows 3 separate groups of genes in different clusters in attractor with period 

4. 
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 Figure 4.9 and 4.10 clearly show that the genes are exactly grouped into 3 different 

categories (the ratio describes the behavior of the expression fluctuation). The left group contains 

the genes which are highly expressed in main top clusters of both the clustering trees. The center 

group contains the genes with shared expressions between two clusters and the right group shows 

the genes which are highly expressed in the bottom clusters of the clustering trees.  Considering the 

three groups for each set of clustered attractors, GO analysis was performed on each group, taking 

the whole gene set (all the genes in figures 4.9 and 4.10) as background and each of the three 

groups as the target. The results (the top hit, complete tables are in appendix 2) are shown in tables 

4.3 and 4.4. 
Table 4.3. GO analysis for three groups of clustered attractors with period 2. 

Term Count % P-Value Genes 
List 

Total 

Right Group 

p38 MAPK Signaling Pathway 7 14 0.0651 
6416, 3265, 2885, 8737, 9261, 5608, 

8717 
35 

Center Group 

cell fraction 9 50.0 0.0019 
3480, 2771, 5781, 5336, 5337, 5604, 

7534, 56848, 4067 
16 

Left Group 

disulfide bond 21 42.0 0.0688 

811, 3113, 25945, 8517, 1271, 2934, 

3561, 7124, 3680, 3690, 1439, 921, 

2261, 3695, 7132, 2826, 6352, 355, 

2688, 5817, 4915 
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Table 4.4 GO analysis for three groups of clustered attractors with period 4. 

Term Count % P-Value Genes 
List 

Total 

Right Group 

p38 MAPK Signaling Pathway 7 14 0.0651 
6416, 3265, 2885, 8737, 9261, 5608, 

8717 
35 

Center Group 

cell fraction 9 47.37 0.0033 
3480, 2771, 5781, 5336, 5337, 5604, 

7534, 56848, 4067 
17 

Left Group 

leukocyte homeostasis 5 10.2 0.0932 8517, 355, 2176, 207, 836 49 

 

 Results of GO analysis show no significance in T-cell differentiation terms, but the right 

groups of gene expression, in both clustered attractors with different periods, mostly contain the 

genes which are related to CD4+ T-cells. This group of genes is related to the bottom clusters of 

UPGMA trees. Both of these clusters in the two trees contain two inner branches (inner top and 

bottom branches). So, it is more sensible to explore how these branches compare to groups under 

main top roots of the trees. The main bottom branches of both trees were explored one step further, 

and the same process (calculating simulated gene expressions and ratios) were repeated but this 

time between two inner top and bottom branches of the main bottom branches of both trees. As the 

figures 4.11 and 4.12 show, the genes are separated into three groups of expressions (expressed in 

the bottom or top inner clusters and a group which is expressed in almost both of the clusters). 



 

51 

 

 
Figure 4.11. Gene expression percentage shows 3 separate groups of genes in two inner clusters in attractor with period 

2. 
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Figure 4.12. Gene expression percentage shows 3 separate groups of genes in two inner clusters in attractor with period 

4. 
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GO analysis was performed on all the three groups, taking whole genes (in figure 4.11 and 4.12) as 

background set and each of three groups as the target. The result of GO analysis is shown in tables 

4.5 and 4.6 (only the top hit is shown. Complete table is appendix 2). 

 
Table 4.5. GO analysis for three groups of sub-cluster of attractors with period 2. 

Term Count % P-Value Genes 
List 

Total 

Right Cluster 

cell fraction 7 58.33 0.0673 2771, 5781, 5336, 5337, 5604, 56848, 4067 11 

Center Cluster 

SH3 domain binding 2 66.67 0.1453 867, 3635 3 

Left Cluster 

signal 6 50.0 0.1440 3560, 2263, 2253, 3309, 7046, 2260 12 

 

Table 4.6. GO analysis for three groups of sub-cluster of attractors with period 4. 

Term Count % P-Value Genes 
List 

Total 

Right Cluster 

cytoplasm 6 46.15 0.2116 5781, 5337, 6464, 867, 3312, 3635 13 

Center Cluster 

receptor 3 100.0 0.0598 2885, 3560, 7046 3 

Left Cluster 

fibroblast growth factor 

receptor signaling 

pathway 

4 36.36 0.1039 2247, 2263, 2253, 2260 10 

 

 The result of GO analysis does not show significant terms in T-cell differentiation. 

Therefore, the Top-Down method was used to find the relationship between the ratio of simulated 

gene expression and microarray data. The result of simulated ratio of gene expressions in both 

analyses on the main and inner branches of the tree were plotted against the actual ratio of 

expression between all the genes in the simulation data set expressed in CD8+ and CD4+ T-cells 

(figures 4.13-4.20). CD8+ and CD4+ T-cells were selected because more data are available for 

those genes and also nearly all the CD4+ T-cells related genes are clustered in only this group. PCC 

between the resulted ratio of CD8+ and CD4+ cells gene expression (which is an array of float 

numbers as the same as simulated ratio of gene expression) and simulated ratios were calculated for 

each analysis. As figures 4.13 to 4.20 show, no significant similarity is observable between 

microarray experiments and different simulations. This clearly shows that the actual experiments 

(in-vitro) are completely different from the simulated experiments. Although the ratios (solid and 

dashed) curves behave in two totally different manners, the amount of changes (or behavior of the 

curves) is similar in a limited number of genes such as IL2RB gene. Since these similarities are 

quite rare (may be by random), one can assumes that the behavior is quite different.  

 

 



 

54 

 
 Figure 4.13. Comparison between simulated expression ratio of genes in two groups of the main root of clustered 

attractors with period 2 and experimental microarray data in GSE14926 time series shows completely different behavior 

in in-vitro and simulated gene expressions. 
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 Figure 4.14. Comparison between simulated expression ratio of genes in two groups of the main root of clustered 

attractors with period 4 and experimental microarray data in GSE14926 time series shows completely different behavior 

in in-vitro and simulated gene expressions. 
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 Figure 4.15. Comparison between simulated expression ratio of genes in two groups of the first right root of clustered 

attractors with period 2 and experimental microarray data in GSE14926 time series shows completely different behavior 

in in-vitro and simulated gene expressions. 
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 Figure 4.16. Comparison between simulated expression ratio of genes in two groups of the first right root of clustered 

attractors with period 2 and experimental microarray data in GSE14926 time series shows completely different behavior 

in in-vitro and simulated gene expressions. 
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Figure 4.17. Comparison between simulated expression ratio of genes in two groups of the main root of clustered 

attractors with period 2 and experimental microarray data in GSE16130 time series shows completely different behavior 

in in-vitro and simulated gene expressions. 
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 Figure 4.18. Comparison between simulated expression ratio of genes in two groups of the main root of clustered 

attractors with period 4 and experimental microarray data in GSE16130 time series shows completely different behavior 

in in-vitro and simulated gene expressions. 
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 Figure 4.19. Comparison between simulated expression ratio of genes in two groups of the first right root of clustered 

attractors with period 2 and experimental microarray data in GSE16130 time series shows completely different behavior 

in in-vitro and simulated gene expressions. 
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 Figure 4.20. Comparison between simulated expression ratio of genes in two groups of the first right root of clustered 

attractors with period 2 and experimental microarray data in GSE16130 time series shows completely different behavior 

in in-vitro and simulated gene expressions. 
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 Since the actual experiments are different from the simulations, a system was developed to 

exhaustively find information for each gene in the set (using data mining on articles and GO terms 

as supplementary data in which whole Homo sapiens genome was selected as the background and 

all the differentially expressed genes were chosen as the target). Table 4.7 shows the genes (in CTN) 

which are significant in T-cell differentiation (complete table is in appendix 2 and contains genes 

which are involved in more general differentiation processes). The result shows that CD4+ cell 

related genes are exactly grouped in under main bottom branches of the UPGMA trees (figure 4.7 

and 4.8). But regardless of this group, most of the genes involved in differentiation processes are 

almost evenly spread over different clusters and sub-clusters (figures 4.9 and 4.10)  and those with 

related (or same) functions are clustered in different groups.  Also, some of the genes such as TP53 

are not presented in gene expression ratio experiments due to the fact that they were not 

differentially expressed in different clusters (Or they are involved T-cell differentiation and not T-

cell sub-types differentiation).  
 

Table 4.7. Genes related to T-cell differentiation. 

ENTREZ ID Gene Name Function P-value 

916 CD3E T cell differentiation in the thymus 4.79E-006 

7157 TP53 T cell differentiation in the thymus 4.79E-006 

1499 CTNNB1 T cell differentiation in the thymus 4.79E-006 

920 CD4 lymphocyte differentiation 4.52E-008 

3932 LCK lymphocyte differentiation 4.52E-008 

5295 PIK3R1 lymphocyte differentiation 4.52E-008 

3635 INPP5D regulation of lymphocyte differentiation 2.79E-005 

3575 IL7R regulation of T cell differentiation in the 

thymus 

0.0993 

3561 IL2RG regulation of alpha-beta T cell 

differentiation/regulation of T cell 

differentiation 

0.0231/0.0993 

6850 SYK regulation of T cell differentiation in the 

thymus/positive regulation of gamma-

delta T cell differentiation 

0.0231/0.0013 

7535 ZAP70 regulation of alpha-beta T cell 

differentiation 

0.0231 

5788 PTPRC positive regulation of gamma-delta T 

cell differentiation 

0.0013 

6776 STAT5A positive regulation of gamma-delta T 

cell differentiation 

0.0013 
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5. Discussion 

 To be able to detect the fate of stem cells it is critical to analyze the gene expression pattern 

in each cell type. This is because different expression patterns are normally the indications of 

different cell types. In-vitro identification of cell types is a laborious task. This is because for 

performing different experiments, sufficient data for each cell line are needed and, also several 

methods such as transplantation experiments and molecular manipulation techniques, for cell fate 

determination [101][102][103]. The most important factors involved in cell differentiation are the 

interactions within and between the cells. Interactions between different cells determine how a cell 

will differentiate. Inside the cell, the gene regulatory network produces different patterns of gene 

expression which are specific to different cell types or different developmental processes. The 

patterns indicate the function of different cell types. The gene regulatory network normally acts on 

two types of genes, called housekeeping genes and cell specific genes. Cell specific genes are the 

genes which are involved in cell differentiation and are specific to each cell type. Immunological 

cell types (T and B cells) are the cells which are critical in the attack against pathogens. Finding the 

genes which are involved in T and B cells differentiations can be useful in several biological 

problems. This is because these cell types, especially T-cells, have several sub-types and each of 

them has different functions. So a disorder in the differentiation process can completely knockout 

one function of the immune system and cause different diseases. 

 Several methods have been proposed in order to separate the cell specific genes from the 

housekeeping genes and also detect which genes are mostly involved in cell differentiation by 

simulation of genetic regulatory networks. Boolean networks are the most widely used method for 

simulation of the genetic regulatory network. Kauffman [38] proposed that randomly combined 

elements in a gene regulatory network cause different gene expression patterns. Attractors resulted 

from a Kauffman network are assumed to be related to cell types and developmental processes. 

Several studies have approved Kauffman’s findings, but many studies have also proposed that the 

RBN network completely ignores stochasticity of the genetic regulatory network and proposed 

other Boolean networks which take into account a probability of cell stochastic behavior.  

 Because gene interaction networks often have a very large magnitude, simulation of their 

dynamics is often unfeasible with greedy approaches. Heuristics methods are used to reduce the 

state space of such networks, but because there are many types of network (often with different 

definitions) in the human cells, these methods are not able to be applied on all the possible 

networks. So for handling this limitation, network decomposition methods are applied on large 

networks in order to find the most important sub-networks. The study done by [29] reduces the 

huge network of gene interactions in T-cell to the smaller scale, but this network is still too large to 

be simulated by RBNs. Heuristics methods are also not applicable on this network. This limitation 

is due to differences between CTN features and normal Boolean networks: 

 

 The network is defined by experimental data and not randomly generated 

components. 

 There is only one function (with different parameters) in CTN network. This function 

is not randomly assigned to each gene.  

 The function used to update the network is not a pure Boolean function and the states 

of genes are affected by the correlation coefficient values of the neighboring genes 

with the current gene. 

 The function is not deterministic. 

