-

View metadata, citation and similar papers at core.ac.uk brought to you byt CORE

provided by Trepo - Institutional Repository of Tampere University

il UNIVERSITY
i@ OF TAMPERE

This document has been downloaded from
Tampub — The Institutional Repository of University of Tampere

Authors: Néppild Turkka, Jarvelin Kalervo, Niemi Timo

A Tool for Data Cube Construction from Structurally
Heterogeneous XML Documents

2008

Name of article:

Year of
publication:

. . Journal of the American Society for Information Science and
Name of journal:

Technology
Volume: 59
Number of issue: 3
Pages: 435 - 449
ISSN: 1532-2882
Discipline: Natural sciences / Computer and information sciences
Language: en
lSJ(;]r;;):oI/Other School of Information Sciences

URN: http://urn.fi/urn:nbn:uta-3-755
DOI: http://dx.doi.org/10.1002/asi.20756

All material supplied via TamPub is protected by copyright and other intellectual property rights, and
duplication or sale of all part of any of the repository collections is not permitted, except that material
may be duplicated by you for your research use or educational purposes in electronic or print form.
You must obtain permission for any other use. Electronic or print copies may not be offered, whether
for sale or otherwise to anyone who is not an authorized user.

https://core.ac.uk/display/250106363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://urn.fi/urn:nbn:uta-3-755�
http://dx.doi.org/10.1002/asi.20756�

Thisisa preprint of an article accepted for publication in JAS ST © 2007 Wiley Periodi-

cals, Inc.

A Tool for Data Cube Construction from

Structurally Heterogeneous XML Documents

Turkka Nappila, Kalervo Jirvelin,” and Timo Niemi®
Department of Computer Sciences™®; Department of | nformation Studies”
University of Tampere, Finland

E-mail: { Turkka.Nappila; Kalervo.Jarvelin; Timo.Niemi} @uta.fi

Abstract

Data cubes for OLAP (Online Analytical Processing) often need to be constructed from
data located in several distributed and autonomous information sources. Such a data inte-
gration process is challenging due to semantic, syntactic, and structura heterogeneity
among the data. While XML (Extensible Markup Language) is the de facto standard for
data exchange, the three types of heterogeneity remain. Moreover, popular path-oriented
XML query languages, such as XQuery, require the user to know in much detail the
structure of the documents to be processed and are, thus, effectively impractical in many
real-world data integration tasks.

Several Lowest Common Ancestor (LCA) -based XML query evaluation strategies have

recently been introduced to provide a more structure-independent way to access XML

documents. We shall, however, show that this approach leads in context of certain—not
uncommon—types of XML documents to undesirable results. This paper introduces a
novel high-level data extraction primitive that utilizes the purpose-built Smallest Possible
Context (SPC) query evaluation strategy. We demonstrate, through a system prototype
for OLAP data cube construction and a sample application in informetrics, that our ap-

proach has real advantages in data integration.

INTRODUCTION
Background

For proper operations, advanced organizations need to analyze both their internal data
and data produced by external organizations, such as competitors. This requires data ex-
traction from several autonomous information sources. OLAP (Online Analytical Proc-
essing; Codd, Codd & Salley, 1993) is a popular means for analyzing multidimensionally
organized summary data for ad hoc information needs. In multidimensional analysis, the
underlying summary data are viewed simultaneously along multiple dimensions. Data
from operational information systems are aggregated in OLAP into data cubes which
consist of dimension and measure attributes. The former provide the factors (e.g., time)
along which the values of the latter (e.g., performance, productivity) are analyzed. Indi-
vidual dimensions may be organized by hierarchica levels of granularity like day—
month—year. OLAP operations, such asroll-up and drill-down, in association with aggre-
gation functions (e.g., sum, average) afford the opportunity to analyze measure attributes
at different levels of granularity to identify interesting changes, prevailing trends, or to

compare objects of analysis in the data with each other.

XML (Extensible Mark-up Language; Bray et al., 2004) has become the de facto
standard for data representation by removing one of the traditional obstacles of large-
scale data exchange —syntactic data incompatibility. Thus, XML offers a natural starting
point for data extraction from autonomous and heterogeneous data sources, especialy in
the Web environment. In XML documents, the logical structures are represented as ele-
ments. An element is an entity delimited by its start and end tags, which carry its name.
A start tag may also contain attributes describing properties or characteristics of an ele-
ment or carrying an independent data value. An element can consist of nested elements or
contain only data values. The user is able to freely name the elements and attributes in
his’Ther XML documents. Their names should be selected carefully, since the semantic
interpretation of them is based only on these hames. Due to the semistructured nature of
the XML data, description (schema) and content components are mixed in a document.

Because of the element nesting, XML data are modeled as ordered, labeled trees.
This is also the starting point in path-oriented XML query languages developed by the
World Wide Web Consortium, the XML standardization organization. These query lan-
guages, most notably XQuery, are based on the path expressions of the XPath standard
(Clark & DeRose, 1999). XPath offers mechanisms both for navigating XML structures
and extracting content. An XPath expression specifies the path from the root node of a
document to the node of interest. In XPath, elements and attributes are treated differently.
XQuery (Boag et al., 2007) has become the most popular XML query language. Besides
being a query language, XQuery is also a full-scale, Turing-complete programming lan-
guage. XQuery has inherited several features from the XPath and XML Schema (Fallside

& Walmsley, 2004; Thompson et al., 2004; Biron & Malhotra, 2004) standards. Informa-

tion extraction is done in XQuery by specifying iterative structures and functions. Fur-
thermore, XQuery follows its own, non-XML syntax.

In XML, it is possible to represent semantically similar information in multiple dif-
ferent ways within one document and between documents. This leads to data heterogene-
ity. XML documents suffer from three types of heterogeneity. In semantic heterogeneity,
semantically similar information is represented by different names or dissimilar informa-
tion by the same names. In syntactic content heterogeneity, semantically the same content
is expressed in different languages (French, English) or units of measurement ($, €, ¥; °F,
°C). Finally, in structural heterogeneity the same or similar data is organized in structur-
aly different ways, e.g., in different levels of hierarchy. In addition to those, a specific
piece of information can be represented in XML documents as a name of an element, asa
name of an attribute, or as their values. These types of heterogeneity are independent of
each other and all combinations among them may appear simultaneously. The heteroge-
neity between information sources must be harmonized before meaningful data cubes can
be constructed based on XML documents. In this paper, we focus on construction of data
cubes in structurally heterogeneous XML environments. Thus, we do not consider multi-

dimensional analysis or OLAP per se.
Contribution and Outline

Before the actual OLAP data cube construction, it is necessary to carry out laborious in-
tegration among heterogeneous XML data. Popular XML query languages, such as
XQuery, are path-oriented and require the user to know the structure of the documents to
be processed in much detail. We demonstrate in the present paper that such XML query

languages are indeed laborious and troublesome in data integration because the data inte-

grator must explicitly account for structura variety in the documents while (s)he may not
be aware of its scope. To relieve the data integrator from this burden, we propose a high-
level XML data extraction primitive, which avoids explicit path specification when ex-
tracting structurally heterogeneous data from XML-based information sources. We also
provide a novel data cube construction operation, which allows high-level declarative ex-
pressions for specifying the dimension and measure attributes with their extraction condi-
tions.

In XML data extraction for data cubes, it is necessary to identify which XML com-
ponents in heterogeneous structures are meaningfully related to each other. The Lowest
Common Ancestor (LCA) semantics has been proposed to solve the problem in XML
guery languages (Liu, Yu & Jagadish, 2004; Xu & Papakonstantinou, 2005; Hrigtidis et
al., 2006). We will point out potential shortcomings of the Smallest Lowest Common An-
cestor (SLCA) semantics (Xu & Papakonstantinou, 2005)—as well as of the similar
Meaningful Lowest Common Ancestor (Liu, Yu & Jagadish, 2004) and Minimum Con-
nected Tree (Hristidis et al., 2006) approaches—which introduce a useful restriction to
the LCA semantics and contribute our Smallest Possible Context (SPC) evaluation strat-
egy to extract meaningfully related data.

