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Abstract
According to Central Statistical Office of Finland falls are a more common cause of
death in Finland than ground traffic accidents. Furthermore, hip fractures caused by
falls among the oldest old are usually impossible to cure properly; they are expensive
and cause reduction in the quality of life. Against this background a method for
predicting the risk of falling is needed. Furthermore, suitable methods for improving
the weakened ability to maintain balance should be studied. In this work the focus is
on the classification of measured human swaying data. The classification of swaying
data can be considered as a starting point of the prediction of increased risk of falling.

The evaluation of human ability to maintain balance is primarily done by analyzing
the results of Computerized Dynamic Posturography (CDP).  During CDP a subject is
standing on the force platform which records his/her body movements originated from
the muscle activity required to keep the upright stance. Analyzing the results of CDP
is diverse and there is no single best method known.
In this work machine learning methods such as hidden Markov models are applied to
CDP data which was measured from students, otoneurological patients and elderly
subjects.  The  primary  goal  is  in  the  prediction  of  the  origin  of  unknown CDP data.
For instance, is unknown data measured from a young student or from an
otoneurological  patient?  In  certain  cases  this  prediction  can  be  used  as  an  indicator
that  a  preventive  action  should  be  taken.  For  instance,  if  a  young  person’s  swaying
data resembles the data of an elderly, there might be something wrong in his or her
postural control system.
Depending on the study in question (students, patients and elderly) the correct
prediction accuracies in this work varied between 65-90%. This result is good,
because the visual discrimination of swaying data is very difficult and differences
between subject classes are subtle. For instance, if there are two graphs from signals
which are measured from different swaying processes, it is almost impossible to say
the origin of the signals with visual inspection.
Keywords: Hidden Markov Models, Postural Control, Classification.
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1  Introduction
A healthy human being finds it easy to walk, run and ride a bike. With additional
physical training he or she may be able to perform demanding balance related tasks.
For instance, jumps in figure skating and snowboarding can become entirely
automatic after thousands of repetitions. Usually this is the case and it indicates that a
person’s postural control system is working properly.

Unfortunately, the ability to maintain balance can weaken because of different
reasons.  It  is  known that  older  people  tend  to  fall  down quite  often.  As  a  matter  of
fact,  several  of  them  suffer  from  the  fear  of  falling  [87]  because  they  are  aware  of
their poor balance control ability. This can lead to a situation where an individual
begins to avoid walking and this way accelerates the weakening of his or her physical
condition. In this case there is an increased risk of social isolation and the reduction in
the quality of life. In addition to elderly, reduced ability to maintain the upright stance
straddles among people who have greatly been affected by noise [50, 74] or solvents
[84].
  Aging, noise and solvents among other environmental factors affect the human
postural control system. It is an open question what this affecting mechanism is.
Because  the  nature  of  the  human  postural  control  system  is  very  complex,  the
collaboration between physicians, computer scientists and physicists is necessary.
In this collaboration the role of physicians is to analyze medicals interests of the work
and to define the problem and what tools are needed to accomplish the goal. The
planning and implementation of tools are the task of physicists. To provide reasonable
methods and results for the use of physicians is the work of computer scientists.
At  its  best,  the  collaboration  can  produce  an  implementation  and  use  of  an  expert
system which can support physicians in reliable and consistent diagnosis making.
Because  the  implementation  of  such  an  expert  system  is  a  difficult  and  time
consuming  task,  it  should  be  divided  into  several  small  parts  which  are  possible  to
implement independently of each other. A gradual integration of these parts will
eventually produce a functional system. The purpose of this thesis is to propose a set
of features and machine learning methods which can extract information of human
swaying process. Considering these features and methods can be thought as the first
iteration of the implementation of an expert system. In this thesis the way to approach
the problem is purely data driven.
Previous balance research has primarily focused on validating the measurement
procedures [23, 56], studying the effects of certain predefined tasks [14, 18],
biomechanical modeling [34, 88] and system identification [15, 21, 51]. In this thesis
the point of view is in the classification of different human swaying patterns.
According  to  knowledge  of  the  author,  this  sort  of  research  has  not  been  done
previously.

The purpose of the introductory part is to give the necessary background information
for a reader to read through the articles attached after Section 12. Section 2 depicts the
internal structure of the human postural control system researched. In Section 3 a
short introduction of research methods of the balance system is presented and the
purpose of an expert system is outlined. Section 4 deals with the data collection
procedure, which was the starting point of this work. In Section 5 the main interest is



2

to explore how to extract  interesting information out of the collected data.  Also,  the
concepts of system identification and linear digital filtering are presented. The aim of
Section 6 is to clarify the machine learning and pattern recognition methods. In
Section  7  the  usefulness  of  a  trained  computer  classifier  is  addressed.  Section  8
summarizes the ideas and results presented in the original articles of the thesis. The
purpose of Section 9 is to discuss the research made and the results gained. Finally
Section 10 gives the conclusion.

2 Human balance system
 In order to maintain balance human beings need to know their relative position and
orientation in the surrounding world. This information comes from three different
channels, which are the eyes, the vestibular organs in the inner ears and the
somatosensory receptors in muscles [4, 24].

Information flows to the brain stem where it is integrated and combined to the learned
information patterns. There is a repertoire of learned patterns. For instance, a human
being  uses  different  strategies  when walking  on  a  slippery  or  normal  platform [32].
Sometimes information from the different channels can be contradictory. An example
of this situation is a moving train. A person can stand in a stationary train while
another train slowly passes by. The visual information of a moving train can create an
illusion that the person is actually moving. However, the feedback from
somatosensory system rapidly corrects the wrong visual information.

After the integration of information the brain sends motor commands to the eyes and
muscles  which  cause  the  repositioning  of  the  body  to  a  more  stable  state.  Getting
information from the environment and making the corrective actions is a continuous
loop which is depicted in Figure 1.1.

Figure1.1: The human balance system
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The vestibular organs and the eyes are closely connected [5]. When a person turns the
head, the vestibular organs signal the eyes to turn in the opposite direction to keep the
gaze at the same target [44, 52]. This mechanism makes the clear vision possible and
it is called the vestibulo-ocular reflex (VOR). This reflex can be verified easily. If a
person reads a paper and moves the head up and down or to left and right the reading
is possible. However, if a person keeps the head still and moves the paper by the arms
reading becomes impossible. The clear image formation in the brain is possible only
when the eyes do not move largely in the relation to the environment. The image from
the surrounding world is ultimately created in the brain. However, the input data for
the image is a set of photons from the environment which are captured by the rods and
cones inside the eyes. The rods and cones [29] react differently for photons with
varying energy. This energy can also be considered as electromagnetic radiation with
different frequencies, which represent all colours in the visible band of the
electromagnetic spectrum [26].  When the rods and cones have reached a steady state
under the electromagnetic excitation, the image is formed in the brain. The function of
a vestibular organ is based on the inertia. In both ears there are three semicircular
canals which are perpendicular to each other. These canals contain liquid which lags
behind when the head is turned. This lag is perceived as an angular acceleration which
is converted to orientation information in the brain [5].
The somatosensory information from muscles tells how the limbs are positioned and
also the force feedback from the ground under the feet. This information makes the
fast correction actions possible, for instance, when walking in the woods. An
individual can test the effect of limited somatosensory information by walking on a
thick foam mattress.

3 Diagnostic tests and decision support
Because  the  human  postural  system  is  complex,  there  is  no  single  test  which  could
reveal  the  reason  for  impaired  balance.  However,  there  are  tests  which  can  tell  the
state of the co-operation of the vestibular organs, the brain stem and the eyes.