   

 To solve these problems, this study proposed a customized version of RBN by which the 
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CTN network can be simulated, and attractors can be found. This approach not only takes into 

account the deterministic nature of gene regulation but the stochasticity of gene interactions. Using 

this approach, not only the random Boolean network approach is performed but also included are 

the advantages of RBN's derivatives such as asynchronous RBB. The main advantage of this system 

is its flexibility of being applicable on other regulatory networks such as B-cell network. This is 

because by changing the value of parameter, one can easily switch between different simulation 

models which are suitable for distinct networks. The system is also significantly faster than RBNs. 

This is because the system explores only one initial state which is experimentally defined. The other 

benefit of this approach is the applicability of this method on networks with thousands of genes. 

The reason is that even huge networks are converted to small graphs (depending on parameters) and 

so graph theory algorithms can be easily applied on the networks. 

 The main goal of this thesis is to identify genes related to T-cell differentiation. To fulfill 

this requirement, attractors detection was performed on several networks, but the resulting attractors 

did not show reasonable significance in T-cell differentiation related functions. Attractors clustering 

and gene expression simulation were performed. The resulted clusters were very interesting because 

some of the genes related to CD4+ T-cells were clustered in only one cluster of attractors (regarding 

their expression profiles). The main problem is that other genes involved in T-cell differentiation 

were almost evenly separated between attractors. To find out if the simulated expression values are 

the same as the experimental data, the ratio of simulated gene expressions was plotted against the 

real data but no reasonable relationships were observed between the simulated and experimental 

ratios.  

 These failures do not mean that the system works in not a sensible manner. The result of 

clustering clearly shows that the system generated reasonable number of clusters which can be 

related to T-cell sub-types. For example, the cluster related to CD4+ cells was divided into several 

sub-clusters which can be regarded as CD4+ sub-types. So the failures may be related to the fact 

that for finding genes related to T-cell differentiation, this study only used data in publicly available 

databases. Lack of sufficient data and lab experiments may cause the system to fail to find 

interesting genes.  

 The proposed method has three major limitations. First, in order to verify the system and 

find interesting genes, sufficient biological data and published articles are needed. If the amount of 

information is not sufficient, the analysis of attractors is not possible. The second problem is that 

there is not a direct and exact way to set the parameters. Choosing parameters is highly dependent 

on type of network, computational power, and expected number of cycles in network. Having a 

large random component may cause the system to behave completely randomly and having varying 

numbers of iteration will generate completely different numbers of attractors. So a good balance 

between the two parameters is essential for the system to simulate the network in a reasonable way. 

The last problem is that using initial values, only a small (but most interesting) subset of states and 

corresponding attractors can be extracted.  

  There are several ways to expand and verify this system. The most effective method to 

verify the findings is to measure different types of T-cell in actual (in-vitro) experiments. If the 

result of the laboratory experiments shows that the simulated gene expression is the same as the 

actual experiments (with only the CTN genes) it a strong verification of the system. In another 

method, the clustered genes in the simulation can be verified in the lab by performing microarray 

data analysis and observing if the same genes are clustered also in actual experiments. Another good 

approach to compare the behavior of simulation with actual experiments is performing gene 

knockout (or finding experiments where gene knockout was previously performed on any genes 

involved in CTN). This method can be quite expensive because many experiments are needed to 

verify different simulations (with different parameters). If the changes in two experiments are the 
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same, a conclusion can be drawn that the simulation works correctly, with regard to in-vitro 

experiments. Since performing microarray experiments (and gene knockout) are quite expensive, 

performing more data mining and using more resources are recommended for verifying the system 

or reducing the number of genes which are required to be evaluated experimentally. Another 

potential approach is to combine the regulatory model to a metabolic network (involved in T-cells) 

and perform gene knockout (or without gene knockout) to find out if the result of metabolic 

network simulation has common features with in-vivo experiments (or if interesting changes in the 

metabolic network occur). If the mentioned method cannot be used to verify the system and find 

differentiation related genes, the nature of simulation can be modified by two methods. First, one 

can use different parameters and try to find a good balance between power of random component of 

the presented updating function and number of iterations. By finding new parameters, the result of 

the simulation may be dramatically changed and the outcome might be more informative. Since 

finding parameters can be quite challenging, a possible way to run the simulation is to remove the 

random component and use slightly customized RBN (only without randomly assigned functions 

and links) and let the dynamics flow (the same as RBN process) until a reasonable number of 

attractors is found. This technical solution will change the nature of the problem because the 

random component is supposed to be a compensation for microarray analysis and gene expression 

profiling errors (and stochastic environment of the cells). Since gene expressions directly define 

how neighboring genes can affect each other, removing the random component means that the 

extracted interaction between genes is 100% reliable which is not true in real life applications. 

Another approach is performing further network decomposition and repeating the whole experiment 

for each resulting sub-network and coupling the results. Since decomposition methods often greatly 

shrink the network, normal RBN experiments can be performed on the smaller network. This means 

that initial states are generated randomly and not by using available microarray data. Finally, the 

most challenging approach is to remove the correlation values from CTN network and treat the 

network as a pure RBN with the only difference being that the network links were previously 

defined. This approach can be applied by considering all possible values of a gene which can be 

generated by its neighbors and produce all possible Boolean functions for each gene. These 

functions are assigned to (randomly, in case of having many functions) the corresponding gene or 

are shuffled between all the genes in CTN. Having Boolean functions, available methods can be 

applied to find the attractors and extract information from them. This approach also has a limitation. 

There are several possible values that can be produced for the random component. Therefore, one 

has to define one (or several) cut off points for P parameter, in the updating function, which may 

cause the neighbors to have the negative or positive effect on the current genes. Since the state of 

the neighboring genes is also indicated by its neighbors, two possible states (one and zero) for the 

genes have to be considered. The result of this approach may be huge number of possible functions 

for each gene. If the functions are randomly assigned to the genes, not only two random parameters 

are considered (one for P and one for probability of distributing the functions), but also one gene 

may be always off or on regardless of actual expressions of its neighbors. There are many other 

approaches which can be used to change the simulation system or the network and find interesting 

genes (e.g CA or Bayesian network) but because of the unique attributes of this network, most of 

the solutions need to be highly modified to become applicable for CTN. 

 As mentioned, this new method was tested on a specific T-cell gene regulatory network, but 

since the random Boolean networks are a solid framework for simulation of any biological network 

and the modifications made to RBNs are quite flexible, this approach can be further utilized as a 

very general type of RBN which is not only a system for simulating any biological network with 

many attributes, but it is also a reasonable way to add experimentally verified biological data to the 

simulation. So this framework has the advantages of both the gene regulatory network simulation 
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and experimentally verified regulatory networks. Considering these features and performed 

experiments, a good potential target for the next simulation is B-cells. The benefits to B-cells are 

that they are very well defined and also have fewer sub-types compared with T-cells. Thus it is 

much more straightforward to extract information using the presented system. 

6. Conclusion 

 This study shows how to simulate a gene regulatory network where the effects of genes on 

one another are associated with the correlation coefficient values. A new system was proposed in 

order to simulate co-regulatory networks in T-cells using a unique updating function and a 

customized version of a random Boolean network. Initial values were defined in order to reduce 

space and time complexity of the algorithm. Two parameters related to the updating function were 

set in which there is a reasonable balance between randomness and effect of genes on each other in 

the network. The simulations were performed for a statistically significant number of runs, the 

attractors were identified, and most frequent cycles were analyzed in order to find the genes which 

are related to T-cell differentiation processes. But no significant terms associated with T-cell 

differentiation were detected. Since this might be because of loss of information (because only most 

frequent attractors were used), in order to find a solution to reduce data loss, attractors were 

clustered and analyzed to find simulated gene expression. The genes were grouped by their patterns 

of expression, and each group was analyzed by GO and data mining techniques, but none of the 

groups were significant in all the T-cell differentiation terms. To treat the gene expression more 

naturally, the simulated gene expression ratios were compared to the actual gene expression ratios 

in different microarray samples related to T-cell sub-types. The result of most of the experiments 

shows that  the proposed system for simulating of the central T-cell network was not enable to 

correctly separate the genes involved in T-cell differentiation. But the result of clustering was very 

promising. Because, one cluster only contains CD4+ T-cells related genes, one can draw a 

conclusion that the system correctly classified and detected the genes related to CD4+ cells. As the 

results indicated, the simulator system has good potential to be applicable on a variety of regulatory 

networks but for producing more sensible results, one has to perform more experiments and 

verifications with more data. 
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Appendix 1 

Tables A1.1 and A1.2 show the data related to the CTN network (figure A1.1). Figures A1.2 

and A1.3 show difference between mean and median of microarray data (with different distribution) 

used for finding initial values. 

Table A1.1. CTN gene names. 

ENTREZ ID Gene Symbol Gene Name 

60 ACTB actin, beta 

71 ACTG1 actin, gamma 1 

81 ACTN4 actinin, alpha 4 

387 RHOA ras homolog gene family, member A 

778 CACNA1F calcium channel, voltage-dependent, L type, alpha 1F subunit 

867 CBL Cas-Br-M (murine) ecotropic retroviral transforming sequence 

916 CD3E CD3e molecule, epsilon (CD3-TCR complex) 

919 CD247 CD247 molecule 

920 CD4 CD4 molecule 

924 CD7 CD7 molecule 

947 CD34 CD34 molecule 

1072 CFL1 cofilin 1 (non-muscle) 

1399 CRKL v-crk sarcoma virus CT10 oncogene homolog (avian)-like 

1759 DNM1 dynamin 1 

2033 EP300 E1A binding protein p300 

2185 PTK2B PTK2B protein tyrosine kinase 2 beta 

2207 FCER1G Fc fragment of IgE, high affinity I, receptor for; gamma polypeptide 

2212 FCGR2A Fc fragment of IgG, low affinity IIa, receptor (CD32) 

2534 FYN FYN oncogene related to SRC, FGR, YES 

2688 GH1 growth hormone 1 

2934 GSN gelsolin 

3055 HCK hemopoietic cell kinase 

3113 HLA-DPA1 major histocompatibility complex, class II, DP alpha 1 

3115 HLA-DPB1 major histocompatibility complex, class II, DP beta 1 

3383 ICAM1 intercellular adhesion molecule 1 

3385 ICAM3 intercellular adhesion molecule 3 

3480 IGF1R insulin-like growth factor 1 receptor 

3551 IKBKB inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta 

3556 IL1RAP interleukin 1 receptor accessory protein 

3575 IL7R interleukin 7 receptor 

3635 INPP5D inositol polyphosphate-5-phosphatase, 145kDa 

3683 ITGAL integrin, alpha L (antigen CD11A (p180), lymphocyte function-
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Table A1.1. CTN gene names. 

ENTREZ ID Gene Symbol Gene Name 

associated antigen 1; alpha polypeptide) 

3689 ITGB2 integrin, beta 2 (complement component 3 receptor 3 and 4 subunit) 

3716 JAK1 Janus kinase 1 

3791 KDR kinase insert domain receptor (a type III receptor tyrosine kinase) 

3932 LCK lymphocyte-specific protein tyrosine kinase 

3937 LCP2 lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte 

protein of 76kDa) 

4261 CIITA class II, major histocompatibility complex, transactivator 

4478 MSN moesin 

4690 NCK1 NCK adaptor protein 1 

4793 NFKBIB nuclear factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor, beta 

5156 PDGFRA platelet-derived growth factor receptor, alpha polypeptide 

5159 PDGFRB platelet-derived growth factor receptor, beta polypeptide 

5175 PECAM1 platelet/endothelial cell adhesion molecule 

5290 PIK3CA phosphoinositide-3-kinase, catalytic, alpha polypeptide 

5294 PIK3CG phosphoinositide-3-kinase, catalytic, gamma polypeptide 

5295 PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (alpha) 

5296 PIK3R2 phosphoinositide-3-kinase, regulatory subunit 2 (beta) 

5494 PPM1A protein phosphatase, Mg2+/Mn2+ dependent, 1A 

5580 PRKCD protein kinase C, delta 

5588 PRKCQ protein kinase C, theta 

5590 PRKCZ protein kinase C, zeta 

5595 MAPK3 mitogen-activated protein kinase 3 

5608 MAP2K6 mitogen-activated protein kinase kinase 6 

5618 PRLR prolactin receptor 

5777 PTPN6 protein tyrosine phosphatase, non-receptor type 6 

5788 PTPRC protein tyrosine phosphatase, receptor type, C 

5970 RELA v-rel reticuloendotheliosis viral oncogene homolog A (avian) 

6198 RPS6KB1 ribosomal protein S6 kinase, 70kDa, polypeptide 1 

6464 SHC1 SHC (Src homology 2 domain containing) transforming protein 1 

6714 SRC v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) 

6774 STAT3 signal transducer and activator of transcription 3 (acute-phase response 

factor) 

6776 STAT5A signal transducer and activator of transcription 5A 

6850 SYK spleen tyrosine kinase 

7046 TGFBR1 transforming growth factor, beta receptor 1 
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Table A1.1. CTN gene names. 