By using informetrics (see, e.g., Egghe, 2006) as a sample application, the paper
aims to demonstrate that the proposed novel operations and the SPC query evaluation
strategy provide areal improvement over path-oriented and LCA-based XML query lan-
guages for data integration from structurally heterogeneous XML documents. We assume

here that the XML element and attribute names have unambiguous semantics which the

data integrator knows while the data may be organized in heterogeneous structures often
largely unknown to him/her.

The rest of the paper is organized as follows. The next section reviews related work
on XML-based data cube construction. In the third section, we discuss the requirements
for data integration from heterogeneous XML documents and give the goals of our con-
tribution and our heterogeneous XML document collection for the example in infor-
metrics. Thereafter, we shall analyze the integration of XML data and present our data
extraction primitive is_component_of and discuss the SPC query evaluation strategy. The
following section presents query processing and demonstrates, through sample queries,
the benefits of the proposed approach. The paper ends in a discussion section and conclu-

sions.

RELATED WORK

Jensen et al. (2001) present an architecture for integrating XML and relational resources.
The architecture contains a component that transforms XML queriesinto SQL. The map-
ping between XML and SQL is based on a specific UML diagram, called ‘UML snow-
flake diagram’. Unlike in our approach, the construction of a UML snowflake diagram
presupposes that the designer has detail knowledge about the domain. In addition, they
focus on finding the multidimensional structures directly in the XML data that are dis-
tributed based on, e.g., legal issues or the nature of the data.

Niemi et al. (2002), by contrast, assume that the XML data at hand are intended to be
used in multidimensional analysis and are distributed mainly for technical reasons. They
present a system where XML is used for data collection to resolve the possible syntactic

heterogeneity in data sources. Contrary to our goals, Niemi et al. concentrate on the tech-

nical side of the distribution architecture and they offer no explicit mechanisms for ma-
nipulating XM L-based information.

Beyer et a. (2005) recognize the limited capabilities for data grouping in XQuery.
However, queries requiring grouping of the data are essential in business analytics.
Therefore, they propose a new construct that simplifies the query result grouping and
provide OLAP-style functionality (aggregation and roll-ups) in XQuery. Further, Wi-
watwattana et al. (2007) extend XQuery with an X ~3 operation that allows the manipula-
tion of such XML structures which differ slightly from each other. In our approach,
which is not based on XQuery, the SPC query evaluation strategy is utilized to resolve
complex heterogeneity among XML structures without the need for user control.

Park et al. (2005) propose a framework for constructing XML data cubes from well-
organized XML documents, whereas in our approach the XML documents are assumed
to be very heterogeneous. In their approach, an XML data cube is constructed and que-

ried using the XML-MDX language developed for this purpose.

GOALS AND SAMPLE ENVIRONMENT
Requirements for Data Integration with XML

In spite of the data self-description, XML does not specify, (a) should a specific piece of
information be represented as an element, attribute or a value; (b) how to label elements
and/or attributes; (c) how to structurally arrange the relationships between elements
and/or attributes, and (d) how to syntactically represent data values. Feature (b) is an ex-
ample on semantic heterogeneity and feature (d) on syntactic one. Features (@) and (c) are

related to structural heterogeneity, which is our focus.

Due to the above types of heterogeneity, data integration for data cubes is a very de-
manding task. Therefore, a full-scale system for data cube construction from heterogene-
ous XML documents should meet the following requirements:
1. Semantic heterogeneity: the system should support the identification of semantically
equivalent elements and attributes even if their names are inconsistent. Analogously,
it should support the automatic integration of such semantically equivalent but incon-
sistent XML structures.
2. Yyntactic heterogeneity: the system should support the identification of syntactically
equivalent element and attribute values even if their representations (value domains)
differ. It should also support automatic harmonization of XML structures.
3. Structural heterogeneity: the system should
3.1 not require its user to master the structural diversity in XML structures in detail or
to know which kinds of components (elements or attributes) are used to represent
the information;

3.2 not require its user to specify explicitly the navigation in XML structures,

3.3 relieve its user from writing complex structural data integration specifications;
and

3.4 therefore, execute automatically structural data integration on the basis of com-
pact, declarative and high-level specifications.

In this paper we shall focus on requirements 3.1 to 3.4.
Study Goals

The goal of our study is to support complex data integration tasks for construction of data

cubes under the requirements given above. The specific goals are to:

1. demonstrate that popular XPath-based XML query languages, being path-oriented,
require the dataintegrator to know the structure of the documents in too much detail;

2. demonstrate that such XML query languages are too laborious to use in data integra-
tion due to the possibility of great structural variation among data of interest;

3. demonstrate that the Lowest Common Ancestor (LCA) semantics, relieving the re-
quirements on structural knowledge in XML query languages, is insufficient;

4. propose a high-level data extraction primitive is_component_of for structural data inte-
gration, which avoids explicit path specification and incorporates the novel Smallest
Possible Context (SPC) evaluation strategy to extract meaningfully related data from
XML documents;

5. introduce a high-level CREATE CUBE operation for data cube construction based on
theis_component_of primitive and the SPC query evaluation strategy; and

6. present a sample application in informetrics and sample queries that demonstrate the
applicability and salient features of our approach.

Niemi, Hirvonen and Jarvelin (2003) introduced an advanced tool for multidimensional

analysis based on data cubes. Here we introduce a system through which the user is able

to flexibly construct data cubes from available XML documents for such analysis. In our

Prolog-based implementation the user constructs a data cube by specifying the CREATE

CUBE operation. The operation and the underlying system are described later on. Now,

we introduce our dructurally heterogeneous sample XML document collection from

which sample data cubes for informetrics are later constructed.

A Heterogeneous Sample XML document Collection

Our application area is informetrics. Informetrics studies various statistical phenomena of
literature which are typically based on bibliographic information provided by online da-
tabases. These statistical phenomena may concern productivity issues (of authors, coun-
tries, journals; Almind & Ingwersen, 1997), generalized impact factors (of journals, au-
thors; Hjortgaard Christensen, Ingwersen & Wormell, 1997), activity profiles (of authors,
organizations), citation networks (bibliographic coupling, author co-citations), literature
growth and aging, to mention a few (for more, see, e.g., Egghe, 2006).

Jarvelin, Ingwersen and Niemi (2000) presented an easy-to-use interface for general-
ized informetric analysis. Later, Niemi, Hirvonen and Jarvelin (2003) demonstrated that
OLAP is a promising approach for advanced analysis in informetrics. However, the pre-
requisite for OLAP is that there is some underlying data cube, on which the actual analy-
sis is based. We focus on constructing OLAP data cubes based on information extracted

from heterogeneous XML documents.