In  many cases  a  patient  with  balance  deficits  also  suffers  from hearing  loss.  This  is
natural because the hearing and vestibular organs are closely related [66]. In this case
basic auditory tests [46] can give a hint about a problem in the inner ear.
As  stated  previously,  the  vestibular  organs  and  the  eyes  work  together.  If  there  is  a
problem in this co-operation, the culprit can be the vestibular organ or the brain stem.
The co-operation can be tested with electronystagmography (ENG) [5, 6] and rotation
tests [25] The drawback in this approach is that ENG only tells if the pathways in the
inner ear and nervous system are functioning normally. The state of individual organs
must be inferred by using a patient’s medical history and symptoms.

Nowadays ENG is performed with infrared cameras which are connected to a
computer. The purpose of the infrared cameras is to record eye movements during
testing in a dimmed room. The computer stores the image data for later analysis. An
ENG test battery consists of three main phases. In the first phase of a test a subject sits
on a chair and stares a tiny stationary red light on the wall. The purpose of this phase
is to test whether pathologic nystagmus is present or not. Nystagmus is an unintended
eye movement where the eyes move back and forth. In a small extent this is normal,
but large movements can cause dizziness. After this phase the red light moves
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horizontally  to  the  left  and  then  to  the  right  and  the  computer  records  the  eye
movements. In this test the subject is instructed to follow the moving red light only
with his/her eyes while the orientation and rotation of head remain unchanged. This
effectively tests the subject’s visual-ocular control. Deficits in visual-ocular control
can cause difficulties in maintaining balance, because clear image formation from the
environment is more difficult than in a situation where the visual-ocular control is
working properly. The last phase of ENG is a caloric test. The purpose of this phase is
to simulate the vestibulo-ocular reflex. In this phase approximately 20ml cool water
or air is injected into the subject’s ear canal and stimulated eye movements are
recorded. Cool water or air causes the liquid motion in the vestibular organ which in
turn causes nystagmus. Nystagmus caused by cool water or air disappears within
approximately five minutes. In some cases this test can reveal the side of
malfunctioning vestibular organ.
The  rotation  test  can  also  be  done  with  a  computer,  but  in  its  simplest  form it  only
requires a rotating chair. In this case a physician rotates a subject on a rotating chair
and makes a subjective evaluation about the state of the vestibulo-ocular reflex.

Computerized dynamic posturography [1, 46] can be used to test the function of the
motor  control  system  of  a  subject.  In  this  test  a  subject  stands  on  a  force  platform
which  is  explained  in  Section  4.  During  CDP  a  subject  can  be  exposed  to  different
visual stimuli or other external disturbances. The force platform records the
movements  of  a  subject  which  can  be  analyzed  after  the  test.  Because  the  result  of
CDP contains all the corrective movements which are required to maintain the
balance, it can be seen as a test which tells how well the different subsystems of the
balance control work together. This also allows the possibility to block certain
information channels. For instance, the effect of vision on balance controlling can be
studied by blindfolding. Also, proprioceptive information from the ground can be
suppressed by vibrators which are attached to both calves [82].
In the field of medical expertise the ability to make a correct diagnosis is important. In
certain cases diagnosing is easy. For instance, flu can be easily verified with a
thermometer and visual inspection. Unfortunately, there are diseases which are hard
to diagnose certainly. Among them there are diseases which cause vertigo and balance
disorders [10, 30 and 69].

The diagnosing of complicated diseases requires many different tests and an
interpretation  of  the  interconnections  of  their  results.  This  can  be  exhaustive,  error-
prone and there might be subjective variation in the resulting diagnoses. To remove
the  burden  of  diagnosing  procedure  and  to  get  more  consistent  results  the  use  of  an
expert system could be reasonable.
An expert system [45, 81] is software which attempts to simulate the work of a human
expert. Such a system contains a set of rules which operates on input data and relates
it to certain outputs (here, diagnoses). The form of input data, rules and outputs of a
system are thoroughly studied among the large group of experts. Experts have
“taught” the system to respond correctly in the various input cases.

Another way to teach such a system is to use artificial intelligence or machine
learning methods. The mapping of input data to output is searched with the computer.
In  this  thesis  the  author  used  this  approach.  Of  course,  the  origin  and  the  nature  of
input data must be known beforehand.
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After an expert system is built it has to be tested. During testing a set of test cases is
input to the system. The results of the system are compared to the results of a set of
human experts. If the results of an expert system are comparable to those of the
human experts, it can be considered useful.

4 Data collection

4.1 Equipment
In postural control research the most common measurement device is a force platform
[1, 11]. A basic version of a force platform resembles a circle shaped scale. It contains
three force sensors which record vertical force reactions against the surface of the
platform. The arrangement of the sensors forms a triangle in which the sensors form a
plane. If we now consider that a constant dot shaped force F is acting downwards
inside the triangle depicted in left side of figure 4.1, we can use the Newton’s third
law to get the relations of the forces

Figure 4.1: Illustration of force platform from the back and its xy plane.

F=Fa+Fb+Fc. (4.1)
 The locations of the forces Fa, Fb and Fc are always the same and only the position of
F can change on the xy-plane. If we fix the origin of the force platform to the centre of
the circle such that the x axis points at the right and y axis points straight ahead, we
can form the moment equations about the x- and y axes.

Mx=Fal+Fbl+Fcc+Fy=0, (4.2)

My=Faa+Fbb+Fx=0, (4.3)
where l is the perpendicular distance of bisector ab from  the  origin, c is the y
coordinate of Fc from the origin, a is the x coordinate of Fa from the origin and b is
the x coordinate of Fb from the origin. The location of F is given by x and y. The force
platform can be calibrated accurately if we use Newton’s third law, gravitational
acceleration g and accurate test mass m. The calibration is needed because the sensors
measure only a voltage which changes due to an acting force F. The relation between
the acting force F and the voltage readings from sensors Ua, Ub and Uc are considered
to be linear when the F is caused by a mass of a normal weighted subject. The
calibration coefficients for the sensors can be obtained by solving a linear equation

F=aUa+bUb+cUc+e, (4.4)

y

x

F

Fa Fb
Fc
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where F is the magnitude of F, a, b and c are the calibration coefficients of the
respective sensors and e contains the summed biases from all sensors. When the force
platform is calibrated, we can calculate the mass of a subject and the location of the
centre point of pressure (COP) under the feet by using the force and moment
equations (4.1), (4.2) and (4.3).
In addition to the force platform balance measurements have also been done by using
a camera [27, 83] and inertial based devices [9, 80]. They are usually planned and
built balance measurements in mind. A part of the present thesis deals with balance
measuring with a commercial magnetic tracking device. The motivation was that the
tracking device is cheaper than a force platform and it provides more flexibility in the
implementation of different balance test setups. For instance, the magnetic tracking
device can be used to explore how a subject uses the arms to maintain balance. Also,
head and hip movements can be captured.
The tracking device used was a Nest of Birds from Ascension Technology
Corporation [37]. This device is usually employed in the virtual reality environments
for capturing human motions, which are quite difficult and time consuming to model
with mathematical methods. The tracking device consists of three main components
presented in figure 4.2.  On the right part of figure 4.2 there is the actual tracking
device which can be connected to the computer with the universal serial port (USB).
On the left the cube shaped object is a transmitter used to create a magnetic field. In
the middle of the figure there are four sensors which are able to measure their position
(x,y,z) and rotation ( , , ) about the respective axes in the created magnetic field. One
of the sensors is attached to a headband and the other can be attached to the wrists, for
instance.

Figure 4.2: Magnetic tracking device

The structure of a tilting force platform is similar to the basic version but, in addition,
it provides a possibility to rotate its surface about the anterior-posterior (x) and medio-
lateral (y) directions. We have to take account the inertial moment of the platform J
and its angular accelerations x and y about the x and y axes. This gives the moment
equations

Mx=Fal+Fbl+Fcc+Fy=J y (4.4)

My=Faa+Fbb+Fx=J x, (4.5)
which make it possible to get the subject’s mass m and the centre point of force (x,y)
beneath the feet. The primary benefit from the use of the tilting force platform is that
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it is possible to disturb the stance of a subject standing on it. This forces the subject to
actively support on his or her postural control system. A tilting force platform is
presented in figure 4.3.