ENTREZ ID Gene Symbol Gene Name 

7157 TP53 tumor protein p53 

7189 TRAF6 TNF receptor-associated factor 6 

7297 TYK2 tyrosine kinase 2 

7409 VAV1 vav 1 guanine nucleotide exchange factor 

7410 VAV2 vav 2 guanine nucleotide exchange factor 

7535 ZAP70 zeta-chain (TCR) associated protein kinase 70kDa 

8503 PIK3R3 phosphoinositide-3-kinase, regulatory subunit 3 (gamma) 

22918 CD93 CD93 molecule 

708 C1QBP complement component 1, q subcomponent binding protein 

3320 HSP90AA1 heat shock protein 90kDa alpha (cytosolic), class A member 1 

8717 TRADD TNFRSF1A-associated via death domain 

23118 TAB2 TGF-beta activated kinase 1/MAP3K7 binding protein 2 

51567 TDP2 tyrosyl-DNA phosphodiesterase 2 

468 ATF4 activating transcription factor 4 (tax-responsive enhancer element B67) 

1387 CREBBP CREB binding protein 

2885 GRB2 growth factor receptor-bound protein 2 

3560 IL2RB interleukin 2 receptor, beta 

3561 IL2RG interleukin 2 receptor, gamma 

4790 NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 

4794 NFKBIE nuclear factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor, epsilon 

5058 PAK1 p21 protein (Cdc42/Rac)-activated kinase 1 

6772 STAT1 signal transducer and activator of transcription 1, 91kDa 

6773 STAT2 signal transducer and activator of transcription 2, 113kDa 

6778 STAT6 signal transducer and activator of transcription 6, interleukin-4 induced 

7185 TRAF1 TNF receptor-associated factor 1 

7188 TRAF5 TNF receptor-associated factor 5 

8651 SOCS1 suppressor of cytokine signaling 1 

8737 RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 1 

10379 IRF9 interferon regulatory factor 9 

1654 DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked 

1845 DUSP3 dual specificity phosphatase 3 

1956 EGFR epidermal growth factor receptor 

2771 GNAI2 guanine nucleotide binding protein (G protein), alpha inhibiting activity 

polypeptide 2 

3309 HSPA5 heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa) 

4215 MAP3K3 mitogen-activated protein kinase kinase kinase 3 



 

78 

Table A1.1. CTN gene names. 

ENTREZ ID Gene Symbol Gene Name 

5337 PLD1 phospholipase D1, phosphatidylcholine-specific 

5604 MAP2K1 mitogen-activated protein kinase kinase 1 

5781 PTPN11 protein tyrosine phosphatase, non-receptor type 11 

6416 MAP2K4 mitogen-activated protein kinase kinase 4 

7534 YWHAZ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 

protein, zeta polypeptide 

10746 MAP3K2 mitogen-activated protein kinase kinase kinase 2 

1432 MAPK14 mitogen-activated protein kinase 14 

5601 MAPK9 mitogen-activated protein kinase 9 

7186 TRAF2 TNF receptor-associated factor 2 

1439 CSF2RB colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-

macrophage) 

3695 ITGB7 integrin, beta 7 

5579 PRKCB protein kinase C, beta 

608 TNFRSF17 tumor necrosis factor receptor superfamily, member 17 

4049 LTA lymphotoxin alpha (TNF superfamily, member 1) 

7124 TNF tumor necrosis factor 

7133 TNFRSF1B tumor necrosis factor receptor superfamily, member 1B 

7187 TRAF3 TNF receptor-associated factor 3 

10456 HAX1 HCLS1 associated protein X-1 

2175 FANCA Fanconi anemia, complementation group A 

3717 JAK2 Janus kinase 2 

5335 PLCG1 phospholipase C, gamma 1 

2782 GNB1 guanine nucleotide binding protein (G protein), beta polypeptide 1 

2786 GNG4 guanine nucleotide binding protein (G protein), gamma 4 

958 CD40 CD40 molecule, TNF receptor superfamily member 5 

7520 XRCC5 X-ray repair complementing defective repair in Chinese hamster cells 5 

(double-strand-break rejoining) 

1000 CDH2 cadherin 2, type 1, N-cadherin (neuronal) 

1002 CDH4 cadherin 4, type 1, R-cadherin (retinal) 

2176 FANCC Fanconi anemia, complementation group C 

2178 FANCE Fanconi anemia, complementation group E 

2188 FANCF Fanconi anemia, complementation group F 

811 CALR calreticulin 

843 CASP10 caspase 10, apoptosis-related cysteine peptidase 

3312 HSPA8 heat shock 70kDa protein 8 

7132 TNFRSF1A tumor necrosis factor receptor superfamily, member 1A 
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Table A1.1. CTN gene names. 

ENTREZ ID Gene Symbol Gene Name 

1237 CCR8 chemokine (C-C motif) receptor 8 

6361 CCL17 chemokine (C-C motif) ligand 17 

7412 VCAM1 vascular cell adhesion molecule 1 

1147 CHUK conserved helix-loop-helix ubiquitous kinase 

3265 HRAS v-Ha-ras Harvey rat sarcoma viral oncogene homolog 

3654 IRAK1 interleukin-1 receptor-associated kinase 1 

3665 IRF7 interferon regulatory factor 7 

5495 PPM1B protein phosphatase, Mg2+/Mn2+ dependent, 1B 

7128 TNFAIP3 tumor necrosis factor, alpha-induced protein 3 

8517 IKBKG inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase 

gamma 

4267 CD99 CD99 molecule 

5478 PPIA peptidylprolyl isomerase A (cyclophilin A) 

4035 LRP1 low density lipoprotein receptor-related protein 1 

5609 MAP2K7 mitogen-activated protein kinase kinase 7 

23542 MAPK8IP2 mitogen-activated protein kinase 8 interacting protein 2 

3674 ITGA2B integrin, alpha 2b (platelet glycoprotein IIb of IIb/IIIa complex, antigen 

CD41) 

3690 ITGB3 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) 

355 FAS Fas (TNF receptor superfamily, member 6) 

5578 PRKCA protein kinase C, alpha 

5048 PAFAH1B1 platelet-activating factor acetylhydrolase 1b, regulatory subunit 1 

(45kDa) 

5049 PAFAH1B2 platelet-activating factor acetylhydrolase 1b, catalytic subunit 2 (30kDa) 

1437 CSF2 colony stimulating factor 2 (granulocyte-macrophage) 

4254 KITLG KIT ligand 

2826 CCR10 chemokine (C-C motif) receptor 10 

6366 CCL21 chemokine (C-C motif) ligand 21 

3134 HLA-F major histocompatibility complex, class I, F 

3135 HLA-G major histocompatibility complex, class I, G 

6890 TAP1 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP) 

695 BTK Bruton agammaglobulinemia tyrosine kinase 

3702 ITK IL2-inducible T-cell kinase 

29760 BLNK B-cell linker 

1271 CNTFR ciliary neurotrophic factor receptor 

3572 IL6ST interleukin 6 signal transducer (gp130, oncostatin M receptor) 

2833 CXCR3 chemokine (C-X-C motif) receptor 3 
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Table A1.1. CTN gene names. 

ENTREZ ID Gene Symbol Gene Name 

6352 CCL5 chemokine (C-C motif) ligand 5 

2247 FGF2 fibroblast growth factor 2 (basic) 

2253 FGF8 fibroblast growth factor 8 (androgen-induced) 

2260 FGFR1 fibroblast growth factor receptor 1 

2263 FGFR2 fibroblast growth factor receptor 2 

1499 CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa 

5747 PTK2 PTK2 protein tyrosine kinase 2 

5829 PXN paxillin 

7414 VCL vinculin 

2246 FGF1 fibroblast growth factor 1 (acidic) 

2252 FGF7 fibroblast growth factor 7 

2261 FGFR3 fibroblast growth factor receptor 3 

5879 RAC1 ras-related C3 botulinum toxin substrate 1 (rho family, small GTP 

binding protein Rac1) 

7454 WAS Wiskott-Aldrich syndrome (eczema-thrombocytopenia) 

5817 PVR poliovirus receptor 

5818 PVRL1 poliovirus receptor-related 1 (herpesvirus entry mediator C) 

25945 PVRL3 poliovirus receptor-related 3 

2784 GNB3 guanine nucleotide binding protein (G protein), beta polypeptide 3 

2785 GNG3 guanine nucleotide binding protein (G protein), gamma 3 

567 B2M beta-2-microglobulin 

912 CD1D CD1d molecule 

2872 MKNK2 MAP kinase interacting serine/threonine kinase 2 

3727 JUND jun D proto-oncogene 

5594 MAPK1 mitogen-activated protein kinase 1 

1365 CLDN3 claudin 3 

5566 PRKACA protein kinase, cAMP-dependent, catalytic, alpha 

5923 RASGRF1 Ras protein-specific guanine nucleotide-releasing factor 1 

967 CD63 CD63 molecule 

7076 TIMP1 TIMP metallopeptidase inhibitor 1 

821 CANX calnexin 

3688 ITGB1 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 

includes MDF2, MSK12) 

868 CBLB Cas-Br-M (murine) ecotropic retroviral transforming sequence b 

4915 NTRK2 neurotrophic tyrosine kinase, receptor, type 2 

8440 NCK2 NCK adaptor protein 2 

7430 EZR ezrin 
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Table A1.1. CTN gene names. 

ENTREZ ID Gene Symbol Gene Name 

9641 IKBKE inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase 

epsilon 

207 AKT1 v-akt murine thymoma viral oncogene homolog 1 

4296 MAP3K11 mitogen-activated protein kinase kinase kinase 11 

9261 MAPKAPK2 mitogen-activated protein kinase-activated protein kinase 2 

4067 LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog 

5336 PLCG2 phospholipase C, gamma 2 (phosphatidylinositol-specific) 

56848 SPHK2 sphingosine kinase 2 

3985 LIMK2 LIM domain kinase 2 

56288 PARD3 par-3 partitioning defective 3 homolog (C. elegans) 

836 CASP3 caspase 3, apoptosis-related cysteine peptidase 

5530 PPP3CA protein phosphatase 3, catalytic subunit, alpha isozyme 

7096 TLR1 toll-like receptor 1 

7184 HSP90B1 heat shock protein 90kDa beta (Grp94), member 1 

3845 KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 

10235 RASGRP2 RAS guanyl releasing protein 2 (calcium and DAG-regulated) 

1843 DUSP1 dual specificity phosphatase 1 

3308 HSPA4 heat shock 70kDa protein 4 

930 CD19 CD19 molecule 

933 CD22 CD22 molecule 

462 SERPINC1 serpin peptidase inhibitor, clade C (antithrombin), member 1 

710 SERPING1 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 

716 C1S complement component 1, s subcomponent 

2147 F2 coagulation factor II (thrombin) 

975 CD81 CD81 molecule 

8519 IFITM1 interferon induced transmembrane protein 1 (9-27) 

1441 CSF3R colony stimulating factor 3 receptor (granulocyte) 

5319 PLA2G1B phospholipase A2, group IB (pancreas) 

5993 RFX5 regulatory factor X, 5 (influences HLA class II expression) 

8625 RFXANK regulatory factor X-associated ankyrin-containing protein 

921 CD5 CD5 molecule 

923 CD6 CD6 molecule 

2155 F7 coagulation factor VII (serum prothrombin conversion accelerator) 

2159 F10 coagulation factor X 

7035 TFPI tissue factor pathway inhibitor (lipoprotein-associated coagulation 

inhibitor) 

1513 CTSK cathepsin K 



 

82 

Table A1.1. CTN gene names. 

ENTREZ ID Gene Symbol Gene Name 

3827 KNG1 kininogen 1 

7408 VASP vasodilator-stimulated phosphoprotein 

8976 WASL Wiskott-Aldrich syndrome-like 

5435 POLR2F polymerase (RNA) II (DNA directed) polypeptide F 

5437 POLR2H polymerase (RNA) II (DNA directed) polypeptide H 

5440 POLR2K polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa 

2783 GNB2 guanine nucleotide binding protein (G protein), beta polypeptide 2 

55970 GNG12 guanine nucleotide binding protein (G protein), gamma 12 

2165 F13B coagulation factor XIII, B polypeptide 

2266 FGG fibrinogen gamma chain 

3680 ITGA9 integrin, alpha 9 

6696 SPP1 secreted phosphoprotein 1 

3952 LEP leptin 

3953 LEPR leptin receptor 

6383 SDC2 syndecan 2 

6385 SDC4 syndecan 4 

 

 

Table A1.2. Interactions between genes with the correlation value associated with each link. 