10

<publications >

<artidle publisher="publisher1”>
<year> 1995 </year>
<itle> ar3 </itle>
<author> wilkins </author>
<domain> db </domain>
<type> referead </type>

</article>

<brochure publisher="publisher1”>
<year> 1995 </year>
<itle> broc1 </title>

</brochure>

</publications >

(2

<publications>
<articles publisher="publisher1”
author"wilkins”>

<article year="1995">
ditle> art3 </title>
<domain> db </domain>
<ype> refereed </type>

<article>

<articles>

<Ipublications>

@)

<publications >

<articles publisher ="publisher1”>

<article>
<year> 1995 </year>
<itle> art3 </itle>
<guthor> wilkins </author>
<domain> db </domain>
<type> refereed </type>
</article>

</;;1ides>
</publications >

(b)

<publications >

<articles publisher="publisher1”>

<domain> db </domain>
<article>
<year> 1995 </year>
<title> art3 <Hitle>
<author> wilkins </author>
<ype> refereed </fype>
<article>

</articles>

</publications >

O]

<publications >
<artides publisher="publisher1”
year"1995">
<article>
<itle> art3 <ftitle>
<author> wilkins </author>
<domain> db </domain>

<type> refereed </type>
<farticle>

<farticles>

</publications >

©

<publications publisher ="publisher1”>
<articles >
<article type="refereed™
<year> 1995 </year>
<itle> art3 <ftitle>
<author> wilkins </author>
<domain> db </domain>
<article>

</articles>

<Ii5;.1blitions >

®

Figure 1. Examples of structural organizations in sample documents of type publications

The sample document collection consists of XML documents of two types, publica-
tions and grants. Figures 1 and 2 describe several structural alternatives in sample docu-
ments based on the same content. The sample documents of the type publications contain
information on publications. Possible element and attribute names used in the documents
of this type as well as their possible structures are depicted in Figure 1. We assume that
the semantics of these documents are self-explanatory. The information within these
documents can be grouped by individual publications (articles or brochures) or according
to the publisher, author, year, domain, or type of an article. Likewise, the sample docu-
ments of the type grants contain information on grants. Possible element and attribute
names and their structures are given in Figure 2. In this case, information can be grouped

by individual grants or by the institution, year, grantee, domain, or amount of a grant.

11

<grants>

<grant>

<institution>
<name> institution 1 </name>

</institution>
<year> 1995 </year>
<grantee> smith </grantee>
<domain> db </domain>
<amount> 80 </amount>

</grant>

</grants>

(@

<institution name="institution 1”>
<grants granteer="smith™>
<grant>
<Yyear> 1995 </year>
<domain> db </domain>
<amount> 80 </amount>
<grant>

<grants>

</institution>

()

<institution>

<name> institution 1 </name>

<grant>
<year> 1995 </year>
<grantee> smith </grantee>
<domain> db </domain>
<amount> 80 </amount>

</grant

<finstitution>

(b)

<institution name="institution1”>
<grants granteer="smith">
<db>
<grant>
<year> 1995 </year>
<amount> 80 </amount>
</grant>

<db>
<l-§;'a nts>

</institution >

©

<institution name="institution1”>
<grants year="1995">
<grant>
<grantee> smith </grantee>
<domain> db </domain>
<amount> 80 </amount>
</grant>

</grants>

<finstitution>

©

<institution name="institution1”>

<grants year="1995” amount="80">

<grant>
<grantee> smith </grantee>
<domain> db </domain>
<fgrant>
</grants>

</institution >

®

Figure 2. Examples of structural organizations in sample documents of type grants

As Figures 1 and 2 show, the same information within the sample documents can be
represented as a value of an element or attribute. Moreover, information about the do-
main of an article or grant (db or ir) and the type of an article (refereed or non_refereed)
can also be expressed by a name of an element. Due to space limitations, the contents of

all the sample documents (brochures omitted) are summarized as tables in Appendix A.

INTEGRATION OF XML DATA
The Data Extraction Primitive

We motivate developing a new data extraction primitive by requiring it to be able (1) to
handle the elements and attributes of an XML document equally and (2) to utilize both
schema and instance level information in a query. First, we argue that in data integration

there is no semantic difference between elements and attributes in an XML document

12

other than that only elements may have substructures. In contrast, popular XML query
languages separate elements and attributes. Second, we note that both XML and rela
tional databases share structural heterogeneity problems (see, e.g., Lakshmanan, Sadri &
Subramanian, 2001), but unfortunately most relational and XML query languages offer
only limited capabilities to utilize schema level information in queries. In XML-based
data integration this is, however, often a necessity. Next we take a look at the
is_component_of data extraction primitive.

The novel is_component_of primitive is developed for querying the components of an
XML document which are its elements and attributes. Generally, a component in an
XML document has a name (i.e., the name of an element or attribute) and a value (i.e.,
the textua linearization of element content or an attribute value). The components of an
XML document are specified in the is_component_of primitive with component expres-
sions. The primitive has the following basic form:

<CompExpr2> is_component_of <CompEXxpr1> in <DocName>

where <Comp_Expr1> and <Comp_Expr2> are component expressions and <DocName>
is any valid XML document name or a variable referring to an unknown XML document
in adocument collection.

A component expression has the form <Name>(<Value>), where <Name> is an atom
referring to the name of a known component or a variable referring to an unknown com-
ponent name. If <Value> is an atom it expresses explicitly the value of the component
<Name> whereas as a variable it refers to an unknown value of the component <Name>.
Variable, as in deductive databases (see, e.g., Liu, 1999), begin with an upper case letter.

Strings are written between quotes. The notion of shared variable, typical of logic pro-

13

gramming (see, e.g., Sterling & Shapiro, 1994) and deductive databases, is used through-
out our approach: that is, if several component expressions in a query contain the same
variable then its instantiations must be the same throughout the query processing. The
<Name> is the only compulsory part of a component expression. Note that a component
expression matches both elements and attributes without the user needing to know which
one it isin the document.

Variables in component expressions can refer to extensional, intensional, or both
levels. For example, in the component expression N(smith) the variable N refers to a com-
ponent with the value smith. Thus, it is related to the intensional level. In the component
expression author(V) the variable V is related to the extensional level since it will be in-
stantiated with a value of the component name author. In the component expression N(V),
the variable N is related to the intensional whereas the variable v is related to the exten-
sional level. A component expression with two atomic values, for example, author(smith),
expresses an explicit condition which, depending on the XML document at hand, may be
true or false. A single atom or variable, for example, author or N, is a component expres-

sion referring to a known or unknown component name.

14

(a) publications,<1>

author, year, title, author, year, title,
<1,1,1> <1,1,2> <1,1,3> <1,2,1> <1,22> <1,2,3>

(b) publications,<1>

article, brochure,
<1,1> <1,2>

author, year, title, year, title,
<1,1,1> <1,1,2> <1,1,3> <1,2,1> <1,2,2>

(C) publications,<1>

unpublished,
<1,3>

article,

author, <1,2>
<1,1>

year,

<1,3,1,1>
title,

<1,3,1,2,1>

<1,2,2,1>

Figure 3. Three examples of data organization in XML documents

Theis_component_of primitive may be used in several ways. For example, the expres-
sion author(V) is_component_of publications in "example.xml” returns all the components
(elements and attributes) with the name author which are, immediate or indirect, subcom-
ponents of the component publications in the XML document example.xml. The corre-
gponding expression in XPath would require the two expressions
doc(“example”)//publications//author and doc(“example”)//publications//@author. Analogously,
the expressions C(V) is_component_of E in D refers to any name (C) and its value (V) of
each subcomponent of any element (E) in any XML document (D) in the XML document
collection. It is not possible to specify a single XPath expression corresponding to the
above is_component_of expression because it presupposes the manipulation of the un-
known intensional level.

15

Lowest Common Ancestor Semantics

Compared to X Query, the most obvious advantage of theis_component_of query primitive
is its capability to query multiple components in a single query expression. In this case,
the component expressions are written within braces ({,}) and separated by commas. For
example, the expression {author(A), year(Y), title(T)} is_component_of publications in “exam-
ple.xml” returns all the values of subcomponents author, year, and title associated with the
same publications component (publications component may have several occurrences) in
the XML document example.xml. The components within the braces may appear in any
order and at any nesting levels within their common ancestor element.

However, this approach as such contains one considerable disadvantage. In the cases
where the ancestor element contains multiple subcomponents with the same name, all the
possible combinations of the occurrences of these subcomponents will be returned. For
example, when evaluating the expression above against the XML document depicted in
Figure 3 (a) eight sets of component combinations are returned, although it is easy to see
that only two of them are meaningful. All other combinations mix information from unre-
lated components. This is why one has to develop more advanced means to select only
the meaningfully related components. For this purpose, several Lowest Common Ancestor
(LCA) -based semantics have been proposed (Liu, Yu & Jagadish, 2004; Xu & Papakon-
stantinou, 2005; Hristidis et al., 2006).

