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Relational databases have been around for decades and are still in use for general data 
storage needs. The web has created usage patterns for data storage and querying where 
current implementations of relational databases fit poorly. NoSQL is an umbrella term 
for various new data stores which emerged virtually simultaneously at the time when 
relational databases were the de facto standard for data storage. It is claimed that the 
new data stores address the changed needs better  than the relational  databases.  The 
simple reason behind this phenomenon is the cost. If the systems are too slow or can't 
handle the load, the users will go to a competing site, and continue spending their time 
there watching 'wrong' advertisements. On the other hand, scaling relational databases is 
hard. It can be done and commercial RDBMS vendors have such systems available but 
it is out of reach of a startup because of the price tag included. This study reveals the 
reasons why many companies have found existing data storage solutions inadequate and 
developed new data stores.
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1. Introduction
Relational  databases  are,   de  facto,  the  standard  in  data  storage.  They  are 
implemented on the top of a universal data model, which can be applied to 
almost any kind of situation. Relational databases have offered a good mix of 
flexibility,  performance,  scalability,  and  compatibility  in  managing  generic 
data. They also provide simplicity of development through strict consistency, 
which  takes  a  lot  of  responsibility  from  application  developers.  That  has 
created an ”one size fits all” attitude and the selection of data store has been a 
choice  between  different  relational  databases  such  as  Oracle1,  DB22,  SQL 
Server3, MySQL4 or PostgreSQL5. 

But in reality, one size doesn't fit all even in a planned economy. Technology, 
access patterns and operating environment have changed and created a need 
for specialized solutions for data storage. A number of specialized engines have 
emerged  to  address  particular  problems  found in  relational  databases.  The 
problems are listed here in an arbitrary order: 

1. Scalability Relational databases scale well inside the boundaries of a 
single server.  However,  scalability needs beyond that point are hard to 
meet.  Scalability  is  defined in this study as the ability  to  add physical 
computing resources to a system in order to gain better performance. This 
is  similar to  the definition by Nygard [2007].  Vertical  scalability means 
adding the resources  of  a  single computer.  It  might  be more  memory, 
faster  processor  or  faster  and larger  disks.  Horizontal  scalability  is  the 
ability to add physical computing resources by adding more computers. 
In  ideal  case,  addition  of  new  computers  provides  linear  increase  in 
performance.

2. Availability Relational databases have the property to be always in a 
consistent  state.  That  means  refusing  new  write  operations  until  the 
current  write  operation  is  finished.  Gilbert  and  Lynch  [2002]  define 

1www.oracle.com/us/products/database/index.html
2www.ibm.com/software/data/db2/
3www.microsoft.com/sqlserver/
4www.mysql.com
5www.postgresql.org
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availability  as  having  every  request  received  by  a  non-failing  node  to 
result in a response, and we follow this definition. A  node  is a physical 
computer which is a part  of a system built of multiple computers. It  is 
worth noting that this definition of availability applies only to non-failing 
nodes and doesn't  make any limitations on how much time can elapse 
between the request and response. Usually availability requirements for 
software  systems are set  by negotiating a service level  agreement.  The 
technology-oriented people describe availability with 'nines', meaning the 
percentage  of  time when the  system is  available.  For  example,  99.99% 
availability or 'four nines' means 4.5 minutes of downtime a month.

3.  Fault-tolerance Relational  databases  treat  hardware  failures  as 
exceptions  and special  hardware  is  required  to  achieve  fault-tolerance. 
While this is a shameless generalization and not really fair to systems such 
as MySQL cluster6 or DB2 PureScale7, fault-tolerance through replication 
is generally not a part of traditional relational database architecture. That 
roots from the days when hardware was really expensive and the cost of 
redundancy was too high. We have a vague definition for fault-tolerance. 
For the purposes of this study it is sufficient that a data storage software 
can continue operating after node failures if the number of failed nodes is 
significantly less than total number of nodes. This definition implies that 
local failures are not propagated over other nodes or entire system. While 
this definition takes only hardware failures into account,  a reliable system 
should be prepared also for software failures. If a hardware failure strikes, 
the node usually doesn't respond at all, and that is the easy case. Software 
failures  which  cause  a  node  to  behave  erroneously  but  continuing  to 
create syntactically correct responses are a lot harder to detect [Lamport et 
al., 1982].

NoSQL8 is a term first used by a relational database which doesn't have SQL 
[Chamberlin  and  Boyce,  1974]  interface,  introduced  in  1998.  The  term  was 
redefined  in  early  2009  when  an  event  was  organized  in  San  Francisco  to 
discuss non-relational databases [Evans, 2009]. Today the NoSQL community 
describes the acronym as ”Not Only SQL”. One definition by Stefan Edlich is 

6www.mysql.com/products/cluster
7www.ibm.com/software/data/db2/linux-unix-windows/editions-features-

purescale.html
8http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page
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”Next Generation Databases mostly addressing some of the points: being non-
relational,  distributed,  open-source  and  horizontal  scalable.  The  original 
intention has been modern web-scale databases” [Edlich, 2009].

This  study  reveals  the  background  and  reasons  for  the  fact  that  many 
companies  have  found  existing  data  storage  solutions  inadequate  and 
developed  their  own implementations.  Even  more  businesses  have  adopted 
new open source non-relational data stores [Popescu, 2010]. A decision like this 
might look like a step back from the technological point of view because the 
data models of the new data stores are not even nearly as rich as the relational  
model. But when following the money, the conclusion is that in many cases 
availability,  scalability  and  fault-tolerance  are  more  important  than  strict 
consistency. While business decisions are economical and belong to the field of 
business economics, some knowledge of technology is required to understand 
the underlying issues. 

This  paper  is  organized  as  follows.  Section  2  describes  the  historical 
background  related  to  the  development  of  database  management  systems. 
Section 3 describes different data models including the relational data model. 
Section 4 describes features and characteristics of relational databases in more 
detail.  Distributed systems are discussed in section 5.  Then some theoretical 
background of non-relational databases is described in section 6. Section 7 takes 
a look at some implementations of NoSQL databases and describes how the 
problems mentioned above are addressed in each particular implementation. 
Finally,  the  study  is  summarized  and  concluded  in  sections  8  and  9, 
respectively.

2. A retrospective
As stated in the introduction the world has changed and that affects also the 
field of data storage. Technology has changed in very fast pace, computers are 
used even in the poorest parts of the world9. Many of the poorest people can 
also afford a mobile phone. One explanation is that the field of technology has 
been enjoying a relatively low level of regulation by governments.

2.1. Changes in technology
A  trend  which  has  ended  is  processor  cores  becoming  faster.  Moore's  law 
[Moore, 1965] states that the density of transistors in processors will double in 

9www.laptop.org/en/
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every two years. That has been mostly true in the last half a century, and it also 
reflected  the  clock  frequency  of  the  processor.  A  decade  ago  the  trend 
encountered  discontinuity.  The  typical  clock  frequency  in  manufactured 
processors  had  a  peak  in  the  first  years  of  21st century  and  have  slightly 
declined since then. Moore's law is still  valid, the density of transistors  but 
instead of getting more out of a single core,  multi-core processors are being 
produced. This requires software which is able to run in parallel [Sutter, 2005]. 
Applications  including  traditional  relational  database  systems  have  been 
enjoying  this  progress  to  achieve  better  performance.  Most  software 
applications designed to run sequentially will need to be redesigned to take 
advantage of today's multi-core processors. 

Processors  have  become  faster  and  cheaper,  main  memory  has  become 
cheaper,  hard  disks  are  bigger  and  cheap  enough  to  keep  essentially 
everything. However, relative time to seek data from disk compared to getting 
it from main memory has increased. This has lead to solutions where the whole 
database is decided to be kept in memory, one example is VoltDB10.

Solid  State  Disks  have been  said  to  be  game changers  in  database  markets 
because the technology makes disks a lot faster [Whitehorn, 2009]. Oracle even 
has a special tuning knob in their current flagship product,  Oracle Database 
11g, where the user can configure the database to take advantage of solid state 
disks.  Whether it will really set the industry upside down depends naturally 
on the price of solid state disks compared to hard disks.

2.1.1. Commodity hardware
A  term  frequently  found  from  papers  describing  distributed  computing  is 
commodity hardware. Large systems don't require special hardware, instead 
these systems are designed to be used with clusters of commodity hardware. 
Scalability  is  achieved  adding  nodes  to  clusters  and  sharing  load  between 
clusters. Main reason is economic, a commodity is something you can negotiate 
with multiple vendors and select the one offering the best value.

