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On Meet and Join Matrices Associated

with Incidence Functions

Ismo Korkee

Abstract

This thesis consists of six articles and their summaries. The main theme

of the thesis is to demonstrate the usefulness of lattice theory in

developing another branch of mathematics, namely number theory.

In this thesis we present formulae for the properties of meet and join

matrices, which are lattice-theoretic concepts defined as follows. Let

(P,≤,∧,∨) be a lattice, let S = {x1, x2, . . . , xn} be a subset of P and let

f : P → C be a function. Then the meet matrix (S)f and the join matrix

[S]f are defined by ((S)f )ij = f(xi ∧ xj) and ([S]f )ij = f(xi ∨ xj).
The concepts of meet and join matrices have their origins in number

theory. It is well known that (Z+, |, gcd, lcm) is a lattice, where | is the

usual divisibility relation and gcd and lcm stand for the greatest common

divisor and the least common multiple of integers. In this lattice S is a

finite set of positive integers, f : Z+ → C is an arithmetical function and

the meet and join matrices are called the GCD and LCM matrices, which

are defined as ((S)f )ij = f(gcd(xi, xj)) and ([S]f )ij = f(lcm(xi, xj)).

In the first article some new bounds for the determinant of meet

matrices and formulae for the inverse of meet matrices are given.

In the second article we treat join matrices by interpreting them as

meet matrices in the dual lattice. We present a method on how to

translate all the results found for meet matrices into join matrices. Thus

some new bounds for the determinant of join matrices and formulae for

the inverse of join matrices are given. Further, by assuming that f is a

semi-multiplicative function, we obtain formulae for meet matrices and

join matrices in more complicated cases.

In the third article we present a solution for the following drawback.

So far, in applicable formulae for the determinant and the inverse of meet

matrices the set S is usually assumed to be meet-closed (i.e., xi, xj ∈ S ⇒
xi∧xj ∈ S). We extend these formulae to hold for all sets S by providing
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calculation formulae for det(S)f and (S)−1
f in terms of meet-closed sub-

sets and supersets of S. Applications and the effectivity of the method

are also considered. Naturally, by using the ideas of the second article

the results can also be translated into join matrices.

In the fourth article we show that the following structure, which

appears frequently in number theory, generalizes the concept of meet

matrix. If every principal order ideal of P is finite, then we define the

function Ψ on P ×P by Ψ(x, y) =
∑

0≤z≤x∧y f(0, z)g(z, x)h(z, y), where

f , g, h are incidence functions of P and 0 = minP . Thus we present for-

mulae for the determinant and the inverse of the generalized meet matrix

[Ψ(xi, xj)]. From these formulae we obtain some new formulae for meet

matrices. Similar generalizations can also be found for join matrices.

In the fifth article we present new formulae for the Möbius function

µS of S in terms of the Möbius function µ of P and thus obtain new

inverse formulae for meet and join matrices. The new formulae for µS

also explain lattice-theoretically their counterparts in number theory.

In the fifth article we also propose a lattice-theoretic solution to the

following drawback in number theory. Define the unitary divisibility

relation || on Z+ by x || y ⇔ (x | y and gcd(x, y/x) = 1). Then the

greatest common unitary divisor (gcud) of integers always exists, but

defining the least common unitary multiple (lcum) conventionally fails.

We introduce a new lattice (Z∞+ , ||, gcud, lcum) in which we may define

properly the GCUD matrix (S)∗∗f and the LCUM matrix [S]∗∗f as

((S)∗∗f )ij = f(gcud(xi, xj)) and ([S]∗∗f )ij = f(lcum(xi, xj)) respectively.

In the sixth article we characterize the matrix divisibility of the join

matrix by the meet matrix in the ring Zn×n (i.e. when [S]f = M(S)f for

some M ∈ Zn×n) in terms of the usual divisibility in Z. We show that

it is the lattice-theoretic structure of S that mainly determines whether

or not (S)f divides [S]f . To demonstrate this we present two algorithms

for constructing sets S such that (S)f divides [S]f . We also classify all

sets with at most 5 elements possessing this property.