The central idea in the LCA semantics is that the given nodes in an XML document
are searched only in the context of their lowest common ancestor node, thus reducing the
search space. To illustrate this, let us first assume that XML documents are indexed with

the structural indices introduced in (Niemi, 1983). Thus, we denote the root node of an

16

XML document by the index<1>. Any other node in the document is denoted by the
index <x,i > where x istheindex of its parent and i an integer that is gained by trav-
ersing the node x in preorder. For example, in the XML document tree in Figure 3 (a)
the LCAs for nodes author, year and title are the nodes with indices<1,1>, <1,2>, and
<1>. Notethat the application of the LCA semantics does not require such indexing but
they are used here only for demonstration.

The problem with the LCA semantics is that the root of an XML document is ulti-
mately the LCA of all the other nodes in any XML document and it, thus, allows descen-
dant nodes to be combined in an arbitrary manner. To prevent this, a restriction to the
LCA semantics has been recently developed. The Smallest Lowest Common Ancestor
(SLCA; Xu & Papakonstantinou, 2005) semantics—like the similar approaches in (Liu,
Yu & Jagadish, 2004) and (Hristidis et al., 2006)—modifies to the LCA semantics by re-
quiring that the result must not contain any such a node which isthe root of a subtree that
also contains al the desired nodes. This restriction is not, however, always sufficient.
Next we consider two such cases:

1. A document contains partial information, that is, it has an unequal number of nodes
we are interested in. When querying, for example, the nodes author, year, and title in
an XML document tree corresponding to Figure 3 (b) in all the LCA-based semantics
developed so far, the node (author,<1,1,1>) would also be wrongly associated with
the nodes (year,<1,2,1>) and (title,<1,2,2 >).

2. A piece of information at a higher level of the document tree must be replicated with

the information represented at a lower level of the same tree structure. For example,

when querying the nodes author, year, and title in an XML document tree in Figure 3

17

(c) the node (author,<1,1>) has to be replicated with the right combinations of the
nodes year and title. In LCA -based semantics the year and title nodes in the docu-
ment would be combined in an arbitrary manner (e.g., the node (year,<1,2,1>)
would be associated with the node (title, <1,31,2,1>) because their LCA and SLCA
isthe node(publications, <1>), i.e., the root of the XML document tree).
The two examples above demonstrate the general problem with LCA -based semantics:
they do not offer any mechanism to prevent combining unrelated nodes when some nodes
are associated through the root node of the document tree (or its subtree). We have devel-
oped the Smallest Possible Context (SPC) query evaluation strategy to produce only such

node combinations that do not mix data that are not meaningfully related to each other.
Smallest Possible Context Evaluation Strategy

A query evaluated with the SPC query evaluation strategy returns the correct node com-
binationsin all those cases when a query evaluated with some L CA-based semantics does
so. In addition, it also returns the correct node combinations in the cases discussed above.
The SPC query evaluation strategy does not offer reduced contexts for query evaluation,
as LCA-based semantics do, but returns directly a set of meaningfully connected nodes of
a given XML document. Unlike the LCA-based semantics, the SPC query evaluation
strategy requires indexing of the nodes of XML documents.

Next we demonstrate how meaningfully related nodes are selected in the SPC query
evaluation strategy. Let us assume that we want to extract meaningfully related author,
year, and title nodes from an XML document organized as in Figure 3 (b). First, we con-
struct the set A that contains combinations of any two (author, year, and title) nodes.

Each node in a node pair is also equipped with its index. A node pair is chosen into the

18

set A by the criterion that it is not possible to construct any other pair of the same node

types whose constituents would have a longer common prefix. The set A constructed

from the nodesin Figure 3 (b) is

A= {((author,<1,1,1>), (year,<1,12 >)), ((author,<1,1,1>), (title,<1,1,3>)),
((year,<1,1,2>), (author,<1,1,1>)), ((year,<1,1,2 >), (title, <1,1,3>)),
((year,<1,21>), (title,<1,2,2>)), ((title,<1,1,3>), (author,<1,1,1>)),
((title,<1,1,3>), (year,<1,1,2 >)), ((title,<1,2,2>), (year,<1,2,1>))}.

The pars ((author,<1,1,1>),(year,<1,21>)) and ((author,<1,1,1>),
(title,<1,2,2 >)> are not included in the set A because their longest common prefix is
<1>,that is, it is shorter than the longest common prefix of the indices of the node pairs
((author,<1,1,1>), (year,<1,1,2>)) and ((author,<1,1,1>), (title<1,1,3>)), whose

lengthis 2.

The node pairs of the set A can be viewed as arcs in a directed graph. Now, based on
these arcs we construct the set G that contains all possible complete graphs they consti-
tute. In a complete graph all the nodes are adjacent, that is, each node is directly con-
nected to every other node in the graph. In our example, the elements of the set A consti-

tute only one complete graph. Thus, the set G is

G= {(((author,<1,1,1>),(year,<1,l,2 >)), ((year,<1,1,2 >, (author,<1,1,1>)),
((year,<1,1,2>),(title,<1,1,3>)), ((title,<1,1,3>), (year,<1,1,2 >)),

((title,<1,1,3>), (author,<1,1,1>)), ((author,<1,1,1>), (title,<1,1,3>)))}

19

The arcs ((year,<1,2,1>),(title<1,22>)) and ((title<1,2,2>),(year,<1,2,1>))

in the set A do not constitute complete graph because no author node can be reached from
either components.

The smallest possible contexts of the nodes we are interested in are framed by select-
ing the separate nodes from the graphs in the set G. In our example, the smallest possible

context for nodes author, year, and title is the se
quence((author,<1,1,1>), (year,<1,1,2>), (title,<1,1,3>)).

The advantage of the SPC query evaluation strategy lies in choosing the node pairs
that constitute the complete graphs based on the longest common prefix of their indices
instead of their mutual distance. If the nodes were chosen based on their mutual distance
then querying nodes author, year, and title in an XML document organized as Figure 3
(© would not return the smallest possible con-
text((author,<1,1>),(year,<1,3,1,1>), (title,<1,3,1,2,1>)) . This is due to the fact that
the distance between the nodes (author,<1,1>) and (year,<1,3,1,1>) islonger than the
distance between nodes (author,<1,1>) and(year,<1,2,1>). The node
(year,<1,3,1,1>) would be discarded and only the node (year,<1,2,1>) would be se-
lected. However, their longest common prefix is <1> and they are, thus, both selected in
the SPC query evaluation strategy. It is worth noting that the longest common prefix of
two structural indices is the same as the SLCA of the two nodes. We have embedded the
SPC query evaluation strategy as a part of the is_component_of data extraction primitive.

Following the original idea of the L CA-based semantics, the SPC semantics offers a

powerful tool for treating the structural obscurity in XML documents. It is often the case

that the data integrator does not know the structure of the XML documents in detail but
20

(s)he, however, knows their contents. If the integrator wants to formulate an effective
XQuery expression, (s)he must know the structure of the documents used in the query in
some detail. By using the is_component_of data extraction primitive, the user only needs
to know the names of elements and attributes used in the XML document collection and,
based on this information, the primitive is able to extract all meaningfully related compo-

nents from these XML documents.

DATA CUBE CONSTRUCTION FROM XML DOCUMENTS
The Data Cube Construction Process

In our approach, a data cube is constructed from the XML documents by the data cube
construction operation CREATE CUBE, specified by the user. The operation consists of
two parts:

CREATE CUBE <Cube_Specification>
WHERE <Conditions_Specification>

The cube specification part specifies the content of the data cube. The conditions part
gives data extraction conditions in terms of is_component_of expressions.