ENTREZ ID ENTREZ ID Correlation Value 

5970 5590 0.46000000000 

5608 5970 0.45657651194 

6778 4790 0.45681529800 

5435 5437 0.45767202200 

2782 2786 0.45847250161 

5437 5440 0.45889674271 

5618 7410 0.45967703649 

3654 1147 0.46057684487 

6714 6850 0.46064545328 

6361 7412 0.46114884339 

5580 2185 0.46121095289 

3556 5295 0.46180330658 

4261 5595 0.46226712328 

836 5530 0.46316475956 

5588 5590 0.46425962369 

5295 5494 0.46447517025 

2261 2252 0.46470102610 

1437 4254 0.46475417377 

710 2147 0.46518930757 

2784 2785 0.46520743280 

5048 5049 0.46526526037 

8651 3560 0.46599275992 

7534 10746 0.46611556733 

8717 3320 0.46624854020 

2147 462 0.46626926935 
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Table A1.2. Interactions between genes with the correlation value associated with each link. 

ENTREZ ID ENTREZ ID Correlation Value 

5777 7409 0.46747676193 

1387 6778 0.46857846542 

7454 5879 0.46895315439 

3556 6774 0.47057973520 

7534 4215 0.47071834851 

5580 5494 0.47117585819 

3932 867 0.47129688147 

5970 2033 0.47139273512 

2826 6366 0.47161452921 

2165 2266 0.47257125416 

5580 947 0.47382419437 

3680 6696 0.47576917714 

3654 3665 0.47619507533 

3952 3953 0.47636508611 

3717 5335 0.47805337238 

6773 6778 0.47809497813 

8517 7128 0.47868866878 

3689 2185 0.48014405296 

5594 3727 0.48213580836 

7046 5295 0.48238743412 

7188 8737 0.48270544097 

1843 3308 0.48320801048 

7189 6714 0.48414770168 

5618 2688 0.48436113313 

3113 3115 0.48698597825 

1432 5601 0.48801756250 

10456 7133 0.49023385246 

3654 8517 0.49137184938 

916 4690 0.49369892750 

5478 4267 0.49376195737 

4915 8440 0.49403333758 

958 7520 0.49517065629 

1956 1845 0.49780468911 

1000 1002 0.49875261951 

567 912 0.50580011454 

916 7535 0.50725879931 

8651 2885 0.50783603708 

2534 3791 0.50887365853 

22918 4478 0.51010887650 

7132 843 0.51096480545 

5159 8503 0.51253645773 

6890 3135 0.51279532390 

23542 5609 0.51286976864 

3561 2885 0.51334493338 

3683 3383 0.51528074421 

5970 4793 0.51711552781 

3312 811 0.51743070863 

3937 5295 0.51889063252 

4067 5336 0.51919156878 

1399 3635 0.52272575723 

2534 5788 0.52635860174 

9641 7430 0.52732581112 

933 930 0.52808436213 
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Table A1.2. Interactions between genes with the correlation value associated with each link. 

ENTREZ ID ENTREZ ID Correlation Value 

1956 2771 0.52824794972 

23118 708 0.52876717830 

5777 81 0.53170015294 

7124 7133 0.53291727916 

10235 3845 0.53351957647 

7414 5747 0.53390957288 

2534 7297 0.53520204583 

4067 56848 0.53543050773 

1759 6714 0.53662895930 

5588 3551 0.53762455857 

6772 6773 0.53851702383 

5818 25945 0.53879432139 

920 6850 0.54073743189 

975 8519 0.54174562687 

387 4478 0.54194917228 

3480 6774 0.54386528533 

5159 6776 0.54517732389 

6464 867 0.54522048951 

5156 6774 0.54620466413 

1147 8517 0.54894043826 

2260 2253 0.54898024423 

7046 5296 0.54979563641 

5058 2885 0.55070379221 

8976 7408 0.55247887298 

2934 81 0.55538083661 

7414 1499 0.55815014321 

2176 2188 0.56160898876 

1441 5319 0.56207995630 

6773 10379 0.56591024397 

56288 3985 0.56699908185 

4790 4794 0.57644262701 

29760 3702 0.57744031617 

5604 1956 0.57920553589 

7414 5829 0.57966292124 

3561 6772 0.58083814772 

4035 23542 0.58279686205 

5175 3055 0.58496403318 

3932 5777 0.58738637753 

920 7535 0.58972924724 

5777 2185 0.58975445077 

2263 2253 0.58988690909 

6416 10746 0.59058953048 

1956 5781 0.59067003192 

3932 919 0.59138055213 

8737 4790 0.59826867796 

3654 3265 0.59912823790 

7187 608 0.59957936137 

7534 3309 0.60391766936 

5594 2872 0.60483514294 

7187 7133 0.60595223106 

3385 4478 0.61407436662 

7132 3312 0.61547233341 

5595 6198 0.62191358516 
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Table A1.2. Interactions between genes with the correlation value associated with each link. 

ENTREZ ID ENTREZ ID Correlation Value 

3827 1513 0.62253771742 

3683 3385 0.62557963253 

5777 5175 0.62695716706 

207 4296 0.62701724011 

2159 7035 0.62763938765 

1956 5337 0.63330715488 

7186 5601 0.63875214992 

1399 867 0.64284379666 

1237 6361 0.64533200287 

868 8440 0.64785994323 

2534 3575 0.64957430332 

2247 2260 0.65037119197 

6383 6385 0.65197935503 

8625 5993 0.65262617863 

3572 1271 0.65409243141 

2934 5294 0.65429458656 

3932 5788 0.65749776877 

1387 468 0.65877207172 

2261 2246 0.65882887477 

6464 3480 0.66034871062 

207 9261 0.66109903401 

7534 1956 0.66138950012 

3688 821 0.66148448324 

2207 6850 0.66207684507 

51567 3320 0.66792776280 

5580 60 0.67613121679 

5588 7409 0.67678076667 

5788 5595 0.67716154489 

7185 8737 0.67779453985 

5566 5923 0.67909139678 

5566 1365 0.68155813877 

2176 2178 0.68398261080 

5595 7157 0.68505802974 

5495 1147 0.68733033407 

5777 7535 0.70340785580 

7409 5618 0.70587630326 

3716 5788 0.70628944810 

2783 55970 0.71148467701 

920 3113 0.71230060096 

2833 6352 0.71408670050 

355 5578 0.72348454708 

5818 5817 0.72902466416 

919 6776 0.74049645412 

710 716 0.75261034194 

2175 5335 0.75294636207 

2155 7035 0.75465179429 

921 923 0.76247382103 

5290 5295 0.77074553925 

5579 3695 0.77497434106 

4049 7124 0.78857869455 

29760 695 0.79610275380 

2534 778 0.80645648920 

3683 3689 0.83095423110 
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Table A1.2. Interactions between genes with the correlation value associated with each link. 

ENTREZ ID ENTREZ ID Correlation Value 

7184 7096 0.83589657996 

7534 1654 0.84597414386 

2212 6850 0.85900946708 

23118 3320 0.85952105149 

7076 967 0.86502129994 

5295 924 0.92351951820 

3690 3674 0.92732190288 

1072 60 0.93174768195 

1439 5579 0.95831887372 

3932 5588 1.00425820442 

71 60 1.00777555854 

6890 3134 1.11125400284 
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Figure A1.1. The Central T-cell Network (CTN) which contains 256 nodes and 196 edges. 
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Figure A1.2. Difference between mean and median in non-normally distributed microarray data for CTN genes. 

 

 

 

Figure A1.3. Difference between mean and median in normally distributed microarray data for CTN genes. 
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Appendix 2 

This section contains the result of the GO and exhaustive analysis on different sets of data. 

Tables A2.1 and A2.2 contain the analysis for the most frequent attractors, Tables A2.3 to A2.6 

show the result of Go analysis on different clusters and sub-clusters. Table A2.7 show the result 

of data mining method combined with Go analysis. 

Table A2.1. GO Analysis for attractor with period 2, complete table. 

Term Count % P-Value Genes 
List 

Total 

Only Ones Pattern 

regulation of system process 4 40.00 0.0162 2771, 5781, 1956, 5604 9 

MAPKKK cascade 5 50.00 0.0211 2771, 5781, 1956, 4215, 5604 9 

vesicle 4 40.00 0.0271 1956, 5337, 7534, 3309 9 

protein tyrosine phosphatase activity 3 30.00 0.0414 5781, 5604, 1845 10 

cell fraction 5 50.00 0.0469 2771, 5781, 5337, 5604, 7534 9 

hydrolase 4 40.00 0.0570 5781, 1654, 5337, 1845 10 

cell projection morphogenesis 3 30.00 0.0624 5781, 1956, 5604 9 

cell part morphogenesis 3 30.00 0.0624 5781, 1956, 5604 9 

neuron projection morphogenesis 3 30.00 0.0624 5781, 1956, 5604 9 

GnRH signaling pathway 4 40.00 0.0714 1956, 5337, 4215, 5604 10 

cytoplasmic vesicle 3 30.00 0.0933 1956, 7534, 3309 9 

cytoplasmic membrane-bounded vesicle 3 30.00 0.0933 1956, 7534, 3309 9 

Map Kinase Inactivation of SMRT 

Corepressor 
2 20.00 0.0989 1956, 5604 6 

Only Zero Pattern 

Leukocyte transendothelial migration 20 27.03 0.0030 

5747, 8503, 5175, 7409, 7414, 

3683, 1499, 3383, 5290, 4478, 

387, 3689, 2185, 71, 81, 60, 

5294, 5829, 5295, 5296 

72 

Regulation of actin cytoskeleton 25 33.78 0.0082 

2147, 2934, 7414, 2253, 3683, 

1072, 2247, 387, 81, 60, 5829, 

5159, 5747, 8503, 2263, 7409, 

2260, 5290, 4478, 3689, 5595, 

71, 5294, 5295, 5296 

72 

cell adhesion 10 13.51 0.0231 
3689, 5175, 7414, 3385, 22918, 

3683, 5829, 947, 3383, 1499 
74 

cytoskeleton 11 14.86 0.0421 
4478, 387, 3689, 2934, 7414, 

71, 3683, 60, 5829, 1499, 1072 
74 

carbohydrate binding 8 10.81 0.0533 
811, 462, 2247, 2263, 22918, 

947, 5788, 2260 
69 

membrane 35 47.30 0.0599 
7414, 3385, 22918, 3683, 924, 

947, 3383, 387, 919, 2207, 608, 
74 
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Table A2.1. GO Analysis for attractor with period 2, complete table. 

Term Count % P-Value Genes 
List 

Total 

7046, 3575, 5580, 5159, 3055, 

5747, 5175, 2263, 3791, 778, 

3551, 3716, 7133, 7132, 2260, 

4478, 3689, 468, 2534, 2185, 

10456, 2212, 3932, 5788 

cation homeostasis 8 10.81 0.0635 
811, 2147, 3791, 2185, 778, 

3932, 7157, 5788 
72 

cell adhesion 15 20.27 0.0728 

5175, 7414, 3385, 22918, 3683, 

947, 3383, 1499, 4478, 6850, 

387, 3689, 2185, 5829, 5788 

72 

biological adhesion 15 20.27 0.0728 

5175, 7414, 3385, 22918, 3683, 

947, 3383, 1499, 4478, 6850, 

387, 3689, 2185, 5829, 5788 

72 

cell motion 18 24.32 0.0784 

5747, 7414, 3791, 3683, 947, 

1072, 3383, 4478, 6198, 6850, 

2247, 3689, 2534, 2185, 71, 60, 

7046, 5159 

72 

Combined Pattern 

protein kinase cascade 22 48.89 0.0142 

7535, 6714, 8517, 1147, 6774, 

5618, 6772, 6464, 7124, 5058, 

5608, 8651, 7189, 6416, 3480, 

1399, 2688, 2885, 8737, 4793, 

3654, 10746 

45 

regulation of kinase activity 14 31.11 0.0155 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 7410, 5590, 

2688, 8737, 3654, 10746 

45 

regulation of transferase activity 14 31.11 0.0155 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 7410, 5590, 

2688, 8737, 3654, 10746 

45 

positive regulation of transferase 

activity 
14 31.11 0.0155 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 7410, 5590, 

2688, 8737, 3654, 10746 

45 

positive regulation of kinase activity 14 31.11 0.0155 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 7410, 5590, 

2688, 8737, 3654, 10746 

45 

GO:0042981~regulation of apoptosis 21 46.67 0.0180 

3265, 4049, 6714, 8517, 5618, 

6772, 3560, 5970, 7124, 916, 

5608, 7189, 3480, 7188, 7410, 

5590, 8737, 7128, 7185, 3654, 

3635 

45 

I-kappaB kinase/NF-kappaB cascade 7 15.56 0.0204 
7189, 8517, 1147, 8737, 6772, 

3654, 4793 
45 

regulation of phosphorus metabolic 

process 
16 35.56 0.0253 

920, 8517, 5618, 6464, 7124, 

5058, 916, 5608, 8651, 7189, 

7410, 5590, 2688, 8737, 3654, 

10746 

45 
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Table A2.1. GO Analysis for attractor with period 2, complete table. 

