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Tiivistelmä 

Solusiirrehoidot ovat vaihtoehtoinen hoitomuoto vaikeasti parantuvien ja hoidettavien 
kudosten, kuten keskushermostokudoksen, vaurioiden korjaamiseen. Solusiirteiden 
tunnettuja ongelmia ovat kuitenkin siirrettyjen solujen heikko selviytyminen ja kyvyttömyys 
liittyä toimivaksi osaksi kohdekudosta. On havaittu, että tapa jolla keskushermostoon 
siirrostetut solut liittyvät osaksi kudosta, muistuttaa tapaa, jolla alkionkehityksen aikana 
muodostuvat uudet hermosolut liittyvät vasta muodostuvaan keskushermostokudokseen. 
Tämän alkionkehitysvaiheen aikana hermoverkoissa esiintyy spontaania 
verkostoaktiivisuutta. Samankaltaista aktiivisuutta esiintyy myös alkion kantasoluista 
laboratorio-olosuhteissa erilaistetuissa hermoverkoissa. Tämän tutkimuksen tavoitteena oli 
optimoida alkion kantasoluista erilaistettujen hermosolupopulaatioiden tarkkailuun 
soveltuvia fluoresenssivärjäysmenetelmiä, sekä selvittää varhaisimpien 
hermoverkkoyhteyksien muodostumista.  

Tutkimuksessa käytetyt hermosolut erilaistettiin laboratoriossa ihmisalkion kantasoluista ja 
värjättiin fluoresoivilla molekyyleillä (CT, SR101). Värien säilymistä, niiden vaikutusta 
solujen elinkykyyn ja jakaantumiseen, niiden solutyyppispesifisyyttä, sekä soveltuvuutta 
yhteisviljelmien tarkkailuun tutkittiin kuvantamisella, elinkykymäärityksillä, 
immunosytokemialla ja mikroelektrodihilamittauksilla. Varhaisten verkkoyhteyksien ja 
verkkoaktiivisuuden muodostumista tutkittiin altistamalla solut mikroelektrodihilamittauksen 
tai kalsiumkuvantamisen aikana eri yhteyksiin vaikuttaville aineille.  

CT:llä optimaalisin värjäytyminen saatiin aikaan altistamalla solut 10µM pitoisuudelle 72h 
ajan. SR101:llä puolestaan riitti 8h altistusaika 10µM pitoisuudessa. CT säilyi soluissa 4 
viikon ajan, ei vaikuttanut solujen jakaantumiseen tai elinkykyyn ja värjäsi kaikki solut. CT 
havaittiin soveltuvaksi yhteisviljelmien värjäykseen. SR101 vaikutti värjäävän astrosyyttejä 
solulinja- ja kypsyysriippuvaisesti. Varhaisen hermoverkkoaktiivisuuden havaittiin 
välittyvän aukkoliitosten, glutamatergisten ja GABAergisten yhteyksien välityksellä, täten 
muistuttaen in vivo muodostuneiden verkkojen aktiivisuutta.  
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Abstract 

Cell transplantation therapy is an alternative treatment for defects in tissues with poor 
regeneration and lack of efficient treatments. One of such tissues is the central nervous 
system tissue. However, cell transplantation therapies of the central nervous system are 
known to suffer from the poor survival and inability of the transplanted cells to integrate as 
a functional part of the target tissue. The integration of transplanted cells into the central 
nervous system has been observed to resemble the integration of newborn into the 
developing brain of the fetus. This developmental period is characterized by spontaneous 
neural network activity. Similar network activity has been observed to form in embryonic 
stem cell derived neural networks. The aim of this study was to optimize fluorescence 
labeling methods to allow the visualization of combined human embryonic stem cell 
derived neural cell populations and to study the formation of the earliest network 
connections.    

Neural cells were derived from human embryonic stem cells and labeled with fluorescent 
dyes (CT, SR101) using different concentrations and incubation times. Retainment, effect 
on cell viability and proliferation, cell type specificity and suitability for co-culturing were 
studied with imaging, fluorescent staining, immunocytochemistry and microelectrode 
arrays. The formation of the earliest network connections was studied pharmacologically 
by measuring the change in activity with either microelectrode arrays or calcium imaging. 

The optimal parameters for CT were 72 hour incubation in 10µM dye concentration and for 
SR101 8 hour incubation in 10µM dye concentration. CT was able to label cells up to a 4 
week observation period, did not affect cell proliferation or viability and labeled all the cell 
types. CT was found to be suitable for co-culturing studies. SR101 seemed to label 
astrocytes dependent on cell line and maturation stage. The early network activity was 
found to be mediated by gap junctions, glutamatergic and GABAergic connections, thus 
resembling the connectivity observed to occur during development. 
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1. Introduction 

 

The central nervous system (CNS) can be damaged due to a sudden trauma or a disease. 

Due to the structural complexity, poor endogenous regeneration capability and lack of 

efficient treatments, the acquired CNS defects are often permanent. Cell transplantation 

therapy is a potential alternative form of treatment for recovering permanent tissue defects. 

Cell transplantation therapies are based on the transplantation of healthy cells into the 

target tissue to recover the functionality lost due to the death of endogenous cells. 

Currently, CNS cell transplantation therapies suffer from a poor cell survival and from the 

inability of the transplanted cells to integrate as a functional part of the neural circuits in the 

target tissue (Pluchino et al., 2004; Jäderstad et al., 2010). 

The abilities of a cell to survive or integrate properly depend on its cell type (Alexander and 

Bruneau, 2010). Pluripotent stem cells are cells with the potential to differentiate to any of 

the cell types hosted within the tissues of an individual. Pluripotent stem cells, such as 

embryonic stem cells (ESCs), can be in vitro differentiated to the neural cells (Görtz et al., 

2004; Ban et al., 2007; Illes et al., 2007; Heikkilä et al., 2009; Illes et al., 2009; 

Lappalainen et al., 2010). Thus, pluripotent stem cell derived neurons form a potential 

source for transplantation therapies of the CNS. However, the ability of the cells to survive 

and form neural circuits in vitro should be studied in great detail in order to gain insight into 

their suitability for transplantation. 

The integration of transplanted cells into CNS has been observed to resemble the 

integration of newborn neurons into the neural circuits of the developing brain (Jäderstad 

et al., 2010). During this developmental period the neural circuits exhibit a sequence of 

spontaneous neural network activity patterns (Dupont et al., 2006). Similar network activity 

patterns, in turn, have been observed to occur in ESC –derived neural networks in vitro 

(Görtz et al., 2004; Ban et al., 2007; Illes et al., 2007; Heikkilä et al., 2009; Illes et al., 

2009; Lappalainen et al., 2010). Hence, ESC-derived neural networks form an ideal 

environment to study the aspects of integration into functional networks. 

  



 

 

 

2 

2. Review of the literature 

 

2.1. Generation of neural cells from stem cells in vitro and in 
vivo 

Neural cells have been successfully differentiated from both animal and human embryonic 

stem cells (ESCs) as well as from induced pluripotent stem cells. Several techniques have 

been utilized to carry out the differentiation and the most used include embryoid body 

formation, sphere formation, monolayer cultures and co-cultures (Germain et al., 2010). 

The embyoid bodies are spherical culture systems containing extra embryonic endoderm 

surrounding a core, which has the potential to generate cells of all three primary germ 

layers, ectoderm, mesoderm and endoderm (Germain et al., 2010). The formation of 

neural ectoderm has been argued to be the default cell fate, which in vivo results from the 

blockage of signals inducing the formation of the other germ layers (Germain et al., 2010).  

As the in vivo neural ectoderm develops further, it undergoes neurulation to give rise to the 

neural tube. During this developmental reorganization, the cells of the neural ectoderm, 

increase their numbers with symmetric divisions and further mature into radial glial cells 

(Kang et al., 2009). Rosette structures, the culture analogs of the neural tube, have been 

observed to form during in vitro differentiation (Germain et al., 2010). The rosette 

structures and the neural tube consist of a lumen surrounded by radially organized neural 

stem cells (Kang et al., 2009; Germain et al., 2010). The neural stem cells of the rosettes 

resemble the radial glial cells of the developing brain (Germain et al., 2010). In the neural 

tube, the radial glial cells further divide both symmetrically and asymmetrically to self-

renew and generate restricted intermediate progenitor cells and neurons (Kang et al., 

2009).  

Neural tube formed during the neurulation is patterned into different regions with respect to 

its closure site (Germain et al., 2010). Similar to the neural tube, the rosette structures also 

have regional identities and they are suggested to be induced by the local signaling 

centers formed spontaneously in vitro (Germain et al., 2010). An additional similarity 

between the neural tube and the rosette structure is the ability of the resident cells to 

respond differently to same signals, depending on their lineage history and fate (Germain 

et al., 2010). 
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The developing neural tube contains patterning for the prospective regions of midbrain, 

hindbrain and spinal cord (Germain et al., 2010). The anterior part of the midbrain region 

of the neural tube further develops into the forebrain (Germain et al., 2010). As the 

forebrain develops, it becomes further divided into dorsal and ventral domains (Gaspard et 

al., 2008; Germain et al., 2010). The neural precursor population generated by the in vitro 

differentiation can be, as well, divided on the basis of the expressed markers, into cell 

populations of anterior neural ectoderm (midbrain, hindbrain and spinal cord), dorsal 

forebrain or ventral forebrain identity (Gaspard et al., 2008).  

During in vivo neurogenesis, the distinct regions of the brain produce different types of 

neurons. The progenitor cell population of the dorsal forebrain gives rise to projection 

neurons, while the ventral population gives rise to interneurons and striatal neurons 

(Gaspard et al., 2008; Germain et al., 2010). Midbrain, on the other hand, gives rise to 

dopaminergic and hindbrain to serotonergic neurons (Germain et al., 2010). The neural 

progenitor cells can be identified by the expression of nestin and as the cells progress 

further along the neural lineage they begin the expression of neuronal markers beta-

tubulin-III and microtubule-associated protein 2 (MAP-2) (Gaspard et al., 2008).  

The projection neurons of the cerebral cortex are generated by a sequential neurogenesis 

(Germain et al., 2010). During the sequential neurogenesis, different types of neurons are 

generated sequentially and they will populate different cortical layers (Gaspard et al., 

2008). Cortical layers are formed as the sequentially generated neurons move to their final 

locations (Germain et al., 2010). The earliest generated neurons form the innermost layers 

while the neurons born later migrate across the newborn inner layers to form more 

external layers (Germain et al., 2010).  

During the progression of the sequential neurogenesis, the neural precursor cell 

competency changes accordingly (Gaspard et al., 2008). Similar to this in vivo 

phenomenon, the neural stem cells differentiated from pluripotent stem cells also show the 

ability to change their differentiation potential during a sequential neurogenesis (Germain 

et al., 2010). Furthermore, there is evidence that the neurons differentiated as adherent 

cultures can organize into laminar structures which bear resemblance to the cortical layers 

(Germain et al., 2010). 

Soon after their generations, the newborn neurons begin to migrate to their respective 

layers. After the neurons have arrived at their target layer, they undergo a final maturation 

step, during which they develop selective patterns of gene expression and connections 
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(Gaspard et al., 2008). Similarly in cultures, post-migratory cells start to participate in the 

synchronous network activity and become integrated into the network (de Lima et al., 

2008). 

After neurogenesis, the remaining radial glial stem cells differentiate into glial fibrillary 

acidic protein (GFAP) expressing cells, astroglial precursors and finally to astrocytes 

(Gaspard et al., 2008; Germain et al., 2010). Similarly to in vivo progenitors, it has been 

observed that the in vitro differentiated neural stem cells change their potency towards 

glial cell and astrocyte production (Germain et al., 2010). 

2.2. Electrical properties of single cells and networks 

Electrically active cells, such as neurons, are able to produce current flows across their 

plasma membrane. These current flows are produced by the ions moving through the ion 

channels of the cell membrane. Different types of ion channels can be opened by different 

mechanisms, ligand binding or membrane potential change. The kinetics of ion channels 

affects the kinetics of the currents flowing through a certain population of ion channels. As 

these ion movements are able to change the cell membrane potential they also determine 

the kinetics of membrane potential changes. In addition, as ions exit and enter the cell via 

ion channels, current sinks and sources are generated outside the cell due to the local 

changes in ion concentrations (Claverol-Tinture and Pine, 2002; Morin et al., 2005). An 

electrical potential difference, known as the extracellular field potential, is formed between 

these sinks and sources (Claverol-Tinture and Pine, 2002; Morin et al., 2005).  

It is generally believed, that neuronal action potentials cause the very fast extracellular 

field potential changes, while the slow changes are caused by other ion channel based 

membrane phenomena, such as simultaneous post synaptic currents of several neurons 

(Claverol-Tinture and Pine, 2002; Morin et al., 2005).  

The electrical properties and activity of neurons are generally studied with methods which 

measure changes in the ion concentrations. Electrodes can be used to measure the 

electrical potential changes arising from the changes in ion concentrations inside or 

outside the cell. Another common approach is to use ion or voltage sensitive dyes which 

generate a fluorescence signal upon binding to an ion or upon a membrane potential 

change.  
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2.3. Extracellular electrical properties of groups of electrically 
active cells 

In neural cell culture or in living nervous tissue, the extracellular field potentials interact as 

adjacent cells produce adjacent current sinks and sources. The interaction between 

adjacent sinks and sources can be constructive or destructive and the result is a local field 

potential (Morin et al., 2005). The local field potential describes the electrical activity within 

a volume of a culture or a tissue (Morin et al., 2005) and contains a collection of fast action 

potentials superimposed on a slow-varying potential arising from other electrical 

phenomena (Rochefort et al., 2009; Gullo et al., 2010).  

The local field potentials of neural culture or tissue can be measured with extracellular 

electrodes. The two components, action potentials and other currents, of the recorded 

local field potential are generally separated by filtering and only one of them is studied in 

more detail. Multiunit activity contains only the high frequency components (with frequency 

of 200-6000Hz) of the extracellular local field potential signal and is thought to represent 

the actual spiking of nearby neurons (Burns et al., 2010; Mattia et al., 2010). The filtered 

local field potential, on the other hand, is gained by filtering out the higher frequency 

components (individual spike components, 200Hz) and is thought to reflect the synaptic 

input to a neuron population (Burns et al., 2010; Gullo et al., 2010; Mattia et al., 2010). The 

exact relationship between the filtered local field potential and multiunit activity, however, 

seems to be unclear (Burns et al., 2010).  

2.3.1. The effect of extracellular environment on the electrical properties 
of cells 

The extracellular solution is known to have an effect on the electrical properties of 

neurons. The resting membrane potential is formed by the voltage difference between the 

extra- and intracellular fluids across the cell membrane. The ionic composition of the 

surrounding extracellular environment is known to influence the resting membrane 

potential according to Goldman-Hodgkin-Katz equation. Goldman-Hodgkin-Katz equation 

describes how the membrane potential is formed by the differences in ion concentrations 

across the membrane. By generating a deviation from the physiological ion concentrations 

of the extracellular fluids, for example with high K+ concentration, the neural cell 

membrane potential can be changed and even depolarized enough to produce action 

potentials. In addition, on a single cell level, the action potential firing threshold is affected 

by extracellular divalent cations such as Ca2+ and Mg2+. Ca2+ and Mg2+ cations are known 
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to reduce the excitability of the neurons by raising the action potential firing threshold 

(Canepari et al., 1997).  

2.3.2. The influence of extracellular solution ion composition on 
networks 

In addition to the membrane properties of the constituent neurons, the synaptic signaling in 

a network of neurons can be affected by the concentrations of extracellular ions as the 

changes in the electrical properties of single neurons can give rise to changes in the whole 

network. For example, if the constituent neurons are slightly depolarized with higher 

extracellular K+ the whole network becomes more excitable and active (Sun and Luhmann, 

2007). 

The effect on network activity can also be mediated by changes in the communication 

between the constituent neurons. The extracellular Ca2+ ions affect the synaptic signaling 

by affecting synaptic currents. A low Ca2+ ion concentration depresses the synaptic 

currents while a high concentration will enhance the synaptic currents. These effects arise 

from the role of Ca2+ ion flow in triggering the release of synaptic transmitter vesicles. Mg2+ 

is also able to affect the presynaptic terminal. Mg2+ ions act on the presynaptic terminal by 

inhibiting transmitter release. In addition, Mg2+ ions can act postsynaptically by blocking 

glutamate receptors. (Canepari et al., 1997) 

Because the ionic concentrations in the extracellular environment affect the activity of 

single neurons and their networks, it is an important aspect to consider when designing 

studies assessing the electrical properties of single neurons or neural networks. 

2.4. Spontaneous network activity in stem cell derived neural 
cultures 

2.4.1. Development of electrophysiological properties of single cells  

The development of single cell level activity of neurons differentiated from ESCs has been 

previously followed by performing intracellular electrode measurements (Ban et al., 2007). 

The intracellular electrode measurements are also known as patch clamp measurements. 

By using this methodology the in vitro differentiated neurons have been shown to be able 

to fire single and repetitive action potentials as response to injected currents similar to in 

vivo differentiated neurons (Ban et al., 2007; Illes et al., 2009).  
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2.4.2. Development of the electrical network activity  

A period of synchronized network activity occurs in a maturing network simultaneously with 

a period of synapse formation and elimination both in vivo and in vitro (Chiappalone et al., 

2006). Microelectrode array (MEA) measurements and calcium imaging have been utilized 

to describe stages of spontaneous activity pattern generation during the development of 

activity in primary cell derived neural networks (O’Donovan, 1999; Chiappalone et al., 

2006). The first form of network activity in primary cultures is generated before the 

formation of chemical synaptic networks and it is formed by coordinated calcium transients 

between coupled cell groups (O’Donovan, 1999). As the neural network matures, the 

chemical synapses become the main signal mediating mechanism and the network wide 

synchronous activity becomes abolishable by voltage gated Na2+ channel blockers and 

chemical synaptic transmitter antagonists (O’Donovan, 1999).  

Functional neuronal networks have also been derived in vitro from pluripotent stem cells. 

The formation of a functional network has been shown for neurons differentiated from 

variable stem cells, such as human and mouse embryonic stem cells (Ban et al., 2007; , 

Illes et al., 2007; Heikkilä et al., 2009; Illes et al., 2009; Lappalainen et al., 2010) or human 

teratocarcinoma cells (Görtz et al., 2004).  

2.4.3. Phases of neural network development in stem cell derived 
networks 

The development of stem cell derived neuronal networks can be divided into distinct 

phases based on the nature of the observed network activity. This pattern of phases is 

generally followed regardless of the efficacy of neuronal derivation (Lappalainen et al., 

2010), species (Görtz et al., 2004; Ban et al., 2007; Illes et al., 2007; Heikkilä et al., 2009; 

Illes et al., 2009; Lappalainen et al., 2010), or the differentiation protocol itself (Görtz et al., 

2004; Ban et al., 2007; Illes et al., 2007; Heikkilä et al., 2009; Illes et al., 2009; 

Lappalainen et al., 2010). Thus, it could be argued that this is an intrinsic pattern of activity 

for occurring in all properly developing neural networks. The described stages advance 

from a single spiking phase to a final phase of spatially distributed synchronous oscillating 

bursts (Illes et al., 2007). 