The cube specification part consists of the cube name and a set of dimension and
measure attribute specifications. A dimension attribute specification has the form
dim(<Name>,<Vars>), where <Name> is the name of the dimension attribute and <Vars>
refersto avariable (or alist of variables) used in the conditions part. A measure attribute
specification has analogously the form mes(<Name>,<Var>,<Func>), where <Name> is
the name of the measure attribute and <Var> is a variable whose instantiations are used

for the calculation of the values of the attribute based on the aggregation function

21

<Func>. In our implementation, the following aggregation functions are available: count,
sum, avg, min, and max.

In the conditions part, the user specifies the extraction of the desired data from the
XML documents in terms of is_component_of expressions. By using shared variables in
the is_component_of expressions and in the cube specification part, the user associates the
cube attributes with relevant information extracted from the documents. If an integration
case requires the use of several alternative component expressions then the user should
write al the different is_component_of expressions separately.

In order to facilitate the specification of a variety of queries, our system is able to
automatically generate the needed is_component_of expressions based on the user’s de-
scriptions. Such descriptions consist of two sets of component expressions and of one
sample is_component_of expression. Through this sample is_component_of expression the
user expresses the relationships between the component expressions in these two sets
(i.e., which are subcomponents and which are supercomponents) in the actual
is_component_of expressions. The generation process will be explained in detail in the
context of Sample Queries. The complete BNF syntax of the CREATE CUBE operation is

given in Appendix B.

22

2. 3
Query Primitive
Analysis Generation

5. 4.
Information Information
Aggregation Extraction
6.
DATA CUBE

Figure 4. Overview of the system prototype

Before proceeding to the Sample Queries, we briefly look at our system prototype. It
has been implemented in Prolog and has a simple text-based interface. An overview of
the system implementation is given in Figure 4. First, the user specifies a query (i.e.,
CREATE CUBE operation) which is parsed by the system. Second, if the query is correct,
it will be analyzed for the is_component_of expression generation. Otherwise the user is
asked to rewrite the query. Third, a set of is_component_of expressions is generated. Each
of the is_component_of expressions is then run in the XML document collection and the
extracted information is gathered in the runtime memory as an intermediate result. The
intermediate result consists of value sequences whose components are the instantiations
of dimension and measure attributes. Fifth, the measure attribute values are aggregated
from the intermediate result. The measure attribute values associated with a specific
combination of dimension attribute values are gathered and the indicated aggregation

function is applied. Finally, the data cube is printed as an XML document.

23

<datacube name="article_cube">
<tuple>
<dimension name="year"> 1995 </dimension>
<dimension name="author"™> jones </dimension>
<dimension name="type "> refereed </dimension>
<measure name="number_of_articles"> 1 </measure>
</tuple>

</datacube>

Figure 5. Sample of the XML representation of aresult data cube

A sample of the resulting data cube (the first line of Table C1) is depicted in Figure
5. The root of the XML document is the datacube element. It has one attribute whose
value is the data cube name given in the cube specification part. The “rows’ of the data
cube are represented within tuple elements. The dimension attributes are represented as
dimension elements. It has an attribute that expresses its name. The value of the dimension
attribute is represented as the value of the element. The measure attributes are analo-
gously represented as measure elements. They contain a name attribute whose value ex-
presses their name. The corresponding data values, based on the calculation given in the

cube specification part, are the values of the element.
Sample Queries

Our Sample Query 1 demonstrates a typical multidimensional informetric query by ana-
lyzing annual productivity rates of authors. It constructs a data cube that contains the
number of articles grouped by the year of publication, by the author, and by the type of
an article. The structure of the data cube specification on line (1) is straightforward. The
name of the data cube (article_cube), three dimension attributes (year, author, and type) and
one measure attribute (number_of_articles) are given. The values of the measure attribute

are calculated on the basis of the count of the articles.

24

Sample Query 1

(1) CREATE CUBE article_cube(dim(year,Y), dim(author,A), dim(type,T),
mes(number_of_articles,N,count))
(2) WHERE C= {year(Y), author(A), title(N), type(T), T = refereed,
T = non_refereed}

3 S= {publications}
(4 Cis_component_of S in DOC.

In the conditions part, the user specifies the XML structures based on the values of
which the data cube attributes are populated. On lines (2) and (3) two sets of components
expressions are specified. The is_component_of expression description on line (4) shows
that the component expressions given in the set C on line (2) occur in the left-hand-side
whereas the component expressions in the set S on (3) occur in the right-hand-side of the
is_component_of expressions to be generated. In other words, the component expressions
in the set S offer a reduced context in which the component expressions included in the
set C are evaluated. The expressions T = refereed and T = non_refereed in the set C denote
that a value of the variable T is bound to the given element or attribute names and are
analogous to component expressions refereed and non_refereed. This means that some
generated is_component_of expressions deal with the information represented at the inten-
sional level. The variable boC will be instantiated with some document name in the
XML document collection.

Based on the sets C and S the system generates a set of is_component_of expressions
for extracting the desired information from the XML documents. The main principle in

the generation process is that each variable occurring in the cube specification part must

25

occur only once in each generated is_component_of expression. In the context of Sample
Query 1, this means that the following three is_component_of expressions are generated:
(@) {year(Y), author(A), title(N), type(T)} is_component_of publications in DOC,

(b) {year(Y), author(A), title(N), T = refereed} is_component_of publications in DOC,

(c) {year(Y), author(A), title(N), T = non_refereed} is_component_of publications in DOC.

The above three is_component_of expressions are, in turn, evaluated in the XML
document collection and their result sets are gathered as an intermediate result based on
which the data cube is constructed after some data cleaning operations have been exe-
cuted. Due to space limitations, the result of the Sample Query 1 is represented in tabular
form (see Table C1 in Appendix C).

As Sample Query 1 shows, the CREATE CUBE operation offers a very declarative
tool for constructing data cubes. A data cube is specified in a simple way by naming the
cube, its attributes and the aggregation functions used. Likewise, the query primitives for
extracting the required information from XML documents are specified simply by giving
the relevant component names or data values. After that the system generates the required
guery primitives and constructs the data cube automatically. Structures in the source
document may vary without effecting the query specification. These features facilitate the
dataintegration considerably from the data integrator’s perspective.

Path-oriented XML query languages do not offer any straightforward expression for
constructing data cubes. For example, by using XQuery one first needs to specify a set of
sub-queries for extracting the desired information from the XML documents. After that
one needs to specify a new query that reorganizes the results of the previous sub-queries

and aggregates the data values in them. This can become very laborious and troublesome,

26

in particular, if the user does not know the structures of the documents to be integrated in
much detail.

On the basis of the single is_component_of expression on line (a) above one is able to
extract information from all the XML documents where the information is structured ac-
cording to the document fragments (@) — () in Figure 1 (and from all possible variations
of them, too). By using XQuery one would have to write 14 different queries (for al pos-
sible element—attribute combinations) to extract the same information. Further, those 14
XQuery queries do not construct any data cube but they only correspond to the conditions
part of CREATE CUBE operation. A sample XQuery query that extracts (partly) the same
information than the is_component_of primitive on line (a) is given in Figure 6. This
XQuery expression obviously presupposes that the user masters a set of predefined func-
tions and iterative thinking and is also able to synchronize variable instantiations between

loops.

<result> {
for$doc in collection (www.example.com/samples)
for$i in $doc/publication //article
return<tuple>
<dim name="year"> data($i//year) </dim>
<dim name="author™ data($i//author) </dim>
<dim name="type"™> data($i//type) </dim>
<nes name="title™> data($i//title) </mes>
<ftuple>
</result>

Figure 6. An XQuery query corresponding to an is_component_of expression

27

When the number of alternative component expressions in the conditions part in-
creases, also the number of is_component_of primitives generated from it increases. For
example, if all the component expressions in the sets C and S in Sample Query 1 had
three alternative forms, then 243 (3°) is_component_of primitives should be generated.
Most of them would probably return no result. However, we think that the over-
generation of is_component_of primitives is only a minor drawback compared to the great
expressive power of the CREATE CUBE operation. Also, sometimes two or more gener-
ated is_component_of primitives may extract exactly the same information from an XML
document. In this case duplicate information is removed.