Figure 4.3: A tilting force platform

Another way to disturb a subject’s balance is to provide him or her some visual
information which is in contradiction with the environment where the subject actually
resides [35, 77, 78, 79]. This is the case because humans support heavily on their
vision when maintaining balance [8, 72]. An easy way to create such environments is
the use of virtual reality. These environments are usually implemented with OpenGL
[33, 70] or Direct3D [36, 55] and they are provided to a user through a head mounted
display (HMD). An HMD has two displays, one for each eye. Virtual reality software
creates two images from the environment which are quite similar. The only difference
between these images is that there is about a 58mm gap [68] between their centre
points of projections. This creates an illusion of a three dimensional environment and
immerses a subject into it [17, 49, 62].  A V8 HMD applied from Virtual Research
Systems [42] is presented in figure 4.4.

Figure 4.4: A head mounted display

The software, which connects all the devices mentioned above, collects measured data
and makes it possible to show different virtual stimuli to a user, was planned and
implemented by Tossavainen [76]. It is implemented in C and it includes such
software libraries as Simple DirectMedia Layer (SDL) [40], OpenGL, driver library
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for the magnetic tracking device, driver library for the orientation sensor on HMD
[39] and driver library for DT 9800 analog digital (AD) converter [38].

4.2 Data
In the previous chapter the basic functions of two different force platforms were
presented when a static dot shaped force is acting on them. In the postural control
research the main goal for a computer scientist is to model the process when a subject
stands on the force platform. A researcher has to decide how long a single test takes
time. Usually the lengths of tests are between 15-60 seconds [16, 89]. The result of a
single  test  is  a  three-dimensional  time series  whose  length  depends  on  the  sampling
frequency of an AD converter used to sample the force sensors of the force platform.
The sampling frequency used was always 50Hz. A resulting time series is called a
stabilogram and its components [xt,yt,mt]T at every sampling instant t are the x and y
components  of   COP  and  the  mass m of  a  subject.  Actually,  the  mass  of  a  subject
remains the same during a measurement and m can be considered as a force reaction
caused by a subject’s mass. To clarify a stabilogram an example in xy plane is given
in figure 4.5. In figure 4.6 the same stabilogram is presented componentwise.

Figure 4.5: A raw stabilogram signal from a random subject
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Figure 4.6: A stabilogram divided into its components

The Nest of Birds tracking device can measure the positions and orientations of the
attachment points of its sensors. However, we used only the position information. We
selected this approach because rotations during quiet stance were small and rotations
also  affect  the  position  information.  For  instance,  if  a  unit  cube  is  rotated  about  its
centre, the new locations of its vertices can be calculated by the magnitude and
direction of the rotation angle. Data from the tracking device resembles that from the
force platform. However, instead of the mass there is an additional z coordinate.  In
addition to this, the sampling frequency of the tracker is 33.3Hz which means that
measured signals are shorter than force platform signals. An example signal from the
tracker in xy plane is presented in figure 4.7 and the individual component signals are
presented in figure 4.8. The example signal presents a subject’s head movements.

Figure 4.7: A centred raw Nest of Birds signal of a subject in xy plane
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Figure 4.8: The components of a raw Nest of Birds signal of a subject

5 Features
When a data set is collected, the interesting information that characterizes an
underlying problem is more or less buried in the data. It might be that the interesting
information cannot be measured directly or the measurement is distorted due to
environmental factors and inaccuracies in measurement devices. Depending on the
quality of data, different levels of preprocessing might have to be applied. The most
common preprocessing methods include the interference reduction with digital
filtering in the case of time series data, and possible dimension reduction methods if
the dimension of original data is large.
Despite the quality of the measured data, the set of procedures used to extract the
essential part of information is called feature extraction and it results in a set of
feature vectors. For instance, if we form a feature vector D which  presents  a  dog  it
could have such components as weight w and height h. In this case D=[w h]T. On the
other hand, there could be several other feature vectors that could also present a dog.
A selection of feature vectors depends on their intended use. The selection of the best
possible features can sometimes be very difficult and it might require computational
methods [28, 75, 85]. However, usually a researcher has an insight for what would be
useful features. In this case the useful features can be extracted from preprocessed
data, for instance, with system identification methods [41, 53].

5.1 System Identification and linear digital filtering
As mentioned above, signals measured from real world processes contain interesting
information and noise. Linear digital filtering [55, 61, 71] provides us a powerful tool
to suppress a possible noise component in our measured signal if the noise resides in a
different frequency band from the interesting part of a signal.  If they are in the same
frequency band, they cannot be separated by digital filtering. Figure 5.1 depicts a
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situation where an input signal x[t] goes through a digital system producing an output
signal y[t]. The error term e[t]  acting  on  the  system  is  usually  unknown  and  it  can
originate from measurement devices, environment or too naive a mathematical model.
As matter of fact, when we model a real system there is no such thing as a real model.
However, it is possible to have several different models which are good enough
approximations depending on a selected criterion.

Figure 5.1: An illustration of a linear digital filter

The realisations of real world systems are dynamic in their nature. A system’s output
y[t] is affected by its previous values y[t-1],…,y[t-m] and by the past input values
x[t],…,x[t-n]. We can give a difference equation which maps together these values as
follows
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Equation (5.1) describes an ARX-model [51]. This is only a possible model structure,
but it is used in the field of both digital filtering and system identification. Usually,
the error term e[t] is considered to be independent of time, in other words, a stationary
process. The assumption simplifies the process of system identification and. When the
goal is to identify a system, then the task is to estimate the coefficients [a1, …, am, b0,
…, bn]  given  the  signals x[n] and y[n], which is typically done by linear regression
[60] and using the least squares error criterion [60]. If an identified system is a noise
process to be removed, we can estimate an inverse system. This can be done by
inverting the roles of x[n] and y[n] in the (5.1) or to use the z transform [58] of (5.1)
and to switch the roles of the numerator and denominator polynomials. In both cases,
once a system is identified, its inverse system can be obtained from the coefficients
[a1, …, am, b0, …, bn]. When we invert the roles of x[n] and y[n] and leave out the
error term e[t], we get another difference equation which is
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When we take the z transform of (5.1) we get
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If we multiply both sides of (5.2) by b0 and take the z transforms from its both sides,
we get
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If we now look at H (z) and )(zH , we notice that they are inverses of each other. Once
a noise system is identified, its inverse system can be used to suppress noise. The
concepts of linear digital filtering and system identification are closely related. In
system identification we estimate the coefficients [a1, …, am, b0, …, bn] which can be
considered as a feature vector of an identified system. In linear digital filtering we
actually use the identified system to enhance our measured signals.