Term Count % P-Value Genes 
List 

Total 

regulation of phosphorylation 16 35.56 0.0253 

920, 8517, 5618, 6464, 7124, 

5058, 916, 5608, 8651, 7189, 

7410, 5590, 2688, 8737, 3654, 

10746 

45 

regulation of phosphate metabolic 

process 
16 35.56 0.0253 

920, 8517, 5618, 6464, 7124, 

5058, 916, 5608, 8651, 7189, 

7410, 5590, 2688, 8737, 3654, 

10746 

45 

regulation of cell death 21 46.67 0.0256 

3265, 4049, 6714, 8517, 5618, 

6772, 3560, 5970, 7124, 916, 

5608, 7189, 3480, 7188, 7410, 

5590, 8737, 7128, 7185, 3654, 

3635 

45 

regulation of programmed cell death 21 46.67 0.0256 

3265, 4049, 6714, 8517, 5618, 

6772, 3560, 5970, 7124, 916, 

5608, 7189, 3480, 7188, 7410, 

5590, 8737, 7128, 7185, 3654, 

3635 

45 

mutagenesis site 22 48.89 0.0286 

7535, 920, 3265, 8517, 1147, 

6772, 2033, 3560, 5970, 7124, 

5058, 867, 5608, 1759, 7189, 

3480, 5590, 2885, 8737, 7128, 

4793, 3654 

45 

regulation of protein kinase activity 13 28.89 0.0299 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 5590, 2688, 

8737, 3654, 10746 

45 

positive regulation of protein kinase 

activity 
13 28.89 0.0299 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 5590, 2688, 

8737, 3654, 10746 

45 

positive regulation of catalytic activity 15 33.33 0.0310 

920, 8517, 5618, 6464, 6772, 

7124, 5058, 5608, 7189, 7410, 

5590, 2688, 8737, 3654, 10746 

45 

p38 MAPK Signaling Pathway 7 15.56 0.0343 
6416, 3265, 2885, 8737, 6464, 

6772, 5608 
39 

intracellular signaling cascade 27 60.00 0.0391 

7535, 4049, 3265, 8517, 1147, 

6774, 5618, 6464, 6772, 7124, 

8651, 7189, 3480, 6416, 8737, 

3654, 3635, 6714, 5058, 5608, 

1399, 7410, 5590, 2688, 2885, 

4793, 10746 

45 

response to cytokine stimulus 8 17.78 0.0402 
6714, 6774, 5156, 8737, 6772, 

5970, 8651, 3654 
45 

positive regulation of programmed cell 

death 
11 24.44 0.0428 

7189, 8517, 6714, 4049, 7410, 

8737, 6772, 7124, 916, 5608, 

3635 

45 

positive regulation of apoptosis 11 24.44 0.0428 7189, 8517, 6714, 4049, 7410, 45 
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Table A2.1. GO Analysis for attractor with period 2, complete table. 

Term Count % P-Value Genes 
List 

Total 

8737, 6772, 7124, 916, 5608, 

3635 

positive regulation of cell death 11 24.44 0.0428 

7189, 8517, 6714, 4049, 7410, 

8737, 6772, 7124, 916, 5608, 

3635 

45 

positive regulation of molecular 

function 
17 37.78 0.0432 

920, 8517, 5618, 6464, 2033, 

6772, 5970, 7124, 5058, 5608, 

7189, 7410, 5590, 2688, 8737, 

3654, 10746 

45 

Endocytosis 10 22.22 0.0482 
7189, 3480, 3265, 6714, 5590, 

5156, 3561, 3560, 867, 1759 
45 

molecular adaptor activity 5 11.11 0.0515 6714, 1399, 2885, 6464, 4690 45 

protein complex biogenesis 13 28.89 0.0664 

6714, 3265, 5618, 3560, 916, 

3480, 5590, 2885, 3556, 3654, 

7185, 3665, 4690 

45 

positive regulation of cell 

communication 
13 28.89 0.0664 

7535, 920, 4049, 6714, 3265, 

5970, 7124, 916, 7189, 7188, 

5590, 2688, 8737 

45 

macromolecular complex subunit 

organization 
13 28.89 0.0664 

6714, 3265, 5618, 3560, 916, 

3480, 5590, 2885, 3556, 3654, 

7185, 3665, 4690 

45 

macromolecular complex assembly 13 28.89 0.0664 

6714, 3265, 5618, 3560, 916, 

3480, 5590, 2885, 3556, 3654, 

7185, 3665, 4690 

45 

protein complex assembly 13 28.89 0.0664 

6714, 3265, 5618, 3560, 916, 

3480, 5590, 2885, 3556, 3654, 

7185, 3665, 4690 

45 

NF-kB Signaling Pathway 8 17.78 0.0688 
7189, 8517, 1147, 8737, 7128, 

5970, 7124, 3654 
39 

response to steroid hormone stimulus 8 17.78 0.0703 
6714, 6774, 2688, 5156, 2033, 

5970, 7124, 8651 
45 

cytokine-mediated signaling pathway 8 17.78 0.0703 
6774, 8737, 6772, 5970, 3560, 

7124, 8651, 3654 
45 

NOD-like receptor signaling pathway 7 15.56 0.0791 
7189, 8517, 1147, 7128, 5970, 

7124, 4793 
45 

positive regulation of signal 

transduction 
12 26.67 0.0798 

7189, 7535, 920, 7188, 3265, 

6714, 4049, 2688, 8737, 5970, 

7124, 916 

45 

Cytosolic DNA-sensing pathway 6 13.33 0.0920 
8517, 1147, 8737, 5970, 4793, 

3665 
45 

zinc-finger 8 17.78 0.0993 
7189, 7188, 8517, 5590, 7410, 

2033, 7128, 867 
45 
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Table A2.2. GO Analysis for attractor with period 4, complete table. 

Term Count % P-Value Genes 
List 

Total 

Only One Pattern 

regulation of system process 4 40.00 0.0162 2771, 5781, 1956, 5604 9 

MAPKKK cascade 5 50.00 0.0211 2771, 5781, 1956, 4215, 5604 9 

vesicle 4 40.00 0.0271 1956, 5337, 7534, 3309 9 

protein tyrosine phosphatase activity 3 30.00 0.0414 5781, 5604, 1845 10 

cell fraction 5 50.00 0.0469 2771, 5781, 5337, 5604, 7534 9 

hydrolase 4 40.00 0.0570 5781, 1654, 5337, 1845 10 

neuron projection morphogenesis 3 30.00 0.0624 5781, 1956, 5604 9 

cell projection morphogenesis 3 30.00 0.0624 5781, 1956, 5604 9 

cell part morphogenesis 3 30.00 0.0624 5781, 1956, 5604 9 

GnRH signaling pathway 4 40.00 0.0714 1956, 5337, 4215, 5604 10 

cytoplasmic vesicle 3 30.00 0.0933 1956, 7534, 3309 9 

cytoplasmic membrane-bounded vesicle 3 30.00 0.0933 1956, 7534, 3309 9 

Map Kinase Inactivation of SMRT 

Corepressor 
2 20.00 0.0989 1956, 5604 6 

Only Zero Pattern 

Leukocyte transendothelial migration 20 27.78 0.0024 

5747, 8503, 5175, 7409, 7414, 

3683, 1499, 3383, 5290, 4478, 

387, 3689, 2185, 71, 81, 60, 

5294, 5829, 5295, 5296 

71 

Regulation of actin cytoskeleton 25 34.72 0.0062 

2147, 2934, 7414, 2253, 3683, 

1072, 2247, 387, 81, 60, 5829, 

5159, 5747, 8503, 2263, 7409, 

2260, 5290, 4478, 3689, 5595, 

71, 5294, 5295, 5296 

71 

cell adhesion 10 13.89 0.0182 
3689, 5175, 7414, 3385, 22918, 

3683, 5829, 947, 3383, 1499 
72 

cytoskeleton 11 15.28 0.0331 
4478, 387, 3689, 2934, 7414, 

71, 3683, 60, 5829, 1499, 1072 
72 

disease mutation 26 36.11 0.0461 

843, 2147, 6772, 2934, 7414, 

2253, 1499, 1387, 81, 60, 7046, 

3575, 2263, 778, 7157, 2260, 

7132, 5290, 462, 3689, 4261, 

71, 710, 3932, 5295, 5788 

72 

carbohydrate binding 8 11.11 0.0484 
811, 462, 2247, 2263, 22918, 

947, 5788, 2260 
68 

cation homeostasis 8 11.11 0.0580 811, 2147, 3791, 2185, 778, 71 
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Table A2.2. GO Analysis for attractor with period 4, complete table. 

Term Count % P-Value Genes 
List 

Total 

3932, 7157, 5788 

cell adhesion 15 20.83 0.0632 

5175, 7414, 3385, 22918, 3683, 

947, 3383, 1499, 4478, 6850, 

387, 3689, 2185, 5829, 5788 

71 

biological adhesion 15 20.83 0.0632 

5175, 7414, 3385, 22918, 3683, 

947, 3383, 1499, 4478, 6850, 

387, 3689, 2185, 5829, 5788 

71 

cell motion 18 25.00 0.0666 

5747, 7414, 3791, 3683, 947, 

1072, 3383, 4478, 6198, 6850, 

2247, 3689, 2534, 2185, 71, 60, 

7046, 5159 

71 

calcium ion binding 12 16.67 0.0859 

811, 716, 2147, 2934, 6772, 

6773, 6776, 778, 6778, 81, 

22918, 3683 

68 

cell motility 14 19.44 0.0922 

5747, 3791, 947, 3383, 1072, 

4478, 6198, 6850, 3689, 2247, 

2534, 2185, 7046, 5159 

71 

localization of cell 14 19.44 0.0922 

5747, 3791, 947, 3383, 1072, 

4478, 6198, 6850, 3689, 2247, 

2534, 2185, 7046, 5159 

71 

cell migration 14 19.44 0.0922 

5747, 3791, 947, 3383, 1072, 

4478, 6198, 6850, 3689, 2247, 

2534, 2185, 7046, 5159 

71 

mTOR signaling pathway 7 9.72 0.0931 
5290, 6198, 8503, 5595, 5294, 

5295, 5296 
71 

calcium ion homeostasis 7 9.72 0.0971 
811, 2147, 3791, 2185, 778, 

3932, 5788 
71 

di-, tri-valent inorganic cation 

homeostasis 
7 9.72 0.0971 

811, 2147, 3791, 2185, 778, 

3932, 5788 
71 

metal ion homeostasis 7 9.72 0.0971 
811, 2147, 3791, 2185, 778, 

3932, 5788 
71 

cellular cation homeostasis 7 9.72 0.0971 
811, 2147, 2185, 778, 3932, 

7157, 5788 
71 

Combined Pattern 

regulation of kinase activity 14 28.57 0.0122 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 7410, 5590, 

2688, 8737, 3654, 10746 

44 

positive regulation of kinase activity 14 28.57 0.0122 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 7410, 5590, 

2688, 8737, 3654, 10746 

44 

positive regulation of transferase 

activity 
14 28.57 0.0122 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 7410, 5590, 

2688, 8737, 3654, 10746 

44 
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Table A2.2. GO Analysis for attractor with period 4, complete table. 

