

Sanna Kotkaluoto, Juha Leino,
Antti Oulasvirta, Peter Peltonen,
Kari‐Jouko Räihä and Seppo Törmä

Review of Service Composition Interfaces

DEPARTMENT OF COMPUTER SCIENCES
UNIVERSITY OF TAMPERE

D‐2009‐7

TAMPERE 2009

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCES
SERIES OF PUBLICATIONS D – NET PUBLICATIONS
D‐2009‐7, OCTOBER 2009

Sanna Kotkaluoto, Juha Leino,
Antti Oulasvirta, Peter Peltonen,
Kari‐Jouko Räihä and Seppo Törmä

Review of Service Composition Interfaces

DEPARTMENT OF COMPUTER SCIENCES
FIN‐33014 UNIVERSITY OF TAMPERE

ISBN 978‐951‐44‐7896‐3
ISSN 1795‐4274

i

Preface
This report was produced in the LUCRE project. LUCRE stands for Local and User-Created Services. The
project is part of the Flexible Services research programme, one of the programmes of the Strategic Centre
for Science, Technology and Innovation in the ICT field (TIVIT) and funded by Tekes (the Finnish Funding
Agency for Technology and Innovation) and the participating organizations.

The Flexible Service Programme creates service business activity for global markets. The programme has the
aim of creating a Web of Services. The programme creates new types of ecosystems, in which the producers
of services, the people that convey the service and the users all work together in unison.

As part of such ecosystems, LUCRE will develop an easy-to-use, visual service creation platform to support
the creation of context aware mobile services. The goal is to support user-driven open innovation: the end-
users (people, local businesses, communities) will be provided with tools to compose new services or to
modify existing ones. The service creation platform will build on the technology of existing mashup tools,
widget frameworks, and publish/subscribe mechanisms. It will contain a range of common building blocks of
context-aware services including people and groups, discussion channels, maps and location, and media.

This technical report is based on Deliverable D2.1 of LUCRE. Here we review available commercial
solutions for service composition as well as research published in academic forums. The purpose of this
review is to understand the main categories of solutions to this problem.

ii

Table of contents
1 Introduction .. 1
2 Service composition ... 3
2.1 Time of composition creation .. 3
2.2 Fields of research on service composition ... 4
2.3 Mashup patterns .. 5
2.4 End‐user programming .. 5

3 Usetime service composition .. 7
3.1 Intel MashMaker .. 7
3.2 Mozilla Ubiquity ... 8

4 Programming by example .. 10
4.1 Programming by demonstration ... 10
4.1.1 Karma .. 10
4.1.2 Vegemite ... 11

4.2 Example modification ... 12
4.2.1 d.mix ... 12

5 Visual programming... 14
5.1 Popfly ... 15
5.1.1 Mashup Creator ... 15
5.1.2 Service composition with Popfly Mashup Creator .. 18
5.1.3 Game Creator, Web Creator, and Popfly Space ... 19
5.1.4 Current state ... 20

5.2 Yahoo! Pipes ... 20
5.2.1 Service composition with Yahoo Pipes ... 21
5.2.2 Discovering and cloning pipes .. 25
5.2.3 The current state of Yahoo Pipes .. 26

6 Formbased creation .. 28
6.1 iGoogle ... 28
6.1.1 Discovering gadgets in iGoogle .. 32
6.1.2 Building gadgets ... 33
6.1.3 Popular gadget types in iGoogle .. 35
6.1.4 Creating themes .. 37
6.1.5 Social future .. 37

6.2 Netvibes .. 39
6.3 Yahoo! Widgets .. 43

7 Script based creation ... 46
7.1 Firefox extensions .. 46
7.1.1 Building Firefox extensions ... 50
7.1.2 Future directions .. 51

7.2 Facebook .. 52
7.2.1 Using Facebook applications ... 54
7.2.2 News feeds and requests .. 55
7.2.3 Application directory .. 56
7.2.4 Application initialization process ... 60
7.2.5 Security of Facebook applications .. 62
7.2.6 Facebook platform ... 64
7.2.7 The current state of Facebook .. 65

8 Evaluation of mashup tools for enduser development .. 68
9 Summary and discussion .. 70
10 References ... 73

1

1 Introduction
This report is a review of the state of the art in service composition by the end-users. We review available
commercial services in service composition as well as research published in academic forums. The purpose
of this review is to understand the main categories of solutions to this problem. What kinds of approaches,
technologies and tools are available? How does a user interact with the tools? What kinds of services users
end up composing?

The Web is full of services ranging from complex, globally used services, such as email, Amazon, Google
Maps, Google Search, eBay, and Facebook, to smaller or more locally profiled services, such as currency
converters, journey planners, eBanking, and so on. Popular services obviously address some important needs
that are shared by many users. However, outside of the shared needs, there is a realm of all kinds of
individual, evolving, and situational wants and needs. Service developers and providers cannot anticipate nor
address them all. Indeed, the attempt to do so would lead into bloated software packages with decreasing
performance and usability, and at the end there would be a lot of unnecessary duplication of functionality
already existing in other services.

As an example consider a simple task of finding a new apartment. There are many services that provide real
estate listings. They typically include a standard set of information about each apartment, the building, the
neighborhood, and the terms of sale. However, an individual buyer may have important other criteria for the
purchase, such as distance to day care centers, schools, playgrounds, grocery stores, specialty shops, and bus
stops. Some of these criteria may be relevant to subgroups of customers – such as the average air quality or
walkability1 of the neighborhood – and some completely specific to an individual buyer – such as the time it
takes to drive to his or her job, hobbies, or friends. It is quite clear that the service provider cannot include
such information in the listings. Moreover, it may not be in the interest of the seller even to volunteer all
generally interesting information, in case it is unfavorable to the apartment. The buyer, however, ends up
using a number of different web sources and services to find out the issues critical to him or her about each
potential apartment. This requires copying and pasting information between services and applications, with
possible clean up and transformation of the data in between. Multiple browser windows would need to be
opened and accessed. The combination of information would mostly happen in the head of the buyer. When
the number of potential apartment grows larger, the evaluation requires disciplined bookkeeping. After a
while the buyer may become overburdened and frustrated, and find it difficult to keep track of the big
picture. He or she would simply like to have a service that looks for apartment listing and evaluates them
according to his or her individual interests, and in case an apartment rates favorably, would send a
notification. How could users be better supported in this kind of tasks?

Ultimately, users would probably wish to simply state what they want a composite service to do. For
example, “I would like to have a notification of apartments that cost less than 200000 €, located so that air-
quality is good, and within half an hour driving from my job.” To satisfy such requests would require
detailed semantic descriptions of services, together with either automatic reasoning capabilities or elaborate
crowdsourcing arrangements. Unfortunately, there are not any realistic and practical solutions available in
those areas yet.

However, technology to enable users to tell how they want a composite service to work is developing fast.
There are tools that make it possible to compose, for example, a following kind of service: “take apartments
form craigslist.org, filter apartments with price less than 200000 €, evaluate the address in airquality.com,
filter apartments where the result is good, compute the driving time from the apartment to the job in
maps.google.com, filter apartments where the result is less than half an hour“. These tools use technologies
developed in the area of end-user programming, or more generally end-user development. Indeed, Lieberman
et al. (2005) have predicted that the goal of human-computer interaction will evolve from just making
systems easy to use to making systems that are easy to develop, as it is impossible to design systems that are
appropriate for all users and all situations (MacLean et al., 1990).

1 Walkscore (http://walkscore.com) provides this information for neighbourhoods of largest cities in US

2

This report reviews service composition tools that enable assembling existing sources and services into new
combinations of desired content and functionality. If such tools were accessible and easy-to-use, there would
ultimately be numerous small-scale services most of which would satisfy some personalized, situational, and
evolving needs of individuals. These services would belong to the long tail of software: the many small
applications that collectively have a large impact (Anderson, 2006). However, the ability to easily compose
services would also have the potential to uncover hidden needs of people; when shared with others, their
ideas and innovations could boost the evolution of the whole service ecosystem.

Spreadsheets present a major success story in the area of end-user programming (Nardi, 1993). Many office
workers without any studies or previous experience in programming have been able to create non-trivial
spreadsheets for real uses. Other areas where end-users have been able to participate directly in development
are web authoring and business process automation. End-user development and consequently service
composition seem thus feasible ideas, but to what extent? It is commonly understood that programming—
and development of reliable software in general—is difficult. While it is evident that end-users are able to
create simple services, it also seems obvious that they will not be able to solving many software engineering
problems, such as those related to performance, scalability, distribution, concurrency, and interoperability,
that are difficult even for developers.

The goal of LUCRE project is to gain understanding of the potential of user-created services by developing
and studying service composition tools and technologies. There are many interesting questions in the area.
Are there reasonable compromises between ease-of-use and power of the tools? Is it possible to have a
smooth progression from simpler methods to powerful ones? Are there problems or dangers inherent in
service composition by end-users? What is a reasonable division of work between end-users and developers
and how could fruitful collaboration between them be organized?

In the next chapter we will discuss the service composition problem to focus the study to relevant
technologies and tools. In the rest of the document we will cover some of the tools in depth.

3

2 Service composition
Service is a term that has many meanings. In this report it is used in the following, relatively technical
meaning:

Service is a software component made available through a network.

In contrast to an application that is executed in the client, a service is associated with a server that hosts it
and at least to some extent supports its execution. The implications are that services are typically
independent of the client platform, require no installation or updating from users, can utilize background data
potentially shared among all the users, and their execution can be monitored.

Services can naturally be created by ordinary programming but in this report we are interested in higher-level
conceptualizations of service creation. The emphasis is specifically in service composition, not in service
development in general. Composition means the creation of a service as a relatively simple combination of
available services. For example, a geographical location pointed by the user on a map could be connected to
a service that tells road conditions there. The focus is thus not in complex control flows that involve
conditional execution (if-statements), iteration (loops), or state maintenance (variable assignments).

By end-user we mean anyone who uses a service, is not a developer, and has not studied software
development. Being an end-user does not imply that a person is generally uneducated, unskilled, or
cognitively challenged. Many end-users of spreadsheets have been office workers who are well educated,
although not in software development. Conversely, the lack of software-related education does not make a
developer an end-user.

2.1 Time of composition creation

Different tools conceptualize and approach service composition in different ways. One difference concerns
the time when the composition is created. There are essentially to alternatives:

1. Use-time composition. When a user is browsing the Web, he or she can combine services in an ad
hoc manner. These are usually one-time, throwaway compositions for the particular purpose at hand.

2. Design-time composition. A user can create a service composition in advance of using it. The result
is a service artifact that is typically reusable in many similar situations later on.

In use time composition, the system typically suggests—or otherwise makes it possible to discover—other
services or data that can be combined with the data being examined. For instance, if the user is looking at a
list of restaurants that includes the addresses, the system can propose to display the locations of the
restaurants on a map.

Design time composition can be used multiple times afterwards. For example, the user can build from a map
service, a restaurant list, and the current location of the mobile device a composite service that displays ten
closest restaurants on the map centered on the current location of the mobile device. He or she can then use
the service multiple times in similar situations and even publish it so that other people can also use it.

The potential for reuse is valuable but it brings with it many difficulties inherent in programming. The
service should work in a range of future situations, instead of just in the particular situation at hand as in use-
time composition. This requires some way to abstract the relevant properties of the situation as well as use of
some notation in which the abstract service can be expressed.2

2 Below we will discuss a technique called programming-by-demonstration that can form a bridge from use-time
composition to reusable services by allowing the system to infer reusable services from use-time examples.

4

2.2 Fields of research on service composition

Services can be composed—as any programs or software systems—through ordinary programming.
However, there are at least the following active areas of research and development specifically targeted to
the creation of service compositions:

1. Service-oriented architecture (SOA). In the world of Service-oriented architecture, the concept of
Web Service is used to mean services specified to allow machine-to-machine use. There are
numerous XML-based standards developed by organizations such as W3C and OASIS to govern the
specification and use of Web Services. According to the standards, service interfaces are described
using Web Services Description Language (WSDL), messages between services with SOAP, and
service discovery using UDDI registry. For service composition there are two concepts:
orchestration and choreography. Orchestration means the specification of a hierarchical, process-like
composite service using the Web Services Business Process Execution Language (WS-BPEL)
notation. This approach is mainly targeted to business processes and it expects the component
processes to provide structured XML data through well-specified interfaces. Choreography refers to
a conversational, non-hierarchical approach for composition of Web Services. It specifies a protocol
for peer-to-peer interactions, defining, for example, the possible sequences of messages exchanged
to guarantee interoperability. It is not directly executable, as it allows many different realizations,
either through ordinary programming or through a suitable orchestration from each peer.
Choreography can be expressed with Web Services Choreography Description Language (WS-
CDL). Orchestration and choreography cannot be characterized as proper end-user methods since
WS-BPEL and WS-CDL are relatively complex specifications that include many programming
concepts: variables, loops, conditional execution, synchronization, exceptions, and so on. There are
also visual WS-BPEL tools available from providers of SOA technologies, such as IBM, SAP,
Oracle, Microsoft, and Apache.

2. Mashups. Mashups are services that combine functionality and data from multiple web sources to
help users solve tasks not originally envisioned by the authors of those sources (Lin 2009). The
mashup approach takes as the starting point all the services available in the Web, including all kinds
of user-directed services and sources in addition to the Web Services with well-defined APIs
mentioned above. There is a broad range of different kinds of approaches, technologies, and tools
developed in the mashup area; active innovation takes place both with regard to the tools and to the
actual creation of composite services. Mashups aim to utilize interesting services (Google Maps,
Craigslist, weather information, public statistics, etc.) even when the data provided by services is
unstructured—i.e., in HTML—and requires the use of information extraction techniques. When
compared to the process-oriented focus of orchestration, mashup research addresses a different
spectrum of problems ranging from information extraction to information visualization. On the other
hand, many mashups are experimental and not created for any mission-critical purposes, as might
well be the case with Web Service orchestrations. It should be noted that the field of enterprise
mashups (Hoyer, 2008) is a combination of service-oriented architecture and mashups. The aim is to
give end-users within enterprises a possibility to easily compose services for their situational needs.

3. Semantic Web Services. In the field of Semantic Web Services, the service composition problem is
seen as an automatic reasoning task. The user specifies the goals and requirements (“show closest
ethnic restaurants on a map”), and the system automatically infers a composite service that fulfils the
request using the services available in the Web. The most obvious use case for automatic methods is
mobile and ubiquitous computation, where the set of available services changes as the result of
physical mobility and composition should happen mostly without human intervention, in an
opportunistic and transparent manner. Technology for automatic composition of services comes
from the research on knowledge representation and planning algorithms within the field of artificial
intelligence. The approach requires detailed semantic descriptions of available services, either using
some ontologies or with folksonomies. Unfortunately, the problems of semantic interoperability are
difficult and they are still, to a large extent, unsolved today. Furthermore, the algorithms to combine
services with each other tend to be intractable although there has been a lot of progress in them and
small composition problems could certainly be solved.

5

The review in this report will be limited to the mashup approach, as the role of an end-user is unclear in the
other approaches. The field of mashups contains many interesting and relatively practical methods based on
the ideas generated in the field of end-user programming. In addition, neither the service-oriented
architecture nor the semantic web services approach has not been able to adapt to the fast development of the
Web nor to the social and ecosystem aspects of service composition.

2.3 Mashup patterns

Wong and Hong (2008) studied a sample of mashups to uncover patterns that might indicate requirements
for future mashup tools. The study was preliminary but nevertheless interesting. It showed that there were
many mashups that did not combine several services but merely provided a new kind of interface to an
existing service. For instance, Leaflets (getleaflets.com) are specialized versions of common web sites to run
on Apple phone, and oSkope (oskope.com) provides a visual search interface to Amazon and eBay.

The authors identified the following mashup patterns that they considered interesting with respect to future
mashup tools:

• Aggregation: Aggregate multiple web sites together or summarize sets of data.

• Alternate or in-situ use: Support new methods of interacting with data from a website or support
specialized use outside of the typical use case.

• Personalization: Use the personal information about the user or allow the user to create personalized
information, for example, lists of items of interest.

• Focused view of data: Provide indexing or categorization for the contents of a website.

• Tracking: Monitoring changes to the underlying data, e.g., new apartments in real estate listings.

2.4 End-user programming

In the field of end-user programming, one central question is what makes programming hard. Blackwell
(2002) gives three answers:

 1. Loss of direct manipulation. Direct manipulation allows cognitively simple interaction with a system:
the current status of the system is visible, a single action has a single visible effect, and the system can
be restored to previous situation. In programming the situation is almost opposite to this. The program
will be executed in the future and applied to unknown data. It needs to work in different situations.
There is thus no single situation to inspect. Operations can have multiple effects that can furthermore
be temporally and spatially distributed.

 2. Use of notation. The artifact that the programmer creates for further execution must be specified using
some notation. All notational systems are artificial, as there is no ideal or natural programming
notation. In any notation, the design choices require tradeoffs between which cognitive tasks are
facilitated and which are inhibited. In the research on end-user programming, the need to use a textual
notation with strict syntax and semantics is considered one concrete problem. Visual notations can
alleviate some of these issues but many problems still remain.

3. Abstraction as a tool for complexity. Need for abstraction is a result of loss of concrete situation. The
expression requires using some notation. According to Blackwell (2002), abstraction is a particularly
difficult aspect in programming for end-users.

6

These problems have been addressed with different kinds of end-user programming techniques. Nardi (1993)
divided the discussion into following areas: task-specific programming languages, interaction techniques in
end-user application development, application frameworks, and collaborative work practices.

In service composition approaches based on mashups, most of these are used in one form or another. In the
following we will discuss the following service composition approaches:

1. Programming-by-example: Using a particular instance of execution, input-output relations, or
existing programs as basis for creating new programs.

2. Visual programming: Replacing the textual programming notation with graphical notation. Graphical
notations usually consist of blocks and connectors.

3. Forms-based creation: Using forms, tables, assembly canvases, or other special structures to
simplify service composition. Spreadsheets belong to this category.

4. Script-based creation: Making the programming easier and more natural, e.g. through scripting.

In the rest of the report we will review several different mashup tools, each of which uses one or more of
these approaches. We have classified the tools to above-mentioned categories based on the dominant or most
visible approach. However, we first start by looking at some tools for use-time service composition, as they
do not naturally belong to any of the categories above.

7

3 Use-time service composition
In this section we will review two systems for use-time—or runtime—service composition. It should be
noted that in this context, the term “use” means the same as “browsing the Web”. Other potential use
contexts, such as many of those encountered with mobile devices, are not necessarily as natural for on-the-
fly service composition. The tools reviewed below are Intel MashMaker and Mozilla Ubiquity, both
experimental tools running as an extension of Firefox browser (see subsection 7.1).

3.1 Intel MashMaker

“Intel® Mash Maker takes mashups to a whole new level with an innovative and radical new way of
browsing the Internet. ... Instead of browsing through websites, Mash Maker's built-in technology enables
you to browse through contexts and semantics, as well as easily view information the way you want, and
presented the way you want.” – Intel MashMaker introduction on AMO3

Intel MashMaker is a web browser extension—originally for Firefox but now also available for IE—that
allows one to create mashups live as part of browsing. This is possible because the mashing up takes place in
the browser, and not on a server as is usual. For example, a user could construct a mash-up where the
favourite food listed on a friend's MySpace page would be accompanied with a button that enables a
reservation at a nearby restaurant selling that food4.

