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Abstract 

 
Complex entities are one of the most popular ways to model relationships among 

data. Especially complex entities, known as physical assemblies, are popular in 

several applications. Typically, complex entities consist of several parts organized at 

many nested levels. Contemporary query languages intended for manipulating 

complex entities support only extensional queries. Likewise, the user has to master the 

structures of complex entities completely, which is impossible if a physical assembly 

consists of a huge number of parts. Further, query languages do not support the 

manipulation of documents related to parts of physical assemblies. In this paper we 

introduce a novel, declarative and powerful query language, in which the above 

deficiencies have been eliminated. Our query language supports text information 

retrieval related to parts and it contains intensional and combined extensional-

intensional query features. These features support making queries of new types. In the 

paper we give several sample queries, which demonstrate the usefulness of these 

query types. In addition, we show that conventional extensional queries can be 

formulated intuitively and compactly in our query language. Among other things this 

is due to our query primitives allowing removal of the explicit specification of 

navigation from the user. 

 

Keywords: Complex entities, physical assembly, query language, information 

retrieval, XML documents 
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1. Introduction 

 

An information system consists of entities, their properties and relationships. 

Similar entities, are grouped into an entity type with a unique name. Entities belong to 

the extensional level (the instance level) whereas entity types belong to the intensional 

level (the schema level). The properties (attributes) of entity types belong to the 

intensional level whereas their values to the extensional level. Relationships may also 

be represented both at the extensional and intensional level. At the intensional level a 

relationship is represented through entity types and the representation at the 

extensional level is based on entities. A relationship may contain, in addition to 

participating entity types, attributes to express its characteristics.  

In modeling relationships among entities three basic relationships are usually 

distinguished: the is-a relationship (or specialization/generalization), the association 

(or member-of relationship) and the part-of relationship (Rumbaugh et al., 1991; 

Rumbaugh et al., 1999; Motschnig-Pitrik & Kaasböl, 1999; Renguo et al. 2000; Wand 

et al., 1999). In the is-a relationship one organizes similar entity types hierarchically. 

If X and Y are entity types and X is-a Y holds then X is called the subentity type of Y 

and Y the superentity type of X. At the extensional level, each entity belonging to the 

entity type X also belongs to the entity type Y.  

Association models an event, a phenomenon or a fact among independent entity 

types / entities. Typically, each entity type / entity participating in an association plays 

some role. In an association the participating entity types are assumed to be 

conceptually at the same level (Renguo et al., 2000).  

In a part-of relationship entities / entity types are not conceptually at the same level 

because they have different complexity. In modeling a part-of relationship it is 
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essential to recognize the entities / entity types that play the roles of parts in an entity / 

entity type which is the whole. The modeling of a part-of relationship requires 

structuring among entities / entity types and results in several hierarchy levels among 

them. Therefore transitivity is a primary characteristic of the part-of relationship. In 

this paper we deal only with part-of relationships. 

The part-of relationship has no established terminology. For example, it has been 

called whole-part association (Civello, 1993), part-whole relationship (Motschnig-

Pitrik & Kaasböl, 1999), whole-part relationship (Barbier et al., 2000), part-whole 

hierarchy (Pazzi, 1999), part-of structure (Rousset & Hors, 1996), aggregation 

(Rumbaugh et al., 1991), complex object (Savnik et al., 1999) and composition 

relation (Urtado & Oussalah, 1998). Here we call, by following Järvelin and Niemi 

(1999), a complex entity such an entity modeled by the part-of relationship whose 

parts are organized as several nested substructures. The context tells whether we mean 

its intensional or extensional level or both. Our notion of complex entity refers to a 

single unit, which contains all its parts and which has its own function in the real 

world. It is typical of physical assemblies that they are complex entities which have 

been constructed for a specific purpose in the real world. For example, we can 

consider a car as a physical assembly, which consists immediately of a body, engine, 

transmission, etc. and in turn, a body consists of a frame, doors and windows etc. In 

other words, a car is a single unit in the real world, which is capable of moving in a 

controlled way whereas any of its parts has not this property. 

Most database query languages support only extensional queries, i.e., query results 

consist only of extensional level information. We develop a declarative query 

language for complex entities, which supports both extensional and intensional 

queries.  
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In the semantic sense, a component and its immediate components often are of 

special interest in complex entities. For example, the assembly and disassembly of a 

complex entity usually happens in phases where a component and its immediate 

components are treated in one phase only. In many applications it is natural to 

associate a document with each part of the physical assembly at hand, e.g. for giving 

instructions for assembly or maintenance. Further, in many applications the 

manipulation of complex entities and their documentation is needed at the same time. 

To the best of our knowledge, our query language is the first proposal for this 

purpose.  

The rest of the paper is organized as follows. In Section 2 we review both 

approaches to model complex entities and query languages for manipulating them. 

We shall also present the goals of our query language. In Section 3 we introduce 

complex entity modeling and related XML documentation of our system. In this 

section we also illustrate our sample application. The primitives of our query 

language and the notion of variable are introduced in Section 4. In Section 5 we 

formulate sample queries of different types. The properties and implementation of our 

language are discussed in Section 6. Summary is given in Section 7. 

