

Kai Koskimies, Ludwik Kuzniarz,
Jyrki Nummenmaa and Zheying Zhang (eds.)

Proceedings of the NWUML'2005:

The 3rd Nordic Workshop on UML
and Software Modeling

TIETOJENKÄSITTELYTIETEIDEN LAITOS
TAMPEREEN YLIOPISTO

A-2005-3

TAMPERE 2005

Preface

Welcome to NWUML’2005: The 3rd Nordic Workshop on UML and Software
Modeling, which is held in Tampere, Finland, on 29.-31.8.2005.

The intention of NWUML is to bring together researchers and Ph.D. students in the
fields of software modeling, including model-based development methods and tools
in general and UML-based modeling in particular. NWUML intends to be an open
forum with ample time set aside for panels and discussions. The workshop intends to
function as a platform for establishing co-operative research projects between the
participants in the region.

Even though there are other events on this area worldwide, we in particular hope
that a Nordic research community is formed and strengthened. The actual workshop
program is designed to be such that it leaves place for discussions and thereby
hopefully supports future co-operation between participants of the workshop.

The past workshops in this series were organized in Ronneby, Sweden (2003) and
Turku, Finland (2004).

We hope for an interesting and fruitful workshop.

Editors
Tampere , August 2005

Program Committee

Anders Ek, Telelogic AB, Sweden
Juha Gustafsson, University of Helsinki, Finland
Klaus Marius Hansen, University of Aarhus, Denmark
Sune Jakobsson, Telenor, Norway
Kai Koskimies, Tampere University of Technology, Finland (Chair)
Ludwik Kuzniarz, Blekinge University of Technology, Sweden
Johan Lilius, Åbo Akademy University, Finland
Jyrki Nummenmaa,University of Tampere, Finland
Ian Oliver, Nokia Research Center, Finland
Ivan Porres, Åbo Akademy University, Finland
Andreas Prinz, Agder University College, Norway
Miroslaw Staron, Blekinge University of Technology, Sweden

Organization Committee

Kai Koskimies, Tampere University of Technology, Finland
Ludwik Kuzniarz, Blekinge Institute of Technology, Sweden
Jyrki Nummenmaa, University of Tampere, Finland
Ivan Porres, Åbo Akademi University, Finland
Andreas Prinz, Agder University College, Norway
Zheying Zhang, University of Tampere, Finland

Table of Contents

Guidelines for Creating “Good” Stereotypes..1
Miroslaw Staron and Ludwik Kuzniarz

Automatic Detection of Incomplete Instances of Structural Patterns in UML Class
Diagrams ...18

Sven Wenzel

Task-driven Instantiation of Class Diagrams ..30
Samuel Lahtinen, Imed Hammouda, Jari Peltonen, and Kai Koskimies

Practical Refactoring of Executable UML Models ..47
Lukasz Dobrzaski and Ludwik Kuzniarz

Run-Time Monitoring of Behavioral Profiles with Aspects ..62
Kimmo Kiviluoma, Johannes Koskinen, and Tommi Mikkonen

UML 2.0 Can’t Represent Architectural Connectors..77
Jorge Enrique Pérez-Martinez and Almudena Sierra-Alonso

Semantic Validation of XML Data – A Metamodeling Approach...86
Dan Chiorean, Maria Bortes, and Dyan Corutiu

Accessibility testing XHTML documents using UML...108
Terje Gjøsæter, Jan P. Nytun, Andreas Prinz, and Merete S. Tveit

GXL and MOF: a Comparison of XML Applications for Information
Interchange...123

Marcus Alanen, Torbjörn Lundkvist, and Ivan Porres

Using UML to Maintain Domain Specific Languages ...137
Mika Karaila, Jari Peltonen, and Tarja Systä

Requirements for an Integrated Domain Specific Modeling, Modeling Language
Development, and Execution Environment ..152

T.D. Meijler

Moving Towards Domain-Specific Modeling for Software Development167
Zheying Zhang and Jyrki Nummenmaa

The MICAS Tool...180

Johan Lilius, Tomas Lillqvist, Torbjörn Lundkvist, Ian Oliver, Ivan Porres, Kim
Sandström, Glenn Sveholm, and Asim Pervez Zaka

Tool Support for Quality-Driven Design ..193
Jakub Rudzki, Imed Hammouda, and Tommi Mikkonen

Model Driven Engineering in Automatic Test Generation ..208
Endre Domiczi and Jüri Vain

Design Profiles: Specifying and Using Structural Patterns in UML....................................217
Imed Hammouda, Mika Pussinen, Anna Ruokonen, Kai Koskimies, and Tarja
Systä

Visualizing and Comparing Web Service Descriptions in UML..235
Juanjuan Jiang, Juha Lipponen, Petri Selonen, and Tarja Systä

Guidelines for creating “good” stereotypes

Miroslaw Staron, Ludwik Kuzniarz

Department of Systems and Software Engineering, School of Engineering
Blekinge Institute of Technology, Ronneby, Sweden

(miroslaw.staron, ludwik.kuzniarz)@bth.se

Abstract. Stereotypes are a means of virtually extending the set of modeling
constructs available in a modeling language like the Unified Modeling
Language (UML). The use of stereotypes depends on the purposes which the
stereotypes are aimed at. In this paper we present a set of guidelines for creating
stereotypes in an effective way for specific purposes. The guidelines are aimed
at creating “good” stereotypes – i.e. stereotypes which are fit for the purpose
they should serve and they are appropriately specified. In our studies we
identified eight distinct groups of stereotypes for which the guidelines are
defined. The guidelines are elaborated based on investigation of several existing
UML stereotypes in a set of empirical studies.

1. Introduction

Using precise models and precise modeling languages to create the models underpins
the effectiveness of model-based software development (a.k.a. Model Driven
Architecture, [1]). General-purpose modeling languages, however, rarely provide
purpose specific constructs to enable effective usage of models in an automated way.
The Unified Modeling Language (UML, [2, 3]) provides means for creating precise
models by utilizing extension mechanisms inherent in the language thus customizing
the language. Creating suitable language extensions, nevertheless, requires extensive
knowledge of both the domain for which the customization is done and the means of
creation of suitable extensions. The main extension mechanism in UML is the notion
of stereotype which is a means of branding existing modeling elements with
additional properties and semantics thus extending the “vocabulary” accessible for
modelers. Stereotypes are grouped into profiles which are sets of stereotypes aimed to
serve one purpose (e.g. UML Profile for CORBA [4] which is aimed at providing
constructs enabling precise modeling of CORBA based software). The stereotypes are
dedicated for modelers who “need a richer vocabulary to describe their design
intentions” [5]. The modelers need to automate their software development process
(e.g. [6]), increase comprehension of their models (e.g. [7, 8]), or increase benefits
from using models in software development by maintaining certain attributes of
software constant (e.g. [9]) thus facilitate domain specific modeling within a
framework of a single (general-purpose) modeling language. Guidelines presented in
this paper provide aid in creating extensions to UML using stereotypes that would
improve the practice of modeling. Based on the needs of particular enterprises, the
guidelines allow choosing between very light (shallow) customizations (i.e. by
creating simple stereotypes in a very informal way) and more powerful (deep)

1

customizations (i.e. by creating stereotypes that introduce significant changes to the
extended modeling element). The guidelines allow also creating stereotypes which are
“good” – i.e. suitable for the purpose they are supposed to serve. The guidelines
contain instructions on which elements should be in the stereotype definition. For
example how much documentation should the stereotype have so that it contains
enough information (c.f. Extensive documentation, [6]) and, at the same time, is
concise (c.f. Concise profiles and Simple profile definition).

In our previous study on a realization of a vision of model driven software
development (Model Driven Architecture, MDA [1]) in industry we have investigated
the way in which language extensions – profiles and stereotypes – are used in practice
to make the modeling language precise enough to enable automating software
development with transformations. The results of the case study showed that language
customization is the basis for realizing the vision of model driven software
development. The guidelines presented in this study are aimed at aiding enterprises
willing to effectively customize their modeling language. In addition to the factors
related to documentation (mentioned in the previous paragraph) the guidelines
address these factors: (i) Improvement of the current way of working - stereotypes
allow introducing extensions to the base modeling language without the need for its
complete redefinition; (ii) Integration into currently used tools - stereotypes can be
used within UML modeling tools without the need for introducing new tools.

We have investigated several UML profiles used in industry. We have, however,
not limited ourselves to only the standardized profiles. A set
of non-standardized profiles used in specific companies for
very narrow purposes was also investigated in order to
capture the state-of-practice in using stereotypes in
particular companies for their in-house language
customizations. The identified purposes reflect the empirical
research conducted on several stereotypes from different
“vendors” over four years.

The process of elaborating the guidelines is presented in
Fig. 1. The first step in elaborating the guidelines was the
identification of the needs which was done based on the
industrial case study on customizations of UML in [10]. The
identified needs stem from the factors presented in the
introduction to this paper.

The second step was to choose the appropriate method of
elaborating the guidelines. We have chosen an empirical
approach which was based on investigation of several
existing UML profiles and on existing classifications of
stereotypes which reflect the usage of stereotypes in
practice. In order to adjust our method and decrease
subjectivity in our study we have performed an auxiliary
controlled experiment with several subjects which aimed at

verification whether our approach to choosing viable classifications is appropriate.
The initial set of three classifications has been afterwards refined to contain only two
classifications as the third one was found to classify all stereotypes in UML into one
category.

Identify needs

Choose viable
classifications

Identify viable types of
stereotypes

Identify properties of
types

Elaborate guidelines

Validate guidelines

Fig. 1. Process of
elaborating the

guidelines

2

After choosing the viable classifications we have classified a set of 98 stereotypes
in order to find dependencies between categories in different classifications. The
viable types of stereotype have been examined in the next step in order to identify
common properties of stereotypes of these types. The common properties can be used
as a set of quality assessment criteria for stereotypes (to check whether newly created
stereotypes are appropriate and good). This part of our research is presented in [11].
The common properties of stereotypes are inputs for guidelines on how to create
“good” stereotypes which are presented in this paper.

2. Related work

The basic guidelines on how to document stereotypes can be found already in the
UML specification. Due to the fact that the specification was created for general
usage, the guidelines are basic ones and should be refined. An analysis of the way in
which stereotypes can be created by users in UML can be found in [12]. This analysis
is the basis for consideration on which elements should be used to properly define
stereotypes. A set of good practices from [13-17] was used as a basis for elaborating
the guidelines on how stereotypes should be used with respect to the appropriate layer
in the four layer metamodeling framework [18]. We have used the analysis of
stereotypes and profiles presented in [19] to explicitly choose one placements of
stereotypes in the four-layer metamodeling framework – i.e. that stereotypes should
be placed at the metamodel layer since they define entities that are to be instantiated
(not inherited from) in the model layer where the stereotypes are to be used.

Usage scenarios identified in [17] provided us with a better overview of what are
alternative perceptions on the usage of stereotypes which we incorporated in the
research leading to elaborating of these guidelines.

While elaborating guidelines presented in this paper we investigated the existing
guidelines on how to use stereotypes in general – e.g. [20, 21].

3. Guidelines for creating good stereotypes

The results of the studies of existing stereotypes which led to elaboration of the
guidelines showed that all stereotypes should possess properties of type classification
stereotypes as identified by Atkinson et. al. [17]. The stereotypes should create virtual
kinds of modeling elements (i.e. metaclasses) to be instantiated in models. This means
that semantics of the stereotypes should relate to the semantics of the kind of
modeling element (i.e. the base element), hence the first guideline that applies to all
stereotypes: stereotypes should add properties to elements in UML and not to their
instances. If a stereotype adds properties to instances of elements (not to definitions
of elements) it should be replaced by inheritance.

The process of creating and using stereotypes which is supported by the guidelines
presented in this paper is as follows:
1. Find which role should be played by the stereotype in designs (using the decision

graph presented in Fig. 2).

3

2. Find which properties the stereotype should have (using the decision graphs in
appropriate sub-sections).

The first step is to find the appropriate role. This is done using the decision diagram in
Fig. 2 by examining the intended purpose of the stereotype. This should be done by
the person responsible for creating the stereotype.

no yes

Choose model
simplification
stereotype

Choose virtual
metamodel

extension stereotype

Should the stereotype
add properties to modeling elements to make

code generation better?
yesno

Choose code
generation
stereotype

Is the stereotype
part of a purpose-specific

profile?

Fig. 2. Choosing the purpose of the created stereotype

The first decision to be taken is whether the stereotype should be used for code
generation. The reason for distinguishing this role is that stereotypes for code
generation were found to be specially designed and used in modeling. These are
described in further in this paper. If the stereotypes are not designed for code
generation, then an important aspect is whether they are defined for a purpose-specific
profile. If they are a part of such a profile then they should be created in a more
detailed way. If a stereotype is not part of a purpose specific profile, then it should be
created in a less strict way depending on the further purpose of the stereotype. This is
further explained while discussing guidelines in this paper.

Choosing the appropriate purpose of the stereotype influences the way in which the
stereotypes should be defined, documented and used. Within each purpose of the
stereotype there are stereotypes that introduce various degrees of modifications to
their base elements.

3.1. Model simplification stereotypes

Once the model simplification stereotype is chosen, it should be further investigated
what is the intention of the stereotype. This investigation is presented in the following
graph by taking the decision D1:

4

Is the stereotype
ONLY to distinguish between

model elements?

Choose MS1

yes no

Should there be
usage guidelines for stereotyped

elements?no
yes

Choose MS2

Choose MS3

D2

D1

Fig. 3. Choosing between the kind of model simplification stereotypes

If the stereotype is intended to be used by a small group of people (e.g. within a single
project) and thus the stereotype is mainly to help distinguish between particular
elements in the design then the stereotype (MS1):
• Can be created

o on-demand basis during the project.
o by individual developers.

• Should not contain tag definitions.
• Should not contain constraints.
• Should have documentation that includes:

o Name and representation (icon if required) of the stereotype
o Description of the stereotype (i.e. intention and meaning of the stereotype)

• Can contain icons if the purpose of the stereotype is to increase comprehension of
models (the icons itself should reveal the intention of the stereotype – i.e. be
intuitional).

• Can extend both an abstract and a concrete metaclass.
• Should not introduce new semantics to the stereotyped model element.
The documentation of these stereotypes can be rather informal and it can be a note
containing the description of the intention and the meaning of the stereotype. The note
should be attached to the definition of the particular stereotype.

These stereotypes can even be created for individual needs by modelers who want
to emphasize certain aspects of their designs in order to improve their personal
productivity. An example of a stereotype defined by an individual modeler to
designate elements which the modeler finds viable to be later stored persistently is
defined in Fig. 4.

Class
<<stereotype>>

persistent0..10..1

Stereotype is intended to show elements
which should later be used
in designing the database - i.e.
persistent elements

Fig. 4. Example of MS1 – stereotype «persistent»

If the stereotype should be more widely spread or should be used for more than a
mere distinguishing between particular elements, then it should be decided (decision
D2) whether the stereotyped elements should be used in specific situations – i.e. have
specific usage guidelines. If it should not, then the stereotype (MS2):

5

• Can be created
o on-demand basis, and
o by modelers who identified the need for the stereotype.

• Can contain icons if the stereotype should also be used to increase the
comprehension of created models.

• Should not contain tag definitions nor constraints.
• Should include documentation (can be just a note) which consists of:

o Name and representation of the stereotype
o Description of the stereotype (i.e. intention and meaning of the stereotype)
o Description of the intention and meaning of the defined tag definitions
o An example of how tag definitions of this stereotype should be used.

• Should not introduce new semantics to the stereotyped elements.
An example of this kind of stereotype is a more advanced version of the «persistent»
stereotype which is aimed at providing also information if the stereotyped element
should be stored in a database.

Class

<<stereotype>>

persistent
+ isStoredInDB: Boolean

0..10..1

The stereotype is intended to designate elements
which should be made persistent.

The tag isStoredInDB indicated whether objects of this class should be
stored in a database or not.

If isStoredInDB is set to true, the objects should be stored in a DB; if
it is set to false, then the objects should be serialized to a file

Fig. 5. Example of MS2 stereotype - «persistent»

If the stereotyped elements should be used in a specific way then it should provide
usage guidelines for the stereotyped elements (decision D2). Stereotypes which are
intended to provide guidelines (MS3):
• Should be created

o as part of a software process improvement activity, and
o by modelers who work with software process improvement issues and are aware

of the implications of different issues related to stereotyping.
• Can contain icons, but the icons should not be made the main part of stereotype

definition.
• Can contain tag definitions which add new properties to the extended model

element.
• Should contain constraints restricting usage of the stereotyped elements – i.e.

constraints stating when the stereotyped element cannot be used.
• Be documented in a note or a separate document which contains:

o Name and representation of the stereotype
o Description of the stereotype (i.e. intention and meaning of the stereotype)
o Description of the intention and meaning of the tag definitions which are part of

the stereotype.

6

o Description of the intention, meaning (expressed in natural language) of the
constraints defined for the stereotype.

o An example of using the stereotyped elements
An example of an MS3 stereotype is even more advanced version of the stereotype
«persistent» which provides a usage guideline for the stereotyped elements. The
guideline states that a persistent class can only be associated with other persistent
classes (if the owned end is navigable). The usage guideline is expressed as a
constraint. The definition of the stereotype is presented in Fig.6.

Fig. 6. Example of MS3 stereotype - «persistent»

The presented kinds of model simplification stereotypes MS1-MS3 gradually provide
more possibilities of customizing the base language. In general the model
simplification stereotypes, however, are intended to make the designs simpler by
using the stereotypes. They might be targeted to emphasize certain properties of
designs or designate “specificity” of stereotyped elements. They are not intended to
introduce changes to the modeling language in the same sense as a change to a
metamodel would be introduced – with the intention to “enrich” the vocabulary of
modelers. The model simplification stereotypes, however, should not be used as
another way of showing inheritance – this would simply be a misuse of a stereotype.

Class

<<stereotype>>

persistent
+ isStoredInDB: Boolean = true

0..10..1

<<constraint>>
context persistent
inv c1: baseElement.ownedEnd->forAll(cl:Class| cl.isStereotyped("persistent"))

Name &
representation

«persistent»

Description Stereotype used to designate that objects of this class should be stored in a
persistent storage

Tag definitions isStoredInDB:
Boolean

The tag isStoredInDB indicated whether objects of this
class should be
stored in a database or not.

If isStoredInDB is set to true, the objects should be stored
in a DB; if
it is set to false, then the objects should be serialized to a
file

Constraints c1 Persistent classes can only be related to other persistent
classes (if the association is navigable from the stereotyped
class).

Example usage

<<persistent>>

CarInfo

<<persistent>>

DriverInfo
+ name: String

 ownedCars
*

Register
 drivers

*

7

3.2. Virtual metamodel extension stereotypes

Virtual metamodel extension stereotypes are stereotypes that are intended to provide
new modeling constructs for modelers thus enriching the vocabulary available to
them. Virtual metamodel extension stereotypes are usually defined as part of profiles
intended to create a new “dialect” of UML by providing new modeling constructs.
Therefore these stereotypes are advised to be created in a more rigorous way that
model simplification stereotypes. There are, however, different kinds of virtual
metamodel extension stereotypes to choose from. The choice depends on the purpose
for which the stereotype is defined and is supported by the following decision graph:

yesyes

Is the stereotype
based on a construct from

another metamodel?no

Choose VMM1

yes

Is the meaning of
the stereotype based on the

meaning of an existing model
element?

Does the stereotype
restrict usage of stereotyped

elements?no

Choose VMM2

no

Choose VMM3

D1

D2
D3

Fig. 7. Choosing between virtual metamodel extension stereotypes

Virtual metamodel extension stereotypes can be defined if the stereotypes are used to
mimic constructs from another (than UML) metamodel – further referred to as the
defining metamodel since it defines the structure of a set of stereotypes (i.e. in the
profile). The defining metamodel describes new constructs and relationships between
them which should be added to the UML metamodel. If metamodeling is not possible,
metaclasses in the defining metamodel can be “translated” into stereotypes and
relationships between the constructs should be “translated” to allowed relationships
between stereotypes (the UML specification allows associations between stereotypes
if there exists associations between the model elements which the stereotypes extend
– c.f. [2]). An example of a defining metamodel is the Software Process Engineering
Metamodel (SPEM [22]) which is used as a basis for creation of a UML profile
corresponding to the metamodel.

The lightest of the virtual metamodel extension stereotypes are stereotypes which are
not defined based on the defining metamodel (D1) and they are not meant to restrict
the usage of the stereotyped element (D2). Such stereotypes (VMM1):
• Should be created by modelers. They should be created together with other

stereotypes as auxiliary constructs – stereotypes of this kind are should not be used
as the most important stereotypes in profiles which contains them.

• Should contain tag definitions that add properties to the extended model element.
• Should contain no constraints restricting the usage of the stereotyped model

element.
• Can contain icons, but usually the icons are not used for this kind of stereotypes.

8

• Documented in documents which contain:
o Name and representation of the stereotype
o Description of the stereotype (i.e. intention and meaning of the stereotype)
o Description of the intention and meaning of the tag definitions which are part of

the stereotype.
o Relations to other stereotypes.
o Examples of using the stereotype and the stereotyped elements.

An example of VMM1 stereotype is the stereotype «GRMCode» which is defined as
part of the UML Profile for Schedulability, Performance and Time [23].

Fig. 8. Example of VMM1 - «GRMCode»

Stereotypes that allow making the modeling language more precise are virtual
metamodel stereotypes of the second kind (VMM2). These stereotypes should be used
either when:
1. They should represent constructs from the defining metamodel (D1) which are

similar to some existing modeling elements (D3), or
2. They do not represent constructs from the defining metamodel (D1) but they

restrict the usage of stereotyped elements (D2).
These stereotypes:
• Should be created

o in a dedicated process with thorough verification and validation.
o by experienced modelers

• Can contain icons, but usually no icons are necessary for these stereotypes.
• Can contain tag definitions adding properties to extended model elements.

Abstraction

<<stereotype>>

GRMRealize
+ GRMMapping[0..1]: GRMMappingString0..10..1

<<stereotype>>

GRMCode

0..10..1

Name & representation «GRMCode»
Description A mapping from a model element whose corresponding behavior is

specified by a program of some type (e.g. Classifier) to either a UML
component or to a node. This mapping is used to denote that the client
physically contains the program code for the supplier.

Tag definitions GRMMapping[0..1]:
GRMMappingString

The mapping tagged value should only be used if
the mapping details are not fully specified by the
realization relationship itself and the details are
relevant to the analysis at hand

Related to Inherits from the stereotype «GRMRealize» which inherits from the
standard UML stereotype «realize».

Example usage

MyClassCPP

+ oper1 ()
ExecutableComponent

«GRMCode»

9

• Should contain constrains restricting the usage of the stereotyped model elements.
• Be documented in a way which contains:

o Name and representation of the stereotype
o Excerpt from the defining metamodel
o Description of the stereotype (i.e. intention and meaning of the stereotype)
o Description of the intention and meaning of the tag definitions which are part of

the stereotype.
o Description of the intention, meaning of the constraints defined for the

stereotype. The constraints should be expressed both in OCL (or another
language which is used in automatic checking of constraints on models) and in
natural language (to increase understanding of the constraints by modelers).

The meaning (semantics) of these stereotypes should make the semantics of the
extended model element more precise and detailed, but it should not “redefine” the
meaning of the extended model elements completely. An example VMM2 stereotype
is the stereotype «Import» from the SPEM profile.

If the stereotype is defined based on a construct in the defining metamodel (D1) and
the meaning of the construct changes the meaning of the extended model element
(D3), then the most powerful kind of virtual metamodel extension stereotypes should
be chosen (VMM3). These stereotypes:
• Should be created

o In a dedicated development process with rigorous verification and validation
methods

o By experienced method specialists
o As part of profiles aimed at creating a new “dialect” of UML

• Can contain icons which represent the concrete syntax of the construct in the
defining metamodel.

• Can contain tag definitions which add properties of the construct from the defining
metamodel.

• Should contain constraints which allow using stereotyped elements only with other
stereotyped elements (both stereotypes should represent constructs in the defining
metamodel for which the stereotype is defined).

• Be documents in a document which contains:
o Name and representation of the stereotype
o Description of the stereotype (intention and meaning)
o Fragment of the defining metamodel which defines this construct
o Description of the intention and meaning of the tag definitions which are part of

the stereotype.
o Description of the intention, meaning of the constraints defined for the

stereotype. The constraints should be expressed both in OCL (or another
language which is used in automatic checking of constraints on models) and in
natural language (to facilitate understanding of the constraints by modelers).

The meaning of the stereotyped elements instantiated in user models is different from
the meaning of the base model elements. This allows changing (or tweaking) the
UML to suit specific needs of the company.

An example of VMM2 stereotype is «Import» from the SPEM profile.

10

Fig. 9. Example of VMM2 - «Import»

An example of VMM3 stereotype is «Activity» from the SPEM profile [22, p. 11-8].
Its definition is done in a similar format as the definition of «Import» except for the
fact that the semantics of the stereotyped element is different from the semantics of
the base model element (Operation). «Activity» stereotyped operations are intended to
define activities performed in a software development process and they are allowed to
be used only with certain stereotyped model elements – which makes the stereotype a
VMM3 stereotype. For the sake of simplicity of the example we omit several
constraints, which are specified in a similar manner as i1 in Fig. 10.

...::Core::Permission

<<stereotype>>

Import
0..10..1

<<constraint>>
context Import
inv i1:self.supplier.oclIsKindOf(Package) and
self.client.oclIsKindOf(Package)

Name & representation «Import»
Description An import dependency denotes that the contents of the target

Package are added to the namespace of the source Package. This has
similar semantics as UML Import except that in SPEM all elements
have public visibility.

Defining metamodel
fragment

...::Core::Dependency

...::Core::Permission

Import
Tag definitions n/a

Constraints i1 The supplier and client must be kinds of Package:
context Import
inv i1:self.supplier.oclIsKindOf(Package) and
self.client.oclIsKindOf(Package)

Related to n/a
Example usage

Extensions

Foundation
<<Import>>

11

Fig. 10. Example of VMM3 - «Activity»

3.3. Code generation

A specific use of stereotypes is using stereotypes to improve code generation from
models. Stereotypes dedicated for this purpose are usually defined in profiles aimed at
providing a support for a specific programming language in a UML tool. There are,
however, two kinds of code generation stereotypes which a distinguished by the
degree of modification they introduce into the base model element. Choosing between
the kinds of code generation stereotypes is supported by the decision graph:

Is the stereotyped
element ONLY to be used with other

stereotyped elements?no yes

Choose CG1
Choose CG2

Fig. 11. Choosing between code generation stereotypes

If the stereotyped elements can be used only with other stereotyped elements then the
degree of modification that they introduce should be substantial. The stereotypes
(CG2) should restrict the usage of the stereotyped model elements to such extent that
it can actually be seen as a “redefinition” of the standard model element – the

<<stereotype>>

Activity

<<constraint>>
context Activity
inv c1: baseClass.owner.isStereotyped(ProcessRole)

...::Core::Operation

0..10..1

Name & representation «Activity»

Description Activity describes a piece of work performed by one ProcessRole: the

tasks, operations, and actions that are performed by a role or with which
the role may assist. An Activity may consist of atomic elements called
Steps.

Defining metamodel
fragment

...::Core::Operation

WorkDefinition

Activity

Tag definitions n/a

Constraints i1 Every Activity is owned by a ProcessRole:
context Activity
inv c1: baseClass.owner.isStereotyped(ProcessRole)

Related to «ProcessRole»; «Step»; «WorkDefinition»
Example usage

Create Use Case
diagrams and
specifications

Developer
(ProcessRole)

12

stereotyped elements are specifically provided with context in which they should be
used (i.e. explicitly stated which elements they can be used with). These stereotypes:
• Should be created

o as part of a process of tool customization
o by developers and modelers who work with providing support for new

programming language in the modeling tools they use
• Should contain tag definitions which add properties which are required for code

generation. The properties are added so that the code generators have all
information which is required to generate more than just a skeleton source code.

• Should contain constraints (written in OCL or other language which can be
automatically evaluated) which allow using stereotyped elements only with other
stereotyped elements (both stereotypes should represent constructs in the
programming language for which the code is to be generated). The constraints
should forbid modelers from creating models which cannot be translated into
source code. This is a crucial issue if the stereotypes and profiles are intended to
realize the vision of model driven software development (c.f. [10]).

• Be documents in a document which contains:
o Name and representation of the stereotype
o Description of the stereotype (intention and meaning)
o Excerpt of source code which this stereotype should represent.
o Description of the intention and meaning of the tag definitions which are part of

the stereotype.
o Description of the intention, meaning of the constraints defined for the

stereotype. The constraints should be expressed both in OCL (or another
language which is used in automatic checking of constraints on models) and in
natural language (to facilitate understanding of the constraints by modelers).

o Code generation rule or template which defines how the code is to be generated.
The meaning of the stereotyped element might be different from the meaning of

the base model element. An example of CG2 stereotype is «CORBATypedef» from
the UML profile for CORBA [4].

Another kind of code generation stereotype is less strict and makes the stereotyped
model elements only a more precise version of the standard model elements. These
stereotypes (CG1) should be chosen when the stereotyped elements should be used
together with standard model elements (i.e. when the customization for the
programming language construct is only making the model elements more precise so
that the code generation results in a more complete code). These stereotypes:
• Should be created

o as part of a process of tool customization
o by developers and modelers who work with providing support for new

programming language in the modeling tools they use
• Should contain tag definitions which add properties which are required for code

generation. The properties are added so that the code generators have all
information which is required to generate more than just a skeleton source code.

• Should contain constraints (written in OCL or other language which can be
automatically evaluated) which forbid using stereotyped elements with certain

13

elements. The constraints should forbid modelers from creating models which
cannot be translated into source code.

• Be documents in a document which contains:
o Name and representation of the stereotype
o Description of the stereotype (intention and meaning)
o Excerpt of source code which this stereotype should represent.
o Description of the intention and meaning of the tag definitions which are part of

the stereotype.
o Description of the intention, meaning of the constraints defined for the

stereotype. The constraints should be expressed both in OCL (or another
language which is used in automatic checking of constraints on models) and in
natural language (to facilitate understanding of the constraints by modelers).

o Code generation rule or template which defines how the code is to be generated.

Fig. 12. Example of CG2 - «CORBATypedef»

Stereotypes of this kind should make the existing model elements more precise in the
context of models aimed for code generation. The stereotyped elements, nevertheless,
do not change the meaning of the base model element. This leads to an observation
based on investigating the set of profiles for improving code generation.

<<constraint>>
context CORBATypedef
inv c1: self.parent->forAll(cl:Classifier| cl.allStereotypes()->exists
 (s:Stereotype|s.oclIsKindOf(CORBAPRimitive) or
 s.oclIsKindOf(CORBAUserDefinedType))

<<stereotype>>

CORBATypedef

0..1

<<metaclass>>

Classifier

Name & representation «CORBATypedef»
Description The stereotypes allow modeling an IDL typedef construct which is

used for providing aliases for datatypes.
Example excerpt of the
source code

<<CORBAPrimitive>>

X

<<CORBATypedef>>

Y

typedef X Y;

Tag definitions n/a

Constraints c1 The parent must be stereotyped as «CORBAPrimitive» or as
a descendant of «CORBAUserDefinedType»

context CORBATypedef
inv c1: self.parent->forAll (cl:Classifier|

cl.allStereotypes()->exists (s:Stereotype|
s.oclIsKindOf(CORBAPRimitive) or

 s.oclIsKindOf(CORBAUserDefinedType))
Code generation template typedef {NameOfStereotypedElement}

{NameOfParentOfTheElement};

14

Fig. 13. Example of CG1 - «CORBAStruct»

The profiles which intend to improve code generation of general models contain
stereotypes CG1 which make the stereotyped elements more precise. The profiles
which are intended to make UML suitable to model “code” (i.e. the aim of models
created with this profile is to be a very detailed model which is aimed at [almost]
100% code generation) contain stereotypes CG2. The latter profiles are substantially
more difficult to create and should be created by experienced methods and tools
specialists.

4. Conclusions

This paper presents a set of guidelines on how to create stereotypes which are fit for
the purpose there are intended for. The previously elaborated purposes were
organized in classifications of stereotypes which were used as a basis for our studies.
The needs for these guidelines were identified in our previous industrial case studies
in the context of realization of a vision of effective modeling – i.e. model driven
software development.

The guidelines presented in this paper are intended to improve the practice of using
stereotypes in industry by introducing eight different types of stereotypes. Various
levels of documentation and different elements are associated with each type in order
to differentiate between purposes and intentions of stereotypes. The simplest

<<metaclass>>

Classifier

<<stereotype>>

CORBAStruct

0..10..1

<<constraint>>
context CORBAStruct
inv c1: self.ownedMember.multiplicity.upper = 1

Name & representation «CORBAStruct»
Description The stereotype represents IDL struct definitions.
Example excerpt of the
source code

<<CORBAStruct>>

Structure1
field1: int

struct Structure1 {
 int field1;
}

Tag definitions n/a

Constraints c1 All navigable AssociationEnds must have
the upper multiplicity value equal to 1

context CORBAStruct
inv c1: self.ownedMember.multiplicity.upper = 1

Code generation template struct {NameOfStereotypedElement} {
 for each attribute
 {typeOfAttribute} {NameOfAttribute};
}

15

stereotypes are advised to be created in a simple and informal way in order to
decrease the time required for creating profiles containing these stereotypes. The most
advanced purposes of stereotypes require including more advanced elements in
definitions of stereotypes and hence entail more rigorous process of their creation and
more detailed documentation. Using these guidelines allow increasing awareness of
the issues related to language customization and provide means for effective creation
of language dialects with specialized profiles.

In our future work we intend to evaluate these guidelines in an empirical form by
verifying the actual gains from using the guidelines in an industrial setting. We are
also working on a tool support for automatic generation of specification documents
(e.g. tables) presented in this paper in order to assist stereotype creators in their work.

References
1. Miller J. and Mukerji J., "MDA Guide", Object Management Group, 2003,

www.omg.org/mda/, last accessed 2005-01-10.
2. Object Management Group, "Unified Modeling Language Specification: Infrastructure

Version 2.0", Object Management Group, 2004, www.omg.org, last accessed 2004-02-20.
3. Object management Group, "UML 2.0 Superstructure Specification", Object Management

Group, 2004, www.omg.org, last accessed 2005-03-31.
4. Object Management Group, "UML Profile for CORBA", Object Management Group, 2002,

www.omg.org, last accessed 2003-09-20.
5. Wirfs-Brock R., "Stereotyping: A Technique for Characterizing Objects and Their

Interactions", Object Magazine, vol. 3, 1993, pp. 50-3.
6. Staron M., Kuzniarz L., and Wallin L., "A Case Study on Industrial MDA Realization -

Determinants of Effectiveness", Nordic Journal of Computing, vol. 11, 2004, pp. 254-278.
7. Kuzniarz L., Staron M., and Wohlin C., "An Empirical Study on Using Stereotypes to

Improve Understanding of UML Models", In the Proc. of The 12th Int. Workshop on
Program Comprehension, Bari, Italy, 2004, pp. 14-23.

8. Staron M., Kuzniarz L., and Wohlin C., "An Industrial Replication of an Empirical Study on
Using Stereotypes to Improve Understanding of UML Models", In the Proc. of Soft. Eng.
Research and Practice in Sweden, Linköping, Sweden, 2004, pp. 53-62.

9. Yilmaz C., Memon A. M., Porter A. A., Krishna A. S., Schmidt D. C., Gokhale A., and
Natarajan B., "Preserving Distributed Systems Critical Properties: A Model-Driven
Approach", IEEE Software, vol. 21, 2004, pp. 32-40.

10. Staron M., Kuzniarz L., and Wallin L., "A Case Study on Transformation Focused Industrial
MDA Realization", In the Proc. of 3rd UML Workshop in Soft. Model Eng., Lisbon,
Portugal, 2004.

11. Staron M. and Kuzniarz L., "Properties of Stereotypes from the Perspective of Their Roles
in Designs", In the Proc. of 8th Int. Conf. on Model Driven Engineering Languages and
Systems, Montego Bay, Jamaica, 2005, accepted for publication.

12. Gogolla M. and Henderson-Sellers B., "Analysis of UML Stereotypes within the UML
Metamodel", In the Proc. of «UML» 2002, Dresden, Germany, 2002, pp. 84-99.

13. Berner S., Glinz M., and Joos S., "A Classification of Stereotypes for Object-Oriented
Modeling Languages", In the Proc. «UML» 1999, Fort Collins, USA, 1999, pp. 249-64.

14. Object Management Group, "Unified Modeling Language Specification V. 1.4", Object
Management Group, 2001, last accessed 2003-05-30.

15. Kuzniarz L. and Staron M., "On Practical Usage of Stereotypes in UML-Based Software
Development", In the Proc. of Forum on Design and Spec. Languages, Marseille, 2002, pp.
262-270.

16

16. Atkinson C., Kühne T., and Henderson-Sellers B., "Stereotypical Encounters of the Third
Kind", In the Proc. of «UML» 2002, Dresden, Germany, 2002, pp. 100-14.

17. Atkinson C., Kühne T., and Henderson-Sellers B., "Systematic Stereotype Usage", Software
and Systems Modeling, vol. 2, 2003, pp. 153-163.

18. Object Management Group, "Meta Object Facility (MOF) Specification V. 1.4", Object
Management Group, 2001, www.omg.org, last accessed 2003-10-08.

19. Atkinson C. and Kühne T., "Rearchitecting the UML Infrastructure", ACM Transactions on
Modeling and Computer Simulation, vol. 12, 2002, pp. 290-321.

20. Wirfs-Brock R., Wilkerson B., and Wiener L., "Responsibility-Driven Design: Adding to
Your Conceptual Toolkit", ROAD, vol. 2, 1994, pp. 27-34.

21. Henderson-Sellers B., "The Use of Subtypes and Stereotypes in the UML Model", Journal
of Database Management, vol. 13, 2002, pp. 43-50.

22. Object Management Group, "Software Process Engineering Metamodel Specification",
OMG, 2005, www.omg.org, last accessed 2005-05-01.

23. Object Management Group, "UML Profile for Schedulability, Performance and Time",
Object Management Group, 2002, www.omg.org, last accessed 2003-09-20.

17

Automatic Detection of Incomplete Instances of

Structural Patterns in UML Class Diagrams

Sven Wenzel

Tampere University of Technology, Finland
University of Dortmund, Germany

email@svenwenzel.com

http://www.svenwenzel.com

Abstract. An approach for the detection of structural patterns based
on UML class diagrams is presented. By using a fuzzy-like evaluation
mechanism the introduced approach is able to recognize not only entire
patterns but also incomplete instances.
Referring to structural patterns in general the knowledge about used
patterns assists a developer not only while maintaining or reverse engi-
neering existing software, but already while designing or implementing
new software. The information about the instantiation status is essential
for a developer using, for example, specialization patterns that guide the
extension of a particular framework. The developer can be supported
by information about already instantiated patterns as well as partial
instances which obviously occur rather often while developing.

1 Introduction

Since software systems become larger and more complex, the task of under-
standing while developing and especially while maintaining software becomes
more and more difficult. Therefore the use of patterns has become a helpful
methodology to develop software in a more structured and understandable way.

In general, a pattern is a scheme that consists of three main parts: a context,
a problem, and a solution. They discuss a particular recurring problem which
arises in a particular situation – the context. Furthermore they offer a proven
solution to this problem.

There exist several pattern families which focus on different aspects of soft-
ware development and take place in the different stages of the development
process. The main interest within the design and implementation phases is di-
rected towards those patterns that focus on problems of software design. These
are behavioral patterns that focus on the run-time behavior of software ele-
ments and structural patterns that concentrate on the structural arrangements
of software elements. Both types can be separated into more abstract and more
concrete problems.

Design patterns [1] are more abstract and focus on problems in object-
oriented software in general. For example, the Composite Pattern describes how
to compose several objects into a part-whole hierarchy with a uniform interface.

18

Specialization patterns [2] do not discuss general project-independent prob-
lems, but focus on more specific topics of concrete projects. They describe, for
example, how to extend a particular framework and support users in this process.

From the field of design pattern detection it is well-known that the knowledge
about used patterns in a software helps the developer to get a better understand-
ing of it (see Section 5, Related Work). Especially in maintenance and reverse
engineering the occurrence of the solution parts of particular patterns help the
developer to understand the original problems.

But the knowledge about used patterns – especially with regard to structural
patterns in general – assists the developer already while designing or implement-
ing new software. As in maintenance and reverse engineering, the reason is a
better understanding, but the circumstances are quite different. Since the soft-
ware is currently in development, the likelihood of partly instantiated patterns
is rather high. However, the knowledge about those incomplete patterns helps
the developer and should not be neglected.

An example is the use of specialization patterns guiding a developer while
extending a framework. The patterns define the classes that have to be created,
the interfaces that have to be implemented, or the operations that have to be
overwritten, etc.. Furthermore, some architectural rules may be defined as a
pattern to enforce structural properties of the developed software. The developer
would like to check if her design satisfies these architectural rules and she also
wants to have information about the work progress, in other words, the tasks
that have to be done.

Consequently, an approach for detection of structural patterns should be able
to recognize these incomplete instances as well as entire ones. The approach
introduced on the next pages provides an insight into a possible realization of
the detection of incomplete patterns based on the Unified Modeling Language
(UML) [3] that has become a widely accepted standard for designing software in
academia and industry. It uses a combined bottom-up/top-down analysis and a
fuzzy-like mechanism to evaluate a given UML model.

The following section introduces the pattern concept used in this approach
to be more independent from specific pattern types as design patterns or spe-
cialization patterns. Section 3 presents the recognition approach itself and intro-
duces some characteristics of incomplete pattern instances. The implementation
of this approach is discussed in Section 4. Finally, Section 5 summarizes related
approaches for pattern detection and Section 6 summarizes current and future
work.

2 Pattern Definition

This approach describes and expresses patterns in a more general way to be
more independent from any specific pattern types, such as design patterns or
specialization patterns.