MashMaker installs as a toolbar on the browser (Figure 1). Since MashMaker suggests mashups that it can
apply to the current page as one browses it, no programming ability is necessary5. The suggestions are based
on the site content and structure in addition to using a structure/semantic model for specific websites
generated by users and stored on the server. When encountering a website for which no structure or semantic
model exists, a user can create a new one that will enable others to create mashups with that site. It is also
possible to modify the current model by adding new capabilities.6 In that way, MashMaker harnesses the
wisdom of the crowds and relies on the community to teach it about the structure and semantics of web
sites7.

MashMaker maintains a simple social network of its users. It allows users to share data, widgets, and widget
suggestions. Data can be published to friends as writable or read-only. This allows creating ad-hoc social-
networking applications (Ennals, 2007). MashMaker has user accounts, and while there is a guest user
account, it does not allow creating new mashups, rate mashups and widgets, or bookmark or showing
mashup URLs8.

Intel MashMaker is still marked as Experimental extension of Firefox. Although it offers interesting
possibilities, it has not found its audience as it has been downloaded only 264 times thus far (2/2009). It is
possible that it does not offer the functionality that people want or is not easy enough for the majority to use.
The last time Intel MashMaker extension was updated was 10/2008.

3 https://addons.mozilla.org/en-US/firefox/addon/9395
4 http://www.crn.com.au/News/61645,idf-intel-releases-mashmaker-preview.aspx
5 http://software.intel.com/en-us/articles/intel-mash-maker-mashups-for-the-masses
6 http://freegeographytools.com/2007/intels-mash-maker-another-mashup-maker-but-different
7 http://software.intel.com/en-us/articles/intel-mash-maker-mashups-for-the-masses/
8 http://mashmaker.intel.com/web/informationguest.html

8

Be that as it may, MashMaker does represent “a bit of a departure for the company,” as Jeff Klaus, marketing
director for Intel Mash Maker, admitted. While it enriches the browsing experience, it hardly sells any more
hardware.9

Figure 1 – Intel MashMaker

3.2 Mozilla Ubiquity

Mozilla Ubiquity10 is an experimental environment for use-time composition of services (Figure 2). It is
essentially a collection of easy textual commands that allow the user to look for information and apply that
information to current web page as well as other web sources.

The Ubiquity commands, for example map, look, add calendar, translate, email this to, and so on, resemble
natural language and are typed into the command interpreter at the top of the browser window. Ubiquity is
not meant just for information integration but for the whole range of tasks possible with a Web browser, such
as sending email or managing calendar. Textual commands may at first sound like an inconvenient idea and
a step back in the evolution of user interfaces. However, if we consider the idea that people are willing to
write text to move to a Web address or to make a search in the Web using a search engine, it seems natural to
think they might wish simply to tell the computer what they want it to do: show a location on a map, send a
message to someone, and so on.

An example use scenario of Ubiquity is to select a portion of the text in a normal browser window, press
alt-space to get to the Ubiquity command interpreter, and type the command “email this to alyssa”.
Ubiquity would suggest possible completions to the command, for example, “email this to
alyssa.p.hacker@mit.edu.” When the user accepts the suggestion, Ubiquity brings up a web email program
and creates a message pre-filled with the recipient address and the selected content.

An advanced user can also create new commands. There is a community forum called The Ubiquity Herd
where these commands can be shared with others. As of 3/2009, close to 800 user-contributed commands
have been published in the forum, but that number naturally includes lots of duplicates.

9 http://news.cnet.com/8301-10784_3-9921313-7.html?tag=blog.promos
10 https://wiki.mozilla.org/Labs/Ubiquity/

9

How does Ubiquity help the user in composing services? What is the added value compared to the base-line
scenario where the user copies and pastes content from one service to another? Basically Ubiquity simplifies
user’s interaction with services. With a couple of key presses the user can in a flexible manner apply other
services into the data at current page. For example, the user can translate a piece of text, show location on a
map, email the content to a friend, and so on, all without invoking translation, mapping, or email services
and without the need for copy and paste. It is easy to believe that there are users who can learn to use
Ubiquity fluently but who would find it too difficult to carry out same actions without it.

Ubiquity achieves this by hiding service invocations behind the commands so that the user does not need to
remember Web addresses or to search for available services. The user just tells the system in an abstract level
what he or she wants to do, not how to do it. Since users can create new commands and share them in the
Ubiquity community, it is possible that the coverage of commands becomes pretty extensive. However, that
possibility also creates the problem of discovering and identifying desired commands. Even the auto-
completion functionality of Ubiquity would not work well if there are numerous similar commands available.

An obvious limitation of the approach of Ubiquity is that while it supports a composition of the current page
with another service, it is not clear at all how that could be generalized to composition of multiple services,
unless all the complexities are hidden behind the implementation of a command.

Figure 2 – Mozilla Ubiquity

10

4 Programming by example
Programming by example is also known as programming by demonstration. Halbert (1984) defined it as
programming a software system in its own user interface. The user of the system writes a program by
demonstrating what the program should do on a concrete example. The system records the sequence of
actions, possibly infers a generalization of the sequence, and can perform it again or re-apply it to other
similar cases. The first system working like this was PYGMALION, written by David C. Smith (1975).

Another related meaning for the programming by example is—in contrast to demonstration of a novel
example—the versioning of an existing example. This approach can best be called example modification, and
it has become a ubiquitous strategy in end-user development (Nardi, 1998). Modification of a working
example speeds up development as it provides stronger scaffolding than when writing code from scratch
(Hartmann, 2007).

4.1 Programming by demonstration

From the perspective of the user, programming by demonstration does not require the user to edit a program
in any notation. The user works with the system in the similar way as when he or she is ordinarily
performing a task. The system is in a recording mode that captures the actions of the user, and suggests
generalizations for the actions. The mashup program is created in an implicit manner in the background,
although some systems can additionally allow the user to view and edit the program.

4.1.1 Karma

Karma (Tuchinda, 2008) is a mashup tool that enables the integration of data from multiple web sources into
a data table through demonstration. According to the model behind Karma, information integration can be
divided into the following subtasks:

1. Data retrieval. Extracting unstructured data from web pages (in HTML) into a structured format
such as a table or XML. The original data may be distributed on the page or span multiple pages.
When user clicks a piece of data to extract, Karma uses an XPath generalization scheme to find other
data items in similar role, especially data in similar position in a list (in html lists, table rows, or
behind item specific links).

2. Source modelling. Assigning attribute names for each data column to enable the detection of
relationships between the new data source and existing ones. Karma keeps repositories of previously
extracted data tables and it can suggest column names based on the values of data. For example, if
the value is an address and there is a previous data table containing addresses, Karma can recognize
the similarity and suggest the column name “Address” from the previous table also to the new data.

3. Data cleaning. Transformation of data values into appropriate, canonical format. Cleaning can also
include fixing misspellings. For example, a name written as “Hacker, Alysssa P.” may need to be
corrected and transformed into the form used in previously extracted data tables such as “Alyssa P
Hacker”. While the correct form to use is up to the user, it is essential that all data that must be
combined to use the same form. The user specifies for one or more cells what the end result of the
cleaned data should look like. Karma automatically deduces a cleaning transformation that can then
be applied to all cells in the same column.

4. Data integration. Combination of two or more data sources together. This is basically a join
operation between tables that is possible when the column names match (achieved by source
modelling) and data values are the same (achieved by data cleaning). The user fills out the empty
cells in a table by picking values or attributes based on Karma’s suggestions. Karma then infers the
correct table to join with the original one.

11

5. Data visualization. Displaying of the final data, for example, on a map, or as a table or graph. This
task is outside the functionalities provided by Karma.

The programming by demonstration is supported in a different manner in each of the steps. In data retrieval
step, Karma proposes generalizations based on lists in which data pointed to by the user resides. In source
modelling, Karma proposes column names based on previously extracted data. In data cleaning step, Karma
uses deduction to find out a correct transformation based on the examples that user has provided. Data
integration, on the other hand, is based on reasoning about the user operations to narrow the choice of which
tables to join. The user does not need to search for data sources to integrate nor know database operations.
The integration based on selection of existing data values guarantees that such exist.

Karma puts these separate techniques into a unified framework that enables end-users to build information
integration mashups in a data-centric manner without encountering code at any point. This is in contrast to
visual programming approach where the user often needs to be familiar with programming concepts, even if
presented in a visual language.

Karma’s strength is the extraction and combination of data from existing web sources. It does not, however,
support arbitrary operations with tables such as executing queries based on a table or collecting data based on
computation performed on the data (Lin, 2009).

4.1.2 Vegemite

Vegemite (Lin, 2009) is a mashup tool based on programming by demonstration, iterative and interactive
manipulation of data by the user, and mixed initiative interaction. It has been designed to support the use-
time creation of ad hoc mashups but users can also store and share the mashups created. Vegemite consists of
two main parts:

• VegeTables, a spreadsheet like tables for storing data, and

• CoScipter engine (Little, 2007) for recoding and playing back actions on Web pages.

The user interface of Vegemite is shown in Figure 3. There are three areas in the interface: current web page
on top-right, script panel (CoScripter) on the left, and data table (VegeTable) at the bottom.

The user extracts data from a web page to the VegeTable. The data extraction works by demonstration in a
manner similar to in Karma. In the extraction mode Vegemite recognizes the elements that the user is
clicking on the web page. It identifies all the possible parent elements of the clicked elements in the DOM
tree and computes a partial XPath from each parent to the clicked elements. Then it identifies for each parent
the possible other elements that could be reached with a suitable generalization of the XPath. Vegemite uses
the parent that creates most siblings to the clicked nodes as the current hypotheses for generalization. It
highlights the new elements to the user as an extraction suggestion. If the user accepts the suggestion, the
elements are copied to the current VegeTable. The suggestion is recomputed after each new click by the user.

The data extracted to the VegeTable can then further be processed using scripts. Vegemite is not limited only
to information integration but the mashups created can perform any action recordable by CoScripter on the
data. The CoScripter can be used to record most actions by a user on a web browser. CoScripter produces a
user understandable script of the operations executed and this script is then presented in the script panel
where it can be further edited. Mashups can infer additional columns to the table, send email messages, and
make calendar entries, and other activities that can happen inside a web browser. The derived information
can be computed by different services on the web. For example, in a mashup that computes distances from a
possible apartment to important places like job, schools, and hobbies, the script can visit a map web site and
insert information to compute the driving distance.

A small user study reported in Lin (2009) is based on three scenarios: determine the walkability of
apartments in a real estate listings, compute the driving distance to nearby yogurt places, and extract a certain
category of archived visa bulletins. The first two required combining two existing services and the last one
selecting data from one service. There were 8 users in the study. The results were encouraging. Of the 24

12

tasks the users were able to complete 18, failed 4, and skipped 2 due to time restrictions. There was evidently
a steep learning curve, since two of the four failures happened in the first task, and the subjects generally
struggled in that task. Three of the fours failures happened to the two non-programmers participating in the
study. Several users found the process of composing a mashup overly complex, and some reported that they
could not have been able to use the tool without instruction. Obviously, the usability of the tool needs to be
improved.

The main advantage of Vegemite over Karma is its ability to derive new information based on extracted
information and use the services available on the Web to do this, for instance, using currency converters to
create a column to calculate prices in other currencies. It is also possible to make other actions that are not
possible in information integration tools such as Karma.

Vegemite is implemented as a Firefox extension. CoScripter is also available separately as a Firefox
extension.

Figure 3 – Vegemite user interface

4.2 Example modification

Example modification is a development strategy that users have been using in script-based systems for ages.
In this subsection we review one system based on that approach, called d.mix (Hartmann, 2007).

4.2.1 d.mix

d.mix is a tool for design-time creation of mashup artefacts. It is based on the concept of example
modification, meaning that a user can take an existing service and modify it slightly to create a new service
with similar structure.

13

The key insight in d.mix is that many complex services available on the web today provide an API that can
be used to access their content and functionality. The APIs can, however, be complex and difficult to
understand and learn. When a user finds a web site that performs in a way that could also be used in another
service he or she envisions, it is difficult to connect what he or she sees and what API calls need to be made
to produce it.

d.mix uses two ways to help users take advantage of the APIs. First, it provides so-called site-to-service
maps that simply present in a visual manner which parts of the user interface have been created through
which API calls. In the Figure 4 there is an example of such map. The map allows using the surface structure
of the web as a mean to facilitate application development.

Secondly, d.mix has a server-side active wiki that hosts the scripts, and provides an environment for
authoring and sharing of source code and actual services. The active wiki uses the social structure of the Web
to facilitate service development. The ecosystem of developers and end-users can in complementary roles
create solutions and use scenarios that benefit all the participants.

The original web site does not need to provide any support for the d.mix. The active wiki maintains a
collection of site-to-service maps that have been contributed by developers. The use of d.mix takes place
through a programmable http proxy that rewrites the current web page and adds JavaScript annotations to
indicate services that can be sampled from a page—based on the site-to-service maps—and to visually
augment the services with dashed borders.

The user can add d.mix buttons—sample this and stop sampling—to the browser’s bookmark bar.
Implemented as a bookmarklet—a bookmark containing JavaScript instead of an address—the pressing of
sample this button sends the current browser location to the d.mix active wiki. This invokes the d.mix proxy
that annotates the page using its site-to-service map. The user can click on the areas with dashed borders to
select elements and send them to the active wiki. The selected elements can be parameterized and combined
into a new page.

Hartmann (2007) reports on a successful evaluation study with d.mix. The eight subjects all had previous
Web development experience and knowledge of the Ruby programming language used in d.mix. The
subjects managed to create working services in 21 out of 24 tasks.

Figure 4 – Site-to-service map in d.mix

14

5 Visual programming
Another way to give the users the freedom to create their own applications and tune them as they like is to
use an editor that has graphical components to do visual composing. Well-known visual composing software
is Repenning’s (1993) AgentSheets, which is “a substrate for building domain-oriented, visual, dynamic
programming environments that do not require traditional programming skills.” The idea behind
AgentSheets was to support the perception of programming as problem solving by having mechanisms to
incrementally create and modify spatial and temporal representations. In AgentSheets (Figure 5) this is
implemented by extending the object oriented approach with an “agents in a sheet” paradigm that consists of
a large number of autonomous, communicating agents organized in a grid, and whose look and behavior is
controlled by designers using the system to create dynamic visual environments with domain-oriented
spatial-temporal metaphors.

Figure 5 – AgentSheets User Interface.

A user study (Repenning 1991) of a real world application using AgentSheets showed that visual composing
can provide efficient means for creating and extending intelligible applications. Smith’s (1994) KidSim
application also used agents, persistent software entities dedicated to a specific purpose, in visual composing
of a game for children, but it also used example-based programming techniques for recording certain rules in
the game, for example how the character that the player controlled could move. When tested with children,
this combination worked well and the kids were able to create different kinds of games easily.

With the introduction of Web 2.0, application building has been shifting from native desktop applications to
Internet-based application that have a web interface. There are many tools that can create so called
“mashups,” collections of information or services found from the Internet. Barret et al. (1997) introduced the
Web Browser Intelligence (WBI) that could can annotate hyperlinks with network speed information, record
pages viewed for later access, and provide shortcut links for common paths, thus personalizing the user’s
web experience by joining personal information with global information to effectively tailor what the user
sees.

15

We will now discuss in more detail how two systems that use visual composing kind of methods for creating
web based applications, namely Popfly and Yahoo Pipes!, work .

5.1 Popfly

“Popfly is designed to enable non-technical users to be able to create without code, then share creations
with friends by embedding them everywhere. You shouldn’t have to write code to be able to customize
services on the Web; it should be as easy as visually ‘snapping’ together existing components. You can think
of Popfly as the ‘YouTube for applications’ where you can discover, rate, comment, and remix user-
generated applications and samples.”11

Microsoft’s Popfly, a free webpage, mashup, and online game creation and sharing environment, requires
installing Microsoft Silverlight browser plugin that enables such features as animation, vector graphics, and
audio-video playback. In addition, Windows Live ID is required. Currently in public Beta stage, Popfly
consists of Game Creator, Mashup Creator, Web Creator, and Popfly Space that has some social networking
features.

Gadgets created with Popfly can be embedded on one’s own web page(s) or in other web services that
support gadgets from outside, such as Windows Live Spaces (MSN Spaces), Facebook, Twitter, or Dapper—
or dozens of others12. In addition, these gadgets can function as Windows Vista sidebar gadget.

In addition to being used as gadgets in the Vista sidebar or being embedded on web pages and services, the
mashups, web pages and games created with Popfly are saved in each user’s Popfly Space. Public projects
that are shared can be “ripped” by other users for understanding how they function and to use as templates of
their own work.

It is permitted to create commercial applications with Popfly but some blocks—Popfly’s ready-made
components that are put together to build applications—are restricted to non-commercial use only.

In this review, we focus on Mashup Creator, as Game Creator is more complex and slightly outside of this
report, as is Web Creator, a tool for creating web pages without HTML coding.

5.1.1 Mashup Creator

Popfly’s mashup creator is based on selecting ready-made blocks and connecting them to each other. Popfly
blocks can access information from web sites, such as RSS feeds, images from Flickr, or videos from
YouTube, thus in effect functioning as middlemen. In addition, there can be libraries of various functions,
offering services such as a calculator or timer. They can also act as a display surfaces for the data accessed
by other blocks.

A Popfly block consists of block description and block code. The description tells what the block is all about,
what methods it offers, and what parameters the methods accept while the code contains the methods to be
invoked when the block is used13. The block metaphor can be likened to that of objects in object oriented
programming14.

Blocks one wishes to use are selected from categories or found by searching15. The categories are: New &
Updated, Display, Fun & Games, Images & Video, Local Information, Maps, News & RSS, Shops, Social

11 http://www.popflywiki.com/FAQ.ashx
12 http://www.popflywiki.com/FAQ.ashx
13 Walkthrough: Creating a Block with Popfly Explorer (PDF): http://go.microsoft.com/fwlink/?LinkId=106942
14 http://www.guardian.co.uk/technology/2007/oct/21/popfly
15 For the complete list of blocks available, see http://www.popflywiki.com/List%20Of%20Popfly%20Blocks.ashx.

16

Networks, Tools, Everything Else, and My Blocks & Data, the last category consisting of the blocks that the
user in question has built. Only one category can be open at one time.

Mashups are built with available blocks by dragging blocks from the left pane to the design surface or by
clicking a block on the left pane to move it to the design surface (Figure 6). The block parameters can be
adjusted by double-clicking the block or by clicking the wrench icon on the toolbar next to the block. This is
called “zooming in” in Popfly. The parameters are adjusted through form elements with the ones marked
with an asterisk being required (Figure 7). Clicking the wrench icon gets one back to the design surface
view. Another way to work on the block is through the advanced view that allows the user to “tweak” the
JavaScript behind the block.