Clearly the results in these six articles obtained for meet and join

matrices are lattice-theoretic generalizations for the results of GCD and

LCM matrices and GCUD and LCUM matrices in number theory.

Key Words and Phrases: Meet matrix, meet-semilattice, join matrix,

join-semilattice, lattice, incidence function, semi-multiplicative function,

determinant, inverse matrix, Gram-Schmidt orthogonalization process,

partitioned matrix, divisibility of matrices, GCD matrix, LCM matrix,

GCUD matrix, LCUM matrix, Smith’s determinant.
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1 Introduction

1.1 On roots of the subject in number theory

Let S = {x1, x2, . . . , xn} be a set of n positive integers with x1 < x2 < · · · < xn

and let f be an arithmetical function (i.e., a complex-valued function on Z+).
Let (xi, xj) denote the greatest common divisor (gcd) of xi and xj and define
the n× n matrix (S)f by ((S)f )ij = f((xi, xj)). We refer to (S)f as the GCD
matrix on S with respect to f . The set S is said to be gcd-closed if (xi, xj) ∈ S
whenever xi, xj ∈ S. The set S is said to be factor-closed if it contains every
positive divisor of each xi ∈ S. Clearly, a factor-closed set is always gcd-closed
but the converse does not hold.

Let [xi, xj ] denote the least common multiple (lcm) of xi and xj and define
the n × n matrix [S]f by ([S]f )ij = f([xi, xj ]). We refer to [S]f as the LCM
matrix on S with respect to f . The set S is said to be lcm-closed if [xi, xj ] ∈ S
whenever xi, xj ∈ S. The set S is said to be multiple-closed if it is lcm-closed
and xi | d | xn ⇒ d ∈ S holds for any xi ∈ S. Here | stands for the usual
divisibility relation of integers.

In 1876 H.J.S. Smith [34] stated in his famous determinant formula that if
S is factor-closed, then

det(S)f =
n∏
k=1

(f ∗ µ)(xk), (1.1)

where µ is the number-theoretic Möbius function and ∗ is the Dirichlet
convolution of arithmetical functions, see [4, 31]. Smith also calculated det[S]f
in a more special case [34, (3.)].

More than a hundred years after Smith, Bourque and Ligh [9] calculated
det(S)f and (S)−1

f on gcd-closed sets. They [11] also calculated det[S]f and
[S]−1

f on factor-closed sets. Haukkanen and Sillanpää [16] calculated det(S)f
and det[S]f on gcd-closed and lcm-closed sets.

Hong [18] provided a lower bound for det(S)f . He defined the class CS of
arithmetical functions by CS = {f : (x ∈ S, d | x)⇒ (f ∗ µ)(d) > 0} and showed
that if f ∈ CS , then

det(S)f ≥
n∏
k=1

∑
d|xk
d -xt
t<k

(f ∗ µ)(d) (1.2)
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and the equality holds if and only if S is gcd-closed. Hong [18] also obtained
an upper bound for det(S)f and bounds for det[S]f .

Bourque and Ligh [10] generalized the concept of GCD matrix by defining
the arithmetical function Ψ of two variables as

Ψ(t, r) =
∑
d|(t,r)

f(d)g(t/d)h(r/d), (1.3)

where f , g, h are usual arithmetical functions. They calculated the determinant
and the inverse of the generalized GCD matrix [Ψ(xi, xj)] when S is a factor-
closed set. Hong [19] presented a formula for det[Ψ(xi, xj)] on gcd-closed set
S, where either g ∈ LS or h ∈ LS . Here the class LS of arithmetical functions
is defined by LS = {g : (xi, xj ∈ S, x | xi | xj)⇒ g(xi/x) = g(xj/x)}.

There is a large number of generalizations and analogues of GCD and LCM
matrices in the literature. For a general account, see [17]. In this thesis we
also consider briefly GCUD and LCUM matrices, which are called the unitary
analogues of GCD and LCM matrices, see [12, 16]. Since we will use lattice-
theoretic methods to solve a problem concerning GCUD and LCUM matrices,
we return to the subject again in Subsection 1.4.