 

2. Related work 

 

Complex entities are common in the real world. They have an important role in 

many advanced applications in engineering, manufacturing and graphics design. They 

have been also used for organizing medical terminologies (Liu et al., 1996). Niemi 

and Järvelin (1995; Järvelin & Niemi 1999), like several other authors (e.g. Sacks-

Davis et al., 1995; Zobel et al., 1991; Lambrix & Padgham, 2000), have proposed 

complex entities for representing and manipulating hierarchical documents. Järvelin 



 6 

and others (2000) have shown that complex entities are natural structures for 

informetrics. Complex entities have also proven useful in the Web as embedded in 

Web pages defined in the OHTML syntax and in the Object Exchange Model (OEM) 

(Riet, 1998). 

Complex entities are popular because they support the modeling of semantically 

different relationships in applications. Many authors (e.g. Winston et al., 1987; Kim et 

al., 1987; Civello, 1993; Motschnig-Pitrik & Kaasböll, 1999; Halper et al., 1998; 

Barbier et al., 2000) have focused on the semantics of complex entities and on 

categorizing them. For us, the most important semantic distinction is whether a 

complex entity is exclusive or shared.  A component is exclusive if it can be attached 

as an immediate part to at most one more complex entity whereas a shared component 

may be attached to any number of more complex entities (Artale et al. 1996; Halper et 

al., 1998). In this paper we assume that a complex entity consists only of exclusive 

components. This constraint is characteristic of physical assemblies such as vehicles 

or buildings (Halper et al., 1998). In this paper we consider physical assemblies with 

their related textual documents.  

 

2.1. Approaches to modeling and representing complex entities 

There are two basic approaches to represent information in databases: the value-

oriented and the object-oriented approach (Ullman, 1988). In the former, values of 

some attributes are used for the identification of entities or relationships, i.e., these 

attributes act as their keys. In the object-oriented approach a unique identifier is 

assigned to each entity (called object) and it is used to refer to the entity. In addition 

to attributes, an entity may have functional properties. These functional properties are 

called methods and they are implemented as pieces of code. 
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The relational model is based on the value-oriented approach. It does not support 

the representation of complex entities directly. In relational databases a complex 

entity is represented in several relations. Thus the same values of attributes must be 

stored in several relations in order to maintain semantic connections among data.  The 

manipulation of a complex entity as a single unit therefore requires data collection 

from several relations. The construction of complex entities of several hierarchy 

levels presupposes the specification of many relational joins for which the user is 

responsible. Yet the result of a relational query is always a flat relation which does not 

make the structure of a complex entity obvious. Therefore better ways of representing 

complex entities are needed. 

NF2 relations or non-first normal form relations are also based on the value-

oriented approach, but support the complex entity notion (Roth et al., 1988). They 

allow relation-valued attributes, which may contain relation-valued attributes, etc. 

Järvelin and Niemi (1995; 1999) review the use of NF2 relations in the IR area. NF2 

relations make the structuring among component entities of a complex entity explicit. 

From the perspective of complex entities the NF2 relational model has two 

essential disadvantages. First, it does not contain operations for analyzing complex 

entity types. Second, it requires that each atomic-valued and relation-valued attribute 

has a unique name. However, the same component entity type may appear in several 

composite types of a complex type, e.g. bolts may belong to several parts of an 

airplane. From the semantic perspective, it is desirable to use the same entity type 

name wherever the entity type appears.  

Object-orientation has concentrated on modeling and manipulating the is-a 

relationship rather than complex entities (complex objects in the object-oriented 

terminology) (Renguo et al., 2000). One indication on this is that the support of 
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object-oriented programming for complex entities, similar to the support for the is-a 

relationship, is desired (Motschnig-Pitrik & Kaasböll, 1999). Likewise, the indexing 

mechanisms of object-oriented databases mainly support the manipulation of the is-a 

and the association relationships. An exception is the work by Renguo and others 

(2000) who developed the indexing of complex entities. 

Several authors have realized that in object-orientation complex entities are often 

treated as a kind of association although they usually require particular semantics and 

update mechanisms (see e.g. Motschnig-Pitrik & Kaasböll, 1999; Renguo et al., 

2000). They can neither be represented through ordinary attributes because the 

distinction between a property and a component is lost in this case (Civello, 1993; 

Artale et al., 1996). Unfortunately, this is a very common practice in object-

orientation (e.g. Cattel & Barry, 2000; Cluet, 1998; Hua & Tripathy, 1994). Often the 

attributes containing the identifiers of the objects are called complex attributes (Lee & 

Lee, 1998) or object-valued attributes (Pazzi, 1999). However, this kind of 

implementation makes the traversal of complex entities difficult in an order other than 

the established one.  

Although the popular object-oriented modeling language UML (Rumbaugh et al., 

1999) distinguishes the modeling of complex entities from the modeling of other 

relationships, it falls short in modeling several essential details. It is important to 

specify all constraints, which complex entities must satisfy. Civello (1993) discusses 

constraints for their representation (see also Halper et al., 1998; Motschnig-Pitrik & 

Kaasböll, 1999). Likewise the object-oriented modeling methods OMT (Rumbaugh et 

al., 1991) and UML do not deal with the inheritance of properties in complex objects. 

In the is-a relationship the inheritance mechanism is always downward, i.e., all 

properties of an entity type are also properties of its subentity types. The inheritance 
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mechanism in complex entities may be both downward and upward (inheritance 

happens from a part to its composite entity). For example, if a car obtains its color 

from the color of its body then the upward inheritance appears. If the date of an article 

is the date of the newspaper publishing it we have downward inheritance. Different 

kinds of inheritances within complex entities are discussed in (Halper et al., 1993; 

1998). 