Detached from the pattern type, the solution part of a structural pattern
defines an arrangement of software elements to solve a particular problem. Since

19

the problem itself is not of interest here, the arrangement of software elements
is formalized for the search in a neutral manner regarding to the pattern type.

As this arrangement is in fact rather a template than a combination of con-
crete software elements, these template elements are called roles. Roles are place-
holders that can be taken from concrete elements in the instance of the pattern.
Each role has a type (e.g., classifier or association) to determine the kind of
software elements that can act as the role. Since software elements allow the
nesting of other elements, each role may contain several subroles representing
nested elements.

However, the existence of roles and their nesting relations in between is not
sufficient to express complex arrangements of software elements, so that roles can
be enhanced by constraints. These constraints are given in the Object Constraint
Language (OCL) [3, Chap. 6] and enforce certain properties of the concrete ele-
ments acting as the role. They define, for example, visibility or stereotype prop-
erties. Furthermore they may refer to other roles to express particular relations
like inheritance or parameter types.

By default every role has to be played exactly once in a pattern instance,
but it is possible to define multiplicities to give limitations for the amount of
elements acting as a role in a pattern instance. The multiplicity provides a lower
and an upper range as it is done for association ends in UML. A lower range of
zero makes a role optional and an infinite upper range allows as many elements
acting the role as possible.

An example for the neutral representation is shown for a design pattern
in Figure 1. Each element of the UML class diagram is translated to a role.
The type of the UML element determines the type of the role. Child elements
(e.g., parameters of operations) become subroles and properties of elements (e.g.,
abstraction or inheritance) are replaced by constraints for the corresponding role.

The graphical notation for the pattern definitions used in this article is a
UML object diagram extended by some features of UML class diagrams. Object
nodes represent roles – labeled with the name and the type of the role, separated
by a colon. Aggregations express containments of subroles and constraints are
represented by notation elements. For dependencies between roles dashed arrows
are used.

3 Automatic Detection

The previously presented notation for a structural pattern based on a UML
object diagram already describes exactly what to search for. The developer wants
to find an object of the type class that acts as the context role (cf. Fig. 1).
Furthermore this class object should contain an operation object that acts as
the register operation. This operation object again should contain a parameter
and so on.

This situation of picking elements for particular roles can be compared to
a casting for a theater play. Result of the search is a set of mappings between
particular roles and the elements acting as these roles, whereas the elements are

20

Fig. 1. The design pattern Strategy pictured as (1) a UML class diagram (from [1])
and (2) as an independent pattern definition. In this example the pattern is extended
by an operation for registering a strategy.

called candidates and the whole set is called a cast. The single mapping between
one role and a candidate for this role is called a binding ; it binds a candidate to
its role.

Each binding is associated with a quality value that expresses how well the
candidate acts as the role. As in the world of theater there will exist several
candidates for a particular role or one candidate for several roles, however, in
each case the role is treated with a different quality.

If the developer was interested only in complete pattern instances, she would
select only those candidates that act their role par excellence. In the case of
incomplete instances the developer cannot find perfect candidates for each role
and those candidates with minor quality become interesting. Therefore the algo-
rithm does not bind candidates to roles by simple yes-or-no decisions but rather
uses assignments with intermediate values as it is usual in fuzzy-logic.

These intermediate values are expressed in the quality of a binding. The
quality values range between 0% and 100%. The value is zero, if the candidate

21

cannot act as the role at all; 100% means that the candidate satisfies all of its
requirements. The value itself is calculated by the constraints and the subroles.

Generally it is possible to create every binding right from the start, because
if there is a role of type class, every class could be a candidate for this role. Even
if all constraints and subroles are unsatisfied, it is still a class and consequently a
candidate for this role. This technique will obviously end up in an unmanageable
set of bindings and has to be more organized.

The detection algorithm is operating in three major phases. In a first phase
the roles are classified into a hierarchy to improve the binding process. Then in
the consecutive phase this hierarchy is traversed in bottom-up direction to locate
all candidates for each role. Finally, in a top-down phase the best candidates of
the searched pattern are selected.

3.1 Classifying Phase

The definition of the pattern is a graph of roles connected by child or dependency
relationships. The child relationships can also be considered as dependencies
because an element should act as a particular role only if also its children act as
the corresponding subroles.

Hence, the graph can be sorted by those dependencies to organize the roles
into different levels (see Fig. 2), so that each role is assigned to a particular level.
The roles that have no dependencies to other roles are assigned to the lowest
level. Those roles with dependencies to other roles are assigned to the next level
above the highest level of all supplying roles. Thereby, the lowest level contains
all roles that have no dependencies to other roles. Every next level contains all
roles that have dependencies only to roles from the lower levels. The highest
level contains only one virtual role that represents the pattern itself. It depends
on its children – the main roles of a pattern.

The generated hierarchy is the basis for the detection. If the hierarchy is
processed level-by-level from the bottom to the top as it is done in the bottom-
up phase, it is ensured that supplying roles are always checked before their
clients.

3.2 Bottom-Up Phase

The bottom-up phase searches the candidates for each role. It starts with the
roles at the lowest level of the beforehand generated hierarchy, as they are inde-
pendent from any other role.

First, the algorithm locates all elements from the model, which can act as the
particular role by their type. Thus, every operation of the entire model could act
as the role AlgoInterface (cf. Fig. 2) and for each of those operations a temporary
binding is created. Indeed, this procedure will cause a huge amount of bindings
and might be inefficient for large models. However, this lack of efficiency can
be disregarded here, because it is assumed that software models have a natural
limitation of elements as they are developed by human beings.

22

Fig. 2. The ordered role graph of the Strategy pattern. The roles are arranged on
different levels based on their dependencies. Those dependencies are either caused by
constraints or parent-children relationships.

Once a role is temporarily bound to elements, the constraints assigned to the
role are evaluated for the bound element, because the element type is not the
one and only criterion for bindings. The evaluation of a constraint results in a
value between 0% and 100% expressing how well the constraint is satisfied. The
value of a simple constraint, e.g., “is abstract”, is 100% in case of satisfaction,
0% otherwise. However, it is possible that a more complex constraint returns
intermediate values if it is satisfied partially.

If a role of the lowest level has no constraints at all, there are no constraints
to assess the binding and it is taken as fully satisfied. Otherwise the quality of
the binding is reflected by the average quality of the constraints. Thus the mean
of all constraint evaluation results is calculated and taken as the quality of the

23

binding.

q(r) =
1

|C|
·

|C|∑

i=1

eval(Ci) if |C| > 0 (1)

The accuracy of the evaluation can therefore be increased by defining as much
constraints for each role as possible. The more constraints specify the charac-
teristics of a role the more precise the quality of a binding is determined. The
abandonment of constraints at all does consequently annul the quality calcula-
tion.

Constraints of roles from all levels higher than zero may depend on other
roles. In this case the returned value of the constraint evaluation is dependent
on the quality of the binding referred to by the constraint. An example is the
constraint evaluation of Implementation (cf. Fig. 2): The override constraint
defines that the operation bound to Implementation has to override an operation
bound to AlgoInterface. The evaluation returns 0% if the operation found does
not override another operation at all or the overridden operation is not bound
to AlgoInterface. Otherwise it returns the quality of the binding between the
overridden operation and the role AlgoInterface which should be overridden here.
Since this binding has a particular quality, the constraint is satisfied by this
quality.

Furthermore, the roles from all levels higher than zero may contain also
subroles. Each of those subroles, Si, can be interpreted as a constraint “has a

child of type Si”. Consequently, the calculation of the quality is extended by those
subroles S, which are handled in the same manner as additional constraints.

q(r) =
1

|C| + |S|
·

|C|∑

i=1

eval(Ci) +
1

|C| + |S|
·

|S|∑

i=1

q(Si) (2)

These subrole constraints are calculated like those constraints depending on
other roles – here, the subroles. If no candidate for the subrole (i.e., a child
element in the model) is found, the constraint is treated as 0%. Otherwise it has
the quality of the binding of the candidate found.

The algorithm traverses upwards the role graph from level to level as de-
scribed above. For each role new temporary bindings are created and evaluated.
All unsatisfied bindings (i.e., those with a quality of 0%) are deleted imme-
diately. The other bindings, which satisfy at least some constraints or subrole
constraints, are stored in a cast for the later top-down phase.

To make this calculation phase more efficient, the threshold for keeping and
deleting bindings can optionally be changed from zero to any other value. For
example, to 50% to keep only bindings which are half satisfied. Choosing 100%
would yield a detection of complete patterns.

The result of the bottom-up phase is a set of bindings from roles to different
elements. Each binding has a particular quality that expresses how well the role
is acted by its element.

24

3.3 Top-Down Phase

The detection algorithm switches to the top-down phase, when the virtual role
representing the pattern is reached (i.e., the role of the highest level). The cast
generated so far contains a lot of bindings that are not necessarily part of a
pattern instance, especially if the threshold was set to a small value or zero.

These bindings are called false bindings and are filtered out in this phase of
the algorithm. Therefore the pattern definition graph is now handled as a tree by
taking the child relationships as edges and the virtual role of the pattern as the
root. The dependencies are not taken as edges, but for additional information
only.

The graph is now traversed downwards in a breadth-first search order. For
each role the binding with the highest quality is selected to be kept in the final
cast. In case of equal qualities of multiple bindings for a role it is checked which
binding is supplier for other bindings. Bindings with more clients than others
are preferred. Also the information about other roles acted by the element of
the binding is analyzed. It might be that an element that acts as the current
evaluated role is the only candidate for another role. Especially if an element is
supposed to act as only one role at a time, it has serious consequences for which
role the element is taken.

During the entire procedure the child relationships of the actual elements in
the investigated model are considered. Only the children of a particular element
in the model can act as the subroles of the role of that element. Furthermore the
role multiplicities are considered in a way that roles with an upper range greater
than one allow the selection of a suitable amount of bindings.

The top-down phase results in the cast that contains all bindings representing
an instance of the searched pattern.

3.4 Several Pattern Instances

To simplify matters the previous introduction of the algorithm has skipped the
support for finding multiple pattern instances. If taken as presented, the algo-
rithm would just result in one found pattern instance. It would be the most
satisfied one; however, the developer is interested in all instances.

The latter phases of the search, bottom-up and top-down, are accompanied
by an assignment procedure that maps the found bindings to possible pattern
instances. This procedure works with respect to the fact that one binding can
occur in several overlapping patterns. For example, a model contains different
Contexts that use the same Strategy.

The bottom-up phase assigns each binding to one or more pattern instances.
Each newly found binding either belongs to a new pattern instance that has
not been touched so far, or it belongs to one that has already other bindings
assigned. Thus, each binding is assigned to a new pattern instance, or, if the
binding has relationships to other bindings (i.e., children or dependencies), it is
assigned to the same instances to which those related bindings are assigned.

25

Thes e as s ignments b etween bindings and patter n ins tances ar e later r es p ected
in the top-down phas e. The phas e is not p er for med only once, but for each p os s i-
ble patter n ins tance. The top-down analys is ther eby cons ults only thos e bindings
that ar e as s igned to the cur r ently inves tigated patter n ins tance indep endent fr om
the possibility that the elements may participate in other pattern instances as
well.

Once again, a predefined threshold ensures that dispensable pattern instances
are deleted. For example, a binding has been assigned to a pattern instance but
it has never been referred to by another binding; obviously this instance con-
taining one binding only is not very promising. Of course, a threshold of 100%
would just keep complete instances.

With respect to the assignments between bindings and pattern instances,
the algorithm results in a set of casts for different pattern instances. Each found
pattern instance is annotated with a quality value in the same way as the qualities
of single bindings.

While detecting incomplete pattern instances it is obviously difficult to talk
about false results, because even a single class can be an incomplete pattern
instance. However, the amount of these very incomplete instances depends on
the choice for the threshold in the last step of the algorithm, but the developer
has to check the result manually to decide which pattern instances produce
interest.

4 Implementation

The previously introduced approach has been implemented as a layered archi-
tecture to keep it as independent from any particular semantics as possible.

Fig. 3. The introduced approach has been implemented as a layered architecture.

As shown in Figure 3, the search engine itself takes just the pattern definition
as an input. This definition consists of roles and constraints and is consequently
independent from any specific pattern type. Only the constraints are related to
the semantics of the investigated model, as they check, for example, aggregation

26

types that are part of the UML. The roles themselves are independent from
semantics. They just know their relations to other roles and store the information
on assigned constraints. Furthermore, they know the element type they can be
bound to without knowing the semantics behind.

The search engine itself does not know any semantics about the models it
analyzes. The bottom-up and top-down phases of the algorithm work indepen-
dently from the investigated model. Each access to the model is encapsulated
by an adapter that knows the semantics of the corresponding model. The eval-
uations of constraints are also processed by the semantic elements.

Thus, the core algorithm works just with semantic-less objects. The only
assumption made by the algorithm is that the models on which it works have
a compositional structure, so that the parent-children relations of the roles are
reflected in the model.

So far, the semantics have been implemented of UML class diagrams. The
Eclipse UML2 project [4] provides the basis for representing the models and the
implementation of the semantics layer works directly on these models. Most of
the constraints have been realized on basis of OCL using the Kent OCL Library

[5]. Simple boolean OCL expressions allow to check if a particular property is sat-
isfied, e.g., context NamedElement inv: visibility=’public’. Other OCL
expressions can return an element of the model that is checked to be bound to
a particular role, like context Class inv: self.generalization.general=

[Strategy] to check inheritance. Naming and stereotype constraints use pro-
prietary implementations that allow regular expressions.

5 Related Work

Since design patterns are the most used pattern type in implementation, there
is an interest to detect them while maintaining or reverse engineering software.
Thus, there exist many solutions noted for automated detection of design pat-
terns.

Compared to this approach, the reverse engineering component of the Fu-

jaba Tool Suite [6] is the most related one, because it gave some basic ideas. It
uses graph grammars to operate on the abstract syntax graph (ASG) of a soft-
ware system. Graph transformations are defined for each pattern and annotate
the ASG with new nodes containing information about found instances. There-
fore it uses alternating bottom-up and top-down phases and patterns are defined
hierarchically as it is done with the roles in this approach. So far the Fujaba

approach concentrates on structural patterns, but the support for behavioral
patterns is already in development.

Heuzeroth et al. [7] present an approach based on predicate logic. It operates
in two phases and is able to detect behavioral patterns as well. First, candidates
for pattern instances are searched with the help of predicates in a static analysis.
Second, the runtime behavior is analyzed to check if the expected behavior for
the candidates is satisfied.

27

An approach based on software metrics is presented by Antoniol et al. [8]. It
calculates class level metrics and compares them to a previously defined catalog
of pattern metrics.

Keller et al. [9] deal with an intermediate representation of source code. It is
held in a design repository that is based on a relational database and provides
storage as well as querying of abstract design components that are in fact nothing
else than pattern definitions.

Krämer and Prechelt [10] present an approach based on PROLOG. Both,
design patterns and software designs, are expressed in PROLOG terms. The
search for patterns is then done by the PROLOG engine.

An approach to detect design patterns with relational algebra is researched
by Fronk and Berghammer [11]. Design patterns and structural information of a
software system are expressed in relational terms. A relational calculator is used
to solve the relational equations and recognizes the pattern instances.

6 Current and Future Work

The current work focuses on the integration of the search engine into MADE [12],
an architecting tool that assists designers to define pattern-based architectures
and developers to instantiate them. The knowledge of incomplete instances will
assist the developer and allows the tool to process some tasks automatically.

As part of this integration it is aimed to allow a manual definition of bindings.
Thus the users are able to assign elements to roles by themselves and the tool
finds the related roles or reports their absence respectively. Furthermore, the
integration of the new approach into a tool will allow empirical case-studies to
prove the usability of this approach and to explore reasonable default values for
the different thresholds.

One future objective will be the extension to semantics of programming lan-
guages, such as Java. This would increase the possible field of application of this
approach, especially in the reverse-engineering.

However, the main future objective is continual improvement of the search
engine itself. The possibility to assign single constraints with weights will allow
a more precise pattern definition. More important will be support for behavioral
patterns. In case of handling them as well as structural patterns the possible
field of application will be increased much more.

Acknowledgements

The approach has been developed as part of the author’s diploma thesis, written
in cooperation between the Tampere University of Technology, Finland, and
the University of Dortmund, Germany. The thesis is funded financially by the
Martin-Schmeißer-Stiftung of the University of Dortmund.

28

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

2. Hakala, M., Hautamäki, J., Koskimies, K., Paaki, J., Viljamaa, A., Viljamaa,
J.: Annotating reusable software architectures with specialization patterns. In:
Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA’01), Amsterdam (2001) 171–180

3. The Object Management Group: Unified Modeling Language Specification – ver-
sion 1.5 (formal/03-03-01). Online at http://www.omg.org/uml/ (2003)

4. Eclipse Foundation: Eclipse UML2 Project. http://www.eclipse.org/uml2/ (2005)
5. Akehurst, D., Patrascoiu, O.: Kent OCL Library. http://www.cs.kent.ac.uk/

projects/ocl/ (2004)
6. FUJABA Tool Suite Developer Team - University of Paderborn: FUJABA Tool

Suite. http://www.fujaba.de/ (2005)
7. Heuzeroth, D., Holl, T., Högström, G., Löwe, W.: Automatic design pattern de-

tection. In: Proc. of the 11th IWPC’03, Portland, Oregon, USA (2003) 94–103
8. Antoniol, G., Fiutem, R., Cristoforetti, L.: Design pattern recovery in object-

oriented software. In: Proc. of the 6th IWPC’98, Ischia, Italy (1998) 153–160
9. Keller, R., Schauer, R., Robitaille, S., Pagé, P.: Pattern-based reverse-engineering

of design components. In: Proc. of the 21st ICSE’99, Los Angeles, California, USA
(1999) 226–235

10. Krämer, C., Prechelt, L.: Design recovery by automated search for structural design
patterns in object-oriented software. In: Proc. of the 3rd Working Conference on
Reverse Engineering (WCRE’96), Monterey, CA, USA (1996) 208–215

11. Fronk, A., Berghammer, R.: Considering design problems in OO-software engi-
neering with relations and relation-based tools. Journal on Relational Methods in
Computer Science (JoRMiCS) 1 (2004) 73–92

12. Hammouda, I., Hautamäki, J., Pussinen, M., Koskimies, K.: Managing variability
using heterogeneous feature variation patterns. In: Proc. of FASE’05, Edinburgh,
UK (2005) 145–159

29

Task-driven Instantiation of Class Diagrams

Samuel Lahtinen, Imed Hammouda, Jari Peltonen, and Kai Koskimies

Tampere University of Technology, Institute of Software Systems,
P.O.Box 553, FIN-33101 Tampere, Finland

{samuel.lahtinen, imed.hammouda, jari.peltonen, kai.koskimies}@ tut.fi

Abstract. A well-defined modeling language is often defined by another model,
the metamodel – typically presented as a class diagram. Basically a metamodel
is the grammar definition of the language, and as such, it gives the rules and
guidelines for how the models can be created. Especially in the case of complex
metamodels, there is a need for tool support for creating valid models. In this
paper we propose a method for task-driven instantiation of class diagrams.
Metamodel is projected into a pattern which guides the user in the instantiation
process. Using existing pattern tools, an environment can be generated for cre-
ating object configurations following the metamodel. We demonstrate the ap-
proach with a product configuration application. We conclude that the instantia-
tion process can be made easier and less error prone by using a task-oriented
instantiation process.

1. Introduction

The theory built around context-free languages was one of the success stories of soft-
ware science in the 60’s and 70’s. This theory, and the mature technology relying on
it, is to large extent behind the rapid development of modern programming languages
and their tool environments, which are one of the cornerstones of modern software
engineering. However, current software development technologies emphasize increas-
ingly the role of various software models as abstract descriptions of systems. In con-
trast to traditional textual representations of software systems, the languages used for
expressing such models usually cannot be defined using context-free grammars: mod-
els are typically represented as diagrams with complicated graph-like structure, rather
than linear strings.

The standard way of specifying a modeling language is to use a metamodel, that is,
another model that defines the rules for constructing models. An attractive approach
to define a modeling language is to use the language itself, or its subset. This is the
case for UML as well, the lingua franca of modeling languages for software systems.
The main structural diagram type of UML, class diagrams (or their subset), is used to
specify the structure of UML models, including class diagrams themselves. This
specification is the metamodel of UML; the models are instances of the metamodel.

Unfortunately, our current understanding of metamodel-based language processing
is far less mature than that of grammar-based languages. There is a lack of systematic
and practically motivated approaches for creating, analyzing, and processing instances
of metamodels, in a way comparable to the various technologies related to context-

30

free grammars. We anticipate that research on such approaches will become as neces-
sary in near future – and hopefully as successful – as the research on context-free lan-
guages was in the 60’s and 70’s.

In this paper, we study a particular problem related to metamodel based modeling
languages: how to support the creation of legal models, given a metamodel. This
problem is analogous to the syntax-directed editing of textual languages, but it is even
more important in the case of graphical modeling languages. In fact, most UML tools
apply “syntax-directed editing” in the sense that they allow the user to create only
models which comply with the UML metamodel, or at least aim to do so. In this way
the parsing problem can be avoided, which is yet another insufficiently explored area
in metamodel-based language processing. Thus, practical UML editors have solved
the problem of supporting legal model construction, but each in its own, ad hoc way.

We study the problem of metamodel instantiation in a slightly more general con-
text. UML offers another diagram type, object diagrams, to describe object configura-
tions, for example, those created as instances of a class diagram. Thus, we can formu-
late the problem as follows: given a class diagram, how to support the creation of
object diagrams that conform to the class diagram. If the class diagram happens to be
the UML metamodel, the object diagram is an abstract representation of a class dia-
gram. However, class diagrams can be used to specify the legal configurations of enti-
ties for any purpose, like the structure of products, documents, organizations, etc. In
software engineering, class diagrams can be used, for example, in conceptual model-
ing, domain modeling, and detailed design of a system. Here we will use the specifi-
cation of product configuration as an example application.

Our approach is to exploit existing tool support [Hau05, Ham05] to produce a task-
driven environment for class diagram instantiation. This tool was originally developed
for specifying and applying patterns in software systems. In our case, we view class
diagrams as patterns, which are instantiated as object diagrams. This approach allows
the user to create an object diagram conforming to a class diagram stepwise, follow-
ing tasks generated by the tool. After all the compulsory tasks are completed, the user
can be certain that a valid object diagram has been produced. The main advantage of
the approach is that the task-driven process relieves the user from knowing the under-
lying metamodel. Especially in the case of complex class diagrams, the seemingly
simple process of instantiating a class diagram and verifying the diagram created can
be quite troublesome and error prone without proper tool support. Especially users
who are unfamiliar with the details of the UML metamodel can easily make mistakes
or miss some parts of the process.

The organization of this paper is as follows. Section 2 introduces the issues related
to instantiation of class diagrams. In Section 3, a brief introduction to aspectual pat-
terns is given. Section 4 explains the technique to create a pattern for instantiating a
class diagram. In Section 5 the pattern tool applied in this work, MADE, is introduced
and an example application of our approach is presented in Section 6. Section 7 dis-
cusses some related work and concluding remarks are presented in Section 8.

31

2. Instantiation of Class Diagrams

In a class diagram, we aim to name and classify the objects of a domain, as well as
describe the features, structural relationships, and possibly other constraints among
them. We aim to do this as accurate as possible, in order to define precisely the under-
lying domain. An instance of a class diagram presents an object configuration that
captures the state of a system in a given time. These object configurations can change
during time, but still, the instances must follow the rules given in the class diagram.

Since class diagram notation can be used for various purposes, the actual instance
can be basically anything, including physical product configurations, documents, da-
tabases, software systems, etc. In UML, an instance of a class diagram can be pre-
sented as an object diagram. That is, a class diagram can be seen as an abstraction of
an object diagram, having an infinite number of different object diagrams as its in-
stances. Hence, the instantiation of a class diagram cannot be made fully automatic. It
is the designer who has the knowledge to choose the desired object configuration for
each instance. That is, the instantiation process can be seen as a guided “unfolding”
(by giving values for the variables) of the class diagram.

According to OMG [OMG, section 3.20.], “An object diagram is a graph of in-
stances, including objects and data values.” Basically, the objects are instances of
concrete classes, and links between the objects are the instances of the relationships
between the classes. In addition, the attributes of classes have values in object dia-
grams. The multiplicities and other constraints, presented in class diagrams, do not
have corresponding elements in the object diagrams, since they just limit the possible
objects, values, and links in the object diagrams.

Abstract classes in class diagrams are merely a structuring mechanism, depicting
that some classes can be classified further. Due to their abstract nature, abstract
classes do not have directly corresponding instances in the domain, but any of the
concrete classes inherited (either generalization or specialization relationship) from
the abstract class can be instantiated instead. Otherwise, there are no limitations for
the instantiation of a class in the description of the class itself. That is, there can basi-
cally exist any amount of objects as instances of a class, if there are no other con-
straints for the class.

In addition to specialization and generalization relationships, there are associations
among classes. All the associations, including unidirectional, composite, and aggre-
gate associations, are treated in the same way in the object diagrams, that is, they are
shown as links between the objects. An association among classes determines the pos-
sibility to have links between the objects. To interpret the multiplicities, the associa-
tions are examined from the point of view of a single object (or its class). Then, the
multiplicities in the other ends of the association determine the amount of other ob-
jects (of a type the classes determine) that can be linked to the object. That is, the as-
sociations can be used to determine the need for other objects.

The lower bound in the multiplicity range determines whether the link between ob-
jects is mandatory or not. If the lower bound is zero, the link between the correspond-
ing objects is optional, otherwise it is mandatory. The upper bound determines the
maximum amount of certain kind of objects in the relationship, but does not limit the
amount of the objects of that type in general – just in that particular relationship. In
their simplest form, multiplicities are fixed values instead of multiplicity ranges. Fig-

32

ure 1 A depicts such an association; for each object of class A there are exactly two
objects of class B. The corresponding object diagram can be seen in Figure 1 B.

:B:A

:B

BA

21 21A) B)

Fig. 1. Fixed multiplicity values of associations

As another example, let us consider the class diagram presented in Figure 2 A. For
each object of class A there can be zero or one objects of class B and any number of
D’s. Each D and B must be connected to exactly one A. The same rules also apply for
all the child classes of C. If we have an instance of D3A, it must be connected to an
object of type A. Because of the unconstrained multiplicity range, there can be an in-
finite number of different object combinations even, when there is only one A. One
possible object diagram can be seen on Figure 2 B.

D1 D2 D3

D3A

BA

0..11 0..11

D

1* 1*

:D1

:D2

:A

:D3A

A) B)

Fig. 2. Associations and multiplicity ranges

There are some features, like association classes that are not present in UML object
diagrams. One way to present them in object diagrams is to have an object with a link
to objects in both ends of the association, instead of creating an ordinary link between
the two objects. Other exceptional situations are related, for instance, to complex con-
straints for the model, but we will not discuss them in this paper.

As the number of classes in a class diagram increases, it becomes more difficult to
track all the possible choices in the instantiation process. Therefore, a guided instan-
tiation process would certainly be beneficial.

3. Using Aspectual Patterns for Diagram Synthesis

In [Ham05], the concept of an aspectual pattern is proposed for specifying and repre-
senting various logically connected compositions of entities appearing in software ar-
tifacts. Aspectual patterns have been used, among other purposes, for guiding the de-
velopment of a UML model for an application according to the specialization rules of
a platform, when the rules are given in the form of aspectual patterns. Thus, aspectual

33

patterns have been used for producing UML models in a predefined way, providing a
potential tool for our problem as well. In this paper, we apply aspectual patterns for
producing object diagrams in a way allowed by a class diagram. We do this by trans-
forming a class diagram into an aspectual pattern, and exploiting on the existing tool
support for transforming an aspectual pattern into a task list for applying the pattern.
In the sequel, we will refer to aspectual patterns simply as patterns.

Patterns have been used to represent heterogeneous collections of software entities,
covering different artifact types and languages [Ham05]. Here we assume that a pat-
tern is applied in the context of UML class and object diagrams. A pattern defines a
set of roles that can be bound to model elements in the diagrams (like objects and
links) and a set of constraints which defines the required structural relationships and
properties of the model elements bound to the roles. In addition, a role has multiplic-
ity, specifying how many model elements can be bound to the role when the pattern is
applied: in an application of a pattern, a role can be instantiated as many times as al-
lowed by its multiplicity, and each role instance is bound to exactly one model ele-
ment.

Existing tool support [Hau05, Ham04] allows the specification of patterns and
guides the user to apply the structural composition defined by the pattern in a model.
In our case the pattern is a representation of a class diagram, and the user creates an
instance diagram according to the pattern. The tool allows user interaction by generat-
ing tasks to be carried out by the user.

The idea is simple: each unbound role that can be bound in the current situation,
taking into account the mutual dependencies of the roles and their multiplicities, be-
comes a task. The user can fulfill a task either by pointing out an existing element to
be bound to the role, or by asking the tool to generate automatically a default element
and to bind it to the role. The default element of a role is defined as a template with
parameters whose values are taken from the elements bound to other roles, or pro-
vided by the user through a dialog. This mechanism turns patterns into a fairly power-
ful generative tool for various kinds of model synthesis.

As a trivial example of pattern-based model synthesis, assume we want to produce
class diagrams that follow a simple rule: there should be one composite class which
has an arbitrary number of other classes in part-of relationship with the class. This
rule can be represented by a pattern with three roles: the composite class (say, Comp),
the part classes (say, Part, with multiplicity “*”), and an aggregation relationship role.
The latter obviously depends on its end class roles, Comp and Part. The pattern and a
sample diagram produced using the pattern is shown in Figure 3.

In Figure 3, the roles are shown as small white circles, and an arc means that the
source role depends on the target role. The multiplicities are associated with the roles
as well. Note that we have introduced an additional dependency from Part to Comp;
the only reason for this is to guarantee that the Comp class is bound before the Part
classes: it seems logical to introduce first the parent and then its parts. The role in-
stances are marked as grey circles besides the roles, each instance bound to a model
element (dashed line).

34

Comp

Part

Aggreg

*

1

1 Parent

PartBPartA

Fig. 3. Pattern-driven synthesis of UML diagrams.

The example pattern is used by the tool as follows. Since the only role not depend-
ing on other roles is Comp, the tool first generates a single task “Provide Comp”. The
user could now ask the tool to generate one, and the tool asks for the name in a dialog.
After getting the name, the tool generates a corresponding class and binds it to the
role (instance) Comp. Now the Part role becomes possible to bind, since there are no
more unbound roles that it depends on. Thus, the tool generates task “Provide Part”,
and again asks for a name. This task is optional, because the lower limit for the num-
ber of Part classes is 0. After the user has given the name, the tool generates a Part
class with the given name. As a result, a new task for binding the aggregation rela-
tionship role is generated. Since a name is not required for the relationship, the user
can let the tool do this task automatically, if desired. In addition, there is a (optional)
task for producing yet another Part class, because the multiplicity of Part allows an
arbitrary number of those. In this way, the user can proceed as long as she wants. The
task mechanism guarantees that the produced models conform to the given pattern.

Consider again the pattern in Figure 3. In the example, we synthesized a class dia-
gram guided by the pattern. However, the pattern can be viewed as a representation of
a class diagram with two classes and an aggregation relationship, with multiplicity *
attached to the part class. If the generated classes are interpreted as objects and the
generated aggregation relationships as links, the resulting diagram is actually
an instance of the pattern class diagram. This illustrates our idea of using patterns as
class diagram representations for producing instances of the class diagrams. In the fol-
lowing we show how the pattern can be constructed in a systematic way, given a class
diagram.

4. Transforming Class Diagrams to Patterns

In this section, we describe the transformation from a class diagram to an aspectual
pattern and different roles we use in patterns. We can use the guidelines of a class dia-

35

diagram instantiation described in Section 2 as the basis of the pattern construction
process.

The pattern we are creating can be seen as a bridge between the model and the in-
stance. In patterns, we can refer to the element of the class diagram and the object
diagram we are creating. For example, there could be a role, which is bound to a class
in a class diagram and another role, which represents an item of an object diagram.
The conversion is done stepwise, moving from one class to another using the associa-
tions to navigate through the class diagram step by step. New roles are added to the
pattern and connected to existing ones. The process stops when all the classes have
been considered.

The pattern is used as an instantiation plan, where the user follows a given instan-
tiation schema. The instantiation order follows roughly the order in which the pattern
is created. The instantiation is started from the same point where the pattern creation
is started.

Figure 4 depicts an example pattern specification and instantiation. On the left
hand side we have the model to be instantiated, in the middle there is the pattern
model for the instantiation and on right hand side we have the instance. We use the
same pattern notation as in Figure 3. The pattern construction is started from class A
and the first element added is the multiplicity role for class A.

Fig. 4. Model, pattern, and instance and their relations

On the pattern level, there are roles for metamodel elements like attributes, classes,
associations, and multiplicities. Roles for the classes can be type roles for choosing
the type of the class from the model or object roles for providing an object to the in-
stance. When a class diagram is instantiated, we can use already existing objects in-
stead of creating new ones. Same object can play more than one role in the instance
level. Type roles are needed if the class has subclasses. If a class has attributes, we
need to have a method for setting a value to the attributes. For this we use attribute
roles¸ one role for each attribute.

There can be several associations connected to one class, each with different mul-
tiplicities, thus we need a method to separate different multiplicity values. We cannot
describe all the different multiplicities only by giving multiplicity values to type or
object roles. Instead, we use multiplicity roles to describe the multiplicity values of

36

the class. The multiplicity roles have cardinality value, which is used to describe the
multiplicity values of the corresponding association. Only multiplicity roles have
varying cardinalities, all the other roles have cardinality one. The instances of associa-
tions (links between objects) also need to be described. We use link roles to describe
the links.

The roles depend on each other and the dependencies and roles together form the
pattern. The instantiation order is opposite to the dependency flow. The starting point
is the first role added to the pattern from which there are no dependencies to any other
role. All the other roles have dependencies to at least the starting point. New multi-
plicity roles depend on the object role of class in the other end of the association. The
type roles depend on multiplicity roles. Object roles depend on either type roles, but if
no type role is needed they depend on multiplicity roles. Links are made between ob-
jects, thus, the link roles depend on the object roles. Attribute roles depend on the ob-
ject role they are related to.

In addition to classes and their relations, the model can have constraints. A system-
atic conversion of constraints to patterns is, however, beyond the scope of this paper.
Thus the constraints are ignored in pattern construction process altogether.

In order to get the maximum amount of guidance, we need to have a good starting
point for the process. A starting point is a central class in the model and it is decided
by the designer. There are no foolproof methods for defining the starting point auto-
matically. If we choose it randomly, it can limit the choices the user can make. For
example, a randomly chosen starting point can lead the user to instantiate classes that
would be optional if another instantiation order had been used.

To give an example, let us consider the class diagram in Figure 2. If we have class
A as the starting point, the tasks for creating class B and C are optional. If instantia-
tion is started from class B, we are committed to have it. The same thing happens if
we take any type of class C first, we are then committed to have at least one instance
of class C. There are, however, some guidelines that can be used to find out a good
starting point. Association classes and child classes of a hierarchy should usually be
avoided. The same rule holds for aggregated classes. They are not central elements
and it is usually better to start from a more essential part of the system. Abstract
classes can be chosen as a starting point although they themselves cannot be instanti-
ated.

However, the best starting point is often related to the semantics of the concepts in
the model, rather than to the structure of the model. What the diagram and its ele-
ments are representing is more important than the structure of the diagram. Thus it is
better to leave the choice to the designer of the instantiation process. In addition to the
starting point, the designer also needs to decide the cardinality value of the first ele-
ment.

The pattern creation is started by adding object and type roles for the first class.
After that, the associations connected to the class are used to navigate to the next
classes. The associations back to the previous class need special attention. We deduct
one from the multiplicity of all such associations. In case of multiplicity ranges, the
deduction is made to both the lower and upper bound of the range. If the result is zero,
the association is ignored. This is done because there already is a connection to one
object of required type, namely the previous class. For each class encountered, we
perform the following operations:

37

1. We check if the class already exists in the pattern. If the class already exists,
we can move to the next phase. Otherwise, we check if the class has child
classes and add a type role for the class if needed. After that, we need to
check the subclasses of the class. For each subclass that has associations con-
nected directly to it, we create a new object role. If none of the subclasses
have their own associations, we create only one object role. The created ob-
ject roles depend on the type role.

2. We add attribute roles for the newly created object roles and add a depend-
ency between the attribute role and the object role.

3. We create a multiplicity role with cardinality of the multiplicity of the asso-
ciation that was used to get to the class. We connect the multiplicity role to
the type role. If the class has no type role, we connect the multiplicity role to
the object role.

4. We add link role to the pattern and connect it to the previous object role and
the newly created multiplicity role.

5. The object roles created in phase 1 have a corresponding class in class dia-
gram. We use the associations of these classes to navigate to other classes one
by one. The associations of the parent classes are also used to find the con-
nections.

This process is recursively repeated for each new class encountered. The process
stops when there are no associations to navigate into or they all lead to classes that al-
ready exist in the pattern.

In Figure 4, we started the instantiation from class A. We add the necessary roles
for the class and check the associations connected to it. There are two associations,
one to class C and another to class B. Class C has child classes, and therefore we need
a type role. The type role depends on the multiplicity role and the object role depends
on the type role. As a result we get the pattern shown in Figure 4.

5. MADE Tool Platform

In order to demonstrate our task-driven approach to class diagram instantiations, we
use a prototype tool environment known as MADE [Ham04]. The MADE platform it-
self is the result of integrating three different tools: JavaFrames [Hak01], xUMLi
[Air02], and Rational Rose [Rose]. JavaFrames is a pattern-oriented development en-
vironment built on top of Eclipse [Eclipse]. Rational Rose is used as a UML editor.
The third component, xUMLi, is a CASE tool-independent platform for processing
UML models and is used for integrating JavaFrames and Rational Rose. There are
newer and more sophisticated CASE-tools, but Rational Rose is still widely used by
industrial partners related to MADE project. The tool has been developed to achieve a
stepwise modeling and architecting development environment and has been used to
manage different kinds of development scenarios [Ham05].

 In this paper, we exploit the MADE tool concepts and features to assist users
through class diagram instantiations. Currently MADE supports only class diagrams
in UML, so we will use class diagrams to represent object diagrams, too. Accord-

38

ingly, we will use the role types MADE provides for class diagrams to represent pat-
terns bound to object diagrams.

The specification for instantiating an arbitrary class diagram is given to the MADE
tool in terms of a pattern-based tool concept, which we will refer to as MADE pattern.
In the context of this work, a MADE pattern can be viewed as a configuration that
captures a graph of nodes and edges. The nodes represent the objects and the edges
represent the links between objects. To be able to define a pattern independently of
any concrete class instantiation, a pattern is defined in terms of element roles rather
than concrete objects and links; a pattern is instantiated in a particular instantiation
context by binding the roles to concrete elements.

Pattern roles are attached with a number of properties. Each role may have a set of
constraints. Constraints are structural conditions that must be satisfied by the concrete
element bound to a role. A constraint of a UML association role P, for example, may
require that the link bound to P must appear between the objects bound to certain
UML class roles Q and R. A cardinality value is defined for each role. The cardinality
of a role gives the lower and upper limits for the number of the elements bound to the
role in the pattern. For example, if a UML class role has cardinality value 0..1, the
corresponding instance is optional, because the lower limit is 0. Roles may depend on
other roles. For example, there is a dependency from role P to role Q since the bind-
ing of P (creating a link) depends on the binding of Q and R (creating the objects). In
this case, two objects should be bound to role Q and R before these two objects are
used when binding role P to a link between the two objects.

For generating the objects and links, the MADE tool defines a default element for
every role. If a role with a default element specification is to be bound during the pat-
tern instantiation process, the binding can be carried out by first generating the default
element according to the specification, and then binding the role to this element.

Figure 5 shows an overall view of the MADE environment. Rational Rose repre-
sents the upper part of the environment. In our example case, the object diagram is
drawn as a class diagram in Rational Rose. (The Rational Rose Enterprise edition the
MADE is incorporated to does not support object diagrams.) The model that is instan-
tiated is on the left and the object diagram is on the right. The left view represents the
part of the environment where patterns are specified and applied. Patterns are repre-
sented by circular graphical icons. In the MADE environment, patterns are instanti-
ated as extensions of other patterns. For example, the pattern ‘bike_inst’ is
an instantiation of pattern concrete_bike_inst, which specifies the instantiation steps
required for the bike example presented in this paper. When a pattern is selected,
MADE transforms the pattern into a task list. This is done by generating a task for
each unbound role that can be bound in the current situation, taking to account the de-
pendencies and cardinalities of roles. The task view displays the tasks implied by the
pattern. This view is divided into two panes: task titles are shown in the upper pane
and detailed task descriptions are presented in the lower one. In the example figure, a
task for selecting a proper seat type is shown. The MADE tool incorporates wizards to
help the user carrying out the instantiation process. We use the wizard to select the
classes from the model.

39

Fig. 5. MADE and Rational Rose used in an instantiation task.

There are two kinds of tasks: mandatory and optional. They both have their own

graphical presentation; a hollow dot is used for the optional task and a filled red dot
for the mandatory task. In the context of class diagram instantiation, executing a task
means instantiating a class and adding the instance of that class to the object diagram.
Consequently, a binding between a pattern role and the generated element is estab-
lished and recorded by the tool. The middle view depicts the bindings that have been
performed. In addition to the bound roles, the view shows the links that exist between
the class instances.

As the object model can be freely edited through the UML editor, some bindings in
an existing pattern become invalid or certain constraints defined by the pattern are
violated. For example, certain objects might be accidentally deleted or the names and
types of objects might be illegally modified. In this case, the pattern tool warns the
developer about the inconsistencies and proposes corrective actions. It is then up to
the developer to either correct the situation or ignore the warning.