Figure 6 – Popfly design surface with the available blocks on the left

Figure 7 – Zooming into the parameters of a block in Popfly

In order to create a true mashup, more than one block needs to be added. Some blocks are not compatible,
but the interface does not give any pre-warning about this. There is a pop-up warning after the fact that
points out why the adding of the particular block was not possible. For instance, a “display” block already on

17

the design surface cannot accommodate a second “display” block as both are used to present the contents of
the mashup.

A simple, logical pair to connect, for example, could be one’s holiday pictures from Flickr16 (requires getting
a developer key from Flickr to give to the block) and connecting this block (called unsurprisingly “flickr”)
with an image display block, such as Carousel or PhotoStack, to create a photo-showing gadget that could
then be used on one’s web page or embedded in, say, Facebook17.

The way to connect blocks is to click one block and then move the cursor to another block. The interface
shows a blue arrow to indicate that a connection will be created. The connection is established by clicking
the target block, and the blue arrow becomes permanent. The arrow can be seen in Figure 8. The connection
can be undone by clicking the blue arrow, which then disappears.

The user can search for blocks that connect with the one on the design surface by clicking the light bulb icon
next to the block (Figure 8). However, new blocks are suggested only in relation to the block whose light
bulb is clicked, and the suggestions do not take into consideration other blocks on the surface.

While many basic blocks are provided “By your friends at Microsoft”, there is a growing number of blocks
built by Popfly user community available. The blocks by Popfly personnel are identified with a white “M” in
a blue box icon (Figure 9) while a user icon (familiar from Messenger) identifies a user-contributed block.
Blocks build by Microsoft come first while the user-created blocks come below them. User-contributed
blocks come with a warning “Use at your own risk” in red. The impact of the warning may be mitigated at
least to some extent with a red heart on the right corner of the pop-out pane next to which the number of
“fans” for the block is displayed (Figure 9).

16 http://www.flickr.com
17 http://www.facebook.com

Figure 8 – Popfly shows suggestions in the left pane when the light bulb is clicked

Figure 9 – M by Microsoft versus user-built block with a warning and no. of fans

18

In addition to becoming a “fan” of a user-contributed block, other users can also comment on (and
previously rate with a 5-star scale) the user-contributed blocks. In order to do that, one must first access the
block details (Figure 10) by clicking the “i” icon next to the block, as only the number of fans is visible
without opening the Block Details. Also, when searching for a block with tags (also accessible only when
Block Details are visible), the results are listed in the order of the number of “fans”. Other users cannot add
tags freely to user-contributed blocks, as only the contributor can set tags for the block.

A mashup being constructed can be previewed inside Popfly simply by clicking the preview button. While
the design surface view does show the blocks and their connections, this does not necessarily give a clear
idea of what the final mashup would look like, and so a previewing function is a necessary part of the
process.

5.1.2 Service composition with Popfly Mashup Creator

Building mashups with Popfly’s ready-made blocks requires no programming. The interface even helps the
user to select suitable blocks to connect to each other. Of course, basic understanding of what mashups are
and some kind of idea of what one is trying to accomplish helps, but with Mashup Creator, one can build
mashups even through pure exploration. While the user can adjust the JavaScript code behind the block by
going to the advanced view when zoomed in on the block, this is not necessary even for creating rather
complicated mashups.

Users can also create blocks that others can then use. While there are basic file-editor tools for this in Popfly,
users are instructed to download Microsoft Visual Web Developer Express and Popfly Explorer plugin that
includes a block-building editor, as the tools offered in Popfly are rather clumsy for the purpose. Block-
building requires at least rudimental knowledge of JavaScript and XML although existing blocks can be
“ripped” to see how they work and how others have done it. Presentation-layer blocks can use AJAX,
DHTML, and Silverlight (XAML).

“Blocks have defined input and output parameters and operations (methods) that are used to connect them
between other blocks. Each block also has an xml metadata file that describes what the block does.”18 Users,
however, are not allowed to create custom blocks that would require passwords or developer keys because of

18 http://www.popflywiki.com/FAQ.ashx

Figure 10 – Block details in Popfly

19

the potential for abuse, and users wishing for such blocks are instructed to contact Popfly for implementing
such blocks.

Popfly provides developer’s wiki19 and other instructions and how-tos for the users, including YouTube20
videos. Furthermore, contextual help in form of built-in tutorials is displayed on the right of the design
surface in the Tutorial pane. Consequently, getting started with Popfly is easy enough.

Thus, Popfly enables users to build mashups without any programming knowledge and with little
understanding of the technologies under the hood. At more advanced levels, knowledge of JavaScript, XML,
DHTML and AJAX begins to be required, depending on what is being built. Also, familiarity with
Silverlight (XAML) is necessary for some applications.

5.1.3 Game Creator, Web Creator, and Popfly Space

Popfly Game Creator allows users to create games without any programming skills. Games can be created
starting with a game template or from the scratch with a library of necessary ingredients. Starting from a
scratch, one first chooses some actors (people, spaceships etc.) and then selects a game background. Then
one places the actors, both user-controlled one and game-controlled one(s) on the canvas. Layout having thus
been accomplished, behaviors, such as movements and shooting, can now be added to the actors. For the
user-controlled actors, behaviors are then connected to events, such as pressing of an arrow key for
movement (Figure 11) and pressing spacebar for shooting. Different projectiles can be associated with
shooting, as can be sound effects, directions (of movement) and speeds (of movement). So it goes, piece by
piece being chosen from the libraries without any need to understand coding21.

Those with JavaScript coding experience can access the scripts behind behaviors and tweak them directly at
code level. The final game is all the time visible and can be played at any time to see the game as it stands at
the moment. Thus, any effect of code tweaking can be checked instantly.

After saving, games can be exported to Facebook (or equivalent), used as a Windows Live Gadget, Vista
sidebar gadget, or shared inside Popfly. Game categories can be seen in Figure 12. One game can belong to
more than one category.

19 http://www.popflywiki.com/
20 http://www.youtube.com/
21 The whole process can be viewed at: http://www.youtube.com/watch?v=YoCjsEF5Wbo.s

Figure 11 – Selecting a key for an event

20

As the name implies, Popfly Web Creator (or Popfly Page Designer) is a tool for creating web pages and
building web sites. No knowledge of HTML is necessary. However, web page making requires Visual Web
Developer that is available after installing Popfly Explorer. Web Creator details are outside of the scope of
this report.

Each user has his or her Popfly Space, a storage space of 100 MB per user22, where the mashups, games, and
web pages are stored, and where users have their customizable profile page. There are also some social
networking features, such as “Friends” and “fans”—one can be a “fan” of a person, game, or a user-
contributed mashup block. However, the social networking features are not extensive.

5.1.4 Current state

When Microsoft’s CEO Steven Ballmer introduced Popfly at the Web 2.0 Summit with great aplomb in Oct,
2007, just 2 months after the release of Silverlight 1.0 that was to take on Adobe’s Flash23, many pundits
reacted positively24 although there were some notable naysayers as well25. Although the ease of making
mashups and later on games (Game Creator alpha was released in May, 200826) with Popfly was praised, the
system never really caught on with the public27, and now the whole project is under the threat of being
mothballed, as Microsoft is shuffling its organization amidst layoffs28.

The question to ask is why Popfly has never caught on. Is it because users were unable to use it, they had no
use for it, or never even found it? Or is it something else? Was Microsoft wrong in employing a
quintessentially programming metaphor of blocks (objects of object-oriented programming) to teach
neophytes programming basics? Perhaps non-programmers are simply not raring to program. Be that as it
may, the Popfly saga should remind all that mashing it up with users is challenging, and simply providing
easy-to-use tools alone does not guarantee success.

5.2 Yahoo! Pipes

“Yahoo's new Pipes service is a milestone in the history of the internet. It's a service that generalizes the idea
of the mashup, providing a drag and drop editor that allows you to connect internet data sources, process
them, and redirect the output. Yahoo describes it as ‘an interactive feed aggregator and manipulator’ that
allows you to ‘create feeds that are more powerful, useful and relevant.’ While it's still a bit rough around
the edges, it has enormous promise in turning the web into a programmable environment for everyone.” -
Tim O’Reilly (Feb. 7, 2007)29.

22 http://en.wikipedia.org/wiki/Popfly#Popfly_Space
23 http://www.informationweek.com/news/internet/showArticle.jhtml?articleID=202404324&cid=RSSfeed_IWK_News
24 For example, http://etech.eweek.com/content/application_development/microsoft_mashes_it_up_with_popfly.html
and http://www.usatoday.com/tech/products/cnet/2007-05-18-microsoft-popfly_N.htm
25 http://www.guardian.co.uk/technology/2007/oct/21/popfly
26 http://www.informationweek.com/news/internet/webdev/showArticle.jhtml?articleID=207500450
27 http://blogs.computerworld.com/popfly_never_caught_on
28 http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9126718
29 http://radar.oreilly.com/archives/2007/02/pipes-and-filte.html

Figure 12 – Game categories in Popfly

21

O’Reilly certainly was not the only one to welcome Yahoo Pipes with enthusiasm30. Yahoo Pipes was born
as a public beta in Feb. 2007, and has continued to attract increasing numbers of users.

Yahoo Pipes offers a visual drag-and-drop environment for building mashups that aggregate web feeds, web
pages, and other services without having to write one line of code of any kind. The basic blocks—modules—
are provided by Yahoo Pipes but the Pipes—the resulting mashups—can be shared, cloned, and their sources
viewed if the maker has made it public. The cloned Pipes can be use as modules, which is as far as Yahoo
Pipes go in allowing users to contribute modules. Thus, all the underlying modules are by Yahoo, and users
can only contribute different combinations of them spiced up with different parameter settings (including
which feeds to use). While this increases the security of the blocks—and in that way is comparable to
Popfly’s policy of not allowing user-contributed blocks that would require passwords or developer keys—it
might stifle some user creativity.

While no coding whatsoever is involved, the vocabulary and – to an extent – the underlying metaphor of the
Pipes come from the UNIX world. The “pipe” idea itself appears to come from the UNIX world where
pipes—“|”—are used to combine data sources and to perform actions on the data31. Having basic UNIX lingo
down certainly helps decipher the functionalities offered by the modules.

While the resulting mashups can be used as such, Pipes is rather a data mashup tool to provide mashed up
content to be used in other applications rather than a complete Web Mashup builder32 for creating standalone
applications, and so the pipes built with it can also function in the background of other applications or
services, for example as a source of a Twitterfeed33.

Yahoo Pipes comes with clear tutorials and documentation, and being able to start from existing pipes to
figure out what makes them tick helps as well. Although the environment might take some getting used to34,
there is really no reason why anybody could not build mashups with Yahoo Pipes with some perseverance.
The question is, of course, how much perseverance Joe Blow has. The answer to that question tells how
widely it will be used.

5.2.1 Service composition with Yahoo Pipes

Yahoo Pipes visual editor, a JavaScript authoring tool, consists of three parts: Library (on the left) that lists
available modules (grouped under headings by function), your saved pipes, and your favorite pipes from
other users, Canvas (the main area) where the pipes are assembled and tested, and Debugger (bottom) that
lets one see the output of the active module at any stage of building a mashup (Figure 13). Library and
Debugger panes allow resizing.

30 For instance, http://jeremy.zawodny.com/blog/archives/008513.html, http://www.mattcutts.com/blog/review-yahoo-
pipes/, and http://radar.oreilly.com/archives/2007/02/yahoo-pipes-the.html.
31 http://radar.oreilly.com/archives/2007/02/pipes-and-filte.html and http://en.wikipedia.org/wiki/Yahoo_Pipes.
32 http://en.wikipedia.org/wiki/Yahoo_Pipes
33 http://uk.techcrunch.com/2009/02/02/as-snow-hits-the-uk-the-twitter-mashups-storm-in/
34 http://lifehacker.com/software/feeds/geek-to-live--create-your-master-feed-with-yahoo-pipes-235726.php

22

Figure 13 shows the Yahoo Pipes visual editor with Library on the left listing the available modules, Canvas
where the pipes are assembled, and Debugger at the bottom showing the output of the active module, in this
case Pipe Output, as indicated by its orange colour. This pipe takes world news from Chinese language news

from Xinhua (Fetch Feed module) and translates the item titles into English (Loop module with Translate
module inside of it). The results then go through Union module (unnecessary here as no other sources are
available to be combined with the Xinhua content) into the Pipe Output module, and the results are displayed
in the Debugger.

The available modules listed in the left are grouped by their functionality. Each module performs a single,
specific function, such as fetch a feed (Fetch Feed under Sources), sort (Sort under Operators), or breaking a
string by a token (String Tokenizer under String).

Many modules have parameters or input fields that can be filled out like any form fields. For instance, the
Fetch Feed module takes as a parameter a feed URL (Figure 14). Sometimes the number of the parameter
instances can be increased. The plus sign next to the parameter name is clicked to add another instance of it.

Some modules accept other modules as parameters. Loop module is a good example of this. It loops the
selected part of the source feed and performs the action that the added module defines on it. Figure 15 shows
how the Loop module indicates with a rectangular broken line that it is ready to accept the Translate module
being dragged to the canvas. The rectangle turns red when the module is ready to be dropped in and Figure
16 shows the Loop module when the Translate module has been dropped inside of it.

Figure 13 – Yahoo Pipes visual editor

Figure 14 – The module Fetch Feed takes the URL of the feed as a parameter

23

The module shows the parameter fields when expanded (default when dragged to the canvas). If contracted,
they only show the title bar and the pipes. Collapsing an expanded module and expanding a collapsed
module are both done by double-clicking the title bar. In addition, the modules have the standard maximize
box in the top-right corner.

As the names of the modules show, Yahoo Pipes is “not entirely for the faint of heart”, as Tim O’Reilly puts
it succinctly35. Releasing the true power of Yahoo Pipes requires some understanding of programming and
UNIX terms. While figuring out what “fetching” and “sorting” might be all about does not require a Ph.D. in
computer science, Joe Blow might have harder time with String Regex, String Tokenizer, or Union. The
tooltips do help, such as “Merge one or more feed to create a new one” for Union, but the vocabulary used is
both the strength and downfall of the Pipes. For those familiar with the lingo, everything is crystal clear and
the vocabulary is empowering, but for those not familiar with it, it can further mystify already difficult
concepts. (No wonder that the old UNIXheads and technically oriented pundits welcomed the Pipes with
such fervor36...)

Having one’s saved pipes and one’s favourite pipes from other users available in the Library means that one
can study other pipes to see what makes them tick in addition to being able to use old projects as building
blocks for new, more complex projects as well as across multiple projects.

The saved pipes that you drag onto the canvas are known as subPipes. They behave like regular modules
with an addition of an “open” link on their top bar that opens the module to a new tab in the editor where it
can be edited like a regular Pipes project. As mentioned, SubPipes are the only way for users to make and
contribute modules.

The modules are dragged and dropped—clicking on the arrow to the right of the module name also works—
from the Library onto the Canvas. They are wired together by “pulling” pipes from output terminals to input

35 http://radar.oreilly.com/archives/2007/02/pipes-and-filte.html
36 For example: http://www.mattcutts.com/blog/review-yahoo-pipes/,
http://jeremy.zawodny.com/blog/archives/008513.html, and http://radar.oreilly.com/archives/2007/02/yahoo-pipes-
the.html.

Figure 15 – Visual indication of a possible drop target

Figure 16 – The Translate module dropped into the Loop module

24

terminals: Left-click an output terminal and hold the mouse button down while moving the cursor (that has
changed into a four-arrow cursor) across to an input terminal. Input terminals are on top of the modules and
output terminals below them. When pulling a pipe, there is a visual pipe being pulled and that pipe will
remain visibly connecting the modules. Furthermore, when activating an output terminal, the terminals that
are ready to accept the pipe shine orange, thus providing visual aid to the user (Figure 17).

Holding a cursor over a terminal will show what kind of data it receives or emits. In addition, if there is a
pipe connected to the terminal, a scissor icon appears on a mouse-over. The scissors also appear if a terminal
with a connection is clicked. The pipe is deleted by clicking the scissor icon (Figure 18).

The Debugger at the bottom pane allows previewing the output of the active module at any stage of work. By
moving the cursor over the debugger tab on the right side of the Debugger, you can change which modules’
output to see (Figure 19). To view the ultimate output, view the output of the Output module. Clicking the
“refresh” link makes sure that one sees the current situation.

Clicking the small triangles on the left side of the debugger allows one to examine in detail the output
content (Figure 20).

Figure 17 – The terminals that are ready to accept the pipe shine orange

Figure 18 – Mouse-over for a scissor to sever the connection

Figure 19 – The output of the Union module with the tab for changing the active module opened

25

When a pipe is ready, it can be saved by using the “Save” button in the upper right corner of the Canvas
pane. If you choose to publish your pipe, it becomes part of the pipes directory that is accessible by all users.
Published pipes can be cloned and used as subPipes. (For instruction on how to share and publish a pipe but
keep its inner functioning private, see: http://jalaj.net/2009/02/10/how-to-create-private-yahoo-pipes/.)

To run the pipe, one can go to the pipe list page (Back to My Pipes link on top of the Canvas pane) and
choose a pipe to run or click directly Run Pipe… link above the Back to My Pipes link (these links are
located above the canvas area). This is also where one can publish (and unpublish) pipes.

5.2.2 Discovering and cloning pipes

Discovering relevant or interesting pipes is challenging, as there are tens of thousands of public pipes37. The
browsing pipes section offers a keyword search with a twist to help finding relevant pipes. The keyword
search can be refined by adding Formats (6 possible ones), Tags (98 possible ones), Sources (99 possible
ones), and Modules (44 possible ones)38. Figure 21 shows a search made with one Tag (flickr) and one
Modules (sort) added to augment the search.

37 For instance, Fetch module had been used in 29,330 pipes by Feb. 20, 2009.
38 The situation on Feb. 19, 2009.

Figure 20 – One of the titles opened for further details

26

On a pipe page, the pipe can be cloned or its source viewed. In addition, there is a lot of other information
available about the pipe. Cloning means that the pipe is included in one’s My pipes list in the visual editor
and can thus be used as a subPipe, and viewing source means that the pipe is opened in the visual editor as
modules connections, not as source code.