A small server with disks attached directly to it has actually a better disk-to-
processor ratio than large servers leading to a more balanced system in terms of 
processor  and disk  speed.  That  comes  directly  from the  fact  that  processor 
performance  increases  faster  than  disk  performance.   Power  consumption 

10www.voltdb.com
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increases linearly when adding new servers to a cluster,  but  the increase is 
cubical when adding processor clock frequency [Hamilton, 2007]. At a certain 
point it is more efficient to add more servers instead of making the existing 
servers faster.

2.2. Changes in operating environment and access patterns
The cost of computers has decreased continuously while personnel costs have 
increased, it's a major change from the 1970's in operating environment. Today 
personnel  costs  are  typically  the  largest  expense  in  information  technology 
companies.  You won't  see  technicians  wearing  white  lab  coats  nursing  and 
feeding precious computers. Instead the trend is towards 'no knobs' operations 
where the operators aren't  even allowed to fiddle with the systems [Brewer,  
2001]. System-to-administrator ratio is a way to roughly measure the operating 
costs of a system. That being used as measurement tells a lot of the time we are 
living in. The number of systems isn't even counted, only the number of people 
operating the systems.

In the 1970's when first relational databases were developed, organizations had 
a single computer  and access to  the computer  was via a dumb terminal.  In 
contrast, today there are systems in production which operate at global scale 
and are accessed through the web. The number of simultaneous users is limited 
only by the network bandwidth. That creates workloads which must have been 
almost impossible to predict in the 1970's. 

2.3. New data storage markets
When  a  technology  becomes  mainstream  the  normal  evolution  is  that 
specialized needs emerge and “one size fits all” strategy doesn't work [Kotler 
and Keller, 2008]. In the cellular phone market this happened in very fast pace. 
In the 1990s people could go to a specialized cell phone store and buy a Nokia,  
Motorola or Ericsson phone. The capabilities of the phones were very similar to 
each other.  A cell phone was really just a device to make calls on the road. 
Today the cell phone manufacturers use a lot of money to market segmentation 
and positioning with different  models  for  each market  segment.  Yet  others, 
such as Apple, has only one phone model. And both strategies could be very 
profitable. A similar development is in progress in the data storage market.

2.3.1. Business data processing
Business data processing is the traditional database market where majority of 
relational  databases  were  designed.  Still  the largest  part  of  business data  is 
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stored  to  relational  databases.  Stonebraker  and  others  [2007a]  argue  that 
relational databases are not the best choice even in their original market.  As 
proof  of  their  statement,  Stonebraker  et  al.  [2007b]  created  a  business  data 
processing  database,  which  was  called  H-Store  and  developed  in  MIT 
Computer Science and Artificial  Intelligence laboratory.  The work continued 
commercially  as  VoltDB,  a  database  available  as  open-source  community 
edition or  as proprietary enterprise edition with extra bells and whistles. The 
new  implementation  was  almost  two  orders  of  magnitude  faster  than  an 
RDBMS when running on the same hardware and the performance of  RDBMS 
had been tweaked for several days by a professional database administrator.

2.3.2. Data Warehouses
Data warehouses  collect  data  from various  sources,  usually  importing  from 
business data processing databases. The collected data is then processed and 
stored  for  on-line  analytical  processing,  data  mining  and  decision  support 
systems.  Business Intelligence  is  a  fashion concept  which includes all  of  the 
previous applications.

Column-oriented databases have shown performance benefits over traditional 
relational  database  management  systems (RDBMSs)  which  are  usually  row-
oriented. Column-orientation simply means that the system stores data to disk 
based on columns instead of rows. It speeds up compression because all data 
that  belong to  same column is  of  same type.  It  also speeds up aggregation 
because values to aggregate are collocated in the disk. Column-orientation is a 
good way to shift the load from disk to processor. Processors speed is increased 
faster than disk speed, column-oriented databases can reduce the amount of 
disk I/O by heavy compression. 

2.3.3. Text
Search engines are the most obvious uses of text storage and indexing. The web 
has been driving this trend. BigTable [Chang et al., 2008] is an implementation 
targeted to  this  market.  Brewer  [2004]  shares  experiences  from building the 
Inktomi search engine. Informix11 had cluster support and text search features 
back in 1990s. However, performance tests revealed that the Informix database 
was ten times slower than Inktomi in-house implementation for text  search. 
They did use Informix databases but not for text indexing.

11www.ibm.com/software/data/informix/
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3. Data models
According to Ullman [1988] a data model is a mathematical formalism consisting 
of two parts, (1) a notation for describing data and (2) a set of operations used 
to  manipulate  the  data.  Understanding  different  data  models  and  their 
capabilities is essential to make an informed decision what model to use. Some 
of  the  models  described  in  this  section  are  already  obsolete.  A particularly 
interesting thing is that hierarchical data model was treated as obsolete when 
relational  model  conquered  the world  of  data  storage.  Today various  semi-
structured data models are widely used in data exchange and virtually all of 
these models are hierarchical.

When discussing data models a distinction between intensional and extensional 
level should be considered. The intensional level is the schema level. It defines 
the  data  types  intensionally,  by  describing  necessary  and  sufficient  set  of 
attributes which can be used to decide if an entity or object belongs to the type. 
In practice,  however,  the universe of discourse must be restricted to achieve 
meaningful definitions. Extensional level is the instance level. For example, in 
the object-oriented model intensional level contains classes while extensional 
level contains objects.

Data modelling is done in separate stages. A conceptual schema is constructed in 
the highest level of abstraction. It consists of concepts and their relationships to 
other concepts. A conceptual schema can be transformed to a logical schema by 
applying specific rules to complete the transformation. A physical schema is the 
layout  of  data  in  physical  storage  media.  Examples  of  different  physical 
shcemas are row-oriented and column-oriented databases. The logical schema 
can be identical but the layout of data in the physical media is different. 

3.1. Entity-relationship model
Entity-relationship model [Chen, 1976] is used to create a conceptual schema of 
the data. It doesn't make any assumptions of the physical or logical schema. 
When the conceptual model is first constructed it is usually straightforward to 
transform  it  to  a  logical  schema  which  can  be  implemented  in  a  database 
management  system.  Chen  describes  the  entity-relationship  model  as 
generalization  to  relational,  network  and  entity-set  models  and  each  of  the 
three models can be derived from the entity-relationship model.
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The entity-relationship model has three basic concepts, entity, relationship and 
attribute.  Entities can have relationships with other entities and both entities 
and relationships can have attributes.  Entity is actually the extensional level 
concept  while  entity  type  is  the  intensional  level  concept  in  the  entity-
relationship  model.  When  constructing  entity-relationship  diagrams,  only 
entity types are shown.

The simple entity-relationship diagram shown in Figure 1 is  used to model 
scientific papers. Rectangles are entity types, diamond shapes are relationships 
and ovals are attributes. Each paper has a title, which is selected as identifier 
and shown underlined in the diagram. There is also a plain attribute called 
NrPages which means the number of pages in a paper. A paper can have any 
number  of  authors.  Similarly  a  person can  be  an  author  of  any  number  of 
papers. That is called a many-to-many or M:N relationship and is shown in the 
diagram around the author relationship. The relationship between person and 
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organization is one-to-many which means that a person works for at most one 
organization while the organization can have any number of employees. 

3.2. Structured Data
Structured data has strict constraints for the format of the data. Some kind of 
taxonomy exists and each chunk of data belongs to exactly one section defined 
by the taxonomy. Structured data has several  advantages.  One advantage is 
that  there  is  no  surprises  in  the  data  from  the  application  developer's 
viewpoint. Another advantage is that the data storage can enforce the structure 
to the data in order to preserve data quality and usefulness. The downside is 
the lack of flexibility.

3.2.1. Hierarchical model
Data is organized into a tree structure in the hierarchical model [Ullman, 1988]. 
The hierarchical model contains  record types and a record type may have any 
number of attributes which are called fields. In the extensional level there is one 
special record, the root record which doesn't have a parent record. All other 
records have a parent and any number of child records. The hierarchical model 
doesn't  directly  support  many-to-many  relationships  and  in  the 
implementations this restriction is bypassed with a concept of virtual record. A 
virtual record is simply a pointer or link to a real record.
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The ER example shown in Figure 1 is converted to the hierarchical diagram in 
Figure 2.  Because of  the limitations of hierarchical  model,  two separate  tree 
structures are formed. An organization is shown as a root node which can have 
any number of persons as employees. Persons can have any numbers of papers, 
but the record is represented by a virtual paper, which contains a pointer to a 
real  paper record.  The paper record is a root node of another tree structure 
having any number of persons as authors. Those persons are again represented 
by a virtual person record which points to the real person record. 