Term Count % P-Value Genes 
List 

Total 

regulation of transferase activity 14 28.57 0.0122 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 7410, 5590, 

2688, 8737, 3654, 10746 

44 

regulation of phosphate metabolic 

process 
16 32.65 0.0196 

920, 8517, 5618, 6464, 7124, 

5058, 916, 5608, 8651, 7189, 

7410, 5590, 2688, 8737, 3654, 

10746 

44 

regulation of phosphorus metabolic 

process 
16 32.65 0.0196 

920, 8517, 5618, 6464, 7124, 

5058, 916, 5608, 8651, 7189, 

7410, 5590, 2688, 8737, 3654, 

10746 

44 

regulation of phosphorylation 16 32.65 0.0196 

920, 8517, 5618, 6464, 7124, 

5058, 916, 5608, 8651, 7189, 

7410, 5590, 2688, 8737, 3654, 

10746 

44 

positive regulation of protein kinase 

activity 
13 26.53 0.0242 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 5590, 2688, 

8737, 3654, 10746 

44 

regulation of protein kinase activity 13 26.53 0.0242 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 5590, 2688, 

8737, 3654, 10746 

44 

protein kinase cascade 21 42.86 0.0259 

7535, 6714, 8517, 1147, 6774, 

5618, 6464, 7124, 5058, 5608, 

8651, 7189, 6416, 3480, 1399, 

2688, 2885, 8737, 4793, 3654, 

10746 

44 

regulation of apoptosis 20 40.82 0.0329 

3265, 4049, 6714, 8517, 5618, 

3560, 5970, 7124, 916, 5608, 

7189, 3480, 7188, 7410, 5590, 

8737, 7128, 7185, 3654, 3635 

44 

Endocytosis 10 20.41 0.0412 
7189, 3480, 3265, 6714, 5590, 

5156, 3561, 3560, 867, 1759 
44 

regulation of programmed cell death 20 40.82 0.0449 

3265, 4049, 6714, 8517, 5618, 

3560, 5970, 7124, 916, 5608, 

7189, 3480, 7188, 7410, 5590, 

8737, 7128, 7185, 3654, 3635 

44 

regulation of cell death 20 40.82 0.0449 

3265, 4049, 6714, 8517, 5618, 

3560, 5970, 7124, 916, 5608, 

7189, 3480, 7188, 7410, 5590, 

8737, 7128, 7185, 3654, 3635 

44 

molecular adaptor activity 5 10.20 0.0473 6714, 1399, 2885, 6464, 4690 44 

mutagenesis site 21 42.86 0.0482 

7535, 920, 3265, 8517, 1147, 

2033, 3560, 5970, 7124, 5058, 

867, 5608, 1759, 7189, 3480, 

5590, 2885, 8737, 7128, 4793, 

3654 

44 
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Table A2.2. GO Analysis for attractor with period 4, complete table. 

Term Count % P-Value Genes 
List 

Total 

protein complex biogenesis 13 26.53 0.0550 

6714, 3265, 5618, 3560, 916, 

3480, 5590, 2885, 3556, 3654, 

7185, 3665, 4690 

44 

macromolecular complex assembly 13 26.53 0.0550 

6714, 3265, 5618, 3560, 916, 

3480, 5590, 2885, 3556, 3654, 

7185, 3665, 4690 

44 

positive regulation of cell 

communication 
13 26.53 0.0550 

7535, 920, 4049, 6714, 3265, 

5970, 7124, 916, 7189, 7188, 

5590, 2688, 8737 

44 

macromolecular complex subunit 

organization 
13 26.53 0.0550 

6714, 3265, 5618, 3560, 916, 

3480, 5590, 2885, 3556, 3654, 

7185, 3665, 4690 

44 

protein complex assembly 13 26.53 0.0550 

6714, 3265, 5618, 3560, 916, 

3480, 5590, 2885, 3556, 3654, 

7185, 3665, 4690 

44 

intracellular signaling cascade 26 53.06 0.0579 

7535, 4049, 3265, 8517, 1147, 

6774, 5618, 6464, 7124, 8651, 

7189, 3480, 6416, 8737, 3654, 

3635, 6714, 5058, 5608, 5590, 

7410, 1399, 2688, 2885, 4793, 

10746 

44 

NF-kB Signaling Pathway 8 16.33 0.0592 
7189, 8517, 1147, 8737, 7128, 

5970, 7124, 3654 
38 

response to steroid hormone stimulus 8 16.33 0.0621 
6714, 6774, 2688, 5156, 2033, 

5970, 7124, 8651 
44 

positive regulation of catalytic activity 14 28.57 0.0636 

920, 8517, 5618, 6464, 7124, 

5058, 5608, 7189, 7410, 5590, 

2688, 8737, 3654, 10746 

44 

positive regulation of signal 

transduction 
12 24.49 0.0673 

7189, 7535, 920, 7188, 3265, 

6714, 4049, 2688, 8737, 5970, 

7124, 916 

44 

NOD-like receptor signaling pathway 7 14.29 0.0709 
7189, 8517, 1147, 7128, 5970, 

7124, 4793 
44 

positive regulation of molecular 

function 
16 32.65 0.0787 

920, 8517, 5618, 6464, 2033, 

5970, 7124, 5058, 5608, 7189, 

7410, 5590, 2688, 8737, 3654, 

10746 

44 

Cytosolic DNA-sensing pathway 6 12.24 0.0837 
8517, 1147, 8737, 5970, 4793, 

3665 
44 

I-kappaB kinase/NF-kappaB cascade 6 12.24 0.0864 
7189, 8517, 1147, 8737, 3654, 

4793 
44 

zinc-finger 8 16.33 0.0884 
7189, 7188, 8517, 5590, 7410, 

2033, 7128, 867 
44 

RIG-I-like receptor signaling pathway 8 16.33 0.0954 7189, 8517, 1147, 8737, 5970, 44 
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Table A2.2. GO Analysis for attractor with period 4, complete table. 

Term Count % P-Value Genes 
List 

Total 

7124, 4793, 3665 

positive regulation of apoptosis 10 20.41 0.0997 
7189, 8517, 6714, 4049, 7410, 

8737, 7124, 916, 5608, 3635 
44 

positive regulation of cell death 10 20.41 0.0997 
7189, 8517, 6714, 4049, 7410, 

8737, 7124, 916, 5608, 3635 
44 

positive regulation of programmed cell 

death 
10 20.41 0.0997 

7189, 8517, 6714, 4049, 7410, 

8737, 7124, 916, 5608, 3635 
44 

 

Table A2.3. GO analysis for three groups of clustered attractors with period 2, complete table. 

Term Count % PValue Genes 
List 

Total 

Right Cluster 

p38 MAPK Signaling Pathway 7 14.00 0.0651 
6416, 3265, 2885, 8737, 9261, 

5608, 8717 
35 

Long-term potentiation 6 12.00 0.0961 
3265, 5579, 5578, 2033, 3845, 

5530 
47 

Center Cluster 

cell fraction 9 50.00 0.0019 
3480, 2771, 5781, 5336, 5337, 

5604, 7534, 56848, 4067 
16 

positive regulation of cell motion 5 27.78 0.0068 3480, 1956, 5337, 5604, 4067 17 

Fc gamma R-mediated phagocytosis 7 38.89 0.0069 
1399, 5336, 5337, 5604, 56848, 

4067, 3635 
18 

phosphoprotein 17 94.44 0.0144 

5781, 1956, 6464, 4215, 5604, 

867, 56848, 3309, 2771, 3480, 

1399, 5336, 1654, 5337, 7534, 

4067, 3635 

18 

regulation of cell motion 5 27.78 0.0204 3480, 1956, 5337, 5604, 4067 17 

Neurotrophin signaling pathway 7 38.89 0.0213 
1399, 5781, 5336, 6464, 4215, 

5604, 7534 
18 

hydrolase 6 33.33 0.0214 
5781, 5336, 1654, 5337, 1845, 

3635 
18 

phosphorus metabolic process 10 55.56 0.0226 
3480, 2771, 5781, 1956, 6464, 

4215, 5604, 4067, 1845, 3635 
17 

phosphate metabolic process 10 55.56 0.0226 
3480, 2771, 5781, 1956, 6464, 

4215, 5604, 4067, 1845, 3635 
17 

MAPKKK cascade 7 38.89 0.0245 
2771, 1399, 5781, 1956, 6464, 

4215, 5604 
17 

IGF-1 Signaling Pathway 4 22.22 0.0253 3480, 5781, 6464, 5604 11 

membrane fraction 6 33.33 0.0279 
3480, 2771, 5336, 5337, 56848, 

4067 
16 
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Table A2.3. GO analysis for three groups of clustered attractors with period 2, complete table. 

Term Count % PValue Genes 
List 

Total 

insoluble fraction 6 33.33 0.0279 
3480, 2771, 5336, 5337, 56848, 

4067 
16 

SH2 domain 7 38.89 0.0312 
1399, 5781, 5336, 6464, 867, 

4067, 3635 
18 

cell part morphogenesis 4 22.22 0.0337 3480, 5781, 1956, 5604 17 

positive regulation of cell migration 4 22.22 0.0337 3480, 1956, 5337, 5604 17 

neuron projection development 4 22.22 0.0337 3480, 5781, 1956, 5604 17 

cell projection morphogenesis 4 22.22 0.0337 3480, 5781, 1956, 5604 17 

neuron projection morphogenesis 4 22.22 0.0337 3480, 5781, 1956, 5604 17 

Sprouty regulation of tyrosine kinase 

signals 
4 22.22 0.0412 1956, 6464, 5604, 867 11 

intracellular signaling cascade 12 66.67 0.0422 

3480, 2771, 1399, 5781, 5336, 

1956, 5337, 6464, 4215, 5604, 

4067, 3635 

17 

phosphatase activity 4 22.22 0.0440 5781, 5604, 1845, 3635 18 

regulation of hormone levels 3 16.67 0.0496 5781, 7534, 4067 17 

cell activation during immune response 3 16.67 0.0496 5336, 7534, 4067 17 

regulation of calcium ion transport 3 16.67 0.0496 2771, 5336, 4067 17 

leukocyte activation during immune 

response 
3 16.67 0.0496 5336, 7534, 4067 17 

cellular component morphogenesis 4 22.22 0.0539 3480, 5781, 1956, 5604 17 

positive regulation of locomotion 4 22.22 0.0539 3480, 1956, 5337, 5604 17 

cell morphogenesis 4 22.22 0.0539 3480, 5781, 1956, 5604 17 

neuron development 4 22.22 0.0539 3480, 5781, 1956, 5604 17 

perinuclear region of cytoplasm 4 22.22 0.0587 5337, 5604, 3309, 4067 16 

protein tyrosine phosphatase activity 3 16.67 0.0597 5781, 5604, 1845 18 

insulin receptor binding 3 16.67 0.0597 3480, 5781, 6464 18 

Insulin signaling pathway 5 27.78 0.0601 1399, 6464, 5604, 867, 3635 18 

protein complex binding 5 27.78 0.0619 3480, 5781, 6464, 7534, 4067 18 

nucleotide-binding 9 50.00 0.0694 
3480, 2771, 1956, 1654, 4215, 

5604, 56848, 3309, 4067 
18 

neuron differentiation 4 22.22 0.0788 3480, 5781, 1956, 5604 17 

regulation of cell migration 4 22.22 0.0788 3480, 1956, 5337, 5604 17 

hsa05214:Glioma 5 27.78 0.0814 3480, 5336, 1956, 6464, 5604 18 

regulation of metal ion transport 3 16.67 0.0910 2771, 5336, 4067 17 

gland development 3 16.67 0.0910 3480, 1399, 1956 17 
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Table A2.3. GO analysis for three groups of clustered attractors with period 2, complete table. 

Term Count % PValue Genes 
List 

Total 

leukocyte mediated immunity 3 16.67 0.0910 7534, 4067, 3635 17 

negative regulation of cell death 6 33.33 0.0910 
3480, 5336, 1956, 7534, 56848, 

3309 
17 

negative regulation of programmed cell 

death 
6 33.33 0.0910 

3480, 5336, 1956, 7534, 56848, 

3309 
17 

nucleotide binding 9 50.00 0.0926 
3480, 2771, 1956, 1654, 4215, 

5604, 56848, 3309, 4067 
18 

purine nucleotide binding 9 50.00 0.0926 
3480, 2771, 1956, 1654, 4215, 

5604, 56848, 3309, 4067 
18 

ribonucleotide binding 9 50.00 0.0926 
3480, 2771, 1956, 1654, 4215, 

5604, 56848, 3309, 4067 
18 

purine ribonucleotide binding 9 50.00 0.0926 
3480, 2771, 1956, 1654, 4215, 

5604, 56848, 3309, 4067 
18 

SM00252:SH2 6 33.33 0.0954 
1399, 5781, 5336, 6464, 4067, 

3635 
16 

SH2 motif 6 33.33 0.0966 
1399, 5781, 5336, 6464, 4067, 

3635 
18 

atp-binding 8 44.44 0.0979 
3480, 1956, 1654, 4215, 5604, 

56848, 3309, 4067 
18 

Long-term depression 4 22.22 0.0985 3480, 2771, 5604, 4067 18 

Left Cluster 

disulfide bond 21 42.00 0.0688 

811, 3113, 25945, 8517, 1271, 

2934, 3561, 7124, 3680, 3690, 

1439, 921, 2261, 3695, 7132, 

2826, 6352, 355, 2688, 5817, 

4915 

50 

disulfide bond 21 42.00 0.0688 

811, 3113, 25945, 8517, 1271, 

2934, 3561, 7124, 3680, 3690, 

1439, 921, 2261, 3695, 7132, 

2826, 6352, 355, 2688, 5817, 

4915 

50 

 

Table A2.4 GO analysis for three groups of clustered attractors with period 4, complete table. 