If the element and attribute names in the XML documents are ambiguous, that is,
semantically different objects are denoted with the same name, in some cases some of the
generated is_component_of primitives may return erroneous results. This is because they
are too inclusive in combining information from too wide a context. However, this is not
aproblem solely in our system since similar problems also occur in XQuery and in LCA-
based query languages if the nodes in XML documents are named inconsistently.

Sample Query 2 demongrates a more demanding multidimensional informetric
analysis. The user analyzes the correlation between the number of published articles and
the total sum of grants grouped by year, person, and domain. The required information
has to be extracted from both types of our sample documents (publications and grants).
Regardless of the differences in their complexity, the cube specification parts in Sample
Queries 1 and 2 resemble each other. The only significant deviation between them is the

need to specify two measure attributes in Sample Query 2.

28

Sample Query 2

(1) CREATE CUBE article_grant_cube(dim(year,Y), dim(person,P), dim(domain,D),

mes(no_of_articles,N,count), mes(sum_of_grants,M,sum))

(2) WHERE C1 = {year(Y), author(P), title(N), domain(D), D = db, D =ir},

(©)) S1 = {publications},

4 Clis_component_of S1in DOC1,

(5) C2 = {year(Y), grantee(P), amount(M), domain(D), D = db, D = ir},
(6) S2 = {grants, institution},

(7) C2 is_component_of S2 in DOC2

Now, in the conditions part one needs to specify two is_component_of expression de-
scriptions. On lines (2) to (3) and (5) to (6), four sets of component expressions are given.
Utilizing these sets the system generates 9 is_component_of expressions based on the de-
scriptions on lines (4) and (7), respectively. The first description produces the following
three is_component_of expressions.

(@) {year(Y), author(P), title(N), domain(D)} is_component_of publications in DOC1,
(b) {year(Y), author(P), title(N), D = db} is_component_of publications in DOC1,
(c) {year(Y), author(P), title(N), D = ir} is_component_of publications in DOC1.

Analogously, the second is_component_of expression description generates the fol-
lowing SiX is_component_of expressions:

(d) {year(Y), grantee(P), amount(M), domain(D)} is_component_of grants in DOC2,
(e) {year(Y), grantee(P), amount(M), D = db} is_component_of grants in DOC2,

(f) {year(Y), grantee(P), amount(M), D = ir} is_component_of grants in DOC2,

29

(@) {year(Y), grantee(P), amount(M), domain(D)} is_component_of institution in DOC2,
(h) {year(Y), grantee(P), amount(M), D = db} is_component_of institution in DOC2,
(1) {year(Y), grantee(P), amount(M), D = ir} is_component_of institution in DOC2.

The use of the shared variables v, P, and D in the data cube specification and in all
the generated is_component_of expressions enables the system to associate relevant XML
structures with the correct data cube attributes. A part of the content of the resulting data
cubeisgiven in Table C2 in Appendix C.

The cube specification part of the CREATE CUBE operation remains relatively simple
regardless of the complexity of the data cube. The complexity of the conditions part de-
pends on the number of the XML document types, where the required information is to
be extracted from, but remains still considerably simple compared to the number of
XQuery expressions needed. For example, if the user wants to construct a data cube cor-
responding to that of Sample Query 2 using XQuery (s)he first needs to formulate explic-
itly two separate sets of queries. The first contains XQuery expressions for extracting in-
formation from the documents of type publications and the second from the documents of
type grants. As we demonstrated in the context of Sample Query 1, an is_component_of
expression often corresponds to multiple XQuery expressions. In the case of Sample
Query 2, we have nine generated is_component_of expressions, so it is not difficult to
guess that the number of XQuery expressions the user needs to formulate is large. After
formulating and running these XQuery queries, the user needs to combine the result
documents returned by each query and finally to execute the required aggregation opera-
tions for the data in the combined document. In the CREATE CUBE operation, all thisis

done automatically and it is invisible to the user.

30

DISCUSSION

XML greatly supports data sharing between organizations by providing a standard data
exchange format. In spite of wide adoption of the XML, the problems related to semantic,
syntactic and structural heterogeneity remain. For this reason, XML-based data integra-
tion for the OLAP data cube construction is very laborious and troublesome. Our contri-
bution is a powerful tool to facilitate the structural integration problems.

Our study goals were stated in the third section. The sample application in infor-
metrics was purposefully designed to represent structural heterogeneity. The goals 1- 2
(requirement of structural knowledge and laboriousness of XML query languages) were
discussed in the context of LCA semantics and through sample queries. Sample queries
based on the CREATE CUBE operation remained compact compared to the corresponding
expressions in XQuery (shown only partially). In addition, queries based on XQuery were
complex and required quite detailed structural knowledge on part of the data integrator.
Goal 3 (inefficiency of LCA semantics) was demonstrated through an example showing
that LCA semantics and its enhancement (SLCA) do not always extract meaningfully re-
lated datafrom an XML document.

For Goal 4, we introduced the high-level is_component_of data extraction primitive. It
is capable of extracting named components—elements or attributes—from any XML
document without explicit path specifications or knowledge of the component type. De-
pending on the use of atomic values and variables in the is_component_of primitive, they
can refer to extensional, intensional, or both levels. The proposed Smallest Possible Con-
text (SPC) evaluation strategy extends the LCA semantics to extract meaningfully related

datafrom XML documents.

31

We also proposed the CREATE CUBE operation for data cube construction (Goal 5). It
is based on the is_component_of primitive and the SPC query evaluation strategy. The
CREATE CUBE operation allows high-level declarative specification of the target data
cube. A set of is_component_of data extraction primitives is automatically generated for
each CREATE CUBE operation. In fact, these comprise of all structural combinations
which are needed in the extraction. Some of the generated expressions do not extract any-
thing from a given set of XML documents if the specific structural combinations do not
exig. On one hand, such over-generation consumes some processing time but on the
other hand it relieves the integrator from writing long specifications that would require
good knowledge on the underlying XML data.

We chose informetrics as our sample application area as it typically contains much
heterogeneity in its data sources (Goal 6). The sample queries demonstrate the applicabil-
ity and salient features of our approach in informetrics—data cubes may be constructed
declaratively through compact expressions that do not require explicit navigation and
thus support users who are not aware of the detailed structures of autonomously produced
XML documents. The sample queries do not demonstrate the full capabilities of our
CREATE CUBE data cube construction operation, for example, the range of aggregation
primitives supported.

There are some limitations in the capabilities of our data cube construction opera-
tion. Consistent with our present focus, it handles only structural heterogeneity—both
interesting and demanding per se. Still, both semantic and syntactic heterogeneity, also
interesting and demanding problems, remain and we will focus on them in later papers.

Jarvelin & Niemi (1991) describe our early prototype in automatic resolution of syntactic

32

heterogeneity. Also, in our approach there are some basic requirements for the users. In
applying the is_component_of data extraction primitive and CREATE CUBE operation, the
data integrator needs to know which basic elements and/or attributes appear in the docu-
ments to be integrated. In addition, the semantics of those elements and/or attributes need
to be unambiguous. Only structural diversity is accounted for. This may consist of diver-
sity in (a) element structures, (b) using attributes vs. elements for representing informa-
tion, and (c) using elements and/or attributes names vs. their values for representing in-
formation. The user also needs to understand the notion of shared variables in the entire
CREATE CUBE operation as used in logic programming and deductive databases (see,
e.g., Sterling & Shapiro, 1994; Liu, 1999). Unlike logic programming and deductive da-
tabases, the user need not master mechanisms of variable instantiation. It is sufficient to
use variables intuitively at a high abstraction level.