1.2 On lattice-theoretic preliminaries of the earlier study

Let (P,≤) be a partially ordered set. We call P a meet-semilattice if for any
x, y ∈ P there exists a unique z ∈ P such that

(i) z ≤ x and z ≤ y,

(ii) (w ∈ P, w ≤ x and w ≤ y) ⇒ w ≤ z.

In such a case z is called the meet of x and y and is denoted by x∧ y. For each
x ∈ P the principal order ideal ↓x is defined by ↓x = {y ∈ P | y ≤ x}. See [7].

Let (P,≤,∧) be a meet-semilattice, let S = {x1, x2, . . . , xn} be a subset of P
such that xi < xj ⇒ i < j and let f be a complex-valued function on P . Then
the n×n matrix (S)f , where ((S)f )ij = f(xi∧xj), is called the meet matrix on
S with respect to f . We say that S is lower-closed if (xi ∈ S, y ∈ P , y ≤ xi)⇒
y ∈ S. We say that S is meet-closed if xi, xj ∈ S ⇒ xi ∧ xj ∈ S. It is clear
that a lower-closed set is always meet-closed but the converse does not hold.
We say that S is an a -set if xi ∧ xj = a for all i 6= j.
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Haukkanen [13] introduced meet matrices and obtained a formula for
det(S)f on meet-closed sets and a formula for (S)−1

f on lower-closed sets,
see also [29, 36]. Since (Z+, |, gcd) is a meet-semilattice, the results obtained
for meet matrices are lattice-theoretic generalizations for the results of GCD
matrices.

1.3 On lattice-theoretic preliminaries of the current study

In this subsection we write preliminaries only to such an extent that are needed
to understand the summaries of the articles in Subsections 2.1–2.6. Detailed
assumptions, e.g., concerning P , are presented in the articles.

Let (P,≤) be a partially ordered set. We call P a join-semilattice if for any
x, y ∈ P there exists a unique z ∈ P such that

(i) x ≤ z and y ≤ z,

(ii) (w ∈ P, x ≤ w and y ≤ w) ⇒ z ≤ w.

In such a case z is called the join of x and y and is denoted by x ∨ y. A join-
semilattice, which is also a meet-semilattice, is called a lattice.

Let (P,≤,∧) be a meet-semilattice and define the partial order v on P by
x v y ⇔ y ≤ x. Then for any x, y ∈ P there exists a unique z = xt y = x∧ y
that satisfies (i) and (ii) above for v. Thus (P,v,t) is a join-semilattice and
it is said to be the dual of (P,≤,∧), see [7].

Let (P,≤,∧,∨) be a finite lattice. Then P has the least and the greatest
element, which we denote by 0 and 1 respectively. Let S = {x1, x2, . . . , xn}
be a subset of P such that xi < xj ⇒ i < j and let f be a complex-valued
function on P . Then the n × n matrix [S]f , where ([S]f )ij = f(xi ∨ xj),
is called the join matrix on S with respect to f . We say that S is upper-
closed if (xi ∈ S, y ∈ P , xi ≤ y) ⇒ y ∈ S. We say that S is join-closed if
xi, xj ∈ S ⇒ xi ∨ xj ∈ S. An upper-closed set is always join-closed but the
converse does not hold.

We say that f is a semi-multiplicative function on P if f(x ∧ y)f(x ∨ y) =
f(x)f(y) for all x, y ∈ P . We adapt this concept from number theory, see
[30, p. 49], and many important arithmetical functions possess this property.
For example, multiplicative and completely multiplicative functions are all
semi-multiplicative, see [28, 32].
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Let g be a complex-valued function on P×P such that g(x, y) = 0 whenever
x 6≤ y. Then we say that g is an incidence function of P . If g and h are incidence
functions of P , their sum g + h is defined by (g + h)(x, y) = g(x, y) + h(x, y)
and their convolution g ∗ h is defined by (g ∗ h)(x, y) =

∑
x≤z≤y g(x, z)h(z, y).