5.2 Dimension reduction
In  an  ideal  case  a  single  feature  vector  contains  only  such  components  that  are
necessary for an intended application. However, many times a feature vector contains
more components than is necessary from applications point of view. In this case we
have  to  remove  such  components  from  original  feature  vectors  which  contain
redundant information. Sometimes it is possible to remove individual components, but
usually we have to form new features which are different combinations of original
feature vector components. Regardless of an application all individual feature vectors
are usually collected together into an observation matrix. In an observation matrix the
number of rows is equal to the number of feature vectors and the number of columns
is equal to the dimension of feature vectors. If the dimension is high, it can cause
serious computational burden. Especially, when the computational complexity [2] of
an algorithm used is high. For instance, if the computational complexity of an
algorithm is of O(d2) where d is  the length of a feature vector,  it  would be useful to
find a presentation to the original feature vectors which contain almost all information
in a shorter form d´<<d.
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Probably the most common way to reduce the dimension of original feature vectors is
the principal component analysis (PCA) [43, 47]. The basic idea in PCA is to reduce
the dimension of feature vectors in a way that we lose as little of the variance of
original feature vectors as possible. The first step is to find such a linear combination
of feature vector x that has the greatest possible variance. The variance of such linear
combination is

Var(qTx)=qT q, (5.3)
where q is a vector of coefficients of a linear combination and is the covariance
matrix of all feature vectors. Now our task is to find out such q that maximizes

qT q, (5.4)

with the constraint that
qTq=1.  (5.5)

 Without the constraint the maximum would not exist.  This gives us an equation
f(q)=qT q qTq. (5.6)

 The maximum of (5.6) can be obtained by taking the derivative with respect to q and
equate the result to zero. This gives us

0qIIq
q

qqqq )()(( TT
TT

.  (5.7)

Identity matrix I and covariance matrix are  symmetric,  so  (5.7)  can  be  written  in
form

qq . (5.8)

This formula is well known from linear algebra and it says that the vector q which
maximizes (5.6) is the eigenvector of and  is its respective eigenvalue. According
to  [47]   is  the  greatest  eigenvalue  of and q is the normalized respective
eigenvector. The variance of original feature vectors is greatest in the direction of q. If
we search for the direction v which yields the direction of the next greatest variance
among feature vectors the procedure is the same as above, but we have to add a
constraint that qTx and vTx are uncorrelated. We obtain

Cov(qTx,vTx)=qTCov(x,x)vT=qT vT=0. (5.9)
When  we  continue  this  process,  we  finally  end  up  to  a  situation  where  all  possible
linear combinations are found which maximizes the variances of the original feature
vectors in their respective directions. According to [47] it turns out that these linear
combination vectors are the eigenvectors of in  such  an  order  that  the  direction  of
the  first  eigenvector  yields  the  greatest  variance  and  the  last  one  gives  the  smallest
variance.
Almost all  real  world measurements contain errors and disturbance which cannot be
accurately explained. From this viewpoint we can consider that the small variance that
is accounted in the directions of a few least variance eigenvectors can be left out of
further inspection as noise. Now we can present a vector x=[x1, x2,…,xd-1, xd]T in the
form of p=[p1,p2,…pd -́1,pd´]T where d´<d and the relation between x and p can be
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written in form p=Ax. The matrix A contains the eigenvectors of the original
covariance matrix from the first to the mth as its rows as follows

mn1m

n221

n111

..
....

..

..

qq

qq
qq

A . (5.10)

The selection of the number of principal components depends on an intended
application. A common practice is to select so many principal components as needed
to capture 80% of the original variance of a feature vector set.

6 Machine learning and methods applied
A healthy person is constantly making observations from the surrounding world. He
or  she  can  recognize  a  friend  on  the  basis  of  the  voice  or  the  way  this  is  walking.
Also, the recognition of different materials is easy on the basis of their texture, odor
or some other characteristics. The recognition is possible due to senses and learning.
For instance, a little child might not have an idea what berries are poisonous and what
berries are not. However, under the guidance of an adult a child gradually learns to
separate these situations.
A result from the recognition stage suggests us to take an action. For instance, if we
hear a friend’s voice from a crowd, we try to locate the friend. An unknown voice
does not necessary lead to any action. In other words, we perform classification on the
basis of recognized or unrecognized events.
The learning mechanism of computers tries to imitate the human learning mechanism.
The  main  difference  is  that  computers  can  only  deal  with  numbers.  A  user  of  a
computer should convert real world phenomena into a set of feature vectors discussed
in  Section  5.  For  instance,  a  human  voice  can  be  depicted  with  a  vector  which
contains the most dominating frequency components of a sample voice.

Machine learning can roughly be divided into two distinct phases, learning and
classification. Despite the actual structure of a machine learning method the first
phase is to teach the system. A teacher labels the test samples and presents these to
the  system.  At  the  same  time  the  teacher  tells  the  system  into  which  group  the
particular sample belongs to. This method is called supervised learning [19]. Another
learning scheme is so called unsupervised learning [19], where there is no teacher
intervention. In this case the learning process tries to cluster the data into separate
classes. This learning method is usually used in the preprocessing stage. If data forms
separate classes according to some feature vector component, this component is
important and should be included in the final feature vector.

Another phase in machine learning is to use a trained system for prediction purposes.
We input such a feature vector to the system that has not been “seen” before. On the
basis of its internal logic the system “scores” the sample feature and this “score”
determines the location in the feature vector space. In short, we try to predict the class
to which an unknown feature vector belongs. A very intuitive way to describe the
prediction is the use of classifier functions [19]. A trained system may contain a set of
classifier functions g1(x),…,gc(x), where c is  the  number  of  possible  classes.  In  the
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training phase the boundaries between the classes have been fixed and these are called
decision boundaries [19]. For the prediction we calculate the values of gi(x) for all i
and make a decision that x belongs to class i if gi(x)>gj(x) for all i j. In the next six
subsections the machine learning and filtering methods used in this thesis are
presented.

6.1 Hidden Markov models
The  conventional  time  series  analysis  proposes  that  the  signals  under  the  study  are
stationary in the weak sense. Then the mean and variance of a time series do not
depend on time. The dependence of successive time series values can be captured by
the autocorrelation structure of the process which generates the time series in
question. The family of hidden Markov models [11, 13, 63] adds more flexibility to
the structure of time series by adding a possibility to jump between signal sequences
with  different  means  and  variances.  In  addition,  the  “hidden”  structure  makes
successive time series values conditionally independent. This simplifies the modelling
of the dependence between time series values. In this thesis we consider only such
hidden Markov models that can have continuous observation values. Discrete models
are considered in [63].
A hidden Markov model (HMM) is a stochastic automaton which consists of a set of
hidden states Q={Q1,…,Qn}, probability vector  which contains the probabilities for
the starting state where the automaton begins, a transition matrix A which gives the
transition probabilities between hidden states, and a matrix B which contains the
probability density functions associated to hidden states. A common way to depict a
hidden  Markov  model  is  the  use  of  triplet  =( ,A,B). A three state hidden Markov
model is presented in figure 6.1. The components of matrix A are marked as aij  and
the components of matrix B are marked as fi(x).

Figure 6.1: An illustration of a hidden Markov model

Q1 Q2 Q3
a11 a22 a33

a12 a23

a32a21

a31

a13

f3(x)f2(x)f1(x)
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The use of hidden Markov models usually contains two stages which are the training
and classification. In the training stage we find the parameters , A and B which give
the highest logarithmic likelihood for the training data. A logarithmic likelihood
function is used because it is easier to evaluate than the original likelihood function.
The most common training algorithm is the Baum-Welch algorithm [63].
In the classification stage we have n trained hidden Markov models { 1,…, n} which
are trained with signals from n different signal sources. An unknown signal is
presented to all n models and it is classified into the class whose model gives it the
highest logarithmic likelihood. The likelihood of an unknown signal O={O1,..,OT}
along one possible path is calculated as follows:

1. Select the starting state i according to .
2. Calculate the probability density function value for observation O1 in state i

according to B.
3. Make a transition from state i to the state j according to A.

4. Continue from stage 2 until the observation OT is reached

The final likelihood is obtained by summing over all possible paths through the
model.  The  calculation  of  the  final  likelihood  of  an  observation  signal  with  a  brute
force method is prohibitive because the number of possible state permutations is
large. An efficient algorithm exists and it is depicted in [63].

6.2 Discrete Kalman filters
Kalman filters are a family of recursive filters which operate on a pair of stochastic
equations. This equation pair is usually called a state space model [53, 20] and it can
be given in a form

rt=Art-1+wt-1, (6.1)
zt=Hrt+vt.   (6.2)

The  first  equation  models  the  dynamics  of  a  system  under  study.  Vector rt is the
internal state of a system at time instant t (for instance the components of r could be
position, velocity and acceleration). This state is hidden from the user and the purpose
of a Kalman filter is to estimate this state. A transition matrix A relates the previous
state rt-1 and the current state rt together and wt-1 is  the  noise  component  in  the
dynamic model at time instant t-1. The successive w realizations are considered to be
uncorrelated and their distribution is considered to be an d dimensional normal
distribution N(0,Q), where Q is the covariance of a model noise process.

