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Chapter 1

Introduction

The need for maintaining, reusing, and re-engineering existing software systems has increased

dramatically over the past few years. Changed requirements or the need for software migration,

for example, necessitate renovations for business-critical software systems. Reusing and modify-

ing legacy systems are complex and expensive tasks because of the time-consuming process of

program comprehension. Thus, the need for software engineering methods and tools that facilitate

program understanding is compelling. A variety ofreverse engineeringtools provide means to

support this task. Reverse engineering aims at analyzing the software and representing it in an ab-

stract form so that it is easier to understand, e.g., for software maintenance, re-engineering, reuse,

and documenting purposes.

To understand existing software systems, both static and dynamic information are useful. Static

information describes the structure of the software as it is written in the source code, while dy-

namic information describes the run-time behavior. Both static and dynamic analysis result in

information about the software artifacts and their relations. The dynamic analysis also produces

sequential event trace information, information about concurrent behavior, code coverage, mem-

ory management, etc.

Program understanding can be supported by producing design models from the target software.

This reverse engineering approach is also useful when constructing software from high-level de-
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Chapter 1. Introduction

sign information, i.e., duringforward engineering. The extracted static models can be used, for

instance, to ensure that the architectural guidelines are followed and to get an overall picture of

the current stage of the software. The dynamic models, in turn, can be used to support tasks such

as debugging, finding dead code, and understanding the current behavior of the software.

The rise of new programming languages and paradigms drives changes in current reverse engi-

neering tools and methods. Today’s legacy systems are written in COBOL or C, while tomorrow’s

legacy systems are written in C++, Smalltalk, or Java. The adaption of the object-oriented pro-

gramming paradigm has changed programming styles dramatically. Extracting information about

the dynamic behavior of the software is especially important when examining object-oriented soft-

ware. This is due to the dynamic nature of object-oriented programs: object creation, object dele-

tion/garbage collection, and dynamic binding make it very difficult, and most times impossible, to

understand the behavior by just examining the source code.

One of the most challenging tasks in reverse engineering is to build descriptive and readable views

of the software on the right level of abstraction. One approach is to merge the extracted infor-

mation into a single view and to support information filtering and hiding techniques and means

to build abstractions in order to keep the view readable and understandable. However, when both

static and dynamic information are considered, the chosen view often serves either the static or

the dynamic aspect but rarely both. In practice, the dynamic information is just viewed against a

formerly built static model. It is easy to add, e.g., information about code coverage to a static view

but it is much more difficult to add information about concurrent or sequential behavior to that

view. In addition, if a lot of information is attached to a single view it easily loses its readability.

Another approach to view the information extracted is to use different views and models for dif-

ferent purposes. For example, traditional message sequence charts (MSCs) [49] can be used to

capture the interaction in a sample case, state diagrams to view the total behavior of the software,

and static models to view the static software artifacts and their dependencies. Since static and

dynamic models are distinguished in forward engineering, it is natural to do so also in reverse en-
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Chapter 1. Introduction

gineering. As in forward engineering, having separate views requires that there is a meaningful and

consistent connection among these views. If such connections exist, the views can be used to com-

prehend each other, providing extended ways to support information exchange, slicing the views,

and building abstractions. Furthermore, if the reverse engineering tool used is able to produce

similar diagrams and models that have been used in the design phase of the software construction

process, then an iterative software development approach that combines forward and reverse engi-

neering techniques can be supported. Such software development is calledround-trip-engineering.

SCED [56] is a prototype tool that has been built to support the dynamic modeling of object-

oriented applications. It was originally designed to be used in analysis and design phases of the

development process of object-oriented software. In this research, SCED is used to model the re-

sults of reverse engineering the run-time behavior of Java applications and applets. The main user

interaction in SCED involves two independent editors:a scenario diagrameditor anda state dia-

grameditor. A scenario diagram in SCED is a variation of an MSC that semantically corresponds

to a sequence diagram in Unified Modeling Language (UML) [95, 85]. A SCED state diagram

notation can be characterized as a simplified UML statechart diagram notation. In SCED, state

diagrams can be synthesized automatically from a set of scenario diagrams. The basic synthesis

algorithm used was originally presented by Biermann and Krishnaswamy [7], and its adoption to

state machine synthesis from scenarios is discussed by Koskimies and Mäkinen [54]. This algo-

rithm with a few modifications has been implemented in SCED [56]. At any time during scenario

editing the user can select one participating object and synthesize a state diagram automatically

for it by using a single menu command. The state diagram can be synthesized from one scenario

only or from a specified set of scenarios. Since the synthesis algorithm is incremental, scenarios

can be synthesized to an existing state diagram. The synthesis algorithm is discussed in Chapter 5.

Several tools have been developed to visualize run-time behavior of object-oriented software sys-

tems [51, 59, 61, 99, 120]. Event traces are typically shown in a form of MSCs. In this research,

the visualization of the run-time behavior has been taken one step further: not only SCED sce-

nario diagrams but also the final specification of the dynamic behavior, i.e. the state diagram, is

3



Chapter 1. Introduction

composed automatically as a result of the execution of a target system. This step is made possible

by using the state diagram synthesis feature of SCED. Generated state diagrams allow the user

to examine the dynamic behavior from a different angle compared to scenario diagrams. While

scenario diagrams show the interaction among several objects, a state diagram shows the total be-

havior of a certain object or a method, disconnected from the rest of the system.

This dissertation shows that integration of dynamic and static information aids the performance of

reverse engineering tasks. An experimental environment called Shimba has been built to support

reverse engineering of Java software systems. The static information is extracted from Java byte

code [118]. It can be viewed and analyzed with the Rigi reverse engineering tool [74]. The dy-

namic event trace information is generated automatically as a result of running the target system

under a customized Java Development Kit (JDK) debugger. Information about the dynamic con-

trol flow of selected objects or methods can also be extracted. The event trace can then be viewed

and analyzed with the SCED tool. To support model comprehension, the models built can be used

to modify and improve each other by means of information exchange, model slicing, and building

abstractions.

This dissertation is structured as follows. Reverse engineering approaches and tools are discussed

in Chapter 2. Behavioral modeling with UML is briefly discussed in Chapter 3. Chapter 4 gives

an overview of the SCED tool and describes its diagrams used for dynamic modeling, comparing

them to the ones used in UML. In Chapter 5, the state diagram algorithms presented by Koskimies

and Mäkinen are introduced with few modifications caused by the extended scenario notation

of SCED. The synthesized state diagram can be simplified by adding UML statechart diagram

concepts into it. The simplifying methods are introduced in Chapter 6. The Rigi tool and its reverse

engineering methodology are briefly discussed in Chapter 7. The reverse engineering approach and

features of Shimba are described in Chapter 8. To validate the usability of the approach, explained

in Chapter 8, a target Java software system is examined. The results and examples of this case

study are presented in Chapter 9. This research is related to other work in Chapter 8.10. Finally,

Chapter 10 discusses the research, highlights the contributions, and addresses some future plans.
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Chapter 2

Reverse engineering

Chikofsky and Cross [18] define reverse engineering as a process of analyzing a subject system

with two goals in mind:

(1) to identify the system’s components and their interrelationships and

(2) to create representations of the system in another form or at a higher level of abstraction.

Reverse engineering aims to support program comprehension. Reverse engineering approaches

can thus facilitate, for example, maintenance, reuse, documentation, re-engineering, and forward

engineering of the target software. Program comprehension can be supported by producing de-

sign models from existing software. In this dissertation, modeling the static structure of the target

software is calledstatic reverse engineering, and modeling its dynamic behavior is calleddynamic

reverse engineering.

Reverse engineering is difficult for various reasons. First, the target software can be, and often is,

poorly documented. In addition, the documentation is seldom up to date. Second, persons who

designed and implemented the software cannot always be reached for consultation. Such difficul-

ties often mean that the only reliable source of information is the source code. Third, there is a

gap between the top-down process often used in a forward engineering process and the bottom-up

analysis of the source code typically used in static reverse engineering. Deriving similar models
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2.1. EXTRACTING AND VIEWING INFORMATION

from source code as were used in the design phase of the forward engineering process is diffi-

cult and in many cases impossible. For example, a Java software system can be designed using

UML. Code generators can even be used to construct skeletons of classes automatically. How-

ever, there is no one-to-one correspondence between UML modeling concepts and Java software

artifacts. For instance, aggregation and composition do not have direct counterparts in Java and,

vice versa, method bodies cannot be expressed in UML. Fourth, the functionality and purpose of

some structures used in the source code might be difficult to understand. Such structures can be

technical and/or language dependent solutions to implementation problems. Fifth, the source code

includes both domain dependent and domain independent code. The former is especially problem-

atic, forcing the engineer to become familiar with the domain as well. Sixth, combining results

of dynamic reverse engineering and static reverse engineering is difficult, especially for examin-

ing object-oriented software systems. Object-oriented programs are inherently dynamic: object

creation, object deletion/garbage collection, and dynamic binding cause behavior that is difficult,

and often impossible, to understand by just examining the source code. Thus, dynamic reverse

engineering is especially important for understanding object-oriented software systems. For the

reasons above, automating the tedious task of reverse engineering is especially difficult.

Chikofsky and Cross [18] further characterizedesign recoveryas a subset of reverse engineering

in which domain knowledge, external information, and deduction or fuzzy reasoning are added to

the observations of the subject system. The objective of design recovery is to identify meaningful

higher-level abstractions beyond those obtained directly by examining the system itself.

2.1 Extracting and viewing information

All reverse engineering environments need tools for extracting the information to be analyzed.

Static information includes software artifacts and their relations. In Java, for example, such arti-

facts could be classes, interfaces, methods, and variables. The relations might include extension

relationships between classes or interfaces, calls between methods, and so on. The static reverse

engineering process may also include syntax and type checking, and control and data flow analy-
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2.1. EXTRACTING AND VIEWING INFORMATION

sis [2]. Dynamic information contains software artifacts as well. In addition, it contains sequential

event trace information, information about concurrent behavior, memory management, code cov-

erage, etc. Static information can be extracted, e.g., by using parsers based on grammars. For

extracting dynamic information, debuggers, profilers, or event recorders can be used. In addition,

source code instrumentation is an often used approach. Furthermore, when analyzing languages

like Java or Smalltalk, the instructions of the virtual machine (VM) can be instrumented instead.

The extracted information is not useful unless it can be shown in a readable and descriptive way.

Supporting program comprehension by building (graphical) design models from existing software

is supported in many reverse engineering and design recovery tools and environments. There are

basically three kinds of views that can be used to illustrate the extracted information: static views,

dynamic views, and merged views. Static views contain only static information, dynamic views

contain only dynamic information, and merged views are used to show both static and dynamic

information in a single view. Figure 2.1 shows different choices of building views to the target

software.

2.1.1 A single view

Merging dynamic and static information into a single view has both advantages and disadvantages.

A single view would directly illustrate connections between static and dynamic information. In

addition, the quality of the view can be improved and ensured when merging static and dynamic

information. For example, because of polymorphism, a static analysis is not enough to conclude

the exact method calls; a method call written in the source code represents a set of possible opera-

tions, rather than a certain single operation that is invoked at run-time. Dynamic analysis is needed

to determine the actual method calls.

Building abstractions for merged views can be difficult because static and dynamic abstractions

usually differ considerably. While static abstractions are subsystems, dynamic abstractions are

typically use cases or behavioral patterns (i.e., repeated similar behavior). The user therefore has

7



2.1. EXTRACTING AND VIEWING INFORMATION

Figure 2.1: Different choices of constructing views to the target software

to choose at an early stage whether to build the abstractions from a static or dynamic point of view.

For example, consider a banking system that consists of banks, consortiums of banks, and ATMs.

An ATM can be used, e.g., for withdrawing cash or for paying bills. From a static point of view, an

ATM, a consortium, and a bank themselves represent subsystems. From a dynamic point of view,

in turn, “withdrawing money using an ATM” and “paying a bill using an ATM” are two different

use cases, both representing communication among ATM, consortium, and bank subsystems.

Forming merged views themselves might be complicated. For example, it is easy to add code

coverage information that shows the actual run-time usage of the software artifacts to a static view

but it is much more difficult to add information about concurrent or sequential behavior to it. In

UML, collaboration diagramscan be used to view both dynamic event trace information and static

aspects of the software. However, even moderate size collaboration diagrams easily become hard

to read and in reverse engineering the amount of extracted information is typically very large. In

general, the more information attached to a single view, the less readable it becomes, thus losing

one of its main purposes. To focus on desired aspects of the software, uninteresting information
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2.1. EXTRACTING AND VIEWING INFORMATION

can be filtered out or hidden. On the other hand, if such techniques provides the only means to

focus on the chosen aspect of the software, e.g., sequential event trace information, then merging

that information into the view is questionable. Unless the merge serves another purpose, choosing

a more suitable and descriptive view would probably promote the reverse engineering task better.

2.1.2 A set of different views

Figure 2.2 shows the source code of an example Java program. When reverse engineering the ex-

ample program, the static information could be shown as aclass diagramas depicted in Figure 2.3.

The class diagram shows the static model elements of the subject program, as well as their con-

tents and relationships. The dynamic behavior could be visualized as ascenario diagram, which

describes the object interactions. Time (or execution) in the scenario diagram flows from top to

bottom. Figure 2.4 shows a SCED scenario diagram that could characterize the dynamic behavior

of the example Java program.

In forward engineering different diagrams are used to model the static structure and dynamic be-

havior of the software system. For instance, in UML there are static diagrams, dynamic diagrams,

and diagrams that model both the static and dynamic aspects of the software. From a large set of

diagrams, the user chooses the ones that best suit her purposes. Ideally, this should also be the case

in reverse engineering. If a large set of diagrams is chosen, the problem of keeping them consistent

and connected to each other needs to be considered. On the other hand, a single diagram is often

insufficient to model the software and the problems explained in the previous section occur. The

number and type of diagrams to be used depend on the purpose and needs in the same way as in

forward engineering.

Separating static and dynamic views allows showing information that would be hard, or even im-

possible, to include in a single merged view. This, in turn, offers better possibilities to support

slicing, requiring that there is a connection that enables information exchange between the views.

For example, if scenario diagrams are used for viewing the event trace information, the static

model can be sliced based on the information included in a desired set of scenarios (i.e., only a

desired part of the static model is shown). The resulting slice shows the structure of a particular
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Figure 2.2: The source code of an example Java program

10



2.1. EXTRACTING AND VIEWING INFORMATION

Figure 2.3: The static structure of the program in Figure 2.2 is shown as a class diagram.

Figure 2.4: The program in Figure 2.2 has to be executed to capture its dynamic behavior. A
scenario diagram can be used to visualize the execution.

11



2.2. REVERSE ENGINEERING APPROACHES AND TOOLS

part of the software that causes that behavior. Furthermore, the static knowledge of the software

can be used to guide the generation of dynamic information, i.e., to focus on the behavior of the

desired parts of the software.

Using a set of different views makes it possible to build abstractions for dynamic views according

to different principles than for static ones. For example, behavioral patterns can be used to raise

the level of abstraction of scenario diagrams, while structural dependencies can be used as a crite-

rion when building abstractions to static views. Forcing the dynamic information to be abstracted

based on static criteria would probably hide some essential features in the behavior and make it

more complicated to understand the overall behavior. However, in some cases it might be mean-

ingful, e.g., to modify scenario diagrams to show interaction among high level static components

instead of showing the interaction between classes or even objects.

2.2 Reverse engineering approaches and tools

A wide range of reverse engineering and design recovery tools have been developed for both indus-

trial use and academic research. Most of them provide better support for static reverse engineering

than for dynamic reverse engineering. Some of the tools focus on understanding the software by

building high-level models of the structure and/or the behavior of the software, some tools can be

used to analyze the software based on software metrics and other measurements, and some tools

support re-engineering and round-trip-engineering by providing facilities for both forward and re-

verse engineering of the software. There are also tool sets that support all these approaches.

In what follows, we briefly describe different reverse engineering and design recovery approaches

and give examples of tools and tool sets that support these approaches.
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2.2.1 Understanding the software through high-level models

Tools that extract static and dynamic information from the target software typically produce a lot

of detailed information. Hence, good views for showing that information is not usually enough,

but abstractions need to be built for making the views clearer and more understandable. In static

reverse engineering, abstract high-level components to be found and constructed might represent

subsystems or other logically connected software artifacts. In dynamic reverse engineering, ab-

stractions are typically behavioral patterns, use cases, or views that show interaction among high-

level static components.

Constructing abstract and descriptive high-level views of the target software is the most chal-

lenging phase in the reverse engineering process described in Figure 2.1. Gathering information

and building the initial views are not straightforward either: an empirical study by Murphyet al.

compares nine static call graph extractors and shows considerable differences among the results

obtained from three C software systems [72]. The main reason for this was that the requirements

for tools computing call graphs are typically more relaxed than those for compilers. In general, the

information can be extracted and initial views of the software can be constructed automatically.

However, manual processing is needed in most cases for building high-level views from the de-

tailed low-level views. In static reverse engineering, language structures and metrics can be used to

partly automate the process. There are slightly more efficient ways to automate the construction of

abstract dynamic views. For example, pattern matching algorithms can be used to automatically

search for behavioral patterns. Furthermore, abstractions are typically constructed for the static

views before constructing them for the dynamic views. The static hierarchies can then be used for

clustering the dynamic information automatically (cf. Sections 8.9 and 9.4.3).

Most of the static reverse engineering tools and environments use graphical representations to

view the extracted information. Some of the tools allow manipulations of the view/views and give

support for building high-level models of the target software to facilitate program comprehension.

Next we give examples of such tools. An introduction of six static reverse engineering or design

recovery tools is followed by a description seven tools that emphasize dynamic reverse engineer-
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ing. The tools are selected to give examples of unique categories of reverse engineering and design

recovery approaches.

The Rigi reverse engineering environment [74], for example, uses a directed graph to view the

software artifacts and their relations and supports the extraction of abstractions and design infor-

mation out of existing software systems [73]. To build more abstract views to the software, the user

can form hierarchical structures for the graph by using subsystem composition facilities supported

by the graph editor. Such structures are shown as nested views. Rigi is discussed in Chapter 7 in

more detail.

Since Rigi is easy to customize, tailor, and extend, it has been integrated with several other tools

and environment, for example, the Portable Bookshelf (PBS) [34] and the Dali [52] tool sets. The

PBS is intended to be developed, managed, and used by three types of people: a builder, a librar-

ian, and a patron. A builder creates the bookshelf architecture. She designs a general program-

understanding schema and integrates usable tools to support a librarian in her work. A librarian

populates the bookshelf repository with information about the target software system. Finally, a

patron is an end-user of the bookshelf content who needs detailed information to re-engineer the

legacy code [34].

Dali is a workbench for architectural extraction, manipulation, and conformance testing [52]. It

integrates several analysis tools and saves the extracted information in a repository. Dali uses a

merged view approach, modeling all extracted information as a customized Rigi graph. In addi-

tion to static information, the constructed Rigi graph contains information about the behavior of

the target software system, extracted using profilers and test coverage tools. The user can organize

and manipulate the view and hence produce other, refined views on a desired level of abstraction.

Imagix4D from Imagix Corporation [46] supports reverse engineering and documenting C and

C++ software systems. The source code of the target software can be analyzed and browsed at any

level of abstraction using different views. Imagix4D uses 3D views to help the user to focus and
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analyze particular aspects of the software.

DESIRE [8] is a model-based design recovery system that can be used for concept recognition

and program understanding. It provides intelligent assistant facilities to search for instances of

user-defined concepts, to identify concepts that correspond to some domain model concept, and to

propose a concept assignment for a given interest set. DESIRE is also able to produce call graphs,

reference points of global variables, symbols defined in a given scope, filterings and clusterings of

components and dependencies, etc.

ManSART is a software architecture recovery system that uses an abstract syntax tree (AST) of the

program as a source of information [14]. The AST is produced using Refine-based workbenches

by Reasoning Systems [86]. With ManSART the user is able to interpret and integrate the results

of localized, perhaps language-specific, source code analysis in the context of large size systems

written in multiple languages [14].

Dynamic reverse engineering tools often use variations of a basic MSC or directed graphs to visu-

alize the run-time behavior of the target software system. For example, a directed graphs can be

used to visualize the run-time object interactions by representing objects as nodes and visualizing

method calls or variable accesses as arcs between the nodes. Both of these graphical represen-

tations are simple and self-explanatory and thus suitable to be used for program understanding

purposes. However, without notational extensions, they do not scale up. A large amount of run-

time information is typically generated, even as a result of a relatively brief usage of the system.

Thus, managing and abstracting the extracted information is necessary. This is usually the most

challenging problem in dynamic reverse engineering. Behavioral patterns are often used to build

abstract views of the dynamic event trace information. High-level views can also be constructed

by taking advantage of abstractions built for the static view. Both of these approaches are used in

this research.

Ovation usesexecution pattern viewsto visualize and explore a program’s execution at different
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levels of abstraction [26, 27]. It offers several means to manipulate the view, e.g., for raising the

level of abstraction and to manage the event explosion problem.

Sefikaet al. introduce an architectural-oriented visualization approach that can be used to view

the behavior of a target system in different levels of granularity [99]. They introduce a technique

calledarchitectural-aware instrumentation, which allows the user to gather information from the

target system at the desired level of abstraction. Such include subsystem, framework, pattern,

class, object, and method levels.

Walkeret al. use high-level models for visualizing program execution information [120]. In the

main view, calleda cel, high-level software components are represented as boxes. The mapping

between low-level software artifacts and high-level components they belong to is done manually

using a declarative mapping language. The visualization technique by Walkeret al. also focuses

on showing summary information (e.g., current call stacks and summaries of calls).

Scene tool produces and visualizes event traces as scenario diagrams [59]. It allows the user to

browse the scenarios and other associated documents. For compressing the large amount of ex-

tracted event trace information Scene shows the operation calls (messages) in a closed form as

default: the internal events of a call are not shown unless ’opened’ by clicking the call arc. In this

way the user can proceed to the interesting level, in a top-down fashion.

ISVis is visualization tool that supports the browsing and analysis of execution scenarios [51]. In

ISVis, the event trace can be analyzed using aScenario View. The static information about files,

classes, and functions belonging to the target software are listed in aMain Viewof ISVis. The

view allows the user to build high-level abstractions of such software actors through containment

hierarchies and user-defined components. A high-level scenario can be produced based on static

abstractions.

Program Explorer combines static information with run-time information to produce views that
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summarize relevant computations of the target system [60, 61]. It uses directed graphs to illustrate

class relationships and object interactions. The order of the interactions is viewed asinteraction

charts. To reduce the amount of run-time information generated the user can choose when to start

and stop recording events during the execution. Merging, pruning, and slicing techniques are used

for removing unwanted information from the views.

Richneret al present a query-based approach to recover high-level views of object-oriented ap-

plications [87]. Static and dynamic aspects of the target software are modeled in terms of logic

facts. Depending on the queries made, the views may contain static and/or dynamic information

and model the information on different levels of abstraction. The queries also provide a way to

restrict the amount of information generated.

A design patternsystematically names, explains, and evaluates and important and recurring design

in object-oriented design. Each pattern describes a frequently occurring problem and describes the

core of the solution to it. Gamma, Helm, Johnson, and Vlissides have catalogued and described

several popular creational, structural, and behavioral design patterns [36]. Tools that support the

identification of the design patterns help engineers to learn and understand object-oriented soft-

ware systems. Bansiya introduces the DP++ tool that automates design-pattern detection, identi-

fication, and classification in C++ programs [5]. The DP++ tool identifies several structural and

behavioral patterns.

2.2.2 Software metrics

Software metricshave traditionally been used in forward engineering to improve the quality of the

software. For example, software metrics can be used to measure the complexity of the software

design and to predict properties of the final product. They can also be used to predict the amount

of testing necessary or the total development costs [25].

Software metrics can play a significant role also in the reverse engineering process. Complex-

ity metrics can be applied to support the identification of complex parts of the software. Such
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parts typically need restructuring to improve the reusability and the reliability of the software.

One of the most commonly used complexity measure is cyclomatic complexity [70]. It has been

widely used in various reverse engineering environments and applied as the basis for other metrics.

Design flaws can also be identified by applying appropriate metrics. Metrics for object interac-

tions can reveal tightly coupled and/or loosely cohesive parts of the software [16, 17, 39]. Tightly

coupled parts are inflexible for modifications and reuse. Loosely cohesive parts might also need re-

structuring. For example, low cohesion inside a class in an object-oriented software system might

hint that the class contains unfitting or unused methods or variables.

Metrics that examine the inheritance hierarchy of object-oriented software systems are used to

predict reusability and complexity of the software. For example, deep inheritance trees constitute

greater design complexity since more methods and classes are involved in dynamic binding. On

the other hand, they provide more choices for potential reuse.

Li and Henry have used software metrics that focus on inheritance hierarchy, complexity, coupling,

and cohesion to measure maintainability in two independent empirical studies [64, 65]. Some of

the metrics can be applied to software written in any language, while others are dependent on the

programming paradigm or the language. For example,object-oriented metrics[66, 43] are used to

evaluate object-oriented software systems.

Software metrics are used in many reverse engineering environments to help the user to analyze

constructed views of the target software. In Rigi, a “low coupling and high cohesion” principle is

used for subsystem structure identification when reverse engineering C programs [73]. McCabe

Reengineer from McCabe & Associates Inc. [71] provides views of the system architecture and

views of the interaction among modules, based on the analysis of the source code. Complexity

and structuredness of software modules is measured using metrics. The results are shown using a

specific coloring on the views.
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CodeCrawler is a platform built to support program understanding by combining metrics and pro-

gram visualization [28]. CodeCrawler provides views that show selected structural aspects of the

software as a simple two-dimensional graph. A node in a graph represents a software artifact in

C++ code (e.g., a class). CodeGrawler is able to visualize up to five metric values simultaneously

on a single node: the size of a node can render two measurements (the width and the height), the

position of the node can also render two measurements (X and Y coordinates), and the color of the

node that may vary between white and black can be used to visualize one measurement.

Hindsight reverse engineering tool from IntegriSoft Inc. is able to produce different kinds of re-

ports, charts, and diagrams that help program understanding [48]. Hindsight uses software metrics

to analyze the complexity of the target software. It also supports dynamic testing of the software.

The dynamic information is generated using a source code instrumentation technique.

Logiscope from CS Verilog supports both static and dynamic analysis of a target software sys-

tem [23]. It is able to produce static call and control graphs of the target software. Quantitative

information based on software metrics and graphs can be generated to help the user to diagnose de-

fects. For dynamic analysis of a target software system Logiscope provides the TestChecker tool

to measure structural test coverage and to detail the uncovered source code paths. TestChecker

uses source code instrumentation approach to generate the dynamic information.

2.2.3 Supporting re-engineering and round-trip-engineering

Chikofsky and Cross characterize re-engineering as an examination of a subject system to recon-

stitute it in a new form and the subsequent implementation of the new form [18]. Reverse en-

gineering approaches are typically used for understanding the subject system in a re-engineering

process. However, reverse engineering techniques can and should be applied for forward engi-

neering as well. That would support a change from a conventional “water fall” style of forward

engineering to a more incremental and evolutionary style of software construction. In other words,

round-trip-engineering would be supported. To support re-engineering and round-trip-engineering
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a reverse engineering tool should be able to produce standard object-oriented analysis and design

(OOAD) models from the target software. This would give the user an obvious benefit: since such

models are (probably) familiar to the user from designing the software, using them for reverse

engineering would unburden her from learning yet another model or diagram notation.

Various tools supporting forward engineering of object-oriented software are also able to extract

class diagrams for existing software systems, for example, Rational Rose from Rational Soft-

ware Corporation [82, 83, 84], Paradigm Plus from Computer Associates International [22], OEW

from Innovative Software GmbH [47], Graphical Designer from Advanced Software Technolo-

gies Inc. [1], Domain Objects from Domain Objects Inc. [29], COOL:Jex from Sterling Software

Inc. [105], etc. To give full support for round-trip engineering extraction of class diagrams is not

enough. It is far more difficult to construct dynamic models like UML statechart diagrams and

use case diagrams from the recorded run-time behavior than to generate class diagrams from the

source code. As discussed in Section 8.10.1, dynamic reverse engineering tools typically use di-

rected graphs or variations of an MSC to visualize the run-time behavior. In this research, not only

SCED scenario diagrams but also state diagrams are used for modeling the run-time behavior (cf.

Chapter 8). However, the ultimate goal of constructing state diagrams was supporting program

understanding, rather than supporting round-trip-engineering. Hence, state diagrams are used for

understanding the behavior of a target Java software system, not for specification of a software

system to be implemented.

Versatile tools and environments that support both forward and reverse engineering are available.

StP from E2S is a modeling-based software development environment that also supports reverse

engineering, testing, and requirements engineering [33]. StP provides different tool sets for devel-

oping and maintaining software written in different languages. For example, StP/UML, StP/OMT,

and StP/Booch integrated with third-party programming environments can be used for incremental

code generation and reverse engineering of object-oriented software systems.

The Viasoft Existing Systems Workbench (ESW) from Viasoft Inc. is an integrated software tool
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set that supports software maintenance in various ways [119]. The tool set includes, for example, a

reengineering tool Renaissance, a static analysis and a documentation generator SmartDoc, appli-

cation and program understanding and visualization tools Alliance and Insight, a software testing

and debugging tool SmartTest, a code generation and converting tool AutoChange, and a metrics

tool Recap.

Tool sets Ensemble and ObjectTeam from Sterling Software Inc. support application development

of C and object-oriented programs, respectively [105]. Ensemble provides graphical views for

analyzing the design of the target software. Complexity metrics can be applied to the software

to help the designer to make a re-design or re-use decision. Ensemble also supports testing and

documentation generation.

2.2.4 Other tools facilitating reverse engineering

Reverse engineering a target software system can be supported in several ways. As discussed

above, design models can be constructed to characterize the structure and the behavior of the soft-

ware visually, while metrics can be used to point out its interesting aspects or design flaws. Tools

that support browsing the documentation or source code also support program comprehension.

Hypersoft tool supports automated detection of software structures that are critical for understand-

ing and re-engineering C software systems [77]. It also enables the navigation of such structures

through automatically generated hypertext documents. Furthermore, the Hypersoft tool supports

the examination of the side effects of software renovations, detecting errors, and controlling the

testing of the re-engineered software. Tools that support other reverse engineering tools form yet

another interesting group of tools. Software Refinery from Reasoning Systems, for example, is

a set of tools that can be used to generate reverse other engineering tools [86]. It contains tools

for generating source code parsing and conversion tools. Software Refinery supports C, Ada, and

Cobol.
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2.2.5 Summary

Both static and dynamic reverse engineering are needed to understand an object-oriented software

system fully. Compared to procedural languages, the importance of dynamic reverse engineer-

ing needs to be emphasized when studying object-oriented software systems. This is due to the

dynamic nature of object-oriented programs. The extracted information needs to be shown in a

readable and descriptive way. Static and dynamic information can be presented in separated views

or merged in a single view. Both approaches have advantages and disadvantages. In this research,

the multiple view approach is promoted.

A wide range of reverse engineering and design recovery tools can be categorized in various ways.

We identify the following three groups: tools that support program understanding through high-

level models, tools that use software metrics for studying software properties, and tools that sup-

port re-engineering and round-trip engineering. The Shimba environment presented in this disser-

tation belongs to the first group.
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Chapter 3

Modeling with UML

The Unified Modeling Language (UML) has been accepted as an industrial standard for speci-

fying, visualizing, understanding, and documenting object-oriented software systems [95, 85]. It

provides several diagram types that can be used to view and model the software system from dif-

ferent perspectives and/or at different levels of abstraction. UML supports all lifecycle stages of

the forward engineering process from requirements specification to implementation and testing.

The same diagram types used in forward engineering have been used for reverse engineering pur-

poses as well [1, 29, 83, 84, 105].

First object-oriented analysis and design (OOAD) methods were published in the late 80’s and

early 90’s. In addition to the three independent core methods of UML, namely Booch ’91 [9],

object-oriented modeling and design (OMT-1) [94], and object-oriented software engineering

(OOSE) [50], methods were published, e.g., by Coad and Yourdon [19], Shlaer and Mellor [98],

and Wirfs-Brocket al. [122]. The development of UML began in 1994. The first draft called

Unified Method 0.8 was released in 1995. It merged second editions of Booch ’91 and OMT-1,

namely Booch ’93 [10] and OMT-2 [90, 91, 92, 93]. When OOSE was merged into the Unified

Method in 1996, the name was changed to UML. The first official version, UML 1.0, was pub-

lished in 1997, followed by versions 1.1 and 1.3. The evolution of UML is depicted in Figure 3.1.

Another attempt to join different OOAD methodologies was Fusion [20], which included concepts

of OMT, Booch ’91, and CRC [122].
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Figure 3.1: Evolution of UML[85]

UML provides diagrams that capture information about the static structure of the software, and

diagrams that model the dynamic behavior of the software. Some of the diagrams (e.g.,a collab-

oration diagram) combine both dynamic and static aspects of the software. UML also contains

organizational constructs for managing and arranging other models. Furthermore, UML provides

concepts and general model elements that can be used to make some common extensions without

changing the underlying modeling language and concepts and general model elements that can be

used to extend different models. Table 3.1 shows the diagram types of UML.

Next we discuss selected UML diagrams, starting from class diagrams. Since the focus of this re-

search is on dynamic modeling, the rest of this chapter discusses behavioral modeling using UML,

the emphasis being on sequence diagrams and statechart diagrams. Collaboration diagrams and

activity diagrams are also briefly characterized.
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Diagram types Diagrams

Static structure diagrams class diagram
object diagram

Use case diagrams use case diagram
Behavioral diagrams statechart diagram

activity diagram
sequence diagram
collaboration diagram

Implementation diagrams component diagram
deployment diagram

Table 3.1: Different diagram types of UML[95]

3.1 Class diagrams

A class diagramis a graphical presentation of the static view that shows a collection of declarative

(static) model elements, such as classes, interfaces, types, as well as their contents and relation-

ships [85, 95]. In what follows, we discuss the main parts of the class diagram notation.

A class is the descriptor for a set of objects with similar structure, behavior, and relationships.