Term Count % P-Value Genes 
List 

Total 

Right Cluster 

p38 MAPK Signaling Pathway 7 14.00 0.0651 
6416, 3265, 2885, 8737, 9261, 

5608, 8717 
35 

Long-term potentiation 6 12.00 0.0961 
3265, 5579, 5578, 2033, 3845, 

5530 
47 

Center Cluster 
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Table A2.4 GO analysis for three groups of clustered attractors with period 4, complete table. 

Term Count % P-Value Genes 
List 

Total 

cell fraction 9 47.37 0.0033 
3480, 2771, 5781, 5336, 5337, 

5604, 7534, 56848, 4067 
17 

positive regulation of cell motion 5 26.32 0.0087 3480, 1956, 5337, 5604, 4067 18 

Fc gamma R-mediated phagocytosis 7 36.84 0.0097 
1399, 5336, 5337, 5604, 56848, 

4067, 3635 
19 

phosphoprotein 18 94.74 0.0101 

5781, 1956, 6464, 3561, 4215, 

5604, 867, 56848, 3309, 2771, 

3480, 1399, 5336, 5337, 1654, 

7534, 4067, 3635 

19 

regulation of cell motion 5 26.32 0.0257 3480, 1956, 5337, 5604, 4067 18 

hydrolase 6 31.58 0.0278 
5781, 5336, 1654, 5337, 1845, 

3635 
19 

Neurotrophin signaling pathway 7 36.84 0.0289 
1399, 5781, 5336, 6464, 4215, 

5604, 7534 
19 

IGF-1 Signaling Pathway 4 21.05 0.0337 3480, 5781, 6464, 5604 12 

MAPKKK cascade 7 36.84 0.0338 
2771, 1399, 5781, 1956, 6464, 

4215, 5604 
18 

phosphorus metabolic process 10 52.63 0.0367 
3480, 2771, 5781, 1956, 6464, 

4215, 5604, 4067, 1845, 3635 
18 

phosphate metabolic process 10 52.63 0.0367 
3480, 2771, 5781, 1956, 6464, 

4215, 5604, 4067, 1845, 3635 
18 

insoluble fraction 6 31.58 0.0374 
3480, 2771, 5336, 5337, 56848, 

4067 
17 

membrane fraction 6 31.58 0.0374 
3480, 2771, 5336, 5337, 56848, 

4067 
17 

cell projection morphogenesis 4 21.05 0.0400 3480, 5781, 1956, 5604 18 

cell part morphogenesis 4 21.05 0.0400 3480, 5781, 1956, 5604 18 

neuron projection development 4 21.05 0.0400 3480, 5781, 1956, 5604 18 

neuron projection morphogenesis 4 21.05 0.0400 3480, 5781, 1956, 5604 18 

positive regulation of cell migration 4 21.05 0.0400 3480, 1956, 5337, 5604 18 

SH2 domain 7 36.84 0.0418 
1399, 5781, 5336, 6464, 867, 

4067, 3635 
19 

phosphatase activity 4 21.05 0.0517 5781, 5604, 1845, 3635 19 

Sprouty regulation of tyrosine kinase 

signals 
4 21.05 0.0543 1956, 6464, 5604, 867 12 

regulation of hormone levels 3 15.79 0.0558 5781, 7534, 4067 18 

cell activation during immune response 3 15.79 0.0558 5336, 7534, 4067 18 

regulation of calcium ion transport 3 15.79 0.0558 2771, 5336, 4067 18 

leukocyte activation during immune 3 15.79 0.0558 5336, 7534, 4067 18 
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Table A2.4 GO analysis for three groups of clustered attractors with period 4, complete table. 

Term Count % P-Value Genes 
List 

Total 

response 

cell morphogenesis 4 21.05 0.0636 3480, 5781, 1956, 5604 18 

neuron development 4 21.05 0.0636 3480, 5781, 1956, 5604 18 

cellular component morphogenesis 4 21.05 0.0636 3480, 5781, 1956, 5604 18 

positive regulation of locomotion 4 21.05 0.0636 3480, 1956, 5337, 5604 18 

insulin receptor binding 3 15.79 0.0667 3480, 5781, 6464 19 

protein tyrosine phosphatase activity 3 15.79 0.0667 5781, 5604, 1845 19 

perinuclear region of cytoplasm 4 21.05 0.0699 5337, 5604, 3309, 4067 17 

Insulin signaling pathway 5 26.32 0.0730 1399, 6464, 5604, 867, 3635 19 

intracellular signaling cascade 12 63.16 0.0750 

3480, 2771, 1399, 5781, 5336, 

1956, 5337, 6464, 4215, 5604, 

4067, 3635 

18 

protein complex binding 5 26.32 0.0751 3480, 5781, 6464, 7534, 4067 19 

neuron differentiation 4 21.05 0.0923 3480, 5781, 1956, 5604 18 

regulation of cell migration 4 21.05 0.0923 3480, 1956, 5337, 5604 18 

nucleotide-binding 9 47.37 0.0978 
3480, 2771, 1956, 1654, 4215, 

5604, 56848, 3309, 4067 
19 

Glioma 5 26.32 0.0981 3480, 5336, 1956, 6464, 5604 19 

Left Cluster 

leukocyte homeostasis 5 10.20 0.0932 8517, 355, 2176, 207, 836 49 

 

Table A2.5. GO analysis for three group of sub-cluster of attractors with period 2, complete table. 

Term Count % PValue Genes 
List 

Total 

Right Cluster 

signal 6 50.00 0.1440 
3560, 2263, 2253, 3309, 7046, 

2260 
12 

signal peptide 6 50.00 0.1440 
3560, 2263, 2253, 3309, 7046, 

2260 
12 

magnesium 4 33.33 0.1692 4215, 2263, 7046, 2260 12 

Center Cluster 

SH3 domain binding 2 66.67 0.1453 867, 3635 3 

Left Cluster 

cell fraction 7 58.33 0.0673 
2771, 5781, 5336, 5337, 5604, 

56848, 4067 
11 

positive regulation of molecular 

function 
7 58.33 0.0792 

2771, 5781, 5336, 2247, 1956, 

5604, 56848 
12 
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Table A2.5. GO analysis for three group of sub-cluster of attractors with period 2, complete table. 

Term Count % PValue Genes 
List 

Total 

regulation of phosphorylation 7 58.33 0.0792 
2771, 5781, 2247, 1956, 5604, 

56848, 4067 
12 

regulation of phosphate metabolic 

process 
7 58.33 0.0792 

2771, 5781, 2247, 1956, 5604, 

56848, 4067 
12 

regulation of phosphorus metabolic 

process 
7 58.33 0.0792 

2771, 5781, 2247, 1956, 5604, 

56848, 4067 
12 

 

 

Table A2.6. GO analysis for three group of sub-cluster of attractors with period 4, complete table. 

Term Count % P-Value Genes 
List 

Total 

Right Cluster 

cytoplasm 6 46.15 0.2116 
5781, 5337, 6464, 867, 3312, 

3635 
13 

phosphatase activity 4 30.77 0.2162 5781, 5604, 1845, 3635 13 

compositionally biased region:Pro-rich 4 30.77 0.2162 6464, 5604, 867, 3635 13 

cellular component morphogenesis 4 30.77 0.2391 3480, 5781, 1956, 5604 13 

cell projection morphogenesis 4 30.77 0.2391 3480, 5781, 1956, 5604 13 

cell morphogenesis 4 30.77 0.2391 3480, 5781, 1956, 5604 13 

neuron projection morphogenesis 4 30.77 0.2391 3480, 5781, 1956, 5604 13 

cell part morphogenesis 4 30.77 0.2391 3480, 5781, 1956, 5604 13 

GO:0044057~regulation of system 

process 
4 30.77 0.2391 2771, 5781, 1956, 5604 13 

Center Cluster 

receptor 3 100.00 0.0598 2885, 3560, 7046 3 

Left Cluster 

fibroblast growth factor receptor 

signaling pathway 
4 36.36 0.1039 2247, 2263, 2253, 2260 10 

nucleoside binding 7 63.64 0.1988 
1654, 4215, 2263, 56848, 3309, 

4067, 2260 
11 

adenyl ribonucleotide binding 7 63.64 0.1988 
1654, 4215, 2263, 56848, 3309, 

4067, 2260 
11 

adenyl nucleotide binding 7 63.64 0.1988 
1654, 4215, 2263, 56848, 3309, 

4067, 2260 
11 

ATP binding 7 63.64 0.1988 
1654, 4215, 2263, 56848, 3309, 

4067, 2260 
11 

purine nucleoside binding 7 63.64 0.1988 
1654, 4215, 2263, 56848, 3309, 

4067, 2260 
11 

atp-binding 7 63.64 0.1988 
1654, 4215, 2263, 56848, 3309, 

4067, 2260 
11 
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Table A2.7. Genes related to differentiation process. 

ENTREZ 

ID 
Gene Name Process 

29760 B-cell linker 

leukocyte differentiation 

lymphocyte differentiation 

B cell differentiation 

912 CD1d molecule 

leukocyte differentiation 

lymphocyte differentiation 

T cell differentiation 

916 
CD3e molecule, epsilon (CD3-TCR 

complex) 

leukocyte differentiation 

lymphocyte differentiation 

T cell differentiation 

T cell differentiation in the thymus 

920 CD4 molecule 

leukocyte differentiation 

lymphocyte differentiation 

T cell differentiation 

958 
CD40 molecule, TNF receptor 

superfamily member 5 
Th1/Th2 Differentiation 

923 CD6 molecule T-cell differentiation 

1387 CREB binding protein 
negative regulation of cell differentiation 

stem cell differentiation 

355 
Fas (TNF receptor superfamily, 

member 6) 

leukocyte differentiation 

lymphocyte differentiation 

T cell differentiation 

T cell differentiation in the thymus 

regulation of lymphocyte differentiation 

regulation of myeloid cell differentiation 

3717 Janus kinase 2 

cell morphogenesis involved in differentiation 

myeloid cell differentiation 

neuron differentiation 

positive regulation of cell differentiation 

cell morphogenesis involved in neuron differentiation 

4254 KIT ligand 

regulation of myeloid leukocyte differentiation 

positive regulation of myeloid leukocyte differentiation 

neural crest cell differentiation 

positive regulation of cell differentiation 

regulation of melanocyte differentiation 

positive regulation of melanocyte differentiation 

regulation of myeloid cell differentiation 

positive regulation of myeloid cell differentiation 

mesenchymal cell differentiation 

regulation of pigment cell differentiation 

positive regulation of pigment cell differentiation 

5747 PTK2 protein tyrosine kinase 2 

cell morphogenesis involved in differentiation 

regulation of cell morphogenesis involved in differentiation 

central nervous system neuron differentiation 
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Table A2.7. Genes related to differentiation process. 