5.2.3 The current state of Yahoo Pipes

While most technical pundits welcomed Yahoo Pipes with enthusiasm, there were also naysayers. While one
may question if Yahoo Pipes really can turn “the web into a programmable environment for everyone”39
because of the need to understand the underlying concepts and the UNIX vocabulary—even O’Reilly admits
that “it's not entirely for the faint of heart”40—Tim Anderson of IT Week41 pointed to an even more
fundamental issue with Yahoo Pipes. He argues that the core problem is that Yahoo Pipes does not “address
the core problem of the service-oriented web: the business model. Participating in mashups works well for e-
commerce sites like eBay or Amazon, because it drives sales, but that model fails for other kinds of
services.”42

He sites as an example how Google “withdrew its Soap search API in favour of a JavaScript widget that
users can embed on their sites. The likely reason is that Google gets no benefit from programmatic search
access, whereas the widget gives Google full control of a little corner of the host web site.”43

In a way, Yahoo Pipes is in the same position as Yahoo’s Babel Fish which is a free service that offers no
API because it is difficult to “monetise”44. Yahoo Pipes does not lend itself easily to monetization, either,
and Anderson argues that “no business model means no long-term future.”45

Just like Popfly appears poised to go down as Microsoft reshuffles its organization46 as the current recession
continues, one can question the long-term viability of services that do not have business models for

39 http://radar.oreilly.com/archives/2007/02/pipes-and-filte.html
40 http://radar.oreilly.com/archives/2007/02/pipes-and-filte.html
41 http://www.itweek.co.uk/
42 http://www.computing.co.uk/itweek/comment/2185589/yahoo-pipes-cracked
43 http://www.computing.co.uk/itweek/comment/2185589/yahoo-pipes-cracked
44 Yahoo’s Kent Brewster according to http://www.computing.co.uk/itweek/comment/2185589/yahoo-pipes-cracked
45 http://www.computing.co.uk/itweek/comment/2185589/yahoo-pipes-cracked
46 http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9126718

Figure 21 – A search specified by the tag "flickr" and module "sort"

27

generating profits as Yahoo seems to be facing its own internal revamping47. Yahoo Inc. Chief Executive
Carol Bartz, who replaced company co-founder Jerry Yang Jan. 13, 200948, is dealing with a situation where
Yahoo swung to a loss in the last quarter of the last year49. As the flagging economy is crippling the online
advertisement sales, and Yahoo is struggling to keep up with Google in the online search market50, drastic
measures might be expected.

It is both interesting and educational to contrast Popfly and Yahoo Pipes with iGoogle’s gadgets. Popfly and
Yahoo Pipes are easy-to-use tools that require next to no programming knowledge and are aimed at users,
but neither has a real monetization model. iGoogle gadgets, on the other hand, require more knowledge and
are aimed at both content providers and users but that have a clear business model behind them.

Last but perhaps not the least it is worth to mention that one strength and weakness of Yahoo Pipes is that it
is at least currently a one-trick pony. One can make mashups with it and that is that. This is a weakness as it
hinders monetization and does not allow wide areas of use, but it is also a strength in the sense that it
becomes easy to learn and that it does that one thing very well indeed.

47 http://www.reuters.com/article/technologyNews/idUSTRE51K1FV20090222
48 http://en.wikipedia.org/wiki/Carol_Bartz
49 http://www.marketwatch.com/news/story/Yahoo-CEO-plans-major-overhaul/story.aspx?guid={756D7C86-8B76-
44EA-9D69-E65A09DF2735}
50 http://www.marketwatch.com/news/story/Yahoo-CEO-plans-major-overhaul/story.aspx?guid={756D7C86-8B76-
44EA-9D69-E65A09DF2735}

28

6 Form-based creation
Visual programming requires a complex graphical editor to manage the structure of the program and the
relationships between the components. The components are viewed from outside and connected with each
other using a graphical notation. The user works from an operation-centric view and often needs to
understand basic programming concepts although the notation may be easier to work with than with ordinary
programming languages.

In GUI assembly tools a composite service is created from widgets—representing different web sources and
services—that are laid out on a canvas. User works from a data-centric view and does not necessarily need to
understand any programming. The user sees an explanation and example of what the widget will be like. He
or she then simply fills in the form data and has a ready-made widget to include on the canvas.

In practice, there is little emphasis on the connections between components. Rather, the resulting service
composition resembles a portal. The aggregated content is represented side-by-side, in a “salad-bar” style.
This is in contrast to the “melting-pot” style of proper mashups where different components are rather put on
top of each other—like locations on a map—or mixed with each other like tables whose data is gathered
from several different sources.

However, the dashboard-style systems are hugely popular when compared to the proper mashup tools.
Moreover, it is foreseeable that techniques to connect services on a canvas will be available in the future. For
these reasons we will review two GUI assembly tools where the canvas is a web page: iGoogle and Netvibes.

6.1 iGoogle

“You can easily make your own page in 30 seconds. You can add different tabs for the areas that you are
interested in. For example, my iGoogle account holds tabs for my favourite blogs, politics, news headlines,
cooking, photography, international publications and more! My homepage offers Map Quest, YouTube,
weather updates, quotes of the day and a space for taking notes. I have RSS feeds for everything that I like to
read and see on a normal basis, and it all lands in one location. The best part is decorating your iGoogle
account. I feature different artists on every tab, and it really perks up my day.” - Amanda (February 3,
2009)51

Launched in May 2005 and renamed in April 2007, iGoogle (formerly known as Google Personalized
Homepage and Google IG) is an AJAX-based start-page that can be customized with themes and gadgets. In
addition to using the available ones, users can make their own gadgets and themes as well. iGoogle is now
available in 42 languages and over 70 country domain names52.

The iGoogle gadgets—typically simple HTML/XML and JavaScript mini-applications that can be embedded
in web pages53—are similar to those on Google Desktop, and some, developed with Universal gadgets API,
work in both54 (at least with minor changes55). In addition to iGoogle and Google desktop, these gadgets can
also run at least in Google Maps and Orkut in addition to it being possible to embed them in any website56.

While some are suggested as default when signing up (Figure 22), iGoogle start-page gadgets can be freely
added and deleted.

51 http://agwired.com/2009/02/03/do-you-igoogle-i-do/
52 http://en.wikipedia.org/wiki/Igoogle
53 http://code.google.com/apis/gadgets/index.html
54 http://www.google.com/webmasters/gadgets/guidelines.html
55 http://code.google.com/intl/zh/apis/gadgets/
56 http://code.google.com/intl/zh/apis/gadgets/

29

Gadgets can be re-organized on the user’s iGoogle page by drag-and-drop. When the mouse cursor is on the
top bar of the gadget, it changes to a four-arrow pointer to signify that the gadget can be moved. When
moving the gadget, the interface gives feedback by showing where the gadget would be placed if dropped
right now. In addition, the gadget becomes semitransparent and follows the rectangle (Figure 23). However,
the drag-and-drop model does not work properly when trying to drag a gadget to an area that is not visible on
screen.

The gadgets do not report on their state, which can be bewildering for users. For instance, when the Iltalehti
feed gadget no longer was able to update the feed, it had no mechanism for telling the situation to its users.
Furthermore, incompatible changes in the feeds can lead to undeletable gadgets, since the gadget’s menu is
not accessible in error state. The only way to get rid of it was from the canvas view of iGoogle.

As of July 2008, Google rolled in a left navigation bar that listed all the gadgets on the page. The new
interface also enabled using tabs: As the number of gadgets one has grows, it makes sense to group them by
themes or topics instead of having one mile-long page (Figure 24).

Figure 22 – Gadgets initially suggested by iGoogle

Figure 23 – Drag and drop in process

30

When adding a tab, iGoogle wants to suggest gadgets for it based on the name given to it with “I’m feeling
lucky” feature familiar from the Google search engine (Figure 25). If the user does not unselect the “I’m
feeling lucky” checkbox (which is selected by default), iGoogle simply opens the new tab with gadgets
already in it instead of giving a list from which to select as when signing up. The gadgets on the tabs can also
be dragged and dropped into other tabs.

The list of gadgets on the tabs on the left navigation bar also makes it easy to move into full-screen view of a
gadget, known as “canvas view”, a feature added in October, 200857. Until then, iGoogle had been all about
“quick, at-a-glance access to the information”58. Now much richer content is possible. Instead of only
checking your Gmail inbox on iGoogle, now it became possible to use different features of Gmail directly on
iGoogle. Likewise, watching videos and playing games is easier in canvas view. Mini-applications can be
watched full-screen inside iGoogle, as can an entire website “with ads and all”59.

57 http://igoogledeveloper.blogspot.com/2008/10/big-canvas-big-opportunity.html
58 http://igoogledeveloper.blogspot.com/2008/10/big-canvas-big-opportunity.html
59 http://www.techcrunch.com/2008/10/16/igoogle-goes-wide-introduces-canvas-pages/

Figure 24 – iGoogle tabs

Figure 25 – iGoogle suggestions for gadgets based on the name of the tab

31

In effect, iGoogle becomes more than a start page from which to spring somewhere else: Now users can stick
around and “explore their personalized content without leaving iGoogle”60. The benefits to Google are clear.
It is no surprise, consequently, that Google sees the canvas view as increasing the potential to use iGoogle as
a “distribution mechanism”61 that gadget providers can “monetize”62. Some content providers fight this
iGoogle-centricity by having the clicked headlines open in their own websites while others have embraced
the concept and use iGoogle as a new way both to distribute their content and advertisements (Figure 26).

As it is, advertisement is beginning to pop up inside the gadgets as the developers are looking to profit from
their work. In addition to individual gadget developers placing Google’s AdSense ads in their gadgets,
Marissa Mayer, Google’s VP of search products and user experience, says that “some companies who
already have established business models, [are] really using Google Gadgets almost like a form of an
advertisement. It’s a distribution mechanism. If you’re the NYTimes or Netflix, you might not be a user’s
homepage. But now you have a place on their homepage. Your brand is in front of that user every day...
[Additionally] we’re starting to see real business models in other gadgets. The most successful gadgets
actually have tens of millions of pageviews a month.”63

On the negative side, the interface upheaval of adding the left navigation bar, canvas view and tabs, was not
universally welcomed, as such headlines as iGoogle personalises personal pages on other people's behalf64
and iGoogle Users iRate About Portal's Changes65 indicate. Part of the PR debacle was caused by Google’s
insensitive handling of the testing, with users assigned to test groups without an opt-out and without a
warning or information how long the test would last66. The result of forcing changes on people is the
appearance of such devices as a Firefox extension called iGoogle Tab Remover that, well, removes the
iGoogle tabs from the left67.

While Google might be big enough to take this kind of criticism on the stride, the rest of us lesser mortal

60 http://www.techcrunch.com/2008/10/16/igoogle-goes-wide-introduces-canvas-pages/
61 http://vator.tv/news/show/2009-01-08-igoogle-to-add-chat-and-become-more-social
62 http://igoogledeveloper.blogspot.com/2008/10/big-canvas-big-opportunity.html
63 http://vator.tv/news/show/2009-01-08-igoogle-to-add-chat-and-become-more-social
64 http://www.theregister.co.uk/2008/09/01/google_personal_homepage_brouhaha/
65 http://www.informationweek.com/news/internet/google/showArticle.jhtml?articleID=211201740
66 http://en.wikipedia.org/wiki/Igoogle
67 http://www.washingtonpost.com/wp-dyn/content/article/2009/02/13/AR2009021302823.html

Figure 26 – iGoogle canvas view

32

may not be, as Kevin Rose, founder of Digg.com68, found out in the DVD code brouhaha when a user revolt
led him to post the code in his blog after digg.com had tried to remove it from the site69. Even Facebook has
been forced to bow to user demands70. The likely lesson here is that in making drastic changes, one needs to
engage the users instead of dictating to them.

In the beginning of 2009, Google introduced a theme creator with which users can build their own themes71.
While building themes was possible earlier on, too, using Google’s API and then submitting the theme to the
design gallery or with 3rd party tools, such as igThemer that let less technically savvy users create themes72,
the new tool brings theme-building to everybody.

Themes are templates that determine how iGoogle looks like. The image on the top bar is an important part
of a theme. Each tab can have its own theme. Themes can change according to the current time of the time-
zone or weather. (One theme, Theme of the day, circulates different themes, which can lead to interesting
situations, as one anonymous user comments: “…I was at a business conference the other day and to my
surprise there were half naked women on my start page.”73)

6.1.1 Discovering gadgets in iGoogle

Finding gadgets in iGoogle is strongly based on recommendations. When signing up, some suggestions are
made (Figure 22). Also, when adding a tab, gadgets are added to the tab automatically unless the user
unchecks the “I’m feeling lucky” feature (Figure 25). In addition, when a gadget is added, a link to
recommendations based on the addition is displayed (Figure 27). However, the recommendations
occasionally seem to have nothing to do with the added gadget or iGoogle is unable to make
recommendations: “Sorry, there are no recommendations available for…” If all this is not enough, iGoogle
also has the “You might also like…” link available in the gadget menu, in the extra space on the right if
viewing a non-expanding gadget in canvas view mode, and the gadget page74 also has “you might also
like…” suggestions.

Figure 27 – Suggestions after adding a gadget

The options to recommendations for finding gadgets are searching with keywords and browsing gadgets by
categories (All categories, News, Tools, Communication, Fun & Games, Finance, Sports, Lifestyle,
Technology, and Politics) that can be sorted by Hottest, Most users, and Newest. With thousands of gadgets,
finding things from the categories is not very efficient, thus the need for extensive use of recommendations.
Furthermore, there are many very similar or practically identical gadgets going around, and the current
interface does not really help in choosing between them.

68 http://www.digg.com
69 http://www.sfgate.com/cgi-
bin/article.cgi?f=/c/a/2007/05/03/MNG4RPK18J1.DTL&hw=User+revolt&sn=001&sc=1000
70 http://news.bbc.co.uk/1/hi/technology/7896309.stm?lss
71 http://news.cnet.com/8301-17939_109-10143715-2.html
72 http://news.cnet.com/8301-17939_109-10143715-2.html
73 http://www.google.com/ig/directory?type=themes&url=skins/sampler.xml
74 The page that introduces the gadget in detail, such as
http://www.google.com/ig/directory?type=gadgets&url=www.artbible.info/art/artoftheday.xml.

33

As will be discussed, iGoogle is currently placing greater emphasis on social side of things, and so there are
ways to learn about potentially interesting gadgets through one’s friends. The gadget menu has an item for
sharing the gadget (Figure 28).

In addition to sharing individual gadgets, users can share whole tabs with any number of gadgets in them
with the “Share this tab” option in the tab menu (Figure 24). The sender can choose which gadgets to include
in the shared tab and whether or not to include his or her current setting. Of course, there are also numerous
sources on gadgets on the Internet that give recommendations and tips about them75.

6.1.2 Building gadgets

There are two ways to create gadgets in iGoogle: The easy way with little choices and the hard way with
plethora of options and imagination as the only limit. The easy way is to click the “Add stuff” link—there is
no direct link to making gadgets on iGoogle start-page—and then click “Try now” in Create your own
gadget area on the right. The next page offers ready-made wizards for making specific types of gadgets, and
making the gadget is “as easy as filling out a simple form”76 (Figure 29). No programming knowledge
whatsoever is required. On the other hand, the gadgets made this way offer no feed connectivity or mashup
possibilities. The seven types available are introduced below (the texts are directly from
http://www.google.com/ig/gmchoices):

• Framed Photo: You love your pics. So will your loved ones. Share a series of your favorite photos
with friends and family.

• GoogleGram: Grace that someone special's home page with a gift of flowers or candy whose
messages change every day.

• Daily Me: What are you doing? What's on your mind? Share your day's quotes, links, and ideas with
everyone in your life (Figure 29).

• Free Form: Channel and display your creativity with this all-purpose gadget that lets you meld text
and image in any way.

• YouTube Channel: Are you the one who always finds the good stuff on YouTube? Create a video
channel for your friends.

• Personal List: With this gadget you can publish your own personal "Top Ten" or simply send a set of
chores to your sweetie.

• Countdown: Share a countdown to an upcoming holiday, a friend's party or your wedding
anniversary.

75 For instance, http://googlegadgetblog.com/
76 http://www.google.com/ig/gmchoices

Figure 28 – Sharing a gadget

34

Figure 29 – Wizard for Daily Me

The hard way is to make gadgets using the Google Gadget API with HTML, XML, and JavaScript. Also,
Flash and Silverlight content can be embedded in gadgets. iGoogle gadget tutorial claims that all that is
needed to build gadgets is “a basic understanding of HTML” as the tutorials will teach one all the XML one
needs—although for “more sophisticated gadgets,” learning some JavaScript becomes necessary77. The
extensive documentation available online through iGoogle naturally includes the Gadget API reference for
more advanced practitioners: http://code.google.com/intl/en/apis/gadgets/docs/reference/.

Besides the core gadget API, Google has the following gadgets API extensions78:

• OpenSocial
o Utilize functions for creating social gadgets.
o Available for gadgets on containers that support the OpenSocial API, such as Orkut and the

iGoogle sandbox.
• Maps

o Add geo-targeted functionality by overlaying your data on maps.
o Available for gadgets on Google Maps (Mapplets).

• Finance API
o Retrieve and display stock information from Google Finance.
o Available for gadgets on iGoogle.

• Ads
o Create gadgets that serve as dynamic, rich-media advertising.
o Available for gadgets running via Google AdSense.

• Calendar
o Build gadgets than run within a calendar and display time-based information.
o Available for gadgets on Google Calendar.

• Spreadsheets
o Build gadgets that interact with the content of a spreadsheet.
o Available within a spreadsheet, or on another web page that supports gadgets, such as

iGoogle.

77 http://code.google.com/intl/en/apis/gadgets/docs/legacy/gs.html
78 http://code.google.com/intl/en/apis/gadgets/docs/overview.html

35

Thus, the level of desired sophistication determines the level of programming requirements. Building Flash
or Silverlight applications is, of course, another world.

While gadget files can be written with any text editor, iGoogle also has Google Gadgets Editor (GGE)
(Figure 30) that allows the developer to preview the gadget and that provides a selection of example gadgets
with which to start creating and that can be added to one’s iGoogle page—although the examples are not
included in the gadget version of GGE. GGE is used to write legacy gadgets, that is, environments that do
not yet support the OpenSocial API79. For developing gadgets with the OpenSocial API, Google is preparing
iGoogle developer sandbox that is currently only open to developers.

Gadgets are public by default80. While making them private is possible, it requires extra effort and how to do
it is not highlighted in the tutorials.

6.1.3 Popular gadget types in iGoogle

In order to understand what gadgets have become popular among iGoogle users, we went through all the
available 4948 gadgets, distributed on 707 pages (between Feb. 16 and Feb. 13, 2009). Seventy gadgets had
over 100,000 users.

When these gadgets are grouped by their categories (Table 1), we notice that category News totally dominate
the scene. In fact, 49 of the 130 gadgets—more than one third—fell into the news category. Another major
category was finance-related gadgets, 10 out of 130. These two categories overlapped by three financial
news gadgets. With news and finance-related gadgets, as with many others, users were reduced to passive
consumers of information. In fact, only 20 out of 130 gadgets were about enabling users to do something
(Table 2).

Very few of the gadgets were mashups of any kind; most of them simply showed feed information from one
source. In fact, all but about 26 gadgets were made by a content provider itself81. The 26 gadgets were

79 http://code.google.com/intl/en/apis/gadgets/docs/dev_guide.html
80 http://code.google.com/intl/en/apis/gadgets/docs/basic.html

Figure 30 – Google Gadget Editor

36

developed by 13 developers, out of which 5 are likely to be normal users. Others are by companies or people
clearly affiliated with a company that either builds gadgets or provides content.

Table 1 – Left: Popular gadgets grouped by categories. Right: News gadgets by categories.

Table 2 – Gadgets where user is not a passive consumer of information.

Dictionary/translating 6

Games 3

Telephone directory services 2

Currency converters 2

Yellow pages 1

Calendars 1

Wikipedia search 1

Craigslist search 1

To-do list (Arabic) 1

On-screen keyboard (Arabic) 1

Calculator 1

In summary, the popular gadgets mainly get their content from a single source and are typically developed
by the company that provides the content. Majority of the other developers are companies or people from
companies that are directed related to content providing or ICT. Google itself was behind 16 of the 130
gadgets (over 10%).