The first phase of the network activity maturation in in vitro networks is the appearance of 

uncorrelated and randomly distributed extracellular voltage signals representing single 

spikes (Görtz et al., 2004; Ban et al., 2007; Illes et al., 2007, Heikkilä et al., 2009; 

Lappalainen et al., 2010). This random single spiking activity seems to appear 
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independent of whether the cells are differentiated as aggregates or monolayers (Illes et 

al., 2009). The appearance of single spikes is also independent of the length of the 

differentiation period (Lappalainen et al., 2010). In teratocarcinoma derived neural 

cultures, the single spiking has been reported as the only form of network activity observed 

during more than 12 weeks period (Görtz et al., 2004) indicating the inability of these 

networks to reach functionally more mature stages.  

The second phase of network activity maturation is the occurrence of spike trains. The 

definition of a spike train varies from publication to another, but in stem cell derived 

networks it has been described to consist of 3 to 7 spikes within 300ms (Illes et al., 2007) 

or more stringently as more than 5 spikes with a regular inter-spike interval of 20-100ms 

(Heikkilä et al., 2009). The occurrence spike trains have been observed in both neural 

aggregate and monolayer cultures as well as in human and mouse ESC-derived networks 

(Illes et al., 2007; Heikkilä et al., 2009; Illes et al., 2009). 

The third phase of the maturation of the neural network activity is the occurrence of 

synchronous bursting of several neurons detected on a single or on several electrodes. 

The bursts can be generally described as very dense spike trains. However, the exact 

definition varies between publications. The third phase has been observed to appear in 

mouse and human ESC-derived neural aggregate cultures (Ban et al., 2007; Illes et al., 

2007; Heikkilä et al., 2009; Illes et al., 2009). However, the aggregate cultures do not 

always develop synchronous bursting spontaneously and without pharmacological 

intervention (Illes et al., 2009) while the networks differentiated as monolayer cultures 

have not been observed to mature to this stage at all (Illes et al., 2009).  

The bursting patterns also undergo different developmental phases. At first, the bursting is 

seen on one or few electrodes, but as the network matures further, the bursts appear as 

synchronous events between several adjacent electrodes (Heikkilä et al., 2009; 

Lappalainen et al., 2010) and later over most of the electrodes covering a large proportion 

of the network (Heikkilä et al., 2009). In addition to the synchrony of burst events, the form 

of bursts has been described to develop from an initial constant mode with similar spike 

amplitudes to a bell shaped mode of first increasing spike amplitude phase followed by a 

decreasing spike amplitude phase (Illes et al., 2007; Heikkilä et al., 2009).  

Unlike the development of activity in the primary neuronal cultures (O’Donovan, 1999; 

Chiappalone et al., 2006), the ESC -derived neuronal networks have rarely been reported 
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to generate periodic bursting separated by clear periods of quiescence (Ban et al., 2007; 

Illes et al., 2007; Heikkilä et al., 2009).  

2.4.4. Conclusions from the spontaneous activity of stem cell derived 
neural networks 

The observations from the developing stem cell derived aggregate (Illes et al., 2007; 

Heikkilä et al., 2009; Illes et al., 2009; Lappalainen et al., 2010) and monolayer (Görtz et 

al., 2004; Illes et al., 2009) derived cultures of neural networks suggests that the 

heterogeneous neural cell population of aggregates is needed to produce a neural network 

with activity development profile similar to that of primary networks. Interestingly, if neural 

differentiation is performed as a monolayer this developmental profile is not observed (Ban 

et al., 2007).  

2.5. Mechanisms participating in the generation of early 
network activity of in vivo differentiated neurons 

The first form of network activity, synchronized oscillations, in the developing brain is 

generated by a gap-junction coupled subplate circuits (Khazipov and Luhmann, 2006). The 

subplate neurons are the first functionally mature neurons of the developing brain and are 

generated in the beginning of the neurogenesis (Kanold and Luhmann, 2010). Subplate 

neurons are locally connected to each other and other cortical neurons via gap junctions 

(Dupont et al., 2006; Kanold and Luhmann, 2010). However, they also form more distant 

connections via chemical synapses (Kanold and Luhmann, 2010).  

During the postnatal development, the cortical network switches from the subplate driven 

gap junction coupled syncytium to a chemically mediated synaptic network and the 

subplate is no longer needed (Dupont et al., 2006; Khazipov and Luhmann, 2006). The 

change in the mediating mechanism is concurrent with changes in the form of the 

synchronous activity within these networks (Allene and Cossart, 2010). The functions of 

various synaptic systems has been shown to be required for the normal development of 

neuronal connectivity, as well as, for the generation of the normal electrical activity 

patterns (Hogberg et al., 2011) and are briefly described below.  

2.5.1. Gap junctions 

Gap junctions, also known as the electrical synapses, are intercellular channels which 

allow small molecules to transfer from one cell to another, thus enabling the biochemical 

communication between the gap junction coupled cells (Yuste et al., 1995; Kandler, 1998; 

Khazipov and Luhmann, 2006; Peinado, 2011). The gap junctional complexes between 
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cells are formed by two connected connexons, each provided by one cell. The connexons, 

in turn, consist of cell membrane spanning proteins of the connexin family (Yuste et al., 

1995; Kandler, 1998; Khazipov and Luhmann, 2006; Peinado, 2011).  

The developing cortex has a high gap junction content during the early postnatal period 

when the network connections are formed (Peinado, 2011). In addition, a functional gap 

junctional coupling between neurons has been shown to exist during this period (Peinado, 

2011). Furthermore, during the postnatal development, neuronal gap junctional coupling 

decreases sharply and the short radius clusters of coupled neuron disappear leaving 

nonexistent coupling with the exception of inhibitory neurons (Peinado, 2011). 

During the early postnatal development, gap junctions couple neurons into small 

synchronously active groups (Yuste et al., 1995; Kandler, 1998; Khazipov and Luhmann, 

2006; Peinado, 2011). The activation of cells within these cell groups, called neuronal 

domains, is thought to take place via biochemical signals spreading through gap junctions 

(Yuste et al., 1995; Kandler, 1998; Peinado, 2011). The secondary messenger inositol-

triphosphate has been suggested to be the mediating signaling molecule (O’Donovan, 

1999).  

The early forms of the synchronous network activity of the developing networks have been 

shown to become blocked by the gap junction blockers and are hence thought to be 

mediated by gap junctions (Rouach et al., 2003; Dupont et al., 2006; Sun and Luhmann, 

2007; Sun et al., 2008; Takayama et al., 2009; Yang et al., 2009; Peinado, 2011). In 

addition, gap junction knockout mice show deviance in the appearance of oscillatory 

network activities (Rouach et al., 2003). However, gap junction blockers seem to be 

unable to block the very early non-synchronous activity (Sun and Luhmann, 2007) and do 

not abolish the ability of single neurons to produce intracellular calcium concentration 

elevations associated with neural activity (Peinado, 2011). As the network activity switches 

from gap junction coupling towards synaptic transmission, the role of gap junctions 

becomes less critical and the more mature network activities are not as strongly affected 

by gap junction blockers (Dupont et al., 2006).  

Carbenoxolone (CBX), a widely used gap junction blocker, is a derivative of glycyrrhizic 

acid (GZA) (Rouach et al., 2003). Unlike CBX, GZA is unable to block gap junctions 

(Rouach et al., 2003). CBX, but not GZA, has been observed to reversibly inhibit 

spontaneous, as well as bicuculline induced network activity, by reducing the spiking 

frequency (Rouach et al., 2003). CBX has also been shown to reduce the neuronal 
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excitability as high (100µM) concentrations, but similar effect has not been observed in 

lower (20µM) concentrations (Rouach et al., 2003). GZA and its derivatives, such as CBX, 

are known to have unspecific effects which are caused by the inhibition of Na+-K+ ATPase 

(Rouach et al., 2003). Thus, CBX seems to be able to specifically block gap junctions in 

low concentrations and its possible unspecific effects should be similar to those produced 

by GZA. 

2.5.2. Gamma-aminobutyric acid 

Gamma-aminobutyric acid (GABA) is a neurotransmitter which, in mature animals, is 

produced by the inhibitory interneurons of the central nervous system (Baltz et al., 2010). 

GABAA receptors are Cl- permeable channels and in mature neurons cause the inhibitory 

hyperpolarization of the cell membrane by allowing Cl- ions to flow into the cell (Baltz et al., 

2010). 

In young neurons GABA is an excitatory neurotransmitter. The excitatory effect is thought 

to arise due to the high intracellular Cl- concentration in young neurons (Baltz et al., 2010). 

The high intracellular Cl- concentration leads to the flow of Cl- ions out of the cell down to 

their electrochemical gradient (Baltz et al., 2010). The flow of negative charge out of the 

cell causes a membrane depolarization, thus exciting the cell instead of inhibition.  

The high intracellular Cl- concentration in young neurons occurs due to the expression of 

the ion co-transportter NKCCl and due to the lack of KCC2 co-transporter (Baltz et al., 

2010). NKCCl co-transportter transfers Cl- into the cell while KCC2 co-transportter 

transfers Cl- out of the cell (Baltz et al., 2010). During the maturation of neurons, the 

expression of NKCCl cotransporter decreases while that of KCC2 increases (Baltz et al., 

2010). This transporter population change causes the intracellular Cl- concentration to 

become lower than the extracellular Cl- concentration reversing the direction of Cl- flow 

through the ion channels associated with GABAergic receptors (Baltz et al., 2010). The 

reversion of the electrochemical gradient of Cl- switches the effect of the neurotransmitter 

GABA from excitatory to inhibitory (Baltz et al., 2010).  

Similar to this in vivo phenomenon, the cultured immature primary neurons also depolarize 

and produce calcium transients as a response to GABA agonist addition (Baltz et al., 

2010; Kanold and Luhmann, 2010). These cultured neurons have also been shown to be 

able to undergo GABA switch during their maturation (Baltz et al., 2010).  
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Several developmental network oscillation patterns are suggested to depend on the 

GABAergic signaling (Allene and Cossart, 2010; Baltz et al., 2010). The shift in 

neurotransmitter GABA action from excitatory to inhibitory occurs concurrently with 

changes of the network activity development (Baltz et al., 2010). However, a more detailed 

action of GABA in the developing networks seems to be less clear.  

It has been described that during the late fetal stage (E14-E17, in rodents), as the 

GABAergic neurons integrate to the pre-existing neural network, the activity of the network 

becomes synchronized (de Lima et al., 2008). The primary cultures of cortical cells from 

this developmental stage show excitatory GABA dependent calcium transients (Voigt et 

al., 2001). On the other hand, in a different study, GABA was observed to inhibit the 

network activity of networks derived from the similar cell source (Kamioka et al., 1996).  

The discrepancy observed between cultures from similar sources could be related to the 

development and changes of the network connections during in vitro maturation of the 

network. A change in the role of the neurotransmitter GABA as a network activity 

mediating mechanism has been described to occur during the in vitro development of 

primary cultures from late fetal cortical sources (Baltz et al., 2010). When the development 

of the network activity was followed, it was observed that networks first developed a 

synchronous periodic bursting pattern which was independent of GABAergic signaling 

(Baltz et al., 2010). As these in vitro networks matured further, an inhibitory GABA 

signaling dependent temporal clustering and decrease of synchronous activity was 

observed to take place (Baltz et al., 2010). Networks without GABAergic signaling, on the 

other hand, continue to express the periodic activity, which finally evolved into an 

oscillatory bursting (Baltz et al., 2010). However, the GABAergic subplate neurons have 

been argued to be required for the generation of synchronous oscillatory network activity 

(Kanold and Luhmann, 2010). 

In in vitro networks containing inhibitory GABAergic signaling, the competitive GABAA 

receptor blocker bicuculline disturbs the mature complex bursting generated by inhibitory 

GABAergic signaling and the network activity changes into regular bursting characteristic 

to an earlier phase in the network activity development (Baltz et al., 2010). Bicuculline has 

also been observed to increase the frequency of network activity (Colonnese and 

Khazipov, 2010), to increase action potential bursts in single cells (Rouach et al., 2003) 

and to cause oscillating intracellular calcium concentration rises (Kato-Negishi et al., 2003; 

Rouach et al., 2003).  
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2.5.3. Glutamate 

Glutamate is a neurotransmitter produced by the excitatory neurons of the CNS. 

Glutamate is used in signal transduction both synaptically and extrasynaptically. The most 

common glutamate receptors are the N-methyl-D-aspartate (NMDA), 2-amino-3-(5-methyl-

3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA) and kainate receptors. 

As the immature neuronal circuits mature, they incorporate glutamatergic NMDA receptors 

and begin the switch from subplate driven gap-junction mediated signal transduction to 

glutamaergic circuits (Khazipov and Luhmann, 2006). Several oscillatory network activities 

appearing during the maturation of neural networks have been described to be dependent 

on the glutamatergic signaling (Dupont et al., 2006; Khazipov and Luhmann, 2006; Allène 

et al., 2008; Yang et al., 2009; Allène and Cossart, 2010; Peinado, 2011). 

The network activity in the primary cultures of fetal (E16-E17) cortical cells is inhibited by 

glutamate agonists (Kamioka et al., 1996) and glutamatergic signaling seems to be the 

mediating mechanism in the activity events of these networks. Furthermore, the network 

activities observed in fetal cortical cell primary cultures are glutamate dependent both 

before and after the switch in the effect of neurotransmitter GABA (Baltz et al., 2010).  

2.6. Visualizing cell cultures 

Fluorescent dyes can be used to visualize live cells without the need for genetic 

modification. Dyes synthesized for labeling living cells can be designed to allow long term 

retention and to be biologically inert and nontoxic. However, fluorescent dyes usually lack 

the specificity of genetically encoded fluorescent proteins and antibody-antigen recognition 

obtained by immunostaining of fixed cells. 

2.6.1. Membrane tracers 

Several fluorescent tracers have been developed for the labeling of the cell plasma 

membranes. These dyes can be fluorescent tagged analogs of natural lipids, such as 

phospholipids, sphingolipids, fatty acids, triglycerides, steroids, or lipophilic organic dyes, 

such as long-chain carbocyanines, aminostyryls and rhodamines (Molecular Probes® 

Handbook, Section 14.4). The lipophilic nature is required for the insertion into the cell 

membrane. The membrane tracers generally label the whole cell membrane via lateral 

diffusion from the site of application and they are rarely transferred between two intact 

membranes (Molecular Probes® Handbook, Section 14.4). Due to the ability to spread 

across the cell plasma membrane from a local site of application, the lipophilic dyes are 
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widely used in neuroanatomical tracing (Molecular Probes® Handbook, Section 14.4). The 

membrane tracers can be loaded onto the cell membrane directly from dye crystals or via 

aqueous solution (Molecular Probes® Handbook, Section 14.4).  

2.6.2. Membrane impermeant cytoplasmic tracers 

Hydrophilic water-soluble dyes are also used in visualizing live cells (Molecular Probes® 

Handbook, Section 14.3). Due to their hydrophilic nature, these dyes are unable to cross 

the cell membrane (Molecular Probes® Handbook, Section 14.3). Hydrophilic dyes can be 

loaded via electroporation, microinjection, pinocytosis or by temporarily permeabilizing the 

cell plasma membrane (Molecular Probes® Handbook, Section 14.3). 

Hydrophilic fluorescent dyes can also enter the cells via active uptake mechanisms. 

Sulforhodamine 101 (SR101) is a low molecular weight fluorescent hydrophilic sulfonic 

acid tracer which specifically labels astrocytes in vivo and in vitro (Nimmerjahn et al., 2004; 

Kafitz et al., 2008; Molecular Probes® Handbook, Section 14.3). SR101 enters the 

astrocytes via an unknown transporter system (Nimmerjahn et al., 2004). However, SR101 

has also been shown to be taken up by actively firing neurons through endocytic recycling 

of synaptic vesicles (Molecular Probes® Handbook, Section 14.3). SR101 is known to be 

able to spread between cells via gap junctions (Nimmerjahn et al., 2004). Furthermore, 

SR101 has been described to have a developmental profile with increasing percentage of 

cells with glial morphology labeled along the proceeding postnatal development (Kafitz et 

al., 2008) suggesting that the uptake mechanism could be appearing as astrocytes 

mature. 

2.6.3. Membrane impermeant nuclear tracers 

Membrane impermeant nuclear tracers can be used to study the integrity of the cell 

membrane. These hydrophilic molecules are unable to cross the intact plasma membrane, 

but upon membrane damage they gain access to the cell interior where their labeling 

target is located. The nuclear tracer selectivity is generally based on the binding to the 

double stranded DNA. (Molecular Probes® Handbook, Section 8.1) 

Membrane impermeant ethidium dye, ethidium homodimer (EthD-1), is a highly charged 

molecule with high affinity for DNA (Molecular Probes® Handbook, Section 8.1). EthD-1 is 

fluorescent without DNA binding but the binding to DNA causes a 40-fold increase in 

fluorescence of the dye (Molecular Probes® Handbook, Section 8.1). EthD-1 is commonly 

used to label the nucleus of dead cells (Molecular Probes® Handbook, Section 8.1).  
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2.6.4. Membrane permeant cytoplasmic tracers 

Membrane permeant cytoplasmic tracers are a group of fluorescent dyes which are initially 

nonpolar but become polar upon interaction with intracellular molecules. The initial 

hydrophobic nature allows free diffusion through the cell plasma membrane. The exposure 

and modification by intracellular enzymes and molecules, on the other hand, allows the 

dyes to be retained in cells. The retainment is based on the polar nature generated by 

cleavages due to intracellular enzymes or covalent attachment to intracellular molecules.  

The acetoxymethyl (AM) ester forms of several polar fluorescent dyes have been 

synthesized. The AM moieties mask the charges of polar dyes and thus the AM ester 

derivatives can be loaded into cells via passive diffusion through the plasma membrane 

(Molecular Probes® Handbook, Section 14.2). The AM ester forms of fluorescent dyes are 

generally nonfluorescent until cleavage by intracellular esterases (Molecular Probes® 

Handbook, Section 14.2). After the cleavage of the AM group, the molecules obtain their 

previous fluorescent and hydrophilic properties (Molecular Probes® Handbook, Section 

14.2). The reappearance of polarity causes the fluorescent molecules to become 

membrane impermeant and thus they are retained within cells. The cell-permeant 

fluorescent dyes, including acetoxymethyl esters of calcein, are known to suffer from poor 

retainment and are retained in living cells only for few hours (Molecular Probes® 

Handbook, Section 14.2). The cell-permeant esterase derivatives are generally used as 

viability probes of enzymatic activity (activation of fluorescence) and membrane integrity 

(intracellular retention of the fluorescent products). 