Both constructor-oriented formalisms and description logics have been proposed 

for the exact representation of complex entities. The former emphasize structural 

aspects among entities. There are both value-oriented (Riet, 1998) and object-oriented 

(Bancilhon & Khoshafian, 1986) constructor-based formalisms. Description logics 

emphasize logic-based representation and reasoning. Description logic systems have 

been extended to represent complex entities (Rousset & Hors, 1996; Lambrix & 

Padgham, 2000).  

 

2.2. Query languages for manipulating complex entities 

In current query languages proposed for the manipulation of complex entities the 

user must know what entities/entity types (s)he manipulates. In many applications 

(e.g. the processing of hierarchical documents) it is impossible to find one stable 

structure suitable to all user needs. Therefore the restructuring capability of query 

languages is necessary in these applications. However physical assemblies tend to 

possess a stable structure but need a greater analyzing power than contemporary query 

languages offer. Further, these languages are difficult to use, as argued below. 

There are several SQL-like language proposals based on the NF2 relational model 

for manipulating complex entities. These languages have the value-oriented origin. 

Niemi and Järvelin (1995) give a thorough survey on these languages and analyze 
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query formulation difficulty in them. Typically, in addition to the conventional SQL 

specification, users are required to master both the semantics of the restructuring 

operations and the design of large nested expressions where restructuring expressions 

are embedded in conventional SQL expressions. Niemi and Järvelin (1995; Järvelin 

and Niemi, 1995; 1999) introduce a truly declarative query language minimizing end-

user effort in query formulation. However, from the viewpoint of manipulating 

physical assemblies the proposed language has several disadvantages. For example, it 

lacks primitives for analyzing the intensional level of complex entities.  

It is important in the object-oriented approach that complex entities can be 

manipulated bidirectionally (see e.g. Halper et al., 1994), i.e. forward and backward 

traversal of complex entities is needed. In object-orientation two basic alternatives 

have been proposed for this. One is based on applying methods of component entity 

types (e.g. Halper et al., 1994). In these alternatives the user controls the use of 

methods through hierarchy levels of a complex entity, i.e. it requires programming 

skills. In the second alternative complex attributes are allowed. If a complex entity is 

implemented in a unidirectional way, then the expression of forward traversal is 

straightforward but the expression of backward traversal is troublesome and requires 

procedural thinking (Lee & Lee, 1998). When a complex entity is implemented 

bidirectionally, there is no difference between backward and forward traversals (e.g., 

Cattel & Barry, 2000). However, the synchronization of both traversals is very 

demanding (Lee & Lee, 1998). 

Although considerable progress in developing object-oriented SQL-like query 

languages has taken place they are not yet suitable for lay users. We discuss this by 

using OQL (Cluet, 1998), a typical object-oriented query language, as an example. 

Although the user need not master actual algorithmic programming (s)he must master 
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many aspects of object-orientation such as object identity, class, attribute, method, 

inheritance, literal etc. In addition, in the OQL the user must combine iterators (e.g., 

select-from-where, grouping and sorting iterators) with each other. Therefore (s)he 

must also understand how a variable within an iterator will be instantiated with 

different entities until all entities belonging to the entity type to which the variable 

refers have been processed. In complex queries the user must nest iterators whereby 

there may be several instantiations of one variable for one instantiation of another 

variable. Thus the OQL user must think iteratively. In object-oriented query 

languages complex entities are typically constructed by applying available 

constructors like the set, list, tuple and tree constructors on atomic data types. Dar and 

Agrawal (1993) argue that constructors make query formulation quite complicated for 

lay users. This is particularly true when users must nest constructors within each 

other. 

QAL is a functional object-oriented query language supporting the manipulation of 

complex entities (Savnik et al., 1999). QAL supports typical database queries such as 

'retrieve the values of selected attributes from any nesting levels of complex entities'. 

In addition, QAL is able to query the intensional level and to express the connection 

between the extensional and intensional levels as well. These are useful features in a 

query language intended for physical assemblies. However, QAL has three 

disadvantages. First, the QAL user must know the entities of interest and give path 

expressions leading to them. More powerful primitives are needed for analyzing 

complex structures because in many queries one needs to find entities / entity types 

which satisfy specific properties without knowing where they reside in a complex 

entity. Second, the user must master relevant constructors. Third, QAL does not 
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contain any mechanism to combine text retrieval with the manipulation of complex 

entities. 

 

2.3. Goals for an advanced query language for complex entities 

Physical assemblies have their own special characteristics and needs. A physical 

assembly may consist of a huge number of components at several hierarchy levels. 

The same component type can reside in several different constructs. Therefore the 

management of structural aspects needs particular support. Next we describe two 

practical situations where such support is needed. First, assume that a user must 

change some parts of a complex entity based on their age for maintenance reasons. It 

is likely that the user does not know where precisely such decaying components 

reside. Second, assume that the production process of a company is improved by 

changing some tools and methods. Now one should find all components affected by 

this change. If information on tools and methods related to components has been 

stored in documents, one must manipulate complex entities and their documents at the 

same time.  