The above are not hard limitations and requirements and we believe that we take here
an important a step forward by offering a powerful tool for automatic data cube construc-
tion from heterogeneous XML documents. As discussed above, the conventional ap-
proaches have more severe limitations and requirements. For example, in XQuery the re-
quirement to know in fairly much detail the structures of the XML data to be integrated
can only be met with much effort in the general case. Also the requirement on explicit
navigation in XML structures requires, in addition, iterative thinking and synchronization
of variable ingtantiations in nested loop structures. In complex cases, the user has to con-
struct multiple complex X Query expressions for a single data integration task. Moreover,
XQuery does not provide high-level primitives for data cube construction, even if the ba-

sic data would be available. We consider the following features of the CREATE CUBE op-

33

eration in data cube construction most salient: it supports declarative, compact expres-
sions that do not require explicit navigation, and such users who do not know the hetero-

geneous structures in the source XML documents in detail.

CONCLUSIONS

OLAP (Online Analytical Processing) is a modern means for analyzing multidimensional
summary data for ad hoc information needs. It is used to analyze both internal data of or-
ganizations and, increasingly, data produced autonomously by external organizations,
such as competitors. The integration of autonomously produced data in lack of clear and
agreed domain-specific standards leads to semantic, structural and syntactic data hetero-
geneity. While XML greatly supports data sharing by providing a standard exchange
format, the problems of heterogeneity remain. This makes data integration for OLAP data
cube construction very laborious.

We argued that popular XML query languages, such as XQuery, require the data in-
tegrator to know the structure of the documents to be integrated in much detail. We dem-
onstrated that typical XML query languages are indeed laborious in this task. We also
pointed out that the Lowest Common Ancestor (LCA) semantics, proposed to relieve the
requirements on structural knowledge in XML query languages, is insufficient. We con-
tribute a novel high-level operation for data integration, which avoids explicit path speci-
fication and relieves the user from knowing whether the actua information in XML
documents is represented as elements or attributes. We also specified the Smallest Possi-
ble Context (SPC) query evaluation strategy as an extension to LCA semantics to easly

extract meaningfully related data from XML documents. Finally, we demonstrated,

through a sample application in informetrics, the salient desirable features of our ap-

proach to dataintegration.

ACKNOWLEDGEMENTS

This study was funded in part by the Academy of Finland under grant numbers 1209960
and 204978 (Multilingual and Task-based Information Retrieval), the University of Tam-

pere, and the Tampere Graduate School in Information Science and Engineering (T1SE).

REFERENCES

Almind, T. C., & Ingwersen, P. (1997). Informetric analyses on the World Wide Web:
Methodological approaches to “webometrics’. Journal of Documentation 53(4), 404-
426.

Beyer, K., Chambérlin, D., Colby, L.S., Ozcan, F., Pirahesh, H., Xu, Y. (2005). Extend-
ing XQuery for Analytics. Proceedings of the SSIGMOD 2005 (pp. 503-514), Balti-
more, MD.

Biron, P. V., & Malhotra, A. (2004). XML Schema Part 2: Datatypes (2nd ed.) (W3C
Recommendation). Retrieved August 24, 2006, from
http://www.w3.0rg/TR/xmlschema-2/.

Boag, S., Chamberlin, D., Fernandes, M., Florescu, D., Robie, J., & Siméon, J. (2007).
XQuery 1.0: An XML Query Language (W3C Recommendation). Retrieved January
23, 2007, from http://www.w3.org/TR/xquery.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Eve Madler, E., Yergeau, F., & Cowan, J.
(2004). Extensible Markup Language (XML) 1.1: Third Edition (W3C Recommen-

dation). Retrieved August 24, 2006, from http://www.w3.org/TR/xml11.

35

Clarke, J., & DeRose, S. (1999). XML Path Language (XPath). Version 1.0 (W3C Rec-
ommendation). Retrieved August 24, 2006, from http://www.w3.org/TR/xpath.

Codd, E. F,, Codd, S. B., & Salley, C. T. (1993). Providing OLAP (on-line analytical
processing) to user-anaysts: An IT mandate (Technical Report). Sunnyvale, CA: E.
F. Codd and Associates, 1993.

Egghe, L. (Ed.). (2006). Informetrics [Special Issue]. Information Processing and Man-
agement, 42(6), 1405-1656.

Elmasri, R., & Navathe, S. B. (2006). Fundamentals of database systems (5th ed.). Bos-
ton, MA: Pearson / Addison-Wesley.

Fallside, D. C., & Wamsley, P. (2004). XML Schema Part O: Primer. (2nd ed.) (W3C
Recommendation). Retrieved August 24, 2006, from
http://www.w3.0rg/TR/xmlschema-0/.

Hjortgaard Christensen, F.,Ingwersen, P.,& Wormell, I. (1997). Online determination of
the journa impact factor and its international properties. Scientometrics, 40(3), 529-
540.

Hristidis, V., Koudas, N., Papakonstantinou, Y., & Srivastava D. (2006). Keyword prox-
imity search in XML trees. |EEE Transactions on Knowledge and Data Engineering
18(4), 525-539.

Jensen, M.R., Mdller, T.H., & Pedersen, T.B. (2001). Specifying OLAP cubes on XML
data. JIIS 17(2-3), 255-280.

Jarvelin, K., Ingwersen, P., & Niemi, T (2000). A user-oriented interface for generalised
informetric analysis based on applying advanced data modelling techniques. Journal

of Documentation 56(3), 250-278.

36

Jarvelin, K. & Niemi, T. (1991). Data conversion, aggregation and deduction in advanced
retrieval from heterogeneous fact databases. In A. Bookstein et al. (Eds.), Proceed-
ings of the SIGIR 1991 (pp. 173-182), Chicago, IL. New York, NY: ACM Press.

Lakshmanan, L. V. S., Sadri, F., & Subramanian, S. N. (2001). SchemaSQL: An exten-
sionto SQL for multidatabase interoperatibility. TODS 26(4), 476-519.

Liu, M. (1999). Deductive database languages. Problems and solutions. ACM Computing
Surveys, 31(3), 27-62.

Liu, Y., Yu, C., & Jagadish, H. V (2004). Schema-free XQuery. Proceedings of the
VLDB 2004 (pp. 72-83), Toronto, Canada.

Niemi, T., Niinimaki, M., Nummenmaa, J.,, & Thanisch, P. (2002). Constructing an
OLAP cube from distributed XML data. Proceedings of the DOLAP 2002 (pp. 22-
27), McLean, VA.

Niemi, T. (1983). A seven-tuple representation for hierarchical data structures. Informa-
tion Systems 8(3), 151-157.

Niemi, T., Hirvonen, L., & Jarvelin K. (2003). Multidimensional data model and query
language for informetrics. JASIST 54(10), 939-951.

Park, B.-K., Han, H., & Song, 1.-Y. (2005). XML-OLAP: A multidimensional analysis
framework for XML warehouses. In A.M. Tjoa, J. Trujillo (Eds.): Proceedings of the
DawaK 2005 (pp. 32-42), Copenhagen, Denmark, LNCS 3589. Berlin-Heidelberg,
Germany: Springer-Verlag.

Sterling, L. & Shapiro, E. (1994). The art of Prolog: Advanced programming techniques

(2nd ed.). Cambridge, MA: MIT Press.

37

Thompson, H. S, Beech, D., Maloney, M., & Mendelsohn, N. (2004). XML Schema Part
1: Structures (2nd ed.) (W3C Recommendation). Retrieved August 24, 2006, from
http://www.w3.0rg/TR/xmlschema-1/.

Wiwatwattana, N., Jagadish, H. V., Lakshmanan, L.V.S,, Srivastava, D. (2007). X" 3: A
cube operator for XML OLAP. Proceedings of the ICDE 2007 (pp. 916-925), Istan-
bul, Turkey.

Xu, Y. & Papakonstantinou, Y. (2005). Efficient keyword search for smallest LCAs in

XML databases. Proceedings of the SIGMOD 2005 (pp. 527-538), Baltimore, MD.