6. An Example Instantiation Scenario Using MADE

As an application of class diagrams, consider the problem of product configuration.
There are a wide range of products that are assembled from components ranging from

40

personal computers to trucks. Some of the components may be optional while others
are necessary to get a complete product. The different components need to be assem-
bled together before the product is complete. The product possible configurations can
be given using UML class diagrams. The configuration models can also be used to
help the assembly by defining order in which the parts of a product need to be assem-
bled. Using a task-driven approach, we can also give the user the tasks in the right or-
der.

Our example product, which is a mountain bike, consists of over 15 different kinds
of components including frame, fork, brakes, shifting system, springs, rims etc. Each
component (e.g. frame) can be changed, thus leading to a new configuration. The bike
factory can design a range of predefined configurations as their market models. In ad-
dition to the models given by the factory, the customer could also create a custom
bike by choosing her own combination from various parts. Some of the parts like re-
flectors, cat-eyes, and mudguards are optional while others are compulsory. Instead of
giving a customer full control over all the different components, the bike manufac-
turer could provide a set of component collections the user can choose from.

We have a simplified model of a bike as our example case. A class diagram illus-
trating the configuration of the component is given in Figure 6. To keep the model
simple, the component ranges are presented in their own packages and only base
classes are used in the configuration model. An example component hierarchy is pre-
sented in Figure 7.

Tyre
(f rom Tires)

Seat
(f rom Seat)

Pedal
(f rom Pedals)

GearSystem
(f rom GearSystem)

Fork
(f rom Forks)

111 1

Frame
(f rom f rames)

1 11

1

2

1

2
1

11

1

1

1

1

Rim
(f rom Rims)

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 6. A (simplified) configuration model of a mountain bike.

41

AluFrame SteelFrame CarbonFibreFrame

Frame
Color

Fig. 7. Different frame types.

The bike model is used in the creation of an instantiation pattern. The MADE envi-

ronment generates the tasks that the user needs to complete in order to get a legal bike
configuration based on given pattern. The tool allows designer to add additional in-
structions to the roles giving the user hints on e.g. how to complete tasks. The con-
straints were ignored on pattern creation but the designer can add them to the MADE
pattern by hand. In addition to the constraints found in the model, the designer can
also introduce additional constraints. Using the constraints, we could, for example,
force the user to have rims of rear and front wheel to be of the same type.

The pattern model in the MADE tool is very similar to the one presented in Section
4, but there are some limitations and differences. In this work, we use four different
role types: UML class roles, UML association roles, attribute roles and informal roles;
the purpose of the latter is to specify arbitrary informal tasks. UML class roles are
used to present type and object roles, UML association roles are used for links be-
tween objects, and informal roles are also used to represent the multiplicity roles.

The pattern derived from the bike model is shown in Figure 8. The association
roles were left out from the pattern to clarify the figure by limiting the amount of
visible roles and dependencies. Roles without an explicit multiplicity value have a
multiplicity of one. A frame was chosen as the starting point of the pattern construc-
tion process. A pending instantiation process where this pattern is used can be seen in
Figure 5.

The MADE environment defines only four different multiplicity values (1, 0..1, *,
and 1..*) instead of free range of multiplicities, thus we need to have a workaround to
present for example constant multiplicity values like 2. If a fixed multiplicity is
greater than 1 but not * we have same number of roles with cardinality value of one.
In our example case, the bike has two pedals. We cannot use a role with a cardinality
of 2, therefore, we need two multiplicity roles with cardinality of 1. To present multi-
plicity ranges like 2..4, we can use roles with cardinalities of 1 and 0..1 in combina-
tion.

The MADE tool does not accept circular relations in the patterns. Because circular
relations are banned, the tool cannot be used to present patterns with recursive loop
structures. We cannot use the pattern model described in Section 4 without small
changes to the pattern creation process. We simplify the process by ignoring the asso-
ciations back to the previous class completely. If there are associations with lower
bound of multiplicity greater than one in both ends of the association in the model, the
simplified pattern may produce invalid instances. Such associations are rare, but when
encountered, the designer of the instantiation process needs to device a workaround to
correct the pattern. Restriction on loops also leaves structures like the Composite de-

42

sign pattern [GOF, p. 163] out of the scope of our straightforward MADE instantia-
tion.

If circular relations are supported, there are models that can produce infinite num-
ber of objects. Figure 9A shows a simple class diagram with two classes. The user can
create a small but complete object diagram presented in Figure 9B or continue to cre-
ate new elements indefinitely (Figure 9C).

Fig. 8. A pattern model of a bike

When the pattern presented in the Figure 8 is applied in the MADE environment,
the first task presented to the user is the selection of a frame type. After that, the user
needs to provide an instance of the frame. After creation of the frame, the user can
continue by choosing seat, pedals, or fork. New tasks appear after the old ones are
completed. The links between the objects are created semi-automatically. The user
creates the links by acknowledging the creation. An example object diagram is shown
in Figure 10.

The task-driven process can also be used to verify and complete existing object
diagrams. Instead of creating new elements to the object diagram, the user binds roles
to already existing objects. After the binding are done, the MADE tool can be used to
complete the diagram and verify the completeness of the diagram.

Having only one starting point can be seen as an undesired restriction, the freedom
of choice can be increased by introducing several starting points. This can be done by
creating multiple patterns, each with a different alternative starting point. Depending
on the chosen starting point, the appropriate pattern will then be activated.

43

E F

222 2

:E :F

:E :F :F

:E

:F:E

:E

:F

...

A)
B)

C)

Fig. 9. Potentially endless instantiation of a simple model

Fork:GasSpringFork

GearSys:24SpeedGear

LeftPedal:ClippedPedal RightPedal:ClippedPedal

Seat:BasicSeat

Frame:CarbonfiberFrame
Color : Blue

RearRim:CarbonFiberRim

RearTyre:UltraLite

FrontRim:CarbonFiberRim

FrontTyre:UltraLite

Fig. 10. An instance of the bike model

7. Related Work

The problem of creating legal models based on a given metamodel is addressed, e.g.
by all UML CASE-tool vendors, in their products, like Rational Rose[ROSE],
Together [TOGETHER], and ArgoUML [ARGO]. In these tools, changes in the
metamodel require changes in the tools themselves. Hence, these tools are not opti-
mized for instantiation of arbitrary class diagrams.

This problem is solved, for instance, in so-called meta-case tools, such as MetaE-
dit+ [ME01, ME05], ObjectMarker [MV], GME (Generic Modeling Environment)
[GME], and The Coral Modeling Framework [Coral]. Typically, meta-case tools offer
a metamodeling tool suite (i.e. framework) for defining modeling concepts, their
properties, associated rules, and symbols needed to specify, implement, and use mod-
eling languages.

As stated, basically all the UML model editing tools apply “syntax-directed edit-
ing” in the sense that they allow the user to create only models which comply with the
UML metamodel, or at least aim to do so. However, in these tools the users have to
know the underlying metamodel. If the user, for instance, tries to instantiate a wrong
type of element in a situation, the tools typically just deny the action, instead of guid-
ing in the instantiation. Therefore, the main advantage of our approach is that the

44

task-driven process genuinely guides the user, and relieves her from knowing the un-
derlying metamodel.

There are also other task-based tools, like various workflow tools, e.g. Metastorm
[Metastorm] and Telelogic Popkin [Popkin], but they do not address the problems
presented in this work. Typically, they are not aware of the underlying models in any
way.

8. Discussion

In this paper, we showed how class diagrams can be instantiated in systematic task-
driven way. We showed how to make a conversion from a class diagram to a pattern
model for instantiation and presented an implementation based on the MADE plat-
form. Our early experiences with the task-driven instantiation suggest that the ap-
proach can be used to facilitate the instantiation process. The instances created using
our approach can be verified as they are constructed and their completeness can be as-
sured. Even with little knowledge of modeling languages, the user can create in-
stances of a model using this approach. However, our approach needs to be thor-
oughly evaluated against real world examples, which may require the instantiation of
larger complex models.

Using a combination of the MADE environment and Rose can be difficult for a
person with little experience on the modeling tools. A simpler user interface should be
provided if the task-driven approach is to be used with models that are not related to
software. Usability tests should be performed in order to verify the applicability of
our approach using real world examples.

Acknowledgements

This research has been financially supported by the National Technology Agency of
Finland (Project Inari), Nokia, Plenware Group, TietoEnator, Plustech, and Geracap.

References

 [Air02] Airaksinen J., Koskimies K., Koskinen J., Peltonen J., Selonen P., Siikarla M.,
Systä T.: xUMLi: Towards a Tool-independent UML Processing Platform. In: Proceedings
of the Nordic Workshop on Software Development Tools and Techniques (K. Osterbye,
ed.), NWPER 2002, IT University of Copenhagen, 2002.

[ARGO] ArgoUML, http://argouml.tigris.org/, 2005.
[Coral] Marcus Alanen and Ivan Porres: The Coral Modelling Framework. In Proceedings of

the 2nd Nordic Workshop on the Unified Modeling Language NWUML'2004, Jul 2004.
 [Eclipse] Eclipse, Eclipse website, http://www.eclipse.org, 2005.
[GME] GME: The Generic Modeling Environment,

http://www.isis.vanderbilt.edu/Projects/gme/, Institute For Software Integrated Systems,
2005.

45

[GOF] Gamma, Helm, Johnson, Vlissides: Design Patterns, Addison Wesley, 22nd printing,
July 2001

[Hak01] Hakala M., Hautamäki J., Koskimies K., Paakki J., Viljamaa A., Viljamaa J.: Generat-
ing application development environments for Java frameworks. Proc. GCSE 2001 (3rd In-
ternational Conference on Generative and Component-Based Software Engineering), Sep-
tember 2001, Erfurt. Lecture Notes in Computer Science 2186, Springer, 163-176.

[Ham04] I. Hammouda, J. Koskinen, M. Pussinen, M. Katara, and T. Mikkonen. Adaptable
Concern-based Framework Specialization in UML. In Proc. ASE 2004, pages 78–87, Linz,
Austria, September 2004.

[Ham05] Hammouda I.: A Tool Infrastructure for Model-Driven Development Using Aspectual
Patterns. In Sami Beydeda, Matthias Book, and Volker Gruhn, eds., Model-driven Software
Development - Volume II of Research and Practice in Software Engineering. Springer,
2005.

 [Hau05] Hautamäki J.: Pattern-Based Tool Support for Frameworks – Towards Architecture-
Oriented Software Development Environment. PhD thesis, Tampere University of Technol-
ogy, Publication 521, 2005.

 [ME01] MetaCase Consulting, Domain-Specific Modeling: 10 Times Faster than UML, Meta-
Case Consulting, Inc., Jyväskylä.

[ME05] MetaCase Consulting, MetaCase Consulting website, http://www.metacase.com, 2005.
[Metastorm] Metastrom, Metastorm Inc. webpage, http://www.metastorm.com/, 2005.
[MV] MarkV Homepage, http://www.markv.com/, MarkV Systems, 2002.
[OMG] Object Management Group, OMG Unified Modeling Environment Specification, Ver-

sion 1.5, May 2003.
 [Popkin] Telelogic Popkin,
 http://www.popkin.com/customers/customer_service_center/enterprise_architecture_resourc

e_center/bpm.htm, 2005
[ROSE] Rational Rose, http://www-306.ibm.com/software/rational/, IBM, 2005.
[TOGETHER] Together, http://www.borland.com/us/products/together/index.html, Borland,

2005.

46

Practical Refactoring of Executable UML Models

Łukasz Dobrza�ski, Ludwik Ku�niarz

Department of Systems and Software Engineering
School of Engineering

Blekinge Institute of Technology
PO Box 520

S-372 25 Ronneby, Sweden
ludo04@student.bth.se, lku@bth.se

Abstract. One of the inevitable negative effects of software evolution is design
erosion. Refactoring is a technique that aims at counteracting this phenomenon
by successively improving design of software without changing its observable
behaviour. This paper presents an overview of recent approaches to UML
model refactoring, followed by results of an initial study on refactoring of
executable UML models, i.e. models that are detailed enough to be
automatically compiled to executable applications. It focuses on identification
of refactoring areas in models built in Telelogic TAU, and it contains a
description of application of several different refactorings to an exemplary
executable model.

1 Introduction

Software maintenance is one of the key issues in the overall software construction and
management. The issue relates to the fact that software systems live and evolve in
time. Chapin et al. [3] define software maintenance as “the deliberate application of
activities and processes (…) to existing software that modify either the way the
software directs hardware of the system, or the way the system (…) contributes to the
business of the system’s stakeholders.” In the modern approach, software
maintenance encompasses activities and processes involving existing software not
only after its delivery but also during its development. Worth mentioning is the fact
that nowadays more than 80% of total software life-cycle costs is devoted to its
maintenance [13].

Chapin et al. [3] propose a semi-hierarchical classification of the types of software
maintenance that bases on “objective evidence of maintainer’s activities.” Their
categorisation groups twelve types of software maintenance into four clusters, which
are gathered in a decision tree shown in Figure 1.

According to Bennett & Rajlich [1], currently there is no one commonly accepted
definition of software evolution, and in a wide sense, the term is often used as a
synonym of software maintenance. However, Chapin et al. [3] distinguish between
software maintenance and software evolution. In their opinion, the latter occurs when
enhancive, corrective, reductive, adaptive or performance maintenance is carried out.

47

In other words, software evolution happens when business rules, or software
properties that are sensible for customer are changed.

Fig. 1. Software maintenance classification [3]. The tree is read from left to right, and in each
cluster – from bottom to top. Italic font indicates that the type of maintenance causes evolution.
* indicates the default type in a cluster. “…” means “Did the maintenance activities…”

As indicated by Van Gurp & Bosch [21], despite many years of research and many
suggested approaches, it is inevitable that a software system finally erodes under
pressure of the ever-changing requirements. This negative effect of software evolution
is known in the literature as software aging [11], and one of its dimensions is design
erosion. During evolution, almost each change of requirements posed on a software
system enforces introduction of small adaptations to its design. These adjustments are
taken in the context of (1) all previous changes, and (2) predictions about possible
future changes that may need to be made. It is obvious that some of these predictions
can be wrong. In a consequence, the system may evolve in a direction where it is hard
to make necessary adjustments. Two trends that were observed by Van Gurp & Bosch
[21] are that (1) fixing design erosion is expensive, and (2) eroded software may
become an obstacle for further development.

Refactoring1 is one of the techniques that aim at counteracting the phenomenon of
design erosion. It relies on successively improving design of software without
changing its observable behaviour. In the context of the categorisation provided by
Chapin et al. [3], refactoring is an activity that directly supports the types of
maintenance present in the software properties cluster. It is particularly suitable for
groomative maintenance that involves among others “replacing components or
algorithms with more elegant ones, (…) changing data naming conventions, altering
code readability or understandability [ibid.].” Refactoring can be also useful in
preventive maintenance activities, which example is “participation in software reuse
[ibid.].” Adaptive maintenance encompasses activities like “reallocating functions
among components or subsystems, (…) changing design and implementation
practices [ibid.]”, what also can be achieved by the use of refactoring.

1 For an extensive literature survey on software refactoring, performed in the frames of “The

Refactoring Project”, refer to [8].

48

The remainder of the paper is organised as follows. Section 2 provides an overview
of recent approaches to refactoring of UML models, Section 3 introduces the notion
of executable UML, Section 4 concerns refactoring of TAU executable UML models,
focusing on identification of refactoring areas, and Section 5 presents several
refactorings applied to an exemplary TAU model.

2 UML Model Refactoring

Refactoring was primarily used in the context of code and it aimed at improving its
quality characteristics. Several catalogues of refactorings were published, starting
with the most commonly known and used one introduced in the Fowler’s book [5].
Although the book concerns code refactorings, over 60% of them are illustrated with
the use of UML class diagrams. This observation motivates a question whether code
refactorings can be applied to UML models. Zhang et al. [21] states that it is obvious
that some code refactorings can also be used to transform class diagrams. According
to Boger et al. [2], for some refactorings, like e.g. Extract Method, it is natural to
apply them on the code representation level. Other, like Rename Class or Pull Up
Method can be applied both on the code as well as on the model level, and
refactorings like Replace Inheritance with Delegation or Extract Interface are more
apparent on a model level.

According to France & Bieman [6], applying refactorings on an abstract view of
the system facilitates meeting design goals and addressing deficiencies uncovered by
evaluations, i.e. improving specific quality attributes directly on a model. It also
enables to explore relatively cheaply alternative decision paths in system’s design.
Sunyé et al. [17] mention that the primary advantage of UML over other modelling
languages, in the context of model refactoring, is the syntax, which is precisely
defined by a metamodel. Therefore, the metamodel can be used to control the impact
of a transformation and provide means for ensuring its behaviour-preservation.

There are several attempts to perform refactoring on models expressed in UML.
Most representative of them are briefed in the sequel.

2.1 UMLAUT

Sunyé et al. [17] attempted to transpose some of Robert’s [16] refactorings to UML
models. In the result of their work, an initial set of UML class diagram refactorings
has been created. For each refactoring, a textual description of preconditions that have
to be satisfied before performing the transformation is provided. Besides class
refactorings, Sunyé et al. [17] describe six novel statechart refactorings. Behaviour-
preservation of each statechart refactoring is expressed with the use of pre- and
postconditions specified in OCL at the metamodel level. For the sake of simplicity, no
details of how each refactoring accomplishes its intent, is given. However, the authors
suggest the use of their UML general-purpose transformation framework called
UMLAUT (Unified Modeling Language All pUrposes Transformer).

49

2.2 Refactoring Browser for UML

Apart of considering refactorings of class diagrams, Boger et al. [2] focus on activity
diagram and statechart refactorings. Some refactorings of class diagrams and all of
activity and statechart diagrams described in their paper were implemented in a
refactoring browser for UML as a part of the Gentleware/Poseidon for UML tool.
Behaviour-preservation of each refactoring is defined in a form of preconditions that
are evaluated for currently selected model elements. Each precondition is mapped to
appropriate messages, which are presented to the user in the case of its violation.
These messages correspond to conflicts that are grouped into warnings, indicating that
the refactoring might cause side effects, while leaving the model in a well-formed
state, and errors, indicating that the refactoring will break the consistency of the
model.

2.3 SMW toolkit

Porres describes [15] how UML model refactoring can be implemented as a sequence
of transformation rules or guarded actions. Each transformation rule consists of five
elements: its name, a documentation string, a sequence of formal parameters, a guard
defining when the rule can be applied, and a body, i.e. the implementation of the rule.
A rule takes one or more model elements as actual parameters and performs a basic
transformation action based on these parameters.

Porres presents an execution algorithm for the transformation rules and describes a
mechanism that ensures that the transformed models are well formed. However, he
does not discuss the behaviour-preservation property of refactorings.

In the absence of a standardized language for model transformations, Porres
implements refactorings using SMW (Software Modeling Workbench) – a scripting
language based on the Python programming language. In many respects, SMW is
similar to OCL, but it additionally provides a set of operations enabling
implementation of model transformations. The idea of extending OCL with action
features has been already discussed by Pollet et al. [14]. The main advantage of this
approach is the possibility of implementing model transformations in one language
along with defining their pre- and post-conditions.

Models can be accessed from SMW scripts via a metamodel-based interface. Each
metaclass from the metamodel is represented in SMW as a Python class and each
element in a model – as an instance of an appropriate class. The classes representing
the metamodel have the names, attributes and associations as defined in the UML 1.4
standard [9].

In order to validate the execution algorithms and to evaluate how difficult it is to
implement new refactorings in practice, Porres constructed – using the SMW toolkit –
an experimental, metamodel-driven refactoring tool, and integrated it with an existing
UML editor.

50

2.4 C-SAW & GME

Zhang et al. [21] describe an approach to model refactoring with the use of the
Constraint-Specification Aspect Weaver (C-SAW) model transformation engine, a
plug-in component for Generic Modeling Environment (GME). GME is a UML-based
metamodelling environment that can be configured and adapted from loaded into it
meta-level specifications (called the modelling paradigm) that define all the
modelling elements and valid relationships between them in a particular domain. The
UML/OCL meta-metamodel of GME is based on its own specification instead of
Meta-Object Facility (MOF). However, an ongoing project incorporates OMG’s MOF
into GME.

A prototype model refactoring browser operating with the underlying C-SAW has
been developed as a plug-in for GME. It provides automation of generic pre-defined
refactorings within the GME metamodel domain. Additionally, it enables the
specification of user-defined refactorings of both generic and domain-specific models
(e.g. Petri Nets, AQML models, or finite state machines).

Refactoring strategies for user-defined refactorings can be specified and
implemented using a special underlying language, called Embedded Constraint
Language (ECL). Users of the refactoring browser are also allowed to customize pre-
defined refactorings by modifying the corresponding ECL code. Generally, a
refactoring is composed of a name, several parameters, preconditions and a sequence
of strategies.

According to Zhang et al. [ibid.], ECL is an extension of OCL providing many of
the common features of OCL, such as arithmetic, logical and collection operators.
Additionally, it provides special operators supporting model aggregates, connections
and transformations (e.g. addModel, setAttribute or removeNode) that can access
model elements stored in GME.

2.5 GrammyUML – Source-Consistent UML Model Refactoring

Van Gorp et al. [19] point out that, although model refactorings are expressed at the
design level, they must be aware of all the detailed code-level issues. This problem
was already noticed by Demeyer et al. in a research paper concerning UML
shortcomings for coping with round-trip engineering [4], as well as by Sunyé et al.
[17] who provide two examples of refactorings (Move Method and Specialization)
which pre- and postconditions – in the absence of information about method bodies of
particular operations – cannot be verified at the model level.

Van Gorp et al. [19] argue that the UML 1.4 [9] metamodel is inadequate for
maintaining the consistency between design models and corresponding program code.
The UML 1.4 metamodel considers method bodies as implementation specific and
therefore, typical UML tools treat them as “protected areas”, which must be supplied
manually and are not altered during code (re)generation. After refactoring a UML
model and next regenerating a source code, it is common that inconsistencies appear
in these “protected areas”. For example, in the case of Pull Up Method refactoring, a
UML 1.4 metamodel based tool must be able to decide on textual identity of methods,
in order to remove from superclasses all copies of a pulled up method. Even in the

51

case of the simple Rename Class refactoring, such a tool is not able to update the
refactored class’s name in type declarations, type casts and exceptions. On the other
hand, given a precise model of statements in a method body, a UML tool would be
able to perform even such typical code level refactorings, like Extract Method.

In order to prove that the UML 1.4 metamodel is almost sufficient to allow for
expressing source-consistent model refactorings2, Van Gorp et al. [19] carried out an
experiment, which goal was to provide concrete suggestions on realization of an
ultimate UML refactoring extension. Within the framework of the experiment, they
constructed GrammyUML metamodel, which bases on the UML 1.4 metamodel and
includes eight additive extensions that allow for, among others, modelling statements
in method bodies and use of typed local variables in a given scope. With the purpose
of verifying access-, call- and update-preservation of refactorings, several stereotypes
have been defined and incorporated into GrammyUML, along with four new
refactoring Well-Formedness Rules.

In the next step, Van Gorp et al. [19] described in OCL, at the level of
GrammyUML metamodel, the refactoring contracts, i.e. associated bad smells, pre-
and postconditions, of two sample refactorings, namely Extract Method and Pull Up
Method. As already stated, it would be impossible to express refactoring contracts of
these refactorings at the level of UML 1.4 metamodel.

Van Gorp et al. [18,20] validated their approach by implementing Pull Up Method
refactoring in an open source UML CASE tool called Fujaba, with the use of Story
Driven Modeling (SDM), a visual programming language based on UML and graph
rewriting. The most straightforward solution would be to use instead of Fujaba an
OCL-enabled tool, however they did not do this due to “the practical unpopularity of
OCL (both in use by developers as in tool support) [18].”

In order to ensure appropriate source code regeneration from refactored models,
Van Gorp et al. suggest introduction of a new component called Code Preserver into
the Fujaba architecture. They define it as “a development tool component that stores
all the required source code files from which a model is extracted in such a way that
the complete system can be regenerated from a transformation of the input model
[20].” The need for Code Preserver results mainly from the fact that GrammyUML
metamodel, since it includes only a minimal set of information sufficient for
reasoning about refactoring, does not contain all syntactically possible source code
constructs.

3 Executable UML

Executable UML is considered to be a major innovation in the field of software
development. According to Pender, the term executable UML is used to describe “the
application of a UML profile in the context of a method that aims to automatically
generate an executable application from an abstract UML model [12].” It is a
graphical specification language, which combines a streamlined, computationally
complete subset of the UML with execution semantics and timing rules. In contrast to
traditional specifications, an executable specification can be run, tested, debugged and

2 UML refactorings that maintain consistency between refactored model and underlying code.

52

measured for quality attributes. However, the main benefit of this approach is the
possibility of fully automated translation of executable UML models into source code.
Executable models confer independence from software platforms, what makes them
portable across multiple development and execution environments.

There exist several both commercial as well as research attempts to achieve
executable version of UML that differ in (1) means used to specify models, and (2)
the way models are executed. In this paper, we consider executable UML models built
in Telelogic TAU UML CASE tool. The behaviour of a TAU UML model and its
implementation may be verified with the use of the Model Verifier. First, the
Application Builder generates an executable program in the C language from the
model linked with a predefined run-time library customized for simulation purposes.
Next, the program is executed – either automatically or manually, i.e. in a step-by-
step manner using various commands and breakpoints. The execution of the session
can be traced graphically in state machine and sequence diagrams or textually in the
output console window. If the application communicates with the environment, this
also may be simulated by sending manually prepared signals.

In order to be executable with the Model Verifier, a UML model must have a
certain level of completion. It must be composed of:
• a package (optional),
• a class diagram (optional),
• at least one active class (the so-called top-level active class),
• at least one state machine with an implementation (optional – in the sense that it

can be implicit).
An active class, i.e. a class with its own thread of control, must have a port to be

able to communicate with other active classes and/or its environment with the use of
signals. A port – a named interaction point of an active class – is defined by the
signals, usually encapsulated in interfaces, which it can transmit. A model with
(internal or external) communication has:
• at least one signal,
• at least one port,
• an interface (optional).

The life cycle of an active class is described with a state machine named initialize
or having the same name as its owner. The implementation of a state machine is
visualized on a statechart diagram (alternatively – in a text diagram). Each active
class may have its internal run-time structure defined in terms of other active classes,
referred to as parts. A composite structure diagram may be used to both visualize this
architecture as well as to express the communication within an active class by
showing connectors between the ports of the parts. A special kind of ports, namely
behaviour ports, may be used to enable the communication between a part and the
state machine of an instance of the class that owns the part.

4 Executable UML Model Refactoring

All previous studies presented in Section 3 concern refactoring of non-executable
UML models. The main difference between transformations used in these approaches

53

and refactorings of executable models relies on the fact that the latter ones have to
take into account and update not only structural but also behavioural aspects of
transformed models. The main challenges in the area of refactoring of executable
models that base on UML 2.0 [10] result mainly from the necessity to consider
following new features of the language: (1) cross integration of structure and
behaviour, (2) support for component-based development via composite structures,
and (3) integration of action semantics with behavioural constructs. With the intention
of enabling a systematic approach to the mentioned issues, we introduce the concept
of trigger-elements and refactoring areas.

Each refactoring has an associated trigger-element. From the practical point of
view, a trigger-element of a refactoring is the type of a code/model element on which
it can be triggered in an IDE/CASE tool. For instance, a trigger-element of Inline
Temp, Replace Temp with Query, Split Temporary Variable, and Remove Control
Flag is Temporary Variable. These are the refactorings, which one expects to be able
to apply after selecting a Temporary Variable in the body of an operation belonging to
a class, while browsing a model/code. It is noteworthy that there is difference between
“triggerness” and “driveness” – refactorings are triggered on model/code elements
and driven by the presence of bad smells.

All code trigger-elements can be classified into two disjoint groups: (1) structural
elements and (2) behavioural elements. Method Body and its internals, i.e. Code
Fragment, Literal Number, and Temporary Variable, belong to the latter group, and
the rest of them are structural ones. Refactorings triggered on structural elements are
structure-triggered (S-T), and the ones triggered on behavioural elements –
behaviour-triggered (B-T). This implies that in programs written in object-oriented
programming languages there are two refactoring areas, namely (1) structure – inter-
related classes and their features, and (2) behaviour – bodies of methods.

In the context of UML, a refactoring area may be defined as a certain part of a
model containing particular trigger-elements. Refactorings applicable for UML 1.x
models are only the structure-triggered ones, because in these models there is only
one refactoring area – the structure. On the other hand, in TAU executable models, six
refactoring areas can be distinguished (see Fig. 2).

Fig. 2. Six refactoring areas in TAU executable UML models

Area 1 – External Structure of Active Classes (ESAC). The area consists mainly
of active classes that have attributes, operations, and ports that require and realize
single signals and/or whole interfaces. Additionally, active classes may have

54

(composite/shared) associations to passive classes and composite associations to their
parts being other active classes. All these elements may be show in class diagrams,
and some of them (e.g. parts and ports) additionally in composite structure diagrams.
Candidates for transformations that can be triggered on model elements from this area
are all of the structure-triggered code refactorings. However, in many cases their
practical realization may considerably differ from the ones provided by Fowler [5].
Moreover, in the area there are potentially many other, so far unidentified refactorings
triggered on among others ports, signals, timers, and interfaces.

Area 2 – Internal Structure of an Active Class (ISAC). The area consists of
active classes that are parts of their container, and which communicate with each
other by sending signals and invoking operations via ports wired by connectors. Some
aspects of this area may be illustrated in class diagrams, but e.g. connectors – only in
composite structure diagrams. As composite structures are new to UML 2.0, so far,
there exists no literature concerning refactorings applicable to this area. Nevertheless,
these transformations would deal mainly with reorganization of internal structure and
communication infrastructure of active classes, and thus they have no equivalents
among code refactorings.

Area 3 – Life Cycle of an Active Class (LCAC). The area constitutes
implementation of a default state machine of an active class, represented in a
statechart diagram. In this area, there are two kinds of trigger-elements: (1) (elements
of) compound actions on transitions, and (2) states and transitions between them.
Refactorings triggered on the elements from the first group are mainly specific
versions of some behaviour-triggered code refactorings. Other, but already UML
specific, transformations identified and described by Sunyé et al. [17] and Boger et al.
[2] can be applied to the elements from the second group.

Area 4 – Operation Implementation of an Active Class (OIAC). The area
constitutes implementation of an operation belonging to an active class. In the context
of active classes, this implementation may be either state or stateless. However, the
former solution introduces only new presentation elements for corresponding triggers
being the same model elements, namely (elements of) various actions, as in the latter
case. Refactorings triggered on elements from this area may be derived from code
behaviour-triggered ones. However, their realizations may differ from the ones
provided by Fowler [5] due to the possibility of among others communication with
the use of signals and via connectors.

Area 5 – External Structure of Passive Classes (ESPC). The area consists of
passive classes that may have attributes and operations as well as (composite/shared)
associations and generalizations to other passive ones. All these elements may be
show in class diagrams. Candidates for transformations that can be triggered on model
elements from this area are the same as in the case of ESAC, i.e. all of the structure-
triggered code refactorings. However, their practical realizations are usually
simplified with respect to their equivalents from ESAC.

Area 6 – Operation Implementation of a Passive Class (OIPC). The area
constitutes implementation of an operation belonging to a passive class. In the context
of passive classes, this implementation may be only stateless, i.e. in the form of
actions written in U2 Action Language contained in a text diagram. As in the case of
OIAC, the refactorings triggered on elements from this area may be derived from

55

code behaviour-triggered ones, but their practical realizations are usually simplified
with respect to their equivalents from OIAC.

5 Exemplary Refactorings in Practice

To facilitate the understanding of refactoring areas, we choose four transformations3
and show how they can be applied to an exemplary TAU executable UML model of a
satellite4. The selected transformations are:
1. Area ISAC – Extract Port5 – triggered on a port of an active class, which is used

for communication with several different parts. It relies on creating a new port and
reconnecting some connectors of the old one to the new one.

2. Area LCAC – Group States [17] – triggered on a simple state in a default state
machine of an active class. It relies on transforming the state into a composite one,
and thus reduces the number of redundant transitions.

3. Area OIAC – Replace Method with Method Object [5] – triggered on an
implementation of an operation of an active class, which is too long and cannot be
decomposed with the use of other refactorings. It relies on turning the operation
into a class.

4. Area ESPC – Hide Delegate [5] – triggered on a passive class. It relies on
encapsulating it from other ones, and thus reduces the coupling between classes in
the model.

5.1 Area ISAC – Extract Port. The top-level active class of the model is Satellite,
which has several parts typed by EarthCommunicator, Navigator, and
InstrumentsController. As can be observed in Figure 3, pOutput port of
earthCommunicator serves for communication with two different parts with the use of
two semantically unrelated signals – plan, containing the most recent plan of the
mission, and command, carrying new instructions for scientific and navigational
instruments. A refactoring that should be triggered on pOutput is Extract Port.

Fig. 3. A simplified composite structure diagram of Satellite

3 It is worthy noting that refactorings Replace Method with Method Object and Hide Delegate

can be triggered also on the elements in the OIPC and ESAC areas, respectively.
4 For the sake of conciseness, only these parts of the model, which are important in the context

of particular transformations, are presented.
5 This refactoring has not been previously mentioned in the literature.

56

As the result of the refactoring, a new port pCommand is added to
EarthCommunicator, and the connector that transmits command is reconnected to it.
Next, on a class diagram showing EarthCommunicator, command is moved from to
the list of signals required by pOutput to the one belonging to pCommand. Assuming
that in all output actions – be it in a default state machine of EarthCommunicator or
in bodies of its operations – signals are sent without via keyword, the refactoring
finishes, otherwise each expression “[output] command(instr) via pOutput” has to be
changed to “[output] command(instr) via pCommand”. Subsequently, one can apply
Rename Port refactoring to pOutput in order to give it a more meaningful name, e.g.
pPlan (see Fig. 4). Finally, one can consider merging pPosInfo and pPlan in both
EarthCommunicator and Navigator with the use of Merge Ports refactoring.

Fig. 4. A simplified composite structure diagram of Satellite after triggering Extract Port and
Rename Port on pOutput port

5.2 Area LCAC – Group States. The lifecycle of InstrumentsController is defined
by a state machine shown in Figure 5. Just after creation, an instance of the class finds
itself in Idle state, in which it awaits for command signal sent by earthCommunicator.
The signal triggers a transition to Decoding state. Next, after going through
Calculating and Encoding states, the state machine reaches Adjusting state, in which
it adjusts every 10 ms the instruments, as long as new instructions appear.

Fig. 5. A state chart diagram showing implementation of a default state machine of
InstrumentsController

It can be noted that from each state there is a transition to Idle state triggered by
error signal. These redundant transitions can be eliminated by the application of a
refactoring known as Group States [17]. During the refactoring, first a new state
Working is created. Next, three transitions triggered by error from Calculating,
Encoding, and Adjusting are deleted, and the one from Decoding is reconnected to the
new state, as well as a transition triggered by command from Idle. Subsequently, a
new state machine is created in Working, what makes this state composite. Finally,

57

Decoding, Calculating, Encoding, and Adjusting are moved together with their
transitions to the new state. The transformation is completed by addition of a start
symbol. Its effects can be seen in Figure 6.

Fig. 6. Two state chart diagrams showing implementation of a default state machine of
InstrumentsController (left) and Working state (right), after applying Group States

5.3 Area OIAC – Replace Method with Method Object. Navigator component of
Satellite is a compound object, which has as one of its parts an instance of an active
class CollisionDetector. The class has among others an operation avoid, that takes as
a parameter an instance of Collision class obtained from invocation of detect
operation. The responsibility of avoid is to (1) determine how to avoid the collision
and (2) return the result of computation in the form of an instance of AvoidancePlan
class. The problem with avoid is that its operation body is too long, what is an
unequivocal symptom of Long Method bad smell [5]. However, the operation uses its
local variables dimX, dimY, and dimZ in such a way that even after application of
Replace Temp with Query, its decomposition with the use of Extract Method is
impossible. Therefore, instead of Extract Method, Replace Method with Method
Object is triggered on avoid. The described part of the model before the
transformation is shown in Figure 7.

Fig. 7. A class diagram showing a situation qualifying for application of Replace Method with
Method Object

In the first step, a new passive class is created and named by the operation. Next,
an attribute for each temporary variable (dimX, dimY, and dimZ) and the parameter
(collision) of avoid is created in the new class. Then, Avoid is given a constructor that
initializes collision attribute. Subsequently, in the new class a new operation compute
is created with the body copied from avoid. Next, all temporary variables are removed
from the body of compute, and the body of avoid is replaced with one that creates an
instance of Avoid and calls compute. The effect of the transformation is shown in
Figure 8. Because all the previous local variables of avoid are now attributes, one can
easily decompose the operation with the use of Extract Method.

58

Fig. 8. A class diagram showing CollisionDetector after application of Replace Method with
Method Object on the body of avoid operation

It is worth observing that the model after Replace Method with Method Object will
not work properly if avoid invokes any operation of CollisionDetector or any
operation of any other class accessible from it. In such a situation, Fowler [5] advises
to give the new class an attribute for the object that hosts the original operation (the
source object), initialize it in the constructor, and use it for any invocations of
operations on the original class. However, in this case it cannot be done, because
CollisionDetector is an active class, and passive classes are not allowed to invoke any
operations of active ones. Moreover, avoid can include neither output actions
responsible for sending signals nor actions concerning timers, i.e. timer set or timer
reset actions, because these are also not permitted in operation bodies of passive
classes.

5.4 Areas ESAC & ESPC – Hide Delegate. The refactoring discussed here relates
to the Fowler’s statement saying that “one of the keys, if not the key, to objects is
encapsulation [5].” In general, the less each class in a model needs to know about
other classes, the less possible is that a change in one place causes the necessity to
adjust other parts of the model, what makes the model maintenance easier and
cheaper. For instance (see Fig. 9), let us consider a situation in which a client class
(PlanSupplier) invokes an operation (getDestination) defined on one of the attributes
(plans accessible via getDestination) of a server class (PlanStorage).

Fig. 9. A class diagram showing a situation qualifying for application of Hide Delegate

As the client has to know about the delegate class (Plan), each change of the
delegate may propagate to the client. This redundant dependency can be removed by
placing a simple delegating operation on the server, which hides the delegate. A
refactoring that performs this task is known as Hide Delegate. First, getCurrentPlan
is renamed with the use of Rename Operation to getCurrentDestination. Then,
assuming that the most recent plan is always the first one in the plan collection, the
body of the operation is changed from “return plan[0]” to “return
plan[0].getDestination()”. Finally, each statement in the form of “Destination d =
planStorage.getCurrentDestination().getDestination()” is replaced by “Destination d
= planStorage.getCurrentDestination()”. These statements may occur in bodies of all
operations of both passive and active clients of PlanStorage, as well as on transitions

59

in state machines of active ones. After the refactoring, changes become limited to the
server and do not propagate to the client (see Fig. 10).

Fig. 10. A class diagram showing the effect of application of Hide Delegate

6 Discussion and Further Work

The paper presents an attempt to systematically approach the problem of refactoring
of executable UML models. It introduces a notion of refactoring trigger and
elaborates categorization of refactorings in the form of refactoring areas based on this
notion. Exemplary transformations from each area are presented, and the overall ideas
are illustrated on a study executable UML model built in TAU.

The problem of refactoring executable UML models is addressed by Kazato et al.
in [7], which seems to be the only paper on the topic published so far. The authors
deal with refactoring of design models comprising of both structural as well as
behavioural parts. The former is expressed by classes and related structural concepts,
and the latter is specified with the use of operation bodies implemented in a surface
language that maps to action semantics of UML 1.5. Kazato et al. defined a set of
twenty-eight basic transformations of design models, of which various refactorings
can be composed. The approach to implementation of refactorings bases on an
observation, that each UML model may be represented as an object model comprised
of instances of metaclasses of the UML metamodel. Each such an object model is
essentially a typed and attributed directed graph, and therefore each basic model
transformation can be treated as a graph transformation with rules described as a part
of the graph grammar.

Based on the initial study presented in the paper, development of a systematic
approach to specification of both executable UML model refactorings as well as
associated bad smells in models has been started. In comparison with the work
performed by Kazato et al., it is focused on TAU executable models, which are more
complex than the stateless ones considered in [7]. Moreover, in place of
implementation in a graph-rewriting tool, the refactoring transformations and
detection of related bad smells are planned to be programmed in TAU with the use of
its metamodel-based COM API.

References

1. Bennett, K.H. and Rajlich, V.T. (2000) ‘Software maintenance and evolution: a roadmap’, in
Proceedings of the 22nd International Conference on Software Engineering, 75-87.

2. Boger, M., Sturm, T. and Fragemann, P. (2003) ‘Refactoring Browser for UML’, Lecture
Notes in Computer Science, 2591, 366-377.

60

3. Chapin, N., Hale, J.E., Md. Khan, K., Ramil, J.F. and Tan, W.-G. (2001) ‘Types of software
evolution and software maintenance’, Journal of Software Maintenance and Evolution:
Research and Practice, 13, 3-30.

4. Demeyer, S., Ducasse, S. and Tichelaar, S. (1999) ‘Why Unified is not Universal: UML
Shortcomings for Coping with Round-trip Engineering’, in Proceedings of 2nd International
Conference UML’99 – Unified Modeling Language – Beyond the Standard (Lecture Notes
in Computer Science 1723), 630-44.

5. Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D. (1999) Refactoring: Improving
the Design of Existing Code, Addison-Wesley.

6. France, R. and Bieman, J.M. (2001) ‘Multi-View Software Evolution: A UML-based
Framework for Evolving Object-Oriented Software’, in Proceedings IEEE International
Conference on Software Maintenance (ICSM), Florence, 6 – 10 November 2001, 386-395.

7. Kazato, H., Takaishi, M., Kobayashi, T. and Saeki. M. (2004) ‘Formalizing Refactoring by
Using Graph Transformation’, IEICE Transactions on Information and Systems, E87-D(4),
89-92.