3.2.2. Network model
The network  model  [Ullman,  1988]  has  similar  concepts  as  the  hierarchical 
model. Data is represented as a collection of records and each record consists of 
any number of fields. Instead of having hierarchical parent or child records, 
each  record  may  have  any  number  of  links  to  predecessor  and  successor 
records.  Links  represent  a  one-to-many relationship  between  records.  Links 
have names to make the links of the same record identifiable. The model forms 
a directed graph structure which may contain cycles.

Figure 3 contains the scientific paper schema converted to network database 
diagram. An organization can employ any number of persons. Network model 
supports record types with no fields at all, because a record is more than the 
field  values.  The  Author  record  type  exists  only  because  many-to-many 
relationships must be handled by an intermediate record which has links to the 
records attending to the relationship.
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3.2.3. Relational model
The  relational  model  [Codd,  1970]  was  among  the  first  attempts  to  use 
abstaction  as  method  for  managing  software  complexity.  It  decoupled  the 
physical storage of data from its logical structure. The hierarchical and network 
data  models  contain  pointers  or  links  to  physical  addresses  which  ties  the 
models to the implementation.

Relational databases have been around since the introduction of IBM System R 
[Astrahan et al., 1976] in 1970s inspired by Codd's paper. Relational databases 
maintain a collection of flat two dimensional tables. Intuitively the dimensions 
are called rows and columns. You can think rows as objects and columns as 
object  properties.  So the data  located at  a  particular  cell  is  the value of  the 
column  property  for  that  row  object.  In  order  to  avoid  data  duplication  a 
normal  practice  is  to  model  the  problem domain over  multiple  tables.  This 
process is known as database normalization. A table has a primary key column 
and related tables  have foreign key columns where  the  values  of  these key 
columns are used to join the data between tables. A join combines two tables 
when foreign key column of one table refer to primary key column of another 
table. Maintaining these references in a consistent state is known as a referential 
integrity.

To better illustrate how the relational model treats data, Figure 4 contains the 
entity-relationship  diagram  shown  in  Figure  1   converted  to  the  relational 
schema. The result of the conversion is four tables, Paper, Authors, Person and 
Organization.  The arrows visualize  references  from foreign  key  field  to  the 
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reference primary-key field. The paper table has two fields, Title and NrPages. 
Author information is stored in a relationship table called Authors which has 
two foreign-key fields, one pointing to the person and other pointing to the 
paper.  That  is  the  way  the  relational  model  handles  many-to-many 
relationships. The one-to-many relationship between Person and Organization 
is  handled  with  foreign-key  reference  Organization_Name  from  Person  to 
Organization.

The schema actually looks very similar to the network database diagram shown 
in  Figure  3.  However,  a  fundamental  difference  exists  between  the  models. 
Relational model is value-oriented while network model is object-oriented, at 
least  to  the  extent  that  it  supports  object  identity  [Ullman,  1988].  The 
relationship between person and paper is a good example.  In the relational 
model, foreign-key fields are used instead of links.

3.2.4. Object-oriented model
Object-oriented databases were once predicted to replace relational databases 
as  the  dominant  solution  of  structured  data  storage  [Baker,  1992].  The 
breakthrough of object-oriented programming languages was reality and the 
new programming model  wasn't  actually  compatible  with relational  model. 
However, object-oriented databases never grow out of marginality.

The object-oriented model is based on the notion of object. The aim is to bridge 
the semantic gap between real world and a data model. Each data object should 
have  corresponding  real  world  object,  meaning  that  objects  are  extensional 
level concepts. Unlike the relational model, object-oriented model is not value-
oriented,  objects are more than collection of attribute values. The concept of 
object identity makes it possible to have multiple objects with identical attribute 
values. An object belongs to a class, which is the intensional level concept. A 
class contains the definition of object attributes and operations. Operations are 
called  methods  in  the  object-oriented  model.  Classes  are  organized  in 
hierarchies. Some implementations allow only single inheritance while others 
may allow multiple inheritance. An object may inherit attributes and methods. 
Methods and attributes may be defined as private or public. Private methods 
are  visible  only  to  the object  itself,  public  methods are  visible  also  to  other 
objects. Methods are called by sending messages. If the method is defined in 
the object receiving message, it will execute the method, otherwise it will pass 
the message to superclass, i.e. the next direct ancestor class.

12



Figure  5  shows  the  example  schema  in  an  object-oriented  way  as  a  class 
diagram. Because the relationships are represented as references to objects, no 
relationship classes are present as was the case with the relational model.  A 
person has simply a list of papers she has authored. Each item in the list is a  
reference to an object of type paper. The way of referencing is simple, but it is 
not bidirectional in nature. We have to define a similar list in the paper class if 
there  is a  need to find the author when the paper object  is  known. So,  the  
relational  model  has  bidirectional  foreign-key  references,  but  the  object-
oriented model has one-way object references. For bidirectional manipulation, 
inverse references must be defined. Unified modelling language [Rumbaugh et 
al.  1999]  also  has  a  diagram  for  extensional  level   modelling,  called  object 
diagram. That is meant to be used to model the state of a system at a particular  
moment.

The real reason why object oriented databases have never been in a mainstream 
use might have something to do with the fact that the object model combines 
behavioural aspects to data. Each data type can have its own set of supported 
operations, and the number of data types is infinite. Sharing objects in the sense 
that an object contains both data and the set of legal operations requires both 
sides  of  the  data  transmission  to  know  the  data  type  and  the  supported 
operations.  It  requires  all  the  type  definitions  to  be  somehow accessible  to 
everybody and systems which know how to use the data.
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Compare all the trouble described above to the value-oriented relational model. 
It has a limited set of universally known data types. All the processes can use 
the same data and apply its own operations to the data. Then the result of the 
operations  are  usually  another  set  of  data  which can be stored  back to  the 
database.  After  that  yet  another  process,  which  knows  nothing  about  the 
operations the previous process has done, can take the same data and use it as 
input  to  its  own operations.  In  reality,  software  development  is  very  much 
integration of  different  systems to  work together.  Relational  databases have 
served well in this use case. Object-orientation is a step backwards in the data 
interchange and the reality has fortunately prevented object-oriented databases 
to become mainstream.

Another thing worth mentioning is the interoperability of unix system tools. 
All the tools take in ASCII text, do some kind of transformations, and output 
the  result  as  ASCII  text.  Unix  system  tools  work  very  well,  because  the 
integration  of  different  tools  is  straightforward.  Prolog  has  good means for 
integration, too. Prolog programmers can use top-down approach to software 
development  because  they  have  very  powerful  yet  simple  glue  at  their 
disposal. There is just a handful of types Prolog supports but arbitrary data 
structures  can  be  defined  by  combining  them properly.  When  it  is  time  to 
compose  the  big  system from parts,  the  data  interchange  usually  works  as 
expected  because  it  is  done using simple  types.  This  is  the  area  where  the 
object-oriented model fails, developers use their time creating such oxymorons 
as data transfer objects [North, 2010] and doing type conversions between them 
and 'real' objects while they should be doing productive work.

Software developers found that combining object-oriented programming with 
relational databases is hard and error-prone so object-relational mappers were 
introduced. It was an attempt to hide the fact that the underlying database is 
relational. That mostly works well, but when a system becomes more complex 
the generalizations of object-relational mappers start to constrain development.

3.2.5. Deductive model
The  deductive  model  [Elmasri  and  Navathe,  2004]  is  an  extension  of  the 
relational  model.  Deductive  databases  have  similar  features  as  logic 
programming languages. Data is stored extensionally as facts or intensionally 
as rules.  Rules can be applied to facts in runtime to deductively create new 
knowledge of the data.
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3.3. Semistructured Data
A  property  that  differentiates  structured  data  from  semi-structured  or 
unstructured data is that the intensional level, the schema or form of data, is 
separated from the data itself. Semistructured data typically has no predefined 
schema.  Many  new  non-relational  databases  are  document  databases  and 
classified  as  containing  semistructured  data.  A  document  database  stores 
objects as self-contained documents. It is actually a lot easier for a typical user 
to understand the relationships in the database when it contains self-contained 
documents  than  normalized  database  tables.  Some  redundancy  exists  in 
document  databases  that  can  be  avoided  in  relational  databases,  but  the 
redundancy is justified by the ability to store the self-contained documents in 
loosely-coupled manner across a number of computers.
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<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
  <xs:element name="papers">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="paper" type="paperInfo" />
        <xs:element name="person" type="personInfo"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="paperInfo">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="paperID" type="xs:ID"/>
        <xs:element name="title" type="xs:string"/>
        <xs:element name="nrPages" type="xs:positiveInteger"/>
        <xs:element name="authorIDREF" type="xs:IDREF"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="personInfo">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="personID" type="xs:ID"/>
        <xs:element name="name" type="xs:string"/>
        <xs:element name="email" type="xs:string"/>
        <xs:element name="organization" type="organizationInfo"/>
        <xs:element name="paperIDREF" type="xs:IDREF"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="organizationInfo">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="name" type="xs:string"/>
        <xs:element name="website" type="xs:string"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>

Listing 1: The example converted to XML schema



XML is an acronym of eXtensible Markup Language and it is defined by World 
Wide Web Consortium [W3C, 2008]. XML has become the de facto standard for 
data interchage over the internet. XML data can be queried in data-oriented or 
document-oriented way. Data-oriented query over XML data requires that the 
structure of the document is known. Document-oriented query is similar to the 
keyword search used in information retrieval  [Junkkari, 2007].