Similar to AM esters, the chloromethyl derivatives of polar dyes are hydrophobic and can 

passively diffuse through the cell plasma membrane (Molecular Probes® Handbook, 

Section 14.2). The chloromethyl derivatives are mildly thiol-reactive and within cells 

undergo a glutathione S-transferase reaction producing complexes with intracellular 

glutathione sources (Molecular Probes® Handbook, Section 14.2). However, chrolomethyl 

derivatives of fluorescent tracers have also been suggested to react with other intracellular 

moieties (Molecular Probes® Handbook, Section 14.2). Due to their attachment to the 

intracellular macromolecules the chloromethyl derivatives of fluorescent dyes can be 

retained during immunocytochemistry (Molecular Probes® Handbook, Section 14.2). 

Fluorescein diacetate (FDA) is a membrane permeant fluorescent probe which, after 

entering the cell cytoplasm, can be hydrolyced by intracellular hydrolysis to a fluorescent 

product, fluorescein (Molecular Probes® Handbook, Section 14.2). The fluorescein, 
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however, is only briefly retained by the cell plasma membrane (Molecular Probes® 

Handbook, Section 14.2). The FDA body has been modified to produce a group of FDA 

derivatives with improved intracellular retainment. 

Carboxyfluorescein diacetate (CFDA) is a carboxylic acid derivative of FDA. Similarly to 

FDA, CFDA undergoes intracellular hydrolysis, however, the resulting molecule, 

carboxyfluorescein, contains more negative charge compared to fluorescein and is hence 

retained better (Molecular Probes® Handbook, Section 14.2). Sulfofluorescein diacetate, a 

sulfonic acid derivative of FDA is similar to CFDA, except the fluorescein sulfonic acid 

produced by the intracellular cleavage is even more polar than the fluorescein carboxylic 

acid, thus allowing even better retention (Molecular Probes® Handbook, Section 14.2). 

These FDA derivatives have stronger polarity than FDA and their AM ester derivatives can 

be used to produce better membrane permeability caused by the neutralization of the 

charges produced by carboxyl or sulfonic acid addition (Molecular Probes® Handbook, 

Section 14.2).  

Furthermore, a chloromethyl conjugate of FDA (CMFDA) has been synthesized. CMFDA is 

a membrane permeable molecule and once inside the cell, the chromethyl moieties react 

with intracellular thiols and the acetate groups undergo hydrolysis (Molecular Probes® 

Handbook, Section 14.2). The final product is a fluorescent fluorescein conjugated to an 

intracellular thiol donor molecule (Molecular Probes® Handbook, Section 14.2). Because 

chloromethyls react with glutathiones and proteins, some CMFDA can be retained in cells 

with compromised membrane integrity (Molecular Probes® Handbook, Section 14.2).  

2.7. Microelectrode arrays 

When an electrode is used to study the function of several surrounding neurons, the 

knowledge of the exact location of the measured neuron is lost (Smetters et al., 1999; 

Rochefort et al., 2009; Hogberg et al., 2011). However, by utilizing multiple electrodes to 

measure a large volume of a tissue or culture, the comparison of activity between different 

areas of the network as well as the activity transfer between these areas becomes 

possible (Smetters et al., 1999; Rochefort et al., 2009). The electrode arrays are well 

suited for the study of network activities, such as synchronous rhythms between neurons, 

because of the constructive interaction between the field potentials of synchronously active 

neurons (Rochefort et al., 2009). 

In MEAs, the electrodes are spatially arranged within one plane. Electrodes of micrometer 

scale have the ability to record composite signals containing action potentials 
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superimposed over slower local field potentials (Rochefort et al., 2009; Gullo et al., 2010). 

The multiunit activity and the local field potential fluctuations can be separated from the 

MEA signal (Gullo et al., 2010). The multiunit activity measured by one electrode usually 

consists of the electrical activities of several cells (Wagenaar et al., 2006).  

However, the spikes of the same cell have a distinctive wave shape which does not 

change unless the ion channels of that particular neuron are altered biochemically or 

spatially (Rochefort et al., 2009). The wave shapes of extracellular potential signals of 

somatic origin have been shown to have varying magnitudes and shapes from multiphasic 

to monophasic (Claverol-Tinture and Pine, 2002). Extracellular potential signals of neuritic 

origin, however, have been shown to be large, but monophasic negative (axons) or small 

monophasic positive (dendrites) (Claverol-Tinture and Pine, 2002). Due to the variety of 

factors affecting the wave forms of the recorded spikes, the time stamps of activity are 

used instead of individual wave forms when comparing different networks grown over 

electrode arrays (Morin et al., 2005). 

Current density analysis can provide information on extracellular current flows (Claverol-

Tinture and Pine, 2002), however, the signal forms recorded by the electrodes of MEA 

cannot be interpreted to gain information about the location of the signal source (Morin et 

al., 2005). Nonetheless, the ability of MEA technique to observe signal transmission and 

single cell activity levels, allows the high sensitivity to factors affecting network activity 

(Rochefort et al., 2009). 

2.7.1. Bursting in the networks 

Signal bursts are a commonly observed phenomenon during the extracellular electrode 

recordings of neural networks. Bursts recorded by the electrodes arise from the nearly 

simultaneous activity of several adjacent neurons (Wagenaar et al., 2006). Detecting and 

defining bursts as well as their properties have gained a great deal of attention (Canepari 

et al., 1997; Morin et al., 2005; Wagenaar et al., 2006; Sun et al., 2008). Bursts are often 

observed to occur synchronously between different recorded areas or propagating from 

one area to another (Canepari et al., 1997). Developmental stages characterized by 

differences in burstiness, temporal clustering of bursts, burst shapes and distributions of 

burst sizes have been shown to appear during the maturation of cultured networks 

(Wagenaar et al., 2006). 
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2.7.2. The effects of extracellular solution on activity observed with 
planar microelectrode arrays 

The MEA platform is sensitive enough to allow the observation of changes in the activity 

due to differences in the ionic concentrations of extracellular solutions. The effects of 

different Ca2+, K+ and Mg2+ ion concentrations on the signal recorded by MEAs has been 

studied (Canepari et al., 1997).  

In these experiments, the low Ca2+ concentration was observed to cause asynchronous 

activity, while a higher Ca2+ concentration was observed to cause the synchronization of 

spikes seen as bursts of activity recorded by the electrodes (Canepari et al., 1997). An 

increasing Ca2+ concentration increased the temporal co-occurrence of spikes, ultimately 

leading to roughly periodic synchronized bursting (Canepari et al., 1997). The burst shape 

was also observed to be affected by the Ca2+ concentration and a change from a constant 

to biphasic and finally to oscillating burst form was associated with Ca2+ concentration 

elevation (Canepari et al., 1997).  

K+ concentration was also shown to affect the network activity recorded by MEAs 

(Canepari et al., 1997). Both the frequency and burst shape of the synchronized bursts 

was shown to be affected by changes in K+ concentration (Canepari et al., 1997; Sun and 

Luhmann, 2007). By altering the K+ concentration the biphasic burst shape became 

distorted during the decreasing amplitude phase (Canepari et al., 1997). A more excitatory 

environment caused by higher K+ concentration has also been shown to distort the 

periodicity of bursting while simultaneously increasing the overall amount of activity 

(Canepari et al., 1997). 

The effects of Mg2+ addition, on the other hand, were shown to depend on the Ca2+ 

concentration. If only the Mg2+ concentration was increased, the network became strongly 

silenced. However, if the Ca2+ concentration was increased simultaneously with Mg2+ 

concentration, only the periods between the occasional synchronous bursts became silent 

(Canepari et al., 1997).   

In addition to the spontaneous network activity, the effects of pharmacological agents differ 

when applied in different extracellular solutions. This kind of effect was observed to 

depend on Ca2+ and Mg2+ concentrations (Canepari et al., 1997). A low Ca2+ concentration 

strongly decreased the blocking effect produced by competitive glutamate receptor 

antagonists (Canepari et al., 1997). A decrease in the effect of glutamate receptor 
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antagonist was also produced by the higher Mg2+ concentration, which is known to cause 

the blockage of glutamate receptors (Canepari et al., 1997). 

Considering these observations it is important to control the ionic composition of the 

extracellular solution while performing and comparing activity recorded with the MEA 

platform. 

2.8. Calcium imaging 

2.8.1. The biological phenomena of neurons recorded by calcium 
imaging 

The intracellular rise of calcium concentration in neurons is caused by the calcium entry 

via voltage-gated calcium channels or calcium-permeable ion channels coupled to ligand-

gated receptors (Froemke et al., 2002). Because the intracellular calcium concentration in 

a resting neuron (30-150nM) is around 10,000 times smaller than the concentration of 

extracellular calcium (1-2mM), even short moment of membrane permeability to calcium 

ions is sufficient to generate a large intracellular calcium concentration rise (Knot et al., 

2005). However, the calcium rise in cell cytoplasm can also be due to calcium release from 

intracellular calcium stores within the endoplasmic reticulum (Knot et al., 2005).  

Several experiments have shown the correlation between calcium transients and the 

electrical activity of neurons by simultaneous calcium imaging and intracellular electrode 

recording (Smetters et al., 1999; Yoshida et al., 2001; Knot et al., 2005). It has been 

observed that during a neuronal action potential the amount of calcium entering the cell, 

and hence the extent of intracellular calcium concentration rise, is of the same size for 

each action potential occurring in that cell (Smetters et al., 1999). If the whole soma of the 

cell is measured, the calcium concentration rise produced by action potential, but not the 

calcium concentration rise associated with below action potential firing threshold 

depolarization, is enough to cause a 2-15% change in the measured fluorescence 

(Smetters et al., 1999).  

While small increases of intracellular calcium concentration are usually associated with 

single spikes, bursting leads to a very strong intracellular calcium concentration increase 

(Opitz et al., 2002; Sun and Luhmann, 2007; Baltz et al., 2010). The intracellular calcium 

concentration rise occurring concurrently with a train of action potentials shows a 

cumulative nature of the calcium level signals as the calcium level rises caused by spikes 

in spike trains are superimposed on top of the preceding calcium level rise (Smetters et al., 
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1999). However, in the case of train or burst like high rate activity, the influx of calcium 

reflected by fluorescence signal can be reduced due to the calcium indicator saturation 

(Smetters et al., 1999). 

The kinetics of intracellular calcium concentration increases can exhibit various features. 

Commonly, the calcium transients can be classified as either transient or long-lasting ones 

(Knot et al., 2005). The transient rises are generally associated with single spikes and 

have been described with time-to-peak values of 5-50ms and decay times of 1-4s 

(Smetters et al., 1999). The intracellular calcium concentration changes can also exhibit an 

oscillatory nature (Kato-Negishi et al., 2003; Knot et al., 2005; Sun and Luhmann, 2007). 

2.8.2. Principles of calcium ion sensitive optical probes and calcium 
imaging 

Calcium imaging is an optical method requiring the use of a specific calcium ion sensitive 

fluorescent indicator. Calcium indicators are based on different calcium chelators, such as 

bis(2-aminophenoxy)ethane tetraacetic acid (BAPTA) or bis(2-aminoethyl ether)tetraacetic 

acid (EGTA), equipped with a conjugated fluorescent moiety (Knot et al., 2005). The 

calcium chelator based indicators bind to the free diffusible calcium (Molecular Probes® 

Handbook, Section 19.2).  However, most of the intracellular calcium is not in a freely 

diffusible form but is bound by the intracellular buffers and compartmentalized to cellular 

organelles, such as the endoplasmic reticulum (Molecular Probes® Handbook, Section 

19.2). As the calcium indicators themselves are calcium buffers, they can affect the 

intracellular calcium by binding too tightly or to too many calcium ions (Molecular Probes® 

Handbook, Section 19.2). 

The molecular combination of the calcium chelator and the fluorescent structure allow the 

calcium indicator to produce a change in fluorescent properties upon binding to calcium. 

The type of change occurring in the fluorescent properties of the calcium indicator is 

different for different types of indicators (Grynkiewicz et al., 1985; Molecular Probes® 

Handbook, Section 19.2). A calcium indicator can be a single or a dual wavelength 

indicator. In a single wavelength indicator the calcium binding causes an increase in the 

intensity of the fluorescence of the molecule, while in dual wavelength indicator either the 

emission (i.e. Indo-1 indicator) or the absorbance (i.e. Fura-2 indicator) spectrum peak is 

shifted substantially (Grynkiewicz et al., 1985; Molecular Probes® Handbook, Section 

19.2).  
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Dual wavelength indicators allow the use of ratiometric measurement methodology. In 

ratiometric measurements, the fluorescence of the calcium bound and the calcium free 

indicator forms are measured separately, by using two different emission or excitation 

wavelengths and their ratio is taken to minimize the effect of imaging artifacts (Molecular 

Probes® Handbook, Section 19.2). The imaging artifacts removed by using a ratiometric 

methodology are those arising from the variance of the indicator concentration in the cells 

(Molecular Probes® Handbook, Section 19.2). These variances can occur due to an 

uneven indicator loading, indicator leakage, photobleaching, and changes in the cell 

volume (Molecular Probes® Handbook, Section 19.2).  

Calcium indicators generally have one of three different chemical forms. These forms 

affect their loading into cells. Calcium indicator salts and dextran conjugates are 

hydrophilic and thus membrane impermeant molecules (Molecular Probes® Handbook, 

Section 19.2). Due to the hydrophilic nature, both require invasive loading methods, but 

can be imaged within minutes after loading. The dextran conjugated calcium indicators are 

engineered to resist compartmentalization and cells loaded with dextran conjugated 

calcium indicators can be studied even over whole day (Molecular Probes® Handbook, 

Section 19.2). The AM ester forms of calcium indicators are hydrophobic and can be 

loaded to cells noninvasively (Knot et al., 2005; Molecular Probes® Handbook, Section 

19.2). The AM masks the negative charges of the indicator, thus allowing it to cross lipid 

membranes (Molecular Probes® Handbook, Section 19.2). Once inside the cell, the ester 

bond between the indicator and the AM group is cleaved by intracellular esterases 

(Molecular Probes® Handbook, Section 19.2). After cleavage, the indicator is once again 

charged and unable to cross the cell membrane. This method allows the bulk loading of a 

cell population and thus enables the recording of multiple cells simultaneously. 

Once loaded to the cell, the calcium indicator attains equilibrium between calcium free and 

calcium bound forms according to its equilibrium equation (see Equation 1 for calcium 

indicator equilibrium equation). The changes in the intracellular calcium concentration shift 

the equilibrium according to the equilibrium equation producing a change in fluorescence 

due to the change of the concentration of calcium free or calcium bound form of the 

indicator.  

Equation 1 
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The dissociation constant of a calcium indicator describes how tightly the indicator binds to 

calcium (Molecular Probes® Handbook, Section 19.2). The changes in the indicator 

fluorescence are largest when the calcium ion concentration lies within 0.1-10 times the 

dissociation constant (Molecular Probes® Handbook, Section 19.2). Calcium indicators 

with varying properties of calcium binding have been engineered and they allow the study 

of intracellular calcium concentration over a large range (<50 nM to >50 μM) (Molecular 

Probes® Handbook, Section 19.2). 

 The actual dissociation constant of an indicator, however, depends on the environmental 

factors, such as pH and ionic strengths (Molecular Probes® Handbook, Section 19.2). Due 

to this feature, the dissociation constant needs to be measured for each cell type or 

cellular compartment studied to accurately calibrate the calcium levels for quantitative 

measurements (Molecular Probes® Handbook, Section 19.2). 

Dissociation constant should be considered when choosing calcium indicator for the 

experiment (Molecular Probes® Handbook, Section 19.2). The calcium indicators of high 

affinity and low affinity have been engineered. The high affinity indicators have larger 

dissociation constant and they are suitable for the study of cytosolic calcium levels 

(Molecular Probes® Handbook, Section 19.2). However, as they bind to calcium more 

strongly they can more easily interfere with the intracellular calcium signaling (Molecular 

Probes® Handbook, Section 19.2). Low affinity calcium indicators, on the other hand, do 

not interfere as easily with intracellular calcium signaling, but produce weaker signals and 

are thus more suitable for studying cell compartments with high calcium concentrations 

(Molecular Probes® Handbook, Section 19.2).  

Due to the transient nature of the calcium level changes, another important kinetic 

chemical property of the calcium indicator is the speed of binding described by the binding 

rate constant. If the calcium indicator binds too slowly to free calcium, it is not fast enough 

to reach its equilibrium before the calcium concentration begins to decrease (Molecular 

Probes® Handbook, Section 19.2). On the other hand, such molecules can stay 

fluorescent even if the intracellular calcium level has already decreased significantly. The 

signal produced by an indicator with too slow kinetics will not reflect the true intracellular 

calcium level changes and rapid calcium transients will not be seen. 
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3. Aims of the research 

 

The first aim of this study was to optimize and characterize long-term fluorescent dye 

labeling protocols for living hESC-derived neural cells. The second aim of this study was to 

characterize the role of gap junctions in the neural network activity of maturing hESC-

derived networks. 
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4. Materials and Methods  

 

4.1. Cells 

4.1.1. hESC -lines 

A number of hESC-lines (Regea 08/056, 06/040, 06/015, 07/046, 08/013, 08/017, 08/023, 

HS181, HS362) were used in this study. The Regea-lines were derived at Regea while 

HS-lines were derived at the Karolinska University Hospital Huddinge, Karolinska 

Institutet, Sweden. Regea holds an approval from the Ethics Committee of Pirkanmaa 

Hospital District for derivation, characterization and differentiation of hESC-lines (RO5051, 

RO5116) as well as an approval (1426/32/300/05) of Valvira, the Finnish National 

Supervisory Authority for Welfare and Health, for research of embryos. Similarly, the 

Ethics Committee of the Karolinska Institute had approved the derivation, characterization, 

and differentiation of hESC-lines.  

4.1.2. Derivation and maintenance of hESC -lines 

The derivation and characterization of Regea-lines has been described (Rajala et al., 

2010; Skottman, 2010). The maintenance culture of hESC lines was done as described 

earlier (Rajala et al., 2007). According to the registry entries at European Human 

Embryonic Stem Cell Registry (http://www.hescreg.eu/; 09.01.2012) the pluripotency of the 

hESC lines Regea 08/056, 08/017, 07/046, 06/040, 06/015, and 08/023 has been shown 

both in vitro and for Regea 06/040 and Regea 06/015 also in vivo. The derivation and 

culture conditions for HS-lines have been previously described (Hovatta et al., 2003). The 

pluripotency of the HS-lines has been shown in vitro and in vivo (Hovatta et al., 2003, 

Inzunza et al., 2004, Inzunza et al., 2005).  