8. Mens, T. and Tourwé, T. (2004) ‘A Survey of Software Refactoring’, IEEE Transactions on
Software Engineering, 30(2), 126-139.

9. OMG (2002) Unified Modeling Language Specification Version 1.4.2, Object Management
Group, available from Internet <http://www.omg.org/cgi-bin/apps/doc?formal/04-07-
02.pdf> (29 November 2004).

10.OMG (2004) UML 2.0 Superstructure Revised Final Adopted specification (convenience
document), Object Management Group, available from Internet <http://www.omg.org/cgi-
bin/apps/doc?ptc/04-10-02.pdf> (8 April 2004).

11.Parnas, D.L. (1994) ‘Software Aging’, in Proceedings of the 16th International Conference
on Software Engineering, IEEE Computer Society Press, Los Alamitos, 279-287.

12.Pender, T. (2003) UML Bible, Wiley.
13.Pigoski, T.M. (1997) Practical Software Maintenance – Best Practices for Managing Your

Software Investment, John Wiley & Sons.
14.Pollet, D., Vojtisek, D. and Jézéquel, J.-M. (2002) ‘OCL as a Core UML Transformation

Language’, WITUML Position Paper at 16th European Conference on Object-Oriented
Programming, Málaga, 10-14 June 2002.

15.Porres, I. (2003) ‘Model Refactorings as Rule-Based Update Transformations’, Technical
Report Series No. 525, Turku Center for Computer Science, Finland.

16.Roberts, D.B. (1999) ‘Practical Analysis for Refactoring’, PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign.

17.Sunyé, G., Pollet, D., Le Traon, Y. and Jézéquel, J.-M. (2001) ‘Refactoring UML Models’,
Lecture Notes in Computer Science, 2185, 134-148.

18.Van Gorp, P., Stenten, P., Mens, T. and Demeyer, S. (2003) ‘Enabling and using the UML
for model driven refactoring’, in Proceedings of the 4th International Workshop on Object-
Oriented Reengineering (WOOR), Darmstadt, 21 July 2003.

19.Van Gorp, P., Stenten, P., Mens, T. and Demeyer, S. (2003) ‘Towards automating source-
consistent UML refactorings’, in Proceedings of the 6th International Conference on UML –
The Unified Modeling Language, San Francisco, 20 – 24 October 2003.

20.Van Gorp, P., Van Eetvelde, N. and Janssens, D. (2003) ‘Generating Refactoring
Implementations from Platform Independent Metamodel Transformations’, in Proceedings
International Workshop on scientiFic engIneering of Distributed Java applIcations (FIDJI
2003), Luxembourg, 27 – 28 November 2003.

21.Van Gurp, J. and Bosch, J. (2002) ‘Design Erosion: Problems & Causes’, Journal of
Systems & Software, 61(2), 105-119.

22.Zhang, J., Lin, Y. and Gray, J. (2004) ‘Generic and Domain-Specific Model Refactoring
using a Model Transformation Engine’, Model-driven Software Development – Research
and Practice in Software Engineering, accepted for publication in 2005.

61

Run-Time Monitoring of Behavioral Pro�les withAspetsKimmo Kiviluoma2, Johannes Koskinen1, and Tommi Mikkonen1

1 Software Systems LaboratoryTampere University of TehnologyP.O. Box 553, FIN-33101 Tampere, Finland{johannes.koskinen, tommi.mikkonen}�tut.fi
2 Solita OySatakunnankatu 18 A, 33210, Tampere, Finlandkimmo.kiviluoma�solita.fiAbstrat. Dynami program behavior is often an essential part of asystem arhiteture. Verifying the behavior is a ruial yet often an in-tratable part of the testing. Hene, it is of great onern to �nd meansto failitate the testing of dynami behavior. This paper studies one ap-proah to behavioral monitoring. We have used the onept of behavioralpro�les to speify the desired program behavior with UML. Providedwith a behavioral pro�le reated with a CASE tool, we are able to au-tomatially generate AspetJ aspets that weave a monitoring onerninto Java program ode.1 IntrodutionWhile arhiteture neessarily addresses the struture of a system, also behav-iors of the system an be arhiteturally signi�ant. For instane, it is essentialthat lients do not ommuniate with eah other diretly when the lient-serverarhiteture is used. Suh rules an be embedded in arhitetural desriptions,for instane, whih in priniple enfores them.In pratie, doumenting rules in a separate doument is not enough in thegeneral ase. Instead, the rules should be suh that tool support an be imple-mented for speifying them at the level of arhitetural desriptions and that amehanism an be reated for monitoring them in the implementation.In this paper, we introdue an approah where UML metamodel extensionsare used for the �rst purpose, i.e., de�ning the arhiteturally signi�ant behav-iors. With the extensions, we de�ne behavioral pro�les, whih an be used forde�ning arhiteturally signi�ant sequenes of behavior. For the seond pur-pose, we use aspet-oriented tehniques. The goal is to generate an aspet (oraspets) that are based on behavioral pro�les. Then, the aspets are woven to asystem that has been designed to follow the pro�les. Exeuting the system thenreveals the violations of arhiteturally signi�ant behaviors at run-time.The rest of this paper is strutured as follows. Setion 2 introdues UMLpro�les, inluding the behavioral variant we use for representing arhiteturally

62

signi�ant behaviors. Setion 3 disusses run-time monitoring with behavioralpro�les, and Setion 4 gives an example on the use of the approah. Setion5 disusses the most important �ndings on implementing the approah, andSetion 6 addresses related work. Finally, Setion 7 onludes the paper withsome �nal remarks.2 UML Pro�les2.1 Pro�le MehanismThe pro�le mehanism of UML has been reated to adapt UML for di�erentpurposes and domains by introduing stereotypes. The mehanism gives a termi-nology, notation and semantis used in the modeled domain. In addition, pro�lesan be used to add domain spei� onstraints and mapping rules between twomodels. The onstraints are applied to the instanes of stereotypes. Thus, apro�le essentially de�nes a domain spei� modeling language.New elements an be added using the pro�le mehanism to extend UML.In the pro�le, lasses having a stereotype �stereotype� reate new stereotypesto be used in a model. The stereotypes alter or extend semantis of the exist-ing UML metalasses. In addition, they an de�ne new metalasses with newmetaattributes.For example, UML an be tailored to be used with a resoure intensive do-main by de�ning a new pro�le for the domain. The pro�le de�nes an additionalmetalass Resoure that extends a regular lass and adds a new metaattributeto speify the type of the resoure (type). The new resoure element an now beused in plae of a regular lass to model the di�erent resoures of the domain.The pro�le and its usage are illustrated in Fig. 1

Fig. 1. De�ning and using a simple resoure pro�le
63

2.2 Behavioral Pro�lesIn addition to strutural relationships, there usually is important interationbetween the omponents. For example, using a framework may require followingertain behavioral rules like establishing a session to a server before using theservies provided by the server in a lient-server system. Also, design patterns[1℄ usually have spei�ed interation patterns.Arhiteturally signi�ant behavioral rules an be presented as a UML pro�le.Our approah to express the rules is referred to as behavioral pro�le. The oneptof the behavioral pro�le is built on top of UML metamodel by adding three newstereotypes:� �ClassRole� is used to de�ne the roles of the partiipants (like lient andserver) in the pro�le. A role an also be inherited from another role. Forexample, UserServerRole an be an extension of ServerRole.� �OperationRole� de�nes that the operation inside a lass role is used as arole.� �AttributeRole� de�nes an attribute role that is used for e.g. onstraints orinvariants.A behavioral pro�le onsists of lass diagrams ontaining role de�nitions andbehavioral rules in the form of sequene diagrams. The latter are more fousedon signi�ant parts of behavior than speifying an exat exeution path for thewhole program. As UML 2.0 is hosen for the notation of behavioral pro�les,reating the pro�les an be arried out with an UML CASE tool, and behav-ioral models (e.g. results from reverse engineering proess) an be automatiallyheked against behavioral pro�les with proper tool support.

Fig. 2. The notation of behavioral pro�le
64

A sample behavioral pro�le is shown in Fig. 2. The pro�le states that aftera partiipant (Any refers to any objet in the system) has made a method allmarked with role initRole to a lass in role partiipantA, either doRoleA ordoRoleB in partiipantB has to be alled before the end of the method. Anyadditional alls an our in method initRole.The pro�le roles are expressed with stereotypes in the model. So, the mappingbetween roles and atual lasses is done by using a orresponding stereotype forthe lass. A sample pro�le with a orresponding model is shown is Fig. 3.

Fig. 3. A behavioral pro�le with a orresponding model3 Run-Time Monitoring with Behavioral Pro�les3.1 OverviewOften API or framework providers give some instrutions on how to use theAPI in a separate doument or in Java API doumentation as the interfae(method signatures) itself does not give enough details on allowed all sequenes,for instane. This extra doumentation may be omplex, and often it is notthoroughly read. For this reason, we introdue a way for API providers to makesure that their API is orretly used. This is done by adding a monitoring aspetto the API lient program. Similarly, arhiteturally important behavioral rulesan be enfored in a system or the orret use of a resoure (alloating, freeing)an be insured.To monitor the behavior of a program at run-time, we use behavioral pro�lesto speify rules for program exeution. The rules de�ne what ourrenes areallowed to happen at a ertain point of exeution.
65

In general, as the behavioral pro�les an be spei�ed with UML, the rulesfor program exeution are limited only by the expressive power of UML itself.However, we have seleted a small ommonly used subset of UML 2.0 that anbe used to speify the rules for the baseline tool implementation.We have hosen Java as the language for the monitored program. Tehnially,the monitoring is performed by augmenting the Java soure ode with aspetsthat are automatially generated from the behavioral pro�le. The aspets areimplemented with AspetJ language.3.2 Seleted ToolsTo build a proof-of-onept environment for the run-time monitoring, we haveused existing UML tools. The tool set onsists of a CASE tool, a UML modelproessing platform and an aspet onept implementation for Java language.xUMLi [2℄ is a CASE-tool independent proessing platform following theUML metamodel. In addition to metamodel interfae, the OCL interpreter isprovided. Proessing omponents for the platform an be written using e.g.Python or Java. UML models and diagrams an be imported from or exportedto CASE-tools (like Rational Rose).Rational Rose [3℄ was hosen as the tool for drawing behavioral pro�lesdue to its wide-spread use in the industry and easy aess to UML metamodelwith xUMLi. The biggest downside of its use is the absene of support for UML2.0 in the latest version.AspetJ language implements the aspet-oriented paradigm [4℄. It aims atmanaging rossutting onerns, i.e., onerns that span aross multiple modules.AspetJ augments Java language with a few new strutures to help to managerossutting onerns. Crossutting onerns are separated into new modulariza-tion units, whih are alled aspets. In addition to aspets, AspetJ introduesnew strutures like pointuts and advies. In short, the idea is to use pointutsto selet a set of identi�able points in the exeution of the program (join points)and use advies to attah ode to those points. [5℄3.3 Development ProessIn order to use UML pro�les to speify behavioral rules, a translation betweenUML and AspetJ domains is required. The translation proess is illustrated inFig. 4. The translation an be regarded as an operation that has two inputs andone output. The �rst input ontains bindings between roles used in the pro�lesand atual program lasses. For the bindings, a lass diagram with played rolesmarked with stereotypes is required. The other input ontains behavioral pro�lesused for the exeution rules (Pro�le desriptions). As a result of the operation,AspetJ ode is generated.The proess starts with analyzing the pro�les. Based on the analysis, nees-sary infrastruture is reated inside the generated aspets. Then the generatedaspets are speialized to be used with the atual lasses. For the speialization,
66

Fig. 4. Proess �owrole binding information from the lass diagrams is used to generate orretpointuts for the atual lasses.After the translation proess, the generated aspets augment the programode as they are ompiled with the existing program ode. As a result, we get aprogram that ontains a monitoring onern. As the augmenting is done ompiletime, it is not possible to apply rules with behavioral pro�les at run-time.As the augmented program is exeuted and a rule violation ours, a Run-timeExeption an be thrown, the program exeution an be terminated or thedetails of the violation an be written in a on�gured log �le.3.4 LimitationsIn our urrent solution, ourrenes in the pro�le are only allowed to be syn-hronous messages. These orrespond to Java method alls.For now, we do not allow UML CreationEvents in the pro�les. They ouldbe easily supported with some additional work. Also, DestrutionEvents are notsupported due to harateristis of the Java language.One partiular detail of this work is that we are heking the alls betweenlasses, not lass instanes. The generated aspets ontain pointuts for methodalls of ertain lasses, not for spei� objets reated runtime. All the rulesapply to all objets of a ertain lass. Therefore, operation sequenes that havesigni�ane for some partiular instane only fall beyond the sope of this work.A further detail is that binding roles to objets that only exist in a limited sopeduring program exeution and making the generated aspet to hek the rulesonly for those objets is not addressed.
67

4 Example4.1 Sample PatternAs an example, we have hosen a well-known GoF pattern, Observer, and to bemore spei�, the protool how the observers reeive the subjet's data as thesubjet undergoes a hange in state in the pull model Observer ase.

Fig. 5. Java implementation of the observer patternPrerequisite for the behavioral monitoring is that there are one or more ob-servers registered to the subjet. As the ConreteSubjet's setter method is alledhanging its state, the ConreteSubjet alls notifyObservers method inheritedfrom the abstrat Subjet lass. The method then loops over all registered ob-servers alling the update methods in the Observer interfae. ConreteObserverobjets, whih implement the Observer interfae, will then query the Conrete-Subjet and reeive the new state.From the Observer pattern we an reognize two lass roles, subjet andobserver. Classes that ontain the data of interest belong to the subjet role,and lasses that are dependent on the subjet's data and need to be noti�edwhen it hanges belong to the observer role. Fig. 6 shows the two lass roles asSubjetRole and ObserverRole. Within the lass roles, there are several operationroles, getter, setter and notify in SubjetRole and update in ObserverRole. Anymethod in the lass that belongs to the subjet lass role may have any of itsmethods in the above mentioned three method roles. A method may belong tomany roles at the same time. Similarly, any method in ObserverRole may be inupdate operation role.
68

Fig. 6. Roles used in the observer pro�le4.2 Behavioral Pro�leThe behavioral pro�le itself is presented in Fig. 7. It spei�es the ommuniationbetween SubjetRole and ObserverRole using operation roles. Of ourse, theremay be multiple lasses in the observer role. Beause the behavioral pro�le isdrawn between lass roles, it does not express the order in whih the observersare noti�ed. In ase of Observer pattern, the order does not onern us. However,the method in notify role is responsible for updating all the observers by allingtheir method in update role.Instead of drawing the behavioral pro�le, it is, of ourse, possible to reverseengineer a sequene diagram from existing ode and modify it so that it bringsout the essential lasses and their interation.The pro�le expresses only the order of the alls present in the pro�le. Forexample, the method in the update role ould all other subjet's methods beforeor after the all to the method in the getter role. This kind of behavior ould beprohibited with ritial ombined fragment.The monitoring is ativated with the setter all and deativated as the setterall returns. The notify, update and getter alls that do not happen between thesetter all and its return are ignored. The �rst all in the pro�le always ativatesthe monitoring.4.3 Mapping Roles to ModelAfter we have de�ned the rules for monitoring by drawing a behavioral pro�lefor the interation of the roles, we still need to somehow map the lass rolesand operation roles to the atual lasses and methods. This is done by reverse-engineering the monitored program to get a simple lass diagram and puttingthe role names as stereotypes for the lasses and methods. Fig. 8 shows how themapping is done in the ase of our example. Notie that the ObserverRole ismapped to the Observer interfae and not the ConreteObserver lass. This isdue to the fat that in AspetJ the method all pointut piks a method allbased on the stati type used to aess the method.
69

Fig. 7. The observer pro�leThe subjet lass role is divided into two atual roles, the SubjetRoleBaseand its extension SubjetRole. The atual role in the Observer pattern is Subje-tRole. The notify role is mapped to the notifyObservers method in the abstratSubjet lass as it ontains the implementation of the method. The SubjetRoleextends SubjetRoleBase inheriting its mappings. It is required that all the op-eration roles are mapped to some methods in the lass that is in SubjetRole.

Fig. 8. Role bindings for the observer pattern
70

4.4 Aspet GenerationTo generate the aspet used for monitoring, the loation of the diagrams inFig. 7 and Fig. 8 is given to the aspet generator. The program imports thediagrams and aording the lass diagram information it generates mappingsbetween roles and the atual Java lasses and methods. The mappings and thesequene diagram parts of the imported pro�le are used to generate an AspetJode to be woven inside the Java program. To illustrate mappings between theroles and the atual Java lasses, a sample of generated ode is shown in Fig. 9.// SubjetRole.notifybefore(): all(* ConreteSubjet.notifyObservers(..))&& withinode(* ConreteSubjet.setState(..)) {hekAndChangeState(1,2);} Fig. 9. An example of the generated aspet
4.5 Sample ExeutionThe implementation of the Observer pattern was tested using JUNIT utility.The ode in the setState method (shown in Fig. 10) was hanged to all notify-Observers from zero to two times. As the Observer pro�le states (refer Fig. 7),only single notify all should be aepted. When the number of the notify allsdi�ered from one, the run-time exeption (see Fig. 11) was thrown referring theviolating line in setState.publi void setState(long state) {this.state = state;// run this line 0-2 timesnotifyObservers();} Fig. 10. Code fragment for the sample exeution

71

Fig. 11. An exeption shows the violating line5 FindingsWhile examining several approahes to implement desired monitoring funtion-ality, a number of observations were made. One of the �rst approahes was totreat the whole pro�le as a set of ordered pairs of alls and to hek before thelatter all that the �rst all has been done. That approah was quikly bypassedbeause the method an be alled several times in a pro�le. This learly indi-ates that it is neessary to reate a state mahine inside an aspet and makethe spei�ed method alls hange the internal state of the aspet. This has beentaken into aount in the referene implementation.Before eah method, the state must be heked, and in ase of an illegal statetransition, an exeption is thrown. We allow the methods in the diagram to bealled if they are not part of the sequene, i.e., all the alls to methods presentin the pro�le are allowed if the �rst all in the pro�le has not been made. The�rst all in the pro�le ativates the monitoring.To make sure that the alls are made from a ertain method to another wehad to make pointuts that hek two things: a spei�ed method is alled and aspei�ed method of a spei�ed lass makes the all. No indiret alls are allowed.In the ase of Found Messages, the aller is not heked, and with Lost Messagesthe allee is not spe�ied in the pointut.The returns from methods an be heked as well. By inluding them in thepro�le, we an ensure that no undesired alls are done before the return. Imaginea ase in whih we want method method1 of lass A to all method method2 oflass B only one. This situation is desribed in the pro�le on the left side of Fig.12. The return from method1 insures that method2 is alled only one. If thereturn operations would be ignored and not drawn in the pro�le, the situation inthe sequene diagram on the right side of Fig. 12 would be possible. In this asethe monitoring would be stopped after the �rst method2 all and everything isallowed afterwards inluding seond all to method2.An obvious onsequene of the limitations disussed above is that in ourexample, the given pro�le does not work in a situation where one subjet hasmultiple observers. If multiple observers for one subjet were to be supported,
72

Fig. 12. A return drawn in the pro�le on the left insures that the situation on the rightan not happenthis would also have to be expressed somehow in the pro�le or in the mappings(or both).It was further notied that ombined fragments require areful treatment asusing them within eah other may hange the semantis of the situation dra-matially. For example, an alternate ombined fragment behaves di�erently if itis enlosed by a ritial or strit ombined fragment. In perspetive of imple-mentation, this means that the state mahine generating the aspet will beomerather omplex. The generating ode may need an internal state mahine to opewith the ombined fragments. Depending on the state of the state mahine, theoperation deides whih ourrenes are allowed to happen at ertain points ofexeution.Some minor drawbaks of using AspetJ did ome out. AspetJ's apabilitiesare not ompletely in line with the properties of UML 2.0 sequene diagrams. Forinstane, AspetJ inherits the Java problems with objet destrution. A �nalizerexeution is possible to intervene, for instane, with an exeution pointut, butthe time between the moment the objet beomes unreahable and exeutionof �nalizer is arbitrary. In addition, the �nalizers may not be exeuted at all insome ases [6℄. Therefore, the sequene of objet destrutions in the behavioralpro�le is impossible to verify with AspetJ and Java.More importantly, with AspetJ it is di�ult to verify if a method all isever done. If a pro�le requires that lass in role A alls two methods, method1and method2, of lass in role B, after �rst method all to method1 it is not easyto raise an error if the seond all method2 never seems to ome. This situationis shown in Fig. 13.This problem lies in the fat that the pro�le does not de�ne how muh timean be spent between the two method alls. This ould be done with UML2.0 Duration and Time Constraints. Using them with AspetJ would be a bitinaurate as AspetJ does, even though just a little, slow down the programexeution. Yet, with making a bit higher upper limits to time spend betweenthe alls, this problem ould be su�iently solved. Tehnially, one possibilitywould be to reate a time monitoring thread inside the aspet that would hek
73

Fig. 13. A situation where heking the seond method all is di�ultthe state of the aspet after a ertain time was exeeded. However, this was notimplemented.A simple solution to this problem is to add a surrouding method all and areturn to pro�les. An example of this is setState() in Fig. 7. As the exeutionreturns from the method, it is possible to hek if all the preeding alls aremade. This is ertainly not an infallible approah as the return from the methodmight never happen, e.g., in a ase of an eternal loop between the methods.With virtual mahine shutdown hooks (java.lang.Runtime.addShutdownHook)[7℄ it would be possible to report if a pro�le monitoring was ongoing and its ur-rent state at the time of program termination. This ould be used to notiethat a ertain all was never made. Unfortunately, not even shutdown hooks arealways exeuted at the time of program termination.AspetJ deently met our needs but it may not be the best possible tool im-plementing runtime monitoring of behavioral pro�les. Instead, other approahessuh as using Java Debug Interfae (JDI) may turn out to be a better alternative.By slightly altering the development proess, the presented system might alsobe used for automati reovery from an error situation in a system or maybe evenwriting aspets with UML.6 Related WorkTo support strutural software arhiteture design, Selonen and Xu [8℄ haveintrodued a onept of arhitetural pro�les that speify arhiteturally im-portant or interesting strutural relationships between omponents. A designvalidity model an be heked against the rules spei�ed in a pro�le. The hek-ing is done using a speial tool (ArtDeo) in design phase, so no running ode isrequired. The onept has been used to support software maintenane [9℄.
74

In [10℄ Rihters and Gogolla present an aspet-oriented approah for moni-toring UML and OCL onstraints. Constraints are given in a UML design modelusing OCL. The onstraints inlude lass invariants and pre- and postonditions.A speial tool, USE, is used to validate the UML model and to generate a mon-itor aspet. The aspet generates information on the behavior of the appliationwhih is later on used for behavior validation in the USE tool. In addition, thetool generates a sequene diagram to show a trae of operation alls in a mon-itored system. While onstraints are given within UML lass diagram, they arestill in textual form. In addition, the onstraints refer to atual Java lasses, sothere is no role based validation mehanism. This restrition makes distributingbehavioral onstraint libraries along with programming interfae or frameworkmore di�ult.In [11℄ Groher and Shulze present an approah to support modeling aspetsin UML. The aspets an be modeled using an UML CASE tool and orre-sponding AspetJ ode skeletons are generated. The skeletons are used to o�eran automated mapping from design models to programming models.Yan et al. [12℄ present a tehnique alled DisoTet to onstrut an arhi-tetural view from an exeuting system. The tehnique uses a monitoring tool(Trae Engine) to get �ltered trae information. The information is fed to run-time event pattern reognition engine (State Engine). The engine outputs a setof arhitetural operations to build the view using Arhiteture builder. The teh-nique also inludes a language to de�ne mappings that desribe how the eventsare interpreted as arhitetural operations. Even though the tehnique is used toonstrut arhitetural views, it may be possible to hange the mappings to sup-port behavioral onstraints. However, the notation for State Engine is textual,so a onversion between UML and the mapping language is required.7 ConlusionsWhile the desription of software arhiteture neessarily addresses strutureof the system, also behavioral properties bear signi�ane. In this paper, wehave introdued a way to denote arhiteturally signi�ant behaviors in terms ofbehavioral pro�les using UML as the notation. Furthermore, we then introdueda way to generate ode based on behaviors, resulting in an option to introduemonitoring regarding the arhiteturally signi�ant behavior. While in this paperwe used AspetJ as the implementation tehnique for monitoring, also otheroptions, suh as Java Debug Interfae (JDI), ould be used. We also gave anexample, where the di�erent onepts were addressed with a simple pattern.Obviously, a lot of future work remains to be done. Most importanty, themonitoring system should be enhaned to ope with lass instanes, not justlasses. Further, it would be interesting to study if it is feasible to automatiallyintrodue behavioral pro�les for some library failities that require monitoring.This would then ease debugging in the ase of errors. Moreover, studying ifbehavioral pro�les ould be used as a generi way to represent aspets at the
75

level of arhiteture ould result in a way to onnet aspets to UML in a novelfashion.Referenes1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements ofreusable objet-oriented software. Addison-Wesley Longman Publishing Co., In.,Boston, MA, USA (1995)2. Airaksinen, J., Koskimies, K., Koskinen, J., Peltonen, J., Selonen, P., Siikarla,M., Systä, T.: xUMLi: Towards a tool-independent UML proessing platform.In: Proeedings of the Nordi Workshop on Software Developement Tools andTehniques, Copenhagen, Denmark, IT University of Copenhagen (2002) 1�163. Rational Software http://www-306.ibm.om/software/rational: Rational Rose.(2005)4. Kizales, G., Lamping, J., Mendhekar, A., Maede, C., Lopes, C., Loingtier, J.M., Ir-win, J.: Aspet-oriented programming. In: Proeedings of the 11th European Con-ferene on Objet-Oriented Programming (ECOOP '97), Springer-Verlag (1997)220�2425. AspetJ Team http://elipse.org/aspetj/: (The AspetJ Guide)6. Gosling, J., Joy, B., Steele, G., Braha, G.: The Java Language Spei�ation, 2ndEdition. Addison-Wesley Longman Publishing Co., In. (2000)7. Sun Mirosystems, In. http://java.sun.om/j2se/1.5.0/dos/api/: (Java 2 Plat-form Standard Edition 5.0, API Spei�ation)8. Selonen, P., Xu, J.: Validating uml models against arhitetural pro�les. In: Pro-eedings of the 9th European software engineering onferene held jointly with 10thACM SIGSOFT international symposium on Foundations of software engineering,ACM Press (2003) 58�679. Riva, C., Selonen, P., Systä, T., Xu, J.: Uml-based reverse engineering and modelanalysis approahes for software arhiteture maintenane. In: ICSM, IEEE Com-puter Soiety (2004) 50�5910. Rihters, M., Gogolla, M.: Aspet-oriented monitoring of UML and OCL on-straints. In Akkawi, F., Aldawud, O., Booh, G., Clarke, S., Gray, J., Harrison, B.,Kandé, M., Stein, D., Tarr, P., Zakaria, A., eds.: The 4th AOSD Modeling WithUML Workshop. (2003)11. Groher, I., Shulze, S.: Generating aspet ode from UML models. In Akkawi, F.,Aldawud, O., Booh, G., Clarke, S., Gray, J., Harrison, B., Kandé, M., Stein, D.,Tarr, P., Zakaria, A., eds.: The 4th AOSD Modeling With UML Workshop. (2003)12. Yan, H., Garlan, D., Shmerl, B.R., Aldrih, J., Kazman, R.: Disotet: A systemfor disovering arhitetures from running systems. In: ICSE, IEEE ComputerSoiety (2004) 470�479
76

UML 2.0 Can’t Represent Architectural Connectors Jorge Enrique Pérez-Martínez1, Almudena Sierra-Alonso2 1Departamento de Informática Aplicada, Universidad Politécnica de Madrid, Crta. de Valencia, Km.7, 28031 Madrid (Spain)
jeperez@eui.upm.es 2Escuela Politécnica Superior, Universidad Autónoma de Madrid, Crta. de Colmenar, Km. 15, 28049 Madrid (Spain)

Almudena.sierra@uam.es Abstract. Recently, OMG has published a set of documents that will constitute the future UML 2.0 specification. One of the goals of this new version of the language is that UML can represent the software architecture of an application. In this work we show some shortcomings of the language when it is used to represent the connector concept in a software architecture. Those shortcomings are basically caused because in UML 2.0 the connectors are not first class entities, as components are. In this work we will show that the new metaclass Connector, defined in the packages InternalStructures and Components, can not support the semantics that a connector has in some architectural styles.
1 Introduction UML 1.x [14] has become the standard for representing the software products obtained in the various activities of a software development process. For this reason, it is not surprising that there have been attempts to use UML 1.x to represent the software architecture of an application. However, the language is not designed to represent syntactically and semantically the elements of software architectures. Some works analyzing this problem are [4, 5, 7, 9, 12, 20, 21, 22]. Recently, OMG (Object Management Group) has published a set of documents that will constitute the future UML 2.0 specification [15, 16, 17, 18]. As Douglas says [3]: “Two main forces drive the RFP`s requirements: scalability and architecture.”. In fact, in UML 2.0 Superstructure RFP [13] it is indicated: “However, the ability to model architectures is a common requirement for most software domains and, consequently, should be part of the core modeling capabilities of UML rather than being limited to a profile”. If we consider that UML 2.0 should have the fundamental features of an ADL (Architecture Description Language), then it should have abilities to describe the connectors of any architectural style. However, as we will demonstrate in this work, UML 2.0 has not defined any constructor in its metamodel to describe this concept. In this sense, the metaclass Connector is limited to connect components and it does not support the connector semantics found in some architectural styles.

77

The rest of the paper is organized as follows. In Section 2 we describe the software connectors in UML 2.0. In Section 3 we describe the problems we found to characterize a software connector in different architectural styles using UML 2.0. In Section 4 we point out some possible solutions based on tools of UML to extend the language. Section 5 presents some conclusions and future work.
2 Software Connectors in UML 2.0 The specification of UML 2.0 is provided in two large packages: InfrastructureLibrary (Figure 1a) and UML (Figure 1b).

(a) (b)
UseCasesActions Activities StateMachines Deployments

InteractionsCommonBehaviors ClassesCompositeStructuresComponents AuxiliaryConstructsProfilesInfrastructureLibraryCore Profiles
UML

 Fig. 1. The InfrastructureLibrary and UML packages The concept of connector is specified by the metaclass Connector inside the package CompositeStructures::InternalStructures. In this package a connector is defined to specify the link allowing communication among two or more instances. Figure 2 shows some metaclasses contained in the package CompositeStructures::InternalStructures.

78

ConnectorEnd0..1 MultiplicityElement(from Kernel)
Property* Association(from Kernel)0..1+end+role 2..*{ordered, subsets ownedElement} +type0..1+/definingEnd+end*ConnectableElement ConnectorFeature(from Kernel)1 *+partWithPort0..1 Fig. 2. Definition of the metaclass Connector in the package CompositeStructures::InternalStructures The package Components (Figure 3) extends the concept of connector of the package CompositeStructures::InternalStructures, adding the attribute kind whose value is an enumerated type with the values delegation and assembly. A delegation connector links the external contract of a component with the internal parts of the component implementing that behavior. A delegation connector can only be defined between ports of the same type. An assembly connector links two components establishing that one of the components provides the services needed by the other one. Connectors of this type are defined from an interface or port required to an interface or port provided.

Interface(from Interfaces) Component** +/required
Class(from StructuredClasses)

PackageableElement(from Kernel)0..1 Realization
Classifier(from Kernel)1*0..1isIndirectlyInstantiated: Boolean+/provided {subsets source,subsets owner,subsets clients}+ abstraction +realization{subsets ownedElement,subsets clientDependency}+realizingClassifier{subsets supplier,subsets target}+ownedMember{redefines ownedMember} *

Connectorkind: ConnectorKind Behavior(from BasicBehaviors)+contract* * <<enumeration>>ConnectorKindassemblydelegationFig. 3. The Components package
79

3 Software Connectors in UML 2.0 and Software Connectors in
the Architectural Styles In this section we analyze whether the metaclass Connector defined in UML 2.0 supports the semantics of software connectors of some architectural styles described in the literature. As an example we will study this problem for the architectural styles pipe&filter and C2. 3.1 The Pipe&Filter Style “The pattern of interaction in the pipe-and-filter style is characterized by successive transformations of streams of data. Data arrives at a filter, is transformed, and is passed through pipes to the next filter. A pipe is a connector that conveys streams of data from the output port of one filter to the import port of another filter. Pipes act as unidirectional conduits, providing an order-preserving, buffered communication channel to transmit data generated by the filters” [2]. To describe this style with UML 2.0, filters can be represented as instances of the metaclass Component, so that the ports associated with a component (instances of the metaclass Port) are port-in or port-out. Pipes can be represented as instances of the metaclass Connector whose connector-ends are instances of the metaclass Port (which is a subclass of the metaclass ConnectableElement). In Figure 4 an architecture is represented with the pipe&filter style. Grep Merge SortSplitter MergeAndSortFilter component Pipe connectorOutput portInput port Binding Fig. 4. A system describes with the pipe&filter style Figure 5 is an attempt to represent that architecture with UML 2.0. Although we have to refine the metaclass Port to characterize the type of port (input or output), the basic problem is the representation of a pipe. A pipe has features for buffering and synchronization: if a filter writes into a full pipe the filter is blocked; if a filter reads from an empty pipe the filter is blocked. Furthermore, in some substyles data have an associated type. Lastly, in the pipe&filter style, topological restrictions can be imposed to generate, for example, a pipeline.

80

Grep Merge SortSplitter MergeAndSort
delegate connectorassembly connector

<<delegate>><<delegate>> <<delegate>>
 Fig. 5. The pipe&filter system of Figure 4 represented with UML 2.0 The first problem stated in Figure 5 is that the semantics of the connector is not explicit. The connectors which appear in Figure 5 do not indicate the communication protocol between components. In fact, from that figure we can not affirm whether the components communicate by message passing, procedure call or events announcement. The notation used in Figure 5 only indicates that the services required by a component are provided by another one (assembly connector) or that the services provided by a component are really implemented by an internal element of this component (delegate connector). In UML 2.0 the semantics of a connector is limited to indicate the elements that it connects (instances of ConnectableElement). In this sense, UML 2.0 is not able to describe the semantics of a pipe as opposed to other ADLs as Darwin [10], Unicon [23] or Wright [1] do. We could use the <<pipe>> label (as stereotype) on the assembly connectors in figure 5. However, there are two objections to use this strategy: 1) Using UML 2.0 we should be able to represent software architectures without having to turn to profiles; 2) UML 2.0 cannot express the semantics of a pipe because a connector cannot have any behavior associated. A stereotype on the metaclass connector (<<pipe>>) can establish new constraints but not a new semantics. 3.2 The C2 Architectural Style “The C2 architectural style can be informally summarized as a network of concurrent components hooked together by message routing devices” [11]. The key elements of architecture C2 are components and connectors. Both have a defined top and bottom domain. The top domain of a component specifies the set of notifications to which the component responds and the set of requests sent by the component. The bottom domain specifies the set of notifications sent by the component and the set of requests to which it responds. A connector can be connected to any number of components and/or connectors. Connectors are responsible for routing messages and potentially multicast them. A secondary responsibility of them is message filtering. Connectors can provide the following policies for filtering and delivery of messages: no filtering, notification filtering, message filtering, prioritized and message sink. The first problem to consider is that, in C2, a connector can be connected to any number of connectors, and not only components. In UML 2.0 the ends of a connector

81

must be constructors of the type ConnectableElement (see Figure 2). UML 2.0 only defines the following metaclasses of this type: Property, Variable, Port and Parameter. Since in UML 2.0 the metaclass Connector is not of type ConnectableElement, a connector cannot be connected to other connectors. This makes it impossible for Connector or any of its stereotypes to represent a C2 connector. Secondly, a connector in UML 2.0 is only a type of association. In C2, a connector, like a component, can be formed by components and connectors. However, the metaclass Connector is not a PackageableElement and consequently it cannot be contained by any component nor it can contain other connectors. Finally, consider the architecture indicated in Figure 6a. In the C2 style, the component A will send requests to the components B and/or C and these will send notifications to A.
AB CmyConnector B C

 A(a) (b)
IpAIB IC

 Fig. 6. Example of a C2 architecture (a) and its representation in UML 2.0 (b) Figure 6b shows how the architecture of Figure 6a could be represented using UML 2.0. The principal problem is the same as in the case of the pipe&filter style: the connectors do not have an explicit semantics. In this case, the C2 connectors realize filtering policies over the messages that they receive. This can not be indicated with UML 2.0. In the previous example we assume that the connector (myConnector) has an associated filtering policy (no filtering) that indicates its semantics: sending the request from the component A to the component B and the component C and sending the notifications generated by B and C to the component A. With the representation of Figure 6b, we can not deduce this communication policy. In that figure it is indicated that the component A needs the services provided by components B (interface IB) and C (interface IC). If these two components provide the same service that A requires, for example S, when A invokes the service S: will services from B and C be invocated, as it would be in C2? Will only one of them be invocated? In this case, which one?
82

4 Stereotypes and New Members of the UML 2.0 Family Considering the problems stated above, it looks like that the metaclass Connector of UML 2.0 as it is defined can not represent a software connector as it is defined by the software architecture community. Therefore it is necessary to extend the language. We can extend UML 2.0 in two ways:
• We can define a new dialect of UML 2.0 by using profiles.
• We can specify a new language related to UML 2.0 by reusing part of the InfrastructureLibrary::Core package and augmenting it with appropriate metaclasses and metarelationships. In regard with the definition of a profile, some cases are already described in the literature. For example, in the work by [6], the authors have stereotyped the metaclass Component to represent a connector in Acme. In [8] the authors discuss the convenience of stereotyping the metaclass Class (with <<ArchitecturalConnector>>) to represent software connectors. In [19], the authors have defined an UML 2.0 profile to describe the static view of the C3 architectural style (a simplification of the C2 style). But for the C2 style, the problems previously mentioned prevent any stereotype of Connector from representing a C2 connector. In spite of we can represent a C2 connector stereotyping the metaclass Component, we think that UML must have capabilities to represent architectural elements without stereotypes as it is indicated in [13]. From our point of view, it would be necessary to define a new metaclass in UML 2.0 to characterize an architectural connector. This new metaclass could be named ArchConnector. This metaclass must be able to define both state and behavior. For example, in the case of a pipe, the behavior would refer the operations of reading and writing in a pipe (with the synchronization conditions for full and empty pipe) while the state would refer to data contained in the pipe at that moment. To do this, ArchConnector have to inherit from Class (as Component), thus a connector should have attributes and operations and take part in associations and generalizations. Since the metaclass Class is a subtype of EncapsuledClassifier, a connector can have an internal structure and a set f ports to formalize its interaction points. After defining a generic architectural connector, to define specific connectors (as a pipe or a C2 connector) we would specialize the metaclass ArchConnector. For example, in the case of a C2 connector, the metaclass to represent it must have defined two operations: processRequest and processNotification and the state would be defined by the messages queues associated to every port.
5 Conclusions and Future Work In this paper we have shown that the UML 2.0 metamodel cannot represent software connectors whether we use the metaclass Connector. The semantics of connectors in UML 2.0 cannot indicate anything additional to the elements that they connect. UML 2.0 does not permit to characterize the behavior of a connector: buffering and synchronization in the case of pipes and filtering and routing policies in the case of

83

the C2 connectors. Moreover, in the last style, a connector of UML 2.0 can not be connected to other connectors; it cannot be a composite element nor taking part of any composition. The core problem is that the metaclass Connector is not a type of Classifier as Component is. So, connectors in UML 2.0 do not appear to be first class entities, against the opinion of the software architecture community. Furthermore, the stereotyping mechanism of UML 2.0 allows representing an architectural connector by stereotyping metaclasses as Component. However, UML 2.0 Superstructure RFP already indicated that the ability to model architectures should be part of the core modeling capabilities of UML rather than being limited to a profile. Therefore, UML 2.0 presents shortcomings to describe software architectures (which was one of the goals of the new language version). From our point of view, it would be necessary to define a new constructor in UML 2.0 to characterize an architectural connector. This would imply the definition of a new member in the UML family of languages. In the short term, our research will focus on the different architectural styles defined nowadays with the purpose of capturing their similarities and establish a set of metaconstructors needed add to UML 2.0 to be able to represent them. The proposed extensions, derived from that study, will define a new member in the UML family of languages that could be named UML-Arch. This set of extensions would be sent to the corresponding RTF (Revision Task Force) of OMG so that they could be considered in the next language review.
References 1. Allen, R.: A formal approach to software architecture. (Doctoral Dissertation, Carnegie Mellon University, School of Computer Science, Pittsburgh, PA.). (1997). 2. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R. and Stafford, J.: "Documenting software architectures, views and beyond". Addison-Wesley/Boston, Massachusetts (2003). 3. Douglass, B.P: “UML 2.0 incrementally improves scalability and architecture”. http://www.elecdesign.com/Articles. (2003). 4. Garlan, D. and Kompanek, A.J.: "Reconciling the needs of architectural description with object-modeling notation"; UML 2000 – The Unified Modeling Language: Advancing the Standard. Third International Conference. Springer-Verlag/York, UK (2000). 5. Gomaa, H. and Wijesekera D.: "The role of UML, OCL and ADLs in software architecture"; Proc. of the Workshop on Describing Software Architecture with UML, 23rd International Conference on Software Engineering, Toronto, Canada (2001). 6. Goulão, M. and Brito e Abreu, F.: "Bridging the gap between Acme and UML 2.0 for CBD"; Proc. of Specification and Verification of Component-Based Systems (SAVCBS’03), workshop at ESEC/FSE (2003). 7. Kandé, M. M. and Strohmeier, A.: "Towards a UML profile for software architecture descriptions"; UML 2000 – The Unified Modeling Language: Advancing the Standard. Third International Conference, Springer-Verlag/York, UK (2000). 8. Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B. and Oviedo Silva, J.R. (2004): “Documenting architectural connectors with UML 2”. Workshop on Software Architecture Decription & UML, Seventh International Conference on UML Modeling Languages and Applications. Lisbon, Portugal (2004).