If the iGoogle gadgets give any indication, getting the content providers involved or at least making it easy to
create gadgets that can use feeds provided by the major content providers is essential for success. On the
other hand, is iGoogle really about enabling users to create gadgets or about building a new way to distribute
content? Marissa Mayer, Google’s VP of search products and user experience, speaks of iGoogle as a
“distribution mechanism”82, and when evaluating the lessons learned from iGoogle, this has to be born in
mind.

81 Game and virtual pet makers were considered to represent their own content. Furthermore, this number is more an
educated guess than exact fact, as inducing the situation in some cases was not simple. However, it is accurate enough
to allow us to see the trend.
82 http://vator.tv/news/show/2009-01-08-igoogle-to-add-chat-and-become-more-social

News 35
Weather 7
Dictionary/translating 6
TV program 5
Sports news 5
Jokes 5
Virtual pet 4
Stock market 3
Financial/business news 3
Blogs 3
Quotes 3
Games 3

News 35

Sports news 5

Financial/business news 3

Celebrity news 2

Movie news 1

Music news 1

Weird news 1

PC and console news 1

37

6.1.4 Creating themes

iGoogle home page advertises Themes for causes and Artist themes (Feb. 18, 2009) but other themes must be
found from behind the “Add stuff” link. In addition, like gadgets, themes can be recommended from the
theme page to other users. The following page has a tab for themes and on the right a section called Create
your own theme. The tool for creating themes is similar to the tool for creating gadgets with a form (Figure
31). It lets you download photos, crop them to the size and determine colors with ready-made palettes. The
ready themes are then published and shared. A similar tool is expected to hit Gmail this year83.

However, it is possible to create themes with more freedom by defining the theme in an XML file that
contains key-value pairs for the attributes, such as background and text color84. Using it requires signing up
for the sandbox that is currently only open to developers. While a theme can be simply a color setting for the
header background and iGoogle logo, it can also include multiple images, dynamic behavior, and be
localized for different countries and languages.

A theme has one or more skins, quintessentially a collection of header image, logo, and color settings. To be
dynamic, a theme needs to have more than one skin that then can change according to the time of the day. A
theme can be localized by including localized metadata fields for particular languages and countries.

6.1.5 Social future

Even if social networking has not been the strong area for Google thus far, Orkut notwithstanding, this is
poised to change85 as iGoogle is getting social through its own data portability system, Friend Connect86
(Figure 32). Social features are beginning to pop up in iGoogle gadgets now that developers have
OpenSocial API available. For example, “the My Google Book Search Library gadget, which lets you search

83 http://news.cnet.com/8301-17939_109-10143715-2.html
84 http://code.google.com/intl/en/apis/themes/docs/dev_guide.html
85 http://vator.tv/news/show/2009-01-08-igoogle-to-add-chat-and-become-more-social
86 http://www.techcrunch.com/2008/05/12/google-confirms-friend-connect/

Figure 31 – Creating a theme

38

books and create a personal digital library, now asks people who have OpenSocial profiles if they want to
allow the gadget to ‘know who I am and access my profile’ and ‘post updates to my Friends group.’”87

With canvas views, iGoogle appears poised to be “taking on more of the trappings of a social network”88. All
that is missing is a buddy list and activity feed89, but these could be available through Gmail contacts—“we
know your contacts” says Mayer, Google's VP of search products and user experience—and possible
voyeuristic feeds90, such as Google Latitude, which is already now available as a gadget iGoogle. Another
sign that shows the coming of the social networking is that iGoogle is about get a chat feature like the one in
Gmail91.

As to the social future of iGoogle, Mayer stated Jan. 9, 2009, that “It certainly is conceivable as we introduce
chat and we introduce open social and make iGoogle an open-social container, that means developers would
have access to some of your friend information.”92

Social networks appear poised to be at least one of the—if not the—foundation of the future advertisement
online. They give both better financial rewards and elicit bigger conversion rates than traditional banner
advertisement93. For example, SocialMedia, a social advertisement company, claims that “people are 200
times more likely to respond to the social ad.”94 Facebook will face growing competition from Google and
others in the fight over the advertising dollars in the tightening economy95.

In addition, tracking users through such platform as iGoogle is more efficient than through IP numbers or
cookies because a computer may be used by many people but an iGoogle account is typically private. This
leads to being able to profile users better. The better profiles translate into better search results and better
targeting of advertisements.

As an example of profiles improving search results, Mayer sees knowing enough about users translating into
not needing to type long queries: “‘when you type things into the search box it basically augments your

87 http://www.washingtonpost.com/wp-dyn/content/article/2009/01/19/AR2009011901072.html
88 http://www.washingtonpost.com/wp-dyn/content/article/2009/01/19/AR2009011901072.html
89 http://www.washingtonpost.com/wp-dyn/content/article/2009/01/19/AR2009011901072.html
90 http://vator.tv/news/show/2009-01-08-igoogle-to-add-chat-and-become-more-social
91 http://vator.tv/news/show/2009-01-08-igoogle-to-add-chat-and-become-more-social
92 http://vator.tv/news/show/2009-01-08-igoogle-to-add-chat-and-become-more-social
93 http://news.cnet.com/8301-10784_3-9974220-7.html and http://www.forbes.com/2007/11/06/facebook-ad-platform-
tech-internet-cx_wt_bu_1106techfacebook.html
94 http://news.cnet.com/8301-10784_3-9974220-7.html
95 http://money.cnn.com/2009/02/16/technology/hempel_facebook.fortune/

Figure 32 – Friend Connect

39

query,’ she said. ‘If I type “broadway shows” into Google it would actually come back and understand that I
like musicals and like peppy to sad...on the whole that's what we're really shooting for.’”96

As mentioned earlier, although iGoogle ostensibly offers ways for users to build and share gadgets, Google
sees it more as a “distribution mechanism”97 that allows monetization98. Besides bigger content providers,
such as The Wall Street Journal and NYTimes, using iGoogle to generate advertising revenue, smaller and
individual gadget developers are increasingly adding AdSense ads to the gadgets. As “[t]he most successful
gadgets actually have tens of millions of pageviews a month”99, it is no wonder that companies are actively
involved in developing gadgets. It is a win-win situation, as both Google and gadget makers and content
providers can profit and the users get better-targeted content.

Or perhaps there are also some losers. For example, Cusimano.Com Corporation makes gadgets displaying
works of Ansel Adams, Salvador Dali, and Andy Warhol, apparently without paying for any IP rights.
Gadgets can use feeds from different sources, and the source provider might not profit from this kind of
proliferation financially. Should the gadget maker get the money or what is the share of the content provider?
Interesting IPR questions are waiting to be answered. Another loser might be our right to privacy—if we still
have such thing in the first place100.

Be that as it may, iGoogle is coming social, perhaps even a social networking platform of kinds, and it is
becoming more and more a part of the online advertisement push that emphasizes profiling and social
advertising. User developed gadgets and themes are just part of the trappings.

6.2 Netvibes

“Netvibes was founded in September 2005 … as a way for people to take control of their daily digital lives.
The problem he [Tariq Krim, Netvibes founder] was trying to solve was 'How can I have everything that
matters to me on the Internet -- such as my RSS feeds, the weather, my social networking, competitive sports,
my start page -- all in one place in a digital dashboard?' This idea evolved into personalized pages for
individuals and personalized pages for brands and publishers.” - Freddy Mini, Netvibes CEO101

Netvibes102 is a personalized start page made with AJAX, akin to iGoogle, My Yahoo, and Pageflakes. Due
to the similarity with iGoogle, we discuss it by contrasting it with iGoogle.

The Netvibes Ecosystem consists of the AJAX-based Netvibes framework and user-submitted widgets
providing feeds, podcasts, and universes that are publicly viewable customized pages of another entity103. As
in iGoogle, users can create tabs to organize their widgets, and individual widgets can open to take up all the
canvas area (Figure 33). The tabs show with a number in parentheses how many unviewed content items—
for instance, news items—there are in each tab.

96 http://www.zdnet.com.au/news/software/soa/Welcome-to-iGoogle/0,130061733,339275160,00.htm
97 http://vator.tv/news/show/2009-01-08-igoogle-to-add-chat-and-become-more-social
98 http://igoogledeveloper.blogspot.com/2008/10/big-canvas-big-opportunity.html
99 http://vator.tv/news/show/2009-01-08-igoogle-to-add-chat-and-become-more-social
100 “You have zero privacy anyway,” Scott McNealy, the chief executive officer of Sun Microsystems, told a group of
reporters and analysts: “Get over it.” (http://www.wired.com/politics/law/news/1999/01/17538)
101 According to: http://www.dailyfinance.com/2009/02/25/growth-matters-netvibes-makes-europe-more-social/
102 http://www.netvibes.com/
103 http://en.wikipedia.org/wiki/Netvibes

40

When Add content is expanded on top of the page, widgets can be dragged and dropped on the tabs (Figure
34). The widgets can be searched for by a keyword or browsed by category (with Essential widgets category
separated from others). In addition, the user can create a feed with the feed address. If a user is in habit of
adding feeds, there is also a Firefox extension104 for adding feeds to Netvibes, an example of how different
ecosystems use each other.

Organizing widgets in tabs also works by dragging and dropping. The visual cues to the movement are very
similar to those used in iGoogle (Figure 35).

Netvibes allows adding content by location. Thus, the widgets available in Add content change according to
the location that the user sets. The number of items changes greatly when the location changes (Table 3). As

104 http://eco.netvibes.com/tools/firefox

Figure 33 – Netvibes tabs and canvas

Figure 34 – Add content pane in Netvibes

Figure 35 – Drag and drop in progress in Netvibes

41

the categories in Table 3 show, Netvibes is a much more news-based system than iGoogle, and works easily
as a brand-monitoring dashboard for companies105. Even the widgets behind Fun & games contain a lot of
topic-related article feeds and only few actual games. This contrasts strongly with iGoogle’s virtual pets and
large number of games.

Table 3 - Number of widgets based on location and category.

Browse categories Location Finland Location UK
Featured widgets 6 34
News 12 239
Business 1 78
Sport 6 112
TV, movies & music 24 160
Tools & technology 10 172
Fun & games 3 30
Lifestyle 4 85
Shopping 0 20
Travel 1 39

Essential widgets (42 for all locations), on the other hand, focus on doing things with widgets for calendar,
email viewers, Facebook, weather, and searches (maps, videos, shopping etc.).

Finally, Add content area offers a wizard to personalizing the view. First, the system wants to know one’s
location and then interest (Figure 36), the choices of which are the same as the categories in Browse
categories (expect for Featured widgets which is missing). The wizard then recommends the most popular
widget for each category that one selects. Otherwise, recommenders do not play a major role in Netvibes.

Users can share their tabs in Netvibes just like in iGoogle. In addition, Netvibes offers other ways both to
track one’s own and one’s friends’ activities (Figure 37) and to subscribe to other users’ universes. The
system is reciprocal, as one can see who is reading one’s “stuff”.

105 http://vator.tv/news/show/2009-01-29-netvibes-the-new-social-media-dashboard

Figure 36 – Netvibes add content wizard

42

In addition to widgets, one can select themes for the start page. Unlike in iGoogle, however, the selected
theme is common to all tabs. In addition to selecting widgets directly from one’s Netvibes start page,
Netvibes has an ecosystem106 where one can browse and search for all the widgets available. At the time of
writing (March 3, 2009), there were 178,738 widgets and 944 universes available. Table 4 lists the 10 most
popular widgets in Netvibes.

Table 4 - Popular Netvibes widget.

Name Installs Stars Description
Weather 26,972,434 4 Weather forecasts for a city of choice
Flickr 25,513,492 - Flickr widget – tagged pictures
Websearch 23,109,768 - Integrated searches in major search engines
TodoList 22,300.532 3 To-do list with add/remove and dragging
Mail 8,843,632 5 Assistant to create an email widget, with notification
PostIt 8,088,119 5 Sticky notes
Flash 5,931,503 - Flash widget – animations, etc.
Facebook 5,739,027 4 Facebook widget - check the profile and status updates
Google News 5,038,945 3 Google News widget
Ebay 3,109,480 2 Ebay widget

Users, developers and publishers—as Netvibes puts it107—can create widgets to Netvibes using Netvibes
Universal Widget API (UWA) which is a widget framework that uses XHTML for structure, CSS for styling
and JavaScript/Ajax for behavioral/DOM control. In addition, the framework supports iframes and plugins,
such as Flash. UWA furthermore subscribes to “write once, run everywhere” ideology, and the widgets
developed with it can run in various widget platforms, including among others iGoogle, Windows Vista
Sidebar, Apple Dashboard, Live.com, iPhone, Opera, blogs, and MySpace.

In summary, Netvibes is like iGoogle’s cousin and not far removed. In many ways, the two services mirror
each other, one getting it slightly better in one aspect, another getting it slightly better in another. Although
Google is internationally clearly stronger, Netvibes also has a significant market share in Europe108. Perhaps
more significantly, as Vincent Chang, Netvibes’ spokesperson, says: “Netvibes also has the Web's largest
collection of universally compatible widgets, including official news and video content from more than 1,000
of the world's leading brands and media companies. We measure our success by our share of leading brands
-- we have 1,000 advertisers including CBS to the New York Times, Nissan, Nokia, and Ogilvy -- and by that
measure we're doing well.”109

Freddy Mini, Netvibes CEO, sees widgets as a “significant advertising market opportunity” because they are
not based on the user visiting a site but “maintain engagement with the audience after the audience leaves the

106 http://eco.netvibes.com/
107 http://dev.netvibes.com/
108 http://www.dailyfinance.com/2009/02/25/growth-matters-netvibes-makes-europe-more-social/
109 http://www.dailyfinance.com/2009/02/25/growth-matters-netvibes-makes-europe-more-social/

Figure 37 – Tracking activities

43

site”110. Mini estimates that the market for widgets is going to hit $5 billion if widgets prove to provide brand
name advertisers greater revenue for spent dollars.111

6.3 Yahoo! Widgets

“Desktop Widgets blur the line between the web and the desktop by pulling the content out of the browser
and integrating it into your desktop.” – Yahoo Widgets blog112

Arguably, Konfabulator was the platform—the widget engine—that brought widgets to foreground and on
the desktop in the first place113. Originally released as Mac-only platform to support widgets on the desktop
in Feb. 2003 that cost US$24.95, Konfabulator was sold to Yahoo in 2005 and became freeware114. Just prior
to this, Apple released its widget engine, Dashboard that bears many similarities to Konfabulator.
Consequently, Apple has faced accusations of essentially having stolen the ideas behind Konfabulator. Apple
argue that the whole idea actually originated with Apple—where Arlo Rose whose brainchild115
Konfabulator had worked—and that dashboard is, in fact, different and better. 116

Dashboard is Yahoo Widgets’s biggest competitor on the Mac desktop while, prior to Microsoft Vista and its
support of gadgets with Windows Sidebar117, it faced competition on the Windows desktop from DesktopX
(shareware), Kapsules (freeware), and AveDesk (freeware)118. In Linux, there is gDesklets that supports
widgets (called applets in this context) on the Gnome desktop119. However, perhaps the most serious and the
most similar120 competitor to Yahoo Widgets is Google Desktop that—like Yahoo Widgets—is multi-OS
platform for bringing widgets on the desktop. Google desktop supports Mac, Windows, and—unlike Yahoo
Widgets—Linux, and many gadgets available in iGoogle also work on it.

Having Yahoo Widgets on the desktop requires installing Yahoo Widget Engine, quintessentially “a
JavaScript runtime environment combined with an XML interpreter”121. Yahoo Widget Engine 4.0 included
a feature called the dock (Figure 38) that shows all currently open widgets, and allows seeing all widgets
inside the user’s “My Widgets” folder. Mouse-overing a widget icon on the dock allows closing it and seeing
its preferences. Also, the Dock allows revealing all the widgets in the Heads-up Display122: All the other
applications are dimmed the widgets are brought to the foreground. The dock also has an auto-hide option.123

110 According to: http://www.dailyfinance.com/2009/02/25/growth-matters-netvibes-makes-europe-more-social/
111 http://www.dailyfinance.com/2009/02/25/growth-matters-netvibes-makes-europe-more-social/
112 http://widgets.yahoo.net/blog/?p=16
113 While many claim the fame for coming up with the concept, here is one early story from 1984 about “desk
Accessories” that might have pretty good case:
http://folklore.org/StoryView.py?project=Macintosh&story=Desk_Ornaments.txt. The term widget, on the other hand,
was first applied to user interface elements during Project Athena in 1988 (http://en.wikipedia.org/wiki/GUI_widget).
114 http://en.wikipedia.org/wiki/Yahoo_Widgets
115 According to Rose, the idea came to him when he saw skinnable mp3 player, and thought that it would be a cool
thing for the desktop, too (http://www.konfabulator.com/cartoon/partOne.html and
http://gigaom.com/2006/11/06/widgets-keynote-by-konfabulators-arlo-rose/).
116 For example, http://www.macworld.com/article/35200/2004/06/konfabulator.html,
http://www.macsimumnews.com/index.php/archive/widget_wars_thoughts_on_the_konfabulator_dashboard_brouhaha,
and http://daringfireball.net/2004/06/dashboard_vs_konfabulator
117 http://www.microsoft.com/windows/windows-vista/features/sidebar-gadgets.aspx
118 http://en.wikipedia.org/wiki/Yahoo_Widgets
119 http://en.wikipedia.org/wiki/GDeskletss
120 http://widgets.yahoo.net/blog/?p=16
121 http://en.wikipedia.org/wiki/Yahoo_Widgets
122 Originally called Konsposé and renamed by Yahoo (http://en.wikipedia.org/wiki/Yahoo_Widgets)
123 http://en.wikipedia.org/wiki/Yahoo_Widgets

44

Having their own rendering engine allows desktop widgets to be graphically fancier than their web cousins.
Living outside of the browser also allows access to local resources, potential offline use and background
downloading in addition to greater interaction with the OS through desktop interaction124.

Widgets for Yahoo Widgets are available on the Yahoo Widgets website125. The same site has support for
developers who wish to build widgets. Installing the Yahoo Widgets Engine brings in 14 bundled widgets
with it. Currently there are 5,391 widgets available to Yahoo Widgets on the site divided into 20 categories:
utilities (702), news (574), games (501), radio (477), search (426), clocks (326), webcams (289), countdown
(223), weather (161), communication (135), and so on. Table 5 lists the top ten most popular widgets by the
number of downloads.

Table 5 – Most popular Yahoo Widgets (yahoo.com, 2/2009).