The undifferentiated hESC-lines were grown as colonies over mitotically inactivated 

human foreskin fibroblast (CRL-2429, ATTC, Manassas, VA) feeder cell layer. The hESC-

culture medium is described in Table 1. The colonies were passaged and plated on top of 

fresh fibroblast layer at 5 to 7 day intervals. The maintenance of the undifferentiated 

hESC-lines, as described here, was performed by lab technicians. The hESC-lines were 

quality controlled with frequent gene and protein expression analysis, karyotype and 

mycoplasma assays. 

http://www.hescreg.eu/
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4.1.3. Differentiation of hESCs towards neural lineage 

The neural differentiation of hESC was performed as described by Lappalainen and 

colleagues (2010). Briefly, neural differentiation was initiated by mechanically cutting 

pieces from adherent undifferentiated hESC colonies. Subsequently, the cut pieces were 

transferred on to low attachment 6-well plates for suspension culture (Nunc, Thermo 

Fisher Scientific, Rochester, NY). During suspension culture, the differentiating colony 

pieces were fed with a defined neural differentiation medium (see Table 1 for 

components). After transfer to suspension culture, the cut colony pieces formed spherical 

floating neural aggregates, neurospheres. Neurospheres were cultured in the neural 

differentiation medium for 9-33 weeks during which the medium was 50% replaced 3 times 

a week. During this differentiation, neurospheres were mechanically passaged once a 

week.  

4.1.4. Maturation of derived neural cells 

For the final neural maturation step, the neurospheres were mechanically or enzymatically 

(described in detail later in 4.1.6) dissected and plated on to laminin (mouse or human, 

Sigma-Aldrich, St. Louis, MO) coated culture dishes or cover slips for adherent culture, 

while the basic fibroblast growth factor (bFGF) was withdrawn from the medium by 

changing the culture medium from neural differentiation medium to neural growth medium 

(see Table 1 for components). The medium was 50% replaced 2-3 times a week. The 

length of maturation step varied from 2 to 56 days. 

Table 1 A list of cell culturing mediums and their compositions. 
Medium Components Provider 

hESC-culture 
medium 

Dulbecco’s modified Eagle’s medium (DMEM)  
20% knockout-Serum replacement 
2mM GlutaMax 
0.1mM minimal essential medium non-essential 
amino acids 
0.1mM betamercaptoethanol  
50U/ml penicillin/streptomycin 
8ng/ml human bFGF 

Gibco Invitrogen, Carlsbad, CA 
Gibco  
Gibco  
Cambrex Bio Science, East 
Rutherford, NJ 
Gibco  
Lonza Group Ltd, Switzerland 
Gibco  

Neural 
differentiation 
medium 

Neural growth medium 
20ng/ml human bFGF  

 
Gibco  

Neural growth 
medium 

1:1 DMEM/F-12:Neurobasal media 
2mM Glutamax 
1xB27 supplement 
1xN2 supplement 
25U/ml penicillin and streptomycin  

Gibco  
Gibco  
Gibco  
Gibco  
Lonza  

Enhanced neural 
growth medium 

Neural growth medium 
4ng/ml human bFGF 
5ng/ml BNDF 

 
Gibco  
Gibco  
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4.1.5. Preparing culture dishes and cover slips 

Plastic culture dishes or glass cover slips were 

prepared for adherent cell culture by coating. 

Coating was performed by incubating laminin 

(10µg/ml for plastic, 20µg/ml for glass) for at least 

overnight in +4oC or two hours in +37oC, 5% CO2, 

humidified atmosphere. Either the whole culture 

dish well was filled with laminin solution 

(~250µl/cm2) or only part of the well bottom or 

cover slip by using droplet coating (50-100µl of 

laminin, Figure 1). After coating, the excess laminin was removed by suction and reused 

up to three times or until expiration (one month after preparing the aliquot).  

4.1.6. Dissecting and plating cells 

Neurospheres were dissected either mechanically or enzymatically. In mechanical 

dissection, the neurospheres were cut with a sterile scalpel into barely observable pieces. 

The prepared culture dishes were filled with medium (1ml of medium per 1cm well radius) 

and several pieces were transferred to each well or cover slip. The amount of pieces per 

well or cover slip was kept constant in an experiment but varied from 8 to 16 between 

experiments. Plated culture dishes were placed into an incubator (+37oC, 5% CO2, 

humidified atmosphere). During the following cell culturing period, 50% of the culturing 

medium was replaced with fresh medium 3-4 times a week.  

In enzymatic dissection, the neurospheres were first transferred to an eppendorf tube and 

washed with 1ml of preheated, +37oC Dulbecco’s modified phosphate buffered saline 

(DPBS, Lonza). After the neurospheres had sedimented to the bottom of the eppendorf 

tube, DPBS was removed and replaced with 200-500µl (based on the estimate of 

neurosphere size and amount) of preheated room temperature Trypple Select TM (Gibco). 

After 10-15 minutes incubation in +37 oC, the cells were suspensed by pipeting back and 

forth. Neural growth medium was added up to a volume of 1ml and suspensed cells were 

centrifuged (5min, 1400rpm, Eppendorf miniSpin). The resulting cell pellet was suspensed 

to neural growth medium. 8µl of the final cell suspension was transferred to a Nëubauer or 

Bürker chamber and cell counting was performed by averaging 3-4 major squares. The 

required cell suspension volume to achieve the desired cell count was calculated with 

Equation 2. 

Figure 1 Droplet coating. 50µl of 

laminin as a droplet in the center of a 

cell culture plate wells. 
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Equation 2 
     

   

The required cell suspension volumes were transferred to each culture dish well or cover 

slip. The culture dish was placed into an incubator until the cells had attached (5-15min, 

confirmed with a phase contrast microscope). After cell attachment, the wells were filled 

with medium and placed into an incubator. During the following cell culturing period 50% 

medium was replaced with fresh medium 2-3 times a week. 

In a set of experiments, the adherent cell cultures of the mature stage were dissected 

instead of neurospheres. This was performed by cutting the cultures mechanically or 

enzymatically as described previously for neurospheres. However, following modifications 

were added to enzymatic dissection: cells were washed as adherent, 200-400µl 

(depending on the cell density) of Trypple Select TM was added on each well and cell 

suspension was transferred to an eppendorf only after Trypple Select TM incubation.  

4.2. Fluorescent microscopy 

The cells labeled with fluorescent dyes or secondary antibodies (in immunocytochemistry) 

were visualized and imaged with a fluorescent microscope set (Olympus IX51 inverted 

microscope, PlanFLN 4x, 10x, 20x and 40x objectives, Olympus DP30BW CCD camera, 

100W Halogen lamp light source). The light was filtered with U-MNU2 (excitation filter 360-

370; emission filter 420; dicromatic filter 400), U-MNB2 (excitation filter 470-490; emission 

filter 520; dicromatic filter 500), U-MWG2 (excitation filter 550-510; emission filter 590; 

dicromatic filter 570), or U-N41023 (excitation filter 625-675; emission filter 710; dicromatic 

filter 680) filter cube. 

The images were processed with Adobe Photoshop. Briefly, the grayscale images were 

converted to an RBG format and the output levels were adjusted to zero, except for the 

channel corresponding to the color of the fluorescent light. For example, to obtain color 

images from grayscale images taken by using the U-MNB2 filter set the red and blue 

channels output levels were adjusted to 0. The images taken from the same field of view 

with different filter sets were overlayed after converting them to corresponding color 

images to obtain composite images. 
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4.3. Fluorescent dyes 

4.3.1. CellTracker Green 

CellTracker Green CMFDA (5-chloromethylfluorescein diacetate, CT) is a fluorescent 

probe developed by Molecular Probes®. CT contains a fluorescent fluorescein structure 

attached to two acetate groups and a chrolomethyl group. Due to the additional groups CT 

is retained in living cells for several generations and is not transferred to other cells in the 

same population (Molecular Probes® Handbook, Section 14.2). As a fluorescent molecule 

the CT has an absorption maximum at 492nm and an emission maximum at 517nm 

(Molecular Probes® Handbook, Section 14.2). The fluorescent properties of CT are 

represented in Figure 2. 

A 10mM CT stock was prepared from the solid CT (C2925, Lot 465545, 1mg, Molecular 

Probes Invitrogen, Finnzymes, Finland) by dissolving it to 215.1µl of DMSO (stored at -

20oC). On the day of use, the labeling medium was prepared by diluting the stock to fresh 

culture medium. The culture medium of cells was replaced with the labeling medium and 

incubated at +37oC, 5% CO2, humidified atmosphere. After incubation the labeling medium 

was replaced with fresh culture medium and the cells were imaged at varying periods after 

labeling.  

4.3.2. DiD 

1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DiD) is a lipophilic 

carbocyanine molecule. In water environment DiD is weakly fluorescent (Molecular 

Probes® Handbook, Section 14.4). As a lipophilic molecule DiD incorporates easily into 

membranes. In the lipid environment of the cell membrane DiD becomes strongly 

fluorescent (Molecular Probes® Handbook, Section 14.4). DiD has an absorption 

maximum at 644nm and an emission maximum at 665nm (Molecular Probes® Handbook, 

Section 14.4). The fluorescent properties of DiD are represented in Figure 2. 

A 20mM DiD stock was prepared from the DiD oil (D-307, Lot 461358, 25mg, Molecular 

Probes Invitrogen). Labeling with DiD in coculturing experiments was performed in a same 

fashion as with CT (4.3.1). For this purpose a 5µM concentration was used in the labeling 

medium together with 2 hour incubation time. These parameters were optimized by Tiina 

Joki in her master’s thesis work. 
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4.3.3. Sulforhodamine 

Sulforhodamine 101 (SR101) is a polar, water soluble, fluorescent molecule with an 

excitation maximum at 586 nm and an emission maximum at 605nm (Molecular Probes® 

Handbook, Section 14.3). The spectral properties of SR101 are represented in Figure 2. 

Previously, it has been reported that in brain slices a 100nm concentration of SR101 

(Nimmerjahn et al., 2004; Kafitz et al., 2008) produces a homogenous cytoplasmic 

astrocytic staining which is stable for several hours (Nimmerjahn et al., 2004).  

A 10mM SR101 stock was prepared from SR101 (S359, Lot 458872, 25mg, Molecular 

Probes Invitrogen) by dissolving to 4.12ml sterile H2O (stored at +4 oC). Labeling with 

SR101 was performed in a same fashion as previously described for CT (4.3.1). 

4.3.4. LIVE/DEAD 

The LIVE/DEAD® Viability/Cytotoxicity Kit (L-3224, Molecular Probes Invitrogen) or the 

components of the kit purchased individually (Calcein AM; C1430, EthD-1; E1169, 

Molecular Probes Invitrogen) were used to study the effect on the cell viability. The 

LIVE/DEAD method is based on two dyes which become fluorescent after interacting with 

cells or their components. Calcein AM is inherently non-fluorescent and upon entering the 

cell it is converted to a fluorescent molecule by the intracellular esterases (Molecular 

Probes® Handbook, Section 15.2). Ethidium homodimer (EthD-1) does not diffuse through 

plasma membrane as Calcein AM but it will enter cells with a damaged plasma membrane 

(Molecular Probes® Handbook, Section 15.2). Upon binding to nucleic acid, a 40-fold 

enhancement of fluorescence of EthD-1 will take place (Molecular Probes® Handbook, 

Figure 2 Fluorescent properties of CT, DiD and SR101. ex and em in the image refer to excitation 

and emission. Data for this graph was obtained from the manufacturer website 

(http://www.invitrogen.com; 03.12.2011). 

http://www.invitrogen.com/
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Section 15.2). The fluorescence from by Calcein AM is hence relative to the cellular 

esterase activity while that of EthD-1 is relative to accessible DNA, indicating live and dead 

cells, respectively. 

To perform the LIVE/DEAD staining for microscopy analysis, the stock solutions of Calcein 

AM and EthD-1 were removed from -20oC and diluted to preheated +37oC neural growth 

medium to achieve final concentrations of 0.1µM and 0.5µM, respectively. The medium 

was removed and replaced with a freshly made labeling solution. After 30 minutes of dark 

incubation the cells were imaged with a fluorescence microscope. 

In order to quantify the fluorescence images, a total of 5 images from 2 adjacent well were 

analyzed. Analysis was performed by manually counting the number of Calcein AM and 

EthD-1 labeled cells. The percentage of dead cells was obtained by dividing the mean of 

EthD-1 labeled cells with the mean of Calcein AM labeled cells. 

4.4. Immunocytochemistry 

CT, SR101 or DiD stained adherent cultures were studied immunocytochemically to 

determine the specificity of staining. Medium was removed and cells were rinsed with 

room temperature Dulbecco’s phospahe buffered saline (DPBS, Bio Whittaker, MD, USA) 

to prepare the cells for fixing. For fixation, DPBS was replaced with +4oC 4% 

paraformaldehyde and incubated for 15 minutes in room temperature. Paraformaldehyde 

was washed twice with DPBS and the cytochemical stainings were done immediately or 

the culture plate was stored in +4oC for later immunocytochemistry. To prevent the 

unspecific binding of antibodies, cells were permeabilized with 0.1% Triton X-100 (Sigma) 

and blocked with 10% normal donkey serum (NDS, Millipore) in 1% bovine serum albumin 

(BSA, Sigma) in DPBS. Primary antibodies were diluted to 1% NDS, 1% BSA in DPBS 

with 0.1% Triton X-100 as permeabilizing agent unless stated otherwise. The primary 

antibody solution was kept on cells over night at +4oC, unless stated otherwise. As the 

secondary antibodies are conjugated to photosensitive groups, the cultures and reagents 

were kept in dark during following phases. After primary antibody incubation, the excess 

primary antibodies were removed by washing with 1% BSA in DPBS and the secondary 

antibodies were added in 1% BSA in DPBS and incubated on shaker at room temperature 

for one hour. The excess secondary antibodies were removed by washing three times with 

PBS and traces of salts were removed by washing twice with phosphate buffer without 

saline. For nuclear staining and mounting, 7µl Vectashield with 4',6-diamidino-2-
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phenylindole (DAPI, H1200, Vector laboratories, Peterborough, UK) was added and the 

sample was covered with a glass cover slip.  

4.4.1. Antibodies 

The primary antibodies used were anti-MAP-2 (rabbit, 1:600, AB5622, Millipore, Finland) 

for detecting neuronal cells as well as their processes, anti-GFAP (sheep, 1:600, AF2594, 

RandD Systems, Minnepolis, MN) for detecting astrocytes and anti-Ki-67 (rabbit, 1:800, 

AB9260, Millipore) for  detecting proliferating cells. Secondary antibodies used were 

AlexaFluor-488, -568 or -680 conjugates of anti-mouse, anti-rabbit or anti-sheep 

secondary antibodies (1:600, Molecular Probes Invitrogen).  

4.4.2. Proliferation assay 

In order to quantify the results for one experiment, a minimum of 2 parallel wells were 

imaged (minimum of 3 images per well). The DAPI and Ki-67 positive cell nuclei were 

counted for each image and the amount of Ki-67 positive nuclei was divided by the amount 

of DAPI labeled nuclei. This was performed for each image and the obtained values are 

presented in the results. 

4.4.3. Different permeabilizations 

Permeabilizations in immunocytochemistry were performed to guarantee the access of 

antibodies to their intracellular targets. In order to avoid fluorescent dye loss while keeping 

the cytochemical staining optimal, two different permeabilizers were studied. Triton X-100 

was used as 0.1% dilution in blocking and primary antibody solutions. Saponin (7900-25g, 

Sigma-Aldrich) was used as a 1% and 0.1% solution and it was added to blocking, primary 

antibody, washing and to secondary antibody solutions. Immunocytochemical staining 

protocol was also performed with no permeabilization. 

4.5. Microelectrode Array System 

4.5.1. Equipment 

The extracellular local field potentials produced by electrical activity of neurons were 

studied by culturing cells on MEA-dishes. MEA-dishes contained an integrated array of 

insulated titanium nitride microelectrodes. The microelectrode ends were permanently 

coated with a conducting material, platinum black. Three types of MEA-dishes with 

different electrode configurations and cell culture areas were utilized (see Table 2, all 

purchased from Multi Channel Systems, MCS, Reutlingen, Germany). The 

microelectrodes had 30µm diameter and 200µm inter-electrode distance on all MEA-
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dishes. The coated ends of the electrodes form an array in the center of the cell culturing 

area and their opposite ends are at the periphery of the MEA-dish. During recordings the 

peripheral ends of the electrodes were connected to an external preamplifier. The 

preamplifier relayed the measured voltage signal to a filter and further to an analog to 

digital converter. The measured signal was processed and stored digitally. 

Table 2 List of microelectrode array dish types used. 
MEA-dish type Number of cell 

culture areas 
Cell culture area Electrodes per culture 

area 

standard 1 Permanent glass ring 59 + 1 reference 

without glass ring 1 Removable PDMS 59 + 1 reference 

6-well 6 Removable PDMS 9 + 1 reference 

 

The microelectrode measurements were performed using MEA-dishes sealed in a laminar 

flow hood with 70% ethanol cleaned semi-permeable membrane (ALA MEA-MEM, ALA 

Scientific Instruments Inc., Westbury, NY) for standard MEA-dishes and for MEA-dishes 

without glass ring. 6-well MEA-dishes were sealed with a 70% ethanol cleaned glass 

circle. Dishes were sealed to avoid contamination. After sealing, MEA-dishes were placed 

into a faraday cage protected amplifier (MEA-1060BC, MCS) which made contacts with 

the peripheral ends of the electrodes on the MEA-dish. The MEA-dish was kept warm with 

an external heater unit (TC02, MCS) set to +38oC. After measurements, the seals were 

removed, cleaned with 70% ethanol and reused, while the MEA-dishes containing cell 

cultures were returned to incubator.  

After placing the MEA-dish into the amplifier, the system was allowed to settle for one 

minute after which the recording was started. The measured signals were preamplified 

with MEA1060-Inv-BC (gain 53, MCS) and prefiltered with FA60SBC (gain 20, MCS) 

producing signal with 1100 gain and 1Hz - 8 kHz bandwith. Analog to digital conversion 

was performed by MC_card (MCS) with 20kHz sampling frequency. The data acquisition 

card was controlled via MC_Rack software (MCS). The digitalized recordings were further 

processed by removing mains noise (50Hz band reject) and base line fluctuations (200Hz 

high pass) with 2nd order Butterworth filter. Spike detection was performed online with 

MC_Rack software by using threshold based detection (5 times standard deviation of 

noise level). Both, the electrode raw data and detected spikes were saved for analysis. 

Signals were recorded for 5 minutes 1-3 times a week for each MEA. 