The examples above demonstrate that a query language for complex entities should 

support queries where the user cannot express which entities or entity types (s)he 

should manipulate. Likewise primitives to manipulate complex entities and their 

documentation together are needed. Our purpose is to offer such a query language for 

advanced manipulation of physical assemblies. This query language has the following 

goals: 

• The degree of declarativity must be much higher than in the contemporary query 

languages for complex entities. Therefore the user need not master programming 
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(e.g., iterative or recursive thinking). The user also should not need to specify 

complex nested expressions.  

• The user need not apply constructors in queries. 

• It is possible to express extensional, intensional and combined extensional-

intensional queries. The language must also contain primitives connecting the 

intensional and extensional levels in a straightforward way. 

• The language must support both forward and backward traversal in complex 

entities. This support must be general so that the user may refer to any component 

of a given entity / entity type at any hierarchy level.  

• The query language must be able to process textual documentation of complex 

entities. Therefore text retrieval must be integrated with the manipulation of 

complex entities.  

 

3. A database for complex entities and related documents 

 

Our system contains two components: a database component consisting of physical 

assemblies and a document database consisting of documents related to entity types in 

the physical assemblies. First we consider how a physical assembly is represented as a 

complex entity and next we describe how documents are associated with physical 

assemblies. 

 

3.1. The representation of a complex entity 

In the representation of a complex entity we have combined the advantages of NF2 

relations and object-oriented approaches. Niemi and others (2002) discuss these 

advantages in detail. Figure 1 presents our sample database. It contains only three 

complex entities: one tricycle and two bicycle entities.  It is a user-oriented view for 



 14 

the data and we assume that its information content is self-explanatory except for the 

columns “oid”, “W.” and “M.”. The “oid” columns express the identities of entities 

and the user need not be aware of them whereas “W.” and “M.” are the abbreviations 

for the attributes Weight and Material, respectively. 

 
 
 
 
 

 
Fig. 1. Extensional level of our sample database. 

 

3.2. Documents related to complex entities 

In many applications one needs to associate documents with entity types in 

physical assemblies. A document is attached to each entity type and it contains 

information common to all entities belonging to this type. Therefore our document 

database contains one document for each entity type in the database. In the context of 

physical assemblies these documents can be, e.g., instructions for assembly or service 

of parts. In our system the documents are represented as XML documents 

(http://www.w3.org/XML/). Note that in some applications documents could also be 

associated with entities, too – e.g., giving their use and maintenance history. 

Thus our sample document database contains XML documents for each entity type 

in TRICYCLE and BICYCLE. These documents have the same structure. The tools, 

which are needed in disassembling an entity belonging to an entity type are listed 

between the tags <tool> and </tool>. The text identified by the tags 

<disassembly_instructions> describes the disassembly instructions of the entities of 

oid W. oid W. oid Diam. W. oid Diam. R_type W. oid Diam. W. oid Diam. R_type W.
o2 6 united 0.5
o3 6 united 0.5
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HANDLEBAR PEDALS WHEEL
oidW. oid W.

FRONT AXLE
M. W. oid Pad
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oid Price W.
FRAME SADDLE STEERING REAR

oid Frame-No

oid W. oid Diam W. oid Diam W. oid W. oid W. oid Diam R_type W.

o14 10 0.5
o15 4 0.2
o21 9 0.5
o22 4 0.2

10 o28 1-speedsteelo37 500 o27 8265 1 o19o13 o30 4 o17leather 0.516 0.5 26 spoke 218.2 26 spoke 2 o311 o18

o38 400 16.2 o32 43285 8 o33 1-speedsteel o35 4o34 0.5plastic o24 1 o25 1 o26 20 spoke 2 o36 20 spoke 214 0.5

o291.7

1.7 o20 o230.5

0.5 o16
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FRAME DRIVE GEAR SADDLE STEERING WHEEL

FRONT AXLE
W. oid W.

HANDLEBAR WHEELoid Price W.
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CHAIN RING PEDALSCHAIN
oid Diam R_type W.
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this entity type. The skills, which are needed in the disassembly, are indicated by the 

tags <skill_requirements>. Safety instructions for the disassembly are coded by the 

tags <safety_requirements>. The string nil indicates missing information. The 

Appendix presents the documents for BICYCLE. Sample query evaluations will be 

based on this document. 

 

4. Query language for manipulating complex entities 

 

Users of contemporary query languages must know which entities they manipulate. 

They must also know exactly the structure of complex entities and specify navigation 

in this structure. An advanced query language should also support queries where the 

user does not know these aspects in detail. For that reason our query language offers 

primitives for analyzing both the intensional and extensional levels and for moving 

between them. 

 

4.1. The notion of variable in query formulation 

In our approach, users may refer to unknown factors in their queries. For example, 

entity types, their properties, entities, documents, subdocuments, and values of 

properties may be such unknown factors. Each variable in a query refers to some 

unknown factor. A variable may be associated with a construct at the intensional or 

the extensional level. The role of query primitives is to express semantic associations 

among variables. This guarantees a declarative query language. Query processing is 

responsible for finding the values of variables satisfying the criteria given in 

primitives.  