The second equation is a measurement equation and it relates the systems internal
state rt and measured or observed state zt through the observation matrix H. Vector vt
is a measurement error at time t. The measurement errors are considered uncorrelated
and their distribution is an d´ (<d) dimensional normal distribution N(0,R), where R is
the covariance of measurement errors. The model noise w and the measurement noise
v are also considered uncorrelated.

Because the correct system state rt is unknown, we have to predict it with equations
(6.1) and (6.2). This gives us an a priori estimate st=Ast-1. In this case the previous
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state is also an estimate. A common way to initialize a Kalman filter is to set the
initial state s0 to a null vector [53, 86]. After a prediction we can take an actual
measurement zt from the system. The measurement zt can be used to correct the
prediction st and we get the a posteriori estimate of st. This can be given in the form

pt=st+K(zt-Hst), (6.3)
which is a linear combination of the a priori estimate of rt  and the measured process
state zt. In formula (6.3) Hst is an estimate of zt and the K is a Kalman gain [53, 86]
which weights the measured values zt and its predicted version Hst. If the covariance
of measurement noise R approaches zero, the Kalman gain approaches H-1 [86] and
the a posteriori estimate st of rt is not reliable at all. Thus the model only “trusts” the
measured value zt. If the covariance of process noise Q approaches zero, the model
does not “trust” the measurement zt but only the a priori estimate Hst. Against to this
background,  the  Kalman  filter  weights  the  measured  and  predicted  values  in  the
proportions of their uncertainty.

6.3 Neural networks
The theory and applications of linear models are well understood and they are
applicable to many real world problems. However, in some cases the ability of models
to capture nonlinearities in the data under the study is required. Therefore, the use of
an artificial neural network (ANN) [7, 31, 54, 67] can be a good choice. A simple
neural network can also be used as a linear model as in this thesis. The motivation for
the use of a neural network was primarily the comparison of different simple methods
for the assessment of a feature vector describing the human swaying process. Like its
name suggests, the structure of an artificial neural network is based on the
simplification of human neural system. This system consists of neurons which are
connected with synapses. The neurons can be considered as data processing units
including some function f whose purpose is to process the input data in a predefined
manner. The role of synapses is to weight the input data with weights w and to work
as input data medium.
All the information a person can get from the environment is handled by one of the
five  senses,  i.e.  different  neurons  are  sensitive  to  different  impulses  from  the
surrounding  world.  For  instance,  the  use  of  vision  activates  the  visual  cortex  in  the
rear part of the brain. Similarly the taste, smell, hearing and sense of feeling activate
the different areas in the brain. This concept is used in artificial neural networks. In
practice, a certain type of input data (information from the environment) is mapped to
a certain area in an output vector space (brain). Depending on the area on which the
input data is mapped different actions can be made. A simple two-layer neural
network is presented in the left side of figure 6.2. The input for this network is a two
dimensional vector (x,y) and the output tells whether the given input vector belongs to
the shaded square in the right side of figure 6.2. In figure 6.2 dist(wi) is the distance of
an axis aligned straight line from origin which is perpendicular to direction wi.
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Figure 6.2: A two layer neural network and its intended decision boundary S

The internal working of the example neural network goes as follows:
1. A vector (x,y) is input to the network.

2. In all neurons 1,…,4 dot products added with the distance of limiting planes
from origin are calculated (x,y)•w1+dist(w1)+,…,+(x,y) •w4+dist(w4) and their
signs are recorded in functions f1,…,f4.

3. The output is the sum of the outputs from functions f1,…,f4.

4. If the sum is 4, the given vector is in the shaded region S. In any other case the
given vector (x,y) is outside the region S.

For instance, if w1=(1,0,1)T, w2=(0,1,1)T, w3=(0,-1,2)T and w4=(-1,0,2)T where the two
first components of wi gives the direction of the perpendicular half spaces which are
around the shaded area S and the third component of wi gives  the  distance  of  each
individual  axis  aligned  straight  line  from  origin.  If  we  now  test  whether  the  tip  of
vector (1.5,1.5)T is inside the S we get (1.5,1.5) •(1,0)+1+(1.5,1.5) •(0,1)+1+(1.5,1.5)
•(0,-1)+2+(1.5,1.5) •(-1,0)+2. Now for each (x,y)  •wi+dist(wi)>0 and this means that
all fi gets the value of 1 and f1+f2+f3+f4=4. As a result the tip of a vector (1.5, 1.5)T is
in the shaded region S.

In the previous example the weights w and functions f were given because the simple
problem was well defined. In real neural network applications the output regions are
usually not known and they have to be calculated from the data. One of the most
familiar ways to find the mapping between the input data and output regions is to use
the backpropagation algorithm [7, 31, 54, 67]. This algorithm efficiently calculates
the weights w when the forms of functions fi are given. In practise, this is the teaching
process of the network and it needs a “teacher” who tells the network which training
sample belongs to which class.

6.4 Fisher’s linear discriminant
In  most  classification  problems  the  sets  of  feature  vectors  from  different  classes
overlap  a  lot.  However,  if  we  can  find  a  direction w from the feature vector space
which separates cases between different classes, the classification becomes easy. In
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this case we can use a dot product which projects the feature vector x on the line of a
direction w. The location of the projection of x on w is a single scalar

y=wTx, (6.4)
 where T is the transpose operator.  A simplified example in the two-dimensional
feature vector space is given in figures 6.3 and 6.4. In figure 6.3 two feature vector
sets are presented, c1 with dots and c2 with plus marks. Their respective means m1 and
m2 are projected onto a line which goes in direction w.  From this figure we can see
that the selection of w is not successful. If we project the remaining points from both
classes onto line w, the projections will merge and we cannot make any classification.

Figure 6.3: A direction w cannot separate the projections of two feature classes with means m1
and m2

In figure 6.4 an improved situation is presented. Vector w is  calculated  with  the
formula

w=S-1(m2-m1)  (6.5)
where S is the covariance matrix of whole data set. The derivation of the formula is
given in [19]. From figure 6.4 we can see that all samples from both groups can be
classified correctly by projecting them onto the line w in the same manner as the
means m1 and m2 are projected. In this case the values of equation (6.4) are clearly
different for feature vectors from class c1 and c2.
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Figure 6.4: Vector w is the Fisher’s linear discriminant which efficiently separates the
projections of the two classes with means m1 and m2

6.5 k-nearest neighbour
The idea behind the classification with the k-nearest neighbour algorithm (kNN) [19]
is intuitive. In its simplest form we have only three feature vectors x1, x2 and z. The
classes of feature vectors x1 and x2 are  known  and  they  are c1 and c2.  The  class  of
feature vector z is  unknown and  our  task  is  to  classify  it  on  the  basis  of x1 and x2.
Now we have to decide which of the feature vectors x1 and x2 is more “similar” with
z. If z “resembles” more x1 than x2, it is classified into the class c1 and otherwise into
c2.
When working with real data sets the situation is usually more complex than above.
The  data  vectors  from different  classes  overlap  and  the  classification  based  on  only
one nearest neighbour is more uncertain. To reduce uncertainty we can increase the
number of nearest neighbour k. We seek for k nearest neighbours and we classify an
unknown feature vector z to the class c which contains the majority of “similar”
feature vectors. Figure 6.5 clarifies this aspect. In figure 6.5 an unknown feature
vector z is marked with asterisk, three feature vectors belonging to class c1 are marked
with x:s and three feature vectors belonging to class c2 are marked with circles. If we
seek only one nearest neighbor, an unknown feature vector z is classified into class c2
because the distance d1o between z and a feature vector from class c2 is the smallest.
However, if we let the number of nearest neighbors to be three, a feature vector z is
classified into class c1 because one of three nearest neighbors belongs to class c2 and
two of them belong to class c1.
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Figure 6.5: Idea of k-NN classification

The concept of similarity is usually given as a distance measure between feature
vectors x, y and z which is ultimately context dependent. Depending on the
application and the nature of feature vectors different metrics [73] can be used as a
measure of similarity. A metric d has the following properties.

d(x,y 0

d(x,y)=0 if and only if x=y
d(x,y)=d(y,x)

d(x,z d(x,y)+d(y,z)

The most common metric is the Euclidean distance between two vectors in a space.
The Euclidean metric is also used in one part of this thesis (publication 4).