4.5.2. Coating, plating and cell culturing  

For MEA experiments, the dishes were cleaned with 70% ethanol and dried in a laminar 

flow hood. Dry MEA-dishes were first coated with polyethyleneimine (PEI, 0.1%, Sigma-
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Aldrich) as 1ml, 100µl or 50µl droplet for at least overnight in +4oC or 2 hours in +37oC and 

washed with sterile water. If the MEA-dish did not contain PDMS, it was sterilized with UV 

light inside laminar flow for at least 30 minutes at room temperature before or during the 

first coating. The second coating was performed with laminin (20ug/ml, mouse or human, 

Sigma) as 1ml, 100µl or 50µl droplet for at least overnight in +4oC or 2 hours in +37oC. If 

MEA-dish contained a PDMS, the droplet coating method was always used. Laminin was 

not reused and the aliquot was used within one month of preparation. 

The cells were prepared mechanically or enzymatically as described previously (4.1.6) and 

transferred to the electrode area of MEA-dishes. The co-cultures of cells labeled with 

different fluorescent dyes were produced by plating single cell suspension from both 

labeled cultures to same cell growth area. After 3-5 days of culturing in neural growth 

medium, the medium was replaced with enhanced neural growth medium (Table 1) which 

was 50% replaced with fresh enhanced neural growth medium 3-4 times a week. 

If the cells detached, neurites were destroyed, or no signal was observed during the first 

two weeks, the neural networks were determined as deficient and cultures were discarded. 

After use, the MEA-dishes were washed with distilled water and placed into Tergazyme 

solution (4g/200ml, Z273287, Sigma-Aldrich) for at least overnight. Tergazyme was 

washed off with distilled water and the MEA-dishes were air dried and stored for reuse. 

When testing the effect of HEPES buffer (17-737E, 1M, Lonza) on neural network 

development, cell cultures were divided into three groups. Two of the groups were plated 

as described above, while the third (Hepes 1) was plated in neural growth medium 

containing 5mM HEPES pH adjusted to 7.4 with NaOH. After 9 days of maturation on 

MEA, one of the groups of cell cultures (Hepes 2) plated without HEPES was transferred 

to HEPES containing medium, while the other (control) was kept in neural growth medium 

lacking HEPES and the microelectrode array measurements were begun. The mediums 

were 50% replaced 3-4 times a week. 

When testing the effect of Ringer solution (44µM KH2PO4, 20mM HEPES, 4.2mM 

NaHCO3, 5mM glucose, 1mM CaCl2, 1.2mM MgCl2, 137mM NaCl, 5mM KCl, pH adjusted 

to 7.4 with NaOH) on signaling of the neural network, the cell culturing was performed as 

described above. The baseline was first measured in the culturing medium, after which the 

medium was replaced with Ringer solution or fresh neural growth medium. The networks 

were allowed to settle in the changed medium for an hour after. This was followed by a 

second measurement and medium change back to enhanced neural growth medium. The 
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experiment was repeated with the same cultures after 3 days and the incubation time after 

the medium change was extended to two hours.  

4.5.3. Performing pharmacological testing 

Three series of pharmacological experiments were performed on hESC-derived neural 

networks cultured over MEAs. A five minute baseline measurement was performed before 

applying any drugs. The drugs were applied by adding a very small volume (≤ 5µl) of the 

drug stock solution to the cell culturing solution of MEA-dish (800µl). After drug application, 

MEA-dishes were incubated in an incubator (+37oC, 5% CO2, humidified atmosphere, 

times in Figure 3) and the response was measured by obtaining signal from the 

microelectrodes for 5 minutes. The washouts were performed by replacing the medium 

with fresh preheated (+37oC) cell culturing medium. The timelines and drug application 

sequences with respect to measurements can be seen from the Figure 3. The final drug 

concentration were 25µM carbenoxolone (CBX, C4790, Sigma-Aldrich), 25µM glycyrrhizic 

acid (GZA, 50531, Sigma-Aldrich), bicuculline (Bic, 14343, Sigma), DAP-45 (Asc-003, 

Ascent Scientific, UK). 

4.5.4. Data Analysis  

The data resulting from the online spike detection during MEA measurements was further 

analyzed offline. The spike counts and time stamps on each electrode were extracted with 

NeuroExplorer (Nex Technologies, Littleton, MA) software and collected to Excel files and 

combined to raster plots. Electrodes containing less than five spikes in each recording 

were considered inactive and removed from further analysis. Analyzed parameters were: 

the number of active electrodes per electrode array, the number of spikes recorded by the 

whole electrode array (total spikes), and the mean number of spikes per electrode. 

Figure 3 Timelines for drug applications and microelectrode array measurements. The up left 

corner timeline is for pharmacological experiment 1, the up right corner for pharmacological 

experiment 2 and the bottom time line is for pharmacological experiment 3. Abbreviations: 

carbenoxolone (CBX), glycyrrhizic acid (GZA), bicuculline (Bic). 
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4.6. Ca2+ imaging 

4.6.1. Coating, plating and cell culturing  

13mm diameter glass cover slips were cleansed with 90% ethanol and dried. The dry 

cover slips were transferred to 24 or 4 well plates and coated with laminin (20µg/ml) which 

was incubated for overnight in +4oC.  Cells were plated as single cells or aggregates, as 

described earlier (4.1.6), onto prepared cover slips and cultured similarly as when grown 

on plastic well plates (4.1.4). After imaging the cover slips were discarded.  

4.6.2. Labeling cells with calcium indicator 

Intracellular calcium transients were visualized with calcium indicator Fura-2 

acetoxymethyl (Fura-2 AM, Lot: 781648, F1221, Molecular Probes Invitrogen). Fura-2 is a 

charged molecule but the AM conjugated version the charges are masked by the AM 

groups. Once the dye has permeated the cell plasma membrane, intracellular esterases 

cleave the AM groups leaving the fluorescent dye trapped inside the cell.  

Cover slips containing cells were transferred to a small petridish containing 1ml of Ringer 

solution (described earlier in 4.5.2). Fura-2 AM stock (1mM dissolved to DMSO) was 

added to 4µM concentration. Fura-2 AM was incubated in room temperature (+22oC) for 

30 minutes. Subsequently, cover slips were removed from the loading solution and 

attached to an open diamond bath recording chamber (RC-25) with vacuum glue. The 

chamber was filled with Ringer solution and attached to platform (P3). The platform was 

mounted with a stage adapter to micromanipulator (SM 5-9, Luigs and Neumann, 

Ratingen, Germany) controlled stage of the imaging microscope (20x Olympus UApo/340 

objective, Olympus IX51 microscope) and fluorescence was confirmed via microscope 

oculars.  

4.6.3. Measurement of calcium dynamics 

Two image sets were captured with TillVisiON. The first image set was captured by using 

340nm excitation wave length and the second by using 380nm wavelength. The emission 

of both series was gathered via the same filter (Fura-2 bsp400LP, emitter 510/80nm). 

Images for both sets (340nm and 380nm excitation) were captured at 1Hz. No binning was 

used.  

The excitation wavelength was produced with software controlled monochromator 

(Polychrome V, TILL Photonics, Gräfelfing, Germany) and emission was filtered with a 

filter cube (Fura-2 bsp400LP, emitter 510/80nm). The emitted fluorescence signal was 
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imaged with a cooled charge-coupled device (CCD) camera (iXion+ 885, Andor 

Technology, Belfast, Ireland) which was controlled by software (TILLvisON v.4.5.65, TILL 

Photonics). After confirming the presence of fluorescence and cells, the perfusion chamber 

was connected to a gravity fed perfusion system with peristaltic suction pump (Minipuls 3, 

Gilson, Limburg, Germany).  

4.6.4. Analysis of calcium dynamics 

Curves for intracellular calcium levels were obtained from the captured image series with 

TillVisiON. First, a sequence of ratio (Equation 3) images was constructed from the two 

captured image sets (no background correction, intensities lower than 30 clipped to zero, 

scaling with a factor of 1000). The differential fluorescence (Equation 4) image series were 

obtained from the ratio series (scaling with a factor of 1000). Regions of interests (ROIs) 

were hand drawn in TillVisiON and fluorescence kinetics (mean gray value) for each ROI 

were exported to excel files. The fluorescence trace of the background ROI was averaged 

with a kernel of 10 and subtracted from each fluorescence trace. The resulting values were 

multiplied by the average value of the background fluorescence. The fluorescence change 

trace for each ROI was then visualized and analyzed manually.  

 

Equation 3 

 

 

Equation 4 
 

 

4.7. Pharmacological substances 

Pharmacological substances were applied via the gravitation fed perfusion system. Before 

perfusing the cells, the substances were diluted to their final concentrations. If two 

substances were applied simultaneously, only one perfusion channel was used to apply 

the perfusion solution containing both agents in defined concentrations. KCl (250µM, 

30mM, 50mM or 70mM, P9541-500G, Sigma) was applied to cause the opening of the 

voltage gated calcium channels via membrane depolarization and hence to identify 

neurons. GABAA receptor blocker bicuculline (Bic, 10µM or 50µM) was applied to cause 

the bicuculline-induced intracellular calcium rises described by Arumugam (2008). 

Carbenoxolone (25µM, CBX) was used to block the gap junctions. Glycyrrhizic acid 
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(25µM, GZA) was used as a control compound for CBX as it has been described to cause 

similar unspecific effects as the gap junction blocker CBX (Rouach et al., 2003). On the 

day of use, all applied substances were diluted to the Ringer perfusion solution described 

earlier (4.5.2). 
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5. Results 

 

5.1. LIVE-Colors 

5.1.1. CellTracker  

 Optimizing CT labeling 5.1.1.1

In order to find out optimal labeling parameters, several CT dye concentrations were 

studied together with a group of different incubation times. The manual of the dye 

(CellTracker Probes for Long-Term Tracing of Living Cells, Invitrogen) recommended the 

use of 5-25µM dye concentrations and 15-45 minute incubation times to achieve labeling 

for more than 3 days. The dye concentration was recommended to be kept as low as 

Figure 4 Labeling with CellTracker. Fluorescent live cells labeled by the optimal CT labeling 

parameters: 10µM concentration with 3 days incubation time (A). Phase contrast image of the 

same cells (B). Overlay of the images taken with fluorescence and phase contrast (C). 

Combinations of concentrations and incubation times studied during CT labeling optimization (D). 

The marks filled with white represent parameters for which no labeling was observed. Marks filled 

from light green to dark green and finally to orange represent the time period for which the 

fluorescent was observable after labeling. The arrow points to the mark representing the 

combination of optimum parameters for long term labeling. The scaling in A, B and C is the same 

and the scale bar in B is 100µm. 
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possible to avoid changes in cellular physiology. The dye concentrations used in this set of 

experiments ranged from 0.5µM to 60µM and the incubation times from 15 minutes to 72 

hours. The exact combinations of parameters can be found from the Figure 4D. 

During the first experiments, a concentration range from 4µM to 40µM was studied with 

incubation times from 15 minutes to 2 hours. The labeling was observed to be visible at 

the 3 week time point only with the highest (40µM) concentration and hence the CT 

concentration range was increased to 10-60µM while similar incubation times, from 30 

minutes to 4 hours, were studied in the following experiments.  

With low incubation times and high concentrations the staining was initially clearly 

observable but diminished greatly during the first week. By using the highest concentration 

it was possible to achieve labeling which was observable for 12 days.  

Because the aim was to achieve labeling for several weeks, a new labeling strategy with 

low dye concentrations and very long incubation times was studied. The huge increase in 

the incubation time, days rather than hours, increased the dye retention time up to several 

weeks and hence further experiments were carried out by using 72 hours (3 days) 

incubation time. Subsequent experiments, with concentration ranges from 2µM to 20µM, 

revealed that the lowest concentration producing properly observable labeling of the cell 

morphology up to 4 weeks follow up times was 10µM labeling solution (Figure 4D). These 

optimal CT labeling parameters, 10µM, 72h, enabled the labeling of both, cell bodies and 

processes. 

 The effect of CT staining on cell viability and proliferation 5.1.1.2

As the labeling parameters lied outside the range recommended by the CT provider, the 

effect on cell viability was assessed. Viability was studied by performing a LIVE/DEAD 

staining for cells incubated for 72 hours with 10µM concentration of CT. The LIVE/DEAD 

staining was performed 4 and 15 days after labeling to reveal the acute labeling effect and 

long term dye retaining effect. An example of images captured for viability analysis can be 

seen in the Figure 5A, and the data from cell counting are depicted in Figure 5B. No 

statistically significant differences were found between control cells and CT labeled cells 

(Mann Whitney -test, p > 0.05) in either time point. 

In addition to viability, the possible effect of CT on cell proliferation was studied. The cells 

were fixed either 6-7 or 11-13 days after the beginning of 72 hour 10µM dye incubation 

period and the proliferation was studied by immunostaining against Ki-67, a marker of 
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dividing cell nucleus. An example image of the immunocytochemical staining against Ki-67 

is presented in Figure 5C and the data from cell counting is presented in Figure 5D. No 

statistically significant differences were found between the control cells and CT labeled 

cells (Mann Whitney -test, p > 0.05) in either time point. 

 Optimizing immunocytochemical staining protocol for LIVE-Colors 5.1.1.3

Because some of the fluorescent dyes used in label living cells, such as DiD, attach to the 

cell membrane, they are very sensitive to permeabilizations which are harsh on the cell 

membrane. The original immunocytochemical staining protocol contained permeabilization 

with Triton-X 100 (Figure 6A) and the protocol was modified to use a milder permeabilitant, 

A 

 
Figure 5 The effects of CT on cell cytochemistry. An example image from the series of images 

captured for viability analysis (A). Red: dead cell labeled by EthD-1. Green: alive cells labeled 

by Calcein AM. Data gathered from the cell counting performed during viability assay (B). Bars 

represent the mean values while whiskers represent the standard deviation. Similarly, an 

example image from the series of images captured for proliferation analysis (C). Blue: cell 

nuclei labeled with DAPI. Red: Proliferating cell nuclei labeled by Ki-67. The data gathered 

from the cell counting of proliferation experiments. Bars represent the mean values while 

whiskers represent the standard deviation. Scaling is same for A and C. The scalebar in C is 

200µm. 
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saponin. The immunocytochemistry protocol was first modified by using 0.1% saponin in 

all steps from blocking to secondary antibody incubation. This modified form of the 

immunocytochemical staining protocol allowed successful immunostaining and retainment 

of the CT label (Figure 6C). However, as this protocol did not allow good retainment of the 

other fluorescent dyes studied in this project, the protocol was further modified.  

The primary antibody incubation time was the longest incubation during the 

immunocytochemical staining protocol and was hypothesized to be the reason behind the 

diffusion of other fluorescent labels away from the fixed cells. In order to study this 

perspective, the immunocytochemical staining protocol was modified by decreasing the 

primary antibody incubation time from overnight (ON) to 3 hours. Simultaneously, the 

saponin was increased to 1% to provide a more efficient permeabilization of the primary 

antibodies. This modification allowed the retainment of CT (Figure 6B) and was found not 

 
Figure 6 CellTracker retainment in different permeabilizations. 0.1% Triton-X permeabilization 

for over night (A). 1% saponin permeabilization for 3 hours (B). 0.1% saponin permeabilization 

for over night (C). Scale bar is 200µm and same for all images. 
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Figure 7 Immunocytochemistry of CT labeled cells. Immunocytochemistry was performed against 

GFAP (A,B,C) and MAP-2 (D,E,F) with 1% saponin permeabilization and 3 hour primary 

antibody incubation. The arrows point to CT labeled GFAP positive or MAP-2 positive cells. 

Scaling is same for all images and the scale bar is 100µm. 
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to disturb the immunocytochemical staining performed against GFAP (Figure 7B) or MAP-

2 (Figure 7E). When the results from this experiment (3 experiments with 3-4 parallel cell 

culture wells in each) were compared to the results performed with 0.1% saponin 

permeabilization with overnight primary antibody incubation (4 experiments with 3 parallel 

cell culture wells in each), it was observed that the unspecific background staining for 

MAP-2 was more profound in the latter. No clear differences in the immunocytochemistry 

against GFAP were observed between these two immunocytochemistry protocols. Both 

0.1% and 1% saponin permeabilizations were later studied in combination with antibody 

incubation times of 3, 6, 12 and 24 hours (1 experiment with 3 parallel cell culture wells). 

From this experiment it was observed that longer than 3 hour primary antibody incubation 

time did not clearly improve the immunocytochemical staining. Hence, 1% saponin 

permeabilization with 3 hour primary antibody incubation could be argued to be, out of the 

studied parameters, the most suitable for permeabilization modified immunocytochemistry 

(representative images in Figure 7).    

 Characterizing the ability of CT to stain all cells 5.1.1.4

When comparing the fluorescent images of CT labeled cell populations to their 

transmission light images, it seemed that CT would label all the cells in the population. CT 

stained cells were fixed and stained with DAPI to see whether CT is able to stain all the 

cells. Cells were counted and the percentage of CT labeled cells from DAPI stained cells 

was 94% (1 experiment, 604 cells, 6 imaged areas from 2 parallel wells). Hence, it can be 

 
Figure 8 Replating CT labeled cells. CT labeled cells were dissociated and replated after being 

stained as adherent cultures. Control cultures were labeled but not dissociated. Control (A, B) 

and replated (C, D) cultures of CT labeled cells after one day and one week (E, F, G ,H)  after 

dissociating the replated cells. Scaling is same for all images and the scale bar in image H is 

100µm. 
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argued that CT labels virtually all cells of the differentiated populations. 

 The suitability of CT for replating and co-culturing 5.1.1.5

To further asses the suitability of CT for labeling mixed cell cultures, the behavior of the 

labeling in the process of dissociating and replating previously stained cells was studied. It 

was observed that CT is retained during dissociation and replating acutely (Figure 8D) as 

well as after longer time period (Figure 8H). Furthermore, it was observed that the 

background fluorescence is diminished as prelabeled cells were replated (Figure 8D). No 

clear difference in the intensity of the fluorescence was observed between control and 

replated cultures (1 experiment with 4 parallel cell culture wells). Thu,s CT is suitable for 

applications where the cells are needed to be dissociated and replated.  

To study the suitability of CT for coculturing with other fluorescent label, DiD, mixed 

cultures were formed and followed with fluorescence microscopy. The cells from different 

adherent cultures labeled with different fluorescent dyes did not seem to avoid each other 

and grew as a mixed network (Figure 9). Initially, the dyes seemed to be retained in 

different cells (Figure 9B) but during the long term coculturing dyes became partially 

colocalized and granular (Figure 9E). 