The notion of variable in our query language was borrowed from deductive 

databases (e.g., Liu, 1999). A variable starts by an uppercase letter whereas constants 
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are numbers or strings, which start by lowercase letters. Query primitives are 

connected by commas or semicolons, which indicate logical conjunctions and 

disjunctions, respectively. If the same variable appears in two or more query 

primitives it is a shared variable. Such a variable must be instantiated to the same 

value in all query primitives. From the user viewpoint, query formulation consists of 

combining query primitives containing variables. 

 

4.2. The intensional primitives  

The intensional level query primitives are as follows: 

(1) Arg1 is_whole_type_of_type Arg2 

(2) Arg1 is_part_type_of_type Arg2 

(3) Arg is_top_type 

(4) Arg is_basic_type 

(5) Arg1 is_property_of Arg2 

(6) Arg1 is_path_to Arg2 

 

In these primitives, Arg, Arg1 and Arg2 are arguments that the user specifies when 

applying primitives. The user may explicate an argument or refer to it by a variable. 

In the explicit specification the user gives a constant possibly found in some complex 

entity. Thus, for example, the names of known entity types and properties are 

expressed with constants. The primitive (1) expresses that Arg1 is an immediate or 

indirect composite entity type for the entity type Arg2. The primitive (2) is the 

opposite, i.e., Arg1 is an immediate or indirect component of the entity type Arg2. 

The primitives (3) and (4) are used to find an entity type (Arg) that has no composite 

or component entity type in the complex entities considered, respectively. The 

primitive (5) refers to any property (Arg1) of the entity type (Arg2). The primitive (6) 

forms a path Arg1 that starts from a top entity type and leads to the entity type Arg2.  
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Let us assume that we apply primitives in the database given in Figure 1. For 

example, a composite entity type for the entity type PEDALS may be found by the 

expression X is_whole_type_of_type pedals. This means that X may be instantiated to 

the values tricycle, steering, bicycle, drivegear. The expression Z 

is_whole_type_of_type Y finds all pairs Z and Y where Y is an entity type and Z its 

any (perhaps indirect) composite entity type. The primitive B is_top_type instantiates 

the variable B to the values tricycle and bicycle. In the primitive P is_property_of 

frame, possible instantiations for the variable P are frame_no, material, and weight. 

The primitive P is_property_of E refers to any property (P) of any entity type (E). 

 

4.3. The extensional primitives 

Our query language contains the following primitives for manipulating information 

at the extensional level: 

 

(7) Arg is_basic_entity 

(8) Arg is_top_entity 

(9) Arg1 is_whole_entity_of_entity Arg2 

(10) Arg1 is_part_entity_of_entity Arg2 

 

The primitives (7), (8), (9) and (10) correspond to the primitives (4), (3), (1) and 

(2) of the intensional level. For example, assume that the variable Z has been 

instantiated to the entity with object identifier o16, i.e. it is an entity of type PEDALS 

in the complex entity BICYCLE. Now the variable Y in the primitive Y 

is_whole_entity_of_entity Z may be instantiated to the entities with identifiers o28 

(DRIVE GEAR) and o37 (BICYCLE). 

 

4.4. The primitives for connecting the intensional and extensional levels 



 18 

It is important to be able to analyze the structure of complex physical assemblies 

and to manipulate data based on this analysis. The following primitives for connecting 

the intensional and extensional levels. are therefore needed: 

 

(11) Arg1 : Arg2 

(12) Arg1 is_instance_of  Arg2 

(13) Arg1 is_whole_entity_of_type Arg2 

(14) Arg1 is_part_entity_of_type Arg2 

 

The primitive (11) refers to the value of a property (Arg2) of an entity (Arg1), i.e., 

Arg1 is at the extensional level whereas Arg2 belongs to the intensional. Assume that 

the variable Y has been instantiated to the entity with object identifier o15 (of type 

CHAIN RING). Now the primitive Y: diam means the value 4. The primitive (12) can 

be used to refer to any entity (Arg1) belonging to entity type given in Arg2. For 

example, in the primitive Z is_instance_of  drivegear the variable can be instantiated 

to the entities with object identifiers o28 and o33. Primitives (13) and (14) refer to a 

composite and component entity (Arg1) of the entity type given in Arg2, respectively. 

 

4.5. The primitives for integrating complex entities with documents 

Present query languages for manipulating complex entities do not offer 

mechanisms for formulating queries involving information in text documents 

describing entity types. Our query language contains primitives for manipulating 

structured text documents together with related complex entities:  

(15) Arg1 is_doc_of Arg2 

(16) Arg1 is_sub_doc Arg2 

(17) Arg1 contains Arg2 

 

The primitive (15) expresses that Arg1 is the document attached to the entity type 

Arg2. For example, in the primitive X is_doc_of frame the variable X denotes the 

document attached to the entity type frame (see Appendix).  
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Our text documents are structured into four parts by the tags <tools>, 

<disassembly_instructions>, <skill_requirements> and <safety_requirements>. Each 

part can be seen as a subdocument. In the primitive (16) the argument Arg2 has the 

form [Tag, Doc_name]. This primitive assigns to Arg1 the subdocument, which has 

been structured by Tag in the document Doc_name. The primitive (17) expresses that 

the string Arg2 is included in the document or subdocument Arg1. A string is 

expressed between apostrophes.  

 

5. Sample queries 

 

In our query language a query has the following structure: 

<form of result> where <primitive sequence>. 