The set of all incidence functions of P under addition and convolution forms
a ring with unity, where the unity δ is defined by δ(x, y) = 1 if x = y, and
δ(x, y) = 0 otherwise. The zeta function ζ of P is defined by ζ(x, y) = 1 if
x ≤ y, and ζ(x, y) = 0 otherwise. The Möbius function µ of P is the inverse
of ζ under convolution. The inverse of f (if it exists) is denoted by f−1. We
denote the restriction of an incidence function f on S × S by fS and we write
f−1
S = (fS)−1 if it exists. We denote the zeta function of S by ζS and let
µS = ζ−1

S = (ζS)−1. For incidence functions, see [28, p. 294–296].

Since the set S is finite, we can treat a suitable finite sublattice of the divisor
lattice (Z+, |, gcd, lcm). Thus all the results for meet and join matrices found
in these six articles are lattice-theoretic generalizations for the results of GCD
and LCM matrices. This is also true for GCUD and LCUM matrices, and we
are now in a position to discuss this subject more precisely.

1.4 On a lattice-theoretic approach to a special number-

theoretic concept

Define the unitary divisibility relation || on Z+ by the formula x || y ⇔ (x | y
and (x, y/x) = 1), where | is the usual divisibility relation on Z+. The greatest
common unitary divisor (gcud) of positive integers x and y always exists and
is denoted by (x, y)∗∗, see [12]. The n × n matrix (S)∗∗f , where ((S)∗∗f )ij =
f((xi, xj)∗∗), is called the GCUD matrix on S with respect to f . For properties
of GCUD matrices, see Haukkanen and Sillanpää [16].

Defining the least common unitary multiple (lcum) conventionally fails.
For example, there does not exist any positive integer m such that 2 || m
and 4 || m. Hansen and Swanson [12] attempted to overcome this difficulty
by defining the lcum of x and y as xy/(x, y)∗∗. Although this definition is
questionable, the study of LCUM matrices (i.e., the n×n matrices [S]∗∗f , where
([S]∗∗f )ij = f(lcum(xi, xj)) in the literature has hitherto been based on it.

Our approach is as follows. Let Z∞+ = Z+ ∪ {∞} and define x || ∞ for
all x ∈ Z∞+ . Then the greatest common unitary divisor (x, y)∗∗ of integers
coincides with that given in [12] and in addition (x,∞)∗∗ = (∞, x)∗∗ = x for
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all x ∈ Z∞+ . Further, then for each x, y ∈ Z∞+ there exists a unique element
z ∈ Z∞+ such that (i) x || z, y || z and (ii) (x || w, y || w) ⇒ z || w. The
element z may be considered as the natural least common unitary multiple
[x, y]∗∗ of Z∞+ , and we may define the LCUM matrix [S]∗∗f on S with respect to
f as ([S]∗∗f )ij = f([xi, xj ]∗∗). Thus we can treat GCUD and LCUM matrices
in the lattice (Z∞+ , ||, gcud, lcum).

Let S be a finite subset of Z∞+ . The set S is said to be gcud-closed if
(xi, xj)∗∗ ∈ S whenever xi, xj ∈ S. The set S is said to be ud-closed (unitary
divisor closed) if it contains every unitary divisor of xi for any xi ∈ S. Analo-
gously, the set S is said to be lcum-closed if [xi, xj ]∗∗ ∈ S whenever xi, xj ∈ S.
The set S is said to be um-closed (unitary multiple closed) if it is lcum-closed
and xi || d || xn ⇒ d ∈ S holds for any xi ∈ S. It is clear that ud-closed sets
are always gcud-closed but the converse does not hold, and dually, um-closed
sets are always lcum-closed but the converse does not hold.

Note that since S is finite, we can treat a suitable finite sublattice of
(Z∞+ , ||, gcud, lcum). Thus the results for meet and join matrices found in these
six articles are lattice-theoretic generalizations for the results of GCUD and
LCUM matrices.
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2 Summaries of articles

2.1 Bounds for determinants of meet matrices associated

with incidence functions [A]

Haukkanen [13] previously introduced meet matrices and gave abstract
generalizations for the formulae of Bourque and Ligh [9, 11] by providing a
formula for det(S)f on meet-closed sets and a formula for (S)−1

f on lower-closed
sets.