Schema validation methods exists for XML such as document type declaration 
(DTD) and XML Schema Definition (XSD). Semi-structured XML data follows 
the  hierarchical  model,  a  document  has  single  root  element  and  each 
subsequent element has any number of child elements. The implementation of 
XML has a similar feature as the virtual record in hierarchical implementations. 
XML elements can reference to other elements in order to avoid duplication.

Listing 1 shows the aforementioned simple schema converted to XML Schema 
Definition. The above XML schema uses the default W3C namespace with ”xs” 
prefix.  The  ”xs:ID”  is  similar  to  primary  key  in  relational  databases  and 
”xs:IDREF” is similar to foreign keys. That way a many-to-many relationship 
can be defined without duplicating data.

3.3.2. JSON
JSON is an acronym for JavaScript Object Notation. Many of the new NoSQL 
document databases use JSON as the document notation. It was introduced as 
lightweight alternative to XML. The definition is done in the true spirit of the 
Internet as RFC 4627 [Crockford, 2006].

JSON Schema is a similar schema definition language as the XML schema [Zyp 
and Court, 2010]. JSON Schema defines the structure of JSON data. Listing 2 
shows an example data based on the earlier paper example. Instead of showing 
the schema definition, Listing 2 is in the instance level. An object is delimited by 
curly  braces  and  can  have  any  number  of  key-value  pairs.  The  example 
document has a nested structure with three levels. To describe the relationship 
from the  organizations  viewpoint,  we should  create  two  nested  documents 
with duplicated entries.  The listing, however,  shows the data only from the 
viewpoint  of  papers,  it  is  justified by  the fact  that  we are  interested in the 
organizations  only  in  the  context  of  scientific  papers.  This  kind  of 
discrimination  happens  in  modelling,  weak  entities  exists  in  a  model  only 
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because they are related to other entities and existence of the related entity is 
justified by the domain.

3.3.3. YAML
YAML is a recursive acronym for Yaml ain't markup language [Evans, 2001]. 
YAML  is  a  superset  of  JSON.  The  main  differences  are  YAML's  ability  to 
express recursive structures and refer to earlier anchor in the same document. 
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{
  "Paper" : 
  {
    "title":"NoSQL – Factors Supporting the Adoption of...",
    "nrPages": 45,
    "author":
    {
      "name":"Olli Sutinen",
      "email":"olli.sutinen@uta.fi",
      "organization":
      {
        "name":"University of Tampere",
        "website":"www.uta.fi"
      }
    }
  }
}

Listing 2: Example JSON document

---
paper:
  title: NoSQL – Factors Supporting the Adoption of...
  nrPages: 45
  author:
    name: Olli Sutinen
    email: olli.sutinen@uta.fi
    organization:
      name: University of Tampere
      website: www.uta.fi
...

Listing 3: Example YAML document

mailto:olli.sutinen@uta.fi
http://www.uta.fi/
mailto:olli.sutinen@uta.fi
http://www.uta.fi/


The data shown in Listing 2 is directly converted to YAML in Listing 3. The 
hierarchy is defined by the indentation level.

To  understand  how to  refer  to  an  earlier  anchor  in  the  document  another 
example is shown as Listing 4 where the document structure is modified. This 
notation avoids duplication by referring to earlier defined items. The anchor 
(&)  and reference  (*)  characters  are  used  in  the  same way  as  primary  and 
foreign  keys  in  relational  databases.  While  this  saves  space  by  avoiding 
duplication, the relationships aren't visible in the structure. One of the original 
intentions with both JSON an YAML was to make it easier for a human to write 
and interpret than the more verbose XML.

3.4. Unstructured Data
This  cateory  contains  text  documents,  web pages,  video  and audio  files.  In 
general  any  identifiable  structure  is  absent.  Storing,  indexing  and  querying 
unstructured data is out of scope of this study. However, search engines index 
all kinds of text documents to databases in structured form. Unstructured data 
is usually not directly usable by software systems.
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---
organization: &id01
  name: University of Tampere
  website: www.uta.fi

person: &id11
  name: Olli Sutinen
  email: olli.sutinen@uta.fi
  organization: *id01

paper:
  title: NoSQL – Factors Supporting the Adoption of...
  nrPages: 45
  author: *id11
...

Listing 4: YAML document with references to earlier anchors

mailto:olli.sutinen@uta.fi
http://www.uta.fi/


4. Features  and  characteristics  of  relational  databases  and 
relational database management systems

According to Stonebraker and others [Stonebraker et al., 2007b] current major 
relational  database  vendors,  both  commercial  and  open-source  have  their 
architecture directly from IBM System R [Astrahan et al., 1976] which was the 
first  relational  database  implementation.  Relational  databases  were  never 
designed to grow out of one server. Still relational database systems are used to 
support applications facing the web. The reasons why RDBMS vendors still try 
to  sell  'one  size  fits  all'  solutions  are  economical.  Firstly  it  is  expensive  to  
maintain multiple branches of code. Secondly it creates a compatibility problem 
because applications have to work with all the databases they will be connected 
to. Thirdly the salesforce gets easily confused with which solution is the best for 
a  certain  purpose.  After  considering  the  economical  perspective  it  becomes 
evident that the technologically best solution is not necessarily the one that gets 
the biggest market share. 

Baker [1992] argues that ”Database research has produced a number of good 
results, but the relational database is not one of them”. He states that Codd's 
relational theory simply renamed a number of existing concepts. In the 1960's 
applications  used  files  with  fixed-length  records  which  were  selected  and 
merged.  Baker's view is that files were renamed to relations, records renamed 
to  rows,  fields  renamed  to  domains,  and merges  renamed  to  joins.  One  of 
Baker's arguments is performance, he states that during the 1970's and 1980's 
many years were wasted for optimizing relational databases to get in par with 
file based solutions. He was waiting for a renaissance of databases where data 
is accessed through pointers or hash tables. The object-oriented pointer based 
approach hasn't  been successful yet,  but access through hash tables is a key 
method in many new non-relational databases. This will be discussed in more 
detail in Section 6.

A trait  of  relational  database  management  system is  the  lack of  automated 
tuning aids. A skilled database administrator will outperform any automated 
tuning when trying to get the most out of a relational database. This issue is 
already discussed in Section 2. The trend is towards 'no-knobs' operations and 
this trait of relational databases doesn't fit to new ideas of operations-friendly 
applications [Hamilton, 2007].
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4.1. SQL language
SQL  language  has  been  around  since  early  1970s.  It  is  a  declarative  query 
language for relational databases. First commercial implementation was Oracle 
V2 from  Relational Software, Inc. which is today known as Oracle Inc. SQL is 
standardized  by  American  National  Standards  Institute  (ANSI)  and 
International Organization for Standardization (ISO)  starting from 1986 and 
having several revisions since then. The latest revision has been published in 
2008   as  SQL:2008  [SQL,  2008].  Open-source  relational  databases,  such  as 
MySQL  and  PostgreSQL  have  increased  the  understanding  of  SQL  among 
software developers.  

4.1.1. Support for ad-hoc queries
Stonebraker et al. [2007a] argue that ”In an OLTP world one never asks for the 
employees who earn more than their managers”. That is a joke targeted to the 
textbook  example  of  SQL  queries  where  a  recursive  relationship  between 
employees and managers is defined and the table contains person's salary. But 
most  jokes  have  some  truth  included.  If  the  database  is  a  pure  online 
transactional  processing  database,  that  kind  of  queries  are  never  needed 
because  the  nature  of  the  query  is  analytical.  On-line  analytical  processing 
(OLAP) is a different field and the message of the joke is: use the right tool for  
the task. According to Stonebraker and others, traditional relational databases 
aren't good at OLAP applications. In an earlier paper Stonebraker et al. [2005] 
published  analytical  query  performance  test  results  where  a  traditional 
relational  database  was  compared  to  newly  implemented  column-oriented 
database. The column-oriented database, c-store, was on the average 164 times 
faster.  The  development  was  continued  commercially  and  the  database  is 
known as Vertica12.