The construct <form of result> expresses the content of the result. It has the form 

res(x1,x2, …, xn) where res is the name selected for the result. The components x1, 

x2, …, xn are the columns of the result. The string where is a reserved word separating 

the form from the conditions the result must satisfy. In the construct <primitive 

sequence> primitives are connected by conjunction (comma) or disjunction 

(semicolon). Typically the components x1, x2, …, xn of the result and primitives in 

<primitive sequence> may contain several shared variables. Query processing finds 

the variable instantiations in x1, x2, …, xn, which satisfy the criteria given.  

The database component may contain several complex entities. A background 

assumption is that the primitives are applied to all complex entities in it. If the user 

wants to apply primitives only to some complex entities (s)he can restrict them by the 

expression apply_to [e1 , …, en]. Here the list [e1, …, en] expresses the scope of 

primitives. For example, the expression apply_to [bicycle] means that the primitives 
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are applied only within the entity BICYCLE. This expression is a part of <primitive 

sequence>. 

 

5.1.  Extensional queries  

Most present query languages support only extensional queries of this type, where 

the result consists only of extensional level data. The background assumption of 

extensional queries is that the user knows exactly what information (s)he needs from 

complex entities. Unlike in the present approaches, in our language the user need not 

specify paths in complex entities. In Sample Query 1 the user wants to know the 

prices and weights of bicycles and the frame numbers of their frames. We number the 

lines of our queries in order to indicate their parts. 

 

Sample Query 1 

(1) bicycle_info(Bi:weight,Bi:price,Fr:frame_no) where  

(2) Bi is_instance_of bicycle,  

(3) Fr is_instance_of frame, 

(4) Bi is_whole_entity_of_entity Fr. 

 

On line (1) the user expresses the form of the result based on the variables used in 

the where -part. The variable Bi denotes an instance of the bicycle type (see (2)) 

whereas the variable Fr (see (3)) refers to any entity of type frame. In (4) (s)he 

specifies that the specific frame Fr must be a part of the bicycle Bi. Figure 2 gives the 

query result based on the information in Figure 1. 

bicycle_info 
weight price frame_no 

16.2 400 43285 
18.2 500 8265 
 

Fig. 2. The result of Sample Query 1. 
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Sample Query 1 demonstrates how a query can be specified simply although the 

result contains information from several hierarchy levels of complex entities. Also 

selection conditions could be specified simply in the where - part of our query 

language.  

 

5.2. Intensional queries 

In intensional queries the result contains only intensional information. 

Conventional query languages do not support intensional queries. Intensional queries 

are necessary in analyzing the structure of complex entities. Our query language 

offers powerful primitives for structural analysis. These primitives allow the 

formulation of queries without knowing the structure of complex entities exactly. 

Sample Query 2 demonstrates this. Assume that the user is interested in the physical 

assembly TRICYCLE and (s)he wants to know which basic component types (i.e., 

these component types have no parts) are associated with the entity type REAR. In 

addition (s)he wants to know the properties of these basic component types. 

 

Sample Query 2 

(1) basic_info(Btype,Prop) where 

(2) apply_to [tricycle],  

(3) Btype is_basic_type,  

(4) rear is_whole_type_of_type Btype,  

(5) Prop is_property_of Btype. 

 

Through (2) and (3) Btype stands for any basic component type in the complex 

entity TRICYCLE. Line (4) specifies that any basic component type must be an 
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immediate or indirect part of the entity type REAR. The variable Prop stands for any 

property of the basic component type. The result is in Figure 3. 

 
basic_info 
                         Btype                          Prop 
rear_axle diam 
rear_axle weight 
wheel diam 
wheel r_type 
wheel weight 
 

Fig. 3. The result of Sample Query 2. 

 

The result of Sample Query 2 is produced by manipulating only information at the 

intensional level. Sometimes intensional queries may also require the manipulation of 

the extensional level. There often is a need to find component types of complex 

entities, which contain specific values. For example, if some material (at the 

extensional level) has been found hazardous, it would be nice to find entity types, 

which contain this material.  The user may want to find, for example, all component 

types of BICYCLE, which may contain plastic. Because of space limitations we leave 

the formulation of this query as an exercise. 

 

5.3. Combined extensional-intensional queries 

Queries producing both extensional and intensional information are combined 

extensional-intensional queries. Such queries are usual in physical assemblies when 

the user wants to know both the result of structural analysis and the information 

related to the corresponding entities. In Sample Query 3 the user wants to find all 

component entity types of the entity type DRIVE GEAR of bicycles and the 
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corresponding component entities. In the result he is interested only in the values of 

the properties Diameter and Weight of the component. 

 

Sample Query 3 

(1) result(Comp,Inst:diam,Inst:weight) where  

(2)  apply_to [bicycle], 

(3) Comp is_part_type_of_type drivegear, 

(4) Inst is_instance_of Comp. 

 

In (3) the variable Comp stands for any component entity type of DRIVE GEAR.  

In (4) the variable Inst is instantiated to an entity belonging to the entity type 

represented by Comp. The result is in Figure 4. The entity type CHAIN does not have 

the property Diam (see Figure 1) and thus this property has the value 'null'.  

 
result 

Comp diam weight 
chain null 0.5 
chainring 9 0.5 
chainring 10 0.5 
chainring 4 0.2 
pedals 14 0.5 
pedals 16 0.5 
 

Fig. 4. The result of Sample Query 3. 