The effect of CT and DiD labeling on the formation of the network activity was studied by 

plating mixed cultures of prelabeled cells over MEA (Figure 10). After plating, the 

Figure 9 Mixed cocultures of cells labeled separately with CT or DiD. Phase contrast (A), 

combined fluorescence (B) and overlay of phase contrast and fluorescence images (C) from 

cocultures of two cell populations 4 days after mixing. A corresponding image serie 17 days 

after mixing (D, E, F). Scaling is same for all images and the scale bar in F is 100µm. 
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development of the activity was followed by sequential measurements. During this follow 

up period, the mixed cocultures developed first single spikes and later semisynchronous 

trains. From these observations, it can be deduced that the fluorescent labeling with CT 

and DiD does not prevent the development of electrogenic properties of hESC derived 

neurons. On the basis of semisynchronous activity between different electrodes, it can 

also be argued that the labeling with CT and DiD, as well as coculturing in a mixed form, 

does not prevent the formation of network connections between the hESC derived 

neurons. On the basis of semisynchronous activity between different electrodes, it can be 

also argued that the labeling with CT and DiD, as well as coculturing in a mixed form, does 

not prevent the formation of network connections between the hESC derived neurons. 

 

  

 
Figure 10 Functionality of the neural network formed by mixed cultures. A dense cell network 

formed by cells labeled with different fluorescent dyes growing over a microelectrode array (A). 

The scale bar in image A is 100µm. Development of network activity from single spikes to 

semisynchronous spike trains (B). Each vertical tic in B represents a spike while each row 

represents activity from single microelectrode. The activity between two vertical lines contains 

spikes recorded during 5 minute recording at each measurement day (x axis). A close up view of 

semisynchronous training from two adjacent electrodes in a mixed coculture of CT and DiD 

labeled cells (C). The red lines in C represent spikes. 
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5.1.2. Sulforhodamine 101  

 Optimization 5.1.2.1

Several hESC -lines (HS362, HS181, Regea 06/015, 06/040, 07/046, 08/013, 08/017, 

08/023) were stained with Sulforhodamine 101 (SR101) at varying points of neural 

differentiation (9-33 weeks) as well as at varying points of neural maturation (2-56 days). 

The staining parameters used varied for incubation time from 5 minutes to 72 hours and 

for concentration from 0.5µM to 100µM. Not all staining parameters were studied with all 

hESC -lines or with the whole range of neural differentiation and maturation times. Figure 

11 contains the parameters studied with two different hESC-lines.  

The neural maturation time seemed to be a confounding factor and hence cell cultures 

were divided into groups based on the maturation time. Groups were termed immature and 

mature, having less than 5 days or more than 13 days long maturation step, respectively. 

The effect of maturation time can be seen in Figure 11 between the labeling for immature 

and mature cultures of Regea 08/023 -line.  

In addition, a difference in successful staining parameters was found between different 

hESC -lines and is demonstrated in Figure 11. The staining seemed to be random with 

respect to the time differentiated before plating. However, based on successful staining on 

several cultures, the recommended labeling parameters for SR101 would be 10µM 

concentration with 8 hours incubation time.  

 
Figure 11 Achieved staining for two different hESC –lines. From the left image the effect of 

maturation time on staining parameters can be seen. The comparison of staining results for 

these two hESC –lines demonstrates the variability of labeling between different hESC –lines. 

For mature 08/023 2(in 1), 6(in 2) or 12(in 2) wells per staining parameters in each 5 parallel 

experiments, for immature 08/023 2 wells per staining parameters in 2 parallel experiments, for 

mature 06/040 2(in 3) or 6(in 1) wells per staining parameters in each 4 parallel experiments. 

Red circles represent visible fluorescence while white circles represent lack of visible 

fluorescence. 
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 Behavior of SR101 fluorescence 5.1.2.2

The cells stained with SR101 showed a series of dynamical changes in their fluorescence. 

At first, single cells were observed as smoothly fluorescent while the surrounding cells did 

not emit any light (Figure 12 A-D, Figure 14A). On the following day, only cells with 

granular fluorescence were found (Figure 13). This pattern of smoothly and granularly 

fluorescent cells repeated later in other cell cultures. The granularly fluorescent cells were 

always already fluorescent when observing and the density of the fluorescent granules 

seemed to grow as the cultures reached more mature stages. The smooth fluorescence, 

however, was usually initially observed on one or few SR101 labeled cells (Figure 14A), 

appeared during observation on several nearby surrounding cells (Figure 14B-G)  and was 

never observed earlier than after 10 days maturation.  

The appearance of fluorescence in the cultures seemed to be a dynamic process with a 

specific direction rather than to occur randomly (Figure 14). The morphology of the cells 

identified by smooth fluorescence seemed to be similar in cultures of different hESC -lines, 

neural differentiation and maturation times (examples in Figure 12). No further 

experiments were carried out to quantify the amounts of different morphologies. The 

smooth fluorescence did disappear from cultures, but usually reappeared in the same 

locations. The longest time point at which fluorescence was observed after the initial 

labeling was over 2.5 months. 

 
Figure 13 Granular fluorescence in SR101 labeled cells. Scale bar is 100µm.  
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Figure 12 Presentative morphologies found in different cultures labeled with SR101.  Scale bar 

100µm. 
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 Immunocytochemical staining of SR101 labeled cultures 5.1.2.3

The cell type labeled by SR101 was studied with immunocytochemical staining. The 

immunocytochemical stainings were performed without permeabilization or with 0.1% 

saponin permeabilization. The primary antibody incubation time for overnight was used. 

The retainment of the fluorescence was followed up to the end of the blocking step. Up to 

this point, the fluorescence was retained in cells. However, during the subsequent steps of 

the immunocytochemical staining SR101 labeling disappeared from the cells with no 

permeabilization as well as from cells with saponin permeabilization. Thus, SR101 labelled 

cells could not be identified. 

 

5.2. Gap junction studies 

5.2.1. Studying the effects of perfusion solution on network activity 

 Hepes buffered culture medium 5.2.1.1

The cell culturing medium has a weak pH buffering capacity and during the calcium 

imaging it would not be sufficient to keep the pH in the physiological range. Hence, for the 

calcium imaging purposes, the neural growth medium was supplemented with 10mM 

Hepes for the first calcium imaging experiments. However, on parallel, the effect of Hepes 

buffered culturing media on the survival (Figure 15A) and development (Figure 15B-D) of 

hESC derived neural networks was studied with microelectrode arrays. 50% of the cultures 

survived over 20 days and two cultures of the Hepes supplemented cultures survived over 

 
Figure 14 Cells lighting up with fluorescence. The fluorescence at the region when it was first 

imaged (A). Appearance of the fluorescence during the next 5 minutes (B-G). Each of the images 

from B-G was constructed by subtracting the previous image taken a minute earlier. This series 

representing the temporal change in fluorescence is combined in the image H. The gradient 

arrow in image H contains the pseudocoloring used in single images (B-G) from time point 0 to 

5 minutes and represents the trend of fluorescence spreading in the imaged area. White arrows 

in images point to cells which were fluorescent during the time point zero. The scale is same for 

all images and the scale bar in image H is 100µm. 
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60 days. Controls died before the 3rd measurement point, and were hence followed only up 

to 20 days. Based on the data presented in Figure 15A, it seems that no clear difference 

between the survival of control cultures and Hepes supplemented cultures exists. The 

network activity development with respect to the amount of active electrodes, spikes per 

active electrodes and total spikes in cultured networks was similar between all three 

groups. Hence it can be stated that cultures supplemented with 10mM Hepes develop 

equally well compared to the control cultures. 

 Ringer’s solution 5.2.1.2

As the calcium imaging measurements were 

planned to be performed in a Ringer’s 

solution, the functionality of the neural 

networks in Ringer’s solution was confirmed. 

Functionality was assessed by performing 

MEA measurements in Ringer’s solution. 

These measurements were compared to 

control measurements performed with fresh 

medium instead of Ringer’s medium. The 

results from measurements are presented in 

the Figure 16. It was observed that Ringer’s 

solution does not cause disappearance of 

activity. No statistically significant differences 

were found between the control and Ringer’s 

solution (two-tailed Mann Whitney test, p > 

0.05) with respect to the number of active 

Figure 16 Measurements of network activity 

in fresh medium and in Ringer’s solution. 

The blue dashed line represents the mean 

baseline and the blue bars above it represent 

the standard deviation of the baseline. White 

and grey bars represent the perceptual 

change observed in the activity after the 

extracellular medium was changed to fresh 

medium or to Ringer’s solution respectively. 

Figure 15 Comparison between control and Hepes supplemented network cultures. Comparison 

of the days survived between control, completely Hepes cultured (Hepes 1) and cultures changed 

to Hepes 9 days after plating (Hepes 2)(A). Development of the cultured networks in these three 

different groups with respect to active electrodes (B), spikes per electrode (C) and total spikes 

produced by the networks (D). 
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channels, spikes per active channels or total spikes. Based on these observations, the 

Ringer’s solution can be used during MEA measurements without inducing any significant 

changes in the network function compared to the use of fresh cell culturing medium. 

5.2.2. Network connections mediating the early network activity 

The participation of early connections, such as gap junctions and glutamatergic synapses, 

in the generation of network activity recorded by MEA measurements was studied by 

application of pharmacological agents. In the first experiment, the changes of activity 

produced by gap junction blocker carbenoxolone (CBX) was studied (Figure 17A). CBX is 

known to have unspecific effects on the cells. However, an analogous compound, 

glycyrrhizic acid (GZA), reproduces these unspecific effects without blocking gap junctions. 

Hence, the effects of GZA on the network activity were also studied (Figure 17B). The 

network activity was measured at two different time points, 15 minutes and 1 hour after 

beginning of the incubation period. This was done in order to scale a suitable incubation 

time. Significant differences (p < 0.05) were observed between the 15 minutes CBX 

application and baseline but not between 1 hour CBX application and baseline (Friedman 

–test followed by Wilcoxon signed rank –test between baseline and both incubations). No 

significant differences were produced by either incubation time when GZA was applied. 

Thus, networks seem to exhibit gap junction mediated activity. 

The effect and ability of the network to recover from the CBX application was studied in a 

more mature network by using a short (10 minutes) incubation time. Recovery was 

measured 30 minutes after washing out the CBX. Data from this experiment is presented 

in theFigure18A. Significant differences (p < 0.05) were observed between the baseline 

measurement and CBX application as well as between CBX application and recovery 

(Friedman -test followed by Wilcoxon signed rank -test between CBX application and 
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Figure 17 The effect of gap 

junction blocker CBX (A) 

and its analog GZA (B) on 

the network activity. Bars 

represent the mean values 

while whiskers represent the 

standard deviations from 

these means. n is the number 

of active channels. 

*statistically significant 
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baseline or recovery). From these observations it can be deduced that CBX causes a 

significant reversible blockage of the network activity. These observations confirm the 

existence of gap junctions also in more mature networks. 

Next, the response of a same network to different pharmacological substances was 

studied (Figure 18B). First, the CBX analog GZA was applied to see the amount of 

unspecific effect. The drop in activity from the baseline was significant (p < 0.05). 

However, the recovery from GZA application was not significant. After measuring the 

recovery, CBX was applied to see the gap junction specific effect. Similar to GZA, the 

application of CBX caused a significant blockage of the activity with no significant 

recovery. The application of bicuculline (Bic) alone did not produce a significant (p < 0.05) 

change in the activity. The activity produced by Bic application was also not significantly 

changed by the addition of CBX. Nor was the activity significantly changed from this by the 

addition of DAP-45.  

To conclude from the final experiment, as the GABAergic signaling of the network was 

blocked by Bic, the network activity was not statistically significantly changed by the 

blockage of gap junctions with CBX or by the blockage of NMDA receptor mediated 

glutamatergic signaling with DAP-45. However, the network activity was not significantly 

changed by the blockage of GABAergic signaling. 

  

 
Figure 18 The reversible effect of CBX (A) and the effect of GZA, CBX, Bic and DAP-45 of the 

activity of the network. Bars represent the mean values while the whiskers represent the 

standard deviations from this mean. n is the number of active channels.*statistically significang 

differences. 
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5.2.3. Calcium imaging  

The development of 

gap junction coupling 

in hESC-derived 

neural networks was 

studied with calcium 

imaging. During 

imaging, the network 

under study was 

perfused three times 

with pharmacological 

substances. The first 

perfusion was 

performed to obtain a 

disinhibition by 

exposing the network 

to GABAergic 

signaling blocker Bic. 

In the second 

perfusion, the network activity was manipulated with gap junction blocker CBX or its non-

blocking analog GZA, simultaneously with Bic disinhibition. The third perfusion was a 

repeat of the first perfusion. The collected imaging data was converted to calcium kinetic 

curves (example in Figure 19) which were classified manually. As the calcium kinetics of 

the cells were analyzed, it became clear that the cells showed several different response 

patterns to these three perfusions (Figure 20A-G, Table 3). 

First, the cells were classified as Bic responsive or other than Bic responsive and the size 

of these groups were quantified. A cell was classified as a Bic responsive, if the both 

disinhibitions with Bic produced an intracellular calcium concentration increase (Figure 

20A and B, Table 4). Thus, the other than Bic responsive cells (Figure 20C-G, Table 5) 

were not able to respond to both Bic applications. Some of the cells never showed calcium 

concentration increases (Table 3, final column).  

  

 

 

  Bic              washout 

 

B 

A 

C 

D 

E 
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Figure 20 Different 

response patterns found 

from the networks studied. 

The three bars on the top 

represent drug applications 

while each line represents 

fluorescence kinetic for a 

cell belonging to each 

group. For each kinetic the 

x-axis represents time and 

y-axis the change in 

fluorescence intensity 

(DeltaF). 

 

Figure 19 Example of 

intracellular calcium 

concentration change as 

response to Bic application. 

Scale bar represents a change 

of 50 in deltaF. 
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Table 3 Percentages of different response patterns produced to application of Bic and CBX (or 

GZA) for networks at different maturation staged. The patterns A-B are explained in Figure 20. * = 

GZA applied instead of CBX. 

Age 
(days) 

Cell count A (%) B (%) C (%) D (%) E (%) F (%) G (%) None (%) 

18 377 65 - - 65 - - - 35 

30 406 5 19 9 40 4 6 2 15 

32 357  53 22 3 3 0 14 0 5 

32*  380* 49* - 49* 28* 0* - - 22* 

40 496 89 1 4 0 1 0 5 0 

45 412 13 3 11 17 11 3 6 36 

47 334 4 0 3 15 20 5 6 47 

 

Table 4  Percentages of Bic responsive cells with cell numbers. Two last columns represent 

percentages of Bic responsive cells which also showed a response during CBX+Bic application (A) 

or showed no response during CBX+Bic application (B). 

Age 
(days) 

Bic responsive (%) Cell counts of Bic responsive A (%) B (%) 

30 24 98/406 19 81 

32 75 267/357 71 29 

40 90 446/496 99 1 

45 16 66/412 82 18 

47 4 14/334 100 0 

 

Table 5 Percentages of other than Bic responsive cells with cell numbers. Six final columns 

represent percentages of other than Bic responsive cells belonging to each category (C-G, None). 

Age 
(days) 

Other than Bic 
responsive (%) 

Cell counts of 
other than Bic 

responsive 
C (%) D (%) E (%) F (%) G (%) 

None 
(%) 

30 76 308/406 11 52 5 8 3 20 

32 25 90/357 11 13 0 56 0 20 

40 10 50/496 38 2 8 0 48 4 

45 84 346/412 13 20 13 4 8 43 

47 96 320/334 3 15 21 5 6 49 

 

The proportion of Bic responsive versus other than Bic responsive cells during network 

maturation is depicted in Figure 21. The numeric values for these two groups can be found 

from the Table 4 and Table 5. A trend with first increasing and then decreasing phase was 

observed for the proportion of Bic responsive cells. The maximum of proportion of 

GABAergic signaling inhibition activated cells was observed to occur at 40 days maturation 

time (Figure 21). After this point, the proportion of Bic responsive cells was seen to 

decrease rapidly. The trend of proportion of Bic responsive cells would then indicate an 

initial increase of GABAergic inhibition after 30 days network maturation followed by a 

rapid decrease in GABAergic inhibition. 
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Next, the gap junctional coupling during network 

maturation was quantified by counting the amount of 

Bic responsive cells which response to disinhibition 

was blocked by the gap junction blocker CBX 

(Figure 20B, Table 4, 4th column). A clear 

decreasing trend was observed for the amount of 

Bic responsive cells affected by the gap junction 

blockage Figure 22). The proportion of these cells 

decreased from the initial 81% at the earliest 

maturation point studied, to final 0% at the latest 

maturation point studied. Thus, it seems that, the 

amount of gap junction coupled cells decreases 

during the in vitro network maturation from very high 

to non-existent amounts. 

In addition, the other than Bic responsive cells, 

showing inconsistent activation by disinhibition, were 

further classified and the proportions of formed 

classes were quantified with respect to the amount 

of other than Bic responsive cells (Table 5, Figure 

23).  

Cells of the group C (Figure 23) were activated by 

the first Bic and the second Bic+CBX application, 

but not by the final Bic application. The proportion of 

cells in this group was relatively low in networks of 

all studied maturation stages, except for the cells 

studied at 40th day of maturation. 

The group D (Figure 23) consisted of cells which 

were activated only by the first inhibition of the 

GABAergic signaling of the network. This group of 

cells was largest in the most immature networks 

studied and was roughly of the same size in the 

more mature networks.  

Figure 22 Percentages of the B 

group from Bic responsive cells. 

Rest of the Bic responsive cells 

belonged to the A group. 

 

 

Figure 21 The percentage of Bic 

responsive cells from all cells with 

different network maturation times. 

The cells not belonging to Bic 

responsive group belonged to other 

than Bic responsive group and thus 

this group constitutes as the rest of 

the percentage. 
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Cells of the group E (Figure 23) showed intracellular calcium level rises only to the 

simultaneous blockage of GABAergic and gap junction mediated signaling. The proportion 

of cells in this group was relatively low in all studied network maturation stages, however, 

a slight increase was observed during the maturation of the network. 

The group F (Figure 23) was characterized by a response to only the final application of 

the GABAergic signaling blocker Bic. The proportion of cells in this group was very low in 

all network maturation stages with the exception of the cells measured during 32th day of 

maturation. 

The group G (Figure 23) consisted of cells responding to the simultaneous Bic and CBX 

application and to the final Bic application, however, showing no response to the first Bic 

application. Similar to the group C, the proportion of cells belonging to this group was 

relatively low in all networks studied with the exception of the networks matured for 40 

days. 

The proportion of cells producing no response (Figure 23) to any of the three GABAergic 

antagonist Bic containing perfusion, on the other hand, was substantial in the two most 

mature network stages studied, very low in the 40 days matured networks and in between 

these extremes in the two most immature network stages studied. This observation 

 
Figure 23 Subgroups of other than Bic responsive cells as proportions of other than Bic 

responsive cells. Each group is arranged to describe the development of proportion of other than 

Bic responsive cells in that particular group. 
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indicates a decreasing ability of the GABAergic signaling inhibition to induce activity in the 

more mature networks. 
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6. Discussion 

 

6.1. CellTracker in labeling live cells 

6.1.1. CT optimization 

Based on the wide variety of parameters tested, the 10µM CT in culture medium with 72 

hour incubation time is the best option to produce a long term hESC derived neural cell 

labeling. These labeling parameters enable cell visualization at least up to 4 weeks. The 

long incubation time needed to achieve long retainment of the dye could be due to more 

CT entering the cells and becoming attached to intracellular molecules compared to 

shorter incubation time. While higher concentrations with lower incubation times did 

produce lengthening of the retainment period, this could be worse option because of the 

load caused to intracellular esterases. 