But if the single relational database is enough for the task there is no need to 
use separate database for analytics. By knowing only the structure of the data 
you it is possible to create queries that find just the needed information from 
the database.  It  might take 10 minutes to  run a query but creating the SQL 
statement is usually fast. That power comes from the declarative nature of SQL 
and the expressiveness of the relational model.

12www.vertica.com

21



4.2. ACID
Traditionally all data stores strived to fulfill ACID transaction properties [Gray, 
1988].  A  is  for  atomicity.  Every  transaction  is  atomic  operation  meaning  it 
either  succeeds  totally  or  fails  totally.  C  is  for  consistency.  After  each 
transaction the database is in consistent state. I is for isolation. The transactions 
can't  interfere.  D  is  for  durability,  when  a  transaction  is  succeeded,  all 
subsequent reads will see the new state.

4.3. Distributed transactions
In  order  to  implement  ACID  guarantees  in  distributed  databases,  protocols 
have been developed to tackle the problem of coordinating the transaction in 
consistent manner between multiple database servers.

A two phase commit is used for distributed transactions in cluster databases. A 
cluster is a set of computers acting as a single system. The two phase commit 
consists of two phases: voting phase and decision phase. Both phases contain 
several steps. One node in the cluster is called the coordinator which initiates 
the transaction within the cluster. A happy case scenario goes as follows: (1) 
The coordinator  sends a  vote  request  to  all  nodes,  (2)  All  nodes  send their 
response back to the coordinator,  the node can either support or oppose the 
suggested  commit,  (3)  depending  on  the  responses  from  other  nodes,  the 
coordinator either sends a commit message to all other nodes or if any of the 
other nodes opposed the commit, the coordinator sends an abort message to all 
nodes who are waiting for  the response,  i.e.  voted for  the commit.  (4)  The 
nodes  who voted  for  the  commit  act  according  to  the  message sent  by  the 
coordinator [Bernstein et al., 1987].

Two phase commit has some weaknesses,  adding nodes adds the amount of 
coordination messages quadratically. What may work in 10-node cluster won't 
be useful in 1000-node cluster. Two phase commit is vulnerable to node failures 
during the commit phase.  Skeen and Stonebraker  [1983] introduced a better 
protocol called three phase commit which addressed many problems by adding 
one more round for communication.

4.4. Scalability
As stated earlier, relational databases scale well inside a single server. The term 
database is widely used as a synonym of relational database as in the following 
example. Nygard [2007] describes the practical solution to relational database 
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server scaling as follows: “Database servers,  for example, get  very unwieldy 
when you try to cluster three or more redundant servers. It's better to run a 
beefy  pair with failover.” Beefy in this context translates to lots of memory, lots 
of powerful processors and big and fast disks. Failover means that one of the 
servers is serving all requests and all data is replicated to the other server. If the 
first server fails, the other takes the responsibility of serving requests almost 
immediately.  As  discussed  in  Section  2,  'beefy'  servers  are  expensive.  This 
model means that a system needs at least two expensive servers but can use 
only one at a time because the other is waiting for a disaster before it can step 
in.

5. Distributed systems
The  need  to  scale  out  from  the  single  server  comes  from  high  availability 
requirements,  need  for  fault-tolerance,  and  need  for  better  performance.  A 
system  is  distributed  when  it  runs  on  at  least  two  separate  computers. 
Distribution is necessary but not sufficient condition to fault-tolerance.

5.1. CAP theorem
CAP, an acronym for Consistency, Availability and Partition tolerance is a term 
coined by Eric Brewer [2000]. The theorem states that a distributed system can't 
provide all three properites simultaneously. A proof of the theorem was done 
by Gilbert and Lynch [2002].

A  storage  system  is  consistent  if  after  a  write  every  requesting  client  is 
guaranteed  to  get  the  most  recent  value.  Availability  means that  if  a  client 
sends a write request to the system, it will be accepted regardless of the current 
state of the storage system. A partition occurs when some nodes of the system 
can't  reach the  majority  of  nodes  but  still  remain in running condition and 
clients can see them. A system can tolerate  partitions if  clients  can't  see the 
difference when partition happens, i.e. the system still accepts read and write 
requests.

The full space is useful and deciding of which properties are more important 
than others is a real tradeoff. Next we discuss each of the possible combinations 
in more detail.

• Consistency and Availability
Gilbert  and  Lynch  [2002]  define  availability  as  having  all  non-failing 
nodes to respond to queries. It means that some nodes can be failing and 
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the system as whole still available. Brewer [2000] gives examples of this 
type of systems which include single-site and cluster  databases.  Strong 
consistency is provided by two phase commits. According to Stonebraker 
[2010]  network  partitions  are  rare  and  that  is  the  case  in  local  area 
networks and intra-datacenter  networks.  However,  when the system is 
geographically  distributed,  guaranteeing  continuous  network 
connectivity is hard. 

• Availability and Partition tolerance
A highly available database system has to give away some consistency. 
Having a database geographically distributed across many data centers 
are reported having network partitions happen. Many new non-relational 
databases use relaxed consistency model to achieve better availability and 
partition-tolerance.  A  truly  partition-tolerant  system  accepts  both  read 
and write requests under a network partition.

• Partition tolerance and Consistency
Paxos algorithm, explained below in Section 6, fits to this space. The way 
network partitions is handled is that the minority partition is unavailable 
but majority partition can  make the decision to accept a write request.

5.2. Yield and harvest
To understand characteristics of data stores it is necessary to understand the 
concepts of harvest and yield [Fox and Brewer, 1999]. The yield is the fraction 
of answered queries. In the happy scenario when all the computing power is 
usable and available, yield is the same as the full capacity.  If one out of ten 
connections is dropped, yield is 90%. This is not equal to uptime although very 
close. If the system is down one second in peak time and one second in off-peak 
time, both events will reduce uptime equally but affect on yield is different. The 
amount  of  queries  which  won't  get  an  answer  can  be  several  orders  of 
magnitude bigger during peak time.

The harvest is the fraction of the complete result. Some data may be missing 
due to failures.  If  the full  data  set  is  always returned,  harvest  is  100%. The 
majority of software developers know how relational databases work and the 
concept  of  harvest  is  unnecessary with relational  databases,  100% harvest  is 
taken  as  granted.  In  other  words  relational  databases  can't  reduce  harvest, 
either the query returns or doesn't return but result set is always full. A more 
illuminating example is a search engine. Consider a situation when  user wants 
to search for 'scalable database systems' and the indexes of those words are in 
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separate machines. When one of the machines is down, the query would get 
results from two thirds of the complete dataset. The result will most likely be 
still useful to the user while harvest is dropped to 66%.

6. Features and characteristics of NoSQL databases
NoSQL databases differs from relational databases in several ways. Most of  the 
ideas  found  from  the  new  NoSQL  databases  aren't  new.  For  example, 
BerkeleyDB [Olson et al., 1999] has been around for a long time and it is a key-
value database. Another example is Lotus Notes13 which contains a document 
database  and  has  a  long  history.  After  all  the  combinations  of  ideas  and 
particularly  the  implementations  are  new.  This  section  describes  some 
theoretical  background  and  core  concepts  used  in  distributed  new  non-
relational databases.

6.1. Eventual consistency
Given a large enough distributed system, the probability of network partitions 
is  close  to  100%.  If  the  system  has  to  tolerate  network  partitions,  both 
availability and consistency can't be achieved. Strong consistency means that 
after a write operation all subsequent read operations are guaranteed to get the 
most recent value. Eventual consistency is a weak consistency model where all 
subsequent  reads aren't  guaranteed to get  the most  recent  value.  If  no new 
writes are done to the particular object, the most recent value will be eventually 
propagated  to  all  replicas  and the  database  will  be eventually  in consistent 
state. The time between a write operation and the event when all replicas have 
most recent value is called the inconsistency window. [Vogels, 2008]

6.2. BASE
BASE  is  an  acronym  from  Basically  Available,  Soft  state  and  Eventual 
consistency  [Prichett,  2008].  Basically  available  means  that  most  data  is 
available most of the time. In case of failure some data may not be available but 
a disaster is required to get everything down. Soft state means that database is 
not always up to date. In terms of harvest and yield, BASE is trying to reach 
100% yield with the cost of reduced harvest  while ACID always reaches for 
100% harvest. In this sense BASE is the absolute opposite of ACID.