6.6 Mahalanobis distance
Mahalanobis distance [19] is a metric which takes account the way in which different
components  of  feature  vectors  in  a  whole  data  set  vary  together.  In  figure  6.6  a
random sample from two-dimensional normal distribution x~N(m, ) is presented. In
this case

d1o

d1x

d2o

d2x
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Figure 6.6: An illustration of Mahalanobis distance

Also, the 95 % confidence ellipse is drawn around all sample vectors. Here 95% of all
sample vectors reside inside the confidence ellipse. In addition, the mean point m is
marked with tiny circle; vectors p1=[4 4]T and p2=[3.0 0.7]T are marked with x’s.
The Euclidean distances from m to p1 and p2 are 2.8 and 1.6. However, the respective
Mahalanobis distances are 2.1 and 2.2. For Mahalanobis distance point p1 is closer to
m than point p2.

As we can see from figure 6.6 the x and y components of sample points x have strong
linear dependence. As x grows y grows as well. This dependence is captured in the
covariance matrix . The covariance matrix basically  tells  us  the  rotation  and
scaling of the original x and y axes. If we now wanted to express a feature vector x in
the  frame of  the  axes  of  the  confidence  ellipse,  we  should  align  these  axes  with  the
axes of original xy-coordinate frame. This is an inverse operation for the rotation and
scaling of the confidence ellipse axes. Also, the origin of confidence ellipse should be
translated to the origin of the xy-coordinate frame. Vector x in  the  frame  of  the
confidence ellipse is

y= -1(x-m). (6.8)

Now the Mahalanobis distance from m to p can be considered as a projection of
scaled and rotated (p-m) on (p-m). Figure 6.7 presents a situation where points on the
circle with radius 2 are multiplied with inverse of the covariance matrix . The
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Mahalanobis distances are calculated for all transformed points. The unit of the x-axis
is given in degrees.

Figure 6.7: Mahalanobis distances of circle with radius 2 from origin

From figure 6.7 we can see that the points in the direction of longer main axis of the
frame of the confidence ellipse are closer to the origin than the others in Mahalanobis
sense. In figure 6.6 the direction of the longer main axis of the confidence ellipse is 45
degrees from the x axis.

7 Performance of a classifier
The assessment of the performance of a trained classifier must be done before using
it. In an ideal case the recognition accuracy of a classifier can be tested with a large
amount of data. Unfortunately, this is seldom possible. The collection of the real
world data sets can be expensive, laborious or even dangerous leading to a situation
where researchers have to deal with a limited amount of data.
The most desired characteristic of a trained classifier is its ability to accurately predict
the class of an unknown feature vector. In order to achieve this ability two different
validation  schemes  are  required.  First,  the  structure  of  a  classifier  should  be  studied
and second, the performance of a classifier should be assessed. Depending on the
application the structure of a classifier could be for instance, the value of k in k
nearest neighbor classifier or the number of hidden nodes in a neural network.
Usually we want to fit a model such that its prediction error is as small as possible.
For instance in linear regression we seek such parameters for the model which yields
the minimum of the summed squared residuals. In general, this approach can cause a
serious overfitting. The samples from data used in fitting procedure are predicted
correctly but the prediction of an unknown data is uncertain. This phenomenon
originates from the fact that the model has learned some degrees of noise which is
present in the training of fitting data.
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To avoid overfitting the original dataset is divided into two or three disjoint sets
depending on the application. The use of these disjoint sets is called crossvalidation
[7, 31, 54, 67]. The easiest dataset division is called a hold-out method. In this scheme
the data is divided into two disjoint sets. One set is used in the training of a classifier
and the other is used for evaluation of the classification error. The determination of a
model structure can be done on the basis of the classification error. For instance the
value of k in k nearest neighbor classification can be selected such that is yields the
minimum classification error among all k values used as testing. After the decision of
the model structure the hold-out method can be used in determining the performance
of a trained classifier.

The hold-out method has certain drawback. It uses only one test and training set. If
the split into training and test sets is unfortunate the estimate of the performance of a
classifier is wrong. An approach for reducing uncertainty in the performance of a
classifier is to use more separate training and testing sets. This is called cross
validation. In this approach the whole dataset can be divided into k disjoint sets by
using  either  predefined  division  or  random  permutation.  Both  of  these  methods  are
similar but the predefined division ensures that all data samples are used for training
and testing. In random permutation this is not certain.

Despite the division method used the training and testing phase is repeated such that
the classifier is trained by using k-1 sets and tested with one set.  In every repetition
the error rate of the classifier is recorded. The repetition of training and testing is
terminated when all k sets  are  used  as  a  test  set.  The  error  rate  of  a  classifier  is  the
arithmetic mean of error rates of all individual test sets.
 The selection of k depends highly on the available dataset. If there are plenty of data,
the choice of the value of k is flexible, but in the case of a small dataset we may be
forced to let the k to be equal to the size of the dataset.  This method is called leave
one  out  cross  validation  and  as  the  name  suggests,  it  leaves  only  one  test  case  and
uses all other in the training process.

Three-way split of a dataset is primarily used in training of a multilayer neural-
network.  In  the  three-way  split  one  portion  of  the  data  is  used  for  training,  another
part  is  used  for  testing  the  performance  of  a  classifier  and  the  third  set,  called  the
validation set, is used for terminating the training process. In this case the role of the
validation set is to prevent the overfitting to occur. The training of a multilayer neural
network is terminated when its generalization ability is about to reduce. In this point
the classification error of the training set is diminishing but the classification error of
the validation set starts to increase.

8 Results
The main research problem in this thesis was to explore whether it is possible to
predict the state of a subject on the basis of the measured stabilogram and magnetic
tracking device signals. The signals are measured using the force platform
(publications 1, 2, 4 and 5) and the magnetic tracking device (publication 3). The state
of a subject depends on the applied test setup.
In the first publication there were four different states. (1) A young healthy subject
was standing on the force platform with the eyes open. (2) A young healthy subject
was standing on the force platform with the eyes closed. (3) A person standing on the
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force platform was young and healthy. (4) A person standing on the force platform
suffered from Menière’s disease.

The second publication added state (5) where a patient standing on the force platform
had some diagnosed inner ear disease. The actual diagnosis was considered irrelevant.

In the third publication the states (1) and (2) were used, but this time the
measurements were done using a magnetic tracking device.

The fourth publication added a state (6) where a person standing on a force platform
was a voluntary elderly person (70.8±4.0) years old.

The  fifth  publication  dealt  with  the  states  (3)  and  (6).  The  states  are  understood  as
equivalent to classes mentioned above.

8.1 Publication 1
In the first publication the purpose was to implement a set of hidden Markov models
and explore how they apply to the human swaying data. Usually these models are
applied to the data that have a certain internal form. For instance, in the case of an
optical character recognition [57] all characters have their individual shapes which
vary a bit depending on a writer.

No clear, visually verifiable underlying shape is present in the stabilogam signals.
However, if we consider the human swaying process as a black box [41, 53] which
produces different outputs from different situations, we can fit a set of models to these
outputs. If these models “learn” to classify different outputs correctly, we can use
these  models  as  a  set  of  tools  which  can  predict  the  correct  class  of  an  unknown
output signal.
In order to teach the models and to classify different signals, the original stabilogram
signals were simplified. Successive correction movements and differences in force
reactions were used as features of a single swaying process.