 

5.4. Queries for integrating complex entities with their documents 

Integration of complex entities and their documentation is needed in two query 

types. There are queries only finding information in complex entities but using 

documents in the selection of this information. Moreover, there are queries finding 

documents attached to entity types. Sample Query 4 and Sample Query 5 demonstrate 

these two query types. Information in Appendix is needed in their evaluation. Sample 
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Query 4 finds those component entity types of BICYCLE the disassembly of which 

requires tongs or gloves.  

 

Sample Query 4 

(1) result(Part) where  

(2) Part is_part_type_of_type bicycle, 

(3) Part_Doc is_doc_of Part,Tools is_sub_doc [tools,Part_Doc],  

(4) Safe is_sub_doc [safety_requirements,Part_Doc],  

(5) (Tools contains `tongs`; Safe contains `gloves`). 

 

The variable Part_Doc refers to the document attached to any component type of 

BICYCLE. The variables Tools and Safe stand for its subdocuments. They contain 

information on tools and safety aspects. In (5) we test that either the subdocument on 

tools contains the string `tongs` or the subdocument on safety instructions contains the 

string `gloves`. The result of this intensional query is in Figure 5. 

 
result 
Part 
drivegear 
steering 
chain 
chainring 
front_axle 
 

Fig. 5. The result of Sample Query 4. 

 

Sample Query 5 finds composite entity types containing as indirect or immediate 

parts the entity types CHAIN and PEDALS. In addition, it retrieves the subdocuments 

of these entity types containing the disassembly instructions. 

Sample Query 5 

(1) type_subdoc(Type,SubDoc) where  
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(2) Type is_whole_type_of_type chain, 

(3) Type is_whole_type_of_type pedals, 

(4) Doc is_doc_of Type, 

(5) SubDoc is_sub_doc [disassembly_instructions,Doc]. 

 

By using the shared variable Type in (2) and (3) we specify that Type is a common 

immediate or indirect composite entity type for CHAIN and PEDALS. The variable 

SubDoc is instantiated to the subdocument of each entity type of this kind, which 

provides the disassembly instructions. The result is in Figure 6. 

 
type_subdoc 

Type SubDoc 
bicycle The saddle is separated as follows: Loosen the screw using an 

adjustable wrench and draw the saddle from the frame. If the 
saddle does not move then hit lightly the downward side of the 
saddle by a hammer. When separating the steering it has to be 
partially disassembled. However, when separating drive gear it 
has to be fully disassembled. See their disassembly instructions. 
 

drivegear First, the rear wheel has to be released using an adjustable 
wrench. Next, the chain is separated. The chain ring in the 
wheel is loosened using gear wrench. When separating pedals 
and the front chain ring the boss must be disassembled.  
 

 

Fig. 6. The result of Sample Query 5. 

6. Discussion 

In contemporary database query languages queries are represented mainly with 

intensional elements, which produce answers composed entirely of extensional 

information. This also applies to most query languages intended for manipulating 

complex entities. However, increasing attention has recently been paid to the 

possibility of supporting intensional queries. Intensional queries increase the 

expressive power and offer more intelligent query languages (Motro, 1994). In this 
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paper we deal with complex entities called physical assemblies. Large physical 

assemblies may consist of a large number (possibly thousands) of parts. In practice 

the users are not able to master such structures in detail. However, most query 

languages expect the user to know exactly the structure of complex entities in query 

formulation. Through intensional queries and intensional query primitives of our 

query language one may refer to unspecified structural information and manipulate it 

in physical assemblies. This requires the capability of analyzing structural aspects of 

physical assemblies and this kind of mechanism is necessary in any advanced query 

language for managing the complexity of physical assemblies. Our sample queries 

showed that the primitives of our query language remove the explicit specification of 

navigation from the user. 

We have presented several sample queries showing that extensional, intensional 

and combined extensional-intensional queries are needed in the context of physical 

assemblies. In order to support queries of different types our query language contains 

primitives connecting the intensional and extensional levels. Through these primitives 

the user can easily transfer data manipulation from the extensional level to the 

intensional level and vice versa. For example, the user may first analyze entity types 

satisfying given structural criteria and then manipulate entities belonging to these 

entity types. Our sample queries showed that often both forward and backward 

traversal in complex entities is needed. Such traversals may occur both at the 

extensional and the intensional level. In contemporary object-oriented approaches the 

integration of forward and backward traversal is very troublesome (Lee & Lee, 1998). 

Although our approach is also object-oriented, forward and backward traversal is very 

straightforward. This is because our representation of physical assemblies combines 

the strengths of the value-oriented and object-oriented representations. As in NF2 
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relations we store subentities in the entities which contain them. Therefore 

forward/backward traversal among subentities is based on nesting. In other words link 

manipulation, common in the object-oriented approaches, is unnecessary. As Junkkari 

(2001) has shown, our indexing mechanism enables one to find all component or 

composite entities or entity types related to a specific entity or entity type. 

Physical assemblies often have several instructions associated with their parts such 

as assembly, disassembly and service instructions. Such information is usually 

represented as text documents. As our sample queries exemplified, information both 

from complex entities and their related documents is often needed. Our query 

language contains primitives for referring to a document or subdocument related to a 

specific entity type. Further there is a primitive for investigating the content of text 

documents. The extensions to more comprehensive IR primitives are obvious. By 

using shared variables in query components the user can express semantically related 

information intuitively and compactly. 