This article continues the work of Haukkanen by generalizing the formulae
of Hong [18]. That is, by using the Gram-Schmidt orthogonalization process
[25, p. 15] and incidence functions as our methods we obtain a lower bound
and an upper bound for det(S)f whenever f ∈ CS . Here the class CS is a
lattice-theoretic generalization of the one introduced by Hong in (1.2).

We also provide a new formula for (S)−1
f on meet-closed sets. Note that

the sufficient condition of invertibility in the article can easily be written as a
necessary and sufficient condition.

2.2 On meet and join matrices associated with incidence

functions [B]

In this article we introduce the concept of join matrices, which has not
previously been studied in the literature. We consider the dual of the lattice
P and interpret [S]f as the dual of (S)f .

We present a method for how to translate all the results found for meet
matrices into join matrices. That is, we provide the dual formulae for all the
formulae presented in [A]. Thus we offer a formula for det[S]f on join-closed
sets, a lower bound and an upper bound for det[S]f whenever f ∈ DS , and a
formula for [S]−1

f on join-closed sets. Here the class DS is the dual of CS .

By assuming that f is a semi-multiplicative function, we obtain formulae
similar to those presented in [A] and at the beginning of [B] but in more com-
plicated cases. Thus we present bounds for det(S)f and formulae for (S)−1

f on
join-closed sets and also bounds for det[S]f and formulae for [S]−1

f on meet-
closed sets.

Finally, we turn to consider the usual number-theoretic matrices and give
many corollaries of the general case. Since GCD matrices have been examined

15



extensively, many of these results have previously been found. The features of
LCM matrices are less known, since – as we note in [B, Section 6] – the Dirichlet
convolution of arithmetical functions is not always available. Thus we introduce
many new results concerning LCM matrices. One new and remarkable result
is a formula for det[S]f on an lcm-closed set S without any restrictions on f .
Further, a new formula for [S]−1

f on an lcm-closed set S is given.

2.3 On meet matrices with respect to reduced, extended

and exchanged sets [C]

In this article we present a solution for the following drawback. So far, in
applicable formulae for the determinant and the inverse of meet matrices the
set S is usually assumed to be a meet-closed set. In addition, a formula for
det(S)f on a -sets is given in [13, Corollary of Theorem 3] and an application
of the Cauchy-Binet formula [13, Theorem 3] gives det(S)f for all S, but the
calculation is ineffective. Thus, for the present, row-reduction is usually the
only way to calculate det(S)f and (S)−1

f for fixed S and f .

In this article we propose calculation formulae for det(S)f and (S)−1
f on

wider classes of sets than the class of meet-closed sets. By assuming that X
is a proper meet-closed subset of S and using partitioned matrices [37] as our
method, we can utilize det(X)f and (X)−1

f in calculating det(S)f and (S)−1
f .

Analogously, if Y is a proper meet-closed superset of S, we can utilize det(Y )f
and (Y )−1

f in calculating det(S)f and (S)−1
f . We also compare the effectiveness

of our methods with the effectiveness of row-reduction.

As applications we first combine our two methods for calculating det(S)f
and (S)−1

f by replacing the “difficult” elements of S with “easy” ones. Second,
we obtain known formulae for det(S)f and new formulae for (S)−1

f , where S
is an a -set. Next we give new formulae for the determinant and the inverse of
the meet matrix (X,Y )f on two sets X = {x1, . . . , xn} and Y = {y1, . . . , yn},
where ((X,Y )f )ij = f(xi∧yj). The results of this article are new in the divisor
lattice. The methods of this article are also appropriate for join matrices.

16



2.4 On a general form of meet matrices associated with

incidence functions [D]

In this article we show that the following structure, which appears frequently in
number theory, generalizes the concept of meet matrix. If we assume that every
principal order ideal of P is finite, then we define the function Ψ on P × P by
Ψ(x, y) =

∑
0≤z≤x∧y f(0, z)g(z, x)h(z, y), where f , g, h are incidence functions

of P and 0 is the least element of P . Thus we present formulae for the general-
ized meet matrix [Ψ(xi, xj)]. That is, we obtain a formula for det[Ψ(xi, xj)] on
meet-closed sets, which generalizes the formula [19, Theorem 1] found by Hong
for arithmetical functions. In addition, we derive a formula for the inverse of
[Ψ(xi, xj)] on meet-closed sets and two inverse formulae on lower-closed set
S. These formulae have not previously been presented in the literature for
incidence functions. In the setting of arithmetical functions the other inverse
formula on lower-closed sets is known in the literature [10, Theorem 1 (ii)].