Name Downloads By Description
Yahoo Weather 4,834,555 Yahoo Weather report
Picture Frame 3,558,868 Yahoo Flickr/Yahoo Photos upload and mgmt
Analog Clock 3,006,650 Yahoo Analog Clock with styles and colours
Yahoo Finance 2,124,207 Yahoo Information on indices, stocks and funds
Digital Clock 1,146,361 Yahoo A Digital Clock with alarm and styles
Yahoo Widget Gallery 1,088,571 Yahoo Search widgets from Yahoo Widget Gallery
Day Planner 1,069,699 Yahoo Get calendar events/tasks, many sources
Yahoo Mail Checker 1,038,406 Yahoo Unseen mail count for Yahoo Mail address
Sys Monitor 789,080 A.Kreisl System monitor for local system
Battery 786,024 Yahoo Battery status

Although category News plays an important role with 574 widgets, it is interesting to notice that Utilities
have gained the top position. Eight out of ten most popular utilities widgets reveal information about the
system, state of CPU, battery, or file system. Only two of them are not related to the system, namely My
Coke Rewards Widget126 and JC Sticky Deluxe127.

The prerequisites for writing Yahoo Widgets shows an already familiar list of languages: JavaScript, HTML,
Flash, and XML (JavaScript and XML being the core with HTML and Flash added in Konfabulator 4.5) in
addition to being able to use some image editor, such as Photoshop, Paint Shop Pro, or Gimp128. The
development environment now also offers a rudimentary debugger129. AppleScript can also be used, but then
the widget is Mac-only, as can shell scripts and COM applications, resulting in a Windows specific widget.
However, most widgets, made with JavaScript and XML, work for both Mac and Windows. Yahoo Widget
Engine 4.0 included SQLite, allowing developers to create and modify databases. The same version included

124 http://widgets.yahoo.net/blog/?p=16
125 http://widgets.yahoo.com/
126 “The My Coke Rewards Widget lets you add cap codes to your account directly from your desktop and receive the
latest news on great rewards at MyCokeRewards.com” (http://widgets.yahoo.com/tags/utilities/?s=downloads&p=)
127 “Sticky Deluxe is a cross-platform sticky note / memo taker. It is an electronic version of the venerable 3M Post-It ®
note.” (http://widgets.yahoo.com/tags/utilities/?s=downloads&p=)
128 http://widgets.yahoo.com/static/downloads/Widget_Creation_Tutorial_1.1.zip
129 http://widgets.yahoo.net/blog/: Konfabulator 4.5: Cool Developer Features (Dec. 14, 2007) and Yahoo Widgets 4.5
is Here! (Nov. 29, 2007).

Figure 38 – Yahoo Widgets Dock

45

support for Canvas that “allows developers to create Widgets without a single image or create simple
drawing programs”130.

With Yahoo facing financial problems and likely re-organizations and Yahoo Widgets being battered left and
right by Dashboard in Mac, Vista Sidebar on Windows, and Google desktop on both, the future of Yahoo
Widgets is shrouded in mystery. Then again, Yahoo does also have a start page with widgets, My Yahoo
which is closely related to their search engine, and as a content provider, Yahoo does need outlets for the
content, so perhaps Yahoo Widgets is better insured against the future than, say, Yahoo Pipes at the end of
the day.

130 http://en.wikipedia.org/wiki/Yahoo_Widgets

46

7 Script based creation
All the previous techniques discussed are good tools for end-user development if the users lack programming
skills. But if the user wants to customize the developed application more and is capable of doing basic
programming, script based solutions come into the picture. Bolin et al. (2005) introduced a programming
system embedded in the Firefox web browser that enables end-users to automate, customize, and integrate
web applications without examining their source code. Screenshot of the system, Chickenfoot, can be seen in
Figure 39.

Figure 39 – Chickenfoot user interface.

Chickenfoot uses a high-level pattern language based on keyword matching that enables the user to identify
pages without knowledge of the page’s HTML structure or XPath. In a user study Bolin et al. (2005) found
that the keyword matching used in Chickenfoot correspond closely to the names users actually generate for
page and it was useful for generating complex page structures.

Next, we will turn to Firefox add-ons that can be created by the end-user.

7.1 Firefox extensions

“One advantage the open source Firefox browser has over Internet Explorer is the wealth of add-ons that
are available to users. These little extras can customize the browsing experience.” - Steven M. Cohen
(Information Today)131

Firefox was born out of Mozilla getting bloated with all kinds of features. Dave Hyatt and Blake Ross began
to design a stand-alone browser without the extra baggage forced on everybody132. The idea was to make a

131 http://www.linuxinsider.com/story/Firefox-Add-Ons-Addictive-Browsing-Enhancers-
66015.html?wlc=1235390349&wlc=1235473333&wlc=1235571498

47

browser that is lean and mean but that can easily be extended with add-ons. In effect, each user could have
the features that they wanted and needed instead of a monster that would have had forced everything on
every single user. Firefox, originally called Phoenix, replaced together with Thunderbird the bloated Mozilla
Suite as the focus of the Mozilla Organization in 2003, and after some name-related hassles, the new browser
was named Mozilla Firefox on Feb. 9, 2004133. Since then, Firefox has re-challenged Internet Explorer and
has gained a market share of over 20%134 (give or take depending on who is counting).

As mentioned, allowing add-ons to complete the browsing experience was very much part of the concept
behind Firefox. Its success has had Internet Explorer (IE) to follow the suit, as IE8—currently an RC1 beta—
accepts 3rd party add-ons, too135, although a strong developer community, such as exists behind Firefox, is
missing136. There are currently 6843 add-ons available on https://addons.mozilla.org/ (AMO) for Firefox, the
official Mozilla Foundation website that acts as a repository for add-ons for Mozilla software, including
Mozilla Firefox, Mozilla Thunderbird, SeaMonkey, and Mozilla Sunbird137.

Firefox add-ons can be divided to three groups: Extensions, themes, and plugins. Extensions either modify
the existing functionality or add new functionality to Firefox, and they allow customization so that each user
can have a Firefox that fits his or her needs138. Plugins, on the other hand, are binary components that help
the browser display specific content that it could not display natively, such as multimedia or PDF files,
directly inside the browser139. Themes are skins that change the look and feel of Firefox interface, allowing
users to personalize the browser to their tastes140. While themes may simply change some colors on the
interface, they can be used to change every piece of its appearance. In the following we will limit the
discussion to the extensions and ways to build them.

Firefox extensions modify the existing or add new functionalities to the stand-alone browser. The 6471
extensions available constitute the majority of add-ons available on AMO. There is a great range of
extension types available, as can be seen from the 16 categories they are divided to in AMO: “Alerts &
Updates”, “Appearance”, “Bookmarks”, “Dictionaries & Language Packs”, “Download Management”,
“Feeds, News & Blogging”, “Language Support”, “Photos, Music & Videos”, “Privacy & Security”, “Search
Tools”, “Social & Communication”, “Tabs”, “Toolbars”, “Web Development” and “Other”. Naturally, one
extension can be in several categories.

In addition to categories, AMO offers keyword search that can be narrowed down with the categories (drop-
down), default being “all add-ons.” The search also offers an advanced version that opens under the keyword
search (Figure 40). It is also possible to organize the extensions by popularity, ranking, and recent update.

132 http://en.wikipedia.org/wiki/Firefox_(browser)
133 http://en.wikipedia.org/wiki/Firefox_(browser)
134 http://marketshare.hitslink.com/report.aspx?qprid=2
135 http://www.pcmag.com/article2/0,2817,2339704,00.asp
136 http://www.informationweek.com/blog/main/archives/2009/02/ie8_better_but.html
137 http://en.wikipedia.org/wiki/Mozilla_Add-ons
138 https://developer.mozilla.org/en/Extensions
139 https://developer.mozilla.org/en/Plugins
140 https://developer.mozilla.org/en/Themes

48

The results page shows each add-on in its own box with an image, name, author, star rating, the number of
reviews the rating is based on, and the number of weekly reviews in addition to the categories it belongs to
and a short description. The boxes are color-coded. The recommended add-ons are on a gradient pastel green
background, normal ones on gradient pastel blue, and the experimental ones on a gradient pastel red.
Experimental and recommended add-ons also have a plaque in their respective colors on the left upper
corner.

If the add-on is for an older version of the Firefox, then the Add to Firefox button on the right is white as it is
with the experimental ones. This indicates that add-ons that are for older versions and do not yet have an
updated version for the current browser cannot be added. Experimental ones require signing in to install, and
they are meant only for advanced users for testing before being made available for general users141. Many are
in prototype, alpha, or beta state, and have not been tested by an AMO editor. By forcing users to sign in the
Mozilla Foundation is making sure that they understand that they are taking a risk. This also underlines that
the other add-ons have been tested by an AMO editor and have been found safe. Experimental ones are not
shown by default, and making them visible requires checking the checkbox.

However, the editorial checking has not always prevented security problems, as the case of GreaseMonkey
(currently the 5th most downloaded extension by weekly downloads) showed142. The developers had a lax
attitude towards security, which backfired badly and embarrassingly for the whole open source community:
GreaseMonkey had a huge security hole that would allow data to be leaked to remote sites143. The problem
was solved quickly and with transparency that did credit to the accomplices, but the case underlines the need
to take measures to protect the users of an ecosystem from intended or accidental problems related to user-
created applications and services.

Although the Firefox source code is “maintained by a large number of developers and reviewed by many
security experts”, a particular extension is “less likely to be reviewed by as many people”144. An extension’s
vulnerability is also browser vulnerability and can expose users to possible harm. A system is only as secure
as its least secure link.

Firefox also has an in-built Add-ons manager that gives recommendations, offers access to AMO (Browse
All Add-ons and See all Recommended Add-ons links), and keyword searching (Figure 41). Add-ons can be
enabled, disabled, and uninstalled in the manager (through the Extensions, Themes, and Plugins tabs).

141 https://addons.mozilla.org/en-US/firefox/pages/experimentalAddons
142 http://www.rietta.com/firefox/Tutorial/security.html
143 http://www.rietta.com/firefox/Tutorial/security.html
144 http://www.rietta.com/firefox/Tutorial/security.html

Figure 40 – Advanced search opened

49

Figure 41 – Firefox add-on manager

Looking at the 10 most popular (by the number of weekly downloads) Firefox extensions, it appears that
they are typically made by software developers (Table 6). Both the total download and weekly download
numbers are impressive. Interestingly, the most popular categories are Download management (4) and Web
development (4), followed by Privacy and security (2) and Appearance (2).

Table 6 – Most popular Firefox extensions (23.2.2009).

Extension Weekly
downloads

Total
downloads

Category Review

Video DownloadHelper 563,024 31,036,200 Download management 1232
FlashGot 551,440 58,302,576 Download management 135
Adblock Plus 495,882 41,941,220 Privacy, security 886
NoScript 494,980 42,383,194 Web dev, privacy, security 418
Greasemonkey 252,961 15,422,730 Web development 199
DownThemAll! 207,505 26,157,115 Download management 556
Firebug 184,367 13,091,276 Web development 454
IE Tab 182,488 20,778,657 Web development, appearance 496
PDF Download 174,392 12,715,150 Download, alerts, updates 206
Cooliris 172,276 12,098,436 Feeds, news, blogs, search

Photos, music, videos
773

If we compare the most popular extensions to the ones one and a half years ago, we notice that little has
changed. According to Wikipedia.org145, the most popular extensions in Oct. 30, 2007, were NoScript (now
no. 4), Tab Mix Plus (now no. 21 – keeping in mind that many features offered by Tab Mix Plus have
become part of the Firefox distribution), FoxyTunes (now no. 27), Adblock Plus (now no. 3), StumbleUpon
(now no. 16), Foxmarks Bookmark Synchronizer (now no. 11), DownThemAll (now no. 6), and Web
Developer toolbar (now no. 23). While there are new kids on the block, nothing has substantially changed in
the applications or the types of applications that are popular among the Firefox users.

MozillaZine146 maintains a list of extensions that are known to be problematic. Of the ten most popular, six
were included in the current list: Adblock Plus (can interfere with Flash content, most often on Mac OS),
NoScript (do not use both FlashBlock and NoScript together, as NoScript blocks JavaScript required by
FlashBlock and includes Flash-blocking functionality), Greasemonkey (Greasemonkey scripts do not work
on sites blocked by NoScript), DownThemAll (may cause web browsing to slow to a halt to the point that
nothing loads and changes certain "network.http" preferences that will need to be reset, even if you disable or
uninstall the extension), Firebug (may cause excessive CPU usage; Firefox may hang when a pop-up
window is accessed), and IE Tab (memory leak). Thus, while sometimes the cause is simply overlapping and
contradictory extensions, some extensions cause problems, such as memory leaks, even alone.

145 http://en.wikipedia.org/wiki/Firefox_(browser)
146 http://kb.mozillazine.org/Problematic_extensions

50

Although developers are not paid for developing extensions, many of them do solicit donations, making
many extensions effectively donationware.

7.1.1 Building Firefox extensions

A Firefox Extension is simply “a collection of files and folders that have been compressed into a file with a
.xpi extension. The .xpi file (pronounced zippy) is nothing more than a .zip file that has been renamed.”147

Writing extensions for Firefox does not require extensive development background. However, a working
knowledge of JavaScript is necessary, as most of the work is done with it. Setting up an extension
development environment is also rather straightforward. It involves simply creating the following folder
structure148:
 MyExt/
 chrome/
 chrome/chromeFiles/
 chrome/chromeFiles/content/
 defaults/
 defaults/preferences/

Extensions—or more typically parts of them—can also be developed in C++ especially if there is a “need for
high-performance beyond what can be delivered by JavaScript code” or one needs to use 3rd party C/C++
libraries149. However, this is again where only eagles dare, as it is the domain of C++ developers with years
of experience. Others would do fine to stick to JavaScript150.

Most extensions also need to add or change some graphical elements in Firefox. Firefox’s interface is written
in XUL and JavaScript151. XUL—XML User Interface Language, pronounced “zool”—is “an XML grammar
that provides user interface widgets”, such as buttons, menus, toolbars, and trees.152 User actions are bound
to functionality with JavaScript. Although XUL follows the XML grammar, using it still requires
understanding XUL DOM. XUL overlays allow attaching UI widgets to a XUL document at run time. They
are in effect .xul files that specify XUL fragments, such as widgets, to be inserted, removed, or modified.153

Thus, while the tools for extending Firefox are not very complex, using them still requires specialized
knowledge and willingness to go through some learning. Mozilla Developer Center154 offers materials to start
with to lower the curve, but it is no surprise that all the developers behind the most popular extensions shown
in Table 6 have a developer background.

One consolation about the tools is that because of this approach, the extensions are by and large platform
independent155. If one wishes to distribute the extension one has made, there are two options. The simpler
one is to simply host the extension on one’s own website. However, AMO in most cases brings the extension
to people’s fingertips more efficiently. First one needs to create an AMO account, and to log in. After
submitting the extension through the system, it takes several days before it shows up in AMO because of the
reviewing process. “Once the add-on has been reviewed, it will be made available for downloading. Reviews

147 http://www.rietta.com/firefox/Tutorial/conf.html
148 http://www.rietta.com/firefox/Tutorial/conf.html
149 https://developer.mozilla.org/en/Creating_Custom_Firefox_Extensions_with_the_Mozilla_Build_System
150 https://developer.mozilla.org/en/Creating_Custom_Firefox_Extensions_with_the_Mozilla_Build_System
151 https://developer.mozilla.org/en/Building_an_Extension
152 https://developer.mozilla.org/en/Building_an_Extension
153 https://developer.mozilla.org/en/Building_an_Extension
154 https://developer.mozilla.org/en/Extensions
155 http://www.rietta.com/firefox/Tutorial/env.html

51

can take a varying amount of time depending on how many pending submissions there are and the
availability of people to perform the reviews.”156

7.1.2 Future directions

“Firefox's rich add-on ecosystem allows us to bend the browser to our will and deck it out with features to do
almost anything.” - David Chartier (Ars Technica)157

Google’s direction is to make the browser the new OS158. With Firefox’s extendibility, it is also becoming an
ecosystem of its own, providing all kinds of functionality that a netizen may need, ranging from
synchronizing bookmarks, calendars, and todo-lists to being “a great tool for drafting posts, saving Web
snippets, finding topical content, and more”, even up to the point of becoming a “blogging machine”159. In
addition, Firefox is also becoming social, as such extensions as Glue160 and StumbleUpon, and 214 other
add-ons in the Social & Communication category testify.

Moreover, Firefox offers even feed readers, such as Wizz RSS News Reader or Homeland Security Threat
Level, and extensions for making mashups directly in the browser, such as Intel MashupMaker or Open
Mashups Studio & Runtime. In addition, there are extensions for adding social elements to the pages one
views, thus combining social and mashup approaches, such as Socialbrowse. Thus, Firefox is becoming a
complete platform for many Internet-related activities, not simply a tool for viewing page content as-is.

Firefox is also going head to head with Adobe’s Flash and Microsoft’s Silverlight, as the graphics rendering
system Cairo, part of Firefox 3, attests and Mozilla CEO Mitchell Baker confirms161. In addition, the Mozilla
Foundation has announced that “it is giving a $100,000 grant, by way of the Wikimedia Foundation, to help
develop an open-source standard for Internet video”162.

Another direction is mobile browsers. Mozilla’s head of mobile business, Jay Sullivan, sees add-ons as
integral part of Firefox’s mobile browser strategy: “We will also be the first mobile browser that supports
add-ons…add-ons will be a huge part of the experience”163. Another key factor is providing support for web
developers: In addition to HTLM, JavaScript, and CSS, developers “will also be able to access the camera,
accelerometer, location and so on.”164

Interestingly, Sullivan states that “Mozilla would target Windows Mobile, Maemo, Symbian and LiMo as
platforms for its browser”, as iPhone forbids it and both Android and BlackBerry are written in Java while
Firefox is not, which makes the situation tricky.165

Now that Google has released Chrome, Firefox is slowly coming to a crossroad, since Google has been a
financially important power behind it. For instance, in 2006, The Mozilla Foundation released “an audited
financial statement for the year 2006 showing that it took in $66 million for the year, $61 million of which
were search royalties, largely from Google.”166 While Google’s support for Firefox has not dried up yet,
Firefox’s financial future is going to go through changes eventually.

156 https://developer.mozilla.org/en/Submitting_an_add-on_to_AMO
157 http://arstechnica.com/web/guides/2009/02/pimp-my-browser-how-to-turn-firefox-into-a-blogging-machine.ars
158 http://googlesystem.blogspot.com/2008/09/google-os-is-actually-browser-google.html
159 http://arstechnica.com/web/guides/2009/02/pimp-my-browser-how-to-turn-firefox-into-a-blogging-machine.ars
160 https://addons.mozilla.org/en-US/firefox/addon/3481
161 http://apcmag.com/firefox_to_go_headtohead_with_flash_and_silverlight.htm
162 http://bits.blogs.nytimes.com/2009/01/27/mozilla-spends-money-to-make-web-video-free/
163 http://www.washingtonpost.com/wp-dyn/content/article/2009/02/19/AR2009021901914.html
164 http://www.washingtonpost.com/wp-dyn/content/article/2009/02/19/AR2009021901914.html
165 http://www.washingtonpost.com/wp-dyn/content/article/2009/02/19/AR2009021901914.html
166 http://www.paidcontent.org/entry/419-mozilla-releases-2006-financials-61-million-in-search-royalties

52

7.2 Facebook

“Facebook.com is the current ‘uber’ mashup today. As a massive social networking site, Facebook has
become a cultural phenomenon. It mashes up many different creative services into a unified social
experience online. There are hundreds of applications being mashed together at Facebook.” - Paul Gil
(January, 2009)167

In this review, we look at Facebook as a mashup environment rather than try to look at every aspect of it.