The simplified stabilogram signals were used to teach the models and to classify three
different swaying situations.

The first test situation concerned the classification of stabilogram signals of healthy
young persons. The stabilogram signals were recorded from two different situations,
the  eyes  open  and  the  eyes  closed.   The  research  problem  in  this  case  was:  Is  it
possible to recognize whether a person standing on a force platform is keeping the
eyes open or closed? To answer this question we tested the recognition power of
hidden Markov models with two to ten hidden states. To verify that the recognition
was  no  coincidence  we  applied  three  different  crossvalidation  schemes  which  were
leave-one-out, 3-fold and 11-fold crossvalidation. This test yielded the correct mean
recognition rate of 85 percent when the eyes were open and 75 percent when the eyes
were closed.

The second and third test situations were quite similar to the first one. Only the state
of  a  person  standing  on  the  force  platform was  different.  In  these  tests  we  recorded
stabilogram signals of healthy young persons and patients suffering from Menière’s
disease. In the second test the subjects were standing on the force platform with the
eyes closed and in the third test they were exposed to a virtual stimulus which was
presented through the head mounted display. The research question was: Is it possible
to tell whether the person standing on the force platform is a young healthy person or
a patient suffering from Menière’s disease. The second test yielded the mean
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recognition accuracy of 77 percent in the case of young persons and 70 percent in the
case of patients. The numbers in the third test were 85 percent and 75 percent
respectively. The number of subjects in this work was 66, i.e. 33 patients and 33
students.

8.2 Publication 2
The results from a quantitative research can be misleading due to the properties of a
sample. To reinforce our opinion that the hidden Markov models are applicable to the
human swaying data we used them on the data measured from two new subject
groups. In this case we had a new group of healthy young persons and a new group of
patients who were suffering from some disease causing balance disorders.

The  first  part  of  this  work  was  quite  similar  to  the  first  publication.  The  difference
was that we used a tilting force platform instead of a stationary one. Likewise we tried
to predict whether a subject on the force platform was a healthy or a patient. The
recognition accuracy of the healthy was approximately 80 percent depending on the
number of hidden states and the respective number for the patients was also 80
percent.

The other objective of this work was to test if a simplified feature vector sequence can
yield acceptable results. To accomplish this we designed a new testing procedure. In
this procedure the subjects were sitting on a chair such that their feet were resting on a
force platform. In front of a subject there was a computer monitor which was used to
signal the subjects to stand up when a yellow rectangle appeared on the screen.

In this test we recorded the increasing force reaction during the rising. The result from
this test was a one-dimensional force signal which was normalized and shortened for
training and recognition purposes. The shortening means that we searched for a
maximum value of each signal and took account 20 samples before the maximum and
10 samples after the maximum. Depending on the number of hidden states the mean
recognition  accuracy  of  patients  was  80  percent  and  that  of  the  healthy  was  70
percent. This work consisted of data from 32 students and 32 otoneurological patients.

8.3 Publication 3
In the investigation of the human postural control system the force platform is the
most common measuring device. It records the COP movements accurately, but it
cannot capture the movements of the head and the individual limbs. In order to
explore if the movements of the head, the hip and the arms are different with the eyes
open and with the eyes closed, we used a magnetic tracking device instead of a force
platform. The motivation of this work was based on the assumption that a subject is
moving the arms in order to get a more stable position. Therefore, we can expect that
we can use the movement signals of the aforementioned body parts in the recognition
of different swaying cases.
In this test we collected two measurements from each subject, one with the eyes open
and another with the eyes closed. In both tests the sensors of a magnetic tracking
device were attached to the wrists of the both arms, to the hip on the tail bone and to
the head band which was attached on the subjects head. Due to the easy test setting
(quiet undisturbed stance) the signals from all sensors were almost identical. Because
of this we omitted the use of hip and hand signals. The high correlation between
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signals from different sensors can be verified from publication 3. We selected the
head signal because it had greatest variation among all measured signals and it was
measured close to a vestibular organ.
The head signal contained x, (left-righ) y (forward-backward) and z (up-down)
components. We decided to use the acceleration of the head as a three-dimensional
feature vector signal. To remove the correlation between the x and y components we
rotated the signals such that the greatest variance of the signals were aligned
according to the y axis. This was done because the subjects were not mostly
positioned exactly in the same way in the magnetic field and the largest swaying is
possible in the y (forward-backward) direction because of the structure of the ankles.

In order to reduce the number of feature vectors we used Kalman smoothing because
we wanted to find such locations from a signal where the head movement changes
direction (turning points). The final feature vectors were the average head acceleration
between the turning points in x, y and z directions.

A part of all sequences of the successive head accelerations were used in the training
of the hidden Markov models. Another part was used to test the recognition ability of
the  models.  In  this  work  the  mean recognition  accuracy  of  the  cases  when the  eyes
were open was 65 percent and the number for the case when the eyes were closed was
65 percent. In this work we measured 65 students.

8.4 Publication 4
In the previous papers the data had been low pass filtered or Kalman smoothed in
order to find smooth turning points for the feature extraction. In this paper the
approach was different because we found out that the stabilogram signals of elderly
people contain more power in high frequencies than the stabilogram signals from
younger people. This can be seen from figures 1 and 2 in publication 4. In order to
preserve the high frequency information we decided to omit the filtering entirely.
In this work we combined the x- and y-directional signals into two one-dimensional
signals which presented the lengths and angles of successive movements. In addition,
we calculated these two time series for three different stabilograms from each subject.
This resulted in six time series for each subject.
To reduce the amount of data per subject we created AR-models [53, 41] for each six
signals and created a feature vector which contained the coefficients of these models.
After this we created an observation matrix which contained all feature vectors from
elderly and young subjects. From this matrix we deleted such coefficients which had
the same expected values among the groups, the young and the elderly. The deletion
was  done  on  the  basis  of  t  test.  To  further  reduce  the  number  of  coefficients  in  the
observation matrix we made the principal component analysis, which yielded a result
where six first principal components explained 91 percent of the variance in the
original coefficient set. These principal components were selected to be the feature
vectors for this work.
To test the classification power of feature vectors we applied four machine learning
methods to our data. These methods were a neural network, 3-nearest neighbor,
Fisher’s linear discriminant and Mahalanobis distance. Because the components of
feature vectors were uncorrelated due to principal component analysis, the
Mahalanobis distance primarily told the Euclidean distance of a vector x from means
of the two classes m1 and m2.
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 Because the number of the subjects was quite small, we decided to augment the data
set  artificially.  We  added  20  additional  cases  to  both  classes.  These  cases  were
generated according to the underlying normal distributions which were approximated
on the basis of the data of the young and elderly.

The classification of the young and elderly was done in two different ways. First we
generated only one artificially augmented data set and run 10 000
teaching/recognition stages. Second we generated 100 artificially augmented data sets
and run 100 teaching/recognition stages on each augmented data sets.

The way we created the data sets and the machine learning method used did not affect
the correct classification rate considerably. However, the correct classification rate
was high in almost all cases. The correct mean classification rate of the elderly was 80
percent and the recognition accuracy of the students was slightly better. The data for
this publication was measured from 33 students and 33 elderly persons.