38

APPENDIX A. CONTENTS OF THE SAMPLE DOCUMENTS

Table Al
Contents of the Sample Documents of the Type publishing

author

article ear publisher domain type
smith jones hikes wilkins
artl X 1995 publisher4 db refereed
art2 X X 1995 publisher2 ir refereed
art3 X 1995 publisherl db refereed
art4 X X 1996 publisher3 db non_refereed
arts X 1996 publisher3 ir refereed
arté X X 1997 publisher2 ir non_refereed
art7 X X X 1997 publisher4 db refereed
art8 X 1997 publisher4 db refereed
art9 X 1998 publisherl ir refereed
art10 X X X 1998 publisher2 db non_refereed
artll X X 1999 publisherl db refereed
art12 X 1999 publisherl ir refereed
artl3 X X 1999 publisher4 db non_refereed
artl4 X 2000 publisher3 ir refereed
artl5 X X 2000 publisher2 db refereed
artl6 X 2001 publisher3 db refereed
artl7 X 2001 publisher4 db refereed
art1l8 X X X 2001 publisher2 ir refereed
art19 X X 2002 publisher4 ir non_refereed
art20 X 2002 publisherl db refereed
art21 X X 2003 publisherl db refereed
art22 X X 2003 publisher3 db refereed
art23 X X 2003 publisher4 ir non_refereed
art24 X X 2004 publisher3 db non_refereed
art25 X X X 2004 publisher2 ir refereed

39

Table A2
The contents of Sample Documents of type grants

year o " author
indl ing2 ind3 ing4 ing5 ing6 ingt7 ingtl int2 int3 int4 ingt5 ingt6 ing7

1995 80 25 5 10

1996 20 15 20

1997 30 5 25 3 25 20

1998 10

1999 100 25 ﬁ

2000 100 20 5

2001 50 15 25 4

2002 100 25 4 25 20

2003 10 4 5

2004 100 25 25

1995 20

1996 15

1997 10 3 6 20

1998 50 20 5 3 15 100 20

1999 20 3 1 25 20 =
=}

2000 30 5 10 25 25 7]

2001 10 2 10 3 20

2002 20 4

2003 50 6 25 3 70 20

2004 100

1995 50 10

1996 50 1

1997

1998

1999 =

2000 20 10 3

2001 20 15 5 15

2002 20 25 5 4

2003 30 15 15

2004 50 25 5 10

1995 10 2 10

1996 20 15 5 15

1997 30 15 5 10 25

1998 100 15 5 20

1999 25 25 5 25 25 25 =

2000 20 20 5 25 25 5 25 g

2001 10 5 25

2002 20 2 5 25

2003 100 15 5 5 25 20

2004 100 20 25 25 35 25

40

APPENDIX B. BNF GRAMMAR FOR THE CREATE CUBE OPERATION

The grammar is given using the extended BNF notation (International Organization for

Standardization and International Electrotechnical Commission. 1SO/IEC 14977: Infor-

mation Technology — Syntactic Metalanguage — Extended BNF. International Organiza-

tion for Standardization, Geneva, Switzerland, 1996).

query
create_cube
cube_specification
cube_name

dim

mes

func

where
model_expression
set_expression

comp_expression

ico_expression
atom
variable

Ic_letter

uc_letter

char

create_cube, " ", where ;

"CREATE CUBE", " ", cube_specification ;

cube_name, "(", dim, (*,”, dim)*,",”, mes, (",”, mes)*, ")";
atom ;

"dim”, "(", atom, ”,", variable, (",”, variable)*, ")" ;

"mes”, "(", atom, ",”, variable, ",”, func, ")" ;

Hminﬁ | Hmaxﬁ | Hcountn | Hsumﬁ | navgﬁ '

"WHERE”, " ", model_expression, (",”, model_expression)* ;
set_expression, ",”, set_expression, ",”, ico_expression ;
variable, " 7, =", " ", "{”", comp_expression, (",”, comp_expression)*, "}" ;

atom | atom, "(", atom, ")" | atom, "(", variable,)" |

variable, "(", atom, ")" | variable, "(", variable, ")" |

variable, "=", atom ;

variable, " 7, "is_component_of”", " ", variable, " ", "in", " ”, variable ;
Ic_letter+, (Ic_letter* | uc_letter* | char*)* ;

uc_letter+, (Ic_letter* | uc_letter* | char*)*;

@] e | e g R K m | e

70" [P" 17" | S U Vw2

AT BT |TCT "D | ET | FT G | TH 1| "3 | 'K 'L | "M "N
PO" I"P QPR IST |TPU VW XY |2

noy o on .
)

41

APPENDIX C. RESULTS OF THE SAMPLE QUERIES

TableC1 Table C2
The Result of Sample Query 1 The Result of Sample Query 2
year author type number_of_articles year person domain number_of articles sum_of grants
1995 jones refereed 1 1995 hikes db 0 60
1995 smith refereed 2 1995 jones db 0 20
1995 wilkins refereed 1 1995 jones ir 1 3
1996 hikes non_refereed 1 1995 smith db 1 105
1996 jones non_refereed 1 1995 smith ir 1 15
1996 smith refereed 1 1995 wilkins db 1 10
1997 jones non_refereed 1 1995 wilkins ir 0 12
1997 jones refereed 1 1996 hikes db 1 50
1997 smith refereed 2 1996 hikes ir 0 1
1997 wilkins non_refereed 1 1996 jones db 1 15
1997 wilkins refereed 1 1996 jones ir 0 3
1998 hikes non_refereed 1 1996 smith db 0 35
1998 jones non_refereed 1 1996 smith ir 1 20
1998 smith refereed 1 1996 wilkins db 0 40
1998 wilkins non_refereed 1 1996 wilkins ir 0 17
1999 hikes non_refereed 1 . . .
1999 hikes refereed 1 2002 hikes db 0 54
1999 jones refereed 1 2002 hikes ir 1 6
1999 smith refereed 1 2002 jones db 0 24
1999 wilkins non_refereed 1 2002 jones ir 0 6
2000 hikes refereed 1 2002 smith db 0 100
2000 smith refereed 1 2002 smith ir 0 74
2000 wilkins refereed 1 2002 wilkins db 1 22
2001 hikes refereed 1 2002 wilkins ir 1 32
2001 jones refereed 2 2003 hikes db 1 45
2001 smith refereed 2 2003 hikes ir 1 15
2002 hikes non_refereed 1 2003 jones db 0 56
2002 wilkins non_refereed 1 2003 jones ir 1 118
2002 wilkins refereed 1 2003 smith db 2 14
2003 hikes non_refereed 1 2003 smith ir 0 7
2003 hikes refereed 1 2003 wilkins db 1 120
2003 jones non_refereed 1 2003 wilkins ir 0 50
2003 smith refereed 2 2004 hikes db 0 80
2003 wilkins refereed 1 2004 hikes ir 0 13
2004 jones non_refereed 1 2004 jones db 1 0
2004 jones refereed 1 2004 jones ir 1 100
2004 smith refereed 1 2004 smith db 0 154
2004 wilkins non_refereed 1 2004 smith ir 1 0
2004 wilkins refereed 1 2004 wilkins db 1 120
2004 wilkins ir 1 110

42

	Abstract
	Abstract

	INTRODUCTION
	Background
	Contribution and Outline

	RELATED WORK
	GOALS AND SAMPLE ENVIRONMENT
	Requirements for Data Integration with XML
	Study Goals
	A Heterogeneous Sample XML document Collection

	INTEGRATION OF XML DATA
	The Data Extraction Primitive
	Lowest Common Ancestor Semantics
	Smallest Possible Context Evaluation Strategy

	DATA CUBE CONSTRUCTION FROM XML DOCUMENTS
	The Data Cube Construction Process
	

	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX A. CONTENTS OF THE SAMPLE DOCUMENTS
	APPENDIX B. BNF GRAMMAR FOR THE CREATE CUBE OPERATION
	APPENDIX C. RESULTS OF THE SAMPLE QUERIES