13www.ibm.com/software/lotus/products/notes/
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6.3. Paxos algorithm
Paxos is a consensus algorithm by Leslie Lamport [1998]. It was first published 
in 1998 but was criticized as being hard to understand. As response to critics 
Lamport  described  it  in  plain  English  in  2001  [Lamport,  2001].  The  paxos 
algorithm is democratic decision making algorithm in the sense that it requires 
majority  of  decision-makers  to  'vote'  for  the  decision  in  order  to  pass  the 
decision.  In a system implementing paxos algorithm there  is three roles  for 
nodes: proposers, acceptors, and learners. Each node can have all roles or any 
combination, but only one node can be the proposer at any time. The proposer 
tries to get the majority accept a proposed value. If the majority of acceptors 
accept the proposed value it is a decision, and observed by the learners.

In  the  big  picture,  Paxos  looks  very  much like  the two phase commit.  The 
proposer sends a prepare message with the proposal number n to all acceptors. 
When the acceptors have acknowledged their decision to accept a proposal, the 
proposer sends an accept message to the acceptors. Finally, the acceptors send 
to the proposer a message which indicates either the success or failure of the 
accept message. Once the majority of acceptors have accepted the value and 
informed  the  proposer,  the  protocol  terminates.  This  was  the  happy  case 
scenario, the details of handling conflicting proposals are lengthy to describe.

Compared  to  two  phase  commit,  Paxos  has  some  advantages  under 
asynchronous messaging and failures. Firstly, messages are ordered so that a 
total ordering is possible. That makes it possible to reason which proposal to 
accept. Secondly majority decisions make it possible to accept new writes under 
node  failures.  This  is  different  from  the  two  phase  commit,  where  write 
requests were committed only if every node agreed to do so. This leads to the 
blocking characteristics of the two phase commit, where a single failed node 
could lead to not accepting new writes at all.

Werner Vogels [2008] has criticized the database systems that implement paxos 
being unusable for the needs of Amazon because strong consistency guarantees 
under failures are possible only if not accepting writes.

6.4. Conflict resolution
In a system where multiple writes can happen simultaneously in many nodes, 
conflicting writes can happen. Distributed transactions solve this problem by 
not accepting new writes if there is already one in progress. If the availability 
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requirements  are  tight  enough,  distributed  transactions  are  not  an  option. 
Vector  clocks  are  a  way  to  recognize  when  multiple  versions  of  data  are 
conflicting. Multi-version concurrency control helps if different versions of data 
can't be automatically merged.

6.4.1. Vector clocks
In  distributed  databases  where  multiple  nodes  may  modify  the  same  data, 
some method for data versioning and conflict detection are needed. Dynamo 
and Cassandra have implemented vector clocks [Lamport, 1978] for versioning 
and conflict  detection.  The concept  of  a  vector  clock  is  simple.  Every  node 
participating in distributed system adds a tag to all pieces of data along with a 
timestamp, that makes it possible to reason which version of a piece of data is 
latest or if the versions are in conflict.

Consider the example shown in Figure 1. The term object is used here to 
represent  a piece of data.  The object  has name ObjN, where N is a number 
describing the contents  of  the  object.  Starting from the top,  a  new object  is 
written  to  database  and node  A has  handled  the  write  operation.  Node  A 
created the vector  clock associated with the object  and stored that  with the 
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Figure 6: Example of Vector clocks

Obj1 {[A,1]}

Write done by node A

Obj2 {[A,2]}

Write done by node A

Obj3 {[A,2],[B,1]} Obj4 {[A,2],[C,1]}

Write done by node CWrite done by node B

Node A resolves conflict 
and writes new version

Obj5 {[A,3],[B,1],[C,1]}



object. A vector clock is shown as list of pairs containing node identifier and 
timestamp inside curly brackets. Another write request comes and again node 
A handles it. The vector clock of Obj2 is direct descendant of Obj1 because all 
the nodes so Obj1 can be overwritten. Next thing to happen is that both Node B 
and Node C handle simultaneous write  operations  to  a  descendant  of  Obj2 
creating  conflicting  versions.  Next  read  operation  reveals  the  conflicting 
versions and both versions are returned to client for conflict resolution. Node A 
handles the write and tags Obj5 as being direct descendant of both Obj3 and 
Obj4 so that if any other nodes have old revisions they can find that the conflict 
is already resolved and overwrite the old revision with the new one.

6.4.2. Multi-version concurrency control
Multi-version concurrency control  means that old data is not overridden by 
new write operations but a completely new version is stored. It can improve 
performance, because read request can continue reading the old version of data 
while new version is being written. The opposite is to delay the write operation 
as  long  as  the  read  operation  is  running.  Google  BigTable  stores  multiple 
versions of the same object and the user can choose how many old versions are 
kept. CouchDB14 takes the simple Last Write Wins approach to multi-version 
concurrency.  It  means  that  the  database  management  system  checks  the 
timestamps of  conflicting versions  and the latest  one  is  used as the current 
version. 

6.5. Distribution and replication
Distribution  and replication  are  the core  techniques  for  scalability  and fault 
tolerance. Proper distribution of load is a way to increase performance. When 
combined with replication it also increases fault-tolerance. Sharding means the 
partitioning of data among multiple computers. Consistent hashing is a method 
to distribute load and data.

6.5.1. Sharding
“Shards are secret ingredients of web-scale sauce, they just work” [xtranormal, 
2010].

Sharding is horizontal partitioning of data. One shard is one partition which 
doesn't have to be located in single instance of the database server. Traditional 
partitions  have  to  be  located  within  a  single  database  server  or  schema. 

14couchdb.apache.org
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Sharding  can  be  combined  with  replicating  data  which  is  seldom updated. 
Depending on the nature of the data, in some cases most reads and writes can 
be done within one shard. That obviously leads to better performance.

6.5.2. Consistent hashing
Consistent hashing was first developed to address caching problem in the web 
[Krager et al., 1997].  The concept is pretty simple and easily understood when 
visualized. Available hash values can be thought as a circle, the lowest value 
succeeding immediately the highest value as illustrated in Figure 7. Both nodes 
and object  keys are hashed using the same hash function.  To find the node 
where a certain object is stored, calculate the hash value of the object key and 
look for a node starting from the hash value and continuing  clockwise in the 
circle until a node value is found. In Figure 7 (i)  Obj 1 is stored to Node B while 
the other objects are stored to Node A. When Node C is added (ii),  only values 
succeeding  the  added  node  value  are  reassigned.  Objects  are  not  moved 
between already existing nodes.  
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Figure 7: Consistent hashing visualized
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6.6. Setting fault-tolerance and optimizing for read or write operations
For fault-tolerance, distributed databases usually write all data on more than 
one  node.  Fault-tolerance  increases  as  the  number  of  nodes  where  data  is 
replicated increases. The downside is decreased performance. The replication 
setting can be described as tuple (N, W,  R) where N is the number of nodes 
where all data is eventually replicated, W is the number of nodes who have to 
acknowledge  the  writes  before  returning  to  requesting  client,  and  R  is  the 
number of nodes who have to return before a read request is returned to client. 
A  read-optimized  system  has  R=1  and  W=N  where  N>1.  That  means  the 
decreased performance affects only write operations because all the replicas are 
updated before the request gets response. A write-optimized system has the 
opposite setup W=1 and R=N. The most common setup among Dynamo users 
is N=3, R=2, W=2 [DeCandia et al., 2007].  Variations exists, some systems have 
data center-aware or rack-aware nodes who can make sure data is replicated to 
a node in a different data center or rack to improve fault-tolerance.

6.7. Map/Reduce querying
One of the main reasons for new non-relational databases is the amount of data 
exceeding  the  limits  of  single  computer  and  the  cost  of  sophisticated 
commercial relational database systems which somehow bypass the limits of 
single computer.  Querying  must  be a  parallel  operation in order  to  get  the 
result in reasonably short time. Dean and Ghemawat [2004] introduced Google 
MapReduce, a framework for application developers to do conceptually simple 
computations with large datasets without worrying of failures, distribution of 
data and parallelization of computing.

Map/reduce  querying  consists  of  two  functions,  a  map  function  and  a 
reduce  function,  which  are  applied  in  phases.  In  the  first  phase  the  map 
function is applied to all objects in the whole dataset to find interesting objects. 
In the second phase the reduce function is applied to each of these intermediate 
result  objects to get  a single result  value or set.  The advantage is that these 
functions can be run in parallel. According to Dean and Ghemawat [2004] they 
usually run Map/reduce computations in clusters with 2000 computers.  The 
input  data  is  distributed  using  Google  File  System [Ghemawat  et  al.,  2003] 
among cluster nodes where the computations happen. Output files are also in 
the Google File System where they can be found by the client application.
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Many non-relational databases have implemented map/reduce querying as 
part of the database including CouchDB, Riak15 and MongoDB16. In addition, 
BigTable  [Chang  et  al.,  2008]  can  be  used  as  input  data  source  to  Google 
MapReduce as well as output data storage. In key-value stores there is usually 
no query methods, only accessing with key. Map/reduce makes it possible to 
run arbitrary queries even when the data model itself doesn't support querying.