Facebook, formerly Thefacebook, is a free-access social network service that enables people to communicate
and share content with other people. The name refers to the paper facebooks that some US institutions give
to incoming students and staff as a way to get to know people on campus168. If Facebook was a country, it
would be the 6th largest in the world with over 175 million active169 users170. Facebook was founded by Mark
Zuckerberg (current CEO) and launched in February 2004. First the use was limited only to Harvard
students, then it expanded to other colleges, university and high school students, and finally to anyone aged
13 and over.171 The only thing needed to join up is a valid e-mail address for account opening confirmation.

Facebook has grown fast. At the end of year 2004, it had reached nearly 1 million active users and a year
after more than 5.5 million active users. After September 2006 when Facebook opened to everybody, the
growth has continued unabated with over 175 million active users in February 2009.

The fact that more than three billion minutes are spent on Facebook each day and more than 15 million users
update their statuses at least once each day shows how engaging user experience Facebook offers. Facebook
is now available in more than 35 languages and more than 60 new translations are in development. More
than 70% of Facebook users are outside the United States.172 The fastest growing user group is 35-54 year
olds with a growth rate of 276% over six months. However, the growth rate of over 55 year olds is not far
behind at 194% and the number of 25-34 year olds is also doubling every six months.173

167 http://netforbeginners.about.com/od/m/f/whatismashup.htm
168 http://en.wikipedia.org/wiki/Facebook
169 Facebook defines users active if they have returned to the site in the last 30 days.
170 http://news.therecord.com/News/article/494005
171 http://en.wikipedia.org/wiki/Facebook
172 http://www.facebook.com/press/info.php?statistics
173 http://www.istrategylabs.com/2009-facebook-demographics-and-statistics-report-276-growth-in-35-54-year-old-
users/

53

Figure 42 – The Facebook profile of Mark Zuckerberg

An example of Facebook’s user profile is shown in Figure 42. Facebook’s factsheet says the following
concerning Facebook’s structure (which differs slightly from the contents of example image): “Facebook’s
simplified navigation gives users easy access to core site functions and applications. Profile, Friends,
Networks and Inbox – pages core to the user experience on Facebook – have a prominent place at the top of
the user’s profile page. Facebook applications – Photos, Notes, Groups, Events and Posted items – are
displayed on the left side bar, along with any third-party applications a user has added to their account.”174

Nevertheless, the fact that there are a number of courses, offered for instance even in Finnish libraries175,
indicates that the complexity of the service can be daunting for some users. These courses are targeted at all
adults interested in the service and having the basic prerequisite of computer literacy. Interestingly, there are
also courses on Facebook application developers176 and advertisers177. More ominously, there are also
courses in some countries to help parents understand and monitor their children’s use of Facebook178.

174 http://www.facebook.com/press/info.php?factsheet
175 http://www.iltalehti.fi/espoo/200811178603110_eo.shtml
176 For example http://www.fcsovelto.fi/kurssit/Kurssi.aspx?ID=2701&n=Facebook-sovelluskehitys
177 For example http://www.fcsovelto.fi/kurssit/Kurssi.aspx?ID=2705&n=Facebook%20markkinoinnin%20tukena
178 For example http://facebookforparents.org/

54

7.2.1 Using Facebook applications

In Facebook, the mini-applications that users can contribute to the Facebook ecosystem are simply known as
applications. Facebook’s decision to open the platform to applications developers has been called a
“masterstroke” and it—together with the resulting applications—has contributed to Facebook’s popularity179.

The numbers involved in their use statistics are staggering. For example, each month there are more than 850
million photos and five million videos uploaded and more than 24 million pieces of content (links, news
stories, notes, etc.) shared180. The default applications181 made available for any new user on top right of the
home page (Figure 43) consist of the following:

• Photos application allows unlimited number of uploads and a possibility to arrange photos in different
albums. Privacy settings, such as visibility, can be adjusted separately for each album. Photos can also be
tagged with the names of people in the photos (if they have not denied it via their privacy settings) and
others can comment them.

• Groups application allows users to search and browse all Facebook groups, see their own groups, their
friends’ groups, and create new groups.

• Notes application lets users to blog or to import an external blog to Facebook. Users can view their own
and their friends’ notes collectively on one page. Notes can also be tagged with friends so that those
friends can browse notes written about themselves and their friends.

• Gifts application contains icons that cost one dollar and can be sent to Facebook friends.

• Video application allows users to upload video files to their profile, send video messages, and check their
friends’ videos.

• Events application collects all information about users’ forthcoming and past events together. The
application also lets users know about interesting things coming up among their friends and in the groups
they belong to. Users can also organize their own events.

• Posted Items application, including its sub-functionality is an easy way to share anything on the Internet
(websites, blogs, videos etc.) and on one’s Facebook profile (photos, notes etc.) with help of the Publisher.

• The Facebook Wall, a core component of Facebook, is a history log and timeline for Facebook experience
(in the middle of Figure 42) that can also be considered an application. It is a tool for leaving comments
on one’s friends’ pages. It also logs the user’s Facebook activity stream based on the user’s settings.

179 http://blog.nielsen.com/nielsenwire/wp-content/uploads/2009/03/nielsen_globalfaces_mar09.pdf
180 http://www.facebook.com/press/info.php?statistics
181 http://www.facebook.com/press/product.php and http://en.wikipedia.org/wiki/Facebook

55

7.2.2 News feeds and requests

One feasible way to find new applications in Facebook is through one’s friends. An average Facebook user
has 120 friends182. Cameron Marlow, a Facebook sociologist183, says that the number of friends a user has is
very different than the number of friends the user frequently interacts with. Men on average leave comments
and respond to postings of 7 and women to 10 friends. Two-way communication (e-mail and chat) is even
lower: men interacting with 4 and women with 6 of their friends on average. While the number of friends of
some Facebook users can be over 500, such users are not that different on these interaction numbers: men
leave comments for 17 and communicate with 10 friends while for women the numbers are 26 and 16.184

Figure 44 – Example of news feeds

182 http://www.facebook.com/press/info.php?statistics
183 http://latimesblogs.latimes.com/technology/2009/03/monkeysphere.html
184 http://www.economist.com/science/displayStory.cfm?story_id=13176775&source=hptextfeature

Figure 43 – Facebook home page for a new user

56

Figure 44 shows Photos application’s News Feed story about photos that the user’s friend has uploaded. This
feed is by default sent to all friends the user has. This way even new users get information about applications
used by their friends. Applications can also send notifications to those users who have allowed these kinds of
notifications.185 Users can specify to some extent which of their activities will initiate a feed. They can also
do the same adjustments on what they see of their friends’ activities. Users can also check their friends’
profiles to see which applications they are using.

In March 2009 Facebook informed its users on their profile homepages that the Facebook home page is
going to be changed in the near future. More information was presented to interested users as a homepage
tour186. Posts of users’ friends will be streamed in real time, and users’ control over different feeds is going
to be increased by creating more detailed filters based on applications and friend lists (groups of friends that
users can make). The stream evolves fast and users might have difficulties in keeping track of everything
interesting that is happening. The new section of Highlights will help with this by presenting only the pieces
of information with which the user’s friends have been interacting the most.

Facebook applications can create requests that appear on users’ homepages on the top right corner (Figure
45). Actions of the user’s friends typically initiate requests that require the user to take some action (for
example, Photos application requesting a photo tag confirmation).

Figure 45 – Examples of different kinds of requests on profile page

7.2.3 Application directory

All applications can be found in Facebook Application directory (Figure 46). There are four categories for
different types of applications: for Facebook Profiles, for Desktop, for The Web and by Facebook. Only the
first one is divided to sub-categories: Alerts, Business, Chat, Classified, Dating, Education, Events, Fashion,
File Sharing, Food and Drink, Gaming, Just for Fun, Messaging, Mobile, Money, Music, Photo, Politics,
Sports, Travel, Utility, and Video.

The application list contains limited amount of information about the application, namely the icon, name,
developer’s name, and textual description. Facebook suggests the application developers to use “beautiful
imagery and concise, descriptive text”187. Some applications also provide the number of monthly active users
and reviews. More information about an application can be accessed from its About page.

In the Application directory, the default tab in For Facebook Profiles is Applications You May Like that
contains the applications the user’s fiends are using. Applications can also be sorted based on their age
(Newest) or amount of active users (Most Active Users). In contrast, before August 2007, Facebook
measured the popularity of applications based on the number of users. Criticism from users, however, caused
a shift in the focus from the highly viral, yet useless applications to more engaging applications.188 When

185 http://developers.facebook.com/get_started.php?tab=anatomy
186 http://www.facebook.com/sitetour/homepage_tour.php
187 http://developers.facebook.com/get_started.php?tab=anatomy
188 "A shift to engagement". http://www.facebook.com/developers/

57

applications are filtered by language, users also get the Recently Popular sorting option, but on the whole the
relationship between different selections and produced results is a bit confusing.

Table 7 presents a list of the most popular English applications of each category in March 2009 based on the
number of monthly active users, that is, users that have used the application within the last 30 days. For
Facebook Profiles category is on its own league based on the number of active users, matched only by
Facebook® for BlackBerry® Smartphones (For Your Desktop category) and Facebook Mobile (By
Facebook category). Because the For Facebook Profiles category has the most popular applications, we
included ten of its most used applications. Furthermore, the application types in this category vary greatly,
which can already clearly be seen in these ten applications. It is important to realize that the situation is
constantly evolving, and even during this review some of the top five applications have changed their order
and some categories even got new items.

58

Table 7 - Popular Facebook applications.

TOP 10 applications For Facebook Profiles
Name and developers Monthly

users
Reviews and
rating (/5)

Description

Causes By R. Kabir 25,534,451 216 (3.7) Start and join the causes, collect donations
Slide FunSpace
By Slide

17,842,284

1 250 (2.2)

Find & share videos, posters, graffiti, and so on.

Top Friends
By Slide

17,410,152 1 253 (2.2) Share the profile with friends, includes
customized skins, musics, and so on.

Super Wall By RockYou! 16,177,148 550 (2.6) Share videos, pictures, graffiti, and so on
We're Related
By FamilyLink

16,077,640 758 (2.7) Build your family tree and see who you are related
to on Facebook

Movies
By Flixster

10,918,928

206 (2.8) Compare the movie taste with friends, share
reviews, discover new movies, test knowlege

Texas HoldEm
By Zynga

10,325,550

3,506 (4.4) Play Texas Hold'Em Poker with Facebook friends.

Pass a Drink By
socialreach.com

9,815,458

10 (-) Pass a drink or a round of drinks to your friends to
show them some love.

Pet Society
By Playfish

8,227,229 47,928 (4.7) Play games, decorate house and bring gifts for
your friends when you and your pet visit them

Bumper Sticker
By Harris Tsim

7,962,317

6,480 (2.3) Create own stickers, stick them to your friends.

TOP 5 applications For Your Desktop
Name and developers Monthly

users
Reviews and
rating (/5)

Description

Fb for BlackBerry
By RIM

4,075,476 378 (3.4) Facebook access from Blackberries – status
updates, photo uploads, messaging, pokes, etc.

Fb for iPhoto
By Facebook

- 147 (3.4) Tag, caption, and export photos from your iPhoto
library directly to Facebook.

Flock, By Flock 241,111 57 (4.7) Flock's People sidebar for Flock web browser
Toolbar for Firefox By
Facebook

- 130 (3.9) Integrate your Facebook life into your browser.

Digsby, By dotSyntax 89,217 164 (4.7) Combination of IM, email, and social networks
TOP 5 applications For The Web
Name and developers Monthly

users
Reviews and
rating (/5)

Description

Fb for Palm, By Palm 131,620 161 (3.3) Integration of Facebook with Palm smart phones

Pool By M. Smith 64,415 302 (3.6) A pool game.
Fast and Furious By A.
Fedorov

58,016 - A car chasing game.

Vimeo By Vimeo 22,446 5 (2.2) Connection to Vimeo video sharing website.
INQ1 By INQ mobile 19,200 5 (5.0) INQ Social Mobiles.
TOP 5 applications By Facebook
Name and developers Monthly

users
Reviews and
rating (/5)

Description

Facebook Mobile 4,953,213 572 (2.6) Mobile device interface to Facebook.
Facebook Groups - 607 (3.5) Create and join groups.
Facebook Gifts - 791 (1.9) Virtual gifts in Facebook.
Facebook Video - 803 (2.8) Video upload, video messages, tagging, etc.
Discussion Boards - 3,566 (4.4) Discussion forums.

59

Figure 46 – Application directory

In addition to Facebook’s built-in Application directory, there are even applications to help the user find
interesting applications, such as Application finder189. With this application, the user gets various options for
finding applications, such as a feed on recently reviewed, top ranked, lowest ranked, and a possibility to
browse applications by a tag cloud. The application is developed by Appsorama, a team that develops
Facebook applications based on user requests. However, Application finder has only 15,899 monthly active
users even though it has been available at least since June 2007, which attests to its lack of popularity.
Applications also need to be submitted into the finder in order to be included.190

Applications such as Application finder underline the great variety among the Facebook applications that
include applications for time/content management, games, personality quizzes, among many, many other
types.

189 http://apps.facebook.com/appsdir/
190 http://www.facebook.com/apps/application.php?id=2448217719

60

7.2.4 Application initialization process

To start using a Facebook application, the user just needs to click its link on the list page to get to the
application’s About page (Figure 47) that displays more information about the application, its developers
(Facebook or third party, see the red square in Figure 47), reviews, number of fans, and discussions (not
visible in Figure 47). Every user can become a fan of an application in addition to becoming a fan of
different pages. The About page lets the user see a few of the application’s fans by name and profile picture,
sometimes friends of the user looking at the page, which may influence the decision to start using or ignore
the application. Reviews allow users to leave opinions about how others felt about the application.

Figure 47 – The About page of Causes application

The About page’s function is to motivate users to try the application191. If the user decides to continue by
clicking “Go to application”, he or she needs to allow the application to access undefined parts of the user
profile information, photos, friends’ information and other content that it needs to work. This is especially
problematic with third party applications not developed by Facebook because the user cannot know exactly
what information will be used and how. It is also worth to notice that this is only an example of one
application’s initialization process. The actual requirements for using an application and steps involved in
initializing it may vary greatly. In contrast, starting to use a default application mentioned before does not
require these steps at all. Starting to use an application might also require the user to invite some of his or her
friends to use it too before even being able to use it him or herself.

191 http://developers.facebook.com/get_started.php?tab=anatomy

61

The Canvas Page is the main page of an application on Facebook192. A Facebook application can take on
many forms and be integrated in different areas of the Facebook profile. Figure 48 shows some of these. The
profile box is generally a place to show the most recent updates and actions of the user. Besides the Boxes
tab, a default place for all users applications, users can create individual tabs for applications.193 The Info tab
allows users to structure information related to applications as a list of text and images194 (Figure 49).

192 http://developers.facebook.com/get_started.php?tab=anatomy
193 http://developers.facebook.com/get_started.php?tab=anatomy
194 http://developers.facebook.com/get_started.php?tab=anatomy

Figure 48 – The integration of Smiley application with profile box and tabs

62

Figure 49 – The integration of Smiley application with Info tab

7.2.5 Security of Facebook applications

Users can change privacy options of every application separately from the application’s Privacy settings
page. The settings include story posting options, places where the application is presented (profile box, tab,
and info section) and to whom.

There have been numerous findings of third party Facebook applications installing spyware. The example
from January 2008 concerns a malicious Facebook application Secret Crush that led many users to install the
infamous Zango spyware. The application appeared to users as an innocent Facebook request (Figure 50).195
After responding to the request, the user finds a message informing that one of his or her friends has a secret
crush and invites him or her to find out more by using the Secret Crush application (a common approach for
Facebook applications). The dialogues are well designed to ensure that the user believes the cover story.196

After the user has chosen to add this application to his or her profile, the terms of use are displayed the same
way as in all third-party application installations. Unfortunately, users tend to be rather careless about giving
access to their personal information. In this example, many users were too eager to find out who had a crush
on them to mind about privacy issues.197 After accepting the terms, the user needs to invite at least five
friends to use the application before being able to use it to find out who might have a crush on him or her198.

195 http://www.fortiguardcenter.com/advisory/FGA-2007-16.html
196 http://www.fortiguardcenter.com/advisory/FGA-2007-16.html
197 http://www.fortiguardcenter.com/advisory/FGA-2007-16.html
198 http://www.fortiguardcenter.com/advisory/FGA-2007-16.html

63

Figure 50 – Secret crush application making a request

Secret Crush application is a social worm. It does not rely on phishing or any sort of user-space
customization feature abuse “but on pure social engineering which is based on simple manipulation
strategies such as "escalation of commitment"”. It is psychologically hard for users to discontinue the process
even if they do not want to invite friends just after disclosing their personal information to the application.
So, most users invited at least five friends to complete the process. The person having the crush is still not
revealed but the user is asked to click “download now” which leads to a copy of the infamous Zango
spyware.199

A more recent example is from February 2009. The Error Check System application gives users a
notification that one of their friends has had troubles viewing their profile. The notification has a link to a
page where it is recommended that users install an application to fix the error, but what it really does is
collect information about users and their friends.200

Facebook is taking actions against harmful third party applications. They have established guiding principles
for the developers of social applications. Social application should be meaningful, i.e. provide value to users,
trustworthy meaning that they respect users, and well-designed so that they are usable and scaleable.201
According to the principles, a trustworthy application should be:

• Secure: Protects user data and honors privacy choices for everyone across the social graph
• Respectful: Values user attention and honors their intentions in communications and actions
• Transparent: Explains how features will work and how they won't work, especially in triggering user-to-

user communications202

Facebook has also other more concrete means to address the issue, for example an optional Application
Verification Program (since 11/2008203). This program tries to ensure that an application is respectful,
transparent, and meets the principles of trustworthiness. The visual symbol for the program-certified
applications is the verification badge (Figure 51).204

Costs associated with the application review process are 375 dollars per application. For current students and
registered non-profits with official documentation the fee is 175 dollars. The first waves of verified
applications, starting in early 2009205, are expected to number in the hundreds206. The program is an example

199 http://www.fortiguardcenter.com/advisory/FGA-2007-16.html
200 http://www.kauppalehti.fi/5/i/talous/uutiset/etusivu/uutinen.jsp?oid=2009/02/19344&ext=rss
201 http://developers.facebook.com/get_started.php?tab=principles
202 http://developers.facebook.com/get_started.php?tab=principles
203 http://developers.facebook.com/news.php?blog=1&story=168
204 http://developers.facebook.com/verification.php
205 http://developers.facebook.com/verification.php
206 http://developers.facebook.com/news.php?blog=1&story=168

64

of how an ecosystem can respond to privacy and security problems caused by third-party applications. The
program has caused criticism because of the review fee and the fact that approval needs to be regained every
year207.