A class is drawn as a rectangle with three compartments separated by horizontal lines. The top

compartment holds the class name. The middle and bottom compartments are reserved for a

list of attributes and a list of operations, respectively. Aninterfaceis a named set of operations

that characterize the behavior of an element [95]. Interfaces are shown as rectangles with two

compartments. The top compartment shows the name of the interface and includes a stereotype

“<<interface>>”. The bottom compartment contains the list of operations. Besides classes and

interfaces, a class diagram may also contain, for instance, packages and types.

Various kinds of relationships may exist among model elements of a class diagram. Anassociation

between two or more classes indicate that there are connections among instances of the classes.

The connections can be, for example, method calls or links between the objects. An association

between two classes is shown as a solid line connecting the rectangles of the classes. Additional

information can be attached to an association. For example, an association may be directed and it
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may show the multiplicity and rolenames of instances involved in the connection at each end of

the associations.Generalizationrelationships can be used to show inheritance between classes.

Generalization is depicted as a solid line from the subclass to the superclass, with a large hollow

triangle at the end of the superclass.Compositionis a form of aggregation with strong ownership

and coincident lifetime [95]. Composition may be shown as a solid filled diamond at the end of

the owner class.

Figure 3.2 shows a simple class diagram describing an elevator system. The system consists of

five classes. ClassJanitor inherits classPerson, indicating that a janitor is a person. In addition to

four operations inherited from classPerson, operationmaintain()can be called for each instance

of classJanitor. ClassesElevatorandHousehave a composition relationship. It indicates that

an elevator is a part of a house. The multiplicities of the composition defines the situation more

specifically: in a house there can be up to four elevators and a particular elevator can be in one

house only. Other relationships are normal associations. The class diagram has been drawn using

the FUJABA tool [88].

Figure 3.2: A class diagram describing an elevator system. The class diagram has been constructed
using the FUJABA tool[88].
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3.2 Sequence diagrams

A sequence diagramdescribes the object interaction arranged in time sequence. Participating ob-

jects are shown by theirlifelinesas vertical lines. A lifeline shows the existence of an object over a

period of time. For any period during which the object is active, the lifeline is broadened to a dou-

ble solid line.Messagesexchanged by objects are drawn as arrows between lifelines. A message is

a conveyance of information from one object to another, with the expectation that an activity will

ensue [95]. It may be a signal or a call of an operation. The receipt of a message instance is nor-

mally considered an instance of an event, which is a specification of a noteworthy occurrence that

has a location in time and space [95]. Sequence diagrams occur in slightly different formats when

intended for different purposes [85]. Two examples of sequence diagrams are given in Figures 3.3

and 3.4. Figure 3.3 shows a simple sequence diagram with three concurrent objects. Comments

are written on the left of the diagram as plain text. Timing constraints are closed inside braces.

The sequence diagram in Figure 3.4 contains the following additional UML sequence diagram

concepts: an object creation (e.g.,op() creates an objectob1), conditional branching (events[x >

0] foo(x)and[x < 0] bar(x)), conditional branches in the communication (branching dotted line of

ob4:C4), a recursion (the objectobj1calls its ownmore()method), and an object deletion (crosses

at the end of lifelines ofob1:C1andob2:C2). Branching shown as multiple arrows leaving a sin-

gle point may represent conditionality or concurrency, depending on whether the guard conditions

are mutually exclusive or not [85]. The branching in Figure 3.4 hence represents conditionality.

3.3 Collaboration diagrams

A collaboration diagramshows an interaction organized around objects (needed in the interaction)

and their links to each other. A collaboration diagram is very close to a sequence diagram. They

both show interactions, but they emphasize different aspects. A sequence diagram shows the inter-

action over time but does not show other relationships among objects than the messages belonging

to the interaction. A collaboration diagram, in turn, does not show time as a separate dimension.

The order of messages can be expressed by numbering. The relationships among the objects are
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Figure 3.3: A simple sequence diagram with concurrent objects [85] (Notation Guide)

Figure 3.4: A sequence diagram with focus of control, conditional, recursion, creation, and de-
struction [85] (Notation Guide)

28



3.4. STATECHART DIAGRAMS

explicitly shown in a collaboration diagram. Hence, a collaboration diagram also includes a static

aspect. While sequence diagrams show the explicit sequence of stimuli and are hence better for

realtime specification and complex scenarios, collaboration diagrams show the full context of an

interaction, including objects and relations relevant to a particular interaction [85]. Figure 3.5

shows an example of a collaboration diagram.

Figure 3.5: A collaboration diagram with message flows[85](Notation Guide)

3.4 Statechart diagrams

A state machineof an object is a directed graph that consists of states and transitions, describing

the response of the object to external stimuli. Astatechart diagramis a graph that represents a

state machine. The semantics and notation used in UML follow Harel’s statecharts [40]. State-

charts are a widely used notation for structuring state machines and avoiding the combinatorial

explosion that plagues them. Harel’s statecharts play a significant role in the design process of

a larger development methodology that has been implemented as a commercial product called

STATEMATE [41, 42] from I-logic Inc. STATEMATE is a set of tools used for modeling reactive

systems. STATEMATE is most beneficial in requirements analysis, specification, and high-level
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design [42]. Rhapsody is another tool from I-Logic, in which Harel’s statecharts are used. The

Rhapsody tool can be used for analyzing, modeling, designing, implementing, and verifying the

behavior of embedded systems software. Prior to UML, statecharts have been adopted by other

OOAD methodologies as well, including OMT. The use of statecharts in object-oriented design is

discussed by Colemanet al. [21].

A statein a UML statechart diagram is a condition or situation during the life of an object during

which it satisfies some condition, performs some activity, or waits for some event [95]. In a sys-

tem, objects stimulate each other causing state changes by sending and receiving events. When a

specified event occurs and the associated guard conditions are satisfied, an object can change its

state. Such a state change is called atransition. A statechart diagram thus relates events and states.

UML statechart diagrams are drawn as directed graphs in which nodes represent states and di-

rected edges represent transitions. A state is drawn as a rounded rectangle containing the activities

it performs in that state and an optional name for the state, separated with a horizontal line from the

action part. A transition is drawn as an arrow from the source state to the target state. Statechart

diagrams may also have special kinds of states. Aninitial state indicates the starting point of a

statechart diagram. Reaching afinal statemeans that the execution of the statechart diagram has

completed. There can be only one initial state but several final states in a statechart diagram. An

initial state is drawn as a small filled black circle and a final state as a bull’s-eye icon.

A state may containactionsandactivities. Actions are atomic and non-interruptible, while activi-

ties take time to complete and can be interrupted by an event. An ongoing activity can be expressed

as anested statechart diagram, or by a pair of actions: anentry actionstarts the activity and anexit

actionstops it. Entry and exit actions can be individual actions as well. Entry actions are executed

when entering the state and exit actions when leaving it. Keywords “do/”, “entry/”, and “exit/” are

attached to activities, entry actions, and exit actions, respectively. A state can also haveinternal

transitionsthat may have actions attached to them. An internal transition is fired when a specified

event occurs. That causes the execution of an action attached to it, but not a state change nor an
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interruption of the activities of the state. The event part is separated form the action part by a slash.

A simple transitionconsists of four parts: an event name, event parameters, a guard condition, and

actions. The first three define the circumstances under which the transition may fire. When fired,

the actions attached to the transition are executed. A transition without an explicit trigger event

is calleda completion transition. It is fired when the activities of its source state are completed

provided that its optional guard condition is satisfied. Aconcurrent transitionmay have multiple

source and/or target states. It represents a synchronization and/or a splitting of control into con-

current threads [85]. Anaction-expressionis a chain of actions, separated with a delimiter. An

action-expression must be an atomic, non-interruptible operation. Such an action-expression can

be attached to transitions, entry actions, exit actions, or internal transitions. The statechart dia-

gram in Figure 3.6 contains a simple transition with a label and an action, completion transitions,

concurrent transitions, an entry action, and and activity.

Figure 3.6: A statechart diagram with simple and concurrent transitions. Actionaction1 is exe-
cuted when transitione is fired. Entering stateFinalization, in turn, causes an entry actioncleanup
to be executed, after which an activityactivity1 is started.

Flat state transition diagrams have often been criticized for being impractical and ineffective for

modeling large systems. Harel introduces some concepts for raising the expressive power of state-

charts [40]. One of them is asuperstatenotation; a way to cluster and refine states. The semantics

of a superstate is anexclusive-or(XOR) of its substates; to be in a superstate an object must be in

exactly one of its substates. A superstate is drawn as a large rounded box enclosing all of its sub-

states. Transitions drawn to enter a superstate contour are entering the initial state enclosed inside
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the superstate. Transitions drawn to leave the superstate contour apply to any of its substates. An

example of state generalization by using the superstate notation is shown in Figures 3.7 and 3.8.

The information content of these state diagrams is the same (i.e., exactly same paths/event se-

quences can be found from them). Even these two small state diagrams give an idea of the benefits

of nesting states; it is a powerful tool against combinatorial explosion of transitions. UML stat-

echarts can be nested similarly. The contents of the superstate, which is calleda composite state

in UML, can also be shown as a separate statechart diagram. In that case, running the enclosed

statechart diagram is expressed as an activity. Collapsing the contents of statechart diagrams this

way provides extended means to keep the diagrams compact. Figure 3.9 shows such a high-level

statechart diagram constructed from the state machine in Figure 3.8.

Figure 3.7: A flat state diagram of a car transmission

Figure 3.8: A nested state diagram of the car transmission

32



3.4. STATECHART DIAGRAMS

Figure 3.9: A high-level statechart diagram of the car transmission

In addition to XOR composition of states, there is another way of structuring Harel’s statecharts,

namely AND decomposition. A state consisting of AND components is said to be anorthogonal

product of its components, meaning that being in such a state, the system must be in all of its AND

component subcharts. Hence, orthogonality is a way of representing independence and concur-

rency. Such a state is visually shown as a state box that is split into components using dashed

lines, each separated component representing one orthogonal component [40]. Transitions drawn

to enter a superstate contour are interpreted to enter the initial states of all enclosed orthogonal

statecharts. A transition drawn to leave the superstate contour applies to all the substates the sys-

tem is currently in. Figures 3.10 and 3.11 show two Harel’s statecharts both capturing the same

information; Figure 3.10 shows a flat statechart and in Figure 3.11 there is a state diagram with two

orthogonal components. The labelb(in G) of the transition from stateB to stateA in Figure 3.11

expresses conditionality: the transition is fired when an eventb occurs but only if the system is

in stateG of the orthogonal component. Similar notation is used in UML statechart diagrams

for expressing concurrency. If there is a completion transition drawn to leave from the contour of

such a decomposed state, the state is exited when all the subdiagrams have reached their final state.

In addition to UML statechart diagram concepts discussed in this chapter, the notation includes

history states, deep history states, junction states, joins, andsubmachine reference states. These

concepts are not reviewed in this dissertation.
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Figure 3.10: A flat statechart

Figure 3.11: A statechart that consists of two orthogonal components
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3.5 Activity diagrams

An activity diagram is a special case of a statechart diagram, in which the states are primarily

activity statesor action statesand in which all (or at least most) of the transitions are triggered by

the completion of an activity in the source states [95](p. 135). An activity state has an internal

computation and at least one leaving completion transition that fires on the completion of the

activity of the state. It should not have any internal or outgoing transitions that are based on

explicit events. An action state is atomic, i.e., it cannot be interrupted by transitions. In addition,

a way to nest activity diagrams usingsubactivity statesis introduced in UML [85]. A subactivity

state invokes another activity diagram. The subactivity state is not exited until the final state

of the nested diagram is reached, or when trigger events occur on transitions coming out of the

subactivity state. An activity diagram suites best for describing situations where all or most of

the events represent the completion of internally generated actions (i.e., for procedural flow of

control). An activity state is drawn as a shape with straight top and bottom and with convex arcs

on the two sides. There is no special notation for an action state. It is usually drawn as a ordinary

state. Figure 3.12 shows an example of an activity diagram.
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Figure 3.12: An activity diagram[85]
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Chapter 4

SCED

SCED has been developed to improve automated support for dynamic modeling in OO software

construction [56]. During the development of SCED, the OMT methodology [94, 90, 91] was

chosen as a guideline and notation basis. The diagrams used for dynamic modeling in OMT are

extended in UML. SCED diagrams are also extended from OMT ones, providing notations that

are semantically close to corresponding diagrams in UML. The graphical notation of the diagrams

differs, the reason being that SCED was developed during years the 1992 – 1995, while the earliest

version of UML, called Unified Method, was introduced in October 1995.

The name “SCED” comes from words SCenario EDitor, since the scenario editor part was imple-

mented first. This emphasizes one of the main ideas behind SCED: the dynamic modeling starts

with constructing scenarios. When a sufficiently complete set of scenarios exists, they are trans-

formed into a state diagram for desired participating objects. SCED was developed to be used in

forward engineering of object-oriented software systems, although the tool is usable also for other

kinds of modeling tasks with a scenario driven approach. In this dissertation, it is shown how

SCED can be used for reverse engineering purposes.

An overview of the implementation is presented next. The rest of this chapter introduces the sce-

nario and state diagram notations of SCED. The content of this dissertation relies heavily on the

proposed notations. For detailed information about SCED, the reader is referred to [55, 56, 57,
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67, 68, 69, 110].

SCED consists of two independent editors: a scenario editor and a state diagram editor. Most of

the user interaction is concentrated in these editors. The third part of SCED is a generator, which

is just a command activated part (i.e., it is not visible to the user). At any time during scenario

editing the user can select one participating object and ask the generator to synthesize a state di-

agram automatically for it. The synthesis can be done for one scenario only or for a specified set

of scenarios. In the latter case, the generator synthesizes each scenario that includes the selected

object. Moreover, scenarios can be synthesized to an existing state diagram. The resulting state

diagram is then editable using the state diagram editor. The state diagram synthesis algorithm is

discussed in Chapter 5 in more detail. The generator can also be asked to optimize a state diagram

by adding UML statechart diagram components to it. The optimization algorithms are described

in Chapter 6. Finally, some support for checking the consistency between a state diagram and

scenarios is available, as discussed in Section 4.2.

SCED was developed in and for the Microsoft Windows environment. The software can be run

under Windows NT and Windows 95/98. The tools that are being used for the development work

have been selected so that porting to Unix with OSF/Motif should be possible with moderate effort.

These tools, versions of which have been changed several times during the development of SCED,

are:

1. Borland C++ — C++ language compiler [31, 108, 109].

2. LEDA — Library of Efficient Data types and Algorithms[75]. Portable across wide range

of platforms.

3. wxWindows — GUI library [101]. Portable between MS–Windows, Windows NT, Motif,

Open Look.
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4.1 Dynamic modeling using SCED

SCED offers two diagrams for dynamic modeling: a scenario diagram and a state diagram. Sce-

narios and state diagrams are editable. The editors are typical direct manipulation editors with a

graphical user interface. In Sections 4.1.1 and 4.1.2 scenario diagram and state diagram notations

of SCED are presented, respectively. In addition, the differences between the SCED scenario dia-

gram notation and the UML sequence diagram notation are discussed. Similarly, the SCED state

diagram notation is compared with the UML statechart diagram.

4.1.1 Scenario diagrams

A scenario diagram in SCED corresponds to a sequence diagram UML. In SCED participating

objects/classes of a scenario are calledparticipants. A participant is drawn as a vertical line and its

name is written above the line. Events sent from one participant to another are drawn as horizontal

arcs between participant lines. As in UML, the basic MSC notation has been extended in various

ways in SCED; additional constructs are allowed in order to make scenarios more expressive,

compact, readable, and precise as depicted in Figure 4.1. Such constructs are:

1. an action box,

2. an assertion box,

3. a state box,

4. a comment box,

5. a conditional construct,

6. a repetition construct, and

7. a subscenario.

When modeling an object interaction, it is often necessary to present also other actions than events.

At some point, an object may perform arbitrary computations without sending a message. For such
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actions anaction boxcan be placed at a desired vertical position, attached to the owner participant.

An action box can also be used to show an event for which the receiver remains undefined, or an

event that is received by the sender itself. Action boxes are drawn as rectangles.

Conditions that are known to hold for a particular object at certain positions in a scenario can be

expressed using anassertion box. The notation of an assertion box follows the CCITT scenario

notation standard [13] (currently called ITU [49]). Corresponding to an action box, an assertion

box can also be used to denote an event for which the sender remains undefined. The generator

interprets an action box like a sent event and an assertion box like a received event when synthe-

sizing a state diagram for the participant. A third kind of box associated with a single participant

is a state box. A state box gives a name to a particular situation in a scenario from the point of

view of a certain participant (i.e., the name of the state of an object at that situation). In addition to

a design aid, state boxes can also be used for technical reasons to guide the state diagram synthe-

sis process. The principles concerning the use of these state names during the synthesis process is

described in Chapter 5 in more detail. State boxes are drawn as stretched hexagons (cf. Figure 4.1).

In forward engineering, conditions in assertion boxes might be given (e.g., in terms of the attribute

values of an object). The usage of state boxes is sometimes convenient for the designer to express

her assumption that an object should be in an identifiable state in a particular time position of a

scenario. When applying SCED for dynamic reverse engineering of Java software state boxes are

used to identify branching points in the execution, that is, locations of conditional structures (e.g.,

an if statement) in the software (cf. Section 8.4.2). Assertion boxes are used to express the path

taken as a result of testing such a condition (e.g., whether the condition in theif statement yielded

true or false). Action boxes are used to indicate an internal method call of an object.

Action, assertion, and state boxes are all attached to one participant only. Next we introduce con-

structs that concern several participants at the same time. First, acomment boxcan be stretched

over (and concerning) several participants. Comment boxes are drawn as rounded rectangles in-

cluding editable plain text. Comments have no effect on the synthesis process (i.e., a comment
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Figure 4.1: SCED scenario diagram notation

41



4.1. DYNAMIC MODELING USING SCED

written in a scenario cannot be seen in a state diagram after the synthesis process).

To support the presentation of a use case as a single scenario diagram, the scenario notation in

SCED has been extended with algorithmic constructs to express conditionality and repetition. A

certain object can, however, be involved in several use cases. Hence, such algorithmic scenarios

are full specifications for use cases but (usually) not for objects. With a conditional construct the

designer may separate sequences of events that occur only under certain circumstances. A con-

ditional construct consists of two rectangles and a bent line connecting them. A keyword “if” is

associated with the first rectangle specifying the beginning of the construct. The designer specifies

the condition after the word “if”. A keyword “end” is associated with the end part of the construct,

after which the condition in brackets is automatically inserted. A repetition construct is drawn like

a conditional construct, the only difference being that the keyword “repeat” is used instead of “if”.

The graphical notation of conditional and repetition constructs is shown in Figure 4.1.

Algorithmic scenarios can be interpreted as sets of ordinary scenarios. The interpretation is shown

in Figure 4.2. Note that in the case of repetition the number of iterations (and therefore the number

of scenarios) is potentially infinite, but the repetition construct can nevertheless be represented

making use of the state box; after evaluating the loop expression and executing the body, the par-

ticipant will be in the same state as before entering the loop. Hence, the participant will be able to

re-execute the loop infinitely. The synthesizer reads algorithmic constructs recursively, since they

can be arbitrarily nested (cf. Section 5.2).

Analogously to subroutines, a scenario may consist of parts that have their own aims and charac-

terizations. For instance, a scenario describing the usage of an ATM might include event sequences

like “checking a card” or “giving a correct password”, for which one can construct separate sce-

nario diagrams and then just “call” these scenarios using asubscenario boxinstead of repeating

their contents. The subscenario box notation has been adopted to SCED in order to make scenarios

easier to read and write, and to simplify and to structure them. A subscenario box is drawn as a

rectangle stretched over all participants. It can be placed at any vertical position in a scenario. Af-
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Figure 4.2: Dissolving conditional and repetition constructs into simple scenarios
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ter creating a subscenario, a key word “Subscenario:” appears in the upper left corner of the box,

after which the designer can write the file name of the subscenario. Semantically, a subscenario

box is a shorthand notation for including the contents of the referred scenario to the position of the

subscenario box.

The participants of the subscenario can be different from those of the host scenario. Hence, a

subscenario box is especially useful if the subscenario requires objects that are not needed for the

rest of the scenario: the host scenario becomes smaller both in vertical (event sequence) and in

horizontal (participants) direction. Structuring scenarios using subscenario boxes helps the user

to understand the contents of the scenario set. In forward engineering, the designer can divide

scenarios into logical units by using subscenarios that have clear, intuitive meaning. These units

can then be modified (refined) afterwards separately, if needed. In dynamic reverse engineering,

subscenarios have been used to view behavioral patterns found by string matching algorithms (cf.

Section 8.5). If the pattern is repeated several times in a row, a repetition construct is used in-

stead. The generator handles subscenarios recursively, since subscenarios can naturally include

other subscenarios.

The SCED scenario diagram notation is not as rich as the UML sequence diagram notation (cf.

Figures 3.3 and 3.4). For example, there is no way to express object deletion in SCED scenario

diagrams. It can only be said that a certain participant is no longer needed, if after a certain point

there are no more scenario items attached to it. Furthermore, there is no corresponding notation

to recursion nor activation of a participant. The creation and the deletion of an object can be

expressed using an event with an appropriate label. For example, when applied for reverse engi-

neering of Java software (cf. Section 9.3.5), an event of type< init > (. . .) is generated when

an object is created (i.e., the invocation of a constructor). Recursion can be expressed using a

repetition construct (or in some cases a subscenario). Fork of control, in turn, can be expressed

using a conditional construct or assertion boxes. However, an else-part of a conditional construct

is not implemented in SCED. To express anif-elsestructure the designer needs to construct two

scenarios: one with a conditional construct expressing theif part and another expressing theelse
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part. Table 4.1 enumerates the UML sequence diagram constructs and either the corresponding

SCED scenario diagram construct or constructs that can be used in SCED scenario diagrams for

expressing the meaning of the UML sequence diagram construct in question.

A UML sequence A SCED scenario Correspondence
diagram construct diagram construct

synchronous message synchronous event full
asynchronous messageasynchronous event full
return from
procedure call missing from SCED
self event an action box full
object participant full
activation of an object missing from SCED
conditional branching conditional construct partially replacing
creation of an object an event with replacing

a specific label
deletion of an object an event with replacing

a specific label
recursion missing from SCED
marked iteration repetition construct can be replaced

in UML
a comment a comment box full
a constraint an assertion box partially replacing

a subscenario box missing from UML

Table 4.1: UML sequence diagram constructs and either the corresponding SCED scenario dia-
gram constructs or constructs that can be used in SCED scenario diagrams for the task in question.
The correspondence is characterized as “full”in the former case, “replacing” in the latter case, and
“missing” if either of the notations contains constructs that cannot be expressed with the other.

In addition to UML and SCED, restricted forms of algorithmic scenario notations have been ap-

plied by Portner [78] and De Pauwet al. [27]). Notation constructs that correspond to SCED

subscenarios and assertions are included, for example, in the Life Sequence Charts (LSC) nota-

tion [24]).

4.1.2 State diagrams

The SCED state diagram notation does not contain all the notation constructs included in UML.

Furthermore, some of the constructs have slightly different meaning.
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A state in a SCED state diagram represents a particular point reached in a computation. The

definition of a state in UML includes this interpretation: a state in a UML statechart diagram is a

condition or situation during the life of an object during which it satisfies some condition, performs

some activity, or waits for some event [95]. A commonly used definition of a state characterizes

a state as an abstraction of a particular combination of the attribute values and links of the object.

This definition is used by OMT [94]. The somewhat vague interpretation of a state in UML accepts

this definition, but not the interpretation used in SCED. There are several reasons for that. First,

by states and transitions in a SCED state diagram we indeed intend to describe how the object

can get to a certain state and to which events it may respond while being in that state. Second, as

described in Chapter 5, states of a participating object are defined by events the object sends and

is able to receive, not by its attribute values and links. Third, by adding advanced UML constructs

to a state diagram, the size of the state diagram can be decreased in terms of the number of states,

as described in Chapter 6. This is basically done by removing states that are entered automatically

without receiving any external stimulus. Again, only an interpretation of a state that is based on

events allows this.

The SCED state diagram notation does not include activities that can be interrupted by an event.

State diagrams are (usually) generated automatically on the basis of information given in scenar-

ios (cf. Chapter 5); actions and transitions are named according to events appearing in scenarios.

When synthesizing a state diagram, the generator has no way to conclude which events corre-

spond to instantaneous actions and which ones to continuous or sequential activities. The question

is highly semantical and there is no means to specify the duration of an event in SCED scenario

diagrams. Nonetheless, if interruptible events and activities were included in SCED scenario and

state diagram notations, hardly any changes would be necessary to either state diagram synthesis

or the following optimization algorithms. Only few additional constraints would be needed, as

described in Section 5.2 and in Chapter 6.

Several normal actions (denoted with a keyword “do:”) placed in a single state in a SCED state
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diagram are executed in succession. Furthermore, all the actions, except possibly the last one, are

executed without an interruption by any event. There are two reasons for this interpretation. First,

the information of a synthesized state diagram is read directly from scenarios that contain only

sequential information. Second, the execution of the actions is not interruptible due to the way

actions can be “packed” into a single state (cf. Section 6.2).

Expressions and interpretations of entry actions, exit actions, and actions attached to transitions

are similar in SCED and UML. Furthermore, they may all include an action-expression instead of

a single action the same way as in UML. The delimiter used in SCED state diagrams is a comma.

An internal transition in UML, however, differs slightly from the interpretation of aninternal ac-

tion in SCED. In UML, an internal transitione/actof a states is interpreted as follows: if evente

occurs, actionact is executed but neither entry- nor exit actions ofs. This applies to a correspond-

ing internal action in SCED as well. In addition, in UML the execution of possible activities ofs

is not interrupted by the execution ofact. A following interpretation is used in SCED instead: all

normal actions ofs are executed (in a row) after the execution ofact. Reasons for these interpre-

tations are discussed in Sections 6.2 and 6.4 in more detail.

In UML, states may have substates. Adopting the composite state construct to SCED state dia-

grams is desirable because of its ability to outline the structure of state diagrams and to decrease

the number of transitions needed. In SCED, a combination ofsuperstatescan be generated for a

flat state diagram [110]. Superstates may have entry and exit actions but not normal nor internal

actions. The layout algorithm of SCED does not currently show the superstates generated.

Perhaps the most fundamental difference between UML statecharts and SCED state diagrams is

the fact that SCED state diagrams do not have a notation for concurrency. Interruptible activities

are not supported by SCED. This, together with the state diagram synthesis and state diagram

optimization algorithms, results in a state diagram in which states are defined either by a single

action or by several actions that are executed in succession. Particularly, an object is always in a

single state. In UML state diagrams, a state is a product of states of its concurrent components, if
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any exist. In order to be able to synthesize states that have concurrent components in SCED, there

should be a way to link scenarios or participants so that states could be able to recognize their

aggregates.

The main UML statechart diagram constructs have been presented in Section 3.4. Most of those

constructs are supported by SCED. Table 4.2 enumerates UML statechart diagram constructs and

the corresponding SCED state diagram constructs.

A UML statechart A SCED scenario Correspondence
diagram construct diagram construct

a normal state a normal state partial
a state name a state name full
an initial state an initial state full
a final state a final state full
a transition a transition full
activity missing from SCED

normal action missing from UML
an action-expression an action-expression full
an entry action an entry action full
an exit action an exit action full
actions attached actions attached full
to transitions to transitions
an internal transition an internal action partial
a guard condition a guard full
nested states nested states partial
concurrent substates missing from SCED
constraints missing from SCED
a history state missing from SCED
a deep history state missing from SCED
a junction state missing from SCED
a submachine missing from SCED
reference state
a join missing from SCED

Table 4.2: UML statechart diagram constructs and the corresponding constructs of SCED state
diagrams. The correspondence is characterized as “full”, “partial”, or “missing”, an in Table 4.1.
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4.2 Examining the models

SCED provides tools that can be used to examine the structure of a state diagram in various ways,

tools for checking consistency between scenario diagrams and state diagrams, and tools for chang-

ing a state diagram on the basis of scenario diagrams synthesized to it. Such an automated support

is useful since both of the diagram types are editable.

Several tools have been implemented to SCED for examining various structural aspects of a state

diagram. One of them can be used for finding states that are non-deterministic. A state is non-

deterministic if two similarly labeled leaving transitions enter different states. Non-determinism

also occurs if the event triggering an internal action is the same as a label of a leaving transition.

In these cases there is no unique interpretation or response to a received event. SCED also imple-

ments algorithms that can be used to detect reachability of states. In a properly constructed state

diagram there may only be one initial state but several final states. An initial state as well as final

states are added by the designer. For helping the designer to add final states to the state diagram,

SCED provides a tool for finding all states from which no event may cause a state change (i.e.,

states that have no leaving transition attached to them). The final states should probably be entered

from these states. If not, the algorithm at least points out the parts of the state diagram that need

further revision. Finally, an algorithm can be used for finding states that can never be reached from

the initial state.

Some automated tools are offered for helping the designer to detect inconsistencies between sce-

nario diagrams and a state diagram. For example, a tool is provided for running a scenario against

a state diagram. The corresponding path is highlighted in the state diagram. If a scenario is no

longer accepted by the state diagram, another tool can be used for showing the exact point in which

the scenario becomes invalid.

SCED provides various tools for changing a state diagram on the basis of scenarios synthesized

to it. As a counterbalance to the incremental state diagram synthesis, SCED offers a tool for

desynthesizing scenarios out of the state diagram. Just as the synthesis algorithm, the desynthesis
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algorithm leaves user editions untouched. Furthermore, a state can be split into two or more states

so that the resulting state diagram is still consistent with scenarios. This tool is provided since the

synthesizing algorithm is eager to join states, which may result in an undesirable state join. An

equally important feature to a split operation is a merge operation. The user may merge several

states into a single one if all of the states are exactly similar, that is, they have the same actions and

state names. The merge may yield to a nondeterministic state. Such a situation could be handled in

two different ways: the merge could be denied or distinguishing guard conditions could be added

to identically labeled leaving transitions in order to avoid the nondeterminism. In SCED the latter

principle is supported.

4.3 Summary

SCED is a dynamic modeling tool that uses OMT as a notation basis. The rather rudimentary OMT

scenario diagram notation has been extended in various ways in SCED. The extended SCED sce-

nario diagram notation is semantically similar to the UML sequence diagram notation [95, 85]

but it follows the CCITT standard [13] (currently called ITU [49]). The SCED scenario diagram

notation lacks some UML sequence diagram constructs. Most of them can be replaced by other

SCED scenario diagram constructs. Scenario diagrams can be nested in SCED using subscenario

boxes. Subscenario boxes are powerful constructs to emphasize behavioral patterns, hence simpli-

fying and structuring the scenarios. Such a construct is lacking from UML sequence diagrams. A

subscenario construct is also adopted by other tools (e.g., TED [121]).

The most significant difference between UML statecharts and SCED state diagrams is the fact that

SCED state diagrams do not have a notation for concurrency. Some other UML statechart diagram

constructs are missing from SCED state diagrams as well. SCED does not support other behav-

ioral UML models.

In this dissertation, SCED is used to support dynamic reverse engineering of Java software sys-

tems. The dynamic event trace information is visualized as SCED scenario diagrams. The object

interaction of both single and multi-threaded programs can be shown as scenario diagrams. The
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overall behavior of one object or a method can be depicted as a state diagram, using the state dia-

gram synthesis feature of SCED.
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Chapter 5

Automated synthesis of state diagrams

In this chapter we discuss algorithms to synthesize a state diagram automatically from a set of

scenario diagrams. This technique allows the engineer to examine the total behavior of an object

as a single model, disconnected from the rest of the system. The presented algorithms have been

implemented in the SCED tool.

In UML-based behavioral modeling, sequence diagrams are usually given first for “normal” cases,

and then for various cases representing “exceptional” behavior. When a sufficiently complete set

of sequence diagrams exists, statechart diagrams are constructed for desired participating objects.

Not all objects usually need a statechart diagram. For some of them it would not even be meaning-

ful or sensible to form one (e.g., for actors outside the system border). In addition, some objects

have such a trivial behavior that constructing a statechart diagram for them would not give any

useful information to the designer. Furthermore, a sequence diagram often contains participants

that do not even represent objects (e.g., the actual end user).

A sequence diagram and a statechart diagram share common information, both of them describing

dynamic aspects of a system. Consequently, a sequence diagram contains information not included

in a statechart diagram, and vice versa. While a sequence diagram shows an example of commu-

nication among objects, a statechart diagram describes the total behavior of a single object.
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A basic observation behind SCED is that the synthesis of a state diagram on the basis of given

scenarios can be carried out automatically. The basic synthesis algorithm used has been presented

by Biermann and Krishnaswamy [7], and its adoption to state machine synthesis from scenarios

is discussed by Koskimies and Mäkinen [54]. The Biermann-Krishnaswamy algorithm (hereafter

BK-algorithm, for short) and the way it is applied in SCED are presented next. The notation

and principles used closely follow those in [7] and [54]. Finally, some criticism and remarks

concerning the state diagram synthesis are presented.

5.1 The BK-algorithm

Biermann and Krisnashwamy present their algorithm (BK-algorithm)for synthesizing programs

from their traces [7]. The idea is that the user specifies the data structures of a program and de-

scribes (graphically) its expected behavior in the case of an example input in terms of primitive

actions (like assignments) and conditions that hold before certain actions. Essentially, the user

gives traces (i.e., sequences of actions and conditions) of the expected program, and the algorithm

produces the smallest program that is capable of executing the given example traces. Moreover,

after giving some finite number of example traces taken from a program, the algorithm produces

a program that can execute exactly the same set of traces as the original one, that is, the algorithm

learns (or infers) an unknown program. Before discussing the principles of the BK-algorithm and

studying its properties, it is necessary to introduce the notation used and definitions related to it.

A computation consists of condition-instruction pairsrt = (ct, it) being executed at discrete times

t = 1, 2, . . . . Instructionit operates on memory contentsmt−1 resulting in a new memory con-

tentsmt; this is denoted bymt = it(mt−1). Branching is made possible by using conditions that

are (possibly empty) conjunctions of atomic predicates or their negations. The value of condition

ct on memory contentsmt−1 is denoted byct(mt−1). The value of the empty conditionφ is true.

The validity of conditionct is checked before instructionit is executed.

Instructions available are denoted byI0, I1, I2, . . . , Iz, andIH , whereI0 denotes the start instruc-

tion andIH is the halt instruction. Every program has exactly one occurrence ofI0 and usually
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one occurrence ofIH . An instruction may appear several times during a computation. The appear-

ances are separated by labels. For example, the appearances ofI1 are labeled by1I1, 2I1, 3I1, . . . .