84

9. Lüer, C. and Rosenblum, D.S.: "UML component diagrams and software architecture- experiences from the WREN project"; Proc. of the Workshop on Describing Software Architecture with UML, 23rd International Conference on Software Engineering, Toronto, Canada (2001). 10. Magee, J. y Kramer, J. (1996). Dynamic structure in software architectures. In Proceedings of SIGSOFT’96: The Fourth ACM SIGSOFT Symposium on the Foundations of Software Engineering, (pp. 3-14). 11. Medvidovic, N. “Architecture-based specification-time software evolution”, Doctoral Dissertation, University of California, Irvine (1999). 12. Medvidovic, N., Rosenblum, D.S., Redmiles, D.F. and Robbins, J.E.: "Modeling software architectures in the unified modeling language"; ACM Transactions on Software Engineering and Methodology, 11, 1 (2002), 2-57. 13. Object Management Group: “Request for proposal: UML 2.0 superstructure RFP.” (2000). 14. Object Management Group: “Unified Modeling Language specification” (version 1.4), (2001). 15. Object Management Group: “UML 2.0 OCL Specification (ptc / 03-10-14) (2003). 16. Object Management Group: “UML 2.0 Diagram Interchange Specification (ptc/03-09-01)”. (2003). 17. Object Management Group, “UML 2.0 Infrastructure Specification (ptc/03-09-15)”. (2003). 18. Object Management Group: “UML 2.0 Superstructure Specification (ptc/04-10-02)”. (2004). 19. Pérez-Martínez, J.E. and Sierra-Alonso, A.: ”UML 1.4 versus UML 2.0 as languages as to describe software architectures”; Proc. of the First European Workshop on Software Architectures (EWSA’04), St. Andrews, Scotland (2004). 20. Rausch, A.: "Towards a software architecture specification language based on UML and OCL"; Proc. of the Workshop on Describing Software Architecture with UML, 23rd International Conference on Software Engineering, Toronto, Canada (2001). 21. Riva, C., Xu, J. and Maccari, A.: "Architecting and reverse architecting in UML"; Proc. of the Workshop on Describing Software Architecture with UML, 23rd International Conference on Software Engineering, Toronto, Canada (2001). 22. Selic, B.: "On modeling architectural structures with UML"; Proc. of the Workshop on Describing Software Architecture with UML, 23rd International Conference on Software Engineering, Toronto, Canada (2001). 23. Shaw, M., DeLine, R. y Zelesnik, G.: “Abstractions and implementations for architectural connections”; In Proceedings of 3rd International Conference on Configurable Distributed Systems. Annapolis, Maryland (1996).

85

Semantic Validation of XML Data – A Metamodeling

Approach
Dan CHIOREAN, Maria BORTES, Dyan CORUTIU

Babes-Bolyai University, Computer Science Research Laboratory

Str. M. Kogalniceanu, 1

400084 Cluj-Napoca, Romania
http://lci.cs.ubbcluj.ro/ocle

chiorean@cs.ubbcluj.ro

Abstract. The growing usage of the XML standard for information interchange

imposes syntactic and semantic correctness of XML data. Presently, DTD and

XML Schema offer support mainly for syntactic validation of XML documents.

Semantic validation remains an open issue, as several proposed techniques,

based on XSL, prove to be limited in expressing semantic rules. The classic

way to perform semantic validation has the drawback of being highly coupled

with the application logic or with the data representation format. Using the pro-

posed approach, it is possible to uniformly describe with the same formalism -

UML – data extracted from various sources, including XML documents, and

application logic concepts. Consequently, a single formalism – OCL – can be

employed to specify semantic validation rules for structured data and complex

rules for integrating data into application logic. Data semantic consistency can

be achieved by checking the consistency of a UML model against a set of vali-

dation rules specified in OCL. For each DTD or XML Schema, a UML model,

semantically equivalent with the described structure, can be automatically con-

structed. The UML model will serve as a repository for storing the XML infor-

mation as instances of this model. Different OCL constraints can be specified,

both at the metamodel level and model level. Semantic validation of XML data

is achieved by checking the UML model against these constraints. Keywords:

syntactic validation, semantic validation, XML documents, DTD, XML

Schema, reverse engineering DTD, UML, OCL, checking UML model, XMI

support, AOP.

1 The case for XML semantic validation

eXtensible Markup Language (XML) is a standard interchange format [1] widely used

in the Web environment. To achieve XML information interchange, the applications

shall agree on the structure of the exchanged XML documents. The structure of XML

data is described using definition documents such as DTD [1], XML Schema [2],

Relax NG [3], etc. Validation of XML documents against their definitions ensures

their syntactical correctness. Most XML parsers perform syntactic validation of XML

data, rejecting an invalid XML document.

Currently, XML information exchanged between applications is increasingly complex.

Moreover, the applications need to integrate heterogeneous information, stored in

different formats [10]. In this context, syntactic validation of XML data becomes

86

insufficient. To ensure integration and interoperability, XML data needs to conform to

complex semantic constraints:

• relations between information located in the same XML document or in dif-

ferent XML documents,

• relations between information located in a XML document and information

stored in a database,

• relations between information located in a XML document and application

specific information,

• value constraints for attribute values or for element content.

The rest of the paper is structured in six sections. Section 2 analyses the State of the

art in the XML semantic validation domain. The drawbacks of current approaches are

captured in Section 3. The next section - 4, describes the concept, methodology and

tool support for the proposed metamodeling approach. In Section 5, the advantages of

our approach are briefly summarized. An example that applies the metamodeling

approach in realizing XML semantic validation in a multi-tier application is presented

in Section 6. The last section - 7 contains the conclusions and remarks on the future

work. References and two appendices presenting the stereotypes defined in the UML

DTD profile, and the DTD files used in the example were included at the end of the

paper.

2 State of the art

In the classical approach, the concern of XML data semantic validation is addressed at

the application level. The application is a tolerant system that accepts any information

extracted from syntactically valid XML documents. When data received does not

fulfill application preconditions, we obtain undesired application behavior.

The main disadvantage of the classical approach is the high coupling between applica-

tion logic code and semantic validation code. The slightest modification of semantic

rules that apply to information extracted from XML documents implies changes in the

application code, recompilation, redeployment, and then restarting the application.

These operations are not acceptable for critical systems.

The modern techniques for checking XML data semantic validity avoid the above-

mentioned drawback through a declarative approach, decoupled from the application

logic. Most of these techniques are based on XSL technology.

Schematron [6] is an XPath based constraint language “for making assertions about

patterns found in XML documents”. It supports the expression of assertions between

arbitrary elements in XML documents, selected with paths. The violation of the asser-

tions is signaled through a custom error message that can be formatted as a XML

document. Semantic validation with Schematron implies the translation of assertions

into a validating XSL stylesheet, processed by a XSLT processor, or the evaluation of

87

assertions by a specific evaluation engine. This approach reached a maturity level and,

at this moment, follows a standardization process as ISO Schematron.

xLinkit [7] is a constraint language based on XPath and first order logic. xLinkit al-

lows the expression of complex inter-document constraints, being used for realizing

semantic validation of large and complex XML documents: financial business docu-

ments, XMI [12] documents, etc. The combination between paths and first order logic

in xLinkit offers an increased power of expression for XML data semantic constraints.

XML Constraint Specification Language (XCSL) [9], is a XML based domain specific

language with the purpose of allowing XML designers to restrict the content of XML

documents. It is a simple, and small language tailored to write contextual conditions

constraining the textual value of XML elements in concrete documents. An XCSL

document, describing the constraints to be validated, is given to the XCSL Processor

Generator that produces a XSL stylesheet; then, using any standard XSL processor, it

is possible to apply that stylesheet to the XML document needed to be checked. The

obtained result is another XML document with the error messages. OASIS’ Content

Assembly Mechanism (CAM) [8], provides an open XML based system for using

business rules to define, validate and compose specific business documents from gen-

eralized schema elements and structures. A CAM rule set and document assembly

template defines the specific business context, content requirement, and transactional

function of a document. A CAM template must be capable of consistently reproducing

documents that can successfully carry out the specific transactional function they were

designed for. CAM also provides the foundation for creating industry libraries and

dictionaries of schema elements and business document structures to support business

process needs.

3 Drawbacks of current approaches in XML validation

The formalisms used in XML validation that rely on XSL and XPath, are difficult to

write, understand and maintain. For example, the well formedness rule in the UML

language that specifies the uniqueness of the association end names of an association

is specified in the OCL language as:

context Association

inv:

 self.connection->forAll(c1, c2 | c1.name=c2.name implies

 c1=c2)
 -- an equivalent, but more compact specification is:

 -- self.connection->isUnique(c | c.name)

The same rule expressed in xLinkit [7] formalism is:

88

<forall var="a" in="$associations">
 <forall var="x"

 in = "$a/Foundation.Core.Association.connection/
 Foundation.Core.AssociationEnd">

 <forall var="y"

 in="$a/Foundation.Core.Association.connection/
 Foundation.Core.AssociationEnd">

 <implies>

 <equal op1="$x/Foundation.Core.ModelElement.name/text()"

 op2="$y/Foundation.Core.ModelElement.name/text()"/>

 <same op1="$x" op2="$y"/>

 </implies>

 </forall>

 </forall>

</forall>

The xLinkit rule applies to an XML document containing a UML model in XMI for-

mat. A DOM tree is created for the XML document and the navigation through XML

elements is realized with paths. In complex documents, a rule that applies to deep

elements implies the specification of deep paths, making the assertion expression less

readable. Assertion comprehensiveness is increased using relative paths, but this leads

to a decrease in performance, as the relative paths are searched in the whole DOM

tree.

Another drawback is related to the results of the XML data validation. Most ap-

proaches have as an output an error report that can be consulted to identify where

validation errors occurred. If we deal with an important XML document, in which

there is valuable information, we would like to recover the document and make it

compliant with validation rules. The report marks the errors and their location; only

using an XML editing tool the recovery process can be performed. Even in cases of

dedicated XML editors, large XML documents recovery is a complicated and tedious

process. Today, document recovery is a very common and important problem for

UML models saved in XMI format. Most XMI parsers do not fully comply with the

XMI version for which they were built. Therefore, in many cases, XMI parsers fail in

importing the models exported by other tools. It would be very useful to recover as

much information as possible from such a document in order to facilitate a complete

model interchange.

Finally, the most complex and important problem considers the semantic validation

of XML data in the context of data integration in multi-tier applications. In such ap-

plications we can distinguish several categories of semantic rules, including: rules for

data consistency, business rules, integration rules, etc. Due to their strong relation with

the XML standards family, the XSL and XPath based approaches are not feasible in

specifying integration rules between different application layers.

89

4 A metamodeling approach for XML validation

As mentioned in the previous section, several categories of rules can be specified in

the context of an application. Our intent is to simplify and unify the process of specifi-

cation and validation of rules, at any level in a system, by means of the UML/OCL

standard. UML is primarily targeted at modeling applications. The same formalism –

UML – is also capable to define several domain specific languages, such as DTD or

XML Schema, through its lightweight extension mechanisms. The advantage of UML

representation is that it straightforwardly allows specification of semantic rules with

OCL – a textual formalism for UML. Thus, XML semantic validation can be reduced

to UML model validation against OCL semantic rules. This approach has lower costs

in the development process since it employs the intensive usage of a single standard –

UML – for the specification and validation of any rule in an application.

The metamodeling approach for XML validation implies conceptual, methodological

and tool support.

From a conceptual point of view, the problem of XML semantic validation translates

into a UML model consistency problem. DTD and XML Schema are mechanisms for

metadata definition. A XML document contains instances of metadata described in the

associated definition documents. A UML model is constructed for the metadata from

DTD and XML Schema documents. This model is instantiated with the information

present in XML.

XML Document

UML Model

Instances in the UML model

Instantiate

Conforms to

Instantiate

Conforms to

DTD / XML Schema

Figure 1 The correspondence between XML data validation and UML model valid

For example, the UML model presented in Figure 3 is a model that corresponds to the

following DTD:

90

<!ELEMENT Transaction (Client, Account, Date, Amount)>
<!ELEMENT Client EMPTY>
<!ELEMENT Account EMPTY>
<!ELEMENT Date (#PCDATA)>
<!ELEMENT Amount EMPTY>
<!ATTLIST Client id ID #REQUIRED>
<!ATTLIST Account id ID #REQUIRED>
<!ATTLIST Amount value CDATA #REQUIRED>

Figure 2 A DTD describing the structure of a transaction document

Figure 3 A UML model complying with the structure described in Figure 2

In order to build a semantically equivalent UML model for the document definitions,

we must associate additional semantic information with UML model elements. This

can be achieved by means of a UML profile for DTD or XML Schema. This profile

employs lightweight extension mechanisms like stereotypes, tagged values and con-

straints in order to express specific semantics associated to DTD or XML Schema

concepts.

In order to guide users in applying this approach, a very simple process (presented in

Figure 4) was conceived. Each activity will be described in detail in the following

subsections.

Regarding the tool support, the proposed approach was implemented in OCLE1 in

order to benefit from the tool’s OCL specification and evaluation features. This tool

supports: the automatic construction of UML models (by a reverse engineering proc-

ess on DTD documents), the automatic construction of snapshots that instantiate the

model, by parsing XML documents, a natural and intuitive model navigation by means

of OCL, error rationale identification and XML document recovery.

1 Acronym for Object Constraint Language Environments tool, conceived and implemented at

LCI, see http://lci.cs.ubbcluj.ro/ocle

91

Build UML model from DTD
or XML Schema definitions

Populate the UML model with
instances corresponding to XML data

Update the UML model

Attach OCL semantics
rules to UML moel

syntactical and semantical validation

Check UML model against syntactical
and semantical OCL rules

syntactical validation

incorrect model

Correct model
correct model

Save UML object snapshot
as a XML document

save instances

Save UML model as a DTD or
Schema document

save definitions

correct model: a
model complying
with all rules
(specified in OCL)

Figure 4 Activities of the XML validation process

4.1 Building a UML model from data definitions

The UML model presented in Figure 3 was automatically constructed from the DTD

definitions using OCLE. The class diagram was realized by drag and dropping the

elements from the model browser. Comparing the diagram and the DTD representing

the input, we notice that:

• Classes contained in the class diagram can be grouped in two categories: one

corresponding to DTD elements (Transaction, Client, Account, Date,

Amount), another containing classes that model the DTD containment rela-

tionships between elements (Transaction_grp1 and #PCDATA).

• Excepting the class named #PCDATA (that models DTD text elements), all

other classes are stereotyped in order to preserve their specific DTD seman-

tic. The semantics of each stereotype in the DTD profile is described in An-

nex A.

92

• The containment relationships between DTD elements are modeled as UML

unidirectional associations, from the container to the contained elements. The

DTD element multiplicity is mapped to the corresponding association end

multiplicity.

• A tagged value is attached to the association ends corresponding to the con-

tained elements of container classes (e.g. classes stereotyped with <<DTDSe-

quence>>). This value represents the position of that element in the se-

quence.

• Attributes of DTD elements are modeled as attributes defined in the corre-

sponding classes, having the same name. Attributes are also stereotyped in

order to preserve additional DTD information such as REQUIRED or FIXED.

In our example, the Client and Account attributes, both named id, are stereo-

typed as <<REQUIRED>>.

The UML model created in the DTD reverse engineering process can be “refined” by

changing the type of class attributes. For example, in the model represented in

Figure 3, the type of Amount’s value attribute can be changed from String to

Integer if the new type is better suited to user’s requirements.

4.2 Populating UML model with instances corresponding to XML data

Once the UML model is created, it can be populated with instances corresponding to

XML data. The OCLE tool supports this operation in an automated manner. For each

XML construct, an instance of the appropriate UML model element (represented in

Figure 3) is created. The UML metamodel specifies that all instances be contained in a

Collaboration object. Therefore, before populating the model with instances, a

Collaboration object needs to be created. The data contained in a XML document

is imported as UML model instances into the Collaboration object.

For example, by importing the following XML document, several UML instances are

created, as shown in Figure 6:

<?xml version="1.0" encoding="UTF-8"?>
<Transaction>
<Client id="122334444556"/>
<Account id="RO144432323335667"/>
<Date> 09-06-05 </Date>
<Amount value="23000"/>
</Transaction>

Figure 5 XML data complying with DTD represented in Figure 2

In order to create the snapshot represented in Figure 6 using OCLE, after “importing”

objects from XML data, an object diagram needs to be created. Dragging and drop-

ping the newly created objects from the model browser in the object diagram, the

objects and the relationships among them are drawn automatically.

93

Figure 6 - The snapshot created after importing XML data represented in Figure 5

We can illustrate the mapping rules between XML elements and UML instances by

comparing the XML document with the above snapshot diagram:

• For each XML element an UML Object is created as an instance of the

UML Class that corresponds to the DTD definition of that XML element.

• The UML Object created for a XML element contains the slots

(AttributeLinks) corresponding to the DTD attributes specified for that

XML element.

• The containment relationship between XML elements is mapped to a UML

Link that instantiates the association that corresponds to the DTD contain-

ment relationship between the definitions of the XML elements.

Any unexpected XML element (e.g. an element or attribute not defined in DTD, or an

element that occurs in an unexpected location) will be processed in the following

manner:

• a UML Class for that element will be created, marked with the stereotype

<<DTDUndefined…>>,

• a corresponding UML Object will be created as an instance of the above-

mentioned Class and marked with the stereotype <<XMLUnexpected…>>,

• a UML Association will be created between the Class corresponding to

the XML unexpected element and the Class corresponding to the XML con-

tainer element, marked with the stereotype <<DTDUndefined…>>,

• a Link will be created as instance of the above-mentioned Association,

also marked with the stereotype <<XMLUnexpected…>>.

The processing of an unexpected element implies appropriate changes in the UML

model, aiming to preserve model consistency. The newly introduced UML structural

94

model elements will be stereotyped as <<DTDUndefined…>>. In a similar manner, the

absence of a required element will cause the instantiation of the missing element. This

instance will be marked as <<XMLMissing…>>. The basic idea of this approach is to

construct an evolving UML model, without losing XML information. It is the user

who decides whether or not to keep an UML model element stereotyped as <<Unde-

fined>>, <<Unexpected>> or <<Missing>>.

The graphical representation is more comprehensive than the textual representation.

With the help of diagrams, objects for which constraint evaluation failed can be iso-

lated, thus allowing easy identification of error rationale. Once the error rationale is

identified, the user can perform document recovery by modifying the corresponding

model with the purpose of obtaining a valid UML model.

4.3 Checking the UML model against rules specified in the UML DTD profile

The UML DTD profile contains stereotypes, constraints and tagged values. OCL

constraints are defined at the UML metamodel level, corresponding to the informal

constraints stated in W3C XML1.0 specification [1]. Some structural rules imposed by

DTD have an equivalent specification in UML Well Formedness Rules (WFR) [11].

For example, in the context of a DTD choice group (see [1]), the following informal

rule is defined: “Any content particle in a choice list MAY appear in the element con-

tent at the location where the choice list appears in the grammar”. In the UML DTD

profile, this rule is modeled as an exclusive OR between all associations of a container

with its contained elements:

context Object

 inv DTDChoice:

 if self.classifier->forAll(c | c.stereotype->exists(s |

 Set{'DTDChoice'}->includes(s.name)))

 then self.allOppositeLinkEnds->collect(lE: LinkEnd|

 lE.associationEnd)->select(ae| ae.isNavigable and

 ae.participant.hasDTDStereotype())->size = 1

 else true

 endif

The operation hasDTDStereotype() defined in the Classifier context, is speci-

fied below.

context Classifier

 def:

 let hasDTDStereotype(): Boolean =

 if self.stereotype->exists(s | Set{'DTDElement',

 'DTDEmptyElement', 'DTDAnyElement', 'DTDSequence',
 'DTDChoice', 'DTDMixed','DTDAny', 'DTDUndefinedElement'}
 ->includes(s.name))

 then true

 else false

 endif

95

Figure 7 – The UML 1.5 metamodel elements implied in the DTDChoice invariant

The operation hasDTDStereotype() defined in the Classifier context, is speci-

fied below.

context Classifier

 def:

 let hasDTDStereotype(): Boolean =

 if self.stereotype->exists(s | Set{'DTDElement',

 'DTDEmptyElement', 'DTDAnyElement', 'DTDSequence',
 'DTDChoice', 'DTDMixed','DTDAny', 'DTDUndefinedElement'}
 ->includes(s.name))

 then true

 else false

 endif

Figure 8 - Modeling Stereotype in the UML 1.5 metamodel

Attributes defined in DTD must also conform to different rules. The following W3C

validity constraint: “If the default declaration is the keyword #REQUIRED, then the

attribute MUST be specified for all elements of the type in the attribute-list declara-

tion.” was specified in the UML DTD profile, as shown below:

96

context Attribute

 inv REQUIRED:

 if self.stereotype.name->includes('REQUIRED')

 then self.attributeLink.value->any(v |

 v.isUndefined)->isEmpty

 else true

 endif

Figure 9 - The UML 1.5 metamodel elements implied in the REQUIRED invariant

The UML DTD profile provides OCL constraints that specify syntactical rules for

XML content. The syntactical validation of XML data against DTD definitions is

realized through model validation against rules from the UML DTD profile.

4.4 Specifying and evaluating semantic rules associated with the UML model

The metamodeling approach requires that semantic rules be specified at M1 level. At

this level, we can provide rules for XML data validation or rules for integration of

XML data in the application. The example in Section 6 illustrates the specification of

such rules.

Similar to invariants specified at M2 level, the invariants specified at M1 level can be

evaluated at M0 level (at runtime, if the OCL specifications are translated into pro-

gramming language code), or at M1 level if OCL expressions are evaluated.

97

In case the evaluation process reveals errors, the user can choose to recover the inva-

lid document by modifying the corresponding model. The evaluate-modify sequence

of activities is repetitive and ends when the evaluation reports no errors. After suc-

cessful validation it makes sense to revert the model back to the XML representation

and its DTD definition.

5 Benefits of the metamodeling approach

Compared with the approaches mentioned in the State of the Art section, the meta-

modeling approach offers some advantages:

• The solution does not require a new formalism for specifying semantic rules

for XML data, rather it employs a broadly used standard (UML) that success-

fully addresses all semantic aspects of this particular problem;

• OCL constraints are much more clearer, because OCL is a powerful model

navigation language;

• XML semantic validation can be realized within a UML/OCL tool or through

runtime execution of programming language generated code for OCL rules;

• The graphical notation of UML provides a more intuitive view for the struc-

ture of XML data;

• In the context of a UML/OCL tool, document recovery becomes a simple

model updating task and does not require the implementation of a special fea-

ture,

• Using modeling techniques at successive abstraction levels enables us to

solve the XML semantic validation problem in a more scalable manner.

6 Applying the metamodeling approach – an example

In this example we consider the design of a multi-tier application consisting of at least

two tiers: the data tier (containing several XML documents) and the logical tier (de-

scribing the application architecture). Our objective is to achieve semantic consistency

of information stored in the data tier, in the context of its integration with the logical

tier. Both logical and data tiers are represented in UML and the semantic rules are

expressed in OCL.

Problem statement: A bank has several branches in different cities. This bank keeps

its interest rates in a XML file that conforms to the InterestRates.dtd. Each

branch manages a set of customer accounts. Customer and account information is

stored in XML files conforming to Customers.dtd, respectively Accounts.dtd

(DTD files are shown in the Appendix B).

The UML model shown below describes the logical tier for our example. This tier is

not aware about the source of information for interest rates, customers or accounts

98

(these sources may be relational databases and/or XML files or other data reposito-

ries).

Figure 10 UML model showing the logical tier

After reversing DTD definitions for interest rates, customers and accounts, the model

presented in Figure 10 will be modified in order to integrate concepts from both appli-

cation tiers:

The stereotyped UML classes were found in the DTD definitions. Note that

Accounts, Customers and InterestRates concepts appear in both tiers. In this

way, the classes corresponding to DTD descriptions can be automatically linked to the

logical tier. The mentioned elements connect the logical tier with the data tier. In case

these elements were present only in the data tier, the connections between them and

the classes from the logical model should be done by hand.

For the UML model obtained after reversing DTD definitions, we provide a set of

OCL specifications enabling the semantic validation of XML data. The final goal of

this semantic validation is the estimation of the bank’s monthly benefit and the com-

parison of this benefit with the financial objective of that bank for the current year.

This comparison can be useful in establishing the bank’s short-term strategy in order

to achieve its objective.

First, we need to ensure that all XML data comply with the data types expected by the

logical layer. For example, the type of the InterestRate’s attribute named type is

AccountKind, an instance of the UML Enumeration metaclass. This means that

type’s values are restricted to the enumeration literals deposit and loan. The other

two attributes of the mentioned class have the type String, but they have different

semantics. The value of term attribute should be a valid Integer and rate attribute

value should be a valid Real. In OCL, these constraints can be expressed as:

context InterestRate

 inv semanticTypeValidity: (type = #deposit or type = #loan)

 and term.toInteger().oclIsKindOf(Integer) and

 rate.toReal().oclIsKindOf(Real)

99

Figure 11 UML model after reversing DTD definitions

Furthermore, OCL can be used to enforce semantic validity of XML data loaded from

several XML documents. The invariant below imposes that all accounts managed by a

branch belong to customers registered to that branch. This rule restricts the value

domain for the customer attribute of every Account instance managed by a branch

to the collection of id attribute values of Customer instances registered to the same

branch:

context BranchBank

 def:

-- get a set containing the “id” values for Customer instances

 let customerIds: Set(String) =

 self.customers.customer->collect(c | c.id)->asset

 inv validCustomerValues:

 self.accounts.account->forAll(a | customerIds

 ->includes(a.customer))

The next specifications illustrate the semantic relationships between XML data and

the UML logical model in which the data was integrated. For example: the location of

100

a BankBranch should be identical with the branchLocation attribute value of Ac-

counts and Customers instances connected to this branch.

context BankBranch

 inv hasSameLocation:

 self.accounts.branchLocation = location and

 self.customers.branchLocation = location

Now we return to our final goal: estimation of bank benefit for the current month and

comparison of the obtained value with the bank’s financial objective. We assume that

the bank offers only monthly interest payment. For obtaining the bank benefit for the

current month, we have to compute the monthly interest for each account in every

branch of the bank.

In the InterestRates context, we can specify an OCL operation that returns the

monthly interest rate for a given account type and term:

context InterestRates

 def:

 let monthlyInterstRate(accountType:AccountKind,term:

 Integer): Real = self.interestRate->any(r | r.type =

 accountType and r.term.toInteger() =

 term).rate.toReal()/1200

This specification can be used to compute the monthly total that a bank branch should

receive from or pay to its customers:

context BankBranch

 def:

-- navigate and cache the InterestRates instance connected to
-- the bank

 let interestRates: InterestRates =

 self.bank.interestRates

-- estimate the monthly interests for a bank branch

 let estimateMonthlyInterests: Real =

 self.accounts.account->iterate(a: Account; total:

 Real = 0 |

 if (a.accountType = #deposit)

 then

-- for deposits the branch should pay the value of monthly

-- interest rate to its customers

 total - interestRates.monthlyInterestRate
 (a.accountType, a.periodInMonths)*a.sum.toReal()

 else

-- for loans the branch should receive the value of monthly

-- interest rate from its customers

 total + interestRates.monthlyInterestRate(a.accountType,

 a.periodInMonths)*a.sum.toReal()

 endif)

101

Using the function previously described, we can specify an invariant that estimates

whether the monthly bank’s benefit has a value that conforms to the financial objec-

tive:

context Bank

 inv conformsToFinancialObjective:

 self.bankBranch->iterate(b: BankBranch; benefit: Real=0

 | benefit + b.estimateMonthlyInterests) >
 financialObjective/12

Figure 12 OCLE Snapshot showing some of the instances of Bank model classes

In order to perform a static evaluation of the specified invariants, apart from instances

obtained after populating the UML model with XML data, we need to create instances

of logical tier classes. Using OCLE instance editor, we create a Bank instance, two

BankBranch instances and the links connecting the bank with each branch. All the

other instances represented in Figure 12 were created automatically during XML data

102

import. The links connecting the logical tier instances with instances corresponding to

XML data, are also created using the OCLE instance editor.

By evaluating OCL specifications for the constructed snapshot we can detect and

correct XML data inconsistencies.

Figure 13 Using OCLE to evaluate subexpression for an invariant that failed

Figure 13 below shows the OCLE capabilities in identifying the rationale of an invari-

ant failure. The validCustomerValues invariant failed for BankBranch_LA in-

stance. Evaluating the subexpressions of this invariant, we find that customerIds op-

eration returns a set containing the following ids: “C.1”, “C.2”, “C.3” and “C.4”.

Account_4 instance has a “customer” attribute value of “C.6”, which designates a

customer that is not registered to this branch. The inconsistence can be corrected by

modifying the “customer” attribute value for Account_4 instance to contain a valid

customer id or by deleting the Account_4 instance.

7 Conclusions and future work

Validating XML documents using metamodeling approach offers many benefits com-

pared with all existent approaches. The price to pay for the benefits obtained using

this approach is cheap because it’s about a larger memory resource, a requirement

easy to satisfy.

103

The proposed solution is based on raising the abstraction level and on using a richer

formalism compared with those used for data representation. Thus, representation

mapping from DTD or XML Schema to a UML model and from XML data to in-

stances of previously created UML model elements is realized without losing informa-

tion. The obtained UML model can be enriched in order to support more complex and

detailed validations. The formalism used (UML + OCL) is representation independ-

ent, more suggestive, (due to the graphical representation) and easier to understand

(due to a higher abstraction level) [14] [16].

The proposed process also offers other advantages. XML data validation can be real-

ized at design time supporting users in specifying application logic; the process sup-

ports XML data recovering; rule specification for architectures of multi-tier applica-

tions can be done in an unified manner. Runtime data validation is supported through

execution of automatically generated code from OCL specifications. Mapping OCL

assertions in aspects specified in programming languages is the preferred solution in

many cases. In these cases, the application code used in validation becomes an aspect

completely separated from the application logic.

Due to the above mentioned features, the approach seems to be very well suited and

recommended for validating and querying Web Semantics documents. In order to do

this, the following future work is planned:

• Conceiving and implementing a MOF based OCL tool,

• Specifying XML Schema profiles, RDF and OWL profiles; designing and

implementing Reverse Engineering functionalities for the above mentioned

standards,

• Extending the OCL support in order to support model mapping specification

and model execution,

• Extending the OCL and improving the code generator in order to support as-

pect specifications in OCL and their mapping to programming languages.

References

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler; Extensible Markup Language. W3C

Recommendation; World Wide Web Consortium; Oct. 2000;

http://www.w3.org/TR/2000/REC-xml-20001006

[2] D. C. Fallside, Priscilla Walmsley; XML Schema Part 0: Primer Second Edition. W3C

Recommendation; World Wide Web Consortium; Oct. 2004;

http://www.w3.org/TR/xmlschema-0/

[3] J. Clark, M. Murata; RELAX NG Specification. Committee Specification; Organization for

the Advancement of Structured Information Standards (OASIS); Dec. 2001;

http://www.oasis-open.org/committees/relax-ng/spec-20011203.html

[4] J. Clark; XSL Transformations (XSLT). Technical Report; World Wide Web Consortium;

Nov. 1999; http://www.w3.org/TR/xslt

104

[5] J. Pollack; Syntactic and Semantic Validation within a Metadata Management System,

presented at the EO/GEO Meeting Fredericton, NB, Canada, June 25-29, 2001;

http://gcmd.gsfc.nasa.gov/Aboutus/presentations/conferences/eogeo01/eogeo_01.html

[6] Rick Jelliffe; The Schematron Assertion Language 1.5. Specification; Academia Sinica

Computing Centre; Oct. 2002;

http://xml.ascc.net/resource/schematron/Schematron2000.html

[7] C. Nentwich, L. Capra, W. Emmerich, A. Finkelstein; xLinkit: a Consistency Checking and

Smart Link Generation Service; ACM Transactions on Internet Technology, 2(2): 151–185,

May 2002; http://xml.coverpages.org/xlinkitwp200102.pdf

[8] OASIS Content Assembly Mechanism Technical Committee; Content Assembly

Mechanism (CAM) Specification Document. Committee Draft Version 1.0; Or-

ganization for the Advancement of Structured Information Standards; March 2004;

http://www.oasis-open.org/committees/download.php/5914/OASIS-CAM-

Specifications-1_0-RC-017C-021904.doc

[9] Marta H. Jacinto, Giovani R. Librelotto, Jose C. Ramalho and Pedro R. Henriques;

XCSL: XML Constraint Specification Language; May 14, 2004;

http://www.di.uminho.pt/~jcr/PROJS/xcsl-www/

[10] Matthias Ferdinand, Christian Zirpins, D. Trastour; Lifting XML Schema to OWL;

Published in Web Engineering - 4th International Conference, ICWE 2004, Mu-

nich, Germany, July 26-30, 2004, Proceedings; Springer Heidelberg; 2004; pp.

354-358;

http://vsis-www.informatik.uni-hamburg.de/publications/view.php/204
[11] Object Management Group; Unified Modeling Language Specification, Version 1.5;

March 2003; http://www.omg.org/cgi-bin/doc?formal/03-03-01

[12] Object Management Group; XML Metadata Interchange (XMI) Specification, Version 1.2;

Jan. 2002; http://www.omg.org/cgi-bin/doc?formal/2002-01-01

[13] V. Raatikka, E. Hyvönen; Ontology-Based Semantic Metadata Validation; In Towards the

Semantic Web and Web Services, in Proceedings of XML Finland 2002 Conference; pp.

28-40; http://www.cs.helsinki.fi/u/eahyvone/publications/Validation.pdf

[14] Dan Chiorean, Adrian Carcu, Mihai Pasca, Cristian Botiza; Ensuring UML model consis-

tency using the OCL environment; Electronic Notes in Theoretical Computer Science –

ENTCS/157; 2004

[15] Dan Chiorean, Maria Bortes, Dyan Corutiu; UML/OCL tools – Objectives, Requirements,

State of the Art – The OCLE Experience, in Proceedings of 11th Nordic Workshop on Pro-

gramming and Software Development Tools and Techniques; pp. 163- 180 – ISBN 952-12-

1385-X, ISSN 1239-1905; 2004

[16] Dan Chiorean, Dyan Corutiu, Maria Bortes; Good practices for creating correct, clear

and efficient OCL specifications, in Proceedings of 2nd Nordic Workshop on the Unified

Modeling Languages pp. 127-142 – ISBN 952-12-1386-8, ISSN 1239-1905; 2004

Appendix: A

UML base

class

Stereotype DTD stereotype semantic (mappings

with DTD-XML concepts)

Classifier DTDChoice content structure of type “choice”

Classifier DTDSequence content structure of type “sequence”

Classifier DTDMixed content structure of type “mixed”

Classifier DTDAny content structure of type “any”

105

Classifier DTDAnyElement ANY element

Classifier DTDEmptyElement EMPTY element

Classifier DTDElement generic DTD element

Attribute CDATA CDATA type for DTD attribute

Attribute ID ID type for DTD attribute

Attribute IDREF IDREF type for DTD attribute

Attribute IDREFS IDREFS type for DTD attribute

Attribute NMTOKEN NMTOKEN type for DTD attribute

Attribute NMTOKENS NMTOKENS type for DTD attribute

Attribute ENTITY ENTITY type for DTD attribute

Attribute ENTITIES ENTITIES type for DTD attribute

Attribute NOTATION NOTATION type for DTD attribute

Attribute REQUIRED #REQUIRED DTD attribute

Attribute FIXED #FIXED DTD attribute value

Classifier DTDUndefinedElement element not present in DTD defini-

tions, but introduced in UML model

due to occurrence of an undefined tag

in XML

Object XMLUnexpectedElement instance of a class from the static

UML model; reflects the occurrence of

a unexpected XML tag relative to a

given context (the containing XML

tag)

Object XMLMissingElement instance of a class from the static

UML model; reflects the absence of an

expected XML tag relative to a given

context

Attribute DTDUndefinedAttribute attribute not present in DTD defini-

tions, but introduced in UML model

due to occurrence of an undefined

attribute for a given XML tag

AttributLink XMLMissingAttribute slot that corresponds to a DTD

#REQUIRED attribute; reflects the

absence of an expected attribute for a

given XML tag

AttributLink XMLUnexpectedAttribute slot that is an instance of an undefined

attribute (not present in DTD defini-

tions); reflects the occurrence of the

undefined attribute for a given XML

tag

Association DTDUndefinedAssociation association that does not exist between

classes of the UML model, but intro-

duced in UML model due to occur-

rence of a unexpected XML tag rela-

tive to a given context (the containing

106

XML tag)

Link XMLMissingLink instance of an association that exists in

UML model; reflects the absence of an

expected XML tag relative to a given

context

Link XMLUnexpectedLink instance of an association that was

undefined in UML model; reflects the

absence of an expected XML tag rela-

tive to a given context

Note: The DTD #PCDATA is mapped to a UML Class named #PCDATA, having an

attribute named value, that holds the textual value. Also, in order to simulate an any

content, we use a mixed content which contains all the elements defined in that DTD.

Appendix: B

Accounts.dtd

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT Accounts (Account*)>
<!ELEMENT Account EMPTY>
<!ATTLIST Accounts
branchLocation CDATA #REQUIRED>
<!ATTLIST Account

id ID #REQUIRED
customer CDATA #REQUIRED
accountType (deposit | loan) #REQUIRED
creationDate CDATA #REQUIRED
expireDate CDATA #REQUIRED

sum CDATA #REQUIRED>

Customers.dtd

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT Customers (Customer*)>
<!ELEMENT Customer EMPTY>
<!ATTLIST Customers
branchLocation CDATA #REQUIRED>
<!ATTLIST Customer

id ID #REQUIRED
firstName CDATA #REQUIRED
lastName CDATA #REQUIRED
age CDATA #IMPLIED
sex (male | female) #IMPLIED>

InterestRates.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT InterestRates (InterestRate*)>

<!ELEMENT InterestRate EMPTY>
<!ATTLIST InterestRate
type (deposit | loan) #REQUIRED
term CDATA #REQUIRED
rate CDATA #REQUIRED>

107

Accessibility testing XHTML documents using UML

Terje Gjøsæter, Jan P. Nytun, Andreas Prinz, Merete S. Tveit

Agder University College

Grooseveien 36

Grimstad. Norway

{terje.gjosater, jan.p.nytun, andreas.prinz, merete.s.tveit}@hia.no

Abstract. This paper handles modeling and test of accessibility requirements

for web documents. We propose to use metamodelling with UML and OCL for

this task. Our own environment within the SMILE project has proposed a basic

representation that can be used on all levels in a metamodelling architecture;

this representation is used for representation of the elements of the metamodel,

models and model instances. We show the use of OCL formulas to express

simple and advanced accessibility requirements.

1 Introduction

Access to web content for all is crucial for building the information society.

Information on the web should be accessible to all users, independent of disabilities or

choice of web browser. Within the EIAO1 (European Internet Accessibility

Observatory) project [2], we want to improve the accessibility of web content by

providing measurement data about accessibility. However, it is not straightforward to

measure accessibility, because this is very subjective. One main task within the EIAO

project is to formalize the informal and subjective requirements.

In order to tackle the problem from a higher level and for making sure the

formalization is understood by the experts, a pilot project called MEBACC has been

established in cooperation with the Norwegian Directorate of Primary and Secondary

Education [1]. The aim of the project is to create a prototype for an Open Source tool

for accessibility checking of web documents and web based teaching material. The

approach within the MEBACC project is to model the requirements and the

measurement policy explicitly. The project is integrated with the ongoing research on

metamodelling at Agder University College (SMILE project) and the EIAO project.

An important part of MEBACC is to define web document models representing the

relevant standards for use in conformance testing. This paper will show how UML

can be used for this purpose. A subset of the XHTML specification will be

represented as a web document model in UML. XHTML is chosen because it has

stricter requirements for structure than HTML; it is therefore easier to create model

instances from an XHTML document than from a HTML document.

1 EIAO has been co-funded since Sept. 2004 by the European Commission under contract

number 004526.

108

The SMILE project is built around a kernel that can represent models on arbitrary

levels of the metamodelling hierarchy. We will also show in this article how this

SMILE basic representation (called MATER) looks like for the case of UML-like

models as used here. In fact, the use of UML is taken here just as one possible

representation of the metamodel and the model, because this is a familiar notation.

The MATER model abstracts from this kind of representation, such that any notation

could be used (e.g. UML).

Within MEBACC, we also built a prototype to show the relevance of our

theoretical results. The prototype is simple while still advanced enough to prove the

potential of our approach. Carefully chosen subsets of XHTML, OCL and the WCAG

1.0 accessibility guidelines are supported in the prototype.

The article is structured as follows. In chapter 2, we give background information

about web accessibility measurements in the scope of the EIAO project. Chapter 3

deals with metamodelling in general and with our SMILE project. In chapter 4 we

describe our approach and give a small example to demonstrate how accessibility is

modeled using OCL and UML. We conclude the paper in chapter 5.

2 Measuring accessibility

There are defined some standards to measure web accessibility. The WCAG

guidelines presented in section 2.1 is one standard that will be used within the EIAO

project. EARL reporting (section 2.2) is another standard that will be used to evaluate

web pages against the guidelines from WCAG.

2.1 The WCAG guidelines

The WCAG – Web Content Accessibility Guidelines [12] is produced as a part of

W3C Web Accessibility Initiative [13], and explains how to make web content

accessible to people with disabilities. The WCAG 1.0 includes fourteen guidelines, or

general principles of accessible design. The guidelines discuss accessibility issues and

provide accessibility design solutions, and they address typical scenarios that may

pose problems for users with certain disabilities. Each guideline includes a list of

checkpoints which explain how the guideline applies in typical content development

scenarios.

2.2 EARL reporting

EARL (the Evaluation And Report Language) [14] is a language to express test

results. Test results include bug reports, test suite evaluation and conformance claims.