8.5 Publication 5
The method presented in publication 4 works well from the machine learning point of
view. However, the feature vectors used are not easy for human interpretation. In this
work we continued the recognition of young students and voluntary elderly subjects.
The purpose of this publication was to seek such features from the stabilogram signals
that have a physical meaning and can be used for classification purposes. The basic
idea of this work was based on the differences in the power spectral densities between
the young and the elderly. This observation was also made in publication 4.
We made an assumption that long movements in the stabilogram signals originate
from heart beats, breathing and aptitude to get more comfortable standing position.
These long movements raise the need for corrective movements which are small and
reside in high frequencies.
To remove the long movements and to suppress the effect of high frequency noise we
bandpass filtered the x and y components  of  the  stabilogram  signals.  This
preprocessing resulted in the signals which can be considered as corrective
movements required in maintaining the upright stance. The final feature in this work
was a single scalar, which is the summed length of all corrective movements during a
measurement. To justify the use of the scalar feature mentioned above we built a
linear model which tried to predict our feature by a subject’s mass m, height h and
product mh.  This model,  however,  was not able to explain our feature and we could
leave the mass and height variables out of our feature vector because they did not
bring us additional information.
We tested our new feature with two different test setups using the k-nearest neighbor
algorithm  with  different  values  of k. In the first test we tried to predict whether a
young student standing on the tilting force platform was keeping the eyes open or
closed. The correct recognition of eyes open situations was over 90 percent. The
recognition accuracy of eyes closed situation was approximately 85 percent.

In another classification task we tried to predict whether a person standing on the
force platform was a young student or an elderly person. In both cases the achieved
mean recognition accuracy was 70 percent. In this test we had two different sets of
data. In the first test where we predicted the state of students we had 41 subjects,
which were not used in the previous publications. In the second test where we
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predicted whether a person standing on the force platform is a student or an elderly
person, we had 33 students and 33 elderly subjects. These subjects were the same as
in publication 4.

9 Discussion
The investigation of the human postural control system is difficult. Difficulties arise
from the complex connections of the system, vestibular organ, vision, proprioception
and learned balance control schemes, differences between individuals, temporal
differences within a subject and the measurement of a phenomenon. Also, the
collection of a representative data set can be problematic. Usually the healthy
voluntary subjects are easy to find, but patients and persons who have balance
problems may sometimes be unwilling to attend the balance tests. In addition, the
measurement of patients requires an approval from an ethical committee.
The complex connections in the postural control system and the measurement of the
phenomenon are closely connected. We can measure the motor control output of the
balance system, but we have no access to the interaction of the vestibular organ and
brain stem. This efficiently prohibits our attempt to build a model which would be
able to model the function of the whole balance system. Because of this restriction we
have to approach the problem by studying only the motor output.
The  measurement  of  the  motor  output  raises  its  own  problems.  The  use  of  a  static
force platform does not allow an exhaustive balance testing. Usually the tests which
can be performed with this device are too easy and they do not give us information
about  the  situations  where  a  subject  is  about  to  lose  the  balance.  A  tilting  platform
allows us to design a bit more demanding testing procedures. However, it lacks the
possibility to study the balance during walking and running. According to our
knowledge, the development of such a dynamic measurement system is in a quite
early stage.
The different strategies between individuals to maintain balance set difficulties in the
selection of useful features which could be used to characterize the swaying
processes. For instance, one might say that the swaying velocity could be a good
feature. In reality one person can sway a lot, but he or she does not lose balance easily
whereas another person sways only a bit but loses his or her balance under a very
slight external disturbance.
The ability to maintain balance can also vary within an individual. The difference is
quite clear when a subject is rested or tired [22]. Also, aging affects the balance of an
individual. The effect of aging to the postural system should also be studied
thoroughly. The research question might be “Is a change in a stabilogram signal due
to aging or due to decreased physical excercise?”
Because we have no access to the internal function of the human postural control
system, we must resort to the motor control outputs which are measured with two
different force platforms and a magnetic tracking device. If we look at the stabilogram
in figure. 4.5, we notice that the successive points are close to each other. Without the
knowledge of the input to the system, motor command from the brain, we only have
the output from the system (COP). This type of dependence is possible to model with
AR-models, [41, 53] especially when the individual components x and y of  a
stabilogram are differentiated. This makes the differentiated components stationary
and we can build AR-models which efficiently characterize the dynamics of
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stabilogram signals. The drawback from the classification point of view is that the
parameters of AR-models are not intuitive to physicians. The parameters are also
sensitive to preprocessing. Signals which are preprocessed similarly start to resemble
each other and their classification power can become useless. In addition, a special
care should be taken in order to prevent the overfitting to occur.
Another model which does not require any input and operates only such that it
generates observable outputs is a hidden Markov model. A set of different hidden
Markov models were used in the recognition of stabilogram signals and they seemed
to have a good recognition power. However, it is not possible to give a certain
interpretation to the hidden states of Markov models. Another problem in the use of
hidden Markov models is the preprocessing of stabilogram signals. If the stabilogram
signals are not filtered, the lengths of the feature vector sequences increase because of
the noise from measurement devices and environment will be present. This applies to
the features used in publications 1-3. On the other hand, if the stabilogram signals are
“polished” too much, some of their information content is lost. Against this
background it could be useful to test and compare different preprocessing methods
and their impact on recognition accuracy.
For the future work we plan to augment our measurement protocol with computer
vision and ENG. These techniques would better capture body movements, give
additional information of the state of vestibular system and their combination features
could predict the state of a subject more accurately than before. This approach also
enables us the possibility to study walking subjects and maybe abandon static and
tilting  force  platforms.  This  could  also  give  us  a  freedom  to  further  investigate  the
effect of proprioception [65] and the simulation of motor output signals [64].

 One of the future challenges will also be the data collection from patients who have
serious balance problems. With more data and more information we hope to get even
better results than presented in the thesis. The ultimate goal is to test whether the
swaying processes are different among patients suffering from different diseases.  In
other  words,  our  final  aim  will  be  to  predict  the  class  of  a  disease  on  the  basis  of
signals measured from patients.

The test in publication 3 did not use the full potential of the magnetic tracking device,
because the movements of the subjects were small. One of the future tasks could be to
plan a more demanding test where a subject is forced to use the arms in postural
controlling tasks. Also, larger movements of the hip and the head could reveal more
about the strategy of maintaining the balance.
An interesting future research would also be the comparison of different features
obtained from stabilogram signals. The comparison could take into account the
recognition power and interpretability of the features for human beings.

10 Conclusion
Diagnosing of diseases which cause vertigo and balance problems is really
challenging. One reason for this is that vertigo is relatively infrequent and the
physicians cannot build a routine for diagnosing it. Because of this an expert system
ONE [3] was built to work as a support of a physician in diagnosing procedure. Such
a  system  can  also  be  used  as  a  simulator  when  a  student  starts  to  train  his  or  her
clinical skills. However, ONE does not include the balance measurements in its
current version.
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Because the patients, who suffer from vertigo, have usually balance disorders a
method to verify them is needed. According to the knowledge of the author, research
concerning the prediction of the class of unknown stabilogram signals in not done
before in large extent. In this thesis five papers address this problem. The result is that
we have a set  of tools which can predict  the state of a subject standing on the force
platform. Depending on the case the prediction accuracy is approximately 70 to 85
percent, which is good because all the subjects tested were able to walk without any
problems, i.e. no one had a serious balance deficiency to distinguish those cases from
the healthy during normal standing and walking. Thus, the methods and features
presented in this thesis can give valuable additional information for an existing expert
system.
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11 Personal contributions
Publication 1
The  idea  came  from  the  author  of  this  thesis.  Also,  the  implementation  of  Hidden
Markov  Matlab  scripts  as  well  as  conducting  the  tests  belongs  to  the  work  of  the
author. This publication was mainly written by Professor Martti Juhola.

Publication 2
The idea, implementation and test results were the work of the author. This paper was
coauthored by Professor Martti Juhola.

Publication 3
The idea, measurements, implementation of Kalman filters and test results belong to
the work of the author. Programming of the Nest of Birds interface was done by Timo
Tossavainen.  This  paper  was  primarily  written  by  Professor  Martti  Juhola  and
partially by the author.

Publication 4
Publication 4 was prepared by the author. The measurements of the elderly were done
by Eeva Tuunainen.

Publication 5
Publication 5 was implemented and written by the author. The measurements of the
elderly were done by Eeva Tuunainen.
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