A partial trace Tof a computation is a(2n + 1)-tuple

T = (m0, r1, m1, r2, m2, . . . , rn, mn),

where, for eacht = 1, 2, 3, . . . , n, we have

rt is a condition-instruction pairrt = (ct, it),

mt = it(mt−1),

ct(mt−1) is true, andc1 = φ.

A trace is a partial traceT = (m0, r1, m1, r1, . . . , rn, mn) with the additional requirements that

r1 = (φ, I0) andrn = (cn, IH). An incomplete program Pis a finite set of triples of the form

(qj , ck, qe), where eachqj andqe is a labeled instruction andck is a condition, and where the fol-

lowing restriction holds:

If (q, c, q′) ∈ P and(q, c′, q′′) ∈ P and there existsm such thatc(m) = c′(m) = true,

thenc = c′ andq′ = q′′.

Thus, an incomplete program is a finite set of labeled instructions connected by triples ortransi-

tionswhich are all associated with a particular condition. A transition is executed if its condition

is true. Moreover, an incomplete program is deterministic (i.e., no two applicable transitions can

ever be simultaneously satisfied).

A programis an incomplete program with the additional requirements that

1. Each program has exactly one start instruction, namely1I0,

and(1I0, c, q) ∈ P , for somec andq.
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2. If there is a transition(q, c, p), where c is a non-empty condition, then there must also

be transitions fromq for every possible combinations of the atomic predicates and their

negations presented inc.

Programs can be illustrated as directed graphs with instructions as nodes and transitions as edges.

Edges are labelled with conditions. So, empty conditions correspond to unlabelled edges. Fig-

ure 5.1 illustrates a program with transitions

(1I0, φ, 1I1), (1I1, {a}, 2I1), (2I1, φ, 1I2), (1I2, φ, 1I1), and(1I1, {¬a}, 1IH).

1I0

?

1I1

?

{a}

2I1�1I2

- 1IH-{¬a}

Figure 5.1: Program P = {(1I0, φ, 1I1), (1I1, {a}, 2I1), (2I1, φ, 1I2), (1I2, φ, 1I1),
(1I1, {¬a}, 1IH)}.

A Java version of the program in Figure 5.1 could be written as shown in Figure 5.2.

The input of the BK-algorithm is a set of traces from which the algorithm infers a program con-

sistent with the traces. The algorithm defines a minimum labeling for instructions given in these

input traces. This means that the number of different instances of an instruction in the result-

ing program, and hence the number of nodes in the directed graph illustrating the resulting pro-

gram, are minimized. Consider two labelings of n instructions, sayU = (u1, u2, . . . , un) and
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public classX {
· · ·
public void exampleMethod(){

I0();
I1();
while (a){

I1();
I2();
I1();

} IH();
}

· · ·

Figure 5.2: A Java version of the program in Figure 5.1.

V = (v1, v2, . . . , vn). We denoteU < V , if there isj, 1 ≤ j ≤ n, such thatui = vi, for

i = 1, . . . , j − 1, anduj < vj . Let k be the number of different instances of instructions in the

corresponding program (i.e.,k is the number of nodes in the directed graph that represents the

program). The rank of labelings is defined for pairs of the form(k, U). If (k, U) and(k′, U ′) are

two such pairs, we denote(k, U) < (k′, U ′) if k < k′ or if k = k′ andU < U ′. Hence, one starts

with a pair(1, (1, 1, . . . , 1)) and enumerates all the pairs (k, labeling) in increasing order, until

a pair that defines an incomplete program is found. This process will always halt, since the pair

(n, (1, 2, . . . , n)) defines a linear program with no branching or loop.

As an example, consider the trace

(m0, (φ, I0), m1, (φ, I1), m2, ({a}, I1), m3, ({a}, I2), m4, (φ, I1), m5, ({¬a}, IH), m6).

Since the trace contains four different instructions(I0, I1, I2, IH) it is useless to try values less

thank = 4. The only possible labeling withk = 4 is (1, 1, 1, 1, 1, 1). This labeling would give

transitions

(1I0, φ, 1I1), (1I1, {a}, 1I1), (1I1, {a}, 1I2), and(1I1, {¬a}, 1IH).
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This set of transitions contradicts the requirements of determinism (transitions(1I1, {a}, 1I1) and

(1I1, {a}, 1I2)). Hence, we setk = 5. Labeling(1, 1, 1, 1, 2, 1) implies nondeterminism as well,

but labeling(1, 1, 2, 1, 1, 1) gives the program illustrated in Figure 5.1.

We say that a programP canexecutetrace

(m0, (c1, i1), m1, (c2, i2), m2, . . . , (cn, in), mn)

if there is a labeling(u1, u2, . . . , un) such that(ujij , cj+1, uj+1ij+1) is a transition inP and

cj+1(mj) is true, for eachj = 1, 2, . . . , n. Biermann and Krishnaswamy [7] have proved the

following: given a set of traces, the program inferred by the BK-algorithm, principles of which are

given above, can execute all input traces. Moreover, ifP is any program whose traces are given

as input, then the BK-algorithm identifiesP , which has the minimal number of different instances

of instructions (i.e., the directed graph illustrating the resulting program has a minimal number of

nodes).

5.2 Applying the BK-algorithm to state diagram synthesis

From the point of view of the particular object, similarities between the concepts of a scenario and

a trace (the input of the BK-algorithm) can be found. There is also a correspondence between a

state diagram and a program (the output of the BK-algorithm). Due to the similarities, the BK-

algorithm can also be applied to state diagram synthesis. However, the relation is not trivial. The

fundamental difference between programs and state machines is that a program (in the sense of

the BK-algorithm) is a self-contained process, which needs no external stimuli, while the whole

purpose of a state machine is to describe the behavior of an object in the presence of external

input. In other words, programs are more complete than state machines. Hence, for a program,

the flow of control is fully determined by the program itself, but for a state machine the flow of

control depends on the sequence of events sent by some process that is in principle unknown [54].

The notation and algorithms presented in this section are based on those given by Biermann and
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Krisnashwamy [7] and by Koskimies and Mäkinen [54].

First, let us consider the relations between the concepts of a trace in the BK-algorithm and events in

UML. In UML, a (received event, sent event) pair acts in the same role as a (condition, instruction)

pair in the BK-algorithm. A received event corresponds to an operation call on the object, causing

the object to react, that is, it sends an event to some object(s) (possibly also to itself). Similarly, in

the notation of the BK-algorithm, if at timet conditionct is observed to be true, an instructionit

will be executed. Hence, a program trace corresponds to a vertical object line in a scenario: each

sent event corresponds to an instruction, and each received event to a condition. In the resulting

state diagram the names of sent events are shown as actions inside states, and names of received

events are shown as names of transitions. In SCED, action boxes can be used to represent events

that are received by the sender object itself (e.g., calls for object’s own operations). Thus, action

boxes of the object are treated like sent events.

Figure 5.3 shows two SCED scenario diagrams that represent different example runs through

methodexampleMethodin Figure 5.2. A trace constructed by reading the scenario items ofX

in scenario diagramsexample 1andexample2correspond to the trace in Figure 5.1.

With the interpretation above, states will be defined by their actions after the synthesis in SCED.

Hence, the state represents a period of time, during which an object possibly sends an event and

is waiting to receive one that causes a transition to another state. In UML, a state is defined as a

condition or situation during which it satisfies some condition, performs some activity, or waits

for some event [95]. The interpretation of a state in SCED thus satisfies this somewhat vague

definition of a state in UML. An activity is defined as an execution of substructure within a state

machine, that is, a substructure that has duration with possible interruption points [95] (p. 133).

An action, in contrast, is defined as an executable atomic computation, which cannot be terminated

externally [95] (p. 122). Actions can be associated with several other keywords (cf. Chapter 3).

In a synthesized SCED state diagram, however, the keyword “do:” is associated with actions that

correspond to sent events in scenarios. It is assumed in SCED that the events often refer to in-
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Figure 5.3: Two SCED scenario diagrams that represent different example runs through method
exampleMethodin Figure 5.2

stantaneous operations, or at least operations that need to be completed without interruption. This

assumption is especially justified when SCED is applied for reverse engineering. The scenario di-

agrams in that case show the method calls between objects. The execution of a method is typically

not interrupted, except possibly by a thrown exception.

The meaning of the absence of a condition in BK-algorithm and the absence of a trigger in a

transition differ as well. In programs of the BK-algorithm the absence of a condition means that

either no test was made or a test was made and it yielded “false” [6] (p. 123). So, if a particular

instruction in a program of the BK-algorithm has several leaving transitions, an unlabeled transi-

tion and others labeledC1, C2, . . . , Ck, an unlabeled transition is fired if none of the conditions

C1, C2, . . . , Ck is “true” [6] (p. 123). In a UML statechart diagram, acompletion transition(i.e.

a triggerless transition) without a guard is implicitly triggered on the completion of any internal

activity in a state [95] (p. 479). UML allows a completion transition without a guard and a tran-

sition with an event trigger to be attached to a same state as leaving transitions, although it is not
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common practice. However, if the activity in the state was an instantaneous one (i.e., an action),

then the labeled transition would never get a chance to fire. In case of an activity that takes time

to complete, the transition with the event trigger fires only if the object receives the event before

completing the activity.

In SCED, the duration of actions is not defined. Suppose that there are two consecutive sent events,

saya andb, in a scenario diagram. The synthesized state diagram will then have one state (say

s1) with actiona, another state (says2) with actionb, and an unlabeled transition froms1 to s2.

It is assumed in SCED thata represents an instantaneous action, or at least, is completed without

interruption of any event. If we alloweds1 to also have a labeled transition as a leaving transition,

such assumptions about the duration ofa could not be made. In SCED the interpretation of an

unlabeled transition is closer to a completion transition of UML than an unlabeled transition of

the BK-algorithm: an unlabeled transition in SCED is interpreted to be fired immediately after

the action of its source state is completed. In contrast to UML, the synthesis algorithm does not

allow a state to have both unlabeled and labeled transitions as leaving transitions. To emphasize

the difference of the interpretation of the absence of a label of a transition between SCED and

UML, unlabeled transitions are calledautomatic transitionsin SCED.

Since transitions may also have guards, the restriction for a state join during the synthesis was

modified to the following form: a state cannot have both an automatic transition and a labeled

transition as leaving transitions if these transitions have the same guards or they are both un-

guarded. The algorithm processes guards as strings. Hence, only guards that are written exactly

the same way are considered to be the same. This means that there is no way in SCED to guar-

antee that exactly one transition may fire while being in a certain state; not only because there is

no way to inspect the semantic meaning of guards but also because synthesized state diagrams are

not complete as explained above. This contradicts a rule used in the BK-algorithm, which requires

that there always must be exactly one transition condition satisfied until the halt is reached [7].

A concept corresponding to a trace in the BK-algorithm is defined next. LetSbe a SCED scenario

60



5.2. APPLYING THE BK-ALGORITHM TO STATE DIAGRAM SYNTHESIS

that has an instance of classC as a participating object. A special event calledvoid is defined

to represent an event that never occurs. Eventvoid will not be seen in a state diagram but it is

needed in order to handle the end of the trace correctly. Atraceis a sequence of triples(e1, e2, s),

wheree1 is either empty or a label of a scenario element inS, e2 is void, empty, or a label of a

scenario element inS, ands is an additional string (empty or a label of a state box inS) defining

the name of the state, in whiche1 may be an action. The trace originating from scenarioSwith

respect toC is incrementally updated by using the following algorithm. Note that the trace may

or may not be empty; the information given byS is nevertheless added to the current trace. It is

assumed that all scenario items (events, action boxes, state boxes, assertion boxes, if-constructs,

repeat-constructs, and subscenario boxes) are in top-down order. A scenario itemp points to the

current scenario item. This concept is needed because of recursive calls for the routinefillTrace.

When callingfillTrace for a whole scenario so that all scenario items (from the beginning) will be

added, scenario itemp points to NULL.

Algorithm 1. Filling a trace.

Input: A scenarioSwith an instance of classC as a participating object, and a scenario item

p.

Output: TraceT originating fromSwith respect toC.

Method:

fillTrace(S,p)

Consider a vertical line corresponding to the instance of classC object.

Let Sc be a sequentially ordered list of those scenario items inS that concernC.

if p is NULL then

Let p be the first scenario inSc.

while p is not NULL do

Let e (if any) be the name ofp.

casep is

1: a sent event or an action box
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if the previous scenario item was a state boxthen

Let i = (e1i, e2i, si) be the last item inT.

e1i := e.

else

Append item(e, NULL, NULL) to T.

2: a received event or an assertion box

if the previous scenario item was a sent event, an action box, or a state box

then

Let i = (e1i, e2i, si) be the last item inT.

e2i := e.

else

if p is an assertionthen

Add brackets arounde (e.g.“[eventname]” ).

Append item(NULL, e, NULL) to T.

3: a state box

Append item(NULL, NULL, e) to T.

4: a subscenario box

Find scenarioS′ corresponding to the label of the subscenario box.

if S′ is foundthen

fillTrace(S′, NULL).

5: the beginning part of an if-construct or a repeat-construct

// Items of the current scenarioS are added twice

// representing two cases: one for the case where the

// condition is true (i.e. the items of the construct are

// read), and another for the case where the condition
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// is false (i.e. items of the construct are skipped).

if the construct is not emptythen

// Read items of the construct:

Appendic = (NULL, ”[” + e + ”]”, ”TEST” + e) to T.

// ’+’ indicates a concatenation of strings.

Get the next scenario itemp′.

fillTrace(S, p′).

Let i = (e1i, e2i, si) be the last item inT.

e2i := void.

// Skip items of the construct:

Up to ic, append duplicates of those trace items in T that has been added

during the current call offillTrace.

Let i = (e1i, e2i, si) be the last item inT.

Negate the guard ofe2i, i.e. add a string ”NOT” if it does not already con-

tain it, otherwise remove ”NOT”.

Jump to the item following the end-part of the construct.

6: the end part of an if-construct

// Do nothing.

7: the end part of a repeat-construct

Append item(NULL, ”[NOT” + e + ”]”, ”TEST” + e) to T.

// It is assumed here thate does not contain brackets, if it

// does, they are removed first.

end // case

Let p be the next scenario item inSc, or NULL if all items in Sc are handled.

end // while

Let i = (e1i, e2i, si) be the last item inT.

e2i := void.
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After the execution of routinefillTrace, the event part of the last trace item, saye in (f, e, s), is set

to bevoid. This is done in order to specify the end of the scenario. Note that this is also done after

each recursive call of routinefillTrace.

Algorithm 1 can also be used when synthesizing operation descriptions from scenarios (instead of

a state diagram). An operation call for an object is shown with an arriving call arc in a scenario.

The corresponding return from the operation is shown with a leaving arc. All the leaving arcs

between them are internal calls of operations of other objects, and all arriving arcs are returning

counterparts of these calls. Hence, the trace of the operation call consists of the internal calls

shown by leaving arcs. Operation synthesis does not cause any major extensions to Algorithm

1; only the scenario items to be read vary. In operation synthesis, instead of all scenario items,

only items between the operation call and the corresponding return value are read. When calling

thefillTrace routine the parameterp should point to the operation call. The corresponding return

value arc can easily be found (the problem can be considered as a problem of finding the closing

parenthesis). The operation synthesis is discussed by Koskimieset al. in more detail [57].

From the point of view of a state diagram, a trace item(e1, e2, s) means that the execution has

reached a states that has an action “do:e1” and a leaving transition labeled bye2. If e1 is NULL,

the do-action is missing. Ife2 is NULL, the leaving transition is an automatic transition. Note

that they both cannot be missing. Ife1 or e2 is not missing, there is a corresponding leaving or

arriving arc in a scenario. To simplify the presentation, a receiver of a sent event and a sender of a

received event are not specified. It is assumed that the event name uniquely determines the receiver

(the sender, respectively). This is true in most cases, but not necessarily always. For example, the

same event can be received by (respectively, sent to) several object. In such cases, the name of

the receiver (the sender, respectively) is simply appended to the name of the event (e.g., “e TO

object1” or “e FROM object2”).

Note that we essentially unify the concepts of an action and an event; from the receiver’s point
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of view an arc in a scenario denotes an event, while from the sender’s point of view an arc in a

scenario denotes an action. Event arcs in scenarios may have guards associated to their names.

Such guards can and should be associated to transitions but not to actions. Hence, Algorithm 1

cuts the guards off if the event is a sent one, but leaves them for received events.

The state name parts in the trace item triple(e1, e2, s) is used in the synthesis algorithm given

below. The algorithm gives the minimal state machine with respect to the number of states. How-

ever, this is not always what the designer wants. By giving state name boxes in scenarios the user

may force the synthesis algorithm to separate states that would otherwise be merged. These state

names can be seen in the resulting state diagram. If no state name boxes are given, no state in the

resulting state diagram has a name.

We now proceed with a description of our state machine synthesis algorithm [54]. For that purpose

we introduce selected definitions and terms. The concatenation of traces is defined in an obvious

way. If

T1 = (a1, e1, s1) · · · (am, em, sm)

and

T2 = (a′1, e′1, s′1) · · · (a′n, e′n, s′n)

are traces, thenT1T2 is a trace

(a1, e1, s1) · · · (am, em, sm)(a′1, e′1, s′1) · · · (a′n, e′n, s′n).

A state machineM is defined as a 5-tupleM = (S, E, A, d, p), whereS is a set of states,E is a

set of events,A is a set of actions,a transition relationd is a partial functiond : S × E −→ S,

andan action relationp is a partial functionp : S −→ A. The transition relation defines the next
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state on the basis of the current state and the event. The transition defined by a partial function

d(s1, e) = s2 is denoted as a triple(s1, e, s2). The resulting state machine is deterministic, since

the partial functiond uniquely determines the next state. The action relation associates one (pos-

sibly empty) action with every state.

The algorithm given below is able to synthesize scenarios into a state machine incrementally (i.e.,

scenarios can be synthesized into an existing state diagram). If no editions have been made, the

resulting state diagram is deterministic and minimal with respect to the number of states. How-

ever, the designer might have added new states and transitions that would not obey determinism.

In order to respect designer’s wishes, edited states and transitions are never removed during the

synthesis, even when the algorithm needs to backtrack (in which case it might remove states that it

just created). Every state/transition in a state diagram is either user edited or created by the synthe-

sizer, the former being the default value. To distinguish the latter from the former, the synthesizer

simply marks every state and transition it creates.

As an input, the algorithm gets a state machineM = (S, E, A, d, p) and a traceT = t1 . . . tm.

The trace items to be synthesized are read from a scenario. In addition to those trace items, the

traceT contains all the (possible) trace items synthesized before. The trace is linked to the state

diagram through actions of states; each action knows which trace items are currently linked to it.

In what follows,T is treated as a set of trace items. In the algorithm below,S′ is a set of states,d′

is a partial functiond′ : S × E −→ S, p′ is a partial functionp′ : S −→ A, q′ is a partial function

q′ : T −→ A. The partial functionq′ links trace items to actions. Furthermore,Used(t) gives the

set of states so far considered for trace itemt. A “free trace item” is a trace item that is associated

with an action of an existing state but is not forced to be joined with it; the trace item could be

associated with another action still not causing nondeterminism. The algorithm needs to backtrack

if nondeterminism results or if there is no way to associate the trace items with states using the

allowed number MAX of states. In the latter case, MAX is incremented. When backtracking,

the synthesis information from the previously synthesized trace item down to the last free item is
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removed from the state diagram. After that another untried choice for synthesizing these items is

taken. Note that Algorithm 2 presented below does not require an existing state diagram; the state

machine given as a part of the input can also be empty.

Algorithm 2. Incremental state machine synthesis.

Input: A state machineM = (S, E, A, d, p), traceT = t1 . . . tm.

Output: Updated state machineM ′ = (S′, E′, A′, d′, p′).

Method:

Let lfi be the position of the last free item inT .

Let E′ = E ∪ {e | (a, e, s) ∈ T}.

Let A′ = A ∪ {a | (a, e, s) ∈ T}.

Let S′ = S.

MAX := |S| + |A′| − |A| − 1.

i := 1.

untriedChoices := true.

while untriedChoices do

if lfi < 1 then // does not exist

Remove all synthesis information fromM ′.

lfi := t1.

i := 1.

MAX := MAX+1.

else

Remove synthesis information generated for trace items fromlfi to i in T .

end

i := lfi.

if there are free items inT beforelfi then

Let lfi be the position of the last free item.

else
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lfi := 0.

end

Used(tr) := ∅, for i < r ≤ m.

validChoice := true.

while i ≤ m and validChoice do

// while the algorithm need not backtrack,

// i.e. no nondeterminism results

joined := false.

if i > 1 then

ti−1 := (ai−1, ei−1, si−1).

Let st be the state for whichp′(st) = q′(ti−1).

s := d′(st, ei−1).

if s 6= NULL then

if isJoinable(ti, s) then // forced join

q′(ti) := p′(s).

i := i + 1.

joined := true.

else

validChoice := false. // backtrack

end

else

Cand:={s′ ∈ S′ \ Used(ti) | isJoinable(ti, s′)}.

if Cand 6= ∅ then

// free join, add new transition

Pick up a members′ of Cand.

Used(ti) := Used(ti) ∪ {s′}.

ti−1 := (ai−1, ei−1, si−1).

Let st be the state for whichp′(st) = q′(ti−1).

Add transitiond′(st, ei−1) = s′ to M ′.
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Set the added transition to be synthesized.

// synthesized transitions are removable during

// the synthesis

Setti to be a free trace item.

i := i + 1.

joined := true.

end

end

end

if not joined and validChoice then

if |S| < MAX then

// could not be joined, add a new state

Create a new states′.

S := S ∪ {s′}.

Sets′ to be synthesized.

// synthesized states are removable during

// the synthesis

p′(s):=q′(ti):=ai.

ti−1 := (ai−1, ei−1, si−1).

Let st be the state for whichp′(st) = q′(ti−1).

if i > 0 and ei−1 6= void then

Add transitiond′(st, ei−1) = s′ to M ′

end

i := i + 1.

else

validChoice := false.

end

end

end // while validChoice
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if i > m then

// all trace items have been synthesized

untriedChoices := false.

end

end // while untriedChoices

The following routineisJoinableis used by Algorithm 2. It simply decides if a trace item can

be associated with a certain state and its action. TraceT and state machineM are readable from

routineisJoinable.

isJoinable.

Input: A trace itemti = (ai, ei, si) and a states of a state diagram.

Output:

true, if ti can be joined withs,

false, otherwise.

Method:

Let sn be the name ofs.

Let an be the name of the action ofs.

if si 6= sn or ai 6= qn then

return false.

Let st be the state for whichp′(st) = q′(ti−1).

if joining ti with the actionan would cause a loopthen

// a transitiond′(st, ei) = s (in whichei = NULL) would cause

// a loop consisting of states and guardless automatic transitions

return false. // this is needed only for free join

if s has at least one leaving transitionthen

if ei is guardlessthen

if s has a leaving transition with labell such that exactly one ofei and l is NULL
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then

return false. // one of them is an automatic transition

end

if ei has a guardthen

if s has a leaving transition with labell such thatl has a guard similar to one inei and

exactly one ofei andl consists of the guard only (an automatic transition with guard)

then

return false.

end

end

return true.

Algorithm 2 implements the synthesis as a sequence of repeated attempts for associating trace

items with states. If that cannot be done using the allowed number MAX of states, the process is

repeated for MAX+1. The number of different actions is used as the initial approximation for the

number of states. That is clearly a lower bound, since in the synthesized state diagram each state

has at most one action.

In SCED the semantics of actions remain undefined, hence obstructing the synthesizer to treat all

actions similarly. Automatic transitions, however, require more defined semantics for actions of

states they are leaving from: an action of a state that has a leaving automatic transition has to

run to completion without interruption of any event. In a synthesized state diagram, an automatic

transition is always the only leaving transition of a state. This results when in a scenario there

is a sent event (or an action box) immediately followed by another sent event (or an action box),

from the point of view of the current object; the former event corresponds to an action of the

source state of the automatic transition, and the latter one corresponds to an action of its target

state. Since scenarios are sequential, these two events are indeed sent in succession. In forward

engineering, if an action in a state with a leaving automatic transition is semantically a continuous

one that stops only when interrupted, it can be seen as a design error in the scenario construction
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phase. Such situations do not occur in reverse engineering, because the event trace describes the

actual run-time behavior of the system. It can even be argued that the synthesized state diagram

is, in fact, emphasizing points in which the action needs to run to completion by themselves. The

duration of the actions is insignificant.

5.3 Problems in the synthesis of state diagrams

The state machine synthesis has been treated as an inductive inference problem by Koskimies and

Mäkinen [54]. Inductive inference studies algorithms for inferring rules from their application

instances, usually considering functions and languages [3, 4]. Applying the BK-algorithm to the

state diagram synthesis, however, differs from a typical inductive inference, causing inaccuracies

to the synthesized state machine. For this reason, learning results of the BK-algorithm do not

necessarily hold for state diagrams. The main source of problems is that scenarios, which all rep-

resent positive data (while examples in a typical inductive inference problem can be either positive

or negative), do not give sufficient information about the state machine for inference. This often

yields to too general state machines; in addition to example scenarios (positive data), the inferred

state machine can execute several other scenarios as well. In other words, programs are more

“complete” than state diagrams: there is usually a valid continuation for every possible combina-

tion of variable values in every point of a program (except after the halt statement), but there is

usually not a valid transition for every possible event in every state of a state diagram. Overgen-

eralization is considered the most severe problem of inductive inference from positive data, since

only negative data can expose too general guesses [4].

The fact that the synthesized state diagram may generalize the given scenarios is usually exactly

the desired effect, but in some cases the result is not what the user expects. An example of the

overgeneralization problem and means to solve it are studied next.

Consider a trace consisting of following trace items:

(show current time, set new alarm time, NULL),
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(show alarm time 5 secs, NULL, NULL),

(show current time, alarm time reached, NULL),

(buzzing,turn alarm off, NULL),

(show current time, set new alarm time, NULL),

(show alarm time 5 secs, NULL, NULL),

(show current time, VOID, NULL).

The minimal state diagram produced by using the pure BK-algorithm is shown in Figure 5.4. This

Figure 5.4: A minimal state diagram for a control unit of an alarm clock

is not a semantically acceptable solution, since the “show current time” phase is interrupted by

the “alarm time reached” event even if the alarm is not set on. The algorithm has merged two

logically different states together, thus overgeneralizing the state diagram. The state diagram also

allows setting a new alarm time even if the previously set alarm time is not yet reached. That piece

of information is not included in the event trace either. The latter example of overgeneralization

describes the normal behavior of an alarm clock and is thus not harmful but the previous one is.

The overgeneralization problem can be solved in several ways. We could simply require that the

scenarios should also cover forbidden transitions (negative data). That would equip the algorithm

with sufficient information to avoid undesired state joins. However, this would be rather an incon-

venient and unnatural design approach. Moreover, forbidden events never occur in reality, thus

providing no solution for the problem from a reverse engineering point of view.
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Using state boxes in scenarios is a slightly better attempt to avoid overgeneralization; by putting

differently named state boxes before similar sent events (or similarly named action boxes) in sce-

narios, the user can make sure that the corresponding states will not be merged during the synthesis.

In the previous example the trace items might look as follows:

(show current time, set new alarm time, ALARM OFF),

(show alarm time 5 secs, NULL, NULL),

(show current time, alarm time reached, ALARM ON),

(buzzing,turn alarm off, NULL),

(show current time, set new alarm time, ALARM OFF),

(show alarm time 5 secs, NULL, NULL),

(show current time, VOID, ALARM ON).

Figure 5.5: A state diagram with distinguishing state names synthesized for the control unit of an
alarm clock

The synthesized state diagram with distinguishing state names is shown in Figure 5.5. Using state

boxes is not always sufficient, and more importantly, it is usually not a convenient way to avoid

the overgeneralization problem. Events corresponding to actions to be separated might appear in

several scenarios. Even the small alarm clock example gives a hint of problems of this approach;

since two states are joined only if they have similar state names, the designer might have to put

state boxes in several scenarios to be absolutely sure that only right paths run through certain states.

That can be very unpractical. State boxes are more useful, if the designer wants to emphasize that
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two (or few) paths should be separated from the main path. Unfortunately, this is rarely the case.

In reverse engineering, state boxes can be used to give additional information about the run-time

behavior. For example, they can be used for naming branching points in the execution. In that case,

the generated state boxes also speed up the state diagram synthesis by eliminating the number of

possible merges and hence avoiding backtracking. The resulting state diagram also becomes more

descriptive and understandable. Furthermore, such state boxes can be generated automatically and

hence quickly. This unburdens the user from placing them manually in scenarios. Section 8.4.2

discusses the usage of state boxes in reverse engineering in more detail, and Chapter 9 gives some

practical examples. It seems that state boxes are more useful in reverse engineering than in for-

ward engineering.

Another approach to solve the overgeneralization problem is to use some heuristic rules to identify

“suspicious” state merges, and ask the designer to either accept or reject the merge. This approach

has its disadvantages as well. It is very difficult to find a satisfying rule for state separation, since

the question is highly semantical. The rule might easily be too strong suggesting separation in too

many cases; the number of suggested cases could be much larger than the number of harmful over-

generalization cases. If the rule is relaxed, all paths that need to be separated may not be found.

Even if a fairly satisfying rule could be found, the designer has to choose between rejection and

merging, perhaps several times, before the synthesis is completed.

The following “rule of flying visit” heuristic was implemented in SCED: a trace item was not al-

lowed to be associated with an existing state if the trace both enters and leaves this state with new

transitions. In this case the new trace makes only a flying visit to an existing path, reusing a single

state. This can be assumed to be suspicious and less fruitful join [54]. However, it turned out that

the “rule of flying visit” was often too strong; it suggested states to be separated in far too many

cases. Furthermore, the number of the suggestions depends on the order in which scenarios are

synthesized.
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In SCED the only way to avoid a merge of two states before or during the synthesis is to use state

boxes in scenarios. This approach has its disadvantages explained above, not to mention that trace

items have to keep track of state names. However, state boxes appeared to be very useful in reverse

engineering. Furthermore, the state diagram can be edited after the synthesis either manually or

by using tools provided by SCED (cf. Section 4.2). For example, SCED offers tools for splitting

and merging states. In addition, scenarios can be desynthesized out of the state diagram. Hence,

detecting possibly overgeneralized states before or during the synthesis becomes less important. It

also means that the responsibility of finding such states and separating them is left to the designer.

This seems to be the most versatile approach to handle the overgeneralization problem.

5.4 The speed of the synthesis algorithm

The synthesis algorithm described in Sections 5.1 and 5.2 has an exponential time complexity be-

cause of the backtracking. Nonetheless, the algorithm is reasonably fast in practice because state

diagrams are often rather small, and backtracking is not in heavy use. In fact, a state diagram can

often be synthesized without backtracking at all. For instance, an ATM example (similar to one

in [94]) consisting of 10 scenarios was synthesized in a fraction of a second, resulting in a state

diagram with 15 states and 24 transitions. The example was run using a 120 Hz Pentium PC. How-

ever, synthesizing another artificially constructed example of approximately same size took a few

tens of seconds to complete. The time needed does not directly relate to the size of the resulting

state diagram, but rather to the state/action ratio; the larger the ratio is, the slower the algorithm

tends to be. When the ratio is close to 1, the synthesis algorithm is fast.

Biermannet al. present some approaches for speeding up the synthesis algorithm: techniques for

preprocessing the trace information to reduce enumeration, for pruning the search using a failure

memory technique, and for utilizing multiple traces to the best advantage [6]. The algorithm that

uses the failure memory technique keeps track of the cases in which merging states results in a

failure and why these cases require backtracking. This allows the algorithm to avoid such failures

later in the search. When applied for simple program synthesis tasks, the algorithm optimized with
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the pruning technique was even a bit slower than the original algorithm because the computational

overhead for pruning cost more than it saved. For a more difficult synthesis problem, the saving in

time was about 50% [6]. Some experiments using the failure memory technique were also made

for the algorithm used in SCED. This approach indeed made the synthesis faster in unfavorable

examples, but not dramatically; time consuming cases were too slow also with the modified algo-

rithm. Furthermore, the modified algorithm requires more memory to be run because of the failure

memory structure. It also might slow down the synthesis in simple cases because of extra com-

putations. In addition, unfavorable cases are unusual in practice: a set of scenarios that describe

nondeterministic behavior often refers to incomplete or erroneous design. In reverse engineering,

such scenarios are rarely generated, especially, if state boxes are used to mark branching points in

the execution (cf. Section 8.4.2). Because of the reasons above, there did not seem to be an urgent

need for applying the speeding up techniques for the state diagram synthesis algorithm in SCED.

5.5 Limitations

A timing markin UML is a denotation for the time at which an event or message occurs. Tim-

ing marks may be used in constraints [95] (p. 476). Timing marks and constraints in general are

not included in SCED’s scenario notation nor state diagram notation. However, they are used in

several other related systems. For example, in a system developed for generating timed automata

from timed scenarios, in which the requirements are given in a form of scenarios from which an

automaton is synthesized [102, 103, 104]. Constraints can be seen as semantic conditions or re-

strictions that must hold at a certain point in the diagram. In SCED scenarios, such a constraint can

currently be expressed by an assertion box. For taking different constraints properly into account

in the synthesis, an interpretation mechanism would be needed. States and transitions depending

on these constraints would be joined on the basis of the interpretation of the constraints. Similarly,

interpretation mechanism for guards would be useful. For instance, a state that has two guarded

leaving transitionse[x < 15 sec]ande[x < 5 sec]is not semantically reasonable, since the event

triggers are the same and thus the former transition would never fire.
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As mentioned earlier in this chapter, the synthesis algorithm can be applied to an operation code

synthesis with the following assumptions: events in scenarios concern either operation calls or

return events, and both the call events and the return events are shown. The latter assumption

is needed, since otherwise there would be no way to define the end of an operation. Currently,

a return event is defined for a call event the same way as a closing parenthesis is found for an

expression consisting of nested parenthesized subexpressions. This is not a strictly acceptable way

to define pairs of call and return events because the caller object could be called in between. If the

SCED scenario notation contained control regions, as in UML sequence diagrams, the operation

call sequences could be determined exactly. In Figure 5.6 an operation call sequence is shown

using the notation presented in [95]. A double line shows the period of time when an object is

active. This includes the entire life of an active object or an activation of a passive object, that is,

a period during which an operation of the object is in execution, including the time during which

the operation waits for the return of an operation that it called [95] (p. 424). A dashed line is

used otherwise. Other UML sequence diagram constructs can, more or less, be expressed using

the SCED scenario diagram notation. For example, recursion can be expressed by a repetition

construct and conditional branching by a conditional construct.