EARL is in a RDF based framework for recording, transferring and processing data

about automatic and manual evaluations of resources.

EARL expresses evaluations about all sorts of languages and tools, and could be

used to evaluate web pages and web sites against WCAG, and then generate an

accessibility report corresponding to the test results.

109

2.3 The EIAO project

The European project EIAO [2] (European Internet Accessibility Observatory) will

assess the accessibility of European web sites and participate in a cluster developing a

European Accessibility Methodology. The assessment will be based on the WCAG

developed by W3C. The project is carried out in a co-operation among 10 partners in

a consortium co-ordinated by Agder University College Norway.

EIAO is carried out within the Web Accessibility Benchmarking (WAB) Cluster

together with the projects [10] and BenToWeb [11], co-funded by the European

Commission. The cluster consists of 24 partner organisations in Europe.

Among its planned output is a set of Web accessibility metrics, an Internet robot

"ROBACC" for automatic collection of data on Web accessibility and deviations from

Web accessibility standards, and a data warehouse providing on-line access to

measured accessibility data.

EIAO is defining an extensible plug-in architecture in cooperation with W3C and

the European WAB Cluster. This architecture will allow exchange of web

accessibility assessment modules among different applications. The test modules that

are produced based on accessibility models, may implement the EIAO interface, and

thereby use the ROBACC crawler of EIAO as a vehicle for testing of a large number

of web sites.

3 Metamodelling using SMILE

Our metamodelling approach is done inside the SMILE metamodelling framework;

this section describes and introduces some of the basic concepts of the SMILE

metamodelling framework.

The SMILE project targets all the levels of the OMG four-layer metamodel

architecture; this implies definition of an object representation. FORM [3] was the

first definition proposed; it was meant to be used on all the levels of a metamodel

architecture and it included the instanceOf-relation between elements of to

adjacent levels. FORM allowed two levels to be tested for "adjacency" (can one be

seen as the model for the other). Its successor MATER (Model All Types and Extent

Realization) has been extended with a deep instantiation mechanism; this has been

done by supporting definitions of patterns that span multiple levels. Since this paper

has another focus instantiation patterns are not described here. MATER is more

flexible than FORM allowing different "styles" of metamodelling.

3.1 MATER - Model All Types and Extent Realization

MATER defines a uniform way of representing metadata and object information in a

metamodelling environment. This uniform representation is a level independent

representation, meaning that all levels can be represented with the help of one

common mechanism.

MATER is not meant to be a metamodel or a meta-metamodel, it is meant to be

"the substance" that is used when a level of the metamodel architecture is made; this

110

proposed basic representation takes care of what [6] calls intralevel instantiation and

[7] calls the physical classification. The conceptual model of MATER is object-

oriented; when instantiated an object graph will be the result.

If a metamodel for relational databases is defined, the model level will define the

layout of tables, and the information level will consist of actual tables. In the SMILE

metamodelling framework the information level will be an object graph that can be

mapped to actual tables, the object graph will have a structure that logically

correspond to the tables.

Fig. 1 presents the conceptual model of MATER in UML (how to handle basic

types is left out, but [3] demonstrate how this can be done).

Fig. 1. The conceptual model of MATER.

The metamodel border between two levels is seen as an interface composed of

symbols (instances of Symbol) which from the level below represent the instantiable

elements of the level above (e.g. names of classes). One metalevel together with the

upper and lower interfaces constitutes a manageable module. An instance of Symbol

that does not reside on the border is abstract and will have no instances.

A Slot-instance can keep one or more values (e.g. a number); a special type of value

is the link-instance which can connect two or more Slot/Substance-instances. A

Link instance can represent a reification of an association instance (which in UML is

called a link); the Link instance makes it possible to have an instanceOf-relation

from the "link" to the association which has been instantiated. The “links" of an object

graph made by instantiating the conceptual model are called connections; this are not

considered objects and must be supported by the underlying software (e.g. references

in Java). This problem is discussed in [8] which have the following statements:

... it is possible to reify (i.e. view as objects) links and associations so that they can be

modeled as objects and clabjects respectively... The difficulty in reifying links is not in

working out how to view them as objects, but in knowing when to stop viewing them

111

as objects...To break this potentially infinite regression it is necessary to identify

certain kinds of links as implicit or primitive links which will not be stored as objects.

Substance is a specialization of Slot; instances of Substance can keep values

and have other substance as property; the owner and property associations used

together can define compositions, while the namespace-names-association

obviously is meant for modelling namespaces. Description is meant for

additional semantic information.

There is not full agreement on what object-orientation includes and consequently

the conceptual model of MATER is one approach; the conceptual model of MATER

is kept small but still powerful enough to allow “flexible modelling”.

In object-oriented meta-modelling the essential object-oriented concepts must in

some way be stated since abstract syntaxes are described with class diagrams. It might

be possible to use the underlying representation in such a way that it directly supports

a specific object-orientated concept, e.g. that it supports objects with slots. Other

concepts might be modelled more indirectly where we as humans must study the

structure of several levels to make an adequate interpretation. The following is a list

of the “object-oriented” concepts considered and how they can be supported in the

MATER approach:

Object: The underlying representation supports this. A class will be described with

the help of objects.

Slot: The underlying representation supports this.

Link: The underlying representation supports this.

Multiplicity: Must be modelled explicitly

Identity: A symbol can be used to identify a Slot.

Namespace: Slot/Substance has a special association for modelling

namespace hierarchies; the members of a namespace instantiate this association to

reference the Substance which function as a namespace; a member can be a new

namespace. A Slot-instance that is member of a namespace must have a Symbol-

instance as value, this value function as a name. The default namespace is the level

which means that all symbols that are not part of another namespace must be unique.

It is up to the meta-modeller to model the namespace.

Composition: In UML 2.0 class Property has a boolean attribute called

isComposition; an instance of Property typically becomes a property

(attribute or "association end") of the owing class (instantiated from Class);

isComposite will be a slot of the Property-instance; if the Property-instance

is an association end and this slot has value true then this is indicated by showing a

filled diamond; an object instantiated from such a class will be a container for the

object referenced by the slot or value contained in the slot. In UML 2.0 one has to

look at the level above to see if something is a composite or not. In MATTER

composition can be modelled as done in UML 2.0; additionally the owner-property

relations (composite-part) can be used to show the composition where it actually

occurs.

Concrete class: Is not directly supported and must be modelled by the meta-

modeller. If something is a class then it can be instantiated to objects on the next level

- the meta-modeller models this with instantiation patterns, e.g. a metaclass will be

112

specified on one level; instantiated on the next level to a class; which again can be

instantiated to an object on the next level. Examining the levels and how they relate

shows what are classes; the names used are irrelevant.

Abstract class: Same as concrete class but the symbol will not be placed on the

border but reside "freely on the level".

Property (attribute and association end): Is not directly supported and must be

modelled by the meta-modeller. If something is a property then it can be instantiated

to slots on the next level.

Association: Is not directly supported and must be modelled by the meta-modeller.

If something is an association then it can be instantiated to links on the next level.

Inheritance: Is a description technique; which means that from the "object-level"

it looks like ordinary class-instantiation and it is only by examining the model level

that the use of inheritance will be revealed. Inheritance is not directly supported.

Packages are a way of grouping elements and defining namespaces. One might

consider one level as a package which defines the default namespace. To simplify the

presentation packages are not included.

3.2 MATER with set notation.

Fig. 2 shows a concrete notation for MATER; it has similarities with the notation used

when visualizing sets, but here extended with meta-information.

Fig. 2. A set-like concrete notion for MATER.

113

Fig. 3 shows how an object of class Person and class Person can be modeled,

corresponding UML notation is also supplied (at level M2 only UML notation is

shown). Class Person is on level M1 and the object on level M0. Note how class

Person is modeled as composite for its property called name, the owner and

property associations of basic representation has been used to model this (both being

instantiated). Multiplicity information is included for the name property of class

Person (it is set to 1). Note how namespace information has been modelled by the

arrow (the one with the filled arrow head) going from the Person-substance to the

name-substance (the description of the name property of class Person); the value of

the n-slot (the symbol called name) is used as a name in the namespace; class

Person function as the namespace, in effect all properties of the class has to have

unique names.

Fig. 3.Two levels with MATER, concrete syntax as shown in Fig. 2

4 Modelling accessibility for XHTML with UML and OCL

The XHTML standard is represented as a UML model called the web document

model. The planned tool will take a set of web documents as input and instantiate

those into web document model instances based on the web document model. If this

instantiation is successful, the web documents are considered valid.

OMG operates traditionally with a four-layer metamodel architecture [5]. For our

purpose it is sufficient with three levels shown in Fig. 4. The elements of Fig. 4 are

explained below.

114

Metamodel: The top level is a metamodel that describes the concepts that will be

used when defining the XHTML-standard as a model. This metamodel could be the

concepts of XML, but we chose an object-oriented approach. We select a subset of

the UML metamodel that includes: class, property, association generalization and

composition. OCL will work well on such a subset.

Model: The middle level will be an object-oriented representation of a subset of

the XHTML-standard itself and can be seen as an instance of the top level. It is at this

level the accessibility modeling with OCL is performed; OCL accessibility constraints

are attached to the modeling elements and can later be evaluated on the model

instance level.

Model Instance: An XHTML-document is transformed to be an instance of the

model (level above); the OCL accessibility constraints are evaluated and a report is

generated that states to which degree the web document fulfils the accessibility

demands.

metamodel

model

model instance

subset of UML

metamodel

XHTML

specification

XHTML

document

<<instance of>>

<<instance of>>

<<instance of>>

<<instance of>>

metamodel architecture our solution

Fig. 4. Our metamodelling architecture

The EARL Evaluation and Report Language will be used for reporting deviations

from standards and accessibility requirements. The instantiation technique of MATER

will be used when building the metamodelling architecture.

115

Fig. 5. A minimal reflexive metamodel

4.1 The Metamodel

For our experiments with web accessibility we have developed a very simplistic

metamodel as shown in Fig. 5. The metamodel is compatible with UML in that it is

just a very restricted MOF (a simplified subset of the UML metamodel kernel), and it

is compatible with SMILE as SMILE allows representing it using MATER.

4.2 The Web Document Model (subset of XHTML)

The XHTML standard is represented as a UML model (the middle level) called the

web document model. The planned tool will take a set of web documents as input and

instantiate those into web document model instances based on the web document

model. If this instantiation is successful, the web documents are considered valid.

OCL is a powerful language that offers first order predicate logic on object graphs.

OCL expressions can include function-calls with elements of the graph as parameters.

The prototype includes a “hard coded” subset of OCL and a set of functions that have

been specifically made to do accessibility testing; the functions are available in the

evaluation environment and can be used in OCL- expressions.

OCL or OCL-like constraints will be added to the web document model to model

accessibility requirements. If there is a valid instance-of relationship between the

116

model instance and the accessibility model, the tested documents are considered

accessible.

We have created a model of a large enough subset of the XHTML 1.0 transitional

specification to cover the sample web document. Some more complicated parts of the

specification will require OCL constraints, such as the requirement that you must

have either HTTP-EQUIV or NAME, but not both, as attributes to a META tag (OCL

constraint is not shown in this model).

Accessibility constraints: For the XHTML model given above we formulate three

constraints that are derived from the WCAG guidelines.

1. Each image has to have a valid alt tag associated with it. Guideline 1 “Provide

equivalent alternatives to auditory and visual content” describes how content

developers can make images accessible. Some users may not be able to see images,

other may use text-based browsers that do not support images, while others may

have turned off support for images. The guidelines do not suggest avoiding images

as a way to improve accessibility. Instead, they explain that providing a text

equivalent if the image, which serves the same purpose, will make it accessible. An

image in HTML has an alt-tag which is used to provide text equivalents.

2. You must have either HTTP-EQUIV or NAME, but not both, as attributes to a

META tag. This is in fact not a WCAG requirement but a static constraint for

XHTML.

3. The color of the text should have enough contrast with the surrounding color.

Guideline 2 “Don’t rely on color alone” ensures that text and graphics are

understandable when viewed without color. Checkpoint 2.2 says that it is important

to ensure that the foreground and background color combinations provide

sufficient contrast when viewed by someone having color deficits or when viewed

on black and white screen.

117

Fig. 6. The web document model

 These constraints are formulated in OCL as follows.

1. Context Img

Inv: libAcceptableAltTag(alt)

2. Context Meta

Inv: name.size() > 0 xor http-equiv.size() > 0

3. We define an auxiliary recursive function that finds the body.

Context Block

def: getBody(b : Block) : Set(Body) =

 if b.body->size() = 1 then body

 else b.getBody(composite)

 endif

Context Font

Inv: libAcceptableContrast(textColor, getBody(this)->any(true).background)

The functions libAcceptableAltTag and libAcceptableContrast are library functions.

118

4.3 The Model Instance

For the presentation we use a simple web page as shown in Fig. 7. We use this web

page to evaluate accessibility requirements according to the OCL formulas given.

Fig. 7. A web sample web page

The web document shown above is a (slightly broken) XHTML document, with the

following source:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" >

<head>

 <meta http-equiv="Content-Type"

 content="text/html;charset=utf-8" />

 <meta name="generator" content="gedit" />

 <title>Test</title>

</head>

<body bgcolor="yellow">

 Participants at the EIAO Kickoff meeting in Grimstad,

2004-10-14.

</body>

</html>

The document has an empty alt-tag. This is in conflict with the WCAG 1.0 Guideline

1: "Provide equivalent alternatives to auditory and visual content." If the alt-tag was

missing, the document would also be in conflict with the XHTML specification.

119

x : XHTML_Doc
d_t: DocType

dtd = ”-//W3C//DTD XHTML 1.0 Transitional//EN”

html: HTML

namespace = http://www.w3.org/1999/xhtml

lang = ”en”

xml_lang = ”en”

h : Head

m2 : Meta

name = ”generator”

content = ”gedit”

m1 : Meta

http-equiv = ”Content-Type”

content = ”text/html;charset=utf-8”

t : Title

title = ”Test”

b : Body

background = ”yellow”

f : Font

textColor = ”black”

br : Br

i : Img

src = http://www.eiao.net/kickoff_s.jpg

alt = ””

text : Text

text = ”Participants at the EIAO Kickoff meeting

in Grimstad, 2004-10-14.”

b : Block

Fig. 8. The sample web page as instance of the web page model

When evaluating the OCL constraints on these instances, we have to check the

following conditions.

1. The first condition is applicable in Img context. The only instance of this kind is

the object i. So we have to apply libAcceptableAltTag(””), which will

give the result false. So this requirement is not fulfilled.

2. The second condition is applicable in Meta context. We have two meta objects m1

and m2, and for both the condition is fulfilled. So there is no problem here.

3. The third condition refers to the Font context. For the font object f in our example

we have to check libAcceptableContrast(”black”,”yellow”) which

yields the result true. So this requirement is also fulfilled.

Figure 9 uses the notation of MATER and shows the same as Fig. 8. Figure 9 is not

showing all the details: the instanceOf-relation for the links is not shown, and also the

details of head and body are not shown.

120

DocType

XHTML_Doc

“_//W3C//DTD XHTML 1.0 Transitional//EN”

dtd

HTML

namespace

lang

xml_lang

“http://www.w3.org/1999/xhtml”

“en”

“en”

head body

“yellow”

background body

Figur 9 The instance of the web page model using the notation of MATER

5 Conclusion and further work

Accessibility requirements and web technology are constantly evolving. High level

modeling of accessibility requirements can support more rapid generation of new test

modules and improve the understanding of the accessibility barriers for web

documents. UML seems to be the natural choice for this modeling. However, we need

to take into account the limitations of using OCL to define accessibility constraints;

we may need to extend OCL to be able to perform some more advanced accessibility

tests. The basic representation and instantiation technique from the SMILE project is

very useful when it comes to implementation of these ideas.

Starting from the prototype tool we have created, we will extend the subsets of

HTML and WCAG 1.0 covered. We will integrate a complete OCL interpreter into

the SMILE framework, such that it is possible to express more constraints than just

simple comparisons. Moreover, we will extend the library of functions needed to do

sensible checks for accessibility

References

1. http://www.utdanningsdirektoratet.no/

2. http://www.eiao.net

121

3. J. P. Nytun, A. Prinz and A. Kunert: Representation of Levels and Instantiation in a

Metamodelling Environment, NWUML 2004

4. http://www.w3.org/TR/xhtml1/

5. www.omg.org

6. R. Geisler, M. Klar and C. Pons: Dimensions and dichotomy in metamodeling, Proceedings

of the Third BCS-FACS Northern Formal Methods Workshop, Springer-Verlag1998

7. C. Atkinson and Thomas Kühne: Rearchitecting the UML infrastructure, ACM Transactions

on Computer Systems (TOCS), vol. 2, no. 4, 2002.

8. Colin Atkinson. Meta-modeling for distributed object environments. In Enterprise

Distributed Object Computing, pages 90 -101. IEEE Computer Society, 1997.

9. Franck Barbier, Brian Henderson-Sellers, Annig Le Parc-Lacayrelle, and Jean-Michel Bruel.

Formalization of the whole-part relationship in the unified modeling language. IEEE

Transactions on software engineering, Vol. 29, No. 5, pages 459-470, May 2003.

10. http://www.support-eam.org/

11. http://bentoweb.org/

12. http://www.w3.org/TR/WCAG10/

13. http://www.w3.org/WAI/

14. http://www.w3.org/TR/EARL10/

122

GXL and MOF: a Comparison of XML Applications for
Information Interchange

Marcus Alanen, Torbjörn Lundkvist and Ivan Porres

TUCS Turku Centre for Computer Science
Department of Computer Science,

Åbo Akademi University
Lemminkäisenkatu 14, FIN-20520 Turku, Finland

e-mail:{marcus.alanen,torbjorn.lundkvist,ivan.porres}@abo.fi

Abstract. In this paper, we compare the Graph eXchange Language (GXL) and
the Meta Object Facility (MOF). GXL and MOF are approaches for information
interchange, specifically for the interchange of artifacts created during software
development. Although there are several traits in common, some differences can
also be found, in particular the more static structure of MOF as compared with the
more dynamic nature of GXL. We discuss the benefits and drawbacks of these dif-
ferences. Additionally we discuss common issues and possible future extensions.
Keywords: Object graphs, Information interchange, MOF, GXL, XMI, XML

1 Introduction

Todays fast-paced technological advancements require a more streamlined way to rep-
resent and manipulate information. Our current way of managing e.g. software projects
includes several kinds of different information: requirements, specification, timetables,
personnel resources, actual source code, test reports, et cetera. All these artifacts relate
to each other, but are usually described and manipulated using different data formats
and tools.

In this article, we compare two XML [31] applications which have been created
to model and interchange data about software and software development artifacts. The
Graph eXchange Language (GXL) [36, 35] is a standard exchange format for graphs by
Richard C. Holt, Andy Schürr, Susan Elliott Sim, Andreas Winter et al. [11] with the
backing of several research communities. GXL is used to describe arbitrary graphs, but
additionally it can be used to define GXL schemas which constrain the graphs so that
only specific kinds of graphs can be built.

The Meta Object Facility (MOF) [17] from the Object Management Group [15] is a
framework for describing metamodels. These metamodel can be used to create models.
Metamodels can also be seen as models, with MOF as their metamodel. Serialization
is done using the XML Metadata Interchange (XMI) [19, 24] format, which is an XML
application. In this paper, we concentrate on the older and significantly simpler MOF
version 1.4 instead of the relatively new and complex version 2.0 [20]. The arguments
regarding MOF remain mostly the same in any case, although we are aware that ver-
sion 2.0 includes some interesting enhancements.

123

As can be seen, both standards employ a way to describe languages (GXL schemas
and MOF metamodels) as well as instantiations of these languages (GXL graphs de-
scribed using the GXL Document Type Definition (DTD) and MOF models described
using XMI). We have extensive practical experience in using MOF-based modeling
technologies and XMI [1, 2, 5], but lack practical experience of GXL. However, as both
standards aim to provide a way to describe interconnected parts of information and thus
are quite closely related, we believe we are in a position to compare them.

As we are interested in modeling information, we claim that any standard with suf-
ficient expressiveness for representing information is meta-circular [3, 4], i.e. it should
be possible to use the standard to represent itself. In the case of MOF 2.0 [20], MOF 2.0
is used to describe UML 2.0 [21], which in turn is used to describe MOF 2.0, which
amounts to the same thing: MOF is used to describe itself. Furthermore, the modeled
information conforms to some kind of meta-information model that describes more
strictly how pieces of information may be connected. This conformance is represented
using meta layers in the modeling community, but similar structure can be found in
GXL. Thus MOF is the meta-metamodel, models described using MOF are metamod-
els (e.g. UML) and finally the creations of the user are models. In GXL, the terminology
is different: the GXL metaschema is similar to a meta-metamodel, GXL schemas are
similar to metamodels and GXL graphs are similar to models. So, in a way, this article is
a comparison of GXL the DTD together with GXL the metaschema and MOF together
with XMI.

We proceed as follows. In Section 2 we give an overview of GXL and MOF. We also
look at some practical aspects and the current usage of these standards, such as diagram
support, transformation technologies, extensibility, et cetera. As both GXL graphs and
MOF models metamodels are XML applications, we also discuss their respective seri-
alizations. In Section 3 we summarize the presentation by discussing common issues
and differences between the two standards. In Section 4 we present some related work
and ideas for future work. We finally conclude in Section 5.

2 An Overview of GXL and MOF

For the purposes of this article, we claim that the structure of information can be ex-
pressed as graphs. However, these graphs may have constraints on how their nodes and
edges can be interconnected.

The benefit is that graph theory has a very strong and well-understood mathemati-
cal foundation. In general, a graph consists of two kinds of elements: edges and nodes.
These elements are typed, attributed and hierarchical. The type of an element deter-
mines its classification. All elements of the same type can be seen as having some
structural or semantic commonality. Attributes are key-value pairs of primitive type
such as strings which describe the element further. Allowing an element to include
other elements (or other graphs) into itself supports hierarchical graphs.

An edge connects n elements together. If n > 2 the edge is said to be a hyperedge.
An edge can also be directed which splits the n connections into two nonempty sets,
one considered the source collection of elements, and the other the target collection.
Very often edges may only connect to nodes, not to other edges. Edges have additional

124

properties which describe the ownership between the source node and the target node.
Edges are often grouped into specific categories depending on which kinds of nodes
they interconnect and what the semantics of the edge is. These groups can then be
considered ordered or unordered and the multiplicity of the edges is of importance. If
several edges between the same source and target node is allowed, the group can be
considered a bag instead of a set.

2.1 GXL

Structure A GXL Node supports directly the properties defined previously for nodes
in a graph. GXL supports ownership hierarchies by inclusion of other subgraphs, which
contain other nodes and edges. GXL supports binary edges as a special Edge element,
and hyperedges with a Relation element. All elements can be attributed via the Attribute
element, and all elements support an optional type via the hasType connection to the
Type element. The type is defined in a GXL schema, which will be discussed later. The
GXL graph model arrangement can be seen in Figure 1.

The GXL graph model establishes few restrictions on what graphs can be created
and is thereby a very general solution. This can also be seen in its history, where GXL
was created by merging properties from several graph formats such as the GRAph eX-
change format (GraX) [8], Tuple Attribute Language (TA), and the graph format of the
PROGRES graph rewriting system. The only small drawback of such a general solu-
tion is that in order to establish more constrained graphs it must be possible to define
these constraints in some language. These languages are called schemas in GXL. If we
also want tools to support generic manipulation of information all of these languages
must adhere to some common (meta)language, which is called the GXL metaschema.
The beauty of GXL is that it describes the schemas and the metaschema as GXL docu-
ments. This means that a GXL information processing tool only needs the GXL DTD to
load and save GXL graphs, schemas and the metaschema. This arrangement can be seen
in Figure 2. Elements in the schemas can be used as types. However, this also means
that there is an extra layer of indirection/understanding that tools must perceive, not just
the XML document itself. So even though the tool can load arbitrary GXL documents,
it must understand the relationship between metaschemas, schemas and vanilla GXL
graphs. Failure to accomplish this means that graph modification or querying might not
be feasible.

The graph part of the metaschema is depicted in Figure 3. An inheritance hierarchy
of the GraphElementClass metaelement with multiple inheritance can be created with
the GraphElementClass.isA relation. Also some metaelements can be declared abstract
with the GraphElementClass.isAbstract property. Subgraphs can be created with the
hasAsComponentGraph property. These are identified by a name, and have a lower and
upper multiplicity constraint which tells how many subgraphs of the given name must
exist for instances of the metaelement. The order of the subgraphs can also be specified
as important with the relatesTo.isOrdered property.

Edges can be of three types: compositions, aggregations and “plain associations”.
Also edges have lower and upper multiplicity constraints and can be directed or undi-
rected; both the source and target collection can be ordered or unordered, meaning that
order is considered important and must be preserved by any input/output routines and

125

Hierarchical graphs

Hypergraphs

Attributed graphs

Ordered graphs

Directed graphs

Typed graphs

refersType

hasType

refersDocument

contains

contains

contains
from

to

relatesTo

hasAttribute

* 1

0..1 *

0..1
Graph

0..1 *

* 0..1

1 *

*

1

*

1

*

LocalConnection

Relation

Node

Type TypedElement

AttributedElement

GXL GraphElement

to

Edge

1

*

Relened

from

* *

Attribute

relatesTo

role :
edgeids :
hypergraph :
edgemode :

isdirected :

id :

role :
direction :
startorder :
endorder :

name :
kind :

ordered :

Fig. 1. The GXL Graph Model that defines the GXL DTD. All GXL artifacts correspond to this.

Fig. 2. Overview of GXL and its artifacts. Note how there is only one static serialization format.

126

must be taken into account by query or transformation algorithms. The edges represent
an ownership hierarchy at the graph level, whereas (sub)graph containment represents
an ownership hierarchy at the metaschema level and can be used to split schemas into
separate “packages” (the subgraphs).

GraphClass GXL

composes all

concepts

GXL Metaschema

Version 1 b

(GraphPart)

contains

hasAttribute

isA

from

to

relatesTo

hasrelationEnd

1 *

* 0..1

* *

* *

RelationClass NodeClass

GraphElementClass

*

1

*

1

1

*

1

*

from

to

relatesTo

GraphClass

EdgeClass

AggregationClass

CompositionClass

RelationEndClass

hasAsComponentGraph

AttributedElementClass AttributeClass

GXL
 « »

+ name :

+ isabstract :

+ limits :

+ isordered :

+ limits :

+ isordered :

+ limits :

+ isordered :

+ name :

+ isdirected :

+ aggregate :

+ directedto :

+ role :

+ role :

+ limits :

+ isordered :

+ name : GraphClass

string

bool

int x int

bool

int x int

bool

int x int

bool

string

bool

(from, to)

(relation, target, undirected)

string

string

int x int

bool

string

Fig. 3. Part of the GXL Metaschema. Instances of the metaschema define additional restrictions
on GXL graphs.

However, the metaschema cannot describe more complicated constraints. This has
the benefit that the theory for representing and validating graphs remains fairly sim-
ple, although practical considerations might dictate a need for arbitrary constraints. For
example, in the definition of the UML metamodel, additional constraints have been
heavily used, and thus it does not sound realistic to ignore such a constraint facility.

Element Identification For practical purposes of serialization, elements in a graph may
possess an identity. In GXL this identity is described with the AttributedElement.id
property and is a string unique to the XML document. This is correctly marked as
an XML identifier in the GXL DTD, although in the long run the xml:id candidate
recommendation [33] might be adopted when or if it is standardized by the World Wide
Web Consortium. However, a globally unique name is important because we want to

127

reference elements from other GXL (or XML) files and a simple local identifier or
name is not suitable for that. A more opaque globally unique identifier is necessary.

Schema Identification In order for tools to understand a GXL graph more thoroughly,
it is important to be able to identify what schema is being used, i.e. what types are
available to GXL elements. The schemas are usually defined in a separate GXL file and
shared among all the GXL graphs of that type. Linking to a schema is done using the
native facilities of XML, i.e., XLinks [32]. XLink allows the use of Uniform Resource
Identifiers (URIs) which can be used to uniquely identify a document e.g. on the WWW.
This allows a GXL graph to explicitly reference a specific schema, and additionally it
allows tools to download the schema from the location specified by the URI. This means
that generic tools can be extended on-the-fly with new schemas.

Visual Representation GXL itself does not define a mechanism for presenting a graph
visually on-screen, although this can be remedied in two ways. The simple solution
is to define attributes that describe the position, size, form et cetera of a GXL Graph-
Element. The more complicated solution is to define a whole new schema for describing
the visual representation, thereby decoupling the abstract syntax (the graph) from the
concrete syntax (the presentation). This idea is similar to what is already being done
by the OMG in the form of the Diagram Interchange (DI) [23] standard and has the
benefit that the representation can be split into several possibly different diagrams, each
showing a subset of the abstract graph.

Transformation GXL graphs can be transformed with the Graph Transformation eX-
change Language (GTXL) [27], although at this moment a revision of GTXL seems to
be under way by Leen Lambers [13]. Unfortunately, we do not have experience with
GTXL yet and cannot comment on its viability. On the other hand, graph transforma-
tions have been extensively researched and we believe it should be possible to adapt
any transformation technology using graphs from one underlying schema to another
with few problems.

Extensibility GXL allows arbitrary embedding of extra non-GXL information into any
GXL node. This has the disadvantage that tools must be ready to process the non-GXL
information somehow, either by simply ignoring (and remembering) it or removing it.

Current Support and Licensing Current support of GXL seems to be very good.
There are several researchers and companies listed as supporters or contributors on the
GXL website [11]. Several tools include export or import capabilities of GXL, such as
the round-trip UML software engineering tool Fujaba [14] or the graph transformation
toolset GROOVE [26].

Overall, there is activity in the GXL community. GXL is licensed without any fees
or restrictions.

128

2.2 MOF

The Meta Object Facility takes a slightly different approach to modeling than GXL.
In MOF, the developer must first define a language (a metamodel) that can be used in
creating the actual model (i.e. the actual information). One of the possible metamodels
that can be defined in MOF is MOF itself, thereby closing the meta-circularity.

Structure A part of the MOF meta-metamodel can be seen in Figure 4. We have re-
stricted ourselves to the parts that mainly describe the structure of metamodels. As a
simple starting point for comparing MOF models to a graph, we may say that the nodes
in a graph are mainly Class metaelements, and that edges are represented by Associa-
tion metaelements.

Note: shared

aggregation is

discouraged

Typed graphs

Hierarchical graphs

Ordered graphs

Directed graphs

Attributed graphs

typedElement

*

type

1

subtype

supertype

*GeneralizableElement

Package

container 0..1

containedElement *

*

exposedEnd1

AssociationDatatypeClass

EnumerationType

MultiplicityType

AggregationKind

Classifier

TypedElement

StructuralFeature

Feature

ModelElement

Namespace

AssociationEnd

*

referencedEnd1

Reference

Attribute

 {ordered }

 « »

isAbstract :

isDerived :

labels : [*ordered]

upper :

lower :

isUnique :

isOrdered :

enumeration

none :
shared :
composite :

multiplicity :

name :

isNavigable :

multiplicity :

aggregation :

isDerived :

Boolean

Boolean

String

Integer

Integer

Boolean

Boolean

MultiplicityType

String

Boolean

MultiplicityType

AggregationKind

Boolean

Fig. 4. Part of the MOF meta-metamodel.

It can be understood that a metaelement can establish ownership by two means. One,
a metaelement can have Attribute metaelements via the Namespace.containedElement
connection. These parts have an obligatory type via TypedElement.type and a Multiplic-
ityType that states the minimum and maximum amount of, as well as possible ordering
and uniqueness of, elements. Two, a metamodel can have Association metaelements

129

which each contain exactly two AssociationEnds. These, almost similar to the Attribute,
establish a link between two metaelements, but each AssociationEnd can be explicitly
set navigable (which supports directed graphs) and three different kinds of aggregation,
along with the usual support from MultiplicityType. However, an Association can be
and usually is bidirectional, meaning that if a source element is connected to some tar-
get element via their slots, that target element is also connected to the source element.

The three different kinds of aggregation are the same as in GXL: plain, aggregate
and composite. However, using aggregation (shared composition) is discouraged and
it has been removed in MOF 2.0. The reason might be that if one ignores the plain
associations, the resulting ownership structure in the form of composite connections
form a tree, which has been found to be a very useful structure and which directly maps
to XMI. Aggregation, resulting in an ownership structure of directed acyclic graphs, is
not as common, although it can certainly be useful.

So to summarize, an ownership hierarchy of metaelements is established via the
Namespace.containedElement property, and as in GXL, it can be used to split metamod-
els into “packages”. An ownership hierarchy of elements is established by Associations
with one AssociationEnd marked as composite.

Reference metaelements are owned by Classes and are used to track which Asso-
ciationEnds are connected to them. This seems a bit redundant, as the Classes could
reference some of the AssociationEnds directly. Thus other more light-weight meta-
metamodel approaches have been created, e.g. the Eclipse EMF [9] or our own Simple
Metamodel Description (SMD) language in Coral [1].

Since MOF employs a two-step process whereby the user first creates a metamodel,
which then allows them to create models, the resulting usage and serialization of those
models (in XMI) is very different from GXL. This is depicted in Figure 5 and shows that
tools require metamodel-specific XMI importers/exporters. In other words, to be able to
load a UML 1.4 model from an XMI document, the tools must know how to acquire the
UML 1.4 metamodel definition first, otherwise it is unable to load it correctly. This is a
big contrast with GXL-compliant tools. The GXL tools may be able to load the graph
with an unknown schema, although they cannot process it much further.

Fig. 5. Overview of MOF and its artifacts. Note how there are several serialization formats on top
of XMI. One is the static serialization format, XMI[MOF], and every metamodel defines its own
serialization format.

130

Constraint support in MOF can be assessed as excellent due to the Object Constraint
Language (OCL) [16, 22], an addition to MOF. OCL enables a metamodel developer to
add arbitrary constraints to the users’ models, thus enforcing very sophisticated con-
straints between elements. A tool can then check these constraints and report nonwell-
formedness.

Element Identification Element identification in MOF is handled by XMI with its
xmi.id and xmi.uuid XML attributes. They have been properly defined in XMI and the
UUID specification [6] and we have extensively discussed this in [2]. To summarize,
elements can be locally identified in an XML document as well as globally with a UUID
string, enabling rigid inter-file element identification. On the other hand, current support
by XMI exporters/importers is brittle.

Language Identification Similarly to GXL, it is important to detect which metamodel
is being used in a model. XMI allows using several metamodels in the same document,
and in the new XMI 2.0 standard the XML namespace [30] declaration string describes
which language is being used where. This usage is nicely aligned with advances in XML
by the World Wide Web Consortium. The only issue is that “there is no requirement or
expectation by the XML Namespace specification that the logical URI be resolved or
dereferenced during processing of XML documents. [24]” This implies that a tool
cannot in general be able to even load a model without knowing the metamodel in
advance, because it cannot acquire the metamodel.

Visual Representation MOF does not define a visual representation for models. The
basic premise is that there is a strong separation of abstract models containing the se-
mantic data and the diagram which merely display the artifacts on-screen. Thus, the
Diagram Interchange (DI) standard [23] has been developed. DI has been successfully
used in the Poseidon tool [10] and our Coral tool. This has also been discussed in [2]
and the conclusion is that DI is a viable standard that can be used to represent diagram
models.

Transformation Even though it is conceivable that several different transformation
technologies are used for model transformations, the Query-View-Transform (QVT) [18]
is a standard pushed by the OMG to enable the transformation of MOF-based models.
As the standard itself is relatively new, we feel it is too early to discuss its benefits or
drawbacks.

Other transformation technologies have been described by several authors, for ex-
ample UMLX [34], YATL [25] and VIATRA [29].

Extensibility MOF metamodels can not as such be extended, but both metaelements
and elements can be tagged with arbitrary information using the XMI.Extension XML
node. A whole XMI file can be tagged with the XMI.Extensions XML node.

131

Current Support and Licensing Current support for MOF is low. The meta-metamodel
itself has some nonintuitive quirks and is quite big and complex, which presumably
has lead e.g the Eclipse team to create EMF. We have also avoided using MOF due to
these reasons and opted to explore what fundamental parts are really required in a meta-
metamodel. Additionally, MOF 2.0 has become even more complex than it predecessor.

Ironically, the low support for MOF will perhaps not matter, as the serialization is
not dependent on MOF per se, but on the metamodels created in MOF. For example,
even though our Coral tool is not based on MOF it still is compatible with e.g. the
UML 1.4 XMI serialization format.

MOF is released under a royalty-free license.

3 Common Issues and Differences

Comparing Sections 2.1 and 2.2, we can discern several common issues and differences
between GXL and MOF. It must be stated that MOF has the backing of an industry
consortium which has enabled MOF and related technologies to evolve at a high pace.
Examples of these technologies are OCL, DI and QVT, not to mention the flagship
metamodel UML, although there is perhaps an ever-increasing fear of a "design-by-
committee" syndrome, where a standard reflects only few needs of its users. GXL is
more of a community-driven effort where individuals create what they need.

On the metamodel/schema level, both standards have their positive and negative
points. MOF has quite a complicated way to describe metaelement interconnections.
It even has a second way to establish them, in the form of Attributes, even though an
Attribute is basically equivalent to a unidirectional, composite Association. GXL on the
other hand does not have inherent support for bidirectional edges (MOF Associations).

GXL contains a crude tagging mechanism in the form of (GXL) Attributes with key-
value string pairs (although these do nest). We assume that this concept is included due
to the roots of GXL being in describing graphs, which often use attributes for tagging
nodes with arbitrary data. Its benefits are not clear for information modeling, especially
since a composite edge would mostly serve the same purpose. This is somewhat similar
to the Attribute/Association issue in MOF. We feel that perhaps XML itself should
employ a standard way to tag elements with extra data.

For modeling information, the choice of having a separate Graph metaelement for
nesting is unusual and the benefit is not very clear. A GraphElement could transitively
own other GraphElements, without apparent loss of expressivity. This simplifies the
GXL graph model and metaschema since it reduces the amount of concepts it must
define.

Support for aggregation in MOF has been dropped, which means that there are some
information systems that are awkward to describe in MOF. Indeed we have ourselves
developed metamodels where aggregation would have been beneficial. Support for ag-
gregation in GXL among multiple files is not without problems, though. For example,
it is not clear which file contains the shared subtree of nodes.

GXL has support for hypergraphs whereas the Associations of MOF are restricted to
binary edges. We have not found this to be much of an issue when creating metamodels,

132

but it is worth researching further. N-ary relations are used in the database community
for entity-relationship diagrams.

Perhaps the largest differences between MOF and GXL are found in serialization,
constraint handling and node interconnections. GXL has only one serialization format,
the GXL DTD, which serializes graphs, schemas and metaschemas. This has its advan-
tages, but does require yet one GXL-specific validator for validating the schema-graph
relationship. MOF on the other hand defines a serialization format for each metamodel.
On one hand there is no extra level of indirection involved, but on the other hand there
are multiple serialization formats. So, we do agree with Winter et al that the “XMI/MOF
approach requires different types of documents for representing schema and instance
graphs” (p. 8 of [36]) and that this indeed is a serious drawback, but only because
finding the definition of a previously unknown metamodel is impossible, as has been
described in Section 2.2. If the metamodel is known, generic XMI reader and writer
routines can be created: e.g. Coral supports reading XMI 1.x and 2.0 as well as writing
XMI 1.2 and 2.0 in around 5000 lines of C++ code.

Furthermore, Winter et al claim that “XMI/MOF offers a general, but very verbose
format for exchanging UML class diagrams as XML streams (p. 8 of [36]).” Our opin-
ion is that the format is verbose for two reasons: bidirectionality, which GXL lacks as
such, and named slots, which GXL also lacks. If both of these were added to GXL, it
would be just as (or even more) verbose as XMI/MOF. And although XMI requires to
use names for all interconnections, we find this to be a great advantage. For example,
a class can own a set of attributes and a set of operations in two different slots. The
serialization of these elements are cleanly separated into their own XML nodes. Also,
navigation via named slots simplifies the manipulation and query of models.

Where MOF (or, perhaps, OMG technologies) really outperforms GXL is in its
handling of constraints using OCL. OCL has become well-established in the modeling
community and allows additional arbitrary wellformedness constraints to be added to
metamodels and models. Naturally, this does not prevent a constraint language to be
added to GXL, but the point here is pragmatic: OCL exists currently and is in wide use,
whereas we do not know of a similar effort based on GXL.

4 Related and Future Work

Modeling and metamodeling platforms are becoming more of a commodity all the time.
A high-level view of the current situation is presented by Harald Kühn and Marion
Murzek in [12]. Interoperability between metamodeling platforms is becoming more
important all the time. We would thus want to find all the necessary concepts for mod-
eling information. Failure to support a concept directly or by means of a lossless trans-
formation to supported concepts means that transformation of data from (or perhaps
even to) that platform is not possible.

Similar views on general-purpose meta-metamodels can be found in e.g. [3] and [28].
In contrast with the meta-circular definition, the work of Thomas Baar avoids the meta-
circularity with a set-theoretical framework [4] to describe abstract the syntax of lan-
guages.

133

We plan to research further on this topic, trying to cover other meta-metamodels
and other information systems. Examples of such are the Eclipse EMF, the XMF/XCore
system from Xactium [7] and our SMD. Our aim is to extract the fundamentals in mod-
eling information from these frameworks. Even though it is not necessary to create a
meta-meta-metamodeling language, one emerges as a side-effect from a generic mod-
eling platform, as can be seen in Figure 6. A sufficiently expressive meta-metamodel
can be used to create metamodels from the other meta-metamodels, and transformation
technology means that all of this ought to be transparent to the end user. The generic
meta-metamodel might even be one of the existing meta-metamodels.

Fig. 6. Overview of how a very expressive meta-metamodel can model all the different meta-
metamodels. These can be used to model metamodels, which can be used to create models. The
different UML metamodels are equivalent in model expressivity, although the models might be
manipulated in different ways since the metamodels are defined by different meta-metamodels.