Labeling with CT by using the optimized parameters was observed to produce a tint 

background labeling. This is most likely due to a reaction between the dye and laminin 

coating as replated prelabeled cell cultures had less background than their prelabeled 

controls. Thus, the reactivity of CT chromethyl moieties with protein thiols (Molecular 

Probes® Handbook, Section 14.2) should be taken into account when considering staining 

cell cultures containing biomaterials as the biomaterials containing thiol groups might also 

become labeled. This becomes even more important if the labeled cells and material were 

transplanted because the fluorescence could be from both cells and material or only from 

material alone if the cells died. 

In addition to coating materials, CT might also react with medium components and more 

efficient staining might be produced if the label was diluted to protein free PBS rather than 

to cell culture medium. On the other hand, the use of medium could allow better viability 

during long incubation times while more efficient loading and labeling might cause load to 

intracellular esterases. It could also be possible that short and efficient labeling might label 

a smaller population of biomolecules very efficiently while the long incubation would allow 

labeling of a larger population of biomolecules. 

In literature, the labeling parameters used to label neural lineage cell cultures tended to 

follow those recommended by the Molecular Probes. For example: 20µM for 30 minutes 

(McMahon and McDermott, 2006), 5µM for 60 minutes (Petterson et al., 2010) and 10µM 

for 30 minutes (Markiewicz et al., 2011). The observations about the CT lasting varied as 
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CT labeled radial glial cells were reported to be observable up to 20 days (McMahon and 

McDermott, 2006) while CT labeled olfactory ensheathing glial cells lost their fluorescence 

in under 14 days (Petterson et al., 2010). However, the parameters used by Petterson and 

colleagues (2010), McMahon and McDermott (2006), and Markiewicz and colleagues 

(2011) were not optimized for the cells used. 

6.1.2. Effect on viability and proliferation 

CT did not clearly decrease or increase the viability of hESC derived neural cells. No 

statistically significant difference was observed between CT stained and control cultures. 

However, the proportion of dead cells in labeled cultures seemed to be larger after longer 

period from labeling (15 days). Based on this observation, it could be possible that CT 

induces a decrease in the viability during long term. Hence the effect of CT on cell viability 

should be also studied at later time points up to 4 week time, during which the CT labeled 

cells are visible. It is possible that cells were more easily counted as dead than as alive 

due to more clear visualization of dead cells from groups of cells growing tightly packed. 

On the other hand, this error would exist for both control and CT labeled cultures and 

hence it should play no role when comparing proportions of dead cells between these two 

groups. No literature assessing the viability effect of CT was found. 

CT did not affect the proliferation of hESC derived neural cells. During experiments no 

trend with respect to post labeling period length was observed and the experiment was 

repeated several times. Some error might have been caused by the calculations as some 

of the nuclei were lightly stained while others were very brightly stained. However, as with 

viability experiments, the comparison was done between proportions of proliferating cells 

in control and CT stained cultures and both groups have this same error factor. 

Contradictory, CT has previously been described to reduce the proliferation rate of labeled 

olfactory ensheathing cells (Petterson et al., 2010). The labeling performed by Petterson 

and colleagues (2010) was done with a lower CT concentration and the incubation time 

was shorter than the incubation time used in this study. Because these gentler labeling 

parameters affected proliferation, it is possible that such effects are elicited cell type 

dependently. 

6.1.3. Optimizing immuno cytochemistry for fluorescent dyes 

Performing an immunostaining with 1% saponin permeabilization and 3 hour primary 

antibody incubation time could be used for cell labeled with fluorescent dyes. An 

immunostaining protocol with these modifications produces specific and clearly 



 

 

 

58 

visualizable immunostaining and is more likely to allow the retention of fluorescent dyes in 

cells. The use of cholesterol-specific detergent, such as saponin, instead of Triton-X has 

been previously described to allow the retainment of a membrane dye during 

immunohistochemistry (Matsubayashi et al., 2008). However, as the 3 hour primary 

incubation time was the shortest studied even briefer incubation times could be tried out to 

minimize dye diffusion. Unfortunately, this immunocytochemistry was not studied with DiD 

or SR101 labeled cells which more easily lose their fluorescent label compared to CT. On 

the other hand, all permeabilization and primary incubation parameters studied allowed the 

retention of CT and clear immunolabeling. 

6.1.4. Type of cells labeled by CT 

CT seems to label all the hESC derived neural cells. However, the percentage of CT 

labeled cells was observed not to reach 100%. This is most likely due to the more easy 

visualization of DAPI stained nuclei compared to CT stained cell body from groups of 

tightly packed cells. These observations are in line with the previous work describing 

successful CT labeling of human cord blood-derived neural stem cells differentiated in to 

neurons, astrocytes, oligodendrocytes and microglia (Markiewicz et al., 2011) as well as 

olfactory ensheathing (Petterson et al., 2010) and radial glial cells (McMahon and 

McDermott, 2006). 

6.1.5. Using CT in cocultures with DiD 

CT is suitable for experiments where labeled cells need to be replated as well as for 

experiments involving co-culturing with DiD labeled cells. CT could also possibly be used 

to study interactions between co-cultured cells. CT can be argued to be suitable for 

replating due to the observed retainment of the dye in cells after replating. The effect of 

replating on the maximal visualization time, however, was not studied. During the co-

culturing of CT and DiD labeled cells some of the cells had both dyes in them. However, 

cells which were originally labeled with CT or DiD could be separated as cells which had 

taken up CT or DiD from other cells could be separated from those which were originally 

labeled with CT or DiD. The co-localization of CT and DiD to same cells could be due to 

cells engulfing parts of each other during close cell-cell interactions. 

hESC derived neuronal cells labeled with CT and DiD are able to form active connections 

giving rise to a functional neural network. MEA measurement used to study the 

development of co-cultured networks containing both CT and DiD labeled neurons allow 

the observation of the development of the network activity. This method, however, does 
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not enable the direct study of synapses or detailed electrophysiological features of single 

cells. Hence, the network activity measured by MEA can be argued to demonstrate that 

separately CT and DiD labeled co-cultured neural cells are able fire action potentials and 

are able to form a functional network. Unfortunately, based on this method, nothing can be 

concluded about the formation of synapses between the two differently labeled cell 

populations or about supple effects of these dyes on the electrophysiological properties of 

cells. These aspects could be studied in the future by utilizing patch clamp or calcium 

imaging methods and immunocytochemical staining against synaptic structures. No 

studies describing the use of dual fluorescent dye labeled neural cells in co-cultures were 

found. 

6.2. Sulforhodamine 101 in labeling live cells 

6.2.1. SR101 optimization 

The optimal parameters for labeling cells with SR101 are 10µM dye in medium during 8 

hours incubation time. The above mentioned parameters can be argued to be optimal as 

they were the lowest concentration and shortest incubation time always producing 

labeling. Using lowest concentration and shortest incubation time possible is desired in 

order to affect the cell physiology as little as possible. Much shorter incubation time were 

found to be used previously (Nimmerjahn et al., 2004; Kafitz et al., 2008). 

During the SR101 labeling parameter optimization, the labeling was observed to depend 

on the cell line used as well as on the time the cells were allowed to mature after plating 

them for adherent culturing. This dependency was seen as more mature cells were labeled 

with lower dye concentrations and with shorter incubation times than more immature cells. 

In addition, a culture where cells were not labeled with certain suboptimal parameters was 

successfully labeled by performing the staining with these same parameters few days after 

the first attempt. Hence, I would like to suggest, that as SR101 uptake is thought to occur 

via an active astrocyte uptake mechanism (Kafitz et al., 2008), this cell line and maturation 

dependency could reflect the maturation of this active uptake mechanism.   

If the SR101 labeling would reflect the maturation of efficiency of an active mechanism and 

if this mechanism was astrocyte specific, SR101 labeling could be used to study the 

maturation of astrocytes or the labeling parameters could be tweaked to label a population 

of astrocytes which had reached a certain stage of maturity. The connection between 

SR101 labeling and the astrocyte maturity would hence be an interesting aspect to study. 
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Another aspect which should be assessed is the cytotoxicity of the SR101 which was not 

done in this project. 

6.2.2. Behavior of SR101 

The labeling produced by SR101 was observed to have a dynamic nature. Often the 

SR101 labeling was observed to produce a smooth labeling spreading from one cell to 

other cells located in close distance. This spreading of fluorescence was relatively slow, 

seemed to have a direction and was confined to a part of the cell culture. No descriptions 

of similar phenomena with SR101 were found from the literature. During follow up after the 

appearance of the fluorescence, the smooth fluorescence developed a granular 

appearance. During further follow up the fluorescence disappeared from the cells, but was 

also able to reappear without relabeling in a similar matter as it was first observed to 

appear. The reappearance of the fluorescence has not been described before. 

In literature, the transition from a smooth fluorescence into a granular fluorescence has 

been suggested to occur due to compartmentalization of the dye into mitochondria (Kafitz 

et al., 2008). This could be studied by labeling the mitochondria and studying co-

localization or by separating the mitochondria by centrifugation and observing whether the 

fluorescence was also separated or by studying the effects of drugs affecting mitochondria 

function on the behavior of the SR101 fluorescence. However, this does not explain the 

phase of complete disappearance of the fluorescence. One possibility, on the other hand, 

could be the quenching of fluorescence in the mitochondria due to high fluorophore 

interactions. 

If the granularization and disappearance of the fluorescence of the SR101 labeled cells 

would be due to compartmentalization into mitochondria, the reappearance of the 

fluorescence could then be argued to be caused by the release of SR101 from the 

mitochondria. Such release could possibly be introduced by the activation of the 

mitochondria. Following this line of thought, the somewhat organized spreading of the dye 

could be thought to depend on an intercellular communication mechanism causing a 

mitochondrial activation ultimately leading to the release of the dye back to cytoplasm. In 

literature, spreading of the activity or injected dye into a defined local cellular network has 

been described to occur for both, neurons (Yuste et al., 1995; Kandler, 1998) and 

astrocytes (Nimmerjahn et al., 2004; Kafitz et al., 2008). The dependence of the 

fluorescence spreading on cellular activation could, in the future, be assessed by calcium 
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imaging while the participation of gap junctions could be studied with dye injections similar 

to those described in the literature.  

6.2.3. Type of cells labeled by SR101 

SR101 did not label all the cells in the hESC derived neural cell cultures. SR101 could be 

argued to produce an astrocyte specific labeling based on the observations that the cells 

labeled by SR101 did not resemble the morphology of neurons, flat epithelial like cells or 

oligodendrocytes. In addition, some of the clearly distinct morphologies observed for 

SR101 labeled cells were also observed to be represented in GFAP positive cell 

population labeled during the optimization of the immunocytochemical staining protocol for 

fluorescent dyes. However, the correctness of these conclusions should be ensured with 

some immunocytochemical stainings. 

Immunocytochemistry was performed for SR101 labeled cells but the label was lost from 

the cells. In literature, SR101 was claimed to disappear during the fixation of cells 

(Nimmerjahn et al., 2004; Kafitz et al., 2008). This, however, was not observed as the cells 

were imaged after fixing. During experiments, the SR101 was observed to disappear from 

the cells only after the primary antibody incubation. However, the immunocytochemistry 

was not performed with 1% saponin and 3h primary antibody incubation which could allow 

the retainment of the dye during immunocytochemistry. As an alternative, if no suitable 

immunocytochemical staining protocol is found for the cells, expression of a fluorescent 

protein under astrocyte specific promoter could be used to ensure that the cells labeled by 

SR101 truly are astrocytes. 

6.3. Measuring with MEAs from networks in different 
extracellular solutions 

6.3.1. Using Hepes buffering in culture medium 

The development of activity in hESC derived neural networks is not inhibited by Hepes 

buffered culture medium. However, the number of networks studied in this experiment was 

so low that supple differences in network activity development could not have been 

observed. Another possibily to observe supple effects in network activity would be to 

compare recorded spikes forms. This, however, was not done due to the lack of suitable 

automated analysis needed in order to analyze the huge amounts of spike forms recorded.  

The networks cultured in Hepes buffered medium survived longer than the control cultures. 

This could indicate that Hepes buffering promotes network survival during experiments 
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with repeated measurements. However, due to the small number of networks studied, 

these kinds of conclusions are not reliable. Hepes buffering could promote the survival by 

resisting the pH change taking place during the measurements which are done at normal 

room atmosphere without any perfusion system. 

6.3.2. Using Ringer's solution during measurements 

The use of Ringer's solution during MEA measurements does not cause disappearance of 

the activity hESC derived neural network activity. Instead, the activity of the hESC derived 

neural network was changed as the number of active sites within the network grew with a 

small drop in overall activity. This caused a clear drop in the activity detected per active 

site. In the fresh medium control the number of active sites was slightly decreased with a 

small drop in overall activity. The activity per active network location, however, remained 

almost unchanged. No statistically significant results were revealed. This difference most 

likely arose from the changes caused by the difference in ionic compositions between 

Ringer's solution and the culture medium.  

As different labs use different culture mediums and as the ionic compositions of the 

components of culture mediums can vary a solution of known ionic compositions should be 

used when making network measurements. The effects could be even clearer, if a 

pharmacological test was compared between a network in different culture mediums and a 

network in solution of known ionic composition. In literature, Ringer's solution has been 

used on MEA (Illes et al., 2007). Different ionic concentrations have also been studied 

(Canepari et al., 1997), but the differences between culture medium and Ringer's solution 

have not previously been assessed. 

6.4. Mechanisms mediating network activity studied with MEA 

Gap junctions, glutamatergic and GABAergic signaling mechanisms are functional in the 

hESC derived neural networks. In addition, the spontaneous activity of these networks is 

almost completely dependent on gap junctional communication. The participation of gap 

junctions in the activity measured by MEA was studied by comparing the effect of dirty gap 

junctions blocker CBX and its control analog GZA, which should replicate the unspecific 

effects of CBX (Rouach et al., 2003). CBX had a reversible effect unlike GZA. Due to 

these observations about the differences between CBX and GZA effects it can be argued 

that the CBX produced effect should result from the reversible and specific blockage of the 

gap junctions. The network activity can be argued to be partly mediated by gap junctions 

as the effect of CBX on the network activity was clearly larger than that of GZA. CBX 
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addition almost completely blocked the network activity indicating that gap junctions have 

large role.  

The addition of GABAA receptor blocker bicuculline alone did not have clear effects and 

from that one might conclude that no GABAergic mechanisms participated in the 

generation of the network activity. However, the lack of effect might arise from the short 

incubation time of bicuculline and its effects could be reflected on the results gathered 

from the next measurement. The effect of CBX was diminished by the presence of 

bicuculline, however, as the full effect of bicuculline might not have been measured when 

performing measurement from networks which were applied bicuculline alone it could be 

that bicuculline raised the activity and some of this was blocked by CBX resulting in 

seemingly less blockage than during previous application of CBX.  

NMDA receptor mediated glutamatergic signaling mechanisms were observed to exist in 

the hESC derived neural networks and they mediated the activity caused by the inhibition 

of GABAA receptors and gap junctions. This can be argued as the activity which was 

generated by bicuculline application and was not diminished by CBX application was 

diminished by NMDA receptor blockage. The participation of NMDA receptors in the hESC 

derived neural network activity mediation has also been previously shown (Heikkilä et al., 

2009).  

These observations are in line with previous information obtained from the in vivo formed 

neural networks in which gap junctions have been shown to participate in the mediation of 

early spontaneous network activity (Rouach et al., 2003; Dupont et al., 2006; Khazipov 

and Luhmann, 2006; Sun and Luhmann, 2007; Sun et al., 2008; Takayama et al., 2009; 

Peinado, 2011). Other work studying the participation of gap junctions to network activity 

mediation in ESC-derived networks was not found. Similarly, also the participation of other 

synaptic signaling mechanisms has been previously shown to occur in in vivo formed 

networks (Kanold and Luhmann, 2010).  

6.5. Calcium imaging 

In this study, the ESC derived neural networks seemed to capture some of the stages 

typically appearing during the network development of non-human primary cell cultures 

and in vivo networks (Yuste et al., 1995; Kandler, 1998; Khazipov and Luhmann, 2006; 

Baltz et al., 2010; Peinado, 2011). These aspects include the change on the role of 

GABAergic signaling in the network activity and the decrease of the gap junctional 

coupling. These observations rise the question of how much more similarities to the in vivo 
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developing network are captured in the cellular network of the in vitro differentiated 

hESCs. 

6.5.1. Bicuculline responsive cells 

The inhibition by GABA signaling first increases and then decreases during the 

development of hESC derived neural networks. The amount of GABAergic inhibition can 

be thought to reflect the amount of GABAergic inhibitory synapses which in this light would 

first increase and later become eliminated. This conclusion is based on the observation of 

the growth of the proportion of cells responding with an intracellular calcium level rise to 

the GABAA receptor blocker application. A change in the role of GABAergic signaling 

during the maturation of in vitro grown network has previously been described to take 

place in fetal cortex derived primary cell cultures (Baltz et al., 2010). According to Baltz 

and colleagues (2010), the initial network activity occurs independently of GABA while the 

later network activity is controlled by an increasing amount of GABAergic signaling.  

It is important to acknowledge that the calcium level rises accepted during the analysis as 

responsiveness were not limited to oscillatory rises but any intracellular calcium 

concentration rise caused by the perfused substance was included. Only the oscillatory 

calcium level rises have been previously associated with bicuculline induced disinhibition 

(Kato-Negishi et al., 2003; Rouach et al., 2003). In addition, due to perfusion problems 

encountered during the series of experiments, cells from one time point generally consist 

of cells measured within one field of view. Hence, the errors affecting the field of view 

would be replicated to all cells studied at that time point. On the other hand, as the change 

in responsiveness to the GABAA receptor blocker formed a trend, it could be argued that 

the results were not suffering from this kind of error. However, the study should be 

repeated with more parallels at the same time point as well as with additional time points in 

order to gain more information about the timing and the rate of changes in the GABAergic 

signaling of the maturing networks.  Addition of a GABA application to the experiments 

would allow even more detailed study of the function of the GABAergic system in the 

maturing networks. For example, the developmental change of GABA from excitatory to 

inhibitory could be studied if the effect of both GABA agonist and antagonist was 

observed. 

6.5.2. Gap junction coupled cells 

The role of gap junctional coupling as mediator of the network activity was observed to 

decrease during the maturation of hESC derived neural networks. This was seen as a 
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decreasing trend of the amount of cells in which bicuculline induced intracellular calcium 

level rise was reversibly prevented by blocking gap junctions.  