Figure 5.6: An event trace with control regions
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5.6 Related research

In this section we discuss other approaches to transform example scenarios into a state machine.

The basic notations related to the approaches are given but exact analyses of the algorithms are

omitted.

Algorithms for synthesizing Real-time Object-Oriented Modeling (ROOM) models [100] are pre-

sented by Leueet al.[62, 63]. The MSC language in their approach contains basic MSCs (bMSCs)

and high-level MSCs (HMSCs). A bMSC essentially consists of a set of processes (called instances

in Z.120 [49]) that run in parallel and exchange messages in a one-to-one, asynchronous fashion.

The processes in a bMSC correspond to participants in SCED. The graph of an HMSC provides

operators for describing the composition and hierarchical arrangements of bMSCs. The synthesis

generates the following structural ROOM components:actors, protocols, ports, andbindings. A

resulting state machine is called aROOMchart. In a bMSC, control passes from one local state of

a process to the next one when an event is sent or received. When synthesizing a ROOMchart a

local control state of a bMSC process is mapped to a state in a ROOMchart. As in our approach,

synthesized ROOMcharts do not contain concurrency.

One of the questions addressed by Leueet al. is how many events should be executed during

one ROOMchart transition [62, 63]. Two algorithms are developed corresponding to two possible

answers: the transition terminates before the next received event (or whenever the last event in

a bMSC) is encountered or the transition executes all sent events until the next received event is

seen. The objective of theMaximum Traceability Algorithmis to preserve traceability of compo-

nents of the synthesized ROOM behavior model with respect to the structure of the HMSC graph.

The algorithm translates the HMSC graph into top level states of the ROOMchart associated with

each actor. All edges in the HMSC graph are mapped onto transitions in the top level ROOMchart.

A basic ROOMchart for each bMSC referred in an HMSC is created so that for every node in the

HMSC graph, each incoming HMSC edge will be mapped onto exactly one incoming transition

point in the corresponding lower level ROOMchart. In theMaximum Progress Algorithmevents

are sent during a single transition until the next received event is reached, which may possibly oc-
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cur in a different bMSC. The maximum progress in every process will be different, and hence the

synthesized state machines for different actors will not necessarily have identical structure (which

is the case in the Maximum Traceability Algorithm). For each process, the algorithm first builds a

directed graph for all sent and received events contained in all bMSCs. The message graph is then

used to find a set of traces, which is then converted to a ROOMchart.

The main difference between our approach and the synthesis algorithm presented by Leueet al. is

the usage of an HMSC [62, 63]. The graph of an HMSC connects bMSCs to describe their parallel,

sequential, iterating, and non-deterministic execution. In our approach, scenarios represent exam-

ple cases that can be treated in any order. Furthermore, the notation of a SCED scenario differs

from the notation of a bMSC. Correspondingly, a SCED state diagram differs from a ROOMchart.

Soḿe et al. devise an incremental algorithm, used in implemented tools, for generating timed-

automata from scenarios [103, 102]. The algorithm used for requirements engineering has been

extended [102], for instance, for handling state explosion by grouping states. Their research com-

bines scenario formalization and partial behavior composition. The scenario concept in their al-

gorithm includes the initial situation of the scenario (preconditions), and a chain of interactions

describing a system behavior as stimuli and reactions, associated with temporal constraints (timing

constraints). The basic synthesis algorithm is built upon operation semantics: states are defined

by characteristic conditionswhich hold in them and each operation execution results onadded-

conditionsandwithdrawn-conditions, the former being a set of conditions that become true, and

the latter a set of conditions that are no longer true, after the execution of the operation. Although

there are a lot of similarities in the approach presented by Soméet al. and in the one used in SCED,

they also differ. The concepts of both scenarios and state machines are different. Furthermore, the

timing constraints are not considered in SCED, but they are in a significant role in the system of

Soḿe et al. Because of these differences, the logic and purpose of synthesis algorithms used differ

as well.

Hsiaet al. present a formalization of scenarios in whichscenario treesdescribe a user view of a
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system [44]. A scenario tree consists of systems states (represented by nodes) and events (repre-

sented by edges between nodes). Hence, a scenario tree resembles a state diagram in Biermann’s

sense. It is required by Hsiaet al. that each example path through a scenario tree (i.e., a scenario)

starts from the initial state and ends up to a leaf node, and even more strictly, each scenario has

to start and end in the same user-perceived system state. Such restrictions have not been made in

SCED; the designer may define as long scenarios as she wishes, starting and ending by any event.

Further, it is required in Hsia et al.’s system that there always has to be a labeled event between two

states prohibiting the system to change state unless an event causes it. In UML and in SCED there

can be an automatic transition between two states. On the basis of scenario trees, an abstract state

machine can be constructed, which in turn can be used to verify inconsistencies, redundancies, and

incompleteness in scenarios. As scenario trees, state diagrams have to start and end in the same

state (i.e. there cannot be several final states). Again, in UML and SCED several final states may

exist and none of them needs to be the initial state itself. In Hsiaet al. ’s system a state diagram

can be used to generate other scenarios. Also in SCED implications to both directions are offered:

a state diagram can be synthesized on the basis of information given in scenarios and a scenario

can be traced from state diagrams [56, 111].

Glinz introduces a method for formal composition of scenarios into an integrated, consistent

statechart-based model [38]. In this method every single scenario is modeled with a statechart [40].

These scenarios are then integrated into a single model, each scenario remaining visible as a build-

ing block in the model. Two scenarios, sayA andB, can be related in four different ways:B after

A (sequence), eitherA or B (alternative),A followed n times by itself (iteration), orA concurrent

with B (concurrency). The scenario composition used in this method applies to disjoint scenarios

only. Overlapping scenarios need to be either decomposed into mutually disjoint subscenarios or

fused into a single scenario. The concurrency features included in this method can be helpful to

accomplish the latter task. Because of different concepts of scenarios, the purpose of the method

discussed by Glinz differs from the state diagram synthesis approach used in SCED.

An algorithm for synthesizing UML statechart diagrams from a set of collaboration diagrams is
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presented by Schönbergeret al. [96]. It creates a statechart diagram for each distinct class implied

by the objects in the collaboration diagrams. The algorithm maps both sent and received events

of the object to transitions, while in our approach sent and received events have different roles

in the synthesis. A statechart diagram is constructed by connecting a (ordered) set of transitions

with states, split bars, and merge bars. Unlike our synthesis algorithm, the algorithm presented

by Scḧonberget al. is able to generate concurrent states. Another algorithm for integrating two

statechart diagrams generated with the Schönbergeret al. ’s algorithm is discussed by Khrisset

al. [53] and by Scḧonbergeret al. [97]. This approach can be used to merge multiple statechart

diagrams. As in our approach, the incrementality of the Schönberger et al.’s algorithm [97] enables

an iterative process for dynamic modeling.

5.7 Summary

In SCED, the user can select one participating object from a scenario diagram and ask the genera-

tor to synthesize a state diagram automatically for it. The state diagram can be synthesized for one

scenario only or for a specified set of scenarios. The synthesis algorithm is incremental, which

allows the user to synthesize scenarios to an existing state diagram. Furthermore, the synthesis

algorithm can be used when synthesizing operation descriptions from scenarios (instead of a state

diagram).

The basic synthesis algorithm used has been presented by Biermann and Krishnaswamy [7], and its

adoption to state machine synthesis from scenarios is discussed by Koskimies and Mäkinen [54].

This algorithm with a few modifications has been implemented in SCED.
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Chapter 6

Optimizing synthesized state diagrams

using UML notation

In this chapter we discuss information preserving means to transform a synthesized state diagram

into a more compact form. We developed algorithms that detect similar responses to certain events

and use that information to restructure the state diagram. The state diagram is modified by adding

UML statechart notation elements into it.

Synthesized state diagrams are drawn in SCED using a rather primitive notation. No structur-

ing has been done by means of UML statechart diagram concepts like special kinds of actions,

generalization, and aggregation. The following definition characterizes a synthesized SCED state

diagram.

Definition 6.0.1 A plain state diagram is a minimal (with respect to the number of states), deter-

ministic state diagram that consists of states and transitions between the states. Actions, which

are all normal “do”-actions, are associated with states so that every state has at most one action.

The UML statechart diagram notation is practical for specifying the dynamic model for a com-

plex system. In addition to the capability to express concurrency and nested statechart diagrams,

special kinds of actions can be used to make the diagrams more compact and readable. Such ac-

tions include entry actions, exit actions, actions fired by internal transitions, and actions attached

83



6.1. DEFINITIONS AND RULES

to transitions. These concepts also emphasize similar responses to certain events and structure the

statechart diagram according to them. For these reasons, it is desirable to add them to SCED state

diagrams as well.

The process of adding the UML statechart notation (or at least part of it) to a plain state diagram

is referred asoptimizing a plain state diagramin the sequel. While optimizing a state diagram

some states and transitions are removed. If a state with a (normal) action is removed, the action is

moved and attached to another state or transition. This may happen only if the original state has an

automatic transition as the only leaving transition (i.e., the action of the state must run to comple-

tion without interruption of any event). After the state diagram has been optimized, such actions

might be used in a role in which they indeed need to be completed by themselves (e.g., as entry

or exit actions). As in the case of the state diagram synthesis (cf. Section 5.2), the optimization

algorithms do not assume anything about the duration of actions; the modifications concern only

actions that have to be completed by themselves. Optimized state diagrams, perhaps even more

clearly than synthesized plain state diagrams, point out the actions that cannot be interrupted.

In this chapter we show how and when internal actions, entry actions, and exit actions can be

added to states, and actions can be attached to transitions. From now on, these actions will be

calledUML actions. We also show when actions from several states can be packed into a single

state. The basic idea of combining information by packing actions and generating UML actions is

to replace actions so that relations between actions and events causing them could be more easily

seen. Combining information will also stress similar behavior of different paths through a state

diagram. Figure 6.1 shows a plain state diagram synthesized from six scenarios. An optimized

version of the state diagram is shown in Figure 6.2.

6.1 Definitions and rules

The following three rules are required to hold during the state diagram optimization process:
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Figure 6.1: A synthesized plain state diagram
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Figure 6.2: A state diagram optimized from the state diagram in Figure 6.1
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Rule 6.1.1 The information content of the state diagram should be preserved.

Rule 6.1.2 State diagram items should not be duplicated.

Rule 6.1.3 The number of states and transitions is minimized provided that Rules 6.1.1 and 6.1.2

hold.

Rule 6.1.1 means that the optimized state diagram has to accept exactly the same scenarios as the

plain one. It also means that the transformation of a plain state diagram, sayGp, to an optimized

one, sayGo, has an inverse operation that changesGo back toGp. Rule 6.1.2 mainly concerns

actions. While optimizing a state diagram some states and transitions are removed. For example,

if a state with an actiona is removed, thena should not be copied into several places. Instead, it

should be attached to one state or one transition only. Rule 6.1.3 says that under the circumstances

explained, UML statechart diagram concepts are added in such a way that the number of states

and transitions will be minimized in the resulting optimized state diagram.

The theorems presented in this chapter define the optimization process. Optimization in SCED

can be performed automatically by just choosing a specific command. However, different kinds of

UML concepts can also be generated one by one, and the optimization can be applied to certain

(selected) parts of the state diagram only. Hence, each theorem gives rules and requirements for

two cases: the whole state diagram is supposed to be optimized, or only a certain concept is added

(whenever possible). All Rules 6.1.1, 6.1.2, and 6.1.3 are required for the former case. The latter

case is applied when the designer wants to use a certain subset of the UML state diagram notation

(e.g., to generate exit actions). Then only Rule 6.1.1 needs to hold. Rules 6.1.2, and 6.1.3, instead,

are not required; they just make sure that the resulting state diagram is minimal and still preserves

the benefits of the state diagram synthesis.

For specifying characteristics of a UML state diagram, we now define abstract state diagrams.

Their features apply to optimized state diagrams, as well as to plain state diagrams. Anabstract

state diagramis a 4-tuple,OM = (S, E, A, d), whereS is a set of states,E is a set of events,A is
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a set of actions, andd is a transition relationd : S × E −→ S. Note that the formal specification

of a state diagram presented in Section 5.2 (a 5-tupleM = (S, E, A, d, p)) cannot be applied to

an optimized state diagram because of the action functionp : S −→ A; states may have several

actions in an optimized state diagram. For both variants of the same state diagram, the set of ac-

tions is exactly the same and the set of events may differ only by one event, namely the NULL

event (corresponding to an automatic transition). SetS of an optimized state diagram may differ

considerably from the one of a plain state diagram. Transition relationd : S × E −→ S is used

in the same meaning for both kinds of state diagrams, since the next state can be explicitly defined

by the current state and an event in both cases. A transitiond(s1, e) = s2 can also be expressed in

the form(s1, e, s2).

The above definition of an abstract state diagram does not take all UML statechart diagram con-

cepts into account. For example, it does not consider concurrency. However, the definition is

sufficient for the discussion presented in this chapter.

Before defining the optimization process of a plain state diagram, some remarks are in order.

These remarks are valid for both plain and optimized state diagrams, and will be applied later in

this chapter.

The modified version of the BK-algorithm used in SCED (Algorithm 2 presented in Section 5.2)

guarantees that in a plain state diagram both an unlabeled transition and a labeled one cannot be

leaving transitions of the same state. The optimized variant of the state diagram should also have

this property. This is formalized in Property 6.1.1.

Property 6.1.1 Let OM = (S, E, A, d) be an abstract state diagram. For each states ∈ S, the

following two conditions must hold:

1. If d(s, NULL) = s1 ∈ S and there is an evente in E such thatd(s, e) = s2 ∈ S, then

(s, NULL, s1) = (s, e, s2),
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2. If there are eventse ande′ in E such thate is non-null,d(s, e) = s1 ∈ S, andd(s, e′) =

s2 ∈ S, thene′ must be non-null, too.

The definition of transition relationd : S × E −→ S itself ensures that the abstract state diagram

is deterministic:

Property 6.1.2 In an abstract state diagram, all transitions and their target states as well as all

internal actions and their states are uniquely determined by an event and a state.

The next property says that no loops consisting of states and automatic transitions can be found

from an abstract state diagram. For a synthesized state diagram, this is guaranteed by Algorithm

2.

Property 6.1.3 LetOM = (S, E, A, d) be an abstract state diagram, and lets1, . . . , sn be states

in S such thatd(si−1, NULL) = si, i = 2, . . . , n. If d(sj , NULL) = s′, 1 ≤ j ≤ n, then

s′ 6∈ {s1, . . . , sj}.

While adding special UML statechart diagram concepts to a plain state diagram, it is assumed

that no state has a name. Such an assumption neither seems unrealistic, nor causes any major

restrictions for the use of optimizing algorithms. First, names for the states are presumably given

after the state diagram is in the desired form, since giving them in scenarios is not practical (cf.

Section 5.3) and the synthesizer does not automatically generate them. Second, if there are state

names (either given in scenarios or added manually to the plain state diagram), the same simpli-

fying algorithms can be used with the restriction that states with actual state names may not be

removed during the optimization process.
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6.2 Packing actions

As mentioned in Section 4.1.2, it is assumed in SCED that all actions are executed in sequence

and only the last action can be interrupted by a received event. The former condition is due to the

fact that the state diagram is built using the sequential information given in scenarios. The latter

condition results from the way actions are gathered into a single state: in the original plain state

diagram such actions belonged to states that had automatic transitions as the only leaving transi-

tions. Thus, all packed actions, except the last one, are considered to run to completion without

interruption by any event. The latter condition can also be justified by the former one: if an event

could interrupt the execution of actions at any point, then some actions (the last ones) might never

be executed. Hence, the interpretation of such a sequence of actions is similar to the semantics of

an action-expression in UML (cf. Section 3.4).

Due to the BK-algorithm [7], states are defined by their actions so that each state has at most one

action. Gathering actions into a single state not only makes the state diagram semantically more

reasonable but it also decreases the number of automatic transitions and the number of states.

Suchaction packingis possible if there are automatic transitions between states that contain the

actions, and the sequence of actions is approved by all paths in a state diagram. Theorem 6.2.1

gives requirements for packing actions of two states.

Theorem 6.2.1 Let s, s′ ∈ S and d(s, NULL) = s′ in a plain state diagram. States′ may be

removed and its actions can be moved to states and placed after (normal) actions ofs if and only

if (s, NULL, s′) is the only transition enterings′.

Proof 6.2.1 According to Properties 6.1.1 and 6.1.2, transition(s, NULL, s′) is the only tran-

sition leaving states. Packing is legal if(s, NULL, s′) is also the only transition enterings′.

All paths throughs continue immediately to states′, ands′ cannot be entered in any other way.

Finally, we haves 6= s′ according to Property 6.1.3.

Conversely, suppose that there is another transition(si, e, s
′), e ∈ E, si ∈ S enterings′. Accord-
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ing to Property 6.1.1, we havesi 6= s. In order to satisfy Rule 6.1.1, action packing in this case

requires that actions of the states′ are copied also to statesi. This violates Rule 6.1.2.�

In terms of Theorem 6.2.1, all leaving transitions of states′ should be changed to leave states

after action packing.

Since several actions of a state are interpreted to be executed in succession, the results of a plain

state diagram are valid for a packed one as well; such a sequence of actions could be seen as a

single (more abstract) action, which is responsible for executing all the actions one by one (cf. an

action-expression in UML in Section 3.4).

As an example of action packing, the state diagram in Figure 6.3 can be transformed into the state

diagram in Figure 6.4.

Figure 6.3: A state diagram in which each state has one action

6.3 Transformation patterns

Before presenting how UML actions can be added to a plain state diagram, we need to know what

kind of state diagrams allow the transformations. For that purpose, two definitions clarifying the
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Figure 6.4: A state diagram resulting when applying the action packing operation for the state
diagram in Figure 6.3

properties of plain state diagrams are introduced. These definitions are similar to the correspond-

ing definitions for digraphs [32].

Definition 6.3.1 A plain state diagramG′ = (S′, E′, A′, d′, p′) is a subdiagram of a plain state

diagramG = (S, E, A, d, p) if and only ifS′ ⊆ S, E′ ⊆ E, A′ ⊆ A, d′(s, e) = d(s, e) for all s in

S′ ande in E′, andp′(s) = p(s) for all s in S′.

Definition 6.3.2 Two plain state diagramsG = (S, E, A, d, p) andG′ = (S′, E′, A′, d′, p′) are

structurally isomorphic if and only if |S′| = |S| and there exists an order-preserving bijection

f : S −→ S′ such that

1. If e 6= NULL, e ∈ E, s1, s2 ∈ S, d(s1, e) = s2, then there exists a non-null evente′ in

E′ such thatd′(f(s1), e′) = f(s2),

2. If s1, s2 ∈ S, d(s1, NULL) = s2, then transition(f(s1), NULL, f(s2)) belongs toG′,

3. If e′ 6= NULL, e′ ∈ E′, s′1, s′2 ∈ S′, d′(s′1, e′) = s′2, then there exists a non-null evente

in E such thatd(f−1(s′1), e) = f−1(s′2),

4. If s′1, s′2 ∈ S′, d′(s′1, NULL) = s′2, then transition(f−1(s′1), NULL, f−1(s′2)) belongs
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to G.

Definition 6.3.2 says that two plain state diagrams are structurally isomorphic if they are struc-

turally identical (i.e., only their existing labeling of transitions and actions of states may differ).

That is, their adjacency matrices are equal up to a permutation of corresponding rows and columns.

Action packing removes automatic transitions and their target states. Such parts of a state diagram

are removed also when modifying a state diagram by adding UML actions to it. Therefore, action

packing and forming UML actions might be alternative ways to optimize a state diagram. In [110]

it has been shown that the optimization operations can be used in such an order that Rule 6.1.3

will be satisfied.

Next, smallest subdiagrams (with respect to the number of states and transitions) that can be op-

timized by adding UML actions are introduced. The execution of any of the UML actions is

(possibly) fired by an event. It is assumed in SCED that the execution of an internal action caused

by a certain event is followed by the execution of normal actions of the state (cf. Section 4.1.2).

The optional entry or exit actions are not executed. Hence, the execution of any of the UML ac-

tions is automatically followed by the execution of normal actions (if any) of a certain state. In

the case of exit actions and actions attached to transitions, the optional entry actions of this state

are executed right before its normal actions. Thus, adding any of the UML actions requires a plain

state diagram in which there are statess1 ands2, a transition labeled with an event, saye, between

them, i.e. d(s1, e) = s2, and an automatic transition leaving states2 and entering a state, say

s3, i.e., (s2, NULL, s3). States1 is the state before the execution of the UML action, evente

of transition(s1, e, s2) is needed to specify the event causing the execution of the UML action

(especially in the case of an internal action), actions ofs2 stand for the actual UML actions, and

transition(s2, NULL, s3) identifies the state the object moves to after the UML actions have been

executed. Note that transition(s2, NULL, s3) indeed cannot have any label, because otherwises2

could not be removed without violating Rule 6.1.1. Now, statess1 ands2 cannot coincide because

of Property 6.1.1, and statess2 ands3 have to be different states because of Property 6.1.3. If

statess1 ands3 do not coincide, that is, their actions are different, then two possible subdiagrams
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exists. These subdiagrams are shown in Figure 6.5. From now on, the subdiagram on the left hand

side is calledSubdiagram 1and the one on the right hand side is calledSubdiagram 2. Note that

in Subdiagram 2,e could also be NULL (i.e. corresponding to an automatic transition).

Figure 6.5: Subdiagram 1 (on the left) and Subdiagram 2 (on the right)

While adding UML actions it is assumed that no state has a state name. Yet, state labelss1, s2, and

s3 are used in Subdiagram 1 and Subdiagram 2 in order to refer to a right state and to simplify the

notation. Hence,s1, s2, ands3 are considered as identifiers rather than state names. Obviously,

no state with an actual state name can be removed.

As mentioned in Section 6.2, the results for a plain state diagram are valid for a packed one as

well, as long as we regard all normal actions of a state to be executed in a sequence without an

interruption. It is worth noticing that after action packing Subdiagram 1 can have the form shown

in Figure 6.5 only if there existse′ in E ands′ in S such thatd(s′, e′) = s1, s′ 6= s2. Similarly,

after action packing Subdiagram 2 can exist in the form shown in Figure 6.5 only if there existse′

in E ands′ in S such thatd(s′, e′) = s3, s′ 6= s2.

Next we define the sets of neighbors for a certain state. The state itself is not allowed to belong to

the set:

Definition 6.3.3 In a subdiagram structurally isomorphic to either Subdiagram 1 or Subdiagram
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2, setSn(s) consists of states, to which there is a transition from states, other thans.

A more general form of Definition 6.3.3 is the following:

Definition 6.3.4 SetSng(s) consists of states to which there is a non-looping transition froms,

wheres is a state in a plain state diagram.

In what follows, we present several theorems concerning state diagrams having subdiagrams struc-

turally isomorphic to Subdiagram 1 or Subdiagram 2. The following additional conditions are

related to the theorems:

c1 : (s1, e, s2) is the only transition enterings2 (Subdiagram 1 or Subdiagram 2).

c2 : (s2, NULL, s1) is the only transition enterings1 (Subdiagram 1).

c3 : (s2, NULL, s3) is the only transition enterings3 (Subdiagram 2).

c4 : In eachs′ ∈ Sn(s1) there is an identical sequence of normal actionsa1, . . . , am, m ≥ 1,

beginning from the first normal actiona1 of s′ (Subdiagram 1 or Subdiagram 2).

c5 : For eachs′′ ∈ Sn(s1), s1 is the source state of each transition enterings′′ (Subdiagram

1 or Subdiagram 2).

Further, we will later need the following conditions concerning any plain state diagram (condition

c6 was already used in Theorem 6.2.1):

c6 : In a plain state diagramG = (S, E, A, d, p), in whichd(s, NULL) = s′, (s, NULL, s′)

is the only transition enterings′.
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c7 : For a states ∈ S in a plain state diagramG = (S, E, A, d, p) eachs′′ ∈ Sng(s) has

an identical sequence of normal actionsa1, . . . am, m ≥ 1, beginning from the first normal

actiona1 of s′′. Further, for at least one statesi in Sng(s), eitheram is not the last normal

action insi or si has an automatic transition as the only leaving transition.

c8 : Let s ∈ S be a state in a plain state diagramG = (S, E, A, d, p). For eachs′ ∈ Sng(s),

s is the source state of each transition enterings′.

In the following sections rules for forming UML actions are presented. These rules are divided

into two cases: either only Rule 6.1.1 is required or both Rules 6.1.1 and 6.1.2 are required.

Former cases give minimal conditions for forming UML actions. These conditions are applied

when the user selects a state or a transition from a state diagram and “forces” the generator to form

a desired UML action. However, forcing an UML action may restrict possibilities to finally get a

minimal state diagram. Furthermore, it may cause copying information that was compounded by

the synthesizer. Latter cases are used when the whole state diagram is optimized.

6.4 Internal actions

In SCED the interpretation of an internal transitione/a2of states1 is the following: while being

in states1, if evente occurs, then actionsa2 are executed and right after them all the normal ac-

tions ofs1 but no entry nor exit actions (cf. Section 4.1.2). In UML, an activity has duration and

can be interrupted. A transition that forces an exit from the controlling region aborts the activity.

An activity is not terminated by the firing of an internal transition, because there is no change

of state [95] (p. 133). In SCED, there is no specified way to distinguish actions and activities.

However, the last normal action ofs1 can be assumed to be interruptible bye, thus resembling the

semantics of an activity. The interpretation of an internal transition in SCED hence imitates the

original meaning of the internal transition in UML and thus provides a way to emphasize, at least

in a very modest way, the different roles of entry actions and normal actions of a state. Further-

more, the chosen interpretation makes it possible to optimize a state diagram considerably as can

be seen later in this section. It also stresses the difference between a (external) self transition and
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an internal action.

Figure 6.6 shows an example state diagram optimization using internal actions. Adding internal

Figure 6.6: An optimization of a state diagram using an internal transition

transitions to a plain state diagram is possible only if it has a subdiagram that is structurally iso-

morphic to Subdiagram 1. Theorem 6.4.1 gives the exact condition. Note that the condition used

in Theorem 6.4.1 was namedc1 previously in this chapter. Adding internal actions to Subdiagram

2 is obviously impossible, because the automatic transition leads to a state other thans1.

Theorem 6.4.1 For a plain state diagramG, internal actions can be added to each subdiagram

G′, structurally isomorphic to Subdiagram 1, satisfying Rule 6.1.1 without restrictions, and satis-

fying both Rules 6.1.1 and 6.1.2 if and only if(s1, e, s2) is the only transition enterings2.

Proof 6.4.1 According to Properties 6.1.1 and 6.1.2, an internal action can be formed regardless

of any leaving transition ofs1: e′ ∈ E, s′ ∈ S, andd(s1, e′) = s′ imply that evente′ is non-

null and different from evente. No entering transition of states1 (by the definition of an internal

action) has any influence on forming an internal action. Because of Properties 6.1.1 and 6.1.2, the

automatic transition has to be the only leaving transition ofs2. Conditionc1 is obviously sufficient
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for forming an internal action for states1 without violating Rules 6.1.1 and 6.1.2. Suppose then

that e′ ∈ E, e′ 6= e, andd(s′, e′) = s2 for somes′ in S. According to Properties 6.1.1 and 6.1.2,

s′ 6= s2. If s′ = s1, then either of the internal actions e/a2 and e’/a2 or both of them can be formed

satisfying Rule 6.1.1, but only by copying action(s) a2 and hence violating Rule 6.1.2. Suppose

then thats′ 6= s1. Then again internal action e/a2 can be formed without violating Rule 6.1.1, but

only by copying actions a2 and hence violating Rule 6.1.2. In this case,s2 may never be removed

without violating Rule 6.1.2.�

6.5 Entry actions

Figures 6.7 and 6.8 show two state diagrams that have been optimized by adding entry actions to

them. They have subdiagrams that are structurally isomorphic to Subdiagram 1 and Subdiagram

2, respectively. When constructing conditions for adding entry actions, subdiagrams that are

Figure 6.7: Using an entry action to optimize of a state diagram, which has a subdiagram that is
structurally isomorphic to Subdiagram 1

structurally isomorphic to either Subdiagram 1 or Subdiagram 2 has to be found from a plain state

diagram. Theorem 6.5.1 gives conditions for adding entry actions to a plain state diagram in the

former case, and Theorem 6.5.2 gives corresponding conditions in the latter case. The conditions

used in these theorems were namedc2 andc3, respectively, previously in this chapter.
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Figure 6.8: Using an entry action to optimize a state diagram, which has a subdiagram that is
structurally isomorphic to Subdiagram 2
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Theorem 6.5.1 For a plain state diagramG, entry actions can be added to each subdiagramG′,

structurally isomorphic to Subdiagram 1, without violating Rule 6.1.1 if and only if(s2, NULL, s1)

is the only transition enterings1. In that case, also Rule 6.1.2 will be satisfied-

Proof 6.5.1 We first assume that there is a transition(s′, e′, s1) 6= (s2, NULL, s1), e′ ∈ E, s′ ∈
S. Transition(s′, e′, s1) has to have a label (e′ 6= NULL) or s′ 6= s2, since otherwise the synthe-

sis algorithm would have merged the source statess′ ands2 (or at least the states corresponding

last actions ofs′ ands2) and forced(s′, e′, s1) to be(s2, NULL, s1). Forming an entry action

entry/a2 (a2 being actions of states2) would not then be possible without violating Rule 6.1.1

because of transition(s′, e′, s1).

We next suppose that(s2, NULL, s1) is the only transition enterings1. According to Proper-

ties 6.1.1 and 6.1.2, only entering transitions can be attached tos2 in addition to transitions of

Subdiagram 1. Such transitions do not prevent us from forming an entry action satisfying both

Rule 6.1.1 and Rule 6.1.2 as long as these transitions are changed to enters1. Finally, leaving

transitions ofs1 do not influence on forming an entry action entry/a2 for states1 (if they enters2,

they are changed to enters1). �

Theorem 6.5.2 For a plain state diagramG, entry actions can be added to each subdiagram

G′, which is structurally isomorphic to Subdiagram 2, without violating Rule 6.1.1 if and only if

(s2, NULL, s3) is the only transition enterings3. Also Rule 6.1.2 will be satisfied if(s2, NULL, s3)

is the only transition enterings3.

Proof 6.5.2 As shown in Proof 6.5.1, an entry action entry/a2 cannot be formed for states3 if

(s2, NULL, s3) is not the only transition enterings3. Thus, it is enough to show that the condition

is sufficient. If conditionc3 holds, no leaving transition of states3 or states1 can enters3. Hence,

such transitions have no effect on forming an entry action for states3. Transitions entering state

s1 are also meaningless for forming the entry action. According to Properties 6.1.1 and 6.1.2,s2

can have only entering transitions attached to it in addition to transitions of Subdiagram 2. Such

transitions do not prevent us from forming the entry action as long as we change these transitions

to enters3. �
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6.6 Exit actions

Figure 6.9 shows how a state diagram can be optimized using an exit action. The original state

diagram has subdiagrams that are structurally isomorphic to Subdiagram 1 and Subdiagram 2.

Theorem 6.6.1 gives conditions for forming exit actions. Note that the conditions used in the

Figure 6.9: An optimization of a state diagram using an exit action

theorem were denoted byc4 andc5 earlier in this chapter. Definitions 6.3.3 and 6.3.4 are also

needed.

Theorem 6.6.1 For a plain state diagramG, exit actions can be added to each subdiagramG′,

structurally isomorphic to either Subdiagram 1 or Subdiagram 2, without violating Rule 6.1.1 if

and only ifc4 holds. Exit actions can be added toG′ satisfying Rules 6.1.1 and 6.1.2 if and only if
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bothc4 andc5 hold.

Let a1, . . . , am be the longest sequence of normal actions as described inc4. These actions are all

moved tos1 as exit actions and removed from everys′′ ∈ Sn(s1). Consider a statesa ∈ Sn(s1)

for which c5 does not hold. In that case, a new statesn is created, actionsa1, . . . am are copied

into it, and every entering transition(si, ej , sa), si 6= s1 of sa is changed to entersn, i.e. transition

(si, ej , sn) is created. In addition, an automatic transition(sn, NULL, sa) is added. Finally, if

s′′ ∈ Sn(s1) has no actions left aftera1, . . . am have been moved tos1, and there is an automatic

transition, say(s′′, NULL, sm), thens′′ and(s′′, NULL, sm) are removed and all transitions en-

terings′′ are changed to entersm.

Proof 6.6.1 First we show that conditionsc4 and c5 are needed. Ifc4 is not true, there are two

states, saysf andsg, in Sn(s1) so that the first actions of their action sequences differ. It is then

impossible to form an exit action for states1 without violating Rule 6.1.1. Suppose then that there

existsf ∈ Sn(s1) and sp ∈ S so thatsp 6= s1 and there is a transition(sp, e
′
p, sf ), e′p ∈ E in

the original state diagram. An exit action can then be formed without violating Rule 6.1.1 only by

copying the actions of statesf and either moving them to statesp or to a new state that is created

between statessp andsf . In both cases, Rule 6.1.2 would be violated. We still need to show that

the conditions1 6∈ Sn(s1) of Definition 6.3.3 is required. Ifs1 ∈ Sn(s1), then states1 would also

have actionsa1, . . . , am, and there would be a self transition, say(s1, f, s1). This means that the

actionsa1, . . . , am are executed before eventf is received. The Rule 6.1.1 requires then that if the

exit actions are formed, then the actionsa1, . . . , am must also remain as normal actions ins1. In

that case, the state diagram would not allow the following path, consisting of actions and events,

any longer:a1, . . . , am, f, a1, . . . , am, e, a1, . . . , am.