ENTREZ 

ID 
Gene Name Process 

neuron differentiation 

negative regulation of cell differentiation 

regulation of neuron differentiation 

cell morphogenesis involved in neuron differentiation 

7076 TIMP metallopeptidase inhibitor 1 
myeloid cell differentiation 

erythrocyte differentiation 

7189 TNF receptor-associated factor 6 

leukocyte differentiation 

myeloid leukocyte differentiation 

myeloid cell differentiation 

myeloid dendritic cell differentiation 

7520 

X-ray repair complementing defective 

repair in Chinese hamster cells 5 

(double-strand-break rejoining) 

positive regulation of cell differentiation 

stem cell differentiation 

hemopoietic stem cell differentiation 

1002 
cadherin 4, type 1, R-cadherin 

(retinal) 

cell morphogenesis involved in differentiation 

regulation of cell morphogenesis involved in differentiation 

neuron differentiation 

positive regulation of cell differentiation 

regulation of neuron differentiation 

cell morphogenesis involved in neuron differentiation 

811 calreticulin 

negative regulation of cell differentiation 

regulation of neuron differentiation 

negative regulation of neuron differentiation 

1499 
catenin (cadherin-associated protein), 

beta 1, 88kDa 

cell morphogenesis involved in differentiation 

leukocyte differentiation 

regulation of myeloid leukocyte differentiation 

negative regulation of myeloid leukocyte differentiation 

glial cell differentiation 

lymphocyte differentiation 

T cell differentiation 

regulation of epithelial cell differentiation 

positive regulation of epithelial cell differentiation 

regulation of chondrocyte differentiation 

negative regulation of chondrocyte differentiation 

T cell differentiation in the thymus 

muscle cell differentiation 

myoblast differentiation 

negative regulation of cell differentiation 

positive regulation of cell differentiation 

regulation of myeloid cell differentiation 

negative regulation of myeloid cell differentiation 

regulation of osteoblast differentiation 

positive regulation of osteoblast differentiation 

regulation of osteoclast differentiation 

negative regulation of osteoclast differentiation 

mesenchymal cell differentiation 

6352 chemokine (C-C motif) ligand 5 

regulation of myeloid leukocyte differentiation 

positive regulation of myeloid leukocyte differentiation 

positive regulation of cell differentiation 

regulation of myeloid cell differentiation 
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Table A2.7. Genes related to differentiation process. 

ENTREZ 

ID 
Gene Name Process 

positive regulation of myeloid cell differentiation 

regulation of osteoclast differentiation 

positive regulation of osteoclast differentiation 

4261 
class II, major histocompatibility 

complex, transactivator 
CD4 T cell differentiation  

1437 
colony stimulating factor 2 

(granulocyte-macrophage) 

leukocyte differentiation 

myeloid leukocyte differentiation 

regulation of foam cell differentiation 

positive regulation of foam cell differentiation 

myeloid cell differentiation 

myeloid dendritic cell differentiation 

positive regulation of cell differentiation 

1147 
conserved helix-loop-helix ubiquitous 

kinase 

leukocyte differentiation 

myeloid leukocyte differentiation 

myeloid cell differentiation 

osteoclast differentiation 

2247 fibroblast growth factor 2 (basic) 
glial cell differentiation 

positive regulation of cell differentiation 

3635 
inositol polyphosphate-5-

phosphatase, 145kDa 

regulation of myeloid leukocyte differentiation 

negative regulation of myeloid leukocyte differentiation 

regulation of granulocyte differentiation 

negative regulation of granulocyte differentiation 

regulation of B cell differentiation 

positive regulation of B cell differentiation 

negative regulation of cell differentiation 

positive regulation of cell differentiation 

regulation of lymphocyte differentiation 

positive regulation of lymphocyte differentiation 

regulation of myeloid cell differentiation 

negative regulation of myeloid cell differentiation 

positive regulation of myeloid cell differentiation 

regulation of erythrocyte differentiation 

positive regulation of erythrocyte differentiation 

regulation of monocyte differentiation 

negative regulation of monocyte differentiation 

regulation of neutrophil differentiation 

negative regulation of neutrophil differentiation 

regulation of osteoclast differentiation 

negative regulation of osteoclast differentiation 

3688 

integrin, beta 1 (fibronectin receptor, 

beta polypeptide, antigen CD29 

includes MDF2, MSK12) 

leukocyte differentiation 

lymphocyte differentiation 

B cell differentiation 

cardiac cell differentiation 

muscle cell differentiation 

negative regulation of cell differentiation 

striated muscle cell differentiation 

cardiac muscle cell differentiation 

3561 
interleukin 2 receptor, gamma (severe 

combined immunodeficiency) 

alpha-beta regulatory T cell differentiation 

alpha-beta regulatory T cell differentiation 
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Table A2.7. Genes related to differentiation process. 

ENTREZ 

ID 
Gene Name Process 

regulation of T cell differentiation in the thymus 

positive regulation of T cell differentiation in the thymus 

alpha beta T cell differentiation 

alpha beta T cell differentiation 

regulation of B cell differentiation 

positive regulation of B cell differentiation 

regulation of T cell differentiation 

positive regulation of T cell differentiation 

regulation of regulatory T cell differentiation 

positive regulation of regulatory T cell differentiation 

positive regulation of cell differentiation 

regulation of lymphocyte differentiation 

positive regulation of lymphocyte differentiation 

regulation of alpha-beta T cell differentiation 

positive regulation of alpha-beta T cell differentiation 

3572 
interleukin 6 signal transducer 

(gp130, oncostatin M receptor) 

positive regulation of cell differentiation 

regulation of osteoblast differentiation 

positive regulation of osteoblast differentiation 

3575 interleukin 7 receptor 

leukocyte differentiation 

lymphocyte differentiation 

T cell differentiation 

regulation of T cell differentiation in the thymus 

positive regulation of T cell differentiation in the thymus 

regulation of T cell differentiation 

positive regulation of T cell differentiation 

positive regulation of cell differentiation 

regulation of lymphocyte differentiation 

positive regulation of lymphocyte differentiation 

3727 jun D proto-oncogene 

osteoblast differentiation 

positive regulation of cell differentiation 

regulation of osteoblast differentiation 

positive regulation of osteoblast differentiation 

3952 leptin 

sex differentiation 

central nervous system neuron differentiation 

neuron differentiation 

positive regulation of cell differentiation 

regulation of myeloid cell differentiation 

positive regulation of myeloid cell differentiation 

female sex differentiation 

3932 
lymphocyte-specific protein tyrosine 

kinase 

leukocyte differentiation 

lymphocyte differentiation 

T cell differentiation 

5594 mitogen-activated protein kinase 1 negative regulation of cell differentiation 

1432 mitogen-activated protein kinase 14 

chondrocyte differentiation 

positive regulation of cell differentiation 

regulation of myeloid cell differentiation 

positive regulation of myeloid cell differentiation 

regulation of erythrocyte differentiation 

positive regulation of erythrocyte differentiation 
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Table A2.7. Genes related to differentiation process. 

ENTREZ 

ID 
Gene Name Process 

5601 mitogen-activated protein kinase 9 

regulation of foam cell differentiation 

positive regulation of foam cell differentiation 

positive regulation of cell differentiation 

5604 
mitogen-activated protein kinase 

kinase 1 

epidermal cell differentiation 

neuron differentiation 

keratinocyte differentiation 

epithelial cell differentiation 

positive regulation of cell differentiation 

4790 

nuclear factor of kappa light 

polypeptide gene enhancer in B-cells 

1 

regulation of foam cell differentiation 

positive regulation of foam cell differentiation 

positive regulation of cell differentiation 

5295 
phosphoinositide-3-kinase, regulatory 

subunit 1 (alpha) 

leukocyte differentiation 

lymphocyte differentiation 

B cell differentiation 

5336 
phospholipase C, gamma 2 

(phosphatidylinositol-specific) 

mature B cell differentiation during immune response 

follicular B cell differentiation 

mature B cell differentiation 

leukocyte differentiation 

lymphocyte differentiation 

B cell differentiation 

5818 
poliovirus receptor-related 1 

(herpesvirus entry mediator C) 

cell morphogenesis involved in differentiation 

neuron differentiation 

cell morphogenesis involved in neuron differentiation 

5788 
protein tyrosine phosphatase, receptor 

type, C 

leukocyte differentiation 

lymphocyte differentiation 

T cell differentiation 

T cell differentiation in the thymus 

regulation of B cell differentiation 

regulation of T cell differentiation 

positive regulation of T cell differentiation 

regulation of gamma-delta T cell differentiation 

positive regulation of gamma-delta T cell differentiation 

positive regulation of cell differentiation 

regulation of lymphocyte differentiation 

positive regulation of lymphocyte differentiation 

387 ras homolog gene family, member A 

regulation of cell morphogenesis involved in differentiation 

negative regulation of cell differentiation 

positive regulation of cell differentiation 

regulation of neuron differentiation 

negative regulation of neuron differentiation 

positive regulation of neuron differentiation 

6696 secreted phosphoprotein 1 

osteoblast differentiation 

regulation of cell morphogenesis involved in differentiation 

negative regulation of cell differentiation 

regulation of neuron differentiation 

6776 
signal transducer and activator of 

transcription 5A 

natural killer cell differentiation 

leukocyte differentiation 

regulation of myeloid leukocyte differentiation 
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Table A2.7. Genes related to differentiation process. 

ENTREZ 

ID 
Gene Name Process 

positive regulation of myeloid leukocyte differentiation 

sex differentiation 

lymphocyte differentiation 

T cell differentiation 

regulation of epithelial cell differentiation 

regulation of natural killer cell differentiation 

positive regulation of natural killer cell differentiation 

T cell differentiation in the thymus 

regulation of B cell differentiation 

positive regulation of B cell differentiation 

regulation of T cell differentiation 

positive regulation of T cell differentiation 

regulation of gamma-delta T cell differentiation 

positive regulation of gamma-delta T cell differentiation 

negative regulation of cell differentiation 

positive regulation of cell differentiation 

regulation of lymphocyte differentiation 

positive regulation of lymphocyte differentiation 

regulation of myeloid cell differentiation 

negative regulation of myeloid cell differentiation 

positive regulation of myeloid cell differentiation 

regulation of erythrocyte differentiation 

negative regulation of erythrocyte differentiation 

female sex differentiation 

male sex differentiation 

regulation of mast cell differentiation 

positive regulation of mast cell differentiation 

6850 spleen tyrosine kinase 

leukocyte differentiation 

lymphocyte differentiation 

T cell differentiation 

regulation of B cell differentiation 

positive regulation of B cell differentiation 

regulation of T cell differentiation 

positive regulation of T cell differentiation 

regulation of gamma-delta T cell differentiation 

positive regulation of gamma-delta T cell differentiation 

positive regulation of cell differentiation 

regulation of lymphocyte differentiation 

positive regulation of lymphocyte differentiation 

alpha-beta T cell differentiation 

regulation of alpha-beta T cell differentiation 

positive regulation of alpha-beta T cell differentiation 

7046 
transforming growth factor, beta 

receptor 1 

neuron differentiation 

regulation of epithelial cell differentiation 

negative regulation of epithelial cell differentiation 

negative regulation of cell differentiation 

regulation of endothelial cell differentiation 

negative regulation of endothelial cell differentiation 

7124 
tumor necrosis factor (TNF 

superfamily, member 2) 

leukocyte differentiation 

myeloid leukocyte differentiation 

regulation of myeloid leukocyte differentiation 

myeloid cell differentiation 
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Table A2.7. Genes related to differentiation process. 

ENTREZ 

ID 
Gene Name Process 

osteoclast differentiation 

regulation of myeloid cell differentiation 

regulation of osteoclast differentiation 

7157 tumor protein p53 

leukocyte differentiation 

lymphocyte differentiation 

B cell differentiation 

T cell differentiation 

T cell differentiation in the thymus 

negative regulation of cell differentiation 

207 
v-akt murine thymoma viral oncogene 

homolog 1 

positive regulation of cell differentiation 

regulation of fat cell differentiation 

positive regulation of fat cell differentiation 

5970 
v-rel reticuloendotheliosis viral 

oncogene homolog A (avian) 

regulation of Schwann cell differentiation 

positive regulation of Schwann cell differentiation 

regulation of chondrocyte differentiation 

positive regulation of chondrocyte differentiation 

positive regulation of cell differentiation 

regulation of glial cell differentiation 

positive regulation of glial cell differentiation 

4067 
v-yes-1 Yamaguchi sarcoma viral 

related oncogene homolog 

glial cell differentiation 

myeloid cell differentiation 

erythrocyte differentiation 

positive regulation of cell differentiation 

oligodendrocyte differentiation 

7412 vascular cell adhesion molecule 1 

leukocyte differentiation 

lymphocyte differentiation 

B cell differentiation 

7535 
zeta-chain (TCR) associated protein 

kinase 70kDa 

leukocyte differentiation 

lymphocyte differentiation 

T cell differentiation 

T cell differentiation in the thymus 

regulation of T cell differentiation 

positive regulation of T cell differentiation 

positive regulation of cell differentiation 

regulation of lymphocyte differentiation 

positive regulation of lymphocyte differentiation 

alpha-beta T cell differentiation 

regulation of alpha-beta T cell differentiation 

positive regulation of alpha-beta T cell differentiation 

 

  

 

 

  

 

 

 

 

 