6.8. Shared nothing architecture
Shared  nothing  architecture  is  a  way  to  think  of  both  computer  hardware 
architecture  [Stonebraker,  1986]  and  computer  software  architecture 
[Armstrong, 2007]. A set of computers can have shared disks which can be used 
to  share  data.  That  makes  the  computers  vulnerable  to  failures  in  other 
computers within the set. Also the shared resource becomes a possible single 
point  of  failure  which  takes  down  the  whole  system.  In  a  shared  nothing 
architecture  the  computers  have  to  communicate  by  passing  messages.  The 
same is true for software, shared nothing means no shared resources within a 
computer or across a network of computers.

In the era of relational databases the database was seen as universal storage for 
all types of data. The popular Ruby on Rails17 web framework is designed to be 
full-stack web framework from the database abstraction layer to javascript code 
intended to run in the client browser.  Scaling a website done with Ruby on 
Rails is trivial as long as you don't have to touch the database, just add more 
application servers and route requests somehow evenly between them. When 
the point is reached where the database is running in full capacity things start  
to  get  really  hard.  The shared  nothing  was true  in  all  other  layers  but  the 
database layer.

Pat Helland [2007] suggests that  a scalable system should consist  of two 
layers,  a  scale-agnostic  upper  layer  and scale-aware  lower  layer.  In  case  of 
Ruby on Rails, the application servers running Ruby application is the scale-
agnostic layer, the database is in the lower layer. Helland's suggestion makes 
sense, it is easier to find developers if the developers don't have to understand 
all the details of parallel programming.

15www.basho.com/Riak.html
16www.mongodb.org
17www.rubyonrails.org
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The Google MapReduce framework somehow implements Helland's vision. 
It  makes  it  easy  to  application  developers  to  write  the  map  and  reduce 
functions while making the heavy lifting in the background. 

7. Notable implementations and business needs behind them
As Scott  Adams [2010] wrote to  his blog: ”Ideas are worthless.  Execution is 
everything”.   Trading  consistency  for  availability  is  criticized  being  awful 
engineering decision [Stonebraker, 2010]. However, there is usually no point of 
making judgements based on pure theory or mere ideas. The implementation 
matters  more  than  the  ideas  behind  it.  Google,  Amazon  and Facebook  are 
solving business problems with their data store implementations. Dan North 
[2010] stated that users are not interested in features,  they need capabilities. 
Having a data  store which guarantees  consistency is  a  nice feature  but if  it 
doesn't offer the capability of serving business needs all the superior features 
are worthless.

7.1. BigTable by Google
Google BigTable was the implementation which started the boom of new data 
stores.  According to Chang et  al. [2008] BigTable is used in more than sixty 
Google  products  and  projects  including  Google  Analytics,  Google  Finance, 
Orkut, Personalized Search and Google Earth.

7.1.1. Data model
The  data  model  in  BigTable  is  a   “sparse,  distributed,  persistent 
multidimensional sorted map” [Chang et  al.,  2008]. A map is a collection of 
keys and associated values. The data structure can be accessed by key. Other 
names  for  this  data  structure  in  different  programming  languages  are 
dictionary, hash table or associative array. There is some new concepts defined 
in the paper regarding the data model.  A  table actually can be thought as a 
relational  database  table.  The  table  contains  column  families  and rows.  Each 
range of rows is partitioned, and a partition is called a tablet. Tablet is the unit 
of distribution and load balancing. To get  the issue even more complicated, 
each chunk of data contains a row key, a column key and a timestamp. That 
means there might be configurable number of versions of a single piece of data 
with different timestamp keys. The values are not interpreted. Querying is by 
keys only, data can be accessed by column family key or by row key. To select  
anything by value,  it must be done with MapReduce.

32



The data is stored in lexicographic order by row keys. Having data always in 
sorted order and combining it with the fact that data can be queried only by 
key  makes  distribution  easier.  A  tablet  contains  all  data  lexicographically 
between  two  keys.  Queries  of  short  row  ranges  typically  requires 
communication  with  only  small  number  of  nodes.  Chang  et  al.  [2008]  use 
domain  names  in  reverse  order  as  example  of  keys.   When  searching  for 
something  about  university  of  Tampere  website  the  keys  are  fi.uta.www, 
fi.uta.cs.www, fi.uta.mail, etc. It makes the data about sub-domains being close 
to each other and makes perfect sense for search engine usage.  
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{
    "Webtable" : {
        "fi.uta.www" : {
            "contents" : {
                "" : {
                    12 : "<html> mistake </html>",
                    25 : "<html> corrected </html>"
                }
            },
            "anchors" : {
                "www.cs.uta.fi" : {
                    13 : "University of Tampere"
                }
            }
        },
        "fi.uta.cs.www" : {
            "contents" : {
                ...
            },
            "anchors" : {
                ...
            }
        }
    }
}

Listing 5: BigTable data model visualized as JSON document

http://www.cs.uta.fi/


JSON can be used to visualize the data model. If we continue using the same 
example set by Chang et al., the data might look similar to Listing 5. The lowest 
level of the hierarchy contains the row keys, in this case the domain names in 
reverse order.  The next level is column families. The listing has two column 
families defined, “contents” and “anchors”. Each column family may contain 
any number of columns. In the listing the “contents” column family contains 
only one column using an empty string (“”) as the column key. That indicates 
there is no need for more dimensions in this column family. All the columns 
may have multiple versions available identified by timestamps. The listing has 
two examples of “contents:” column, with timestamps 12 and 25. The “anchors” 
column family contains urls of web pages that link to the page defined by the 
row key. In the example, a link from www.cs.uta.fi pointing to  www.uta.fi is 
saved with column key “anchors:www.cs.uta.fi” and containing the link text 
“University of Tampere”.
 
BigTable involves the following features.

• Scalability
BigTable  supports  horizontal  scalability.  When  adding  servers  to  the 
system  the  total  throughput  increases  by  over  a  factor  of  100  when 
number of servers is increased from 1 to 500. The performance increase is 
not  linear,  per-server  throughput  experiences  a  significant  drop  when 
going from 1 to 50 servers.

• Availability
Chang  et  al  [2008]  report  that  BigTable  has  achieved  its  availability 
requirements. There is a number reported that tells us the availability in 
percentage of time, on average the unavailability has been 0.0047% due to 
lock service problems. That means 99.53% availability.

• Fault-tolerance
Distribution is achieved using Google File System [Ghemawat et al. 2003], 
a proprietary  distributed file system developed by Google and used only 
inside Google. BigTable relies on Chubby [Burrows 2006] which is a lock 
service  running  on  five  replicas  and  communicating  using  paxos 
algorithm. It requires majority of nodes to be up and able to communicate 
with each other for the lock service to be available. 
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7.2. Dynamo by Amazon
Amazon.com  implemented  their  own  key-value  store  called  Dynamo 
[DeCandia  et al., 2007]. The need is to store and retrieve data by primary-key 
only,  no  need  for  ad-hoc  queries.  RDBMS  solutions  need  highly-skilled 
personnel  for  its  operation  which  adds  costs.  Also  replication  options  for 
relational  database  management  systems  usually  choose  consistency  over 
availability. Requirements are 'always writeable', no hierarchical name spaces 
or complex relational schema. Built for latency sensitive applications where 99,9 
percent  of  requests  have  to  be  completed  within  several  hundreds  of 
milliseconds.  Dynamo  is  being  used  inside  Amazon  by  variety  of  services 
including  the  best  seller  lists,  shopping  carts,  customer  preferences,  session 
management, sales rank, and product catalogue.

While the system itself is a key-value store, a single node may use MySQL or 
BerkeleyDB for persistent storage. So a relational database management system 
can be part of a non-relational data storage solution. The data model is very 
limited, accessing is based on key only, no querying based on values.

Dynamo involves the following features.
• Scalability

A requirement when the system was designed was to be able to scale out 
at one node at a time with minimal impact on both system operators and 
the system itself. The request routing solution is a limit to the number of 
nodes  in  the  system.  All  nodes  have  the  full  routing  information  and 
maintaining  that  in  consistent  state  across  all  the  machines  becomes 
impractical in some point. DeCandia et al. [2007] didn't provide numbers 
describing the throughput when adding new nodes.