Next we will show that the conditionsc4 andc5 are sufficient. No entering transition of states1

has any effect on forming exit actions unless it is leaving states1. Leaving transitions of states

that do not belong toSn(s1) and which are entered from states that belong toSn(s1) by at least

one transition (e.g., states3 in the case of Subdiagram 2) have no influence on forming exit actions
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for states1. The same applies to the transitions that enter these states, except possibly the leaving

transitions of states1 or states2. If c5 holds, all entering transitions of states inSn(s1) leave

states1. Thus, leaving transitions of anys′ ∈ Sn(s1) cannot then enter any state inSn(s1)

(which possibly will be removed). Hence, such transitions are meaningless when forming exit

actions for states1. If c5 does not hold and there is a transition(s′, e′, s′′), s′, s′′ ∈ Sn(s1), then

actionsa1, . . . , am are executed twice when traversing along a path forms1 to s′′ using(s′, e′, s′′).

That requires coping actionsa1, . . . , am and hence violating Rule 6.1.2. Finally, conditionc4

guarantees that all leaving transitions of states1 enter a state, actions of which can be moved to

states1. Other kind of leaving transitions of states1 would make it impossible to form an exit

action for states1 without violating Rule 6.1.1.�

At the beginning of this chapter it was concluded that optimization algorithms replace only those

normal actions that run to completion without interruption of any event; actions to be replaced are

from states that have an automatic transition as the only leaving transition. Even though all states

in Sn(s1) are considered in Theorem 6.6.1, it is required that one of them belongs to a subdiagram

that is structurally isomorphic to either Subdiagram 1 or Subdiagram 2. Lets′ ∈ Sn(s1) be such

a state. Then the actionsa1, . . . , am to be moved tos1 are always non-interruptible ones, since

either there are still normal actions ins′, which are automatically executed afteram, or there is

an automatic transition leading out ofs′, again causing some actions to be automatically executed

afteram. This implies thata1, . . . , am indeed need to run to completion without interruption of

any event. Non-interruptible actions may appear also in other kinds of state diagrams. Figure 6.10,

for example, shows a state diagram in which actionb1 cannot be interrupted by any event and can

hence be replaced by an exit action. This transformation combines information and hence clarifies

the contents of the state diagram. However, it does not change the size of the state diagram. Hence,

such transformations are recommended only if adding the exit action combines information, (i.e.,

there are at least two states whose actions are replaced by the exit action. The next theorem relaxes

the rules for adding exit actions.

Theorem 6.6.2 For a plain state diagramG, exit actions can be added to each subdiagramG′

without violating Rule 6.1.1 if and only ifc7 holds. Exit actions can be added toG′ satisfying both
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Figure 6.10: Modifying of a state diagram using an exit action
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Rules 6.1.1 and 6.1.2 if and only if bothc7 andc8 hold

The proof of the Theorem 6.6.2 is similar to Proof 6.6.1. Note that Theorem 6.6.2 still guarantees

that actionsa1, . . . am, m ≥ 1, cannot be interrupted by any event, and can hence be moved to

s as exit actions. It is also worth noting that rules for forming internal and entry actions cannot

be loosened similarly; they can be added only for subdiagrams that are structurally isomorphic to

either Subdiagram 1 or Subdiagram 2.

6.7 Action expressions of transitions

Figure 6.11 shows how a state diagram can be optimized by attaching an action to a transition.

Theorem 6.7.1 gives the exact condition for adding action expressions for transitions. The con-

Figure 6.11: An optimization of a state diagram by attaching an action to a transition

dition used in Theorem 6.7.1 was also used in Theorem 6.4.1, and denoted byc1 earlier in this

chapter.
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Theorem 6.7.1 For a plain state diagramG, transition actions can be added to each subdiagram

G′, structurally isomorphic to either Subdiagram 1 or Subdiagram 2, without violating Rule 6.1.1.

Transition actions can be added toG′ satisfying both Rules 6.1.1 and 6.1.2 if and only if(s1, e, s2)

is the only transition enterings2.

Proof 6.7.1 We first consider transitions other than those in Subdiagram 1 or Subdiagram 2. Tran-

sitions attached tos1 but not tos2 have no effect on forming a transition action. The same applies

to transitions attached to states3 but not to states2 in the case of Subdiagram 2. Further, ac-

cording to Properties 6.1.1 and 6.1.2 the automatic transition has to be the only leaving transition

of s2. Finally, transitions entering states2 have to be considered. If(s1, e, s2) is the only tran-

sition enterings2, then a transition action can be formed by removings2 and the two transitions

attached to it, and attaching the actions of states2 to a new transition from states1 to states1 or

to states3, depending on whether Subdiagram 1 or Subdiagram 2 is considered. Assume then that

there is a transition(s′, e′, s2) 6= (s1, e, s2). Actions of states2 can then be attached to transition

(s1, e, s2) satisfying Rule 6.1.1 regardless of transition(s′, e′, s2). However, that is possible only

by attaching actions ofs2 to transition(s′, e′, s2) as well, and hence violating Rule 6.1.2.�

6.8 Removing UML notation concepts from state diagrams

When synthesizing new scenarios into an optimized state diagram, the state diagram is firstex-

panded(i.e., transformed back to a plain one). This is necessary for the synthesis algorithm. In

addition, the synthesis of a new scenario usually causes some new transitions and states to be cre-

ated. These transitions and states naturally influence the optimization process. They might prevent

some UML actions from being generated or enable a transformation that was not possible before.

In practice, the new optimized state diagram includes most of the UML actions that existed in it

before the synthesis. This is due to Property 6.1.1 and the fact that optimizing a plain state dia-

gram is based on removing states that have automatic transitions as the only leaving transitions.

For example, consider a state diagram that has been optimized by forming an internal action from

a part structurally isomorphic to Subdiagram 1. It is highly probable that the same transformation

is possible after synthesizing a new scenario, because the synthesis algorithm cannot add any other
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leaving transitions to states2. However, it is possible that a new entering transition will be added

to s2. That would prevent the optimizing algorithm to form the same internal action after the syn-

thesis. This is possible only if the path described in a new scenario ends ats2. Hence, adding new

scenarios into an optimized state diagram does not usually cause disturbing changes in the state

diagram. In this section we discuss how UML state diagrams can be expanded.

As the optimization of a state diagram, the expansion can be produced using a single menu com-

mand in SCED. In the order presented above, each expansion method is applied to all possible

subdiagram occurrences found in the state diagram.

After the state diagram has been expanded, the resulting state diagram is checked for any states

that could be merged. Such states may occur if the generation of some UML actions have been

forced (i.e., Rule 6.1.2 has been violated (cf. Section 6.1)). The steps to remove UML concepts

from a state diagram are described next.

• Removing action expressions of transitions

Suppose that in a state diagram there are statess1 ands3, and a transition(s1, e/(a1,

. . . , am), s3), a1, . . . , am being actions attached to that transition. Then the actionsa1, . . . , am

are detached from the transition by following the next steps:

1. create a new state, says2

2. add actionsa1, . . . , am to s2 as normal actions

3. add transitions(s1, e, s2) and(s2, NULL, s3)

4. remove transition(s1, e/(a1, . . . , am), s3).

• Removing entry actions

Suppose that in a state diagram there are statess1 ands3 and a transition(s1, e, s3). Further,

let s3 have entry actionsentry/a1, . . . , am. Then the entry actionsentry/a1,

. . . , am are removed froms3 using the following steps:

1. create a new state, says2
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2. add actionsa1, . . . , am to s2 as normal actions

3. add transitions(s1, e, s2) and(s2, NULL, s3)

4. remove entry actionsentry/a1, . . . , am from s3.

• Removing exit actions

Suppose that in a state diagram there is a states1. Further, letSn be a set of states that are en-

tered by at least one transition froms1. In addition, lets1 have exit actionsexit/a1, . . . , am.

Then the exit actionsexit/a1, . . . , am are removed froms1 by following the next steps for

eachs′ ∈ Sn:

1. if s′ has no normal, entry, nor internal actions and all entering transitions ofs′ are

leaving transitions ofs1, then letsn bes′, otherwise create a new statesn and create

an automatic transition(sn, NULL, s′)

2. add actionsa1, . . . , am to sn as normal actions

3. remove exit actionsexit/a1, . . . , am from s′

4. for every transition froms1 to s′, change the target state to besn.

In the first stepsn is set to bes′ if s′ has no normal, entry, nor internal actions and all

entering transitions ofs′ are leaving transitions ofs1. This is done in order to avoid an

empty state with an automatic transition as the only entering transition. Such a subdiagram

can, of course, be modified also afterwards: all the leaving transitions of the empty state are

changed to leave the source state of the automatic transition, and both the empty state and

the automatic transition are removed. Note that such a subdiagram can never result after

the synthesis. An empty state and an automatic transition may appear in a synthesized state

diagram, but they cannot be consecutive. An empty state results if there are two received

events in a row in a scenario diagram. Two successive sent events (or action boxes), on the

other hand, cause a generation of an automatic transition.

• Removing internal transitions

Suppose that in a state diagram there is a states1 that has internal transitions
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e/a1, . . . , am , f/b1, . . . , bn , . . . , g/d1, . . . , dp.

These internal actions are removed froms1 and replaced using the following steps for each

individual internal action, saye/a1, . . . , am:

1. create a new state, says2

2. add actionsa1, . . . , am to s2 as normal actions

3. add transitions(s1, e, s2) and(s2, NULL, s1)

4. remove internal actione/a1, . . . , am from s1.

• Unpacking actions

Suppose that in a state diagram there is a states1 with normal actionsa1, . . . , am. Then the

packed actionsa1, . . . , am are unpacked by following the next steps until there is only one

actiona1 in s1:

1. create a new statesn

2. move the last normal action froms1 to sn

3. move all leaving transitions ofs1 to leavesn

4. add an automatic transition(s1, NULL, sn).
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Chapter 7

Rigi

Rigi is an interactive and visual reverse engineering environment [74]. It has been designed to help

the user to understand and re-document software better. Rigi includes parsers to read the source

code of the subject software. The extracted static information can be visualized and analyzed using

Rigiedit, a graphical editor. Rigi runs on Sun SPARCstations (SunOS), IBM RISC System 6000

(AIX) workstations, and PC-compatible (Windows 95, Windows NT, Linux 2.x) machines.

7.1 Methodology

A semi-automatic reverse engineering approach of Rigi consists of two phases:

1. the identification of software artifacts and their relations

2. the extraction of design information and system abstractions.

The first phase is language dependent and is usually automated using parsers. Rigi provides parsers

for C, C++, COBOL, and PL/AS, and the text formatting language LaTeX. The extracted informa-

tion, consisting of software artifacts and their relations, is viewed as a directed graph with Rigiedit.

The software artifacts are represented as nodes and their relations are visualized as arcs between

the nodes. The types of nodes and arcs are defined in a language dependent domain model. For

example, in this research Rigi has been customized for analyzing Java software. The extracted
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information includes the following Java software artifacts: classes, interfaces, methods, construc-

tors, variables, static initialization blocks, and exceptions. These seven artifacts are represented

as seven nodes types in Rigi (cf. Appendix A). The extracted dependencies between the artifacts

include an extension relationship (e.g., a class extends another class), a containment relationship

(e.g., a class contains a method), a call relationship (e.g., a method calls another method), an ac-

cess relationship (e.g., a method accesses a variable), an assign relationship (e.g., a method assigns

a value for a variable), and so on. These relationships are represented as arcs between the artifacts

(cf. Appendix B).

Rigi provides several layout algorithms that can be applied for the static dependency graph to view

it in a desired way. The second phase is language independent and can be only partly automated.

The system abstractions are constructed by generating hierarchical structures of subsystems [73].

Software quality criteria and metrics, such as the “low coupling and high cohesion” principle, are

used for subsystem identification. Rigi supports program understanding also by providing algo-

rithms and tools for generating different slices of the static dependency graph, that is, filtering out

parts of the Rigi graph and thus providing a desired view of the target software system. This gives

the user a possibility to focus on examining desired aspects of the software.

In Rigi, two key requirements, namely flexibility and scalability, have been addressed by making

the system end-user programmable. A scripting language RCL has been incorporated into Rigiedit,

allowing the user to automate and codify any step during the reverse engineering process. In

addition, the user interface is fully customizable. The enhanced user control allows the user to

tailor the environment to her own needs. Rigi can be used as:

1. a precursor for maintenance and re-engineering applications;

2. a front-end for conceptual modeling and design recovery tools;

3. an input to project decision making processes; and

4. a program understanding tool.
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7.2 Rigi views

Rigi uses a directed graph to view the static information extracted from the source code of the

target software: the software artifacts and their relations are represented as nodes and arcs in the

static dependency graph, respectively. The type of a node or an arc is identified by a specific color.

Various attribute values can be attached to both nodes and arcs. Node types, arc types, attribute

types, and colors are defined in a domain model, written in four files Riginode, Rigiarc, Rigiattr,

and Rigicolor, respectively (cf. Appendices A-C). The colorings for nodes and arcs can also be

defined using the Rigiedit tool. The direction of an arc is not shown as an arrowhead, as is usually

done in directed graphs. Instead, an arc from nodeA to nodeB is drawn as a line from the bottom

of nodeA to the top of nodeB.

In Rigi, graphs can be nested to view the software on different levels of abstraction. The user

can identify clusters of nodes (related according to some criteria) and collapse them into nodes

that represent higher level components (e.g., subsystems). The new graph thus represents a more

abstract view to the software, containing less nodes and less arcs. The nodes can be clustered to

an arbitrary depth. By double-clicking a composite node, a new window pops up, showing the

contents of that node, that is, the nodes and arcs that have been collapsed to it. The editor hence

presents different levels in the hierarchy in separate windows. Because of that, the arcs connecting

two nodes on different levels are cut off. Figure 7.1 shows an example of a hierarchical Rigi graph

representing the structure of a C program. The most abstract view of the software (in this figure)

is shown in the top window. It contains only two high-level nodes: RayTracer and ShaderLibrary.

The arcs between these nodes are high-levelcompositearcs, which are derived from a bundle of

one or more non-composite arcs. They indicate that the subsystem RayTracer is related to the sub-

system ShaderLibrary, and vice versa. The content of the RayTracer node has been opened as a

window on the left. Again, a composite node named Ray has been opened as the third window on

the right. This window contains four method nodes (VoxelTrace, Trace, ShadeBackground, and

CompteRayT) and three composite nodes (ObjectVoxel, VoxelSystem, and RayPrimitives) that

could be opened further. The three dotted arcs are call arcs between the methods.
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Figure 7.1: A hierarchical Rigi graph containing three levels of abstractions
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To get an overview of the constructed hierarchies, a tree-like structure of the hierarchy can be

generated and viewed in a separate window. Furthermore, a projection window can be generated

to show the descendants of selected nodes.

Rigi provides also another approach for presenting hierarchical graphs, namely SHriMP (Simple

Hierarchical Multi-Perspective) views [106, 107]. SHriMP views employ fisheye technique for

nested graphs, showing the whole graph in a single view. Unlike Rigi views, a single SHriMP

view is able to view thelevel arcs(i.e., arcs that are connecting two nodes on different hierarchical

levels). In this research, the Rigi views have been used. There are three major reasons for that.

First, information about the level arcs were not needed in a case study (cf. Chapter 9). Second, the

static dependency graph resulting when extracting the information from the target Java software,

FUJABA, was quite large (cf. Figure 9.1). A single SHriMP view might not be preferable over

multiple Rigi views, if the software of that size is analyzed further [106]. Third, distinct parts

of the FUJABA software were examined at one time in the case study. The information hiding

facilities of Rigi were sufficient for constructing desirable static views in the example cases.

Rigi is able to view information stored in Rigi Standard Format (RSF). The RSF file format has

two major dialects: unstructured and structured. In general, external tools, conceptual modelers,

and parsers provide unstructured RSF for Rigiedit, and Rigiedit saves the graph as structured RSF,

including spatial information such as the subsystem hierarchy [123].

An unstructured RSF file or stream consists of a sequence of triples, one triple on a line. Blank

lines and comment lines starting with] are allowed. The format for a triple is three optionally

quoted strings:verb source target[123]. For example, a RSF file generated for a Java software

could contain a tripleinherit de.unipaderborn.fujaba.app.AboutBox javax.swing.JDialog. The

quotes are useful if the string contains white space characters.
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7.3 Scripting

Rigi is extensible and end-user programmable [117]. The user can program Rigiedit and extend its

facilities by writing Tcl/Tk [76] or Rigi Command Language (RCL) scripts. RCL is built on top

of Tcl. Rigi provides an RCL script library that can be used to automate tasks, customize features,

and integrate capabilities [123]. For example, the RCL library contains commands corresponding

to each menu command in Rigiedit. The user can add new menu commands and thus customize

the Rigiedit tool by writing new scripts. The RCL library also includes several scripts for manip-

ulating the static dependency graph. Because Tcl is an interpretable scripting language, the script

library of Rigi can be easily extended; new scripts can be written and added to it, on-line if desired.

This allows the user to write and use scripts that have specific tasks.

In this research, Rigi has been customized to analyze Java software. The RCL library has been

extended in various ways to support this task. Scripts for the following purposes have been added

to the RCL library:

1. reading files that follow an extended RSF format, in which attribute values for arcs are

allowed (cf. Section 8.6),

2. evaluating the graph using object-oriented software metrics (cf. Section 8.3),

3. normalizing the metrics values [113],

4. building high-level graphs by taking advantage of Java language structures (cf. Section 8.9),

5. slicing the graph by SCED scenario diagrams (cf. Section 8.8), and

6. writing information about the graph into files (needed by JDebugger, see Section 8.4).

Most of the scripts written are targeted for analyzing and modifying a graph that represents a struc-

ture of a Java software system. Furthermore, some scripts are useful only if the graph views the

software artifacts and the relations extracted from the byte code by JExtractor (cf. Section 8.2),

that is, the graph follows the domain model described in the Appendices A-C.
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7.4 Reverse engineering object-oriented software using Rigi

UML class diagrams are widely used for modeling the static structure of object-oriented software

systems in both forward and reverse engineering. In this research, Rigi has been used for static re-

verse engineering. The extracted static information of Java software is viewed as directed graphs.

The static dependency graph contains approximately the same information as a class diagram. In

Rigi, classes and interfaces have their own node types. Methods, constructors, static initialization

blocks, and variables given inside a class in the UML class diagram are shown as nodes that are

connected with acontainsarc from the class node in Rigi. Each node that represents such a class

member has a return type in a Rigi graph. For a method it is the type of the returned value, and for

a variable it indicates its type. The generalization relationships are shown asinherit arcs in Rigi.

Associations are shown in more detail in Rigi. While the class diagram shows an association be-

tween two classes, Rigi shows the individual relationships that cause two classes to be associated.

Such relations includecall relationships between member functions (i.e, methods, constructors, or

static initialization blocks) andaccessor assignmentrelationships between a method and a vari-

able. Information about multiplicity of the association can be extracted from those relationships in

Rigi. A composition between two classes can not be directly expressed in Rigi. If the composition

is implemented as variables (i.e., instances of the aggregated components are expressed as vari-

ables in the owner class), thecontainsrelationships and the types of the variables in Rigi can be

used to conclude information about the composition. The following Java keywords can be shown

in both of the models: public, protected, private, final, static, abstract, native, final, volatile, and

synchronized. Table 7.1 enumerates the main UML class diagram constructs and the constructs

that can be used in Rigi for expressing the meaning of the UML class diagram construct in ques-

tion.

In this research, we had several reasons for choosing Rigi. First, Rigi scales up. When reverse

engineering the FUJABA target system, which contains about 700 classes, the static analysis pro-

duced 25854 software artifacts (cf. Figure 9.1). Viewing that information in a form of a single

class diagram would be difficult.
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A UML class A Rigi static dependency Correspondence
diagram construct graph construct

class Class (node type) replacing
interface Interface (node type) replacing
method Method (node type) replacing
constructor Constructor (node type) replacing
static initialization Staticblock (node type) replacing
block
variable Variable (node type) replacing
exception (stereotype) Exception (node type) replacing
generalization Inherit (arc type) and replacing

Implement (arc type)
composition replacing

call (arc type) partly missing from UML
access (arc type) missing from UML
assign (arc type) missing from UML

send (stereotype) throw (arc type) replacing
class compartments contains (arc type) replacing

Table 7.1: UML class diagram constructs and the constructs that can be used in Rigi for the task
in question. The correspondence is characterized as “replacing” if such a Rigi construct exists and
“missing” otherwise.
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Second, Rigi allows, for example, viewing variable accesses and method calls, which is not pos-

sible using standard class diagrams. Hence, information that can not be expressed using a class

diagram can be included in a Rigi view. In this research, such pieces of information are used for

guiding the dynamic reverse engineering process. In addition, including information about the

member function calls enables merging dynamic code usage information into the view. The code

coverage information, in turn, can be used for analyzing the software in various ways.

Third, Rigi supports building high-level views of the software by constructing hierarchical struc-

tures of Rigi views. Such abstractions are harder to construct for class diagrams because the

notation for class diagrams is richer than the one for directed graphs. Dósa and Koskimies [30]

introduce an approach for extracting high-level views of UML class diagrams. The used technique

compresses information from the class diagram. An incremental expanding mechanism can be

used to get back the original class diagram.

Fourth, Rigi provides a large and extensible set of slicing mechanisms. They help the user to focus

on a desired aspect of the software. In this research, the slicing algorithms are used, for instance,

to define the software artifacts for which dynamic information is generated.

Fifth, Rigi is easy to customize and extend, hence providing a good environment for the experiment

described in this dissertation. Reverse engineering is a complex process. Usually, not only one

tool but a set of tools is used for this purpose. Hence, for flexible integration, it is highly desirable

that the software exploration tools are programmable and customizable and can thus be adopted

and plugged into a new environment.

7.5 Summary

Rigi is an interactive and end-user customizable reverse engineering environment. Rigi includes

parsers to read the source code of the subject software. The extracted information is visualized as

a directed graph using Rigiedit. The software artifacts and their relations are visualized as nodes

and arcs, respectively. The type of a node (e.g., a method or a variable) and the type of an arc
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(e.g., a method call or a variable access) are represented by specific colors. Rigi is able to view

information stored in Rigi Standard Format (RSF) [123].

A scripting language RCL [123], which is built on top of Tcl [76], is incorporated into the Rigiedit

tool. Rigi provides an RCL script library that allows the user to analyze and modify the static

dependency graph. The RCL library can be extended by new Tcl/Tk or RCL scripts, on-line if

desired. The scripts can be used, for instance, to build high-level views of the software. The user

can identify clusters of nodes and collapse them into nodes that represent higher level components

(e.g., subsystems). The new graph thus represents a more abstract view of the software, containing

less nodes and less arcs. The nodes can be clustered to an arbitrary depth. The contents of the

collapsed nodes can be opened in separate windows. The scripts can also be used to filter out

information from the graph, to make queries on the graph, to read information from a RSF file, to

write information to a RSF file, etc.

In this research, Rigi is customized for analyzing Java software. The information is extracted from

Java byte code files and stored in RSF files. The RCL library has been extended in various ways

to support static reverse engineering of Java software systems.
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Chapter 8

Applying Shimba for reverse

engineering Java software

Shimba is an environment for reverse engineering Java applications and applets. It is written in

Java and uses the jdk 1.2 Virtual Machine (JVM). It can be used to collect and to view static and

dynamic information from the software. Furthermore, a metrics program can be run to calculate

selected object-oriented metrics values from the collected information. The metrics values can be

used for analyzing the extracted information further.

8.1 Overview of the implementation

In Shimba, Rigi is used for viewing and analyzing the static structure of the software extracted

from the Java byte codes comprising the subject system. SCED is used for modeling the event

trace and dynamic control flow information generated when running the target system under a cus-

tomized jdk debugger. To generate dynamic control flow information, breakpoints are set for the

debugger on the lines that indicate branching caused by conditional statements. The line numbers

for this purpose are extracted from the byte code. Dynamic code coverage information can also

be attached to the static Rigi view when debugging a target software system. Information between

the constructed views can then be exchanged. The constructed views can then be used to modify

and improve each other by means of information exchange, slicing, and building abstractions, as
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discussed in Sections 8.7, 8.8, and 8.9. Figure 8.1 shows the overall structure of Shimba.

Traditionally, the static information is parsed from the source code. We had three main reasons for

choosing Java byte code instead. First, extracting the static information from the byte code allows

Shimba to be independent of the source code. Second, since the same byte code is used for both

static and dynamic analysis, the user can be confident that the constructed models do not contain

any inconsistencies due to different versions of the target software. Third, extracting information

from Java byte code is straightforward and quick since no parsing needs to be done.

Figure 8.1: Shimba — An environment for reverse engineering Java software

8.2 Constructing a static dependency graph

Static software artifacts and their relationships are read from Java class files. The implementation

of the extractor, calledJExtractor, was written in Java by the author. It uses some of the pub-

lic classes of thesun.tools.javapackage of jdk1.2. The static information is extracted following
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the descriptions of the contents of Java class files [118]. The extracted information includes the

following Java software artifacts:

1. classes,

2. interfaces,

3. methods,

4. constructors,

5. variables, and

6. static initialization blocks.

Some attribute values are attached to the above software artifacts during the static analysis of the

software. These attributes and their possible values are listed in Table 8.1. Some metrics values

can also be added as attribute values to the software artifacts. This is discussed in Section 8.3 in

more detail.

An attribute Added for Values

visibility classes, interfaces public, protected,
member functions or private

return type member functions a string
package classes and interfacesa string
static member functions 1 or 0
abstract member functions 1 or 0
native member functions 1 or 0
final member functions 1 or 0
volatile member functions 1 or 0
synchronized member functions 1 or 0

Table 8.1: Software artifacts and their attribute values extracted during the static analysis of the
software. The phrase “member functions” refers to methods, constructors, and static initialization
blocks.

The extracted relationships among the software artifacts are:
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1. an extension relationship (e.g., a class extends another class),

2. an implementation relationship (a class implements an interface),

3. a containment relationship (e.g., a class contains a method),

4. a call relationship (e.g., a method calls another method),

5. an access relationship (e.g., a method accesses a variable), and

6. an assignment relationship (e.g., a method assigns a value for a variable).

No attribute values are attached to the relationships in the static analysis of the software. How-

ever, call relationships, for example, can be given weight values based on the run-time usage of the

software. Furthermore, during the dynamic analysis of the software exceptions and throw relation-

ships (e.g., a method throws an exception) can be added to the static dependency graph. Adding

dynamic information to the static dependency graph is discussed in Section 8.6 in more detail.

The user can ask the JExtractor to read information for:

1. all classes in a specified directory (optionally all the subdirectories are included),

2. selected classes (a list of classes is given as a file),

3. all classes in a single class file (a class file usually includes one class definition only), or

4. all classes in a single class file and all their dependencies (i.e., all classes that are used by

any of the previously parsed classes).

The extracted static information is currently stored in Rigi Standard Format (RSF) [123]. Shimba

uses an internal graph representation, which temporarily stores the extracted information before

dumping it into a file. All static information and the part of dynamic information that is added to

the static dependency graph is stored in this graph. A specific writer is implemented to write the

contents of the graph to a file in RSF format. Hence, the saving format is not hard-wired in the
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implementation of JExtractor. Another writer can easily be implemented to support another saving

format.

The resulting RSF file can be loaded into the Rigi reverse engineering environment using a single

menu command. In Rigi all the software artifacts are shown as nodes, and relationships as directed

edges between two nodes.

8.3 Software metrics used in Shimba

Software metrics can play a significant role when reverse engineering an existing software system.

One approach is to use object-oriented complexity metrics to identify high- and low-complexity

parts of the subject system. The most experienced maintainers or reengineers can then be assigned

to the most complex subsystems [116]. Another strategy is to identify complex or tightly coupled

parts in the subject software system. Such parts are difficult to modify and reuse and might be

candidates for restructuring, refactoring, or significant redesign [35]. Metrics can also be used to

identify highly cohesive and loosely coupled parts of the software that potentially represent sub-

systems [73]. Measures of the inheritance hierarchy of an object-oriented software system can

give good predictions of reusability and design complexity.

A metrics program has been integrated with Shimba [113, 114]. The user can select any com-

bination of the seven metrics listed below and give them to the metrics program as parameters.

The metrics program calculates values for the selected metrics from the information extracted by

the byte code parser. The metrics suite contains seven product metrics that can be used to es-

timate and measure inheritance relationships, complexity, and communication of the target Java

software [113, 114]. The metrics provided are:

1. Depth of Inheritance Tree (DIT),

2. Number of Children (NOC),
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3. Response For a Class (RFC),

4. Coupling Between Objects (CBO),

5. Lack of Cohesion in Methods (LCOM),

6. Cyclomatic Complexity (CC), and

7. Weighted Methods per Class (WMC).

For each metric, Table 8.2 enumerates the software artifacts it is applied to, its primary focus, and

aspects it measures. The calculation of the metrics is described in the Appendix D.

Metric Calculated for Primary focus Things to measure

DIT classes, interfaces Inheritance reuse, understandability,
and testability

NOC classes, interfaces Inheritance reusability and potential
influence on the design

RFC classes Communication coupling, complexity, and
requirements for testing

CBO classes Communication coupling, reusability
LCOM classes Communication cohesion, complexity,

encapsulation, and
usage of variables

CC classes, Complexity complexity and branching
member functions in the control flow

WMC classes Complexity complexity, size, effort for
maintenance, usability,
and reusability

Table 8.2: Seven software product metrics, software artifacts they are applied to, their primary
focus, and things they measure.

The metric values calculated can be dumped into a file or added to a Rigi graph as node attributes

and used for analyzing the software. In Rigi Tcl/Tk [76] scripts can be run on the static dependency

graph [123]. The scripts can be used to make queries about the graph or to modify it. The scripts

provide a flexible way to analyze the metric values. For example, by running a script the user can

easily focus on parts of the software that have metric values in a desired value range. Because Tcl

is an interpretable scripting language, the script library of Rigi can be easily extended; new scripts
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can be added to it, on-line if desired. This allows the user to write and use scripts that have specific

tasks (e.g., scripts that support the analysis of the metric values).

8.4 Collecting dynamic information

When reverse engineering Java software using Shimba, the dynamic event trace information is

generated automatically as a result of running the target system under a customized jdk debugger,

calledJDebugger. The implementation of JDebugger uses public classes of thesun.tools.debug

package of jdk1.2. It generates event trace information about method calls, constructor invoca-

tions, and thrown exceptions. Such events can be sent and received by methods, constructors, or

static initialization blocks of classes. In the sequel, these class members are calledmember func-

tions in short. In addition, information about the dynamic control flow, that is, a dynamic slice

of the implicit (static) control flow, can be generated if desired. The dynamic control flow de-

scribes branching within member functions. It consists of a notification of an executed conditional

structure and an acknowledgement of the result. In Java such conditional structures areif , for ,

while, anddo-while statements. The branching information caused by aswitch-casestatement

is recorded as well. In the event trace generated the receivers and senders of events, as well as

owners of conditional structures, can be set to be either classes or objects. When loading the event

trace information into SCED, they are represented as scenario participants and shown as vertical

lines. In some cases it is enough to examine the object interaction classwise, while in other cases it

is necessary to distinguish among instances of classes (i.e., study the behavior at the object level).

In the former case, the scenario participants are classes, in the latter case they are objects.

8.4.1 The event trace

To capture the event trace information, the user can ask JDebugger to set breakpoints at the first

line of

1. a set of selected member functions (the set is given as a file),

126



8.4. COLLECTING DYNAMIC INFORMATION

2. all member functions of selected classes,

3. selected member functions of selected classes, or

4. all member functions of all/selected parsed classes (i.e., classes for which static information

has been generated).

Event trace information is generated when a breakpoint is hit or an exception is thrown. JDebugger

keeps a stack of previously activated class members. The stack information can be used to deter-

mine the senders of the events. If the sender and the receiver of an event are the same, an action

box is generated to the SCED scenario diagram. Otherwise, an event arc is generated. After the

event or the action box is created, the execution of the program continues automatically. A hit of a

breakpoint causes only a short pause of the execution of the system, giving the user no possibility

to decide about the continuation of the execution.

Information about thrown exceptions is also added to the event trace. The user can choose a set of

exceptions to be tracked using a menu command in Shimba. If the thrown exception was selected

by the user, then the receiver for the event is set to be the class the exception is an instance of.

Otherwise, the receiver is be the superclass of all exceptions, namelyjava.lang.Exception. If the

user has not selected any exceptions, thejava.lang.Exceptionclass is the receiver for all exception

events.

8.4.2 The control flow

Dynamic control flows of classes and/or methods can be extracted using breakpoints. In Java,

branching of the execution is caused by conditions ofif , for , while, do-while, andswitch-case

statements. JDebugger can be given instructions to set breakpoints at specific lines of classes.

Hence, setting breakpoints on those conditional structures requires information about line num-

bers. This piece of information can be read from the byte code by JExtractor, as long as debugging

information has been included to the class files. In jdk1.2, for example, this means that option “-g”
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or “-g:lines” has been used when compiling the source code.

A breakpoint that is set at a line of the actual condition that causes branching in the execution is

called astate breakpoint. Correspondingly, anassertion breakpointdenotes a breakpoint at a line

that might be executed right after the evaluation of the condition, that is, the line that is executed

if the condition yields true/false or the first line of a chosencasebranch of aswitch statement.

A hit of a state breakpoint causes a SCED state box to be added to the event trace. Correspond-

ingly, a hit of an assertion breakpoint might cause a SCED assertion box to be added to the event

trace. This approach causes a lot of breakpoints to be added, possibly even several for a single

line. Adding only assertion breakpoints is not enough, since it is not always possible to determine

which conditional statement caused a jump to a specific line. Hence, adding both assertion and

state breakpoints is necessary. If an assertion breakpoint is hit, JDebugger needs to check which

was the previous state box added to the scenario. An assertion box is added to the scenario only if

the name of the previously added state box refers to the same line (e.g., a state boxTEST line 24

and an assertion boxCond at 24 taken). Note that the line number of a single condition of a condi-

tional statement in Java byte code is uniquely determined by the line number of the operator used.

When a state breakpoint is hit, JDebugger needs to check if there are also assertion breakpoints at

that line. All such assertion breakpoints need to be checked first since the line might be also the

first line in a branch of a previously executed conditional statement.