We also found a similar generalization for join matrices in [27] but we do
not include these results in the thesis.

Applying our results to meet matrices we obtain formulae for the determi-
nants of meet matrices, which are the same as those given in [13]. We also
obtain a known (presented in [A]) and some new formulae for the inverse of
meet matrices. The new results for meet matrices are also new in the setting
of GCD matrices.

We also apply our general results to the matrix [C(xi, xj)], where C(m,n)
is Ramanujan’s sum [5], and obtain an inverse formula on gcd-closed set S,
which has not hitherto been presented in the literature. As special cases we
also obtain some known results.

2.5 A note on meet and join matrices and their special

cases GCUD and LCUM matrices [E]

In this article we first discuss an important tool, the Möbius incidence function
µ of P , which is a generalization of the usual number-theoretic Möbius function.
We present new formulae for the Möbius incidence function µS of S in terms
of µ. Since µS usually occur in the inverse formulae of meet and join matrices,
each of such a formula in the literature get a new form. The formulae of µS
also explain lattice-theoretically their counterparts in number theory, which are
rather complicated.
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In this article [E] we also propose a lattice-theoretic approach to the difficul-
ties concerning LCUM matrices mentioned in Subsection 1.4. Since the systems
(Z+, |, gcd) and (Z+, ||, gcud) are both meet-semilattices, then GCD and GCUD
matrices belong to the class of meet matrices. Similarly, (Z+, |, lcm) is a join-
semilattice and thus LCM matrices belong to the class of join matrices. The
basic difficulty concerning LCUM matrices is that (Z+, ||, lcum) is not a join-
semilattice. Therefore, in this article we solve the problem by considering the
extended set Z∞+ = Z+ ∪ {∞}, where ∞ is defined to be a unitary multiple of
all positive integers. Then lcum always exists on Z∞+ and (Z∞+ , ||, gcud, lcum) is
a lattice. We present a known determinant formula and a new inverse formula
for GCUD matrices on gcud-closed sets S and new determinant and inverse
formulae for LCUM matrices on lcum-closed sets S.

Note that our solution makes the theory technically correct, but has also
some disadvantages. For example, we may consider the LCUM matrix [S]∗∗f
with f(m) = m only when [S]∗∗f does not contain ∞.

2.6 On the divisibility of meet and join matrices [F]

Bourque and Ligh [8, 11] were the first to study the divisibility of GCD and
LCM matrices in the ring Zn×n (i.e. when [S]f = M(S)f for some M ∈ Zn×n).
Hong [20, 21, 22] studied this subject extensively. See also Haukkanen and
Korkee [15], which is not included in this thesis.

In this article [F] we study the subject of Bourque, Ligh and Hong on a
more general level, in fact, we study the divisibility of meet and join matrices.
We present a characterization for the matrix divisibility of the join matrix [S]f
by the meet matrix (S)f in the ring Zn×n in terms of the usual divisibility in
Z, where S is a meet-closed set and f is an integer-valued function on P .

We show that it is the lattice-theoretic structure of S that mainly determines
whether or not (S)f divides [S]f . To demonstrate this we present two inductive
methods for constructing meet-closed sets S such that (S)f divides [S]f under
certain conditions on f . For example, all chains and x1-sets can be constructed
using our methods, and thus they possess this divisibility property. We also
classify all sets with at most 5 elements possessing this property. Finally, we
show what new this study contributes to the divisor lattice.
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3 Author’s contribution to the articles

The contents of this thesis were accomplished in collaboration between the
author of the thesis and the co-author P. Haukkanen. In this section we
endeavour to distinguish the respective contributions of the two authors.