5 Conclusions

We have presented an overview of two different solutions that can be used to describe
information as graphs with nodes interconnected by edges. The Graph eXchange Lan-
guage has its roots in graph theory and describes every metalevel using the same kind
of XML document conforming to the GXL DTD. Additionally graphs must conform to
their respective schema which conform to the GXL metaschema, establishing the three
meta-layers that is so prevalent in such systems.

The Meta Object Facility has a slightly different approach, by being mainly oriented
towards creating metamodels. Using these metamodels, models can be created. Serial-
ization is handled by the XML Metadata Interchange standard. This has the drawback
that every metamodel has a different serialization format.

At this point we hesitate to give any judgment on which standard would be more
suitable for information interchange. Rather, as can be seen in advances in MOF 2.0,
new ways to establish relationships between elements (such as subsets and unions) can
and are invented. Therefore there is no perfect solution, but tools and technologies must
be able to adapt between different standards. We believe that this is possible by creating

134

and maintaining a meta-metamodel which encompasses all concepts from the different
meta-metamodels and metaschemas that exist today.

References

1. Marcus Alanen and Ivan Porres. Coral: A Metamodel Kernel for Transformation Engines.
In D. H. Akerhurst, editor, Proceedings of the Second European Workshop on Model Driven
Architecture (EWMDA), number 17, pages 165–170, Canterbury, Kent CT2 7NF, UK, Sep
2004. University of Kent.

2. Marcus Alanen and Ivan Porres. Model Interchange Using OMG Standards. In Proceed-
ings of the 31st Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), September 2005. Special MDE session. To appear.

3. José Álvarez, Andy Evans, and Paul Sammut. MML and the Metamodel Architecture. In
Jon Whittle, editor, WTUML: Workshop on Transformation in UML 2001, April 2001.

4. Thomas Baar. Metamodels without metacircularities. L’Objet, 9(4):95–114, 2003.
5. Ralph Back, Dag Björklund, Johan Lilius, Luka Milovanov, and Ivan Porres. A Workbench

to Experiment on New Model Engineering Applications. In Perdita Stevens, Jon Whittle,
and Grady Booch, editors, UML 2003 - The Unified Modeling Language, volume 2863 of
Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2003.

6. CAE Specification. DCE 1.1: Remote Procedure Call, 1997. Available at http://www.
opengroup.org/onlinepubs/9629399/toc.htm.

7. Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied Metamodelling: A Foun-
dation for Language-Driven Development. 2005. Available at http://www.xactium.com/.

8. J. Ebert, B. Kullbach, and A. Winter. Grax: Graph exchange format. In Workshop on Stan-
dard Exchange Formats (WoSEF) at (ICSE’00), 2000.

9. EMF Development team. Eclipse Modeling Framework. www.eclipse.org/emf.
10. Gentleware. The Poseidon for UML product. http://www.gentleware.com/.
11. Graph Exchange Language website. http://www.gupro.de/GXL/.
12. Harald Kühn and Marion Murzek. Interoperability Issues in Metamodelling Platforms. In

Proceedings of the First International Conference on Interoperability of Enterprise Software
and Applications (INTEROP-ESA 2005), February 2005.

13. Leen Lambers. A new version of GTXL: An Exchange Format for Graph Transformation
Systems. In Workshop on Graph-Based Tools (GraBaTs) 2004 at Second International Con-
ference on Graph Transformation (ICGT 2004), October 2004.

14. Ulrich A. Nickel, Jörg Niere, and Albert Zündorf. Tool demonstration: The FUJABA en-
vironment. In Proceedings of the 22nd International Conference on Software Engineering
(ICSE), pages 742–745. ACM Press, 2000.

15. Object Management Group. http://www.omg.org/.
16. OMG. Object Constraint Language Specification, version 1.1, September 1997. Available at

http://www.omg.org/.
17. OMG. Meta Object Facility, version 1.4, April 2002. Document formal/2002-04-03, avail-

able at http://www.omg.org/.
18. OMG. MOF 2.0 Query / Views / Transformations RFP. OMG Document ad/02-04-10.

Available at www.omg.org, 2002.
19. OMG. XML Metadata Interchange (XMI) Specification, version 1.2, January 2002. Avail-

able at http://www.omg.org/.
20. OMG. MOF 2.0 Core Final Adopted Specification, October 2003. Document ptc/03-10-04,

available at http://www.omg.org/.

135

21. OMG. UML 2.0 Infrastructure Specification, September 2003. Document ptc/03-09-15,
available at http://www.omg.org/.

22. OMG. UML 2.0 OCL Specification, Ocober 2003. OMG document ptc/03-10-14, available
at http://www.omg.org/.

23. OMG. Unified Modeling Language: Diagram Interchange version 2.0, July 2003. OMG
document ptc/03-07-03. Available at http://www.omg.org.

24. OMG. XML Metadata Interchange (XMI) Specification, version 2.0, May 2003. Available
at http://www.omg.org/.

25. Octavian Patrascoiu. YATL:Yet Another Transformation Language. In Proceedings of the
1st European MDA Workshop, MDA-IA, pages 83–90. University of Twente, the Nederlands,
January 2004.

26. Arend Rensink. The GROOVE Simulator: A Tool for State Space Generation. In J. Pfalz,
M. Nagl, and B. Böhlen, editors, Applications of Graph Transformations with Industrial
Relevance (AGTIVE), volume 3062 of Lecture Notes in Computer Science, pages 479–485.
Springer-Verlag, 2004.

27. G. Taentzer. Towards Common Exchange Formats for Graphs and Graph Transformation
Systems. Electronic Notes in Theoretical Computer Science, 44(4), 2001.

28. Dániel Varró and András Pataricza. Metamodeling Mathematics: A Precise and Visual
Framework for Describing Semantics Domains of UML Models. In UML ’02: Proceed-
ings of the 5th International Conference on The Unified Modeling Language, pages 18–33,
London, UK, 2002. Springer-Verlag.

29. Dániel Varró, Gergely Varró, and András Pataricza. Designing the automatic transformation
of visual languages. Science of Computer Programming, 44(2):205–227, August 2002.

30. W3C. Namespaces in XML, January 1999. Available at http://www.w3.org/.
31. W3C. Extensible Markup Language (XML) 1.0 (Second Edition), October 2000. Available

at http://www.w3.org/.
32. W3C. XML Linking Language (XLink) Version 1.0, June 2001. Available at http://www.

w3.org/TR/xlink/.
33. W3C. xml:id Version 1.0 W3C Candidate Recommendation 8 February 2005, February

2005. Available at http://www.w3.org/.
34. Edward D. Willink. Umlx: A graphical transformation language for mda. In Arend Rensink,

editor, CTIT Technical Report TR-CTIT-03-27, pages 13–24, Enschede, The Netherlands,
June 2003. University of Twente.

35. Andreas Winter. Exchanging Graphs with GXL. Technical Report 9–2001, Universität
Koblenz-Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz, 2001.

36. Andreas Winter, Bernt Kullbach, and Volker Riediger. An Overview of the GXL Graph
Exchange Language. In Revised Lectures on Software Visualization, International Seminar,
pages 324–336, London, UK, 2002. Springer-Verlag.

136

Using UML to Maintain Domain Specific Languages

Mika Karaila1, Jari Peltonen2, and Tarja Systä2

1 Energy & Process Automation, Research & Technology Department
Metso Automation Inc.

P.O.Box 237 FI33101, Tampere,
Finland

2 Tampere University of Technology
Institute of Software Systems

P.O.Box 553
FI33101 Tampere

Finland
{mika.karaila@metso.com,{jari.peltonen, tarja.systa}@tut.fi}

Abstract. Domain Specific Languages are typically used to solve relatively fo
cused and specific problems. Maintenance of these specificpurpose languages
requires a deep understanding of both the language itself and the domain it is
applied for. Designing and maintaining a DSL is typically carried out using
specific methods, notations, and tools. Without a common modeling technique
and infrastructure, this process is seldom repeatable. Standard notations and
commonly used tools can make maintenance process less demanding and help
the language designers to rather focus on developing the language than modi
fying and maintaining the languagespecific infrastructure.
In this paper, we discuss the use of UML for maintaining DSLs. The builtin
extension mechanism of UML, profiles, is meant for specializing UML to a
certain context or domain. Using UML profiles to define DSLs has several
benefits. For instance, UML is commonly used and known visual modeling
language, and thus makes DSL language structures more comprehensible for
nonexperts of the domain. Further, various CASEtools supporting UML are
widely available. Using these tools allows the engineers to focus on the devel
opment and maintenance of the DSL itself instead of tool development. In this
paper we discuss the use of UML to improve a DSL maintenance process. As a
practical example, we consider a DSL used at Metso Automation.

1 Introduction

A domainspecific language (DSL) is a language designed to be useful for a specific
set of tasks, in contrast to generalpurpose languages. Examples of DSLs include
spreadsheet macros, YACC [YAC03] for parsing and compilers, Csound [CSO05]
language used to create audio files, and GraphViz [GRA05] for defining directed
graphs. Furthermore, little languages, macro languages, application languages and
very highlevel languages can be seen as domain specific languages.

137

mailto:mika.karaila@metso.com

Since the set of tasks to be addressed with DSLs is limited, they do not have to
contain all the features that the generalpurpose languages have. That is, DSLs can
often be simplified and less comprehensive compared to generalpurpose languages
like C or Java. Furthermore, a typical, welldesigned DSL uses the terminology of
the problem domain and this way aims to tie together the problem domain and solu
tion domain at the language level. On the one hand, all this makes DSLs expressive
in their target domain, as well as easy to learn and understand for the experts of the
domain. On the other hand, the language may be hard to use for problems not fitting
to the predefined domain, and the nonexperts may have difficulties in understand
ing the language and its limitations due to the proprietary constructs and terminol
ogy of the language.

As the problem domain evolves, the language designed for that domain must
evolve, too. However, the DSL maintenance and development work can be hard and
the language designers must be skilled persons. For them, it is not enough to be
experienced programmers, but they also have to know the domain well enough to be
able to use the correct domain terminology and knowledge when solving the occur
ring problems. Furthermore, when the language evolves, the applications pro
grammed with the language may have to be transformed from the old versions to the
new ones. In many cases the language developers face the fact that there are not
enough existing applications to motivate development costs of the needed transfor
mations. The low volume of DSL applications makes it also difficult to have other
supporting and analysis tools for the language. The breakeven point is actually cal
culated by the cost of maintenance or transformation work versus the cost of work to
reimplement applications.

Unified Modeling Language (UML) [OMG03] has established itself in the soft
ware industry as the de facto standard for describing software models. Its success is
largely based on the fact that the use of the most relevant diagram types (class dia
grams, sequence diagrams, and state chart diagrams) has a long history in software
engineering. Another reason for its popularity may be in its multipurposeness: UML
is not a design method, nor is it tied with any specific software development process.
It is basically just a collection of oftenused notations. This means e.g. that there is a
need to define the actual meaning of the diagram and element types used, as well as
their possible relations separately for each domain. In UML, this can be done with
socalled profiles, i.e. UML profiles provide a way to “customize” UML for a specific
domain.

Since UML can be customized to specific domains through the profile mechanism,
it can also be used to design DSLs. Having a standard format for that, instead of
proprietary grammars, makes the DSL in question also easier to learn and under
stand for nonexperts of the domain. UML is used and supported widely, and it can
thus be assumed to be familiar to an average software engineer. The visual notation
of UML also increases comprehensibility. Further, the DSL designers and maintain
ers can benefit from the wide range of tool support available for UML.

In this paper we discuss the applicability of UML for designing and maintaining
DSLs. The example DSL considered is Type Definition Language (TDL) that is a
core part of a domainspecific visual language, Function Block Language (FBL).

138

FBL is used in Metso Automation for writing automation control programs. Metso
provides automation systems for realtime control of factories and ships all around
the world. TDL, in turn, is a metalanguage used to define the data structures of
FBL.

2. Using UML for designing and maintaining DSLs

2.1 Maintenance Problem in DSLs

The use of domain specific languages is typically supported by a set of tools. Basi
cally, the needed tools can be roughly divided into generation tools like parsers,
compilers, interpreters, optimizers, translators, etc., and other tools like validation
and analysis tools, editors, etc. While tools exist for these purposes, they are most
often language specific. There also are tools that actually combine a set of tools,
typically an editor and some generation tools, and form a metaenvironment for DSL
specification. Examples of these kinds of tools include MetaEdit [ME05] and Ge
neric Modeling Environment [GME05]. If a tool like this uses also a standard nota
tion for language definition, the language can be (mostly) maintained by anyone
understanding the standard notation and tools.

Unified Modeling Language (UML) is a set of standard notations used and sup
ported widely. There are an increasing number of developers that are familiar with
UML notations. Furthermore, a wide variety of UML tools are available and the
volumes of the users and usage scenarios are big enough to support a great amount of
commercial products, open source implementations, as well as tools built for re
search purposes. The tools include, for instance, editors (Violet [VIO05], Rational
Rose [ROS05], Together [TOG05], ArgoUML [ARG05], Poseidon [POS05]), model
transformation tools (UMT [UMT05], ATL [ATL05], BOTL [BOT05]), consistency
checkers (like Neptune [NEP00], Rational Rose [ROS05], Visual UML [VUM05]),
etc. In contrast to DSL tools, which are often proprietary, closed, and platform de
pendent, a designer using UML can typically use a generic tool, choose the platform
she wishes to use, and in the case of open source tools even look inside the imple
mentation if she wants to.

A domain specific language must evolve according to the domain it is designed for.
A maintenance task may concern the DSL itself, the tools used, or both; any kind of
modifications to the language or the tools may be required, including even changes
in the language grammar and semantics. If the tools and specification mechanisms
are proprietary, it may be very difficult for a new designer to maintain the tools or
language, since she probably does not know the notations, the code implementing the
tools, etc. Thus, standard notations and tools would help in the maintenance work.
The use of standard notation could even diminish the use of proprietary tools and
help designers to concentrate on the language issues instead of tool issues.

139

2.2 Metamodels

Basically, any programming language could be specified by defining the lexical
elements, as well as the static and dynamic syntax and semantics. Whenever these
definitions are given, another language is used to specify them. This language can be
seen as a metalanguage from the point of the specified language. These kinds of
metalanguages include, for instance, regular expressions, state automata, and class
diagrams. Even though e.g. runtime semantics is an interesting subject in DSL
definition, we concentrate purely on the grammatical issues in the rest of this paper.

Metamodel is a model of another, lower level model. Accordingly, the vocabulary
of a metamodel consists of the concepts (or types) used to describe the lower level
model. Therefore, a metamodel can be used to form a language that can be used for
modeling. UML is an example of a set of languages defined by their metamodel. The
metamodel consists of the abstract syntax, additional constraints (called well
formedness rules) and semantics of the constructs of the UML. Abstract syntax is
depicted as a set of class diagrams that present the elements of the UML and their
relations. The elements describe the fundamental modeling concepts of UML, and
thus form the vocabulary of the UML. The relations between the elements and the
wellformedness rules restrict the use of the vocabulary. An excerpt of the UML
metamodel specification is given in Figure 1. As an example of the constraints im
plied by the metamodel, an association must have at least two association ends con
nected to exactly one classifier each. Each association end may also have navigabil
ity, visibility, multiplicity and ordering.

Class
isActive : Boolean

Relationship

ModelElement
name : Name

GeneralizableElement
isAbstract : :Boolean

Association

AssociationEnd
isNavigable : Boolean
ordering : OrderingKind
multiplicity : Multiplicity
visibility : VisibilityKind

1

2..*

1

2..*{Ordered}

Classifier

*
1

+association
*

+participant
1

Figure 1 An excerpt from the UML metamodel

Similarly, as a metamodel defines the concepts used in a model, metametamodel
defines concepts used in a metamodel, i.e. metametamodel form a language used for
metamodeling. The different (meta)levels of modeling form a metamodel architec
ture, where each level is defined by an upper (meta)level. There are typically four
levels in a metamodel architecture: instance level, where there are the actual instan
tiated model elements (e.g. runtime language constructs), modellevel, where there
is the specification of the actual model (or program), metamodellevel, that defines
the language used for modeling, and metametamodellevel, that defines the language
used for language definition. Metameta level language typically defines itself. Meta

140

Object Facility (MOF) [MOF] is a metameta level modeling language used in, for
instance, specification of UML metamodel. MOF uses UML class diagrams for speci
fying the modeling concepts and their relationships.

2.3 UML in DSL Definition

UML is basically just a collection of oftenused notations. This means, e.g. that there
is a need to define the actual meaning of the used diagram types, as well as the used
element types and their possible relations in them, separately for each domain. Basi
cally, this can be done by using MOF to create a metamodel that is either a com
pletely new one, or a specialization of the UML metamodel. Another specialization
mechanism, built in the UML itself, is using socalled UML profiles.

In general, metamodeling approach is a good and easily understandable way to
specify grammars for languages. For instance, use of MOF is no way restricted to
specification of similar languages found from UML, but grammar of any language
could be specified with it. The problem of modifying the existing UML metamodel,
or specifying a new metamodel with for a DSL specification is that the extensive tool
support built on UML does not apply to all languages specified with MOF. Hence, if
MOF is used in definition of a DSL, the situation is currently only marginally better
than using the proprietary notations and tools.

UML profiles provide a more UMLcentric way of defining specializations of
UML notations. A profile consists of a set of stereotypes that specialize existing
UML metamodel elements by giving a new meaning for them. In addition to the new
name and description, a stereotype can define tags and constraints for the elements.
In principle, a profile can be seen as a mapping from a metamodel to the UML meta
model. However, a profile cannot restrict or remove existing elements, nor present
completely new element or diagram types in UML. The only thing that can be altered
is the addition of new metaelements defined using existing metaelements. On the
one hand, this limits the possibilities of specifying the DSLs, but on the other hand,
it makes it possible to use the existing tool support in any of the specified profiles.

In addition to other limitations, UML, and therefore also any UML profile, is
somewhat restricted by its objectoriented paradigm. There are extensive amount of
languages that do not fit to that paradigm, and thus there is really no point in trying
to fit them in to a UML profile. In addition, even though, there are CASEtools that
support the definition and validation of profiles, not all the current commercial tools
have these kinds of facilities. The situation is slowly changing, but currently separate
tools must be used, for instance, for the validation of the models against profiles.
Furthermore, there is a need for transforming the models from the UML tools to, e.g.
the compiler of the DSL.

Despite all of the restrictions, UML profiles are a valid approach for defining lan
guages, which paradigm matches with the existing notations in UML. These kinds of
languages can, not only be defined, but also used, specialized and maintained using
the existing UML tools. The existing tool base also provides new possibilities, for

141

example, for analysis, visualization, and documentation of the programs built with a
DSL.

3 TDL – A sample DSL

3.1 An overview of FBL and TDL languages

Function Block Language (FBL) is a domainspecific visual language, used in Metso
Automation for writing realtime automation control programs. The history of FBL
goes back to 1985. In that time it was reasonable to build an own limited DSL lan
guage with own semantics for such purposes. One of the main motivations was that
the enduser was not required traditional programming skills. Therefore, FBL was
designed to be a simple and easy to use visual language. FBL, as its name indicates,
heavily relies on programming with socalled function blocks that are subroutines
running specific functions to control a process. The symbols used in a function block
diagram are defined by type definitions, specified with another domainspecific lan
guage, Type Definition Language (TDL). In our small case study on using UML to
design a DSL we use TDL.

With FBL, engineers can design visual programs that connect physical electrical
measurement signals to program parameters. Those parameters are referred by sym
bols. By connecting these symbols the engineer can create algorithms to control and
run actuators, such as valves, motors, and pumps, in the process. A simple example
in Figure 2 contains an input symbol to read a water level measurement in a water
tank. That input symbol could be connected to a function block symbol representing
a subroutine for calculating and keeping the level. Then the function block symbol is
connected to an output symbol that will modify a control valve position.

TDL is a metalanguage, used to define data structures of another language,
namely FBL. All the communication and control structures of FBL programs are also
defined in TDL. A validation operation checks type definitions and packages them to
a separate binary file or they can be loaded to a database. A binary file is used for
memory and performance reasons. In the engineering phase, the types are used to
check parameter values and connection types in FBL programs. In realtime, control
types are for communication and for running the control applications.

TDL data structures contain also additional (meta)data besides the structures
themselves. A data structure can e.g. contain a member, which is a named field in
the data record. In FBL diagrams, we use parameters inside symbols and input or
output connection points for such members. [tjs3]Member position in the symbol is
defined in TDL by “role”. Member “role” can be an input, an output, or a parameter.
Further, metadata fields of the data structures, including type and member name,
member type, and member description (short help text about the usage), are exam
ples of such additional information. This kind of metadata can be used in a design
phase to help the user in giving parameter values (by tooltipping and providing

Figure 2 A lowlevel visual program shown as a Function Block Diagram.
The program is for controlling a level in a tank.

default values), and at runtime to control accessing of member values. This meta
data is related to the domain TDL is targeted for, namely, automation control sys
tems. For instance, if a “role” of the type is a function, then the type is encapsulating
a function block that runs some actions according to the data values. Thus, a type not
only contains data, but can also be used for controlling the data flow in the realtime
environment. In addition to the domainrelated metadata, TDL types may also in
clude metadata concerning protection of reading and writing of data.

TDL is a compact language, containing only about 50 tokens (reserved words).
TDL is also easy for a programmer to read and understand. Current TDL environ
ment is still almost as it was in year 1985. The designer has a separate editor that
can check syntax and semantics of TDL definitions. The editor is not anymore used
in interactive mode, but it can be used in batch mode to compile all type definitions.
The end user (application engineer) who builds FBL programs does not define or use
TDL. All the tool programs use the type definitions that are stored in a database and
in binary files. Binary files are used in the realtime environment with optimized set
of types. With the reduced set of types system does not need a lot of memory.

3.2 Maintenance requirements and problems

The current maintenance process of TDL types is shown in Figure 3. When a new
type is defined, a specification and a requirement document are first written. Then,
the TDL definition is made and the implementation of the type is coded. Finally, the
new definition and the actual implementation can be tested and validated. Due to the
fact that the current TDL environment, i.e. the tools and notations used, are proprie
tary, there are numerous problems in this process. Even relatively small maintenance
tasks, like adding new basic types, are difficult using the current TDL environment.
The problems in, and requirements for, maintaining TDL are discussed in what
follows.

Type designer must learn the syntax of TDL and be familiar with the principles of
using TDL. For building a new type the designer usually needs other, already exist
ing types. Thus, it must be easy to load other types needed to check that the new type
is defined correctly.

The type must be defined before it can be used as a part of another type. In TDL a
certain parameter value will effect to the following parameters. If a type has a role
“data”, then all the members also have to be defined to use role “data”. It is rather

SPECIFICATION
Type definition

DSL

IMPLEMENTATION

VALIDATION
Testing

Figure 3 The current development process for TDL types

143

problematic to define the semantics for TDL and to understand how dependencies
inside TDL definitions are build. This originates from the fact that all the dependen
cies are named: the names are used to refer to the corresponding structures, which
hides the actual structures and thus makes TDL definitions less comprehensible.

Usual modifications needed to maintain TDL include adding parameters and
modifying the implementation to run more functionality by a new parameter value.
The most typical maintenance task is to implement a new type from an existing one.
Naming the new types should be done with care, because the user typically associates
the name of the type with its usage. Also, naming conventions used should be fol
lowed. For instance, new versions of the type are typically named by appending a
version number to the name of the extended type. At the implementation level we
have to do the corresponding modifications.

Because TDL defines mission critical data structures, a transformation from the
definition format to binary format should not produce any errors. To ensure a 100%
valid transformation we have to automate the transformation and have a mechanism
for running detailed comparisons.

A procedure has been implemented to write all the metadata of existing type defi
nitions into a file in a simple format. It has been used to compare all release modifi
cations. It allows us to transform types from an existing language to a new format
and reload all these new type definitions to a database and a binary file. Both of the
formats are needed, since database types are used in the engineering phase and bi
nary files are used in realtime. After that we have to dump definitions out again and
compare results to make sure we can load all the types correctly in the new format.
This is rather complicated and not very intuitive. A more descriptive way to compare
different versions of type definitions would be desirable.

We train new programmers to learn and work with FBL and TDL. Training helps
the users to learn the language and its semantics more quickly. Such small changes
as adding a member or a metadata should be made as easy and fast as possible in the
environment used for developing and maintaining the languages. Current problems
originate from the fact that FBL and TDL have been used over 20 years and the tools
are also as old. It is hard to modify languages themselves because they have been
used such a long time; there are more than 2000 implemented and still existing com
ponents in TDL. These TDL components, types, are then reused in FBL level by
factor over 1000 in each customer project. There are several projects every year and
there have been FBL based project since year 1988. The amount of type instances is
huge. Especially due to the long history of the languages, their easy maintenance and
evolution is essential.

4 UMLbased maintenance of TDL

We next present how the current version of TDL grammar can be modeled as a UML
metamodel and how the constructed metamodel supports redesign, as well as other
maintenance tasks of the language. The metamodel is depicted in Figure 4.

144

There is a need to make a smooth transition from the old TDL maintenance envi
ronment to the new one. The process itself must support good documentation and
validation to keep TDL and FBL quality level high. Different kinds of transforma
tions are needed to connect the “UML world” with the TDL usage environment. The
first task is to construct a UML metamodel for the language, TDL in our case. The
second task is to implement transformation from the textual format (original TDL) to
XMI. This is the critical part, requires manual work, and must be tested thoroughly
to ensure the quality of type instances. No data loss is acceptable.

In the new maintenance process, shown in Figure 6, we use UML metamodel as
the central point to integrate the specification construction and language validation
activities. Transformation tools are needed to make a transformation from the con
structed metamodel to a TDL definition. This can be done e.g. by storing the meta
model in XMI format and then use XSLT transformations. The TDL definition itself
can change later on, as well as the type instances. These changes are marked in the
Figure 6 as “updates”. The UML environment should support both language struc
ture and instance changes. Changes in the language, either defined by modifying the
metamodel or the TDL definition itself, should be automatically propagated to TDL
instances (arc “upgrades” in Figure 6), because no bugs in mission critical controls
can be allowed and because updating thousands of instances manually would be
errorprone and inefficient. Automatic upgrades are indeed possible, since defining
default values for all new types is mandatory. In the instance level, changes can and
often are made as well. When updates are made, e.g. type members are changed, an
object model is constructed and can be then validated at UMLlevel to ensure that the

BasicType

Namespace

{Complete, Disjoint}

Type
Name
Dim(3)
Version
Role
DefaultValue

TypeModule
Name
Type
Status
CreatedBy
CreationTime
ModifiedBy
ModificationTime
Placement
Description

1..*1 1..*1

TypeLibrary
Name

1..*

*

1..*

*

RecordType
CompactName

SingleType

SimpleType

1

*

1

*

< is

Member
Offset
COffset

1..* 11..* 11 *1 *< is

Figure 4 Type definition metamodel

145

new values are legal according to the metamodel. The new design process relying on
using UML is shown in Figure 5.

SPECIFICATION
Type definition

UML
IMPLEMENTATIONTION

Programming VALIDATION
Testing

Validate

Generate

Figure 5 New design process with UML

Because we create new types and edit those definitions either in textual format or
UML format there is a need for transformations from TDL definition files to UML
presentation. This transformation should not need any extra coding or major mainte
nance work in the future. One possible solution for a smooth translation is to use an
existing parser to read definition files and produce XML as output. One benefit of
relying on XML is that we do not have to write a new parser every time we modify
the syntax. This will solve the problem to have extendable language. Also, standard
tools, such as XSLT, exist to support transformations. After each extension in the
language, work is needed to modify all existing instances to be valid. For validation,
we can use UML tools and generators to study instance diagrams and to test a new
specification before implementing the type.

TDL metamodel is shown in the Figure 4. The metamodel itself is very simple.
Types are defined in own type modules that contain administrative attributes. All the
modules are included in a type library. The module and library thus define packages
for types (kind of namespaces). The types in TDL are actually built from the basic
types. There can be only three kinds of instances from the abstract class type. A sin
gle type is always constructed using another type as the basis of the type. A record
type is a composition of other, socalled membertypes. The member types are also

UML
Metamodel /

Profile
For TDL

TDL
definition

UML
Model

TDL
instances

Transform

Automated upgrades

UpdatesUpdates

Updates

Figure 6 The maintenance process in UML environment

146

based on other types and must be defined before using them. Members are for defin
ing parameters for FBL function block symbols. These parameters are used inside a
function block implementation to control runtime features like calculation or alarm
ing.

The benefits of using UML include having a standard notation and tools available.
First, UML CASEtools can be used to design and maintain the UML representation
of the metamodel. Second, UML provides a graphical notation that is easier to any
software engineer to comprehend than the proprietary textual notation. Third, valida
tion of the language can be carried out at UMLlevel by first transforming a TDL
definition to a UML model that can then be validated against the metamodel.
Fourth, UML is more familiar to new programmers than TDL. It is also easier to use
UML for specifying TDL than the proprietary textual format. Furthermore, it can be
used to learn the context and principles of how new types can and should be con
structed.

While relying on the standard technologies such as UML and XML have clear
benefits, also some problems arise, e.g. adding semantics to UML and XML. The old
parser currently used validates both syntax and semantics. The language grammar is
implemented with a specific tool that contains syntax map with semantic actions.
The parser reads type definitions according the syntax, and after a lexical tokenizer
is executed, parser called subroutines for semantic actions to check and validate
additional semantic rules. Those subroutines collect and save information to a stack
to validate the semantics.

UML is planned to be used for designing the language metamodel that allows ex
tending it in the future conveniently. UML was selected, because it is the current de
facto standard for modeling and designing software systems. XMI, in turn, was se
lected because it is the standard XMLbased exchange format for MOFbased meta
models, such as UML. Also, XML is well known and widely supported. In addition,
there is a wide spectrum of XML processing tools available that e.g. unburden us
from planning for maintenance support for the parser. Using these technologies
allows us to concentrate on the data model instead of the language syntax. The new
process also makes it more possible to reverseengineer current definitions and to re
engineer new ones. The use of UML also allows us to benefit from various UML
model operations developed. For instance, two versions of the TDL grammars can be
compared by applying UML set operations [SEL03] on the corresponding UML
metamodels.

The new process makes the evolution of the target domain faster. The transforma
tion from the current TDL is written only for supporting the required interfaces:
database and binary file. The database and binary files are used by other tools and
programs in the framework. The other interfaces were not detected and there were no
code body generation tools in 1985. The UML modeling framework opens new pos
sibilities to study, discuss and test extensions without any heavy development work.
The language extension can be modeled and people have (more probably) the same
understanding when UML based notation is used.

UML tools that could fit to our purposes are currently available. As an example,
UMT [UMT] tool is able to read a metamodel in XMI format and use defined trans

147

formations to generate target format files (like XML or binary). The support for such
transformations is essential, because otherwise we will have the same problem that
we currently have but in another format. The current textual format is not supported
by any commercial parser. As FBL is a visual language, so should TDL. This would
help people to define structures and understand corresponding references that are
currently available only as names. Another important issue is that the tool should be
extended and integrated to the development process. Otherwise development people
will not use the new tools. Thus, from our point of view, a tool should be
customizable to fit to the abovementioned purposes of ours.

5 Related work

Designing of a DSL is typically carried out using specific methods, notations, and
tools. Without a common modeling technique and infrastructure, this process is
seldom repeatable or reusable for designing other DSLs. The history of DSLs is long.
In fact, before identifying common programming concepts and abstracting them as
generalpurpose languages, early computer languages were indeed application
specific. Despite a long history of DSLs, their systematic study is quite recent
[NEI80].

While generalpurpose programming languages such as Java or C++ were de
signed to be appropriate for virtually any kinds of applications, DSLs simplify the
development of applications in the specialized domain [CE00,CZA05]. This often
comes with the cost of generality: DSL programs can be composed partly in a gen
erative manner, but the applications constructed using the DSL in question are of
specific purpose and belong to a specific domain. In fact, according to Czarneck
[CZA05], DSLs belong to the set of basic concepts and ideas of generative software
development, together with domain and application engineering, generative domain
models, networks of domains, and technology projections.

Domain Specific Modeling (DSM) aims at creation and use of (typically graphi
cal) DSLs with domainspecific generators that create full production code directly
from models [KT00, PK02, GEA04]. In some respect, DSM is thus comparable to
use of visual DSLs. DSM have been recently successfully applied e.g. in the domain
of embedded systems, to faster develop variants belonging to the same family of
systems. [KEA96, LEA98, SZI98]. Some tool support for DSM is currently avail
able. MetaCase tools, such as MetaEdit+ [ME05] and ObjectMarker [MV02], for
instance, provide means to support DSM and create and use DSLs. MetaEdit+ offers
a metamodeling tool suite for defining modeling concepts, their properties, associ
ated rules and symbols, needed to specify and implement modeling languages. GME
(Generic Modeling Environment) is another environment, closely related to Meta
Case tools, for creating domainspecific modeling and program synthesis environ
ments [GME05].

Since executable programs are directly generated from visual FBL programs that
are also called FBL diagrams, FBL programming is comparable with DSM. In this
paper we discussed UML support for maintaining DSLs. We demonstrated this by

148

introducing a UML profile for a sample DSL, namely TDL, which is used to define
type definitions used in FBL symbols. Like GME, the proposed approach relies on
UMLbased metamodeling. The use of UML for defining DSL grammars not only
provides an intuitive graphical representation of the language grammar, but also
allows the DSL developer to benefit from UML model operations. For instance, two
versions of the DSL grammar can be compared by applying UML set operations
[SEL03] on the corresponding UML models, and the differences can be easily identi
fied from the resulting model.

In [SPI01], Spinellis proposes eight design patterns, reflecting eight common
ways to design and implement DSLs. These patterns can also be used e.g. for manag
ing the evolution of DSLs. Spinellis proposes e.g. a language extension creational
pattern for adding new features to an existing language, a piggyback pattern for
using an existing language to implement DLSs, and a language specialization pat
tern for removing features from a base language to form a DSL. Spinellis rather
focuses on the DSL development process than proposes a modeling technique or
infrastructure for actual DSL implementation. In this paper, we propose using UML
metamodeling to support designing of DSLs. Further, tool support can be provided,
relying on general purpose UML model processing techniques, to support mainte
nance of the DSLs. For instance, changes in the language e.g. due to adding new
features to it, can be identified and visualized by applying UML set operations
[SEL03] to the UML representations of the DSL grammars.

6. Concluding remarks

DSLs are typically designed and used for specific set of tasks and the languages are
applicable in rather limited domains. This on one hand enables their effective use for
generative software development, but on the other makes the language difficult to
understand and learn for engineers not knowledgeable of the domain. Also, the tools
used are often specially built to only support the languages in question.

A need to have more support for DSL modeling has be acknowledged. Also,
transforming from proprietary solutions to more general ones is aimed for. Mainte
nance and redesign needs and activities are rather common, since the domain lan
guages evolve according to the domain itself. This requires the DSLs to be easily
maintainable and extendable. In practice, however, this is not always the case. The
maintenance work could be decreased by using standard solutions and components
that are commonly available.

In this paper we discuss the role of UML to support DSL design and maintenance.
The benefits of using UML instead of e.g. proprietary grammars include increasing
the comprehensibility of the DSL in question, esp. for nonexperts of the domain,
and allowing the language designers and maintainers to benefit from the a wide
range of UML tools currently available.

As a practical example, we consider the use of UML for designing a DSL in a
small case study. Function Block Language (FBL) is a domainspecific visual lan
guage, used in Metso Automation for writing realtime automation control programs.

149

The symbols used in FBL programs are defined by another domainspecific lan
guage, Type Definition Language (TDL). In our small case study we use TDL as a
sample DSL. We first construct a UML metamodel for TDL. We further discuss the
possible maintenance scenarios that can be supported by the use of the constructed
UML metamodel.

References

[ARG05] ArgoUML, http://argouml.tigris.org/, 2005.
[ATL05] The ATL home page, http://www.sciences.univnantes.fr/lina/atl/, Inria, 2005.
[BOT05] The Botl tool, http://www4.in.tum.de/~marschal/botl/index.htm, 2005.
[CE00] K Czarnecki and U. Eisenecker, Generative Programming, AddisonWesley, 2000.
[CSO05] cSound, http://www.csounds.com/, 2005.
[CZA05] K Czarnecki, Overview of Generative Software Development, 2005, online article,

http://www.swen.uwaterloo.ca/~kczarnec/gsdoverview.pdf.
[GEA04] J. Greenfield, S. Short, S. Cook, and S. Kent, Software Factories: Assembling Ap

plications with Patterns, Models, Frameworks, and Tools, Wiley, 2004.
[GME05] GME: The Generic Modeling Environment,

http://www.isis.vanderbilt.edu/Projects/gme/, Institute For Software Integrated Systems,
2005.

[GRA05] Graphviz – Graphical Visualization Software, http://www.graphviz.org/, AT&T
Research Labs, 2005.

[KT00] S. Kelly and JP Tolvanen, Visual domainspecific modeling: Benefits and experi
ences of using metaCASE tools, J. Bezivin and J. Ernst eds., Proc. of International work
shop on Model Engineering, ECOOP 2000, 2000.

[KEA96] R. Kieburtz. et al., A Software Engineering Experiment in Software Component
Generation, Proc. of 18th International Conference on Software Engineering, IEEE Com
puter Society Press, March, 1996.

[LEA98] E. Long, A. Misra, and J. Sztipanovits, Increasing Productivity at Saturn, IEEE
Computer, August 1998, pp. 3543.

[ME05] MetaCase Consulting, MetaCase Consulting website, http://www.metacase.com,
2005.

[MOF] Meta Object Facility, http://www.omg.org/uml/, The Object Management Group,
2003.

[MV02] MarkV Homepage, http://www.markv.com/, MarkV Systems, 2002.
[NEI80] J.M. Neighbors, J.M., Software Construction using Components, PhD thesis, De

partment of Information and Computer Science, University of California, Irvine, 1980,
Technical Report UCIICSTR160. Available at
http://www.bayfronttechnologies.com/thesis.pdf.

[NEP00] Neptune – Check UML models and Generate Documentation,
http://neptune.irit.fr/index1.html, NEPTUNE Consortium, 2000.

[OMG03] Unified Modeling Language Specification, version 1.5, http://www.omg.org/uml/,
The Object Management Group, March 2003.

[PK02] R. Pohjonen and S. Kelly, DomainSpecific Modeling, Dr. Dobb's Journal, August
2002.

[POS05] Poseidon for UML, http://www.gentleware.com/index.php, Gentleware AG, 2005.
[ROS05] Rational Rose, http://www306.ibm.com/software/rational/, IBM, 2005.

150

http://argouml.tigris.org/
http://www.sciences.univ-nantes.fr/lina/atl/
http://www4.in.tum.de/~marschal/botl/index.htm
http://www.csounds.com/
http://www.swen.uwaterloo.ca/~kczarnec/gsdoverview.pdf.
http://www.isis.vanderbilt.edu/Projects/gme/
http://www.graphviz.org/
http://www.metacase.com
http://www.omg.org/uml/
http://www.markv.com/
http://www.bayfronttechnologies.com/thesis.pdf.
http://neptune.irit.fr/index1.html
http://www.omg.org/uml/
http://www.gentleware.com/index.php
http://www-306.ibm.com/software/rational/

[SEL03] P. Selonen, Set Operations for the Unified Modeling Language, In P. Kilpeläinen
and N. Päivinen, eds., Proceedings of the 8th Symposium on Programming Languages and
Tools (SPLST’03), University of Kuopio, June 2003, pp. 7081.

[SPI01] Diomidis Spinellis, Notable design patterns for domain specific languages, Journal
of Systems and Software, 56(1):91–99, February 2001.

[SZI98] J. Sztipanovits, G. Karsai, and T. Bapty, SelfAdaptive Software for Signal Process
ing, Communications of the ACM, May 1998, pp. 6673.

[TOG05] Together, http://www.borland.com/us/products/together/index.html, Borland, 2005.
[UMT05] UMT QVT home page, http://umtqvt.sourceforge.net/, 2005.
[VIO05] Violet, http://www.horstmann.com/violet/, 2005.
[VUM05] Visual UML, http://www.visualuml.com/, Visual Object Modelers Inc., 2005.
[YAC03] Stephen C. Johnson, The Lex and Yacc Page, http://dinosaur.compilertools.net/,

2003.

151

http://www.borland.com/us/products/together/index.html
http://umt-qvt.sourceforge.net/
http://www.horstmann.com/violet/
http://www.visualuml.com/
http://dinosaur.compilertools.net/

Requirements for an Integrated Domain Specific

Modeling, Modeling Language Development, and

Execution Environment

T.D. Meijler

University of Groningen

t.d.meijler@rug.nl

Domain Specific Modeling Languages (DSMLs) offer powerful expressivity

within clearly constrained domains. By using DSMLs domain experts can

describe solutions in terms of models that make sense to them, and these

models can be mapped to system realizations. Thus, DSMLs can move software

development in these domains closer to the domain expert and make it more

efficient. Large-scale use of DSMLs for realizing enterprise applications

requires an extended infrastructure for developing and using these languages. In

fact it requires an integrated modeling and execution environment in order to

allow run-time adaptation of models and rapid incremental extension of the

applications. In this paper we shall give an overview of requirements for an

infrastructure that both supports developing and using DSMLs as well as

executing the corresponding models as necessary for the Enterprise Application

domain.

1. Introduction

Model-driven development (MDD) raises the level of abstraction for software

development by expressing what a computer should do by means of (design-level)

models that hide technical details. In MDD software applications are derived from

models either through code generation or through interpretation. Applying a domain

specific modeling language (DSML) instead of a generic modeling language such as

UML promises to bring MDD even closer to the domain expert. DSMLs can make

software development in specific domains more efficient since they close the gap

between the expert and the software implementation.

Domain Specific Modeling Languages and their corresponding modeling

environments –so-called Domain Specific Modeling Environments DSMEs– have

already been widely used in industry, e.g., for workflow modeling [3], for modeling

of chemical plants [12] and banking [5] etc [9].