Note that Shimba is independent of the source code of the target software. Hence, state boxes are

not labeled by the actual conditional structures, even though that would be more descriptive. If

the source code existed, that would be possible since the line numbers are known. There are three

major reasons for the chosen labels for state boxes and assertion boxes. First, we want to be totally

independent of the source code. Second, since we do not give the condition written in the source

code, we at least want to provide the user a possibility to quickly find that line if she wants to and

she has an access to the source code files. Third, it does not seem to be more useful nor more

descriptive to add the name of the actual byte code instructions that caused the branching. These

byte code instructions are:
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1 ifeq,

2 ifne,

3 iflt,

4 ifle,

5 ifgt,

6 ifge,

7 if icmeq,

8 if icmifne,

9 if icmiflt,

10 if icmifle,

11 if icmifgt,

12 if icmifge,

13 lcmp,

14 fcmpg,

15 fcmpl,

16 dcmpg,

17 dcmpl,

18 ifnull,

19 ifnonnull,

20 ifacmpeq,

21 ifacmpne,

22 goto,

23 gotow,

24 lookupswitch, and

25 tableswitch.

From now on this instruction set is denoted byI. Consider the following fragment of Java source

code:
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22 public void readFromFile(String str){
23 DataInputStream dataInputStream = getStream(str);

24 if (dataInputStream !=null ) {
25 read(dataInputStream);

26 } else{
27 printError(”Stream not found”);

28 }
29 }

After compilation the class file contains the following byte code instructions that correspond to the

readFromFilemethod:

Method void readFromFile(java.lang.String)

0 aload0

1 aload1

2 invokespecial] 20<Method java.io.DataInputStream getStream(java.lang.String)>

5 astore2

6 aload2

7 ifnull 18

10 aload0

11 aload2

12 invokespecial] 25<Method void read(java.io.DataInputStream)>

15 goto 24

18 aload0

19 ldc] 2 <String ”Stream not found”>

21 invokespecial] 24<Method void printError(java.lang.String)>

24 return

The information about byte code instructions, as well as the following line number table, are gen-
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erated by jdk’sjavapprogram.

Line numbers for thereadFromFile(java.lang.String)method are:

line 23: 0

line 24: 6

line 25: 10

line 24: 15

line 27: 18

line 22: 24 (the method header)

According to the byte code instructions of the methodreadFromFileand the line number table, the

first instruction that is executed at line 24 isa load (number 6). The instructionifnull 18 (number

7) is executed after that. Branching is indicated with the number 18 after the name of the instruc-

tion. Thus, the next instruction to be executed is either number 10 or number 18, depending on the

result of the testifnull. Figure 8.2 shows a scenario diagram that has been generated for the target

system. Before running the system, a breakpoint is set at line 24 becauseifnull ∈ I. The JDebug-

ger tool generates a message (using a call stack that is provided by the jdk debugger) when it stops

at the first line of the method. It also stops at line 24 and adds the state boxTEST line 24to the sce-

nario diagram. The assertionCond at 24 takenis added when the the execution has reached line 27.

31 public void initValue(){
32 if (value ==null ) {
33 // do nothing

34 } else{
35 value = new Integer(0);

36 }
37 }
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Figure 8.2: A scenario diagram describing an example run through the methodreadFrom-
File(String)

The byte code instructions for theinitValuemethods and the corresponding line numbers are:

Method void initValue()

0 aload0

1 getfield] 28<Field java.lang.Integer value>

4 ifnull 19

7 aload0

8 new] 8 <Class java.lang.Integer>

11 dup

12 iconst0

13 invokespecial] 14<Method java.lang.Integer(int)>

16 putfield] 28<Field java.lang.Integer value>

19 return

Line numbers for theinitValue()method are:

line 32: 0

line 35: 7
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line 31: 19 (the method header)

Note that in both cases the byte code instructionifnull is generated because of theif statement

even though the comparison operation in the first case is “!=” and in the second case “==”. Hence

there is no way to know, even if the target system were compiled using the same Java compiler,

which byte code instruction is generated from the conditional statement.

Information about the control flow is also needed for calculating some object-oriented metrics val-

ues (e.g., McCabe’s cyclomatic complexity [70]) [113, 114]). A flow graph is formed for each

member function during the extraction of the static information (dependency graph). Instructions

gotoandgoto w of I have a specific role since they do not represent actual branching. They force

the execution to jump to a given instruction. They are usually used in connection with other in-

structions in the list.

The algorithm for constructing a static control flow graph is presented next. The algorithm takes

an ordered list of byte code instructions as input. Anoffset numberis attached to each byte code

instruction in the byte code stream. The offset number shows the offset in bytes from the begin-

ning of the method’s byte code array to the start of the byte code instruction. The list of byte code

instructions is ordered according to their offset numbers.BinaryClassandBinaryConstantPool

classes ofsun.tools.javapackage are used to get the byte code instruction array. For convenience,

the set of conditional byte code instructions is split into three subsets:

1. I1 = { goto, goto w },

2. I2 = { lookupswitch, tableswitch}, and

3. I3 = I − {I1 ∪ I2}.

In addition, six other instructions are considered. They all represent returns from the method:

I4 = {ireturn, lreturn, freturn, dreturn, areturn, return}.
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Algorithm 3. Forming a control flow graph for a member function from Java byte code instruc-

tions.

Input: An ordered listL of byte code instructions.

Output: A control flow graphCFG.

Method:

formControlFlowGraph (L)

CFG := ∅
for each instructionl with offset numberi in L do

if CFG contains a node with labeli then

Let x be that node.

else

Create nodex with labeli and add it toCFG.

if l belongs toII ∪ I3 then

Let j be the instruction to be jumped to if the conditional byte code condition results

true.

if CFG contains a node with labelj then

Let y be that node.

else

Create nodey with labelj and add it toCFG.

Create atrueedge fromx to y.

else if l belongs toI4

// A sink node with id number 1000 is created forCFG.

// The id number for the sink node needs to be greater

// than any other id number of any other node inCFG,

// i.e., it is the upper bound of the size ofCFG.

if CFG contains a node with label 1000then

Let sink be that node.

else
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Create nodesink with labelj and add it toCFG.

Create atrueedge fromx to sink.

else if l belongs toI2

Let j be the offset number of the instruction representing thedefaultbranch.

if CFG contains a node with labelj then

Let y be that node.

else

Create nodey with labelj and add it toCFG.

Create atrueedge fromx to y.

for each offset numberk that represents acasebranch in the

tableswitchor lookupswitchstructurebegin

if CFG contains a node with labelk then

Let ns be that node.

else

Create nodens with labelk and add it toCFG.

Create atrueedge fromx to ns.

end // for

end

end // for

if the size ofCFG is greater that 1then

Setprev to be the node inCFG with the smallest label.

Setnext to be the node inCFG with the second smallest label.

while prev 6= null begin

if prev 6∈ I1 then

Create afalseedge fromprev to next.

Let prev benext.

Let next be a node inCFG with the smallest label that is

bigger than the current label ofnext.

end
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end

The Algorithm 3 does not produce a traditional control flow graph, formed from the source

code and describing different paths through a method/module. However, according to the The-

orem 8.4.1, their cyclomatic complexities, defined in Definition 8.4.1, are the same.

Definition 8.4.1 The cyclomatic complexityν of a graphG is

ν = e − n + p, (8.1)

wheree is the number of edges inG, n is the number of nodes inG, and p is the number of

disconnected components inG.

Theorem 8.4.1 For an arbitrary Java methodM , let m1 be the source code ofM and m2 the

byte code of compiledm1. Let CFGs be a (traditional) control flow graph ofm1 andCFGb a

control flow graph generated by Algorithm 3 form2. Then the cyclomatic complexities ofCFGs

andCFGb are the same.

Proof 8.4.1 When generatingCFGb some extra nodes are added to the graph (e.g., defining the

instruction to be jumped to). Those nodes do not necessarily belong to any of the setsI1, I2, I3,

or I4. LetIe be the set of those nodes.

First, we show that for both graphsp = 1 (i.e., the graphs are connected). ForCFGs it is obvi-

ous. InCFGb nodes that belong toI2 ∪ I3 ∪ I4 ∪ Ie are connected in the order of their id number

with false edges. Nodes inI1 have always exactly one outgoing edge. They also have exactly one

incoming edge, except possibly a node that has the smallest id number. If there were two compo-

nents, the other component should only contain nodes that belong toI1. That is impossible ifm2

is compiled fromm1.

It remains to be shown thate − n has the same value in both graphs. Consider the following

transformation ofCFGb: all nodes that have exactly one outgoing edge are removed and their
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incoming edges are changed to enter the target nodes. Each time a node is removed, also an edge

is removed, keeping the value ofe − n unchanged. InCFGb such nodes are the ones belonging

to I1, I4, or Ie. The nodes inI3 always have two outgoing edges: one true edge representing the

jump, and one false edge representing a continuation of the execution from the next instruction.

Corresponding nodes are found fromCFGs as well. Such nodes are formed for all conditional

statements (if , for , while, anddo-while). For all nodes inI2, one true edge is generated to a node

representing the default branch and to all case branches. Again, similar edges need to be found

fromCFGs. Hence, the transformation results in a graph isomorphic toCFGs, disregarding the

labelling of nodes.�

As an example, consider the following method:

private void foo() {
int val = 0;

for (int i = 1; i < 4; i++) {
for (int j = 1; j < 5; j++) {

val += i*j;

}
}
switch (value){
case1:

value = val + value;

break;

case2:

value = val - value;

default:

value = val;

}

137



8.4. COLLECTING DYNAMIC INFORMATION

}

After compilation the class file contains the following byte code instructions that correspond to the

method:

Method void foo()

0 iconst0

1 istore1

2 iconst1

3 istore2

4 goto 29

7 iconst1

8 istore3

9 goto 21

12 iload1

13 iload2

14 iload3

15 imul

16 iadd

17 istore1

18 iinc 3 1

21 iload3

22 iconst5

23 if icmplt 12

26 iinc 2 1

29 iload2

30 iconst4

31 if icmplt 7

34 aload0
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35 getfield] 8 <Field int value>

38 tableswitch 1 to 2: default=83

1: 60

2: 73

60 aload0

61 iload1

62 aload0

63 getfield] 8 <Field int value>

66 iadd

67 putfield] 8 <Field int value>

70 goto 88

73 aload0

74 iload1

75 aload0

76 getfield] 8 <Field int value>

79 isub

80 putfield] 8 <Field int value>

83 aload0

84 iload1

85 putfield] 8 <Field int value>

88 return

Line numbers for method void foo()

line 14: 0

line 16: 2

line 17: 7

line 18: 12

line 17: 18

line 16: 26
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line 22: 34

line 24: 60

line 25: 70

line 27: 73

line 29: 83

line 13: 88

The information about the byte code instructions, as well as the line number table, are generated

by jdk’s javapprogram. Figure 8.3 shows the generated control flow graph on the left, and the one

formed from the source code on the right. The cyclomatic complexity of both graphs is the same.

Application of the transformation method described in Proof 8.4.1 for nodes 4, 7, 9, 12, 21, 29,

70, and 88, results in a graph that is isomorphic to the graph on the right disregarding the labelling

of the nodes.

8.5 Managing the explosion of the event trace

A large amount of event trace information is generated as a result of even a relatively brief usage of

the target system. Thus, methods for managing the event explosion problem are needed. Searching

behavioral patterns (i.e., repeated similar behavior) from the event trace provides one way to deal

with the problem. This approach is used, for example, in ISVis [51] and Jinsight [45]. In Shimba,

the original scenarios (or any subset of them) can be modified by applying string matching algo-

rithms to them. The patterns found provide means to raise the level of abstraction of the scenarios

and to decrease their size.

Shimba uses string matching algorithms to search behavioral patterns from SCED scenario files.

A pattern consists of a sequence of any SCED scenario diagram items. Shimba recognizes exact

matches only (i.e., both the name and the owner/owners of each scenario diagram item has to be

the same). The behavioral patterns found are shown either as repetition constructs or as subsce-

narios. Repetition constructs are used if the pattern is repeated at least twice in a row. Patterns that

occur in a row are potentially generated bywhile, for, or do-whilestructures. Hence, a repetition
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Figure 8.3: Two control flow graphs for thefoo method; the one generated from the byte code on
the left and the one formed based on the source code on the right. The cyclomatic complexityν
for both graphs is 4.
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construct is a natural way to show the same situation in a scenario. The name of the repetition con-

struct indicates the number of times the pattern has been repeated. Repeated events may appear

also in other circumstances. For example, when debugging the behavior of a GUI of a software

system, moving a mouse, clicking a mouse, keyboard commands, etc., often cause an event to be

repeated several times in a row. The number of repetitions might be large, even compared to the

size of the event trace. Hence repetition constructs for repeated single events are generated already

during the debugging process (i.e., when generating the original scenario diagrams).

Behavioral patterns may also occur independent of each other. For example, in a GUI software,

opening of a dialog box causes several events to be executed in a row (initialization of the dialog).

Such a pattern is repeated every time a dialog is opened. These patterns may appear in different

scenarios, or at least, disconnected from each other. Subscenarios are used to identify such pat-

terns. Subscenario boxes provide a powerful way to link scenario diagrams: instead of repeating

the event sequence in a place of their appearance, a subscenario box is used to refer to another sce-

nario diagram that actually contains the event sequence. When double clicking a subscenario box,

the scenario diagram containing the detailed pattern information is opened. Subscenarios help the

engineer to recognize the patterns, to browse them, and to structure the described behavior. The

synthesis algorithm reads the events of nested scenario diagrams recursively. The resulting state

diagram is similar to the one generated for the set of original, unnested scenario diagrams. The

Boyer-Moore string matching algorithm [12] is applied for searching the behavioral patterns.

Another way to manage huge event traces is to split them into several shorter and more manage-

able ones. In our experiment this approach is used as well. The event trace is split automatically

into several scenarios in order to limit the size of a single scenario. The user can also influence the

way the event trace is saved as scenarios: at any point during the execution of the target system the

user can dump the current event trace into a scenario file and initialize the event trace by choosing

a single menu command. Hence, the user can “record” the desired interval of the execution.
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8.6 Merging dynamic information into a static view

In Shimba, dynamic event trace information can be attached to a static dependency graph. When

merging dynamic information into a static view, the following edges are given weight values, in-

dicating how many times they have actually been used during the execution:access, assign, and

call. In addition, some nodes and edges are usually added to the graph. Such nodes are typically

Exceptionnodes (cf. Appendix A), generated when an exception is thrown, andthrow edges (cf.

Appendix B) indicating which member functions threw the exception. Thethrow edges are natu-

rally given weight values as well.

The merged view can be saved in an extended RSF format. An (unstructured) RSF file or stream

consists of a sequence of triples, one triple on a line [123]. The triple format of RSF is insufficient

for giving weight or any other kind of attribute values for edges. In this research, attributes for

edges are given as lines that start with two comment characters (]]). For example, the following

line defines the weight of a method call to be 8:

]] call uml.UMLIncrement.markEdited() uml.UMLMethod.setDirty() weight 8

The resulting graph can be loaded into Rigi using a couple of simple scripts that are able to parse

such comment lines. The standardrcl load rsf script of Rigi [123] is used to load the rest of the

RSF file. Figure 9.17 shows a Rigi graph that contains both static and dynamic information.

8.7 Using static information to guide the generation of dynamic in-

formation

Using Shimba, static information can be generated before, during, or after debugging the target

system. If the static dependency graph exists before generating the dynamic models, JDebugger

can be given instructions based on the static information. Possibilities of such guidance are dis-

cussed next.
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When reverse engineering an unknown system, the engineer might be interested in a specific part

of the software. In static reverse engineering, the user can extract information for only those class

files she is interested in. For example, JExtractor can be given instructions to generate a static

dependency graph for a specific package only, if the class files reside in a directory structure that

reflects the package names, which is common for Java software. In dynamic reverse engineering,

if the user is interested in the dynamic behavior of a specific part of the software, it is not meaning-

ful to generate information about all the object interactions of the system, but only the interactions

that have an effect on the behavior of that part. Such information slicing can dramatically decrease

the size of generated event traces, still containing the information of interest. In order to be able to

do that, the engineer needs to know the dependencies among the classes. This means that knowl-

edge about the static structure of the software is needed.

Rigi provides several scripts for analyzing the static (or merged) graph. In addition, new scripts

can be easily written and added to the script library. In Shimba, the slicing mechanisms of Rigi can

be used to guide JDebugger to restrict the amount of event trace information to be generated. After

defining the parts of interest from a Rigi graph, the user can select all theMethod, Constructor,

andStaticblocknodes (representing member functions) for which JDebugger will set breakpoints.

Assume that the user is interested in the behavior of classes that belong to a setSo. Let S be a set

of classes such thatSo ⊆ S and all inherited classes of eachs ∈ So belong toS. Furthermore, let

M be the set of all members of all classes inS, that is, for eachm ∈ M , there is acontainsarc

from ones ∈ S to m. Finally, letMt be a set of nodes to which there is a call arc from any node

in S ∪ M , and letMs be a set of nodes from which there is a call arc to any node inS ∪ M . The

setsMt andMs contain member functions that might be interacting with member functions inM .

It is meaningful then to filter out everything else from the Rigi graph except the following nodes:

1. all classes and interfaces inS,

2. all members inM ,
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3. all nodes inMs,

4. all nodes inMt, and

5. all nodes that represent overridden methods of methods inMt.

The user can then generate dynamic information to the software artifacts that belong to the above

set of nodes. This set includes all the software artifacts that might effect the behavior ofSo, hence

guaranteeing that all the essential information will be included in the generated event trace.

The user may also find nodes that represent software artifacts outside the target system uninterest-

ing. Such nodes might be, for example, methods and classes belonging to jdk.

Finding the right nodes using Rigi is simple, since the package and class declaration are included in

the names of all nodes. For example,Methodnodes are of typepackageName.className.methodName.

Hence, the nodes can be found using a simple grepping script.

8.8 Slicing a Rigi view using SCED scenarios

The dynamic information can be used for analyzing the static dependency graph of a subject sys-

tem. Section 8.6 discussed how dynamic information can be attached to a static Rigi graph. The

graph can then be sliced based on this dynamic information. For example, parts of the software

that has not been used (heavily enough) can be filtered out. In this section we discuss how a purely

static graph can be sliced based on dynamic event trace information. By a slice of the Rigi graph

we mean a subgraph that shows only desired parts of the original Rigi graph.

When reverse engineering SCED scenario diagrams the senders and receivers of member function

calls can be set to be either objects or classes. Thus, by examining the SCED scenarios a called

member function can be identified but the caller is given as an object or a class, although the mem-

ber function is always called from another member function. The generated static Rigi graph also

shows acall relationship between two member functions. Such relationships can be given weight
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values indicating their actual run-time usage (cf. Section 9.17). A Rigi graph that contains both

static and dynamic information can be sliced based on the weight values. For example, the user

can filter out parts of the graph that have not been used (heavily enough) at run-time.

Slicing the purely static Rigi graph based on example scenarios differs from slicing a Rigi graph,

in which dynamic information has been merged. In the former case Method, Constructor, Stat-

icblock, and Class nodes that have been visited during the execution, as well as arcs connecting

them, are included in the slice. The rest of the graph is filtered out. The slicing is performed by

Algorithm 4 and Algorithm 5. The algorithms have been implemented in Tcl/Tk and can be run

from Rigi.

Algorithm 4. Slicing a purely static Rigi graph based on a set of SCED scenario diagrams.

Input: A setS of SCED scenarios and a Rigi graphG generated from Java byte code.

Output: A sliced Rigi graphG’.

Method:

sliceByScenarios(S, G)

Deselect all nodes inG.

for each scenarios ∈ S

selectByAScenario(s, G)

Reverse the selection inG.

Form a sliced graphG′ by filtering out all selected nodes inG.

ReturnG′.

end

Algorithm 5. Selecting nodes in a Rigi graph based on a single SCED scenario diagram.

Input: A SCED scenario diagramS and a Rigi graphG generated from Java byte code.

Method:

selectByAScenario(S, G)
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for each scenario itemitem ∈ S begin

if item is a member function callthen

Select a Method, a Constructor, or a Staticblock node inG that represents the called

member function.

Select a Class node inG that represents the sender ofitem.

Select a Class node inG that represents the receiver ofitem.

if item is an action boxthen

Select a Method, a Constructor, or a Staticblock node inG that represents the called

member function.

Select a Class node inG that represents the owner ofitem.

if item is a subscenariothen

selectByAScenario(item, G)

end // for

end

The presented dynamic slicing approach can be used for finding structural flaws in the software

that cause unexpected or undesired behavior. For example, a bug in the software might cause a

failure in the execution inevitably or only with a certain input or when the software has been used

in a specific way. By examining the parts of the software that are involved in a usage that causes the

failure the user might be able to conclude whether the failure was inevitable or not. Section 9.4.2

discusses a realistic example of a such case. In general, the dynamic slicing approach can be used

for studying the structure of parts of the target software that are involved in a specific kind of usage.

8.9 Raising the level of abstraction of SCED scenarios using a high-

level Rigi graph

In the previous section we demonstrated how a Rigi graph can be modified by a set of SCED sce-

narios. In this section a method of modifying a set of SCED scenario diagrams by a high-level
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Rigi graph is presented. Section 9.4.3 discusses an example of using the method.

The dynamic reverse engineering process results in many low-level SCED scenario diagrams.

Hence, means to raise the level of abstraction of the scenarios are needed. Usually this is done by

searching for behavioral patterns. In some cases, however, it is meaningful to build abstractions for

the scenario diagrams based on static criteria. The original scenario diagrams show the interaction

among objects or classes. From those diagrams it is difficult to understand the interactions among

high-level static components (e.g., between Java packages), which might be useful to get a flavor

of the overall communication within the target system.

Rigi provides several algorithms for building abstractions for the initial static dependency graph.

In addition, the user can easily write and run new ones and add them to the script library. Subsys-

tems can be composed by taking advantage of some metrics values. A commonly used heuristic

for finding potential subsystems is “high cohesion within subsystems and low coupling among

subsystems”. A subsystem is highly cohesive if its subparts have a lot of dependencies with each

other. The part has low coupling if the subparts have only few dependencies with elements outside

that part.

Object-oriented languages, and especially pure object-oriented languages (e.g., Java), provide ex-

tended ways to build the abstractions since they support encapsulation. Such language structures

can also be used to build the abstractions automatically. For example, examining Java software by

observing classes and their relations might clarify the overall structure of the software, compared

to studying it at the level of object interactions. In Rigi such abstractions can be built by collaps-

ing all object nodes representing instances of a single class into one class node, hence making

the graph considerably smaller. Examining the structure at the class level might still contain too

detailed information. The next step could be to collapse all classes and interfaces into packages,

etc.

In Shimba, the information about abstractions in a Rigi graph can be used to build abstractions for
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SCED scenario diagrams. Consider a high-level Rigi graph constructed for a target Java software

system, and a SCED scenario diagramS generated when running the same software. Letp be

a participant inS, labeledCl. If p does not represent an exception or a participant outside the

target system, and there is no node in the Rigi graph with labelCl, then a node with labelCl must

have been collapsed into a high-level node in Rigi. Let that high-level node have a nameCla. In

the used method SCED scenario diagram participantp is replaced by a new participant with label

Cla. Because nodes can be nested to an arbitrary depth, the name of the highest-level node is cho-

sen. Participants for which more abstract representative cannot be found remain unchanged. The

events in scenarios are changed to identify the owner class or object of the member function that

has been called. For example, if the original scenario included an eventm from package1.class1

to package2.class2, the changed scenario might include an eventclass2.mfrom package1to pack-

age2. All action boxes are removed from the changed scenarios, as well as events that would be

represented as action boxes after the conversion (i.e., the sender and the receiver of the event are

the same). By removing all action boxes the scenarios become much shorter and the interaction

among the high-level participants is emphasized. Furthermore, all the repeat blocks that become

empty are removed. Finally, if a scenario diagram contains subscenario references, the referred

subscenarios are changed, too.

In order to show high level information with scenarioshorizontalandvertical abstractions can be

built. Horizontal abstractions decrease the number of vertical lines in a scenario. For instance,

a lower level scenario might have objects as vertical lines, while in a higher level scenario the

vertical lines could represent classes. The abstraction in that case has probably been built by col-

lapsing all participants representing instances of a class into single vertical line that represents the

class. Vertical abstractions decrease the number of horizontal arcs in a scenario. They can be

built, for example, by omitting “internal” calls of a single participant or by collapsing method call

chains into a single call event. The approach introduced above can be used to build both horizontal

and vertical abstractions. The static abstractions built in Rigi define the vertical lines that will be

grouped together. When using a reverse engineering tool for defining static abstractions, mean-

ingful groups can be found. Vertical abstractions are produced automatically by omitting internal
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method calls.

8.10 Related work

Several tools and environments supporting reverse engineering and architecture recovery rely on

static analysis of the software, for example, Rigi [74], Bookshelf [34], CIAO [15], and Sniff+ [115].

In addition, many tools supporting forward engineering of object-oriented software are also able to

extract class diagrams for existing software. We consider here tools, environments, and methods

that

1. support dynamic reverse engineering of object-oriented software systems by constructing

dynamic views to the target software, or

2. aim at combining static and dynamic information for constructing views of the target soft-

ware.

8.10.1 Dynamic reverse engineering tools

In Ovation,execution pattern viewsare used to visualize and explore a program’s execution at dif-

ferent levels of abstraction [26, 27]. An execution pattern is derived from Jacobson’s interaction

diagrams [50] and is represented in a tree structure. Ovation offers several means to manipulate

the view. For raising the level of abstraction and for dealing with the event explosion problem,

the views can be flattened, subtrees can be collapsed, (nested) repetition constructs can be created,

etc. Repetition constructs can be built for similar execution patterns. As in our approach, repeti-

tion constructs are used for viewing execution patterns in Ovation. The execution patterns do not,

however, always occur in succession. In fact, the patterns that are most difficult to find and are

often most interesting ones, do not occur in succession. The subscenario constructs of SCED can

be used to view those patterns and to structure the set of scenario diagrams generated. Ovation

does not include such a concept. Ovation offers the user a possibility to define the similarity of

patterns. She can choose one or more criteria from eight categorized ones, to be used by the pat-

tern matching algorithms to decide if two pattern are “similar” or not. In our approach, behavioral
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patterns can be searched based on exact string-based matches only.

Sefikaet al. introduce an architecture-oriented visualization approach that can be used to view

the behavior of a target system at different levels of granularity [99]. They introduce a technique

calledarchitectural-aware instrumentation, which allows the user to gather information from the

target system at the desired level of abstraction. Such levels include subsystem, framework, pat-

tern, class, object, and method levels. The information can then be shown using different views.

The fine-grained object interaction is shown asObject Interaction Diagrams, class and framework

interaction is shown asAffinity Diagrams, and framework and subsystem interaction is shown as

Ternary Diagrams. The Object Interaction Diagram is a variation of an MSC, and the Affinity

Diagram is a directed graph. The instrumentation mechanism used hard-wires the level of abstrac-

tion into the source code instrumentation process, which makes the approach somewhat inflexible.

The user has to decide the level of abstraction and views to be generated before running the target

software. If she wants to view more or less detailed information, she has to run the software again.

In other words, there is no information exchange among different views. In our approach, state

diagrams can be synthesized from a set of scenario diagrams, thus providing the user a possibility

to examine the information extracted using two different views. On the other hand, compared to

our approach, the architectural-aware instrumentation mechanism is more efficient in data gather-

ing. The approach described by Sefikaet al. only supports dynamic reverse engineering. Hence,

it might be difficult for the user to relate the run-time entities to the source code artifacts.

Walkeret al. use high-level models for visualizing program execution information [120]. The vi-

sualization focuses on object information and interaction information (e.g., a current call stack and

a summary of calls). In the main view, called acel, high-level software components are represented

as boxes. The interaction among the components is shown by various kinds of directed edges be-

tween two boxes. Histograms and annotations can be attached to the boxes and edges. Acel view

shows events that occurred within a particular interval of the system’s execution. Summary views

can be used to examine all events occurring in the trace. The system is written in Smalltalk and is

used to analyze Smalltalk programs. The information is collected by instrumenting the Smalltalk
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virtual machine to log the events when they occur. The mapping between low-level software arti-

facts and high-level components they belong to (i.e., boxes in a cel view) is done manually using

a declarative mapping language. In Shimba, static and dynamic information is shown in separate

views and the high-level static components are constructed using Rigi. The user can then build

high-level scenario views using a mapping between low-level software artifacts and high-level

components [112].

Jinsight is a tool for visualizing the dynamic behavior of Java programs [45]. It views information

about object population, method invocations, garbage collection, CPU and memory bottlenecks,

thread interactions, and deadlocks. The event traces are produced as a result of instrumenting Java

Virtual Machine. Jinsight offers several kinds of views that can be used to analyze the information

captured in event traces. The overall object interaction can be examined usingHistogram Views, a

Call Stack Viewshows the call stack for each thread, and references between objects can be viewed

using aReference Pattern View. Furthermore, Jinsight uses several views for showing event traces

over time: anExecution Viewshows an overview of communication among objects per thread,

while anInvocation Browser ViewandExecution Pattern Viewscan be used for browsing pieces of

event traces. The Invocation Browser View shows method calls and messages to a selected object,

as well as all subsequent communication and the Execution Pattern view shows a summary of

recurring interaction patterns arising from the selected method [45]. Jinsight uses a tree structured

interaction diagram notation that resembles execution pattern views of Ovation [27, 26]. Jinsight

is one of the most versatile dynamic reverse engineering tools available. It includes various views

for examining different aspects of the run-time behavior. However, state machines, which are

commonly used diagrams for specification of the dynamic behavior, are not supported by Jinsight.

In addition, Jinsight does not generate information about the dynamic control flow of a selected

object or method. These features are included in Shimba. Jinsight does not support static reverse

engineering.

A source code instrumentation technique is used in Scene for producing event traces and visu-

alizing them as scenario diagrams [59]. Scene allows the user to browse not only scenarios but
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also various kinds of associated documents, such as source code, class interfaces, class diagrams,

and call matrices. For compressing the large amount of extracted event trace information Scene

shows the operation calls (messages) in a closed form as default: the internal events of a call are

not shown unless ’opened’ by clicking the call arc. In this way the user can proceed to the inter-

esting level, in a top-down fashion. Corresponding “horizontal abstractions” can be made using

execution pattern views of Ovation [27, 26]. Scene offers other means to further narrow the set

of displayed calls. If the number of participants becomes too large, a new scenario window is

automatically opened for a call. Scene does not take advance of behavioral patterns for structuring

and decreasing the information shown in scenario diagrams. Such a facility in provided in Shimba.

As the event trace compressing method of Scene, the behavioral patterns shorten the event trace

(i.e., decreases the number of scenario items). In Shimba, the event trace information can be com-

pressed also vertically (i.e., to decrease the number of participants in a scenario diagram) using

high-level components constructed in Rigi. As Jinsight [45], Scene does not support static reverse

engineering, which would again provide a way to decrease the huge amount of event trace infor-

mation. Scene is implemented in and for the Oberon environment.

8.10.2 Tools that combine static and dynamic information

ISVis is a visualization tool that supports the browsing and analysis of execution scenarios [51]. A

source code instrumentation technique is used to produce the execution scenarios. ISVis belongs

to the MORALE tool set, which aims at facilitating the evolution of legacy software systems [89].

To avoid event explosion, the user can select a list of files, for which breakpoints will be set. More

fine-grained selections can not be made. In our approach, the user can select the classes and/or a

set of methods for which the dynamic event trace information is collected. In ISVis, the event trace

can be analyzed using a variation of an MSC calledScenario View. The static information about

files, classes, and functions belonging to the target software are listed in aMain Viewof ISVis. The

view allows the user to build high-level abstractions of such software actors through containment

hierarchies and user-defined components. A high-level scenario can be produced based on static

abstractions. A corresponding method in our approach is described in Section 8.9. Interaction
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patterns can be found by a variety of pattern matching algorithms in ISVis. The found patterns

will be high-lighted on the Scenario View but they can not be used to structure the original event

trace. In our approach, behavioral patterns can be searched based on exact string-based matches

only. The found patterns are used to structure the set of scenarios generated.

Program Explorer combines static information with run-time information to produce views that

summarize relevant computations of the target system [60, 61]. To reduce the amount of run-time

information generated the user can choose when to start and stop recording events during the exe-

cution. In our approach, the user can decide how the event trace is split into scenarios and examine

only those of interest. Moreover, Rigi is used to reduce the amount of event trace information

generated. Merging, pruning, and slicing techniques are used for removing unwanted information

from the views. The user can not, however, choose freely the level of abstraction on which she

wants to view and to examine the information. The granularity on components viewed can not be

greater than a single class.

Richner and Ducasse introduce a query-based approach to recover high-level views of object-

oriented applications is presented [87]. Static and dynamic aspects of the target software are mod-

eled in terms of logic facts. By making different queries on the facts, the user can decide what kind

of views will be produced. The views can, for example, contain static and/or dynamic information

and model the information on different levels of abstraction. The queries also provide a way to

restrict the amount of information generated. This approach does not support direct information

exchange among different views.

Dali is a workbench for architectural extraction, manipulation, and conformance testing [52]. It

integrates several analysis tools and saves the extracted information in a repository. Dali uses the

merged view approach, modeling the information as a Rigi graph. The user can organize and ma-

nipulate the view and hence produce other, refined views on a desired level of abstraction.
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8.11 Summary

The ultimate goal in software construction is to build software systems that provide desired be-

havior. The behavior of a program is important to end-users, but they are usually not interested in

its structure. The execution breathes life into a software system. On the other hand, the structure

of the software system defines its behavior. A program can be written without executing it but it

cannot have a behavior before it is constructed.

Because of the strong bond and dependence between structural and behavioral aspect of the soft-

ware, the static and dynamic analysis of the software should also be coupled. This in not supported

well in currently available reverse engineering tools. Many of the tools are focused on either static

or dynamic reverse engineering but not both. The tools that support both static and dynamic re-

verse engineering usually either merge the extracted information into a single view or construct

and analyze static and dynamic views separately. Neither of these approaches takes full advantage

of the information extracted.

Shimba combines static and reverse analyses at an early stage of the reverse engineering process.

The static Rigi views, for instance, can be used to guide the generation of dynamic information.

Furthermore, Shimba allows information exchange between the static and the dynamic views. The

overlapping information of the views provides a channel which enables that. Static and dynamic

views can thus be used to improve and modify each other. For example, the proposed techniques

can be used to slice a view with another view and to build high-level views using other views.