Generally, the proportion of the contribution of each co-author is difficult
or even impossible to estimate exactly, since the collaboration between author
and co-author may appear in many levels. Further, most of the work done for
the article is invisible. Surely something can still be said about the matter.

Since P. Haukkanen is the supervisor of the present study, his role has been
to guide, advise, conduct, comment the results, provide ideas and references to
other works, etc. In all articles he was also the proofreader and has substantially
improved and clarified the expression in manuscripts made by the author.

In spite of the significant role of the co-author above, the order of the
names of the author and the co-author in the articles still reflects the share
of contribution – it may be estimated that more than half of the work was
carried out by the main author, I. Korkee. He is mainly responsible for the
technical part of the manuscript processes. That is, he explored the subject,
achieved new results and carried out their proofs, wrote down and organized
the contents of the articles, etc.

In articles [A] and [D] the supervisor proposed that the author should
generalize the particular number-theoretic concepts into lattice theory. The
main article in this thesis is [B]. Here the supervisor proposed the theme but
it was an open question how it should be carried out. In articles [C] and [E]
the role of the co-author is smaller than in the others. In [E] his assistance
consists mainly on proofreading. In article [F] the collaboration between the
author and the co-author was different from that for the earlier articles. In this
article the author and the co-author simultaneously explored the same problem
and the co-author participated more in the technical part of the manuscript
process.
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Algebra Appl. 258: 251–269 (1997).

[18] S. Hong, Bounds for determinants of matrices associated with classes of
arithmetical functions, Linear Algebra Appl. 281: 311–322 (1998).

[19] S. Hong, Gcd-closed sets and determinants of matrices associated with
arithmetical functions, Acta Arith. 101: 321–332 (2002).

[20] S. Hong, On the factorization of LCM matrices on gcd-closed sets, Linear
Algebra Appl. 345: 225–233 (2002).

[21] S. Hong, Divisibility of determinants of least common multiple matrices
on GCD-closed sets, Southeast Asian Bull. Math. 27: 615–621 (2003).

[22] S. Hong, Factorization of matrices associated with classes of arithmetical
functions, Colloq. Math. 98: 113–123 (2003).

[23] S. Hong, Notes on power LCM matrices, Acta Arith. 111: 165–177 (2004).

[24] S. Hong and Q. Sun, Determinants of matrices associated with incidence
functions on posets, Czechoslovak Math. J. 54: 431–443 (2004).

[25] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University
Press, New York, 1985.

[26] H. Jager, The unitary analogues of some identities for certain arithmetical
functions, Nederl. Akad. Wetensch. Proc. Ser. A 64: 508–515 (1961).

[27] I. Korkee and P. Haukkanen, On a general form of join matrices associated
with incidence functions, submitted manuscript, 1–16 (2005).

[28] P. J. McCarthy, Introduction to Arithmetical Functions, Universitext,
Springer–Verlag, New York, 1986.

[29] B. V. Rajarama Bhat, On greatest common divisor matrices and their
applications, Linear Algebra Appl. 158: 77–97 (1991).

[30] D. Rearick, Semi-multiplicative functions, Duke Math. J. 33: 49–53 (1966).

[31] J. Sándor and B. Crstici, Handbook of Number Theory II, Kluwer, 2004.

[32] R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Mono-
graphs and Textbooks in Pure and Applied Mathematics, Vol. 126, Marcel
Dekker, Inc., New York, 1989.

21



[33] D. A. Smith, Bivariate function algebras on posets. J. Reine Angew. Math.
251: 100–109 (1971).

[34] H. J. S. Smith, On the value of a certain arithmetical determinant, Proc.
London Math. Soc. 7: 208–212 (1876).

[35] R. P. Stanley, Enumerative Combinatorics. Vol. 1. (Corrected reprint of
the 1986 original.) Cambridge Studies in Advanced Mathematics, 49. Cam-
bridge University Press, Cambridge, 1997.

[36] B. Y. Wang, Explicit expressions of Smith’s determinant on a poset, Acta
Math. Sin. (Engl. Ser.) 17: 161–168 (2001).

[37] F. Zhang, Matrix theory. Basic results and techniques, Universitext,
Springer–Verlag, New York, 1999.

22



Original articles