There are several query language proposals for complex entities. Some have 

prototype implementations. A prototype implementation of the present language was 

programmed in Prolog++ (Moss, 1994), which combines logic programming and 

object-oriented programming into one homogeneous deductive object-oriented 

programming framework. This kind of framework was ideal for the implementation of 

our query language because it supports, in addition to object-oriented features, the 

notion of variable used in our query language. 

 

7. Conclusions 

A powerful and declarative query language is needed for manipulating complex 

entities - especially physical assemblies. In contemporary query language approaches 
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the user needs to know exactly all information in complex entities. For example, the 

user is expected to specify navigation paths leading to the data of interest. This is an 

unrealistic assumption in such physical assemblies, which consist of a large number 

of parts. Therefore the primitives of our query language were designed so that the user 

can manipulate data and structures which (s)he does not know. For example, (s)he 

may easily refer to any composite or component entity / entity type of a specific entity 

/ entity type. This feature facilitates considerably the specification of forward and 

backward traversal in complex entities in comparison to the other languages. Our 

language contains primitives of three kinds. In addition to extensional and intensional 

query primitives, it contains primitives for transferring data manipulation from the 

extensional level to the intensional level and vice versa. These primitives support the 

formulation of intensional and combined extensional-intensional queries, in addition 

to conventional extensional queries. Our sample queries demonstrated that this 

support has a great practical significance. Unlike contemporary query languages, our 

query language also contains primitives for manipulating structured text documents 

related to parts of physical assemblies. The possibility to use information in 

documents increases the expressive power of our language. This feature is necessary 

in many applications of physical assemblies. We borrowed the notion of variable for 

our query language from deductive databases and showed that this makes query 

formulation intuitive and compact. 
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APPENDIX 
 
The sample document database consists of the XML documents related to entity types 
in TRICYCLE and BICYCLE. Only the latter document is given below. Here […] 
indicates suppressed components. 
 
 
 
 
Doc. of BICYCLE: 
<doc> 
<tools> 
screwdriver, adjustable wrench, cotter pin extractors, tongs, hammer  
 </tools> 
 
<disassembly_instructions> 
The saddle is separated as follows: Loosen the screw using an adjustable wrench and 
draw the saddle from the frame. If the saddle does not move then hit lightly the 
downward side of the saddle by a hammer. When separating the steering it has to be 
partially disassembled. However, when separating drive gear it has to be fully 
disassembled. See their disassembly instructions. 
</disassembly_instructions> 
 
<skill_requirements> 
High technical skills 
</skill_requirements> 
 
<safety_requirements> 
Protective gloves are required in disassembling the drive gear. 
</safety_requirements> 
</doc> 
 
Doc. of DRIVE GEAR: 
<doc> 
<tools> 
gear wrench, adjustable wrench 
</tools> 
 
<disassembly_instructions> 
First, the rear wheel has to be released using an adjustable wrench. Next, the chain is 
separated. The chain ring in the wheel is loosened using gear wrench. When 
separating pedals and the front chain ring the boss must be disassembled.  
</disassembly_instructions> 
 
<skill_requirements> 
Releasing the chain requires low technical skills. Separating of pedals and chain rings 
requires the skills of a cycle mechanic. 
</skill_requirements> 
 
<safety_requirements> 
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Protective gloves are required in disassembling the chain and chain rings. 
</safety_requirements> 
</doc> 
 
Doc. of STEERING: 
<doc> 
<tools> 
adjustable wrench, cotter pin extractors, tongs  
</tools> 
 
<disassembly_instructions> 
The disassembly of the steering starts by separating of the wheel from the fork of the 
bicycle. For this the nuts must be loosened using adjustable wrench. The handlebars 
are separated by turning the bolt on top of the holder by an adjustable wrench. The 
axle is separated by turning the guard using tongs. After that the cotter must be 
disconnect using cotter pin extractors. Finally the axle is drawn out from the shaft 
tunnel.   
</disassembly_instructions> 
 
<skill_requirements> 
Low technical skills.  
</skill_requirements> 
 
<safety_requirements> 
nil 
</safety_requirements> 
<doc> 
 
Doc. of FRAME: 
[…] 
Doc. of CHAIN: 
<doc> 
<tools> nil </tools> 
 
<disassembly_instructions> nil </disassembly_instructions> 
 
<skill_requirements> nil </skill_requirements> 
 
<safety_requirements> 
Protective gloves are required. 
</safety_requirements> 
</doc> 
 
Doc. of CHAIN RING: 
<doc> 
<tools> nil </tools> 
 
<disassembly_instructions> nil </disassembly_instructions> 
 
<skill_requirements> nil </skill_requirements> 
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<safety_requirements> 
Protective gloves are required. 
</safety_requirements> 
</doc> 
 
Doc. of SADDLE: 
[…] 
 
Doc. of FRONT AXLE: 
<doc> 
<tools> nil </tools> 
 
<disassembly_instructions> nil </disassembly_instructions> 
 
<skill_requirements> nil </skill_requirements> 
 
<safety_requirements> 
Protective gloves are required. 
</safety_requirements> 
</doc> 
 
Doc. of HANDLEBAR: 
[…] 
 
Doc. of PEDALS: 
[…] 
 
Doc. of WHEEL: 
[…] 
 
 
 