Shimba supports both overall understanding of the subject software system and goal-driven reverse

engineering tasks. To achieve the former task, Shimba provides automated tools that can be used

to find answers for various questions about the subject software system. Such questions include

the following:

1. What are the static software artifacts and how are they related?

2. How are the software artifacts used at the run-time?
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3. What is the high-level structure of the software?

4. How do the high-level components interact with each other?

5. Does the run-time behavior contain behavioral patterns that are repeated? If it does, what

are the patterns and in which circumstance do they occur?

6. How heavily has each part of the software been used at run-time and which parts have not

been used at all?

Goal-driven reverse engineering approaches are useful, for example, for debugging. Tracking

down a bug might be difficult. For example, consider a software system that is irregularly unstable.

In this case, it might not be sufficient to know when the failure occurs, or even what has happened

before the failure. The engineer needs to find out in which order these things occurred before the

failure. Shimba supports debugging by offering automated tools that can be used to answer the

following questions concerning exceptional behavior of the subject software system:

1. How does a certain part of the software behave?

2. When were exceptions thrown ? What happened before they were thrown and in which

order ? What are the exceptions and who threw them?

3. When did an error occur, what happened before the failure and in which order?

4. How is the part that causes exceptional behavior constructed?

In Shimba, a dynamic control flow graph, that is, a dynamic slice of the implicit (static) control

flow, can be synthesized automatically for desired objects or methods and visualized as a state

diagram. Dynamic control flows are useful for detecting decision making during the execution,

for profiling, for studying the cyclomatic complexity, for investigating code coverage, etc. Since

the dynamic control flow is constructed automatically based on the usage of the target software,

the user can generate desired dynamic slices of the implicit control flow.

Even a relatively brief usage of the subject software system typically produces a large amount

of event trace information. In Shimba, the event trace information is stored into a set of SCED
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scenario diagrams. Some dynamic reverse engineering tools provide means to search behavioral

patterns from the event trace information [26, 51, 27]. This is also supported in Shimba. How-

ever, it is difficult to understand the overall behavior of a single object by examining the scenario

diagrams or the behavioral patterns. The state diagram synthesis technique of SCED helps the en-

gineer to achieve this task. Shimba thus allows the user to study the total behavior of an object or a

method (based on the run-time usage) as one model, disconnected from the rest of the system. To

the best of our knowledge, similar features are not provided by other dynamic reverse engineering

tools.

In addition to debugging, Shimba support other goal-driven reverse engineering tasks. For exam-

ple, the following task specific question can be answered:

1. What is the dynamic control flow and the overall behavior of an object or a method?

2. How can a certain state in the object’s life be reached (i.e., which execution paths lead from

the initial state to this state) and how does the execution continue (i.e., which execution

paths lead from this state to the final state)?

3. To which messages has an object responded at a certain state during its lifetime?

4. Which methods of the object have been called during the execution?

5. Which part of the target software has dependencies with this object or method (or any pre-

defined part of the software)?
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Chapter 9

A case study: reverse engineering

FUJABA software

To validate the usefulness of the approach explained in Chapter 8, a target Java software system

was examined. In this chapter we present the results of that case study, which was carried out by

the author. Section 9.1 characterizes the purpose of the case study. The target software system

in introduced in Section 9.2. Section 9.3 discusses several examples of reverse engineering the

dynamic behavior of selected parts of the target software. In Section 9.4 the static and the dynamic

models are used to complement each other in ways presented in Sections 8.7, 8.8, and 8.9. A

summary of the case study is given in Section 9.5.

9.1 Tasks

In this case study we examine both static and dynamic aspects of a target Java software system

FUJABA [88], the overall focus in the case study being on dynamic reverse engineering. The

purpose of the case study is to test and validate the reverse engineering techniques provided by

Shimba. Shimba is used for both general program understanding purposes and for goal-driven

reverse engineering tasks.

To understand the overall structure of FUJABA, static information is generated for the whole

158



9.1. TASKS

software and visualized using Rigi. Limiting to a specific part of the target software system is

problematic, since sometimes the engineer can understand the structure of the part only if she

knows how it is related to the rest of the system. Furthermore, we aim to make several queries

on the static dependency graph for various goal-driven reverse engineering tasks. We also want

to build static abstractions and slice the Rigi graph with a set of scenario diagrams. These tasks

would be difficult or even impossible to achieve, if the static dependency graph did not cover the

whole FUJABA software.

In this case study, several dynamic reverse engineering tasks are set. Most of these tasks are goal-

driven. We use Shimba to analyze the behavior of specific objects and methods. When studying

the dynamic usage of a single method, we seek answers to questions of the following form:

1. What are the methods that have call dependencies with this method?

2. What is the overall run-time usage of the method?

3. What is the dynamic control flow of the method?

4. Was the run-time usage diversified enough to produce information that covers all possible

use cases?

Similar questions are asked when the behavior of an object is studied. The dynamic analysis of

FUJABA is not limited to examining the behavior of single objects or methods. We also aim to

visualize the dynamic information using high-level views.

Debugging typically starts by identifying the exceptional behavior. When the point of failure is

found, the behavior is analyzed further and the source code is examined to find the source of the

failure. Shimba provides graphical support for debugging. In this case study we analyze a known

bug in FUJABA. We first use the dynamic models to analyze the exceptional behavior and then

examine the Rigi graph to study the structure of the part of FUJABA that caused the failure.

Shimba stresses the importance of combining static and dynamic reverse engineering, providing

several techniques to exchange information between the models and to modify one model based
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on the information given by another model. In this case study, we test the usefulness of these

techniques by asking the following questions:

1. How does a certain part of the software behave?

2. What kind of high-level components can be built for the static dependency graph?

3. How do high-level static components interact with each other?

4. How heavily has each part of the software been used at run-time?

5. Which parts of FUJABA are needed for a specific behavior and how these parts have been

constructed?

9.2 The target Java software: FUJABA

The selected target system FUJABA [88] was developed at the University of Paderborn, Germany,

and is freely available. The primary topic of the FUJABA project and environment is round-

trip-engineering with UML, SDM (Story Driven Modeling), Java and Design Patterns. FUJABA

provides editors for defining both structural (class diagrams) and behavioral (activity diagrams,

UML activity/story diagrams) aspects of a software. Furthermore, the Java source code can be

generated from the design, which then can be compiled. The FUJABA environment also supports

animation of the designed system through the constructed models. FUJABA is written in Java,

consisting of almost 700 classes. The FUJABA version under examination is 0.6.3-0.

Figure 9.1 shows the initial graph loaded into Rigi from a file generated by the byte code extractor

written by the author for the whole FUJABA software. The nodes in the static dependency graph

represent software artifacts belonging to FUJABA. In addition, the graph contains nodes that rep-

resent software artifacts needed by FUJABA. Such artifacts typically belong to jdk or a library

used by FUJABA. The arcs in the graph describe dependencies among the artifacts. The bottom

left corner indicates that the static dependency graph consists of 25854 software artifacts.
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Figure 9.1: The initial Rigi graph representing the whole FUJABA software

9.3 Dynamic modeling

Next we focus on studying the functionality of the class diagram editor of FUJABA. In the follow-

ing sections examples of constructing dynamic models are presented. The internal behavior and

the dynamic control flow of a single method is shown as a SCED state diagram. The state diagram

is synthesized automatically from the scenarios generated when running FUJABA under JDebug-

ger. State diagrams are also used for modeling the overall behavior of two different objects. In

addition, SCED scenario diagrams are structured and reorganized by behavioral patterns that are

found using string matching algorithms. Finally, SCED scenario diagrams are used to trace the

source of a known bug in FUJABA.

9.3.1 Modeling the internal behavior of a method

Figure 9.2 shows a dialog box used in FUJABA for defining and editing parameters of methods. In

this section we focus on examining the internal behavior and the run-time control flow of themod-
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ify button. Each time themodifybutton is pressed, methodmodifyButtonactionPerformed(ActionEvent)

of the dialog classPEParametersis called.

Figure 9.2: A dialog used in FUJABA class diagram for defining and editing parameters for meth-
ods

By running few scripts in Rigi, the methodmodifyButtonactionPerformed (ActionEvent)of class

de.unipaderborn.fujaba.gui.PEParameters, nodes that depend on it, and nodes that are referenced

by it can be easily separated from the rest of the system. Furthermore, it can be easily certified

(by running a couple more scripts) that none of the methods that are called by the methodmodi-

fyButtonactionPerformed (ActionEvent)is overridden in any subclasses. Figure 9.3 shows a Rigi

graph, in which all the other nodes have been filtered out. Also nodes representing software ar-

tifacts that do not belong to FUJABA itself (e.g., jdk or Swing classes and methods) have been

filtered out. This has been done assuming that the behavior of such classes does not considerably

help in understanding the behavior of the target system itself. In addition, tracking down the invo-

cations of methods belonging to packages outside the target system would increase the size of the

event trace dramatically, containing often useless information. For example, methods of the class

java.lang.Stringare called frequently but such calls are meaningless for understanding, for exam-

ple, the behavior of the dialog in Figure 9.2. However, information about the usage of packages

that provide functionality of an object-oriented framework would be interesting in many cases.

Breakpoints were set at the first line of all member functions chosen from the Rigi graph in Fig-
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Figure 9.3: A Rigi graph, in which nodes represent software artifacts and edges are re-
lationships among them. Method nodemodifyButtonactionPerformed(ActionEvent)of class
de.unipaderborn.fujaba.gui.PEParametersis shown in the center of the graph. The other nodes in
the graph are dependent on artifacts of that method, from which 11 method nodes and 3 constructor
nodes are selected.
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ure 9.3 (in this case 11 methods and 3 constructors). In addition, in order to capture branching

in the execution state breakpoints and assertion breakpoints were set in the methodmodifyBut-

ton actionPerformed(ActionEvent). JDebugger does not normally create events corresponding to

returns from methods, only the method calls are recorded. However, the state diagram synthesis

algorithm for methods reads all the scenario items between the method call and the corresponding

return event. Therefore, breakpoints were also set for all thereturn statements of methodmodify-

ButtonactionPerformed(ActionEvent).

To capture the behavior of themodifybutton, the dialog in Figure 9.2 was used in the following

way:

1. The name of the selected parameter was changed and themodifybutton was pressed.

2. Themodifybutton was pressed when none of the parameters was selected.

3. The type of the selected parameter was changed and themodifybutton was pressed.

4. The name of the selected parameter was deleted and themodifybutton was pressed.

The scenarios resulting from the usage of the dialog in the first and third cases turned out to be

similar. We selected the second and fourth cases for the case study since they represent a slightly

exceptional usage of the dialog. Figure 9.4 shows the scenario resulting from the first case, and Fig-

ure 9.5 shows the merged internal behavior of the methodmodifyButtonactionPerformed(ActionEvent)

of classde.unipaderborn.fujaba.gui.PEParameters, synthesized from four scenarios. For a com-

parison, the actual source code is shown in Figure 9.6.

The implicit (static) control flow for a method can be constructed from the source code (or its byte

code) of a target software system. Figure 9.5 shows the dynamic control flow of methodmod-

ifyButtonactionPerformed(ActionEvent), that is, a dynamic slice of the implicit (static) control

flow. A state diagram is a powerful and natural graphical representation to examine the dynamic
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Figure 9.4: A scenario describing one execution path through the methodmodifyBut-
ton actionPerformed(ActionEvent)of classde.unipaderborn.fujaba.gui.PEParameters
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Figure 9.5: The detailed behavior of the methodmodifyButtonactionPerformed (ActionEvent)
of classde.unipaderborn.fujaba.gui.PEParameters. The state diagram describes the dynamic
control flow of the method.
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Figure 9.6: The source code of the methodmodifyButtonactionPerformed(ActionEvent)of class
de.unipaderborn.fujaba.gui.PEParameters
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control flow and the internal behavior of the method. Dynamic control flows are useful for detect-

ing decision making, for profiling, for studying the cyclomatic complexity, for investigating code

coverage, etc. Since the dynamic control flow is constructed automatically based on the usage of

the target software, the user can generate desired dynamic slices of the implicit control flow. This

approach helps the user to get only those pieces of information she is interested in.

On the other hand, the state diagram can be used to estimate if the “test cases” (usage of the soft-

ware) are covering enough. By comparing it to the source code or the static model, it can also

be used to estimate if the method in question includes unreachable code. The points in the state

diagram that reveal such pieces of information are the states with state names. A complete state

diagram should show all possible branches. In other words, there should be (at least) two different

paths leading out from each state that identifies a branching point. For example, the state diagram

in Figure 9.5 is not complete, because from the stateTEST line 325there is a single path to the final

state. Note that this can not be concluded from the stateTEST line 318, since the actual branching

point is the next state, that is, a state with the actiongetText().

9.3.2 Modeling the usage of a dialog

In this section we examine the overall behavior of the dialog introduced in Figure 9.2. Again, by

running a few scripts in Rigi, all the nodes that belong to the dialog, nodes that depend on them,

and nodes that are referenced by them can easily be separated from the rest of the system. Break-

points were set at the first line of all chosen member functions and for all conditional statements.

The dialog was used three different times while running FUJABA (i.e., three instances of the class

de.unipaderborn.fujaba.gui.PEParameterswere created). The objects were not alive at the same

time. The usage of the dialog was the following:

1. The dialog was opened, a parameter name and type was defined, theaddbutton was pressed,

and theokbutton was pressed.
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2. The dialog was opened, the name of the parameter was changed, themodify button was

pressed, and finally theokbutton was pressed.

3. The dialog was opened, theremovebutton was pressed (a parameter was selected), and the

okbutton was pressed.

Figure 9.7: An example scenario resulting when reverse engineering the behavior of the dialog in
Figure 9.2.

Note that the above usage of the dialog does not cover all possible cases and hence cannot define

the total behavior of the system. Altogether 20 scenarios result when using the dialog in the de-

scribed way. Figure 9.7 shows a corner of one resulting scenario diagram, and Figure 9.8 describes

the total behavior as a state diagram. As can be seen from Figure 9.8 the state diagrams tend to get

rather big even as a result of a relatively simple and brief usage of the system. However, it can be

assumed that the more the dialog is used, the less the synthesized state diagram will grow: rather

than more states, more transitions would be generated describing different paths through the state

169



9.3. DYNAMIC MODELING

diagram. When using the dialog themodifybutton was pressed once after changing the name of

a parameter. In case of modeling the behavior of the button itself in Section 9.3.1, it was used

four times in different situations. If that usage of themodifybutton were part of the usage when

modeling the behavior of the whole dialog, then the state diagram in Figure 9.5 would be a sub-

diagram of the state diagram generated for the classde.unipaderborn.fujaba.gui.PEParameters

itself. Now, only part of the state diagram in Figure 9.5 can be found from the state diagram in

Figure 9.8. That part is located in the bottom right corner in the state diagram and is zoomed in

Figure 9.9.

Figure 9.8: A state diagram showing the total behavior of the dialog in Figure 9.2. Both method
invocations and dynamic control flow information were generated.

When breakpoints were only set for methods, constructors, and static blocks, information about

branching inside methods was not generated. This results in a smaller and slightly more abstract

state diagram as shown in Figure 9.10. The execution cases are the same as described above.
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Figure 9.9: The bottom right corner of the state diagram in Figure 9.8 depicts the influence of
pressing themodifybutton.

A class is a basic software component in an object-oriented software system. Understanding its

usage and the behavior of its instances is important (e.g., for reverse engineering, reuse, and for-

ward engineering purposes). Such pieces of information would thus be valuable to be added to

the documentation of the software. In the example of this section, several instances were created

of the classde.unipaderborn.fujaba.gui.PEParameters, but they were not alive concurrently. In

Section 9.3.4 we study an example where this is not the case.

9.3.3 Structuring scenarios with behavioral patterns

The state diagram generation facility in SCED provides a powerful way to examine the total be-

havior of a class, object, or method disconnected from the rest of the system. Scenario diagrams, in

turn, provide a view and an editor to browse the exact sequential event trace information. However,

the amount of scenarios grows rapidly during the execution of the system. Hence, behavioral pat-

terns are used for structuring, reorganizing, and packaging the scenario diagrams without changing

their information contents. The patterns are searched using algorithms that apply the Boyer-Moore

string matching algorithm [12]. Thus, the behavioral patterns are recognized based on strict string-

based matches only. A pattern is a sequence of any SCED scenario diagram items repeated at least

once.
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Figure 9.10: A state diagram showing the member function invocations related to the dialog in
Figure 9.2 (without internal branching in methods)
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The application of the scenario structuring algorithms results in a hierarchical set of scenarios. The

algorithms were applied for six scenarios that followed from a brief usage of FUJABA. During the

FUJABA session, a dialog for defining and editing methods of a class was used a few times. The

event trace information was generated for the dialog classde.unipaderborn.fujaba.gui.PEMethod

itself, for its superclassesde.unipaderborn.fujaba.

gui.PETextEditorandde.unipaderborn.fujaba.gui.PropertyEditor, and for classde.uni

paderborn.fujaba.uml.UMLMethod. The superclasses were easily found using Rigi. Figure 9.11

shows one of the scenario diagrams after it has been modified by the scenario structuring algo-

rithms. The scenario depicts the object interaction that was involved when the dialog was opened

for a class that has four methods. The dialog was exited right after opening it by pressing the

cancelbutton.

The object interaction that was needed for the initialization of the dialog was repeated every time

the dialog was opened. The scenario structuring algorithm recognized that pattern and formed the

subscenario boxsubsc7.scfrom that interaction. Figure 9.12 shows the contents of the subsce-

nario boxsubsc7.sc. The original scenarios consist of 473 scenario items. After applying the

scenario structuring algorithm the total number of scenario items was reduced to 201, giving 58%

savings.

The behavioral patterns were also searched from a larger set of scenarios. The algorithms were

applied for the 20 scenario diagrams generated in the example case discussed in Section 9.3.2.

The original scenarios consist of 1145 scenario items, which in this case are events, state boxes,

assertion boxes, or repetition blocks. Note that even the original scenarios may contain repetition

blocks if a single event is repeated multiple times in a row. There were 63 repetition blocks in

those scenarios. After applying the scenario structuring algorithm the total number of scenario

items was reduced to 484, giving 58 % savings. The scenario items appear in 39 different scenar-

ios, 19 of them being newly created subscenarios. The 484 scenario items include 31 repetition

blocks and 50 subscenario boxes. Note that the number of repetition boxes was actually decreased.
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Figure 9.11: A corner of a scenario diagram that results when applying the scenario structuring
algorithm. The algorithm has generated two subdiagram boxes and one repetition block with label
times: 4. The other repetition block that contains a single scenario item was included in the original
scenario.
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Figure 9.12: The contents of the subdiagram boxsubsc7.sc is opened in a separate scenario
diagram window.

This is due to the generation of subscenarios: some of the repetition blocks appear in subscenarios

and are hence referenced several times.

In our dynamic reverse engineering approach the event trace generated at run-time is split into

several smaller scenarios. Unless guided by the user, this is done automatically. The used scenario

structuring algorithms recognize only those patterns that are totally included in a single scenario.

However, there might also be behavioral patterns that are partly included in two scenarios; because

of the point of split, they exist at the end of one scenario and at the beginning of the next scenario.

Such patterns remain unrecognized by our algorithms. More patterns would hence be found, if they

were taken into account as well. That would require changing the original division of the event

trace. Yet, that might be questionable, because the user may want to record a specific interval of the

execution and save it in scenarios in a desired way. Another restriction is that our approach allows

strict string-based matches only. In Ovation [27, 26] and ISVis [51], for example, the user has

choices to define the rules for matches and hence to decide what is regarded as “similar behavior”.
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9.3.4 Modeling the behavior of a thread object

FUJABA uses several threads (i.e., subclasses of classjava.lang.Thread) that are running concur-

rently. Most of them have a common superclass, namelyde.unipaderborn.fujaba. An-

alyze.AEngine. In Java, all classes whose instances are intended to be executed by a thread must

implement therun() method of thejava.lang.Runnableinterface. The behavior of a thread is

mostly defined in therun() method. Therun() method is called when the thread begins its life

(i.e., after calling a constructor of the thread class). The thread is alive and working until therun()

method completes, or the thread is killed. In FUJABA, the classAEngineimplements arun()

method, which calls some other methods of the classAEnginethat are overridden in its subclasses.

The subclasses do not implement their ownrun() method.

The behavior of a single thread is examined next by generating a state diagram for itsrun() method.

The event trace information in this case was generated for objects (i.e., senders and receivers of

method calls were set to be objects). When examining the behavior of the dialog in Figure 9.2

event trace information for classes was enough; each usage of a dialog represents the life-time of

one object, and the dialog was used so that no two objects were alive at the same time. This is

not the case with instances of subclasses ofAEngine. Several instances of these subclasses can

and usually are created during the execution. If at least two objects are alive at the same time,

then they both execute theirrun() method concurrently. If the event trace information were gen-

erated for classes, the behavior of those objects would then be “merged” and information about

the objects themselves would be lost. In scenario diagrams the effect would be the same, if two

participants (representing objects) were collapsed together. For these reasons, the event trace in-

formation needs to be generated for objects.

The behavior of an instance of classAInheritanceCheckerEngineis studied next. As in Sec-

tion 9.3.1, breakpoints were set to therun() method of the classAEngineand for all methods

that have a call dependency with it. Altogether 39 scenarios were generated as a result of the

following usage of FUJABA: the application was started, a project was loaded, the class diagram

of the project was edited (a couple of methods were edited), the edited class diagram was saved,

176



9.3. DYNAMIC MODELING

and FUJABA was exited. From the resulting scenarios it can be noticed that 17 objects of theAIn-

heritanceCheckerEngineclass were created during the usage. Figure 9.13 shows a state diagram

generated for one of them.

Figure 9.13: A state diagram for one instance of classde.unipaderborn.fujaba.
analyze.AInheritanceCheckerEngine

Since subclasses of theAEngineclass do not even have arun() method, not only the objects of one

of its subclasses, but all the objects of any of its subclasses might be running theirrun() method

simultaneously. Hence, event trace information generated at the class level (i.e., senders and re-

ceivers of method calls are set to be classes) would not be enough for concluding the behavior of

an instance of theAInheritanceCheckerEngineclass. Scenario diagrams resulting when generat-

ing the event trace information at the class level can be seen as abstractions of the ones resulting

when the information is generated at the object level. Such abstractions could also be built by

modifying the scenario diagrams. A class level scenario diagram could be obtained from an object

level scenario diagram by collapsing all participants representing instances of a single class to a
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new participant that represents the class itself.

Objects and their interactions define the behavior of an object-oriented software system. Because

of polymorphism, understanding the behavior is cumbersome. It is difficult, and in most cases

impossible, to conclude the behavior of the objects by examining the source code. It was shown

above that it might be impossible even if information about the run-time behavior were generated

but the objects themselves were not identified. Means to describe the actual behavior of the objects

are thus needed. The event trace information generated while running the target system tends to

grow rapidly, especially, if the information is generated at the object level. One object may take

part in tens of scenario diagrams. Browsing the scenarios can easily get difficult and troublesome.

The state diagram synthesis approach provides a quick and efficient way to focus on the behavior

of a single object.

9.3.5 Tracking down a bug

In FUJABA, methods can be created and edited using the dialog shown in Figure 9.14. There is

a known bug in the functionality of the dialog: if the user selects a method, for which parameters

have been given, and presses the modify button, the parameters disappear. This bug was also men-

tioned in a FUJABA bug report [88]. The source of the bug was unknown.

The source of the bug was traced by examining scenarios generated when running FUJABA under

JDebugger. In order to retrieve run-time information about the dialog in Figure 9.14, breakpoints

were set for the dialog classde.unipaderborn.fujaba.gui.PEMethoditself and for all its dependent

classes. Information about the dynamic control flow was not generated. The usage of the dialog

included pressing themodifybutton when a method with at least one parameter was selected.

By studying the resulting scenario diagrams it can be noticed that a methodaddToParam( UML-

Param) of classUMLMethod is called by classPEParameters(a class that implements the di-

alog used for creating and editing parameters) when parameters were added to a method. This
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Figure 9.14: A dialog used for defining and editing methods of classes

can be concluded from the top of the scenario in Figure 9.15. The later part of the same sce-

nario in Figure 9.16 shows that when themodifybutton is pressed (i.e., the methodmodifyBut-

ton actionPerformed(ActionEvent)is called) a new instance of the classUMLMethodis created.

This can be concluded from the constructor invocation<init>() of classUMLMethod. However,

none of the scenarios generated after the one in Figures 9.15 and 9.16 have any events from the

classUMLMethodto the classUMLParamdirectly or indirectly. If the old method is replaced by

the new one (this can be assumed since a new method has been created), this might refer to the

reason why the parameters were lost: the parameters from the old method are not copied to the

new method created. This turned out to be the case.

The objects taking part in the execution, events sent and received by them, and the order of the

events are important pieces of information for debugging a software system. The SCED scenario

notation provides a descriptive and clear way to visualize them. For further analysis, the user can

generate state diagrams for objects of interest. In the above case, for example, a state diagram

could be generated for the classUMLMethodfrom the scenario in Figures 9.15 and 9.16 and all
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Figure 9.15: An example scenario diagram resulting when reverse engineering the behavior of the
dialog in Figure 9.14
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Figure 9.16: A later part of the scenario depicted in Figure 9.15.

scenarios generated after it. The resulting state diagram would show in one diagram the constructor

invocation and the absence of the crucial method calls. Furthermore, another state diagram could

be generated for the classUMLMethodafter the bug has been fixed from scenarios generated under

similar circumstances (same breakpoints and similar usage). By comparing the state diagrams the

user could quickly notice the changed behavior. It would be useful to add such a diagram to the

documentation.

9.4 Relationships between static and dynamic models

Static and dynamic views of the software usually share common information. For example, they

both typically include information about software artifacts and their relations. The overlapping

information forms a channel for information exchange among the views. Examples of such infor-

mation exchange are presented in this section. The methods used in this section are described in

Sections 8.7, 8.8, and 8.9.
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9.4.1 Merging dynamic information into a static view

In Shimba, run-time information can be attached to a Rigi dependency graph. During the execution

of the target system, weight values are given toaccess, assign, andcall arcs in Rigi. The weight

values indicate how many times these relationships have been used during the execution. Further-

more,Exceptionnodes andthrow arcs are added according to their run-time usage. Figure 9.17

shows a Rigi graph to which run-time information has been added. To generate the dynamic infor-

mation, breakpoints were set for all methods of thede.unipaderborn.fujaba. app.FujabaAppand

de.unipaderborn.fujaba.uml.UMLParamclasses. In addition, exceptionjava.util.MissingResourceException

was selected. FUJABA was used in the following way:

1. FUJABA was started,

2. a project was opened,

3. one parameter of a method of a class was removed,

4. the project was saved, and

5. FUJABA was exited.

In the Rigi view in Figure 9.17 a small dialog has been opened to show the attribute values of

a throw arc entering thejava.util.MissingResourceExceptionnode. The weight value of the arc

indicates that the corresponding exception was thrown 221 times. The type of the exception and

the large number of times it was thrown refers to an installation problem.

9.4.2 Slicing a Rigi view using SCED scenarios

The source of a known bug was traced in Section 9.3.5. To examine the structure of the parts

of FUJABA that might contain the source of the bug, the initial Rigi graph in Figure 9.1, rep-

resenting the whole FUJABA software, was sliced by a set of scenario diagrams that were gen-

erated after the dialog in Figure 9.14 was opened. There are altogether 29 such scenarios. The

Rigi graph in Figure 9.18 results from applying Algorithm 4 to the initial Rigi graph. The node
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Figure 9.17: A corner of a Rigi view containing both static and dynamic information. The
user has selected athrow arc from nodejava.util.Resource.getObject(String,Object)to node
java.util.MissingResourceException(the right most arc) and opened a dialog that shows the at-
tribute values of that arc. The opened dialog shows thatjava.util.MissingResourceExceptionhas
been thrown 221 times at run-time (the weight value of the selected arc).
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modifyButtonactionPerformed(jawa.awt.event.ActionEvent)can be seen in the bottom left cor-

ner of the graph. The nodes, names of which have not been hidden, represent methods that can

be called from it directly or indirectly. Such a chain of method calls, representing reachability

of those methods from themodifyButtonactionPerformed(java.awt.event.ActionEvent)method,

can be easily found by running a simple script that makes a forward reachability query. The de-

fault constructor of classUMLMethodbelongs to this chain. This supports the conclusions of

Section 9.3.5. By examining the scenarios we observed that when themodifybutton is pressed,

a new method is created. We assumed that the new method is replaced with the old one. By

running another script the nodeaddToParam(UMLParam)can be found. It is placed in the bot-

tom right corner of the graph. It is worth noting that it does not belong to the found chain of

nodes. From this it can be concluded that theaddToParam(UMLParam)method of classUML-

Methodwas not called (i.e., no parameters were added for methods) after themodifybutton was

pressed. Moreover,addToParam(UMLParam)method of classUMLMethodcannot be called in

any circumstances from the methodmodifyButtonactionPerformed(java.awt.event.ActionEvent)

with the current implementation.

9.4.3 Raising the level of abstraction of SCED scenario diagrams using a high-level

Rigi graph

An example of modifying SCED scenarios using the approach described in Section 8.9 is discussed

next. In FUJABA, classes that represent UML concepts belong to the packagede.unipaderborn.fujaba.uml.

The editors and dialogs used for defining and editing these concepts are defined in the pack-

agede.unipaderborn.fujaba.gui. For example, the dialog in Figure 9.14 is implemented as class

de.unipaderborn.fujaba.gui.PEMethod, and it is used for defining and editing methods that are

represented as instances of classde.unipaderborn.fujaba.uml.UMLMethod. Altogether 24 editor

classes have the superclassde.unipaderborn.fujaba.gui.PropertyEditor, from which the individ-

ual editors are derived. Figure 9.19 shows the class hierarchy of the editors. Similarly the class

de.unipaderborn. fujaba.uml.UMLIncrementis a super class for 46 classes that represent different

UML notation concepts.
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Figure 9.18: The graph resulting when the initial Rigi graph for FUJABA software in Figure 9.1
has been sliced by a set of scenarios
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Figure 9.19: A Rigi view showing the classde.unipaderborn.gui.PropertyEditorand all its sub-
classes
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For capturing high-level information about the Model-View structure of the FUJABA class dia-

gram editor static abstractions were made. First, classde.unipaderborn.gui.PropertyEditorand

all its subclasses were collapsed into a singlede.unipaderborn.gui.PropertyEditor2node. Sec-

ond, classde.unipaderborn.uml.UMLIncrementand all its subclasses were collapsed into a single

de.unipaderborn.uml.UMLIncrement2node. Third, all classes that implement thejava.awt.event.ActionListener

interface were collapsed into a singlejava.awt.event. ActionListener2node. There were altogether

92 such classes. Those classes represent GUI items that are able to receive action events (e.g., user

inputs). Hence, they represent the system border. Fourth, classde.unipaderborn.gui.PESelection

and all its subclasses were collapsed into a singlede.unipaderborn.gui.PESelection2node. There

are only six such subclasses. Classde.unipaderborn.gui.PESelectionis used for providing the

user a list to which she can add items using theadd button and remove items using theremove

button.

A set of SCED scenario diagrams were generated when reverse engineering the dynamic inter-

action between model and view components of the FUJABA class diagram editor. Breakpoints

were set for all methods of the following classes:UMLMethod, UMLParam, UMLClass, UM-

LAttr, PEMethod, PEParameter, PEClass, andPEVariable. The first four classes belong to the

de.unipaderborn.fujaba.umlpackage, and the rest of them belong to thede.unipaderborn.fujaba.gui

package.

The usage included adding and editing methods, variables, and parameters. In addition, a new

class was added to the class diagram. After applying the method of raising the level of abstrac-

tion of SCED scenario diagrams using a high-level Rigi graph the number of scenarios was de-

creased from 26 to 7 and the number of scenario items was decreased from 2038 to 513. Fig-

ure 9.20 shows a corner of one of the resulting scenarios. The scenario shows a usage in which

the parameterbutton of the dialog in Figure 9.14 (the dialog for editing methods) was pressed.

That caused the dialog in Figure 9.2 (the dialog for editing parameters) to be opened. Using

that dialog a new parameter was added to the method, and finally, the parameter was modified.

The usage is clearly recognizable from the scenario. Furthermore, participants representing the
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system border (javax.swing.AbstractButtonand java.awt.event.ActionListener2), the view com-

ponents (de.unipaderborn.gui.PropertyEditor2andde.unipaderborn.gui.PESelection2), and the

model components (de.unipaderborn.uml.UMLIncrement2) can be easily distinguished. Note,

that the system border always communicates with the model components through the view com-

ponents. The high-level scenario thus clarifies the user interaction as well as the communication

between the view and the corresponding model components.

Figure 9.20: A high-level SCED scenario diagram showing the interaction between high-level
static components that have been composed using Rigi.

9.5 Discussion

Several tasks were set for the case study. In what follows we discuss how well these tasks were

achieved, what problems and limitations of Shimba were encountered during the case study, and
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how useful the reverse engineering techniques of Shimba were in practice.

9.5.1 Results of the case study

All the tasks for the case study (cf. Section 9.1) were achieved. In some cases, the generated

models gave also additional information that was not even expected. For example, when merg-

ing dynamic information into a static view an unexpected installation problem was encountered.

However, the results were not equally good or useful in each case. Next we discuss two cases in

which the results were not fully satisfying.

Searching for the behavioral patterns and structuring the SCED scenario diagram with them was

one of the most problematic tasks. The string matching algorithms were able to find several (even

nested) patterns. When structuring the original scenario diagrams with them, the readability of the

original scenario diagrams got worse in some cases. This was due to the names and contents of

subscenario boxes. Each pattern that is represented as a subscenario is given a namesubscx.sc,

wherex is the consecutive number of the subscenario box. Such subscenario boxes do not help the

user to get an overview of the execution trace unless named in a more descriptive way. Renaming

a subscenario box requires knowledge of its contents and thus needs to be done manually. Further-

more, a pattern contains an arbitrary sequence of SCED scenario diagram items, formed on the

basis of the length of the pattern. Thus, one subscenario might contain SCED scenario diagram

items that do not form a logical unit with its own aims and characterizations. SCED supports nav-

igation through the subscenarios, which helps the user to overcome some of these problems. The

patterns that are repeated in succession are visualized as repetition blocks that are named by the

number of iterations. Hence, such patterns do not decrease the readability of the scenario diagrams.