As discussed above with respect to bicuculline responsive cells, more parallels and more 

timepoints should have been used in this set of experiments. In addition, the specificity of 

CBX should have been ensured for each time point during maturation by GZA application 

to confirm that the network or its component cells do not acquire any features which would 

allow the unspecific action of the gap junction blocker. Also, as the methodology used is 

highly indirect, it would be fruitful to carry out additional repeats with more conventional 

methods, such as dye spreading via gap junctions. 

In literature, similar observations about the sharp decrease of gap junctional coupling 

during the maturation of neural network have been reported to occur in vitro and in vivo 

(Dupont et al., 2006; Khazipov and Luhmann, 2006; Peinado, 2011). Clear domains of 

simultaneously active neurons, similar to those described in vivo (Yuste et al., 1995; 

Kandler, 1998; Dupont et al., 2006; Kanold and Luhmann, 2010; Peinado, 2011), were not 

observed during imaging. However, no detailed analyses were performed to study this 

aspect. 

6.5.3. Other than bicuculline responsive cells and methodological 
considerations 

In addition to the already described results several unexpected patterns of responses were 

found. From the gathered data it is hard to conclude whether these patterns are 

associated with some biologically relevant phenomena or are merely artifacts of the 

calcium imaging.  

There are at least three possible explanations for the observed patterns. One of these 

explanation is the possible errors arising from discontinuous recordings belonging to the 

same experiment. This would cause error to all cells within the same field of view if the 

ratio of the base line changed during the breaks in recordings. Such changes of ratio 

would arise from the change of liquid level due to unstable perfusion or from uneven 

exposure time recalibration. The change of ratio in baseline would cause a change in the 

deltaF values as these are calculated as percentage of the baseline. The existence of this 

kind of error would be revealed by several parallel experiments performed at the same 

time point.  
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Another possible explanation is rise of intracellular calcium level due to the spontaneous 

activity of the cell or network, rather than due to application of bicuculline. The 

spontaneous activity could have affected the measurements i.e. by causing bicuculline 

independent rises of calcium level during disinhibition and by causing inability of the cell to 

respond to disinhibition due to refractory period of the earlier activity. This is quite possible 

as spontaneous activity was seen to occur during periods when no drugs were applies. 

The third possible explanation would be the amount and change of excitatory activity in the 

network. The blockage of GABAergic signaling causes disinhibition, but this alone might 

not be enough to cause the cell to fire and additional exitatory input to the cell could be 

required. Differences in this excitatory activity along the experiment would then be able to 

produce the unexpected patterns. The change in the exitatory activity between different 

maturation points studied could then also explain the maturation point dependent changes 

in the proportions of different unexpected patterns.  



 

 

 

67 

7. Conclusions 

 

Two different dyes were optimized for long-term labeling of hESC-derived neurons. The 

optimal parameters for CT were 10µM concentration with 72 hour incubation time and for 

SR101 10µM concentration with 8 hour incubation time. CT was able to label the cells up 

to 4 weeks, did not affect cell proliferation or viability and labeled all cell types. CT was 

found to be suitable for co-culturing studies. SR101 labeling, on the other hand, was 

observed to depend on cell line and maturation stage. SR101 labeling was also observed 

to behave dynamically and the cells labeled by SR101 were concluded to be astrocytes. 

However, this could not be confirmed by immunocytochemistry due to SR101 

disappearance.  

The role of gap junctions in the neural network activity of maturing hESC-derived networks 

was characterized in an extracellular solution which suitability was ensured. Gap junctions 

were found to mediate the spontaneous network activity together with glutamatergic and 

GABAergic signaling. In addition, the maturing networks were found to exhibit in vivo like 

changes in gap junction coupling. However, these findings should be more carefully 

studied in future experiments. 

 

 

 

  



 

 

 

68 

8. References 

 

Alexander, J.M. and Bruneau, B.G. (2010). Lessons for cardiac regeneration and repair 
through development. Trends in molecular medicine 16(9), 426-434. 

Allène, C., and Cossart, R. (2010). Early NMDA receptor-driven waves of activity in the 
developing neocortex: physiological or pathological network oscillations? The Journal of 
physiology, 588(1), 83-91.  

Allène, C., Cattani, A., Ackman, J. B., Bonifazi, P., Aniksztejn, L., Ben-Ari, Y., and Cossart, 
R. (2008). Sequential generation of two distinct synapse-driven network patterns in 
developing neocortex. The Journal of neuroscience : the official journal of the Society for 
Neuroscience, 28(48), 12851-63.  

Baltz, T., de Lima, A. D., and Voigt, T. (2010). Contribution of GABAergic interneurons to 
the development of spontaneous activity patterns in cultured neocortical networks. 
Frontiers in cellular neuroscience, 4(June), 15. 

Ban, J., Bonifazi, P., Pinato, G., Broccard, F. D., Studer, L., Torre, V., and Ruaro, M. E. 
(2007). Embryonic stem cell-derived neurons form functional networks in vitro. Stem cells 
(Dayton, Ohio), 25(3), 738-49.  

Burns, S. P., Xing, D., and Shapley, R. M. (2010). Comparisons of the dynamics of local 
field potential and multiunit activity signals in macaque visual cortex. The Journal of 
neuroscience : the official journal of the Society for Neuroscience, 30(41), 13739-49.  

Canepari, M., Bove, M., Maeda, E., Cappello, M., and Kawana, a. (1997). Experimental 
analysis of neuronal dynamics in cultured cortical networks and transitions between 
different patterns of activity. Biological cybernetics, 77(2), 153-62.  

Chiappalone, M., Bove, M., Vato, A., Tedesco, M., and Martinoia, S. (2006). Dissociated 
cortical networks show spontaneously correlated activity patterns during in vitro 
development. Brain research, 1093(1), 41-53.  

Claverol-Tinture, E., and Pine, J. (2002). Extracellular potentials in low-density dissociated 
neuronal cultures. Journal of neuroscience methods, 117(1), 13-21.  

de Lima, A. D., Gieseler, A., and Voigt, T. (2008). Relationship between GABAergic 
interneurons migration and early neocortical network activity. Developmental neurobiology, 
69(2-3), 105-23.  

Colonnese, M. T., and Khazipov, R. (2010). “Slow activity transients” in infant rat visual 
cortex: a spreading synchronous oscillation patterned by retinal waves. The Journal of 
neuroscience : the official journal of the Society for Neuroscience, 30(12), 4325-37.  

Dupont, E., Hanganu, I. L., Kilb, W., Hirsch, S., and Luhmann, H. J. (2006). Rapid 
developmental switch in the mechanisms driving early cortical columnar networks. Nature, 
439(7072), 79-83.  

Froemke, R. C., Kumar, V. S., Czkwianianc, P., and Yuste, R. (2002). Analysis of 
multineuronal activation patterns from calcium-imaging experiments in brain slices. Trends 
in cardiovascular medicine, 12(6), 247-52.  



 

 

 

69 

Gaspard, N., Bouschet, T., Hourez, R., Dimidschstein, J., Naeije, G., van den Ameele, J., 
Espuny-Camacho, I., et al. (2008). An intrinsic mechanism of corticogenesis from 
embryonic stem cells. Nature, 455(7211), 351-7.  

Germain, N., Banda, E., and Grabel, L. (2010). Embryonic stem cell neurogenesis and 
neural specification. Journal of cellular biochemistry, 111(3), 535-42.  

Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985). A new generation of Ca2+ indicators 
with greatly improved fluorescence properties. The Journal of biological chemistry, 260(6), 
3440-50.  

Gullo, F., Mazzetti, S., Maffezzoli, A., Dossi, E., Lecchi, M., Amadeo, A., Krajewski, J., et 
al. (2010). Orchestration of “presto” and “largo” synchrony in up-down activity of cortical 
networks. Frontiers in neural circuits, 4(April), 11.  

Görtz, P., Fleischer, W., Rosenbaum, C., Otto, F., and Siebler, M. (2004). Neuronal 
network properties of human teratocarcinoma cell line-derived neurons. Brain research, 
1018(1), 18-25.  

Heikkilä, T. J., Ylä-Outinen, L., Tanskanen, J. M. a, Lappalainen, R. S., Skottman, H., 
Suuronen, R., Mikkonen, J. E., et al. (2009). Human embryonic stem cell-derived neuronal 
cells form spontaneously active neuronal networks in vitro. Experimental neurology, 
218(1), 109-16.  

Hogberg, H. T., Sobanski, T., Novellino, A., Whelan, M., Weiss, D. G., and Bal-Price, A. K. 
(2011). Application of micro-electrode arrays (MEAs) as an emerging technology for 
developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures 
of rat cortical neurons. Neurotoxicology, 32(1), 158-68.  

Hovatta, O. (2003). A culture system using human foreskin fibroblasts as feeder cells 
allows production of human embryonic stem cells. Human Reproduction, 18(7), 1404-
1409.  

Illes, S., Fleischer, W., Siebler, M., Hartung, H.-P., and Dihné, M. (2007). Development 
and pharmacological modulation of embryonic stem cell-derived neuronal network activity. 
Experimental neurology, 207(1), 171-6. doi:10.1016/j.expneurol.2007.05.020 

Illes, S., Theiss, S., Hartung, H.-P., Siebler, M., and Dihné, M. (2009). Niche-dependent 
development of functional neuronal networks from embryonic stem cell-derived neural 
populations. BMC neuroscience, 10, 93.  

Inzunza, J, Sahlén, S., Holmberg, K., Strömberg, a-M., Teerijoki, H., Blennow, E., Hovatta, 
O., et al. (2004). Comparative genomic hybridization and karyotyping of human embryonic 
stem cells reveals the occurrence of an isodicentric X chromosome after long-term 
cultivation. Molecular human reproduction, 10(6), 461-6.  

Inzunza, José, Gertow, K., Strömberg, M. a, Matilainen, E., Blennow, E., Skottman, H., 
Wolbank, S., et al. (2005). Derivation of human embryonic stem cell lines in serum 
replacement medium using postnatal human fibroblasts as feeder cells. Stem cells 
(Dayton, Ohio), 23(4), 544-9.  

Jäderstad, J., Jaderstad M., Li J. et al.  (2010). Communication via gap junctions underlies 
early functional and beneficial interactions between grafted neural stem cells and the host. 
Proceedings of the National Academy of Sciences of the United States of America 107, 
5184-9. 



 

 

 

70 

Kafitz, K. W., Meier, S. D., Stephan, J., and Rose, C. R. (2008). Developmental profile and 
properties of sulforhodamine 101--Labeled glial cells in acute brain slices of rat 
hippocampus. Journal of neuroscience methods, 169(1), 84-92.  

Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H. P., and Kawana, a. (1996). Spontaneous 
periodic synchronized bursting during formation of mature patterns of connections in 
cortical cultures. Neuroscience letters, 206(2-3), 109-12.  

Kandler, K. (1997). Coordination of neuronal activity by gap junctions in the developing 
neocortex. Seminars in cell and developmental biology, 8(1), 43-51.  

Kang, W., Wong, L. C., Shi, S.-H., and Hébert, J. M. (2009). The transition from radial glial 
to intermediate progenitor cell is inhibited by FGF signaling during corticogenesis. The 
Journal of neuroscience : the official journal of the Society for Neuroscience, 29(46), 
14571-80.  

Kanold, P. O., and Luhmann, H. J. (2010). The subplate and early cortical circuits. Annual 
review of neuroscience, 33, 23-48.  

Kato-Negishi, M., Muramoto, K., Kawahara, M., Hosoda, R., Kuroda, Y., and Ichikawa, M. 
(2003). Bicuculline induces synapse formation on primary cultured accessory olfactory 
bulb neurons. European Journal of Neuroscience, 18(6), 1343-1352.  

Khazipov, R., and Luhmann, H. J. (2006). Early patterns of electrical activity in the 
developing cerebral cortex of humans and rodents. Trends in neurosciences, 29(7), 414-8.  

Knot, H. J., Laher, I., Sobie, E. A., Guatimosim, S., Gomez-, L., Hartmann, H., Song, L.-
sheng, et al. (2005). of Calcium Imaging : Cell Physiology to Dye For. Review Literature 
And Arts Of The Americas, 112-127. 

Lappalainen, R. S., Suuronen, R., Skottman, H., and Narkilahti, S. (2010). Similarly 
derived and cultured hESC lines show variation in their developmental potential towards 
neuronal cells in long-term culture. Regenerative Medicine, 5(5), 749-762. 

Markiewicz, I., Sypecka, J., Domanska-Janik, K., Wyszomirski, T., and Lukomska, B. 
(2011). Cellular environment directs differentiation of human umbilical cord blood-derived 
neural stem cells in vitro. The journal of histochemistry and cytochemistry : official journal 
of the Histochemistry Society, 59(3), 289-301.  

Matsubayashi Y., Iwai L., Kawasaki H. (2008) Fluorescent double-labeling with 
carbocyanine neuronal tracing and immunohistochemistry using a cholesterol-specific 
detergent digitonin. Journal of Neuroscience, 174(1), 71-81. 

Mattia, M., Ferraina, S., and Del Giudice, P. (2010). Dissociated multi-unit activity and 
local field potentials: a theory inspired analysis of a motor decision task. NeuroImage, 
52(3), 812-23.  

McMahon, S. S., and McDermott, K. W. (2006). A comparison of cell transplantation and 
retroviral gene transfection as tools to study lineage and differentiation in the rat spinal 
cord. Journal of neuroscience methods, 152(1-2), 243-9.  

Molecular Probes® Handbook—A Guide to Fluorescent Probes and Labeling 
Technologies. 11th Edition. Invitrogen. 
http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-
Handbook.html; 09.01.2012. 

http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook.html
http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook.html


 

 

 

71 

Morin, F. O., Takamura, Y., and Tamiya, E. (2005). Investigating neuronal activity with 
planar microelectrode arrays: achievements and new perspectives. Journal of bioscience 
and bioengineering, 100(2), 131-43.  

Nimmerjahn, A., Kirchhoff, F., Kerr, J. N. D., and Helmchen, F. (2004). Sulforhodamine 
101 as a specific marker of astroglia in the neocortex in vivo. Nature Methods, 1(1), 1-7.  

Opitz, Thoralf, De Lima, A. D., and Voigt, T. (2002). Spontaneous development of 
synchronous oscillatory activity during maturation of cortical networks in vitro. Journal of 
neurophysiology, 88(5), 2196-206.  

O’Donovan, M. J. (1999). The origin of spontaneous activity in developing networks of the 
vertebrate nervous system. Current opinion in neurobiology, 9(1), 94-104. 

Peinado, A. (2001). Immature Neocortical Neurons Exist as Extensive Syncitial Networks 
Linked by Dendrodendritic Electrical Connections Immature Neocortical Neurons Exist as 
Extensive Syncitial Networks Linked by Dendrodendritic Electrical Connections. Journal of 
Neurophysiology, 85(2), 620-629. 

Pettersson, J., Lobov, S., and Novikova, L. N. (2010). Labeling of olfactory ensheathing 
glial cells with fluorescent tracers for neurotransplantation. Brain research bulletin, 81(1), 
125-32.  

Pluchino, S., Furlan, R. and Martino, G. (2004). Cell-based remyelinating therapies in 
multiple sclerosis: evidence from experimental studies. Current opinion in neurology 17, 
247-255. 

Rajala, K., Hakala, H., Panula, S., Aivio, S., Pihlajamäki, H., Suuronen, R., Hovatta, O., et 
al. (2007). Testing of nine different xeno-free culture media for human embryonic stem cell 
cultures. Human reproduction (Oxford, England), 22(5), 1231-8.  

Rajala, K., Lindroos, B., Hussein, S. M., Lappalainen, R. S., Pekkanen-Mattila, M., 
Inzunza, J., Rozell, B., et al. (2010). A defined and xeno-free culture method enabling the 
establishment of clinical-grade human embryonic, induced pluripotent and adipose stem 
cells. PloS one, 5(4), e10246.  

Rochefort, N. L., Garaschuk, O., Milos, R.-I., Narushima, M., Marandi, N., Pichler, B., 
Kovalchuk, Y., et al. (2009). Sparsification of neuronal activity in the visual cortex at eye-
opening. Proceedings of the National Academy of Sciences of the United States of 
America, 106(35), 15049-54.  

Rouach, N., Segal, M., Koulakoff, a, Giaume, C., and Avignone, E. (2003). Carbenoxolone 
blockade of neuronal network activity in culture is not mediated by an action on gap 
junctions. The Journal of physiology, 553(3), 729-45.  

Skottman, H. (2010). Derivation and characterization of three new human embryonic stem 
cell lines in Finland. In vitro cellular and developmental biology. Animal, 46(3-4), 206-9.  

Smetters, D., Majewska, a, and Yuste, R. (1999). Detecting action potentials in neuronal 
populations with calcium imaging. Methods (San Diego, Calif.), 18(2), 215-21. 

Sun, C., Warland, D. K., Ballesteros, J. M., van der List, D., and Chalupa, L. M. (2008). 
Retinal waves in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. 
Proceedings of the National Academy of Sciences of the United States of America, 
105(36), 13638-43.  



 

 

 

72 

Sun, J.-J., and Luhmann, H. J. (2007). Spatio-temporal dynamics of oscillatory network 
activity in the neonatal mouse cerebral cortex. The European journal of neuroscience, 
26(7), 1995-2004.  

Takayama, Y., Moriguchi, H., Kotani, K., and Jimbo, Y. (2009). Spontaneous calcium 
transients in cultured cortical networks during development. IEEE transactions on bio-
medical engineering, 56(12), 2949-56.  

Voigt, T, Opitz, T., and de Lima, a D. (2001). Synchronous oscillatory activity in immature 
cortical network is driven by GABAergic preplate neurons. The Journal of neuroscience : 
the official journal of the Society for Neuroscience, 21(22), 8895-905.  

Wagenaar, D. a, Pine, J., and Potter, S. M. (2006). An extremely rich repertoire of bursting 
patterns during the development of cortical cultures. BMC neuroscience, 7, 11.  

Yang, J.-W., Hanganu-Opatz, I. L., Sun, J.-J., and Luhmann, H. J. (2009). Three patterns 
of oscillatory activity differentially synchronize developing neocortical networks in vivo. The 
Journal of neuroscience : the official journal of the Society for Neuroscience, 29(28), 9011-
25.  

Yoshida, R; Iwamoto, A; Nagahama, T. (2001). Calcium imaging for Detection and 
Estimation of Spike Activities in Apylasia Neurons. ZOOLOGICAL SCIENCE, 18(5), 631-
643.  

Yuste, R, Nelson, D. a, Rubin, W. W., and Katz, L. C. (1995). Neuronal domains in 
developing neocortex: mechanisms of coactivation. Neuron, 14(1), 7-17.  

 

 