• Availability
One of the requirements was 'always writeable' that means the availability 
for read operations are not higher than availability for write operations. 
Dynamo  has  weakened  consistency  to  achieve  high  availability.  In 
practice 99.95% of the data never has a conflict according to Amazon's 
numbers  [DeCandia  et  al.,  2007].  At  the  same  time  the  proportion  of 
successful  responses  have  been  99.9995%.  That's  a  bit  better  than  the 
reported  BigTable  number  and  generally  good  achievement.  In  the 
literature 'five nines' i.e. 99.999% is considered to be a good availability 
number.

• Fault-tolerance
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Dynamo uses consistent  hashing for  distribution.  Each node has many 
tokens in the consistent hashing scheme to achieve better load balance. 
That  means there  is  both virtual  and physical  nodes  in  the  hash ring. 
Replication  is  implemented  so  that  a  coordinator,  which  is  the  node 
communicating  with  client,  makes  sure  the  data  is  replicated  along 
configured number of physical nodes. According to DeCandia and others 
[2007] Dynamo users  in Amazon usually  have data  replicated to  three 
nodes while read and write operations are returned to client when two 
nodes have responded. Vector clocks are used to determine whether data 
is  conflicting  or  not.  In  case  of  conflicting  values,  both  versions  are 
returned to the requesting client.

7.3. Cassandra by Facebook
Facebook  developed  Cassandra  [Lakshman  and  Malik,  2010]  to  power  the 
inbox search feature in the largest social network platform in the world. Both 
BigTable and Dynamo has influenced the design of Cassandra. Cassandra has a 
BigTable -like data model on a Dynamo -like distribution model.

Cassandra derives data model  from BigTable and adds a new concept to  it. 
Super  columns  are  columns  that  contain  another  map  containing  keys  and 
values. That makes the data structure one level deeper if the user decides to use 
super columns. A column family can contain either only columns or only super 
columns but not both.

Cassandra has been released as open source under Apache license and is now a 
top level  Apache project18.  In  inbox  search  the  challenge  was about  storing 
reverse indices of messages that the users of Facebook send to each other via 
Facebook network. Cassandra involves the following features.

• Scalability
Cassandra has a scalability model very similar to Dynamo. When a new 
node  is  added  to  the  system,  it  is  assigned  a  place  in  the  consistent 
hashing scheme such that it can take some work from a heavily loaded 
node. Cassandra is designed for linear scalability and references to linear 
scalability with Cassandra are found from the web but unfortunately any 
numbers weren't given.

• Availability

18cassandra.apache.org
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While  published  numbers  weren't  available,  Cassandra  is  said  to  be 
highly-available.  The  availability  depends  on  consistency  settings.  As 
mentioned earlier the users can set how many nodes have to acknowledge 
the  write  before  the  write  request  is  returned  to  client.  Reducing 
consistency increases availability.

• Fault-tolerance
Distribution is  done using consistent  hashing.  The replication model  is 
slightly  different  in  Cassandra  than  in  Dynamo.  Dynamo  uses  virtual 
nodes to balance the load between physical nodes. Cassandra doesn't use 
the  concept  of  virtual  nodes  at  all.  Instead  Cassandra  analyzes  load 
information and moves the lightly loaded nodes to get balanced data and 
load distribution.

7.4. Summary
Scalability, availability and fault-tolerance requirements of BigTable, Dynamo 
and Cassandra are achieved according to the authors of respective papers. The 
Table 1 is a summarized view of the solutions to these challenges. 
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Table 1: Comparison of the implementations

BigTable Dynamo Cassandra

Scalability Horizontal 
scalability. 
Production 
deployment more 
than 500 nodes.

Horizontal 
scalability. 

Horizontal 
scalability. 
Production 
deployment to 150 
node cluster

Availability Relies on lock 
service which 
implements paxos 
algorithm. 

'Always writeable' 
availability. The 
balance between 
consistency  and 
availability can be 
decided by the 
user. 

Availability is 
increased using 'rack 
aware' and 
'datacenter aware' 
replication strategies. 
Each node is 
identical.

Fault-
tolerance

Data distribution 
done by Google File 
System. 

Consistent hashing 
distribution with 
virtual nodes. 
Number of nodes 
for data replication 
can be decided by 
the user.

Consistent hashing 
distribution.

8. Discussion
The driving  force  for  developing new data  stores  seems to  be the  need for 
scaling services.  Brewer  [2001] points  out  that  during  an excessive load the 
system has to do graceful degradation. If all the subsystems of a web site, for 
example Amazon.com, share the same hardware resources it might be wise to 
stop showing recommendations, product ranking or user history and use the 
computing power to keep up the basic services like shopping cart and product 
catalog.
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Some very  large  scale  services  such as Google web search,  Amazon.com or 
Facebook  must  have  systems  running  on  multiple  continents  to  keep  the 
system  running.  When  considering  the  business  model  of  Facebook  which 
makes its billions of dollars by showing ads to its 500 million users it becomes 
obvious that a loss of users will affect profits. Google does kind of the same, 
shows ads to people using the search engine. Amazon actually sells something 
directly  to  its  users.  Google  has  told  that  if  the  latency  for  showing search 
results increases by 500 milliseconds it affects revenue by 20%. Amazon had 
done tests where they delayed the response by 100 millisecond intervals and 
each increase lowered sales by 1% [Hamilton, 2009].

At some point even the most powerful computer won't be able to keep up with 
the growing load. Scaling up by adding new computers should be able to be 
done  without  excessive  modifications  to  the  system.  According  to  Joe 
Armstrong [2007], that can be achieved by doing things in the first place in the 
same  way  as  if  the  components  have  no  shared  resources  but  have  to 
communicate by message-passing.  Relational database management systems 
are meant to be efficient in disk usage, so duplication is minimized by heavy 
normalization. That was exactly the reason why shared memory concurrency 
has been used in concurrent programming, it was more efficient than message-
passing concurrency and computer hardware was expensive. In contrast, new 
non-relational  databases  usually  have  self-contained  data.   Comparing  new 
non-relational database management systems to traditional relational database 
management  systems  seems  conceptually  very  much  the  same  as  message-
passing concurrency compared to shared memory concurrency. 

Stonebraker and others [2007a] found that a popular commercial RDBMS used 
two thirds of its processing time creating logs for recovery and other purposes. 
The backup window has shrinked to zero. The difference in thinking between 
traditional RDBMS world and NoSQL world is that a failure is not an exception 
but  a  thing  that  will  happen in  the  real  life.  When a  server  crashes  in  the 
RDBMS world a restore will be necessary and depending on prepareness to a 
failure it will take more or less but always some time. There is simply no time 
to  do  the  recovery  manually.  That  being  said  there  is  no  sense  writing 
persistent  recovery  logs  which  is  a  performance  bottleneck  of  traditional 
systems.  If  either  an  established  business  which  is  expecting  growth  or  a 
startup which is dreaming for a boom of sales develops a new service, it would 
be bad judgement not to take scalability needs into account. At the time when 
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the problems surface it would be too late to prevent a drop in client trust if the 
service is down because of technology scaling problems. 

A counter-example of the above paragraph would be the MySQL cluster. It is 
based  on  shared  nothing  architecture  and  no  single  point  of  failure  exists. 
Nodes can be added to the cluster without downtime and it is designed to five 
nines availability. However, the previously mentioned limitations apply to it. 
The MySQL cluster uses the two phase commit protocol to ensure consistency. 
The weaknesses of two phase commit are already discussed.  The maximum 
number  of  data  nodes  is  fifty.  That  is  a  lot  less  than  the  number  of  nodes 
Cassandra, BigTable or Dynamo can use.

People are used to web services and many business are depending on services 
being available in the web. It is not rare to have a startup which is getting all its 
income by selling software as a service. When something has to be up all the 
time and user base is increasing, failures will happen. The system needs to be 
designed to handle failure as normal business rather than as a crisis. Based on 
business requirements the system should be designed to either reduce harvest 
or yield or both. 

9. Conclusion
Distributed systems,  such as  web services,  can't  offer  simultaneously  strong 
consistency  and  high  availability.  The  choice  between  availability  and 
consistency is not merely a technical one, it is also a business choice. Because 
the environment, access patterns and technology is changed new solutions for 
scalable,  fault-tolerant  and  highly-available  data  stores  is  needed.  Many 
projects and products are in the marketplace to respond to these needs. 

Relational  databases  are  not  even  close  to  being  pushed  out  from  the 
marketplace. But for many applications, new non-relational data stores are a 
good choice. Popular systems will get more load and eventually vertical scaling 
reaches the limit of a single server.  New data stores makes it easier to scale 
incrementally one server at a time as need emerge.
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