Modeling the overall behavior of a complicated object might result in a large state diagram that

does not fit entirely in the SCED window in a readable form. The state diagram optimization

algorithms are able to decrease the size of the state diagram dramatically. However, some of the

synthesized state diagrams were too large even after the optimization. SCED allows the user to

scroll the state diagram window, which enables the user to read its content. The window can also
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be zoomed out to decrease its size. If the state diagram is shrank to fit on the screen, the font in

the state diagram might get unreadable. Section 9.3.2 shows an example of such a case.

9.5.2 Limitations of Shimba

The string matching algorithms that are used in Shimba for recognizing behavioral patterns from

the SCED scenario diagrams have a few limitations. First, the algorithms are able to find patterns

only if they lay entirely inside one SCED scenario diagram. Hence, the patterns that begin from

the end of one scenario and continue in the next scenario are not recognized. Second, the pro-

posed method is able to find exact matches only. It might be useful to give the user some freedom

in defining what is considered to be similar behavior. Third, the string matching algorithms of-

ten produce several subscenarios. Again, an option to influence the construction of subscenarios

would be desirable.

The state diagram synthesis algorithm is fast if control flow information is included in the SCED

scenario diagrams. If that is not the case, the algorithm might need to backtrack several times,

which makes the synthesis slow (the synthesis may take a few tens of seconds to complete).

The static information can be extracted from the Java byte code very efficiently and fast using the

JExtractortool. The dynamic information is extracted when running the target application under

theJDebuggerdebugger. Because of the used technique, the execution of the target Java software

system gets slow, especially when information for many objects is extracted and the control flow

information is included.

Dynamic control flow information can be included in SCED scenario diagrams during the dynamic

reverse engineering process. A hit of a conditional statement (e.g., “if (x)”) and an evaluation

of its condition are visualized as a state box and an assertion box in a SCED scenario diagram,

respectively. The name of the state box (e.g.,TEST line 24) and the name of the assertion box (e.g.,

Cond at 24 taken) both refer to the line number of the conditional statement in the source code.

Such names are not very informative nor useful. Since Shimba is independent of the source code
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of the target software system, the state boxes are not labeled by the actual conditional statements,

even though that would be more descriptive. Another approach could be to give the assertion boxes

names that refer to line numbers of statements that are executed right after the evaluation of the

conditions.

9.5.3 Experiences with Shimba

Shimba supports both static and dynamic reverse engineering. The case study showed that it is

useful to make the static analysis before the dynamic analysis. However, Shimba does not require

this order. Accomplishing most of the dynamic reverse engineering tasks set for the case study

started by selecting a specific part from the Rigi dependency graph. The dynamic information was

then generated for the software artifacts that were visualized in that part. In other words, the static

information was used to guide the generation of dynamic information. This technique appeared to

be very useful for all the goal-driven dynamic reverse engineering tasks. Since run-time informa-

tion was generated only for a specific part, the debugging was reasonably fast (i.e., the usage of

the debugger was only slightly noticeable when running FUJABA). Moreover, using Rigi scripts

the engineer can quickly and easily find the part of interest and the neighboring parts. When the

neighborhood is also selected, the engineer can be confident that the event trace contains all the

information concerning the part of interest. Finally, analyzing the SCED scenario diagrams is easy

in this case, because uninteresting information is not shown.

The state diagram synthesis facility of SCED, combined with the state diagram optimization tech-

nique, was very useful and practical for analyzing the total behavior of selected objects and meth-

ods, even when the resulting state diagram was large. To the best of our knowledge, such features

are not provided by other dynamic reverse engineering tools. The state diagram allows the engi-

neer to analyze the total run-time usage of an object or a method in a single diagram, disconnected

from the rest of the system. That would be very difficult by browsing the scenario diagrams (or

other kinds of MSCs). The state diagram optimization algorithms were used most of the times

when state diagrams were generated, since they reduce the size of the state diagram significantly,

make the diagram more readable, and emphasize similar behavior.
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Shimba supports various debugging strategies. Information about thrown exceptions is essential

for understanding the behavior of a target Java software system. It is especially important when

the behavior of the target software is unexpected. By adding this kind of information to the SCED

scenario diagrams, the engineer can study which exceptions were thrown and by which objects,

when they were thrown, and what happened before and after the exceptions were thrown. The

SCED scenario diagrams help the engineer to identify exceptional behavior even if the error does

not generate any exceptions. Furthermore, the Rigi graph can be sliced by the SCED scenario

diagrams that visualize the exceptional behavior. Such a graphical support for debugging helps the

engineer to track down the bug and to conclude the reason quickly. The slicing technique is also

useful in other cases. During the case study, this technique was used a few times to find out why a

certain behavior occurs, how parts of FUJABA that were involved in certain scenarios are related

to the rest of the system, and what is the underlying structure that causes this behavior. The slicing

technique helps the engineer to understand the context of the sequential behavior.

Attaching dynamic information to a static dependency graph supports both static and dynamic

analysis of the target software system. The dynamic information can be used to find heavily used

parts of the software and parts that are not used at all. Such information can be used to profile

the software. However, to understand the behavior of the software fully, sequential information is

needed (i.e., information about the order in which things has happened). This piece of information

is not included in the annotated Rigi graph.

In Shimba, the level of abstraction of the SCED scenario diagrams can be raised using static ab-

stractions that are constructed using Rigi. This technique helps the engineer to get an overall

picture of the behavior. Rigi allows the engineer to make arbitrary static abstractions. This makes

the scenario abstraction technique especially useful. For example, the technique can be used to

ensure that the static abstractions are meaningful and to understand how different high-level com-

ponents communicate with each other. In this case study, the technique was used a few times for

these purposes. The current implementation of this technique has its also down sides, the biggest
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one being the way the method calls in the resulting scenario diagram are written. Currently, the

name of the package and the name of the class are inserted into each method call. This makes

the scenario diagrams slightly hard to read. The method names are expanded this way, since the

participants that represent high-level static components do not represent the actual senders and

receivers of the method calls.

In practice, combining static and dynamic reverse engineering was very useful. All the techniques

were used several times during the case study. Using Shimba, the engineer can understand how

static and dynamic views are connected with each other, which is one of the most difficult tasks in

reverse engineering object-oriented software systems. The static views provide the context for the

dynamic analysis, and the dynamic views show what the current structure of the software means

in practice.

The techniques supported by Shimba are useful for forward engineering as well. When construct-

ing software systems, debugging facilities are needed. The engineer can also use Rigi to view

the current structure of the software and check if the design guidelines have been followed. The

current behavior can be examined with SCED scenario and state diagrams and checked against use

case specifications.
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Chapter 10

Conclusions

10.1 Discussion

Chikofsky and Cross define reverse engineering as a process of analyzing a subject system to

identify the system’s components and their inter-relationships, and to create representations of the

system in another form at higher levels of abstraction [18]. The former goal can be achieved by

using information extraction tools and the latter goal by producing design models from the target

software. In this research, both static and dynamic reverse engineering are considered, the empha-

sis being on dynamic reverse engineering. Static reverse engineering aims at modeling the static

structure of the target software, while dynamic reverse engineering models its run-time behavior.

10.1.1 Modeling the target software

Most currently available reverse engineering tools focus on either static or dynamic aspects of the

software but rarely on both. In forward engineering OOAD methodologies provide various models

that can be used in analysis and design phases to model the static structure and the dynamic behav-

ior of the software. Some of them contain strictly static information, some are used for dynamic

modeling, and some model both static and dynamic aspects of the software. It would be natural to

do so also in reverse engineering.
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In this dissertation, the reverse engineering of Java software is discussed. Both static and dy-

namic models are built to help the user to analyze different aspects of the target software. Static

information is extracted from Java class files and viewed using the Rigi reverse engineering en-

vironment [74]. The dynamic event trace information is generated by running the target software

under a customized jdk debugger calledJDebugger. This information is viewed as scenario dia-

grams using the SCED dynamic modeling tool [56]. In SCED state diagrams can be synthesized

automatically from scenario diagrams. This facility can be used for examining the overall behav-

ior of a selected object or a method, disconnected from the rest of the system. Moreover, string

matching algorithms are used to structure the scenario diagrams generated and to raise their level

of abstraction.

Both static and dynamic analysis contain information about software artifacts and their relations.

The shared information enables information exchange among the models. The models are used

to complement each other and to provide extended support for slicing the models. Chapter 8 dis-

cusses such features implemented in Shimba. Section 8.6 discusses how dynamic information can

be merged into a static Rigi view. Method calls, for instance, can be given weight values, indi-

cating their actual usage at run-time. In addition, new nodes are typically added to the view, for

example, nodes representing exceptions thrown at run-time. The information hiding and filtering

mechanisms of Rigi can then be used to view the software artifacts and relations that are used

(heavily enough). Section 8.7 describes how a static Rigi graph is used to define the software

artifacts for which dynamic information is generated. This approach is especially useful when the

user is interested in the behavior of a certain part of a software system. It dramatically decreases

the amount of event trace information generated, yet containing the information of interest. In

Section 8.8, a method for slicing a Rigi graph by a set of SCED scenarios is discussed. The dy-

namic slicing approach presented can be used for finding structural flaws in the software that cause

unexpected or undesired behavior. Section 8.9, in turn, discusses a method for compressing SCED

scenarios based on the information included in a Rigi graph. In the proposed method the level

of abstraction of SCED scenarios is raised using a high-level Rigi graph. The modified scenario

shows interaction among high-level static components. This approach helps the user to understand
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the overall behavior of the software.

In this research we have not combined the state diagram synthesis facility of SCED with the

mechanism for raising the level of abstraction of SCED scenarios using a high-level Rigi graph.

However, there are obvious possibilities to support understanding the behavior of high-level static

components by combining these two techniques. Furthermore, as in the approach of slicing the

Rigi graph with SCED scenario diagrams, discussed in Section 8.8, the static Rigi graph could be

used for slicing SCED scenarios. The results would be similar to using the Rigi graph to guide

the generation of dynamic information (cf. Section 8.7). In some cases, however, the user might

not know which objects are the interesting ones before generating the run-time information. The

user can, naturally, delete events and participants from the scenario diagram by using the SCED

scenario diagram editor. However, a more efficient and profound slicing mechanism would be

achieved, if the static dependency graph could be used to define the parts of the software (e.g.,

related according to some criteria) to be filtered out. Such an approach would help the user to

understand and browse the event trace information.

10.1.2 Applying reverse engineering approaches to forward engineering

The application of reverse engineering techniques is not limited to understanding old legacy sys-

tems. They can and should be applied to support forward engineering as well. In software devel-

opment reverse engineering the current static structure of the software helps the engineer to ensure

that the architectural guidelines are followed, to get an overall picture of the software, to docu-

ment the implementation steps and so on. Reverse engineering the run-time behavior during the

software development phase is essential for profiling, debugging, understanding and ensuring the

current behavior of the software system, etc. Applying reverse engineering techniques during the

software development phase also supports documentation, hence avoiding ending up in the similar

situation with Java code, as we currently face with legacy COBOL and C code.

Ideally, reverse engineering tools applied to object-oriented software systems should be able to

196



10.1. DISCUSSION

produce standard OOAD models from the target software. Since such models are familiar to the

user, this would unburden her from learning yet another model or diagram notation. Moreover, if

the models used in forward and reverse engineering are the same, the tools would be able to give

more support for re-engineering and round-trip-engineering.

In Shimba, SCED scenario diagrams are used for modeling object interactions. In UML [95, 85]

both sequence diagrams and collaboration diagrams are used for modeling object interactions. Col-

laboration diagrams do not show time as a separate dimension, as sequence diagrams do. However,

they show relationships among the objects explicitly, hence including both dynamic and static as-

pects of the software. Shimba could be used to extract both the static information and the event

trace information needed for constructing collaboration diagrams. The usage of collaboration di-

agrams should complement but not replace the usage of scenario diagrams. Scenario diagrams

provide a simple and flexible way to show object interaction: SCED scenarios may contain an

arbitrary event sequence among an arbitrary set of participants (cf. Section 4.1.1). The generated

event trace information typically contains a large set of objects and executed operations. One col-

laboration diagram, in turn, usually shows an execution of one operation or use case. Constructing

and connecting collaboration diagrams so that the whole event trace could be expressed with them

is not a simple task. In addition, since a collaboration diagram often includes more information

than a simple sequence diagram (containing information about relationships among objects), the

visualization of the extracted information might be difficult. Nonetheless, collaboration diagrams

provide a useful way to model the run-time behavior.

To express high-level static information, UMLcomponent diagramsandpackagescould be used.

Similar view improvement and slicing mechanisms as discussed in this dissertation could be im-

plemented for these views. In addition, more support for building abstractions from the low-level

views could be given: the usage of these high-level models would provide natural mechanisms to

produce and view the high-level information.
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10.1.3 Support for iterative dynamic modeling

When synthesizing a state diagram for a participant from information given in scenario diagrams,

sent events are interpreted as actions and received events as transitions. The same interpretation

applies when generating a scenario diagram based on a set of interacting state diagrams. The latter

process is calledtracing.

In SCED, existing state diagrams can be used to support the construction of scenario diagrams.

The user can animate the interaction of objects by using a set of collaborating state diagrams.

The state diagrams simulate system behavior as objects sending events to each other and chang-

ing states according to received events. Correspondingly to the state diagram synthesis algorithm,

actions are interpreted as sent events and labels of transitions as received events. The process of

tracing a scenario halts when external stimuli are expected. The designer can continue the trac-

ing process by providing that piece of information. By “guiding” the tracer through desired paths

in these state diagrams, the designer produces an example sequence of interactions among corre-

sponding objects. The result of the execution is shown as a scenario diagram. Furthermore, the

designer may freely edit the traced scenario diagram at any time during the tracing process (when

the tracing is halted). The scenario tracing property is hence opposite to state diagram synthesis:

while the synthesis algorithm generates a state diagram from a set of scenario diagrams, the sce-

nario tracing constructs a scenario diagram from a set of state diagrams.

SCED supports an iterative approach to construct dynamic models for object-oriented software

systems semi-automatically by combining the technique for synthesizing a state diagram from

information given by scenario diagrams with the tracing technique. The dynamic modeling pro-

cess is smoothly changed from a “water fall” type of modeling (first scenario diagrams, then state

diagrams) to a more spiral and incremental way of modeling; successive iterations increase the

number of different scenario diagrams as well as refines the state diagrams. This approach is

called design-by-animationin SCED [56, 111]. The method is especially suited for modeling

the behavior of a new component using the known behavior of other, predefined, and presumably

correctly implemented components. For example, such predefined components could be classes
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belonging to a graphical user interface framework.

The design-by-animation approach needs a set of state diagrams to start with. Such state diagrams

could be produced by the dynamic reverse engineering technique described in this dissertation (cf.

Chapter 8). The state diagrams of a predefined library or object-oriented framework components

can be constructed by reverse engineering the run-time behavior of another system that uses the

same classes. By first constructing the static dependency graph and analyzing it with Rigi, the

classes of interest can be found (cf. Section 8.7). JDebugger can then be given instructions to gen-

erate event trace information especially for instances of those classes. By using SCED for viewing

the event trace as scenarios, state diagrams for the objects of interest can be synthesized.

When reverse engineering the run-time behavior of a target system, the constructed state diagrams

show the behavior corresponding to the usage of the system. To get complete state diagrams, the

user thus needs to make sure that the usage of the objects of interest covers all possible cases. The

design-by-animation approach does not require that the predefined state diagrams are complete,

but they need to contain the information that will be used by the new component. If SCED is used

to synthesize the predefined state diagrams, the user can be sure that the state diagrams constructed

are usable for the design-by-animation approach.

10.2 Summary of contributions

The main contributions of this dissertation are as follows:

• methods for using the dependencies between static and dynamic models for goal driven

reverse engineering tasks, including

– merging dynamic information to a static Rigi view;

– using static information to guide the generation of dynamic information;

– slicing a Rigi view using SCED scenarios; and

– raising the level of abstraction of SCED scenarios using a high-level Rigi graph;
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• algorithms for optimizing synthesized state diagrams using UML notation;

• application of the synthesis algorithm presented by Koskimies and Mäkinen [54] to SCED;

• string matching algorithms for raising the level of abstraction of SCED scenario diagrams;

• the prototype reverse engineering environment Shimba, which integrates two existing tools:

– Rigi for reverse engineering the static structure of Java software; and

– SCED and its state diagram synthesis facility for reverse engineering the dynamic

behavior of Java software;

• methods and tools for gathering information, including

– extraction of static information from Java byte code; and

– extraction of run-time information by running the target system under a customized

jdk debugger;

• a case study to evaluate the facilities of Shimba.

Both static and dynamic information contains software artifacts and their relations. The shared

information enables information exchange between the models. In Shimba, such a connection is

used in various ways for goal-driven reverse engineering tasks. First, dynamic information can be

attached to the static dependency graph (cf. Section 8.6). Weight values are given for some arcs

in the dependency graph (e.g., method calls) indicating their actual usage at run-time. Further-

more, new nodes and arcs are usually added to the graph (e.g., describing exceptions thrown at

run-time). Second, static information can be used to guide the generation of dynamic information

(cf. Section 8.7). The Rigi view can be used to define the focus points during the debugging (i.e.,

the parts of the software for which event trace information is generated). Third, a Rigi graph can

be sliced using a set of SCED scenario diagrams (cf. Section 8.8). This approach can be used for

studying the structure of parts of the target software that are involved in a specific kind of usage.

Fourth, the level of abstraction of SCED scenarios can be raised using a high-level Rigi graph (cf.

Section 8.9). In Rigi, graphs can be nested to view the software on different levels of abstraction.

The static abstractions built can then be used to modify SCED scenarios to view the interaction
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among high-level static components.

Several algorithms for optimizing a synthesized state diagram using the UML notation are pre-

sented in Chapter 6. The proposed method makes the state diagram more readable and compact,

yet preserving its information content. The algorithms detect similar responses to certain events

and use that information to restructure the state diagram. The state diagram is modified by adding

UML statechart notation elements into it.

An algorithm for synthesizing state machines automatically from trace diagrams is presented by

Koskimies and M̈akinen [54]. This dissertation presents an application of that algorithm to state

diagram synthesis in SCED (cf. Chapter 5). The scenario notation of SCED is richer than the basic

MSC notation used in [54]. In addition, some rules concerning join of states during the synthesis

have been added.

String matching algorithms can be applied to SCED scenarios for searching behavioral patterns.

The patterns found provide means to raise the level of abstraction of the scenarios and to decrease

their size (cf. Section 8.5). The SCED scenario diagram notation includes means to visualize those

patterns.

A prototype environment Shimba was built for reverse engineering Java systems (cf. Chapter 8).

The static information is viewed as a directed graph using Rigi. A new Java domain model (cf.

Appendices A-C) that enables Rigi to visualize the target system was produced. In addition, sev-

eral scripts were written to help the user to analyze the dependency graph using Rigi. The dynamic

information in Shimba is visualized as scenario diagrams using SCED. An overall run-time behav-

ior of a single object or a method can be visualized as a state diagram using the automatic state

diagram synthesis facility of SCED.

Both static and dynamic information is extracted from Java byte code (cf. Section 8.2). Types of

software artifacts and their dependencies read from Java class files are included in the Java do-
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main model (cf. Appendices A-C). The dynamic information is generated by running the target

application or applet under a customized jdk debugger. The event trace information is saved in a

format readable for SCED. In addition to member function calls, dynamic control flow informa-

tion, which describes branching within member functions, can be generated (cf. Section 8.4).

To validate the usefulness of the reverse engineering approach described in this dissertation, a

moderate size target Java software system was examined (cf. Chapter 9). The selected target

system FUJABA (version 0.6.3-0) contains almost 700 classes. In the case study, we used both

static and dynamic reverse engineering techniques of Shimba, as well as all the techniques of

exchanging information between the views.

10.3 Directions for future work

The UML notation contains several diagram types that can be used to model a system from dif-

ferent perspectives and on different levels of abstraction. Those diagrams share information and

depend on each other in various ways, thus enabling the development of versatile model transfor-

mation and synthesis techniques. Such techniques are especially useful for reverse engineering,

if the target model represents information on a higher level of abstraction than the source model.

For example, the generation of UML component diagrams would be useful for understanding the

high-level architecture of the subject object-oriented software system.

The use of transformation and synthesis mechanisms is not limited between two diagram types.

A more refined model can usually be constructed if the information is gathered from different

sources. For example, a UML collaboration diagram could be (automatically) constructed from

sequence and object diagrams. Furthermore, information included in a single diagram could be

used to refine several existing models. Examining the dependencies among the UML diagrams

and exploring new transformation and synthesis algorithms will be part of the future work.

Practical experiences are essential for developing useful reverse engineering techniques and tools.

An industrial tool provides an ideal platform to research and test reverse engineering techniques:
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the usefulness of the techniques can be studied with real examples by the users of the tool. A re-

verse engineering environment that uses the different UML diagram types would be desirable. The

current implementation of Shimba does not support the full UML notation. Possibilities to inte-

grate the reverse engineering techniques of Shimba in an object-oriented modeling tool TED [121]

will be a part of the future work. TED has been implemented at Nokia Research Center and is cur-

rently used at Nokia. TED supports UML sequence diagram, statechart diagram, class diagram,

object diagram, collaboration diagram, use case diagrams, and implementation diagram notations.

10.4 Concluding remarks

Program understanding techniques are useful for various software engineering tasks. Software

exploration tools are needed for software maintenance, re-engineering, reuse, and forward engi-

neering purposes. Several reverse engineering tools and environments that help the engineer to

understand the structure of the software are currently available. Tool support for understanding

behavioral aspects of the software also exists. However, there are few tools that support both of

these tasks and help the engineer to understand the relations between behavioral and structural

aspects of the software. The reverse engineering technique proposed in this dissertation was de-

veloped to help the engineer to reach this goal.
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[30] Dósa F. and Koskimies K., Tool-Supported Compression of UML Class Diagrams, InProc. of the

2nd International Conference on the Unified Modeling Language (UML’99), Springer-Verlag 1999,

pp. 172-187.

[31] Ellis M. and Stroustrup B.,The Annotated C++ Reference Manual, Addison-Wesley, 1990.

[32] Even S.,Graph Algorithms, Pitman, 1979.

[33] Expert software systems,E2S, A Software Engineering and Case Tool Company, http://www.e2s.be/,

1999.

[34] Finnigan P., Holt R., Kalas I., Kerr S., Kontogiannis K., Müller H., Mylopoulos J., Perelgut S., Stanley

M., and Wong K., The software bookshelf,IBM Systems Journal, 36, 4, 1997, pp 564–593.

[35] Fowler M.,Refactoring, Addison-Wesley, 1999.

[36] Gamma E., Helm R., Johnson R., and Vlissides J.,Design Patterns: Elements of Object-Oriented

Software Architecture, Addison-Wesley, 1995.

[37] Garey M.R. and Johnson D.S.,Computers and Intractability: A Guide to the Theory of NP-

completeness, Freeman, 1979.

[38] Glinz M., An Integrated Formal Model of Scenarios Based on Statecharts,Lecture Notes in Computer

Science 989, Springer-Verlag, 1995, pp. 254–271.

[39] Graham I.M.,Migrating to Object Technology, Addison-Wesley, 1995.

[40] Harel D., Statecharts: A Visual Formalism for Complex Systems,Science of Computer Programming,

8, 1987, pp. 231–274.

[41] Harel D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-Tauring, A., and

Trakhtenbrot, M., STATEMATE: A Working Environment for the Development of Complex Reactive

Systems,IEEE Trans. Softw. Eng., 16, 4, 1990, pp. 403–414.

[42] Harel D. and Politi M.,Modeling Reactive Systems with Statecharts: The STATEMATE Approach,

McGraw-Hill, 1998.

[43] Henderson-Sellers B.,Object-Oriented Metrics, Measures of Complexity, Prentice Hall, 1995.

[44] Hsia P., Samuel J., Gao J., Kung D., Toyoshima Y., and Chen C., Formal Approach to Scenario

Analysis,IEEE Software, 11, 2, March 1994, pp. 33–41.

[45] IBM Research,Jinsight, visualizing the execution of java programs, http://www.research.

ibm.com/jinsight/, 2000.

[46] Imagix Corporation,Imagix - Reverse engineering tools, http://www.imagix.com/index.html, 1999.

206



BIBLIOGRAPHY

[47] Innovative Software GmbH, Innovative Software Homepage, http://www.innovative-

software.co.uk/oew/index.html, 1999.

[48] IntegriSoft Inc.,IntegriSoft Homepage, http://www.integrisoft.com/, 1999.

[49] Z.120 ITU-T Recommendation Z.120: Message Sequence Chart (MSC), ITU-T, Geneva, 1996.

[50] Jacobson I.,Object-Oriented Software Engineering — A Use Case Driven Approach. Addison-Wesley,

1992.

[51] Jerding D. and Rugaber S., Using Visualization for Architectural Localization and Extraction, InProc.

of the 4th Working Conference on Reverse Engineering (WCRE97), IEEE Computer Society Press,

1997, pp. 56–65.

[52] Kazman R. and Carriere J., Playing Detective: Reconstructing Software Architecture from Available

Evidence,Automated Software Engineering, 6, 2, 1999, pp. 107–138.

[53] Khriss I., Elkoutbi M., and Keller R., Automating the Synthesis of UML Statechart Diagrams from

Multiple Collaboration Diagrams, In Bezivin J. and Alain P. (eds.),The Unified Modeling Language.

UML’98: Beyond the Notation, Springer-Verlag, LNSC 1618, 1999, pp. 132-147.

[54] Koskimies K. and M̈akinen E., Automatic Synthesis of State Machines from Trace Diagrams,Softw.

Pract. & Exper., 24, 7, 1994, pp. 643–658.

[55] Koskimies K., M̈annisẗo T., Sysẗa T., and Tuomi J., On The Role of Scenarios in Object-Oriented Soft-

ware Design, InProc. of the Nordic Workshop on Programming Environment Research (NWPER’96),

Aalborg, Institute of Electronic Systems, Aalborg University, Denmark, 1996, pp. 53–70.

[56] Koskimies K., M̈annisẗo T., Sysẗa T., and Tuomi J., Automated Support for Modeling OO Software,

IEEE Software, 15, 1, January/February, 1998, pp. 87–94.
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[113] Sysẗa T. and Yu P., Using Object-Oriented Metrics and Rigi to Evaluate Java Software, University of

Tampere, Dept. of Computer Science, Report A-1999-9, July, 1999.
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Appendix A

Rigi domain model for Java: Riginode

file

Collapse

] JExtractor does not currently produce System nodes

System

] JExtractor does not currently produce Release nodes

Release

] JExtractor does not currently produce Revision nodes

Revision

Composite

Class

Method
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Appendix A. Rigi domain model for Java: Riginode file

Constructor

] All Variable nodes refer to class variables

] Information about local variables is not extracted

Variable

Interface

] Staticblock is used for initializing static class variables

Staticblock

] Exceptions are in fact classes, though dynamically they

] have a specific role.

] Hence it seems to be desirable to have a different node

] representing exceptions

Exception

Unknown
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Appendix B

Rigi domain model for Java: Rigiarc file

] calls are method or constructor invocations, i.e.

] call arc can be between two Method nodes, between a

] Method node and a Constructor node and between two

] Constructor nodes.

] Dynamically (debugged infromation) there is always also

] call arcs from/to a static block if a class defines one.

call

] inherit arcs (extend clause in Java) can be between two

] Class nodes or between two Interface nodes.

inherit

] implement arc is always from a Class node to an Interface node

implement Class Interface

] following cases are possible containment relationships defined

] with a contain arc:

] contains Class Method

] contains Class Variable
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Appendix B. Rigi domain model for Java: Rigiarc file

] contains Class Statickblock

] contains Class Class

] contains Class Constructor

] contains Interface Method

] contains Interface Variable

contains

] throw arcs are generated when an exception is thrown.

] Currently these arcs are generated only during run-time.

] representing dynamic information only.

] If throw arcs were generated for all methods and classes

] that can throw an exception, the number of them would be huge.

] So far, there hasn’t been any need or reason to do this, but

] it might be worth considering in the future.

throw

] access arcs represent class variable (Variable nodes) usage.

] following cases are possible:

] access Method Variable

] access Constructor Variable

] access Staticblock Variable

access

] assign arcs represent class variable (Variable nodes) assignments,

] i.e. the value of the variable is changed.

] following cases are possible:

] assign Method Variable

] assign Constructor Variable

] assign Staticblock Variable
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Appendix B. Rigi domain model for Java: Rigiarc file

assign

] composite arcs are created by when running some rcl scripts.

] They represent high level arcs and are used if either end

] of the arc is a high level Collapse node

composite

] level arcs are generated by Rigi. They represent

] subsystem hierarchies and are used in structured rsf

level

216



Appendix C

Rigi domain model for Java: Rigiattr

file

]

] node attributes:

]

] package attributes are generated only for Classes and

] Interfaces. There is no need to generate package values

] for Methods, Variables, etc. since they are always

] encaptulated inside Classes or Interfaces.

] The value is a string representing the package name.

] Though, there is not really any use for this attribute

] because the Class and Interface nodes have long names

] including the package name: e.g., java.io.InputStream

attr Node package

] visibility, static, abstract, native, final, and volatile

] attributes are generated for Classes, Interfaces, Methods,

] Constructors, Staticblocks, and Variables
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Appendix C. Rigi domain model for Java: Rigiattr file

] The value is either public, protected, or private

attr Node visibility

] The value is 1 (is static) or 0 (is not static)

attr Node static

] Thevalue is 1 (is abstract) or 0 (is not abstract)

attr Node abstract

] The value is 1 (is native) or 0 (is not native)

attr Node native

] The value is 1 (is final) or 0 (is not final)

attr Node final

] The value is 1 (is volatile) or 0 (is not volatile)

attr Node volatile

] The value is 1 (is synchronized) or 0 (is not synchronized)

attr Node synchronized

] The value of lineno attribute is a string representing

] the name of the file the Class or Interface is

] located in.

] filename attribute is generated for Class and Interface

] nodes only.

attr Node filename

218



Appendix C. Rigi domain model for Java: Rigiattr file

] The value is an integer representing the line number in

] the source file the Method, Constructor, Staticblock, or

] Variable is defined at.

] For Methods, Constructors, and Staticblocks it is the

] the first line.

] This is still under implementation

attr Node lineno

] url attribute is currently not used.

attr Node url

] annotation attribute is currently not used

attr Node annotation

] The value is a string representing a path+file name

] where the javadoc documentation exist.

] The htmlized documentation can be viewed using, e.g., any

] web browser (javashowdocumentation script)

] Thes values can be generated by the Ideogram environment

attr Node documentation

] The value of return attribute is a string representing the

] return type of a node.

] return attribute values are generated for Classes, Interfaces,

] Methods, Constructors, and Variables

attr Node return

] Next 9 attributes represent OO metrics values that can

] be generated for Classes, Interfaces, Methods, and
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] Constructors using the JMetricsProgram and/or Ideogram environment

] The values are integers.

] LOC: Lines of Code (under implementation)

attr Node LOC

] DIT: Depth of Inheritance Tree

attr Node DIT

] NOC: Number of Children

attr Node NOC

] CC: McCabe’s Cyclomatic Complexity

attr Node CC

] CBO: Coupling Between Objects

attr Node CBO

] LCOM: Lack of Cohesion in Methods

attr Node LCOM

] WAC: Weighted Attributes per Class (used LOC, under implementation)

attr Node WAC

] WMC: Weighted Methods per Class

attr Node WMC

] RFC: Response For a Class

attr Node RFC
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Appendix C. Rigi domain model for Java: Rigiattr file

]

] arc attributes:

]

] filename attribute values are not currently generated

attr Arc filename

] lineno attributes are not currently generated

attr Arc lineno

] url attributes are not currently generated

attr Arc url

] annotation attributes are not currently generated

attr Arc annotation

] The actual weight attribute values are generated at run-time.

] They represent the number of times the arc is actually used.

] weight values are generated for call, access, assign, and throw

] arc.

] The default values (static value) is 0.

] When dynamic information is also included, the value of

] weight attribute is stored in comments:

] e.g., ’]] call myPackage1.myCl1.foo myPackage2.myCl2.foo() weight 3’

] The reason is that basic unstructured rsf files consist of triples

] but the arc attributes need four tokens (sender received attr attrValue)

] Files with such dynamic information can be read using javaload script.

attr Arc weight
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Appendix D

Calculating software metrics in Shimba

Depth of Inheritance Tree (DIT)

For a class or an interface, DIT is the number of its ancestor classes or interfaces. Foundation

classes (jdk) are ignored.

Number of Children (NOC)

For a class, NOC is the number of classes that extend this class. For an interface, NOC is the sum

of the following two values: the number of interfaces that extend the interface and the number of

classes that implement it. The foundation classes (jdk) are ignored.

Response For a Class (RFC)

For a classC, let Mi be the set of all member functions inC. Let Mo be the set of all member

functions, belonging to other classes, that are called by the members ofMi. Then RFC is the size

of the setMi ∪ Mo.

Coupling Between Objects (CBO)

The following dependencies between two classes, which are not in a superclass-subclass relation-

ship, constitute coupling that is counted when calculating CBO: method calls, constructor calls,

instance variable assignments, or other kind of instance variable accesses.
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Appendix D. Calculating software metrics in Shimba

Lack of Cohesion in Methods (LCOM)

In Shimba, we calculate LCOM using the formula that has been presented by Henderson-Sellers [43].

For a classC, let M be a set of itsm methodsM1, M2, . . . Mm, and letA be a set of itsa data

membersA1, A2, . . . Aa accessed byM . Let µ(Ak) be the number of methods that access data

attributeAk where1 ≤ k ≤ a. ThenLCOM(C(M, A)) is defined as follows:

LCOM(C(M, A)) =

(
1
a

a∑
j=1

µ(Aj)
)
− m

1 − m
(D.1)

Cyclomatic Complexity

In Shimba, we use the following formula, adopted from Henderson-Sellers [43], to compute CC:

CC(G) = e − n + 2p, (D.2)

whereG is a complexity graph,n ande are the number of nodes and edges inG, respectively, and

p is the number of disconnected components inG. The complexity graphG for a single method is

a control flow graph.

Weighted Methods per Class (WMC)

WMC is defined as the sum of the complexities of all the methods of a class except the inher-

ited methods but including overloaded methods. The Henderson-Seller Cyclomatic Complexity

CC [43] is used to compute the complexity of a method:

WMC =
n∑

i=1

CCi (D.3)
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