Figure 51 – Example of a verification badge on an application

7.2.6 Facebook platform

Facebook development platform was launched on August 2006208. Now there are more than 660 000
developers and entrepreneurs from more than 180 countries making applications, more than 52 000
applications available, and 140 new applications added every day. More than 95% of Facebook members
have used at least one application built on it.209

Facebook development platform has even inspired Stanford University to offer a computer science course
called “Create Engaging Web Applications Using Metrics and Learning on Facebook” (Fall 2007) in which
the participants created many successful Facebook applications210. Different APIs (including authorizing
APIs) are available in Facebook platform for third party applications for fetching user data but also to access
Facebook core features like notifications, invites and feeds211.

Facebook Markup Language (FBML) is a variant-evolved subset of HTML with some elements removed. It
allows developer users to some extent customise their applications.212 “It is the specification of how to
encode content so that Facebook’s servers can read and publish it, which is needed in the Facebook-specific
feed so that Facebook’s system can properly parse content and publish it as specified213.” Facebook also
offers a specialised Facebook JavaScript (FBJS) library. The official FBML documentation can be found on
the Facebook Developers Wiki.214

Basic applications can be up and running in minutes but for that the developer user needs to A) be well
versed in some coding language that has a client library for Facebook’s API (such as PHP, Ruby on Rails,

207http://www.pcworld.com/businesscenter/article/154099/facebook_app_verification_fee_draws_criticism.html
208 http://www.facebook.com/press/info.php?timeline=
209 http://www.facebook.com/press/info.php?statistics
210 http://www.facebook.com/group.php?gid=5378622985
211 http://en.wikipedia.org/wiki/Facebook_markup_language
212 http://en.wikipedia.org/wiki/Facebook_markup_language
213 http://en.wikipedia.org/wiki/Facebook_markup_language#Facebook_Markup_Language and
http://oren.blogs.com/praxis/2007/05/facebook_markup.html
214 http://en.wikipedia.org/wiki/Facebook_markup_language

65

JavaScript, or Python), B) have a basic understanding of the Internet, SSH, MySQL, and Unix, C) be familiar
with Web hosting fundamentals, and D) have a place to host the application215.

Facebook Platform is constantly evolving, and so the developer users need to keep up with the changes.
Every week new code is revealed to developers a day before it is released, so they can test their applications
against the changes on www.beta.facebook.com.216

Figure 52 – Basic information about application being created

While setting up an application (Figure 52), the developer user gets an API key that identifies the current
application to Facebook. It is passed along with all the API calls that the application makes. Every
application also gets an application Secret that Facebook uses to authenticate the requests the application
makes. This key should never be shared with anyone.217 On the server side, there needs to be Facebook PHP
client library installed, along with MySQL with memcached. Some hosting services provide a preconfigured
environment for Facebook applications (for example, Joynet).218

7.2.7 The current state of Facebook

Facebook is part of the race for becoming a major part of users’ everyday life and browsing. One indicator of
this is the Facebook Toolbar for Firefox219 that makes the following claim: “The Facebook Toolbar for
Firefox is a free extension for Firefox that lets you extend your Facebook experience into your everyday

215 http://developers.facebook.com/get_started.php?tab=tutorial

216 http://developers.facebook.com/get_started.php?tab=tutorial
217 http://developers.facebook.com/get_started.php?tab=tutorial
218 http://developers.facebook.com/get_started.php?tab=tutorial
219 http://developers.facebook.com/toolbar/

66

browsing.” With the Facebook toolbar (Figure 53), users can check what their friends are up to by opening
the Facebook friends sidebar that includes their profile pictures, statuses, and a possibility to interact with
them on Facebook. The toolbar also allows searching Facebook content anywhere. Firefox 2 (or higher) and
IE7 allow users also to add Facebook to their search boxes. Icons on the toolbar show how many new pokes,
friend requests, messages, event invitations, and group invitations the user has. Automatic pop-ups will
notify the user when his or her friends update their accounts or interact with the user on Facebook. The Share
button lets the user import any web content to Facebook, share the current web page by sending it to
Facebook friends, or post it to one’s profile.220

Figure 53 – Facebook Toolbar in the Firefox browser

The Facebook Connect221 is the next evolution of the Facebook Platform, a single sign-on service that
enables Facebook users to login to different partner web sites using their Facebook account. This is done
with trusted authentication: Users thus bring their real identity information with them wherever they go but
they can also control who can see which pieces of the information based on the same rules that they have set
on Facebook. Facebook Connect enables sharing information and actions from currents sites with their
friends in Facebook via Facebook Feed, requests, and notifications (Figure 54).222

Figure 54 – Example of social distribution via Facebook Connect

Share buttons can be located on Facebook pages or on partner websites as instructed (Figure 55). If users
click on a Share link next to any content, they can send that content in a message or post that content to their
profile. A message will appear to recipient’s Inbox and behaves like any message sent from inside Facebook
and it also includes the media attachments. If the shared contents are posted to user’s Profile, they appear in
Posted Items box.223

As far as business models and monetizing are concerned, Facebook CEO Zuckerberg said in October 2008:
“What every great internet company has done is to figure out a way to make money that has to match to
what they are doing on the site. I don't think social networks can be monetized in the same way that search
did. But on both sites people find information valuable. I'm pretty sure that we will find an analogous
business model. But we are experimenting already. One group is very focused on targeting; another part is

220 http://developers.facebook.com/toolbar/
221 http://developers.facebook.com/connect.php
222 http://developers.facebook.com/news.php?blog=1&story=198 and http://developers.facebook.com/connect.php
223 http://www.facebook.com/press/product.php

67

focused on social recommendation from your friends. In three years from now we have to figure out what the
optimum model is. But that is not our primary focus today.” 224

Figure 55 – Instructions for adding Share feature to any web page content

224 http://faz-community.faz.net/blogs/netzkonom/archive/2008/10/08/mark-zuckerberg.aspx

68

8 Evaluation of mashup tools for end-user development
Grammel and Storey (2008) have explored and compared the current mashup tools (including Popfly and
Yahoo Pipes! that were introduced earlier) across six different themes (Levels of Abstraction, Learning
Support, Community Support, Searchability, UI Design and Software Engineering Techniques).

They found that the mashup makers provide many features to support end-users, but there is still much room
for further improvement. High learning barriers still remain, especially between different levels of
abstraction and notations. Features of the compared products can be seen in Figure 56 (Grammel and Storey,
2008).

Figure 56 – Features of reviewed mashup tools (MP = Microsoft Popfly, YP = Yahoo Pipes!, IMC = IBM Mashup

Center, GME = Google Mashup Editor, SMC = Serena Mashup Composer, IMM = INtel MashMaker)

Grammel and Storey (2008) suggest doing more to compare different notations for the same tasks, e.g. visual
dataflow languages vs. dialog-based wiring, and using evaluation frameworks such as the Cognitive

69

Dimensions of Notations (Green et al. 1996) to analyze the strengths and weaknesses of such notations.
Regarding UI development Grammel and Storey (2008) suggest an integration of different design
mechanisms, such as using automatic generation to provide a starting point and then being able to modify it
using a visual form editor, to combine the strengths of the different approaches.

Another important UI improvement could be providing a means for advanced information visualization,
which could help to leverage the users perceptual system and further increase the usability of mashups. They
also see programming-by-example good for website data extraction, data transformations and filtering, well
as for drag & drop gestures in the UI. Using it for other tasks in mashup makers could be challenging.
Grammel and Storey (2008) also note that an interesting feature that could support learning finding could be
context based suggestions.

70

9 Summary and discussion
This review has concentrated on tools and technologies for end-user service composition. The main focus is
on research and development of mashups tools, and on the use of end-user development approaches in those
tools. The review starts with tools for use-time service composition: Mozilla Ubiquity and Intel MashMaker.
These tools make it possible to combine other services with the page the user is currently examining. In the
rest of the review the tools are categorized into main end-user programming approaches.

First, under the programming-by-example umbrella we discuss two tools that support programming by
demonstration, Karma and Vegemite, and one tool that is based on example modification, d.mix. While
Karma and Vegemite are use-time composition tools, they aim to generalize users’ actions to create reusable
services. The support for example modification in d.mix is twofold: via site-to-service maps d.mix helps
users to understand the relationship of the presentation of a Web page to the API calls needed to produce the
page, and through an active wiki it maintains a collaboration forum where users—from end-users to
developers—can share their code.

Second, in the category of visual programming we discuss Microsoft Popfly and Yahoo! Pipes, both of
which are sophisticated graphical editors for connecting service components visually together. Although the
metaphor behind Yahoo Pipes is from the pipes of UNIX and the metaphor behind Popfly is from object-
oriented programming, the two interfaces share a lot in common. Both have a library of ready-made
components to which users are able to contribute new components. The interfaces to components basically
consist of traditional form elements. In both, connections are drawn between the objects to depict the data
flow. Both services aim to bring making mashups (and in case of Popfly, much more) to non-programmers.
But despite the attractive visual programming interfaces these systems provide, they have failed to attract
large numbers of users. One possibility is that they are still too difficult for end-users but on the other hand
are too restricted to developers.

Third, under the title form-based creation we present two dashboard-like GUI assembly tools, iGoogle and
Netvibes, that allow a creation of a service portal with a combination of form-based parameterization of
widgets and drag-and-drop of widgets to a dashboard. The user sees an explanation and example of what the
widget will be like, and then simply fills in the form data and has a ready-made widget. However, the scope
of the types of applications possible to make with this approach is by necessity somewhat limited. Making a
theme is even simpler, since instead of creating a new interface, a theme just changes the looks of an existing
interface. iGoogle offers both a simple, form-based approach that brings skinning to everybody’s fingertips
in addition to a more complex but much more powerful approach that involves some coding, mirroring its
approaches to user-created gadgets. Firefox’s approach to skinning is similar to iGoogle’s programming
option. The popularity of iGoogle themes argues that a possibility of skinning is an important aspect of any
such ecosystem.

Fourth, major environments for script-based service creation are studied, focusing on Firefox and Facebook.
The idea is to give users the ability to program services and applications without having to set up C++ or
Java environments. What users need to know is typically some combination of JavaScript, CSS, XML, and
HTML. Firefox extensions represent this approach. All offer tutorials and examples from which to start
developing one’s own solutions. While the requirements here are not that high, some web programming
knowledge is necessary. However, this has not prevented users from creating applications and services that
have enriched the Internet experience of literally millions of other users

Lastly, there is a summary of the properties of mashup tools from the perspective of the support for end-user
programming.

The operation-centric end-user programming paradigms, namely visual programming and script-based
creation, require certain understanding of what mashups and other such services are all about. They require
the user to have a clear concept of the service to be created, and this can mean that a complete newbie to
programming and web technologies might have difficulties coming up with a working service. The data-
centric approaches – such as use-time composition approaches, programming by demonstration, and form-

71

based creation – are easier for non-programmers but do not easily extend to the creation of arbitrary, robust,
and reusable services. They tend to lead either to throwaway on-the-fly compositions or to restricted portal-
type, parameterized widget collections.

All services reviewed offered different approaches to finding applications and services salient to a particular
user. All offered ways to rate and comment the applications, although some brought the ratings to the
foreground while some, for instance Popfly, did not emphasize them. The popularity of an application was
measured in different ways. For instance, while Firefox add-ons could be arranged by weekly downloads,
Facebook widgets in turn could be arranged by active users (who has used the widget within one month). No
matter how popularity was measured, it seems an important sorting criterion for the applications.

Furthermore, all divided the applications to categories to help finding the relevant ones. Categories could be
augmented with other information, as in Yahoo Pipes when using them for searching. Tags are also
beginning to enter the picture although they were not utilized in any remarkable way or to any great effect in
these services.

Recommenders were used at least to some extent in most repositories to help user find widgets or add-ons.
Emphasis was on recommending other applications based on the current application, that is, on item-based
and not user-based recommendations. In any case, making user-based recommendations is difficult if the
platform does not require sign-in is. However, most do require it, and so there could be room for utilizing the
wisdom of crowds to a greater degree. Now finding anything beyond the most popular can take some effort,
and some worthy applications can simply be buried in the mass of applications.

Almost all tools have some form of social scaffolding or ecosystem support for service composition. The
possibility to utilize the complementary capabilities of different users can provide interesting new
approaches to end-user development. Even the most naïve end-users could rely on components, wrappers,
connectors, etc. developed by users with more expertise or development capabilities. For expert users there
would be a lot of opportunities to contribute to the ecosystem, show their skills, find new users for their
tools, and so on. However, would that be enough to motivate expert users in the long run?

From the perspective of a platform provider, the services composed by users do not exist in a vacuum but
are—or at least should be—part of its overall business plan. iGoogle is bringing social API to gadget makers
to have social networks in iGoogle to compete with Facebook about the probable next big thing in online
advertisement, namely social advertisement. Yahoo Pipes and Popfly offer less ways to monetize, and not
surprisingly Popfly’s future is clouded and Yahoo itself is going through major changes, leaving Yahoo
Pipes’s future in the air as the company appears poised to focus more on key strategic products, such as
search ads225. Even the best platform cannot fly if the platform ends up dismantled due to financial reasons.

Dörner et al. (2008) have noted that Service Oriented Architectures (SOA) promise the development of a
new generation of adaptive and adaptable software applications that will partially eliminate the need of
transformation form users’ requirements to UML or other modelling languages. This has moved the
development tasks closer to the context of users, making SOA an interesting topic for end-user development
(EUD) research. If SOA can be extended with structures for in-use-modifications (even beyond software
technologies), it will be possible to design a new generation of user-adaptable systems regarding to Dörner et
al. (2008).

The examples we have discussed have shown the different benefits and drawbacks of different kinds of End-
User development systems. What could be the next generation system be a like? It could try to combine the
different approaches described, allowing different EUD techniques used depending on the task at hand, time
constraints and the level of expertise of the user. Context-awareness will be also a new hot topic in EUD and
offers interesting possibilities as noted by Grammel and Storey (2008). Koripää et al. (2005) have presented
a context framework and a tool called Context Studio for facilitating easy customization of context-aware
features into existing mobile terminal applications. Such tools require a vocabulary model that provides the

225 http://www.businessweek.com/technology/content/feb2009/tc20090226_871329.htm?chan=technology_technology
+index+page_top+stories

72

representation of contexts and actions, and interaction for creating the rules for user activities. Integrating
context-awareness to a system that combines the different end-user development paradigms in a usable and
meaningful way is challenge for the future.

73

10 References
Anderson, C. and Andersson, M.P. (2006). The Long Tail. Hyperion.

Barrett, R., Maglio, P. P., and Kellem, D. C. (1997). How to personalize the Web. In Proc. SIGCHI
Conference on Human Factors in Computing Systems (CHI’97), ACM Press, 75–82.

Blackwell, A. F. (2002). What is programming. In Proc. 14th Workshop of the Psychology of Programming
Interest Group (PPIG’02), 204–218.

Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R. C. (2005). Automation and customization of
rendered web pages. In Proc. 18th Annual ACM Symposium on User Interface Software and Technology
(UIST’05), ACM Press, 163–172.

Burnett, M., Cook, C., Pendse, O., Rothermel, G., Summet, J., and Wallace, C. (2003). End-user software
engineering with assertions in the spreadsheet paradigm. In Proc. 25th International Conference on Software
Engineering (ICSE’03), ACM Press, 93–103.

Dörner, C., Pipek, V., Weber, M., and Wulf, V. (2008). End-user development: new challenges for service
oriented architectures. In Proc. 4th International Workshop on End-User Software Engineering
(WEUSE’08), ACM Press, 71–75.

Ennals, R., and Garofalakis, M. (2007). MashMaker: Mashups for the Masses. In Proc. 2007 ACM SIGMOD
International Conference on Management of Data (SIGMOD’07), ACM Press, 1116–1118.

Fujima, J., Yoshihara, S., and Tanaka, Y. (2007). Web application orchestration using Excel. In Proc.
IEEE/WIC/ACM International Conference on Web Intelligence (WI’07), IEEE Computer Society, 743–749.

Grammel, L. and Storey, M.-A. (2008). An end user perspective on mashup makers.
http://lars.grammel.googlepages.com/paper_mashup_makers.pdf

Green, T. and Petre, M. (1996). Usability analysis of visual programming environments: a cognitive
dimensions framework. Journal of Visual Languages and Computing 7, 2, 131–174.

Halbert, D. C. (1984). Programming by Example. Doctoral Thesis. University of California, Berkeley.

Hartmann, B., Wu, L., Collins, K., and Klemmer, S. R. (2007) Programming by a sample: rapidly creating
web applications with d.mix. In Proc. 20th Annual ACM Symposium on User Interface Software and
Technology (UIST’07), ACM Press, 241–250.

Hoyer, V., and Fischer, M. (2008). Market overview of enterprise mashup tools. In Proc. 6th International
Conference on Service Oriented Computing (ICOSC 2008), LNCS 5364, Springer, 708–721.

Korpipää, P., Malm, E., Salminen, I., Rantakokko, T., Kyllönen, V., and Känsälä, I. (2005). Context
management for end user development of context-aware applications. In Proc. 6th International Conference
on Mobile Data Management (MDM’05), ACM Press, 304–308.

Lieberman, H., Paternó, F., Klann, M. and Wulf, V. (2005). End-user development: an emerging paradigm.
In H. Lieberman, F. Paternó, and V. Wulf (Eds.), End User Development, Kluwer, 9–16.

Lin, J., Wong, J., Nichols, J., Cypher, A., and Lau, T. A. (2008). End-user programming of mashups with
vegemite. In Proc. 13th International Conference on Intelligent User Interfaces (IUI’09), ACM Press, 97–
106.

74

Little, G., Lau, T. A., Cypher, A., Lin, J., Haber, E. M., and Kandogan, E. (2007). Koala: capture, share,
automate, personalize business processes on the web. In Proc. SIGCHI Conference on Human Factors in
Computing Systems (CHI’07), ACM Press, 943–946.

MacLean, A., Carter, K., Lövstrand, L., and Moran, T. (1990). User-tailorable systems: pressing the issues
with buttons. In Proc. SIGCHI Conference on Human Factors in Computing Systems (CHI’90), ACM Press,
175–182.

Myers, B. A. (1986). Visual programming, programming by example, and program visualization: a
taxonomy. SIGCHI Bulletin 17, 4, 59–66.

Nardi, B. A. (1993). A Small Matter of Programming: Perspectives on End User Computing. MIT Press.

Repenning, A. (1991). Creating user interfaces with agentsheets. In Proc. 1991 IEEE Symposium on Applied
Computing, IEEE Computer Society, 191–196.

Repenning, A. (1993). Agentsheets: a Tool for Building Domain-Oriented Dynamic, Visual Environments.
Doctoral Thesis. University of Colorado at Boulder.

Smith D. (1975). Pygmalion: A Creative Programming Environment. Report No. STAN-CS-75-499,
Department of Computer Science, Stanford University.

Wong, J., and Hong, J. I. (2007). Making mashups with Marmite: towards end-user programming for the
web. In Proc. SIGCHI Conference on Human Factors in Computing Systems (CHI’07), ACM Press, 1435–
1444.

Wong, J. and Hong, J. (2008). What do we “mashup” when we make mashups? In Proc. 4th International
Workshop on End-User Software Engineering (WEUSE’08), ACM Press, 35–39.