Setting up such DSMEs has often been seen as too complex and requiring too

much effort. It may involve building a special purpose editor, model storage and

retrieval, and special purpose code generation, or any other means to give a model its

run-time semantics (e.g., interpretation). Especially the latter aspect may be complex

to realize. Various meta-modeling environments have therefore been developed that

152

support the development of such DSMEs. Most of these environments apply (UML-

based) meta-modeling for realizing DSMEs. The best known are the Generic

Modeling Environment (GME) [6], The Eclipse Modeling Framework (EMF) [2], and

the Metacase environment [9].

The author of this paper has been involved in developing and using DSMLs for

realizing large scale Enterprise Applications for Supply Chain Coordination1 and the

development of a meta-modeling environment to support this. As it turns out, in this

domain the requirements for a meta-modeling environment are far beyond what

current meta-modeling environments can offer. This is roughly due to the following:

• In contrast to most DSMEs, a DSME for realizing Enterprise Applications

must allow the integrated use of various Modeling Languages, e.g. for

modeling Workflow, Resources, Enterprise Structures, Product Models,

Product Lifecycles etc.

• In contrast to most DSMEs, in Enterprise Applications there is the need for

incremental extensibility of models and ad-hoc model adaptation. A large

scale enterprise application will not be built in one go, and is never ready. It

must be possible to add new business processes, new kinds of contracts, but it

must also be possible to adapt business processes and contracts where needed,

and even in an ad-hoc manner. Thus it is necessary to have a close integration

between the Application and the DSME such that modeling and model

execution can be interspersed.

• Due to the scope and size of such applications, it is no longer just one

organization that is involved in building applications. In Enterprise

Applications (so-called vertical) sub-domains can be distinguished, such as

Construction, Banking, Health etc. Separate software-developing

organizations have expertise in these sub-domains. In the context of DSMEs/

DSMLs this means that such developing organizations will extend the

vocabulary of various DSMLs, e.g., with new kinds of contracts or new kinds

of processes. These can than again be used by a subsequent software-

developing organization (e.g. a consultant) to build customer specific

applications. This also means that Enterprise Application development will be

done in a “Software Supply Chain” [7].

• It must be possible to adapt an existing DSML to add or change modeling

constructs. Moreover, it must be possible to add a new DSML to the existing

set of DSMLs of the environment. The impact of changes of DSMLs on

existing applications must be managed.

The contribution of this paper is to enumerate the requirements for a meta-

modeling environment that supports the Enterprise Application domain. Due to the

second and fourth bullet, the requirements in fact cover an integrated meta-modeling,

modeling and execution environment. The paper also exemplifies the requirements. It

does this mainly through a DSML for workflow modeling. The reason to use

workflow as the central example is twofold: On the one hand, business process

support forms the heart of Enterprise Applications. On the other hand, it is precisely

in this horizontal sub-domain where the various aspects mentioned above can be

exemplified.

1 This has been done in a project called “Nucleus”.

153

This paper is structured as follows: In section 2 we introduce the main Workflow

modeling example. Also a second example is introduced, a DSML for lifecycle

modeling, especially needed to exemplify the requirement for integration of DSMLs.

In section 3 we first formulate a set of starting points and subsequently derive our

requirements based on these starting points. In section 4 we discuss related work, and

in section 5 we conclude.

2. Examples of DSMLs in the enterprise domain

2.1 Introduction

In this section we discuss workflow and lifecycle modeling as examples of DSMLs.

These examples are used throughout this paper to introduce and explain the set of

requirements. Both examples have been used and developed as part of our “Nucleus”

project. The examples will only be discussed superficially: only little theoretical

background will be given, mainly discussing how certain models look, and (as far as

relevant) what they mean.

2.2 Workflow modeling

Insert

memory

Insert

HD

Insert

CPU

PC with CPU

and memory

PC with CPU

order order

finished PC

order

order

Assemble
 PC

order

finished PC

order

Repair
Engineer

actor

Repair
Engineer

actor

Repair

Engineer

actor

Figure 1 Modeled workflow example: Assemble PC activity

154

Figure 1 shows a modeled workflow activity: “Assemble PC”. The “Assemble PC”

activity is a composite activity, consisting of three sub-activities: “Insert CPU”,

“Insert Memory” and “Insert HD”. Activities have inputs and outputs, so-called

“places” as visually modeled by open circles. The output places of one activity are

linked with the input places of the next activity. E.g., the “order” output place of

“Insert CPU” is linked with the “order” input place of “Insert memory”. Such links

show how information is passed on (in the form of so-called “tokens”) from activity

to activity. “Insert CPU”, “Insert Memory” and “Insert HD” also have a special kind

of place on which an actor, who is responsible for the execution of the activity will be

assigned.

For readers knowledgeable in workflow, it may be clear that this form of workflow

modeling is related to Petri net modeling [1]. The description of this relationship lies

outside the scope of this paper as are the pros and cons of this form of modeling.

Our activity modeling system uses activity types, such as “Assemble Activity

Type”, or “Insert CPU Activity Type”. Activity types have two functions: The first

one is as placeholder of the activity structure as given above for the purpose of

instantiation: when an assemble activity must be executed, the “Assemble Activity

Type” is requested to instantiate itself, and subsequently a copy of the structure

shown in Figure 1 is executed. Instantiation can also be used to be able to introduce

types of activities in different workflow contexts: e.g., a “Package PC Activity Type”

may be instantiated to be used in this “Assemble PC” activity, but may also be

instantiated to be used in a “Resell 2nd hand PC Activity” workflow. The second

function of an activity type is describing the types of inputs and outputs: through the

typing information (especially the types of tokens that can be passed on certain

places), a visual modeling environment can infer whether two activities can be linked.

For example, the “Insert CPU Activity Type” describes that an “Insert CPU Activity”

produces an “Order Type” on its “order” output place, while “Insert Memory Activity

Type” describes that an “Insert Memory” activity needs an “Order Type” in its

“order” input place. Thus, these places may be linked.

2.3 Lifecycle Modeling

Figure 2 shows an example of a (somewhat simplified) lifecycle model of a product

description, which is linked to a production process for such a product. In this model

various lifecycle states (so-called life states) are described: “Initiated”, which is the

start of the lifecycle; “Type Specification Defined”, which describes when a

specification is complete; “Technical Implementation Defined”, when based on a

specification a production process is also added to the product description; “Released

for Test”, when the production process is in a testing mode, and “Approved”, when

the product description has been approved including its production process. The

arrows between the life states describe possible life state transitions, e.g., from the

“Released For Test” life state, the life state can go back to the “Type Specification

Defined” state, in order to adapt the production process. Note that once a product

description has been approved, it can no longer be adapted, since there is no arrow

back from the “Approved” life state. Life state transitions can incorporate checks

whether the transition is indeed valid. For example, the life state transition from

155

“Initiated” to “Type Specification Defined” includes a test whether the specification is

complete.

Figure 2 Example of a lifecycle model

2.4 What do these examples tell us?

This section introduced two examples of domain specific modeling. We can

already see from these examples what we mean by a DSML, the fact that models in

these DSMLs have a concrete meaning and thus map to (parts of) concrete systems,

how models are presented, etc. Throughout this paper we shall see what other

consequences there are in combining two or more DSMLs, how models must be

adaptable etc. We shall refer to these examples in the rest of this paper to clarify our

requirements. It should be noted that even though workflow modeling is the central

example, this paper is not about workflow modeling. Moreover, these examples are

not meant to show our overall vision on Enterprise Modeling; this is also outside the

scope of this paper.

3. Requirements

We will now derive requirements for an integrated environment as based on a set of

starting points, which are (largely) also requirements. These starting points have

already been mentioned in section 1, but are reformulated more precisely. These are:

1. The development of DSMEs for DSMLs must be relatively cheap as is the

starting point of all meta-modeling environments [6], [2], [9].

156

2. The Enterprise application domain implicates that it must not only be

possible to support the development and use of different modeling

languages, but also to support the integrated use of these modeling

languages, since different modeling languages are used to describe different

aspects of an application.

3. Support must be given for continuously changing requirements of users. This

means support for changes of both the languages themselves as well as of the

models and the corresponding applications. Such changes must have

minimal, and certainly managed impact on running applications,

4. A software supply chain must be supported to allow different organizations

to focus on certain parts of the software development process.

Our requirements will be illustrated using the examples given in section 2 above.

3.2 Enabling relative cheap DSME development

To make the realization of DSMEs relatively cheap as mentioned in point 1 above is a

key requirement, that has already been realized by existing environments such as

EMF and GME [2], [6]. This encompasses the following parts:

• The definition of a DSML. This includes the definition of the syntax of the DSML.

It also includes (although others call this the static semantics, see the bullet on

semantics) static constraints of DSMLs.

• The realization of a graphical editor for a DSML. In the workflow example, a

graphical editor may represent a graph to a user such as shown in Figure 1, and

allow the user to both to define and to adapt the workflow by inserting and linking

activities.

• The realization of the semantics of a DSML. Realizing the semantics of a DSML

means to give run-time meaning to a domain specific model. For example, what is

the meaning of a workflow model, how is it executed?

• The storage and retrieval of a DSML.

EMF and GME [2], [6][8] apply meta-modeling for realizing all four aspects.

3.3 Supporting categories of DSMLs

Especially in enterprise applications, but presumably also in other domains, the

integrated environment must be able to support various DSMLs as already indicated

in point 2. This can, however, be further specified by understanding that there are two

important categories of models. Modeling languages may support either one of these

categories or both.

3.2.1 Prototypical Instance Models
The first category of Domain Specific Models is that of “prototypical instance

models”. Prototypical instance models are models that are copied to be executed and

thus seen as prototype for the run-time execution. For example, a workflow model

(such as shown in Figure 1) is copied for each execution, such that each execution

corresponds to a run-time instance. As another example, a product description

157

lifecycle model is linked to a product design. Each product design (design for a

separate product) gets its own copy of this lifecycle model and traverses the states of

this lifecycle model. Thus, in both workflow and lifecycle modeling prototypical

instance models are used.

3.2.2 Type Models
The second category of models is that of type models. Type models don’t describe

directly –as in the former case– run-time executing instances, but describe

generatively what kind of instance may occur at run-time. The activity types in our

workflow example are type models, and thus the workflow example incorporates both

prototypical instance models and type models. Other examples of type models are

contract models, describing what kind of contracts are allowed in a certain

organization, or product models describing what kind of product configurations are

possible. UML class models are also examples of type models.

3.3 Integrating DSMLs

In point 2 above it was mentioned that to develop an enterprise application various

modeling languages will be used to describe different aspects. Thus these languages

must be integrated. In section 2 we gave the example of two different modeling

languages that are both needed to model an application. In enterprise applications, all

kinds of other modeling languages for describing resources, enterprise structures,

contracts etc. are needed as well. Moreover, for realizing any application (also outside

the enterprise application domain), separate modeling of the user interface will be

needed.

The models defined in such different DSMLs must allow describing one integrated

application. An integration of this form will be needed between our two example

DSMLs. It must for example be possible to link the activity to approve the design of a

product to a life state transition of a product model to the “Approved” state.

3.4 Integrating modeling and execution

Due to changing user requirements as mentioned above in point 3 above, models will

be changed or added to adapt the applications correspondingly. This however must be

done with minimal impact.

In “standard” model-driven development approaches, there is a radical separation

between the CASE tool in which model-driven development takes place and the

application in which execution takes place. As a result, changes or extensions to

models can only be effectuated in the run-time environment by re-generating the

application. (See also remarks of [11] on this subject). This is also referred to as the

“big-bang” form of model-driven development.

In contrast, we require that extending models and changing models should not (in

general) require such a big-bang approach: It must be possible to change models or

extend models without having to re-generate and recompile the full application, and

158

(when possible) without having to stop the run-time use of the application. We thus

require an integration of modeling and execution in one environment. Given our

distinction between prototypical instance models and type models this requirement

can be further subdivided.

3.4.1 Ad-hoc instance model adaptation

Insert

CPU

order

Remove

CPU
order

order

PC with CPU

Figure 3 In case of a Cancellation after “Insert CPU” has taken place,

“Remove CPU” is added to compensate for the activity that has already executed

In our workflow DSML example, ad-hoc adaptation of a workflow instance that is

being executed is quite useful: executing workflow models may need ad-hoc

adaptation in order to handle problematic circumstances. For example, in the

Assemble PC process the order may be cancelled [14]. The workflow must than be

changed drastically, such that the situation is handled smoothly: Assemblies that have

already been made, and can be sold “as a whole” (e.g., often used housing/

motherboard combinations) must be stored and administrated for later use, other parts

must be disassembled. Note that taking into account all such possible situations of

error handling in the workflow definitions is almost impossible and leads to spaghetti

models [14]. Instead, by allowing the workflow to be ad-hoc adapted such that the

problem can be handled by an alternative sequence of activities is much better. Figure

3 shows an example. Such ad-hoc adaptation of prototypical instances requires that it

must be possible to alternate between execution and modeling.

3.4.2 Ad-hoc type addition
Again in the workflow DSML an example can be found of ad-hoc type addition: It

may be useful to promote a just adapted executing instance (as mentioned before) to a

new type, so that it can be instantiated many times. The adapted workflow of Figure 3

is perhaps not a serious candidate, but in principle it is possible to promote this

workflow instance as well: A type must be created e.g.: “Insert and Remove CPU

Activity Type”, and added to that type will be the prototypical instance as shown in

Figure 3.

Note that ad-hoc type addition may be needed in many other domains, e.g., in the

domain of inventory management, where it may be needed to introduce new inventory

types in an ad-hoc way [9].

In [11] it is described how it should be possible to adapt types with an immediate

impact on the run-time application. In the description of [11] this concerns adapting a

UML class model. UML class models are interpreted. The result of an adaptation

becomes immediately visible in the instances of that class model. [11] Uses this ad-

159

hoc type adaptation to allow for incrementally improving a UML model. The final

UML model is then subsequently used to produce, through code generation, a stable

application, which can no longer be adapted. In our work, adding and adapting types

should remain possible, also for an existing application. This means that the danger

exists that the application becomes unstable.

As a result, we require advanced, subtle mechanisms to adapt and add types, such

that applications cannot become unstable. These subtle mechanisms must allow

controlled change, similar as possible in, e.g., configuration management systems,

i.e., changes only become effective in the running applications after quality control,

moreover, users must be allowed to keep using older versions of types or sets of types

in their applications. A detailed explanation lies outside the scope of this introductory

paper.

3.5 Software supply chain support through Incremental Model-driven

Development

Software supply chains (see point 4 above) are groups of software producing

organizations that work together to produce final applications [7]. Software supply

chains are based on software reuse: one organization produces a platform or

component that the next organization can reuse to develop its component or

application. That component may again be used by a subsequent organization, etc.

Even the parameterization of software by a customer’s support organization may be

seen as a separate step preceding the final customer in such a supply chain.

As mentioned in section 1, catering for software supply chains for domain specific

model-driven development is, in our point of view, very important in the domain of

enterprise applications due to the scope and size of these applications. A software

supply chain allows software developing organizations to focus on a certain expertise.

In many tools and approaches to model-driven software development (especially in

“standard” MDA development tools) application software is generated from models

as one whole and must also be compiled as one whole. This is an undesirable feature

in a software supply chain. When software is generated and compiled as one whole,

this means that each developing organization in the software supply chain has the

responsibility of also generating and compiling code that has been developed by its

predecessor. Moreover, this gives the developing organization access to that code,

which may be unwanted from the point of view of intellectual property. Also, the

whole software process of this developing organization becomes (too) tightly linked

with the process of its predecessor: to adopt an update of the predecessor full

generation and compilation must be followed, while often (when the predecessor only

changes the implementation of its software) a recompilation of his own software will

be sufficient.

Thus we require “incremental model-driven development”:

Incremental model-driven development (IMDD) means to be able to build new

software in a model-driven manner on top of software that has been realized

previously in a model-driven manner as well. It is called incremental, since it allows

incrementally adding layers on top of existing software.

160

Corresponds to

Generates to

BaseActivityType BaseActivityClass

Insert CPU Activity Type Insert CPU Activity Class

Insert Memory Activity Type Insert Memory Activity Class

Figure 4 Illustrating incremental model-driven development

For example in workflow, incremental model-driven development means that one

organization (A) has developed in a model-driven manner a workflow modeling

language and a workflow activity execution engine. Another organization (B) extends

on this.

Figure 4 shows how this might work in a simplified form. Organization (A) models

“Base Activity Type” and generates from that “Base Activity Class”. Through hand

coding this base activity class is extended with code that takes care of the standard

functionality of handling activity execution, e.g., checking that all places have a

token, invoking a task etc. This is shown above the striped line. From left to right the

difference is made between the models and the final implemented classes created

from those models.

Organization (B) models specific activity types, e.g., “Insert CPU Activity Type”

and “Insert Memory Activity Type” (not shown is specific type information, such as

places methods etc.), these activity types all become subtypes of “Base Activity

Type”. Thus, organization (B) adds on to models already defined by (A). As a result,

the generated classes will automatically be subclasses of the class “Base Activity

Class” as implemented by (A).

Requiring IMDD in this case means that the subtype relationship from the

(incrementally added) types of (B) to the “Base Activity Type” of (A), for which a

class implementation already exists, will be mapped to a subclassing relationship with

that class. Therefore the supply chain is supported, since (B) does not need to

recompile this class, nor does (B) need access to the source code of that class.

3.6 Enabling impact management in model-driven development

As mentioned in point 3 above both models and DSMLs will change frequently. In a

software supply chain different organizations reuse each other’s model-driven

161

developed software as described in section 3.5. Therefore, managing the impact of

these changes, which may now become inter-organizational, is essential. The forms

that this can take are the following.

1. When the DSML definition (in fact, the DSML metamodel) changes, the domain

specific models defined on basis of the old metamodel must be as faithful as

possible converted to the new metamodel. Faithful in the sense that the intended

semantics of the old domain specific model is preserved. As an example we have

shown in Figure 5 the result of a workflow change that is needed when the

workflow metamodel is changed for the purpose of exception handling [14]. The

metamodel now incorporates so-called exit and cancellation activities. These can

be added to a workflow definition for the purpose of exception handling. We note

that in this case a new element in the modeling language is added, which can

relatively easy be handled by adding the corresponding model parts. Other DSML

changes will be more difficult to handle.

Insert
memory

Insert
HD

Insert
CPU

Remove

CPU

order

Store
PC

PC with CPU

and memory

PC with CPU

order order

finished PC

order

order

compensating
activity

order

exit activity

Assemble

 PC

order

finished PC

order

Repair
Engineer

actor

Repair
Engineer

actor

Repair

Engineer

actor

Figure 5 Assemble PC activity with compensating and exit activities added (grey)

2. When type models (see section 3.2.2), as defined in a certain DSML, change, its

corresponding instances, e.g., specific workflow instances, may need to be

converted faithfully.

3. Given the requirements of section 3.5, model driven developed code may re-use –

either through specialization or though invocation– other model-driven developed

code. When the reused models change, this may have impact on the dependent

models. For instance, certain methods or properties may no longer be available,

renamed etc. Impact management must take care that these changes are known and

that the impact on the dependent models and code is made explicit. At least the

developers of the dependent software will be informed of specific mismatches

162

between the old dependency and the update. At best certain changes are carried

through automatically on the dependent models.

3.7 Offering an execution infrastructure

Given that we require an integrated modeling and execution environment, an

infrastructure in which both can take place must be offered. This may incorporate

aspects such as database access, both for instances –these are either data, or executing

and prototypical instance models– as well as for other models, special forms of

transaction management (e.g., optimistic transaction management for collaborative

access to data and models), security, web services, user interface technology for

access through internet browsers etc.

In the Appendix, Figure 6, a summary is given of starting points and requirements

and their relationships as treated in this section.

4. Related work

Domain specific modeling and domain specific modeling environments are known

from literature. Especially, GME [6][8] and EMF [2] are well known. Microsoft

currently comes up with so-called Software Factories [4], and views domain specific

modeling as its main approach to software development.

Our approach is with respect to its combination of requirements more ambitious

than these other ones, due to its focus on Enterprise applications. Distinguishing

aspects are:

• Its distinction between instance models and type models. GME and EMF do not

give the possibility to have domain specific type models.

• Its integration between modeling and execution. For this kind of support, our work

can be compared to work on adaptive data models [15].

• Its support for the software supply chain, and therefore on Incremental Model-

driven Development. Even though incremental development is applied especially

in object-oriented development, to the best of our knowledge, we have not seen it

applied in model-driven development. See also our own paper [9] for further

information.

• Its link between impact management and model-driven development. Impact

management has already been applied in other forms of software development,

e.g., OO development [13] and Database Schemas [10].

5. Conclusion

In this paper we have derived requirements for an environment that integrates the

execution of domain specific models, the development of these models, and the

development of the domain specific modeling languages. These requirements,

163

although quite ambitious, are necessary given the complexity of enterprise

applications our application domain.

The ambition of our requirements as compared to other environments for the

development of DSMEs is especially due to the ambition of our starting points:

• The integration of various different kinds of domain specific modeling languages,

where we think “type modeling” is generally underestimated in current work on

domain specific modeling.

• The integration of the run-time and the modeling world, in order to support

(relative) ad-hoc adaptations and extensions of models, without having to

completely recompile and restart a run-time system.

• The support for software supply chains, such that different organizations can focus

on different expertise in the development of software. This supply chain support

causes requirements for incremental model-driven development and impact

management.

We have participated in realizing an environment called “Nucleus” for developing

and using DSMLs for realizing enterprise applications for supply chain coordination.

In this environment we have been able to fulfill many of the requirements, some of

the aspects (e.g., impact management) have not been worked out in detail yet. Many

of these requirements should become mainstream and part of the Model Driven

Architecture, the current OMG standard for model-driven development.

References

[1] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods and

Systems. MIT press, Cambridge, MA, USA, 2002

[2] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. J. Grose. Eclipse Modeling

Framework. Addison Wesley ISBN 0-13-142542-0, 2004

[3] Cosa: www.cosa.nl

[4] J. Greenfield, K. Short. Software Factories Assembling Applications with Patterns Models,

Frameworks and Tools. Wiley ISBN –471-20284-3 2004

[5] V. Kulkarni and S. Reddy. Model-driven development of enterprise applications

Compendium of Papers of the Industrial Papers Track of UML 2004

[6] A Ledeczi, M Maroti, A Bakay, G Karsai, J Garrett. The Generic Modeling Environment. In

Proceedings of WISP, 2001

[7] D. G. Messerschmitt, C. Szyperski. Software Ecosystems. MIT ISBN 0-262-13432-2, 2003

[8] A. Ledeczi, G. Nordstrom, G. Karsai, P. Volgyesi, M. Maroti M. On Metamodel

Composition. IEEE CCA 2001, CD-Rom, Mexico City, Mexico, September 5, 2001.

[9] T.D. Meijler. Incremental MDA through Causal Connectedness. UML Modeling Languages

and Applications: UML 2004 Satellite Activities Lisbon, Portugal, October 11-15, 2004

Revised Selected Papers LNCS 3297 Eds. Nuno Jardim Nunes, Bran Selic, Alberto Silva,

Ambrosio Toval

[9] Metacase. Domain-Specific Modeling: 10 Times Faster Than UML, whitepaper by

MetaCase Consulting available at http://www.metacase.com/papers/index.html

[10] Y.G. Ra,, E.A. Rundensteiner, OODB support for providing transparent schema changes,

Proceedings of the 1994 conference of the Centre for Advanced Studies on Collaborative

research table of contents [Multiple Versions]

164

[11] D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorgbe, 2001. The architecture of a

UML virtual machine. In Proceedings of OOPSLA’01. ACM Press, New York, 327–341

[12] Simtech: http://www.simtechnology.com/english/SimTech.php

[13] P. Steyaert, C. Lucas, K. Mens, T. D'Hondt, Reuse Contracts: Managing the Evolution of

Reusable Assets, Proceedings of OOPSLA'96 ACM SIGPLAN Notices, Vol.31, No. 10,

October 1996, pp. 268-285

[14] R. van Stiphout, T.D. Meijler, A. Aerts, D.Hammer, R. le Comte. TREX: Workflow

Transactions by means of Exceptions. Proceedings EDBT Sworkshop on Workflow

Management Systems 1998

[15] J.W. Yoder, F. Balaguer, and R. Johnson, Architecture and Design of Adaptive Object-

Models. In ACM SIGPLAN Notices, 36(12), December 2001

165

Appendix: Overview of Starting Points and Requirements

Domain Specific

Modeling => DSME's

Infrastructure for

Developing and

Using DSME's

Setting up DSME's

must be cheap

Applied to: Enterprise

Modelling, Enterprise

Applications

Continuous Change

Broad Scope, Broad

Domain

Instance & Type

Modeling

Integration of

Modeling Languages

Keeping a System in

the Air

Integrating Modeling

& Execution

Software Supply

Chain Support

Incremental MDD

Ad-hoc

Instance Modeling

Ad-hoc

Type Modeling

Impact Management

Figure 6 Overview of Starting points and derived requirements

Figure 6 gives an overview of starting points and derived requirements in the form

of a dependency graph, each starting point or requirement is represented in a block.

E.g., “Impact Management” is needed due to both “Continuous Change”, and

“IMDD” since by applying IMDD in the supply chain, models and their

corresponding implementation are dependent of other models and their

implementation. Note that the requirement “Keeping a System in the Air” even

though referred to by “Continuous Change” is not really derived. This requirement is

an ambition of the “Nucleus” project.

166

Moving towards Domain-Specific Modeling for
Software Development

Zheying Zhang & Jyrki Nummenmaa

Department of Computer Sciences
University of Tampere, Tampere, Finland
{cszhzh, Jyrki}@cs.uta.fi

Abstract. Various observations support the view that domain-specific modeling
(DSM) can improve productivity in software development. The typical
explanation is that the resulting model is on a higher abstraction level and
closer to problem domain concepts than models created with generic methods
and using e.g. UML as the modeling language. In this paper, we elaborate on
how the domain-specific modeling is on a higher abstraction level than a
generic modeling and how this works as the basis for the better
understandability. Meanwhile, in spite of the acknowledged benefits from using
DSM, it has not yet become the prevalent approach in software development. It
inspires us to further study the different strategies for organizations to move
towards using DSM. This paper also discusses some of the strategies and their
application.

1 Introduction

Most software development methods in use today support the development process
with a similar recipe: conceptualize the problem environment where the desired
software is put in use, specify solutions in a sketch by using the domain concepts,
transform the conceptual solutions to diagrams that reflect the concepts and structure
of a selected programming language, and finally generate the program code. In this
process, the high-level domain solution is transformed to models that represent the
implementation in code. As the low-level solution represents the technical detail, it is
often hard to read and understand, and complicated to modify and extend. The
transformation process tends to be time-consuming and error-prone [1]. In order to
improve the process, the focus of software development has been shifting away from
the technical implementation toward the concepts and semantics in problem domains
[2]. Domain-specific modeling (DSM), therefore, becomes an appealing approach to
software development. By using the DSM method, there is no extra transformation
from the domain concepts to the implementation mo dels. Instead, it specifies the
solution directly using domain concepts from which the final implementation is
generated [1]. The more directly application models can represent domain-specific
concepts, the easier it becomes to specify application solutions.

The general-purpose methods, like the unified modeling language (UML), aim at
solution specification in every necessary problem domain. Therefore, they are
normally based on a low level of abstraction to describe the structure of an application

167

in terms of classes, methods, associations, dependencies, etc. and the interaction
between objects. Unlike the generic modeling methods, a DSM method bases its
concepts on the underlying problem domain concepts , and models the solutions using
a higher level of abstraction than classes, methods and attributes. That is to say that a
DSM method is constituted of domain concepts and their mapping to the technical
implementation. Its users need not take extra effort in transforming domain solutions
to the implementation diagrams, which makes it easy and fast to specify the problem
solution, and further leads to improved software development process [1, 3, 4].

In spite of the acknowledged benefits from using DSM, it has not yet become the
prevalent method in software development. Reasons behind it are mainly related to
the insufficient understanding about the underlying principle of DSM and the lack of
tool-based support. In this paper, we elaborate on how DSM raises the level of
solution representation and how a higher level of abstraction supports the better
understandability. Meanwhile, different strategies for moving towards DSM require
further attention. Besides revealing the reasons behind the low acceptance of the DSM
approach, we discuss strategies to develop the DSM and their application.

The remainder of the paper is organized as follows. The next section will clarify
the fundamental concepts directly related to software modeling. Section 3 discusses
the basic features of DSM by comparing it with UML and its profile. Section 4 further
discusses the reasons of low acceptance of DSM in software industry, and suggests
strategies to deploy DSM with an example of phone simulator interface development.
Section 5 concludes the paper and discusses future research.

2. Basic Concepts

2.1 Software System, Method and Tool

Concepts involved in software development include software systems , software
development methods, and the tools. Their dependencies can be captured in the model
shown in Figure 1.

Figure 1 Support for software development (after [5])

A software system is a collection of components organized to fulfill a defined purpose
[6]. It is the expected delivery resulting from a software development life cycle. As
software systems become widely applied in our daily life, their development becomes
market-driven. A quality software system that meets customers’ needs and their

SOFTWARE SYSTEM

METHOD TOOL

 Implements Specifies

 Embodis

168

timing forms the ultimate goal of a software development project. To achieve such a
goal, methods and tools form the essential support. A method, consisting of guidelines
and rules of a specific underlying philosophy of software development [7], provides a
means of defining problems, representing solutions, implementing and maintaining
the software system. Different methods are applicable in different forms at different
software development stages. Typical examples include interviews and questionnaires
at the requirements stage, UML , OMT [8], and Yourdon’s structured analysis and
design [9] at the analysis and design stage, etc. A tool aids in accomplishing the
software development activities [10]. It embodies a method to facilitate the process of
solution specification and implementation. Therefore, different tools take a role at
different development stages. Examples include the requirements engineering tools
(e.g. Telelogic Doors [11]) for requirements documentation, modeling tools (e.g.
Rational Rose [12], MetaEdit+ [13], etc.) for solution specification and management,
programming tools (e.g. MS Visio Studio, Sun’s JDK, etc.) for writing and compiling
code, etc. Both methods and tools are indispensable to software development.
Methods provide fundamental principles for solution specification and
implementation, while tools enable and support the process. Without a proper tool
support, it is hard to effectively deploy a method in the software development process.
Therefore, besides the nature of a method, an available tool support forms an
important criterion in method evaluation and selection for a software development
project.

2.2 Software Development Methods

Due to the diversity of software applications and the continuing development of
information technology, it is hard to define a universal method that suits every kind of
software development. Therefore, a variety of methods and their supporting tools
exist. It was estimated that there were over 1,000 brand name methods world wide in
1994 [14]. There is no doubt that methods have continued to proliferate.

As the number of methods grows, a straightforward question is to select a proper
method in the method jungle. Surveys regarding methods have been carried out along
with the evolvement of methods. The findings clearly show that a considerable
number of organizations use in-house methods rather than commercial methods for
software development [15-20]. The reason is twofold: the underlying principle of the
methods is incongruent with their context of use [18, 21], and the tools lack flexible
support to adapt methods that meet the requirements of the changing business
environment. Because of the domain-specific nature of in-house methods, they are
relatively easy to accept by the organizations.

In addition to the domain-specific methods, some generic modeling methods
provide extension mechanisms to meet the needs of a particular domain. A typical
example is the UML profile [22], which allows users to customize its notation to their
particular domain or purpose by using stereotypes, tagged definitions and constraints
[22]. Because the profile definition is an extension, there are no changes of the UML
semantics. Although the domain concepts defined by the profile make the solution
representation more domain-specific, there are no fundamental changes of the
principle of the method. The complex semantics and the mapping from the high-level

169

conceptual solution to the low-level representation still exist. Besides, the limited
tool-based support forms a barrier to deploy UML and its profiles in software
development. In comparison with the complex semantics of the generic modeling
methods, a DSM method is relatively simple and more easily acquainted by the
software developer. It is a promising and attracting approach to mo del-driven
development and worth further studying.

3. Domain-Specific Modeling Method

In order to discuss the principles of DSM and its features, we compare DSM against
the generic modeling methods. As a point of comparison, we use methods, which use
UML as their modeling language. Although these methods come in many variations,
it is in fact more important for our discussion to specify the modeling abstraction
level, and therefore it is quite sufficient to specify UML as the modeling language.
Notably, our discussion carries over to other methods, whose modeling language is on
the same abstraction level with UML. The discussion is made from the perspective of
the abstraction level, the understandability, the tool-based support, and the support for
systematic software development.

To provide a concrete comparison between DSM and UML-based methods, we use
a running example of phone simulator interface development. We assume that a
phone simulator consists of a set of buttons for user’s input and a display for
information presentation. The example includes the design of the simulator interface
and the interaction with end users. MetaEdit+ [13], a metaCASE tool, facilitates the
solution representation by using either the DSM method or the generic modeling
method. The examples are shown in Figure 2 as a class diagram and in Figure 3 as a
DSM model.

3.1 Abstraction Level

The abstraction level of a method indicates the level of details in solution
representation. It forms the fundamental principle of a method. Generally speaking,
the lower the abstraction level, the more detailed technical implementation it includes,
and the more difficult it becomes to specify applications. Software development is the
process to transform a high-level solution down to the low-level application code.

Models with intention of representing the problem domain are commonly on a high
level of abstraction. Examples include the rich picture diagrams in software system
methods [23] and different kinds of business process models. Models with intention
of detailing solutions to a problem are normally located one level lower than models
specifying the problem domain. They specify the problem solution based on the
concept of implementation technique. Figure 2 shows an example of the design
model, a class diagram specifying different types of phone buttons and their
interaction with end users. It diagrammatically represents the structure of
implementation of the phone buttons in Java. The diagram specifies classes and their
inheritance relationships. The superclass phoneButton has two subclasses:

170

phoneNumberButton and phoneControlButton, which further have a set of inherited
classes.

Figure 2 A class diagram: Phone Button

A basic interaction with user’s input is to get a right button value when a user presses
a phone button. In order to specify the solution, the class diagram includes the
definition of a data structure to save values assigned to each button and the detection
of the clicking time and the time-out on buttons. The detection is defined as methods
in phoneButtonValue and shown below in the segment of code. Obviously, these
specifications are not directly related to the features of the phone simulator. They are
internal data and techniques related to the low level of abstraction, such as the
implementation platform and the programming language. They vary in different
development environment. When such a low-level abstraction is represented in design
models, it is likely to confuse a designer.

 flag =false; // check time_out
 if (click_start_time == 0) {
 click_start_time = System.currentTimeMillis();
 click_times = 0;
 flag = false;
 }else
 if((System.currentTimeMillis()-
click_start_time)>CLICKTIMEOUT) { // Time-out
 click_times = 0;
 click_start_time = 0;

171

 flag = true;
 }else {
 click_times++;
 if(click_times>=maxNumber)click_times = 0;
 }

Unlike the class diagram, DSM methods are targeted to particular problem
domains. Their concepts and structure conform to the domain concepts and rules. The
inner working or the data for implementation, like the above example of the detection
technique, is combined with the domain concepts and “invisible” to the designers.
The rising abstraction level allows designers to concentrate on the required features of
software products and shift their focus from technical implementation to design,
which makes the modeling process natural and easy to carry out.

Figure 3 A DSM model: Phone simulator interface

As inner data for implementation is not directly related to the functionality of an
application, it is often dependent of the development environment and can be
specified and used as a common part in developing different applications within the
same environment. Figure 3 shows examples of the phone simulator interface model
using a DSM method. Instead of abstract concepts such as classes and relationships,
the model is composed of three basic domain concepts: Control Buttons (rectangle
buttons with different symbols inside), Number Buttons (oval buttons with values
inside), and Panels (round-edged rectangles). The low-level specification of buttons,
such as classes Button, ActionListener, phoneButton and phoneButtonValue, are pre-
specified and hidden in the code generator of the model, as shown in the right-corner

172

screenshot in Figure 3. Developers have to specify different control buttons, number
buttons, and the corresponding values when designing different phone simulators. An
example to specify number button 1 is shown in the left-bottom of Figure 3.
Comparing the DSM models with the class diagram, we can see classes in the shadow
in Figure 2 become the common but “invisible” specification in the DSM model, and
the rest of the classes become the instances of the object type: Control Button and
Number Button in the DSM model. In this case, raising the abstraction level is based
on hiding some of the information of the model of the implementation, or equally, it
can be seen as just choosing certain elements from the implementation model.

Raising the abstraction level, however, is not just based on hiding elements.
Consider that the GUI package implements operations for checking if a phone control
button is up or down and operations for reading the position of the cursor. A
programmer may implement a routine for checking if a button was selected. This
would include a series of operations reading the button and coordinate information
and comparing this with the button placement. On a higher abstraction model, it
would be possible to just introduce a method for checking if a button is selected (and
to hide the implementation details from the programmer) or just to introduce the
button with a facility to connect a callback function to the selection of the button. In
this way, we introduce new, higher level elements, which use the services of the old
elements but operate on a more suitable abstraction level.

Therefore, we claim that the raising of abstraction level in DSM comes from
exactly two sources: hiding information and introducing new concepts on a higher
abstraction level.

3.2 Understandability

The understandability of the model is discussed from two perspectives: the modeling
language and its instance, the actual model built using the language.

Considering the modeling language, because a DSM method conforms to the
application domain with which the developer is familiar, it is easier to understand
than the generic methods. Take an example of the model in Figure 3, Number Button
is a common concept in phone interface design, and it is obvious that the phone panel
contains twelve number buttons – twelve instances of the object Number Button .

The concepts and notations of UML, however, are related to the solution
implementation. Like the example in Figure 2, the model specifies the phone button
as a set of classes and relationships. Some are abstract, such as ActionListener which
is not directly related to the concepts in the application domain but to the solution
implementation, i.e. they visualize the code. In order to represent the solution, a
developer has to understand the underlying concepts defined in UML and map the
problem solution to the concepts in UML, while a DSM method user can model the
solution directly using the domain concepts. Obviously, it sets higher requirements for
developers to understand and use UML than DSM, and distracts developers from
issues related to software modeling to topics applicable to low-level implementation
at the software design stage. For a highly experienced developer, this may not be a
problem at all, but for a mediocre developer or a novice, the task can be time-

173

consuming and error-prone. Also, the gained knowledge of the internals of the
package is not necessarily anything worthwhile.

Meanwhile, like most comprehensive standards, UML is rather large. If it is used
in a “rich” way, the necessary modeling elements and thereby also the model may be
hard to comprehend. Arguably, a project typically only uses a limited and well-chosen
set of modeling primitives from UML, thus reducing the number of features of UML
necessary for understanding the model. Also, when moving from one application area
to another, the modeling concepts do not really change as long as the set of modeling
constructs picked from the whole UML is the same.

In order to explain an improved understandability of DSM models , we move our
attention to the actual models. As we know, by hiding information and introducing the
new higher-level domain concepts, DSM raises the abstraction level closer to the
problem domain (i.e. analysis and design), as opposed to the solution domain (i.e.
implementation and coding). The concept of information hiding is not an innovation
of DSM. It has been introduced and applied more than thirty years before [24].
However, it is notable that just blindly or randomly hiding some information and
introducing new conceptual elements is unlikely to make a model understandable.
The key issue of information hiding in DSM is that the methods are purpose-built.
The method contains exactly the concepts that are common and important for
application development in a given domain. These essential concepts are not
applicable in another domain and can not be directly represented by the generic
methods.

3.3 Tool-based Support

As dis cussed in section 2, tools incorporate methods. They enable and support the
software development activities. Any modeling methods, to be useful, must be
incorporated into the CASE tool.

UML is widely supported by CASE tools. Examples include commercial tools such
as IBM’s Rational Rose, Microsoft Visio, etc. and open source tools such as Umbrello
UML Modeller, FUJABA Tool Suite, DIA, etc. These tools provide diverse ways to
support software modeling, from a simple diagram drawing tool to a comprehensive
tool featuring documentation, code generation, reverse engineering, synchronization
between code and diagrams , etc. Besides a large amount of tools with diverse
functionality to support generic methods, we notice that these tools support an all-
purpose modeling language and offer fixed code generators that try to fit all situations
[25]. That is to say the methods are hard codified in tools , and difficult to change or
customize [26, 27]. The standard UML profiles are incorporated by some CASE tools.
However, the number of standard profiles is small, and profiles defined by
organizations can not be used because the majority of above mentioned tools do not
incorporate them.

Generating full code from high-level abstraction is an issue concerning tool
support and domain expertise [25]. Besides above mentioned features of CASE tools ,
the DSM tools emphasize full code generation and flexible construction and
adaptation of the modeling methods. Therefore, instead of a modeling tool, the DSM
tool allows both the design of DSM language and code generators separately by the

174

domain-experts so that both fit the requirements the situation imposes [25]. Due to the
additional requirements of the DSM tool, there are not so many DSM tools as the
UML tools. MetaEdit+ [13] is an example, which provides an integrated environment
for method specification, software modeling, and full code generation. More recently,
open and customizable modeling environments, like Eclipse EMF & GEF [28], have
appeared, supporting DSM [25].

3.4 Supports for Systematic S oftware Development

DSM methods reflect the concepts and rules in an application domain, underlying
which is the idea that the similar problems can have similar solutions in the same
development environment. This improves systematic reuse practice in software
development, such as reusing domain concepts and rules, design patterns, software
architecture models, requirements, tests, and many other interim products produced in
the software development life cycle. Therefore, DSM guides the standardization of
products and processes based on commonalities in a set of similar software products.
It is beneficial to deploy the DSM methods in product family development [2].

In practice, by deploying DSM, the organization can divide the work in an
effective manner. As experts and experienced developers have sound knowledge
about the application domain and its product development, they work on the method
engineering level to build and maintain the domain-specific methods and their
components. The novice and mediocre developers work on the product level to
specify the functionality of software products by using the methods and providing
feedback about the method usage.

4. Strategies to Deploy DSM methods

Although DSM is a promising approach to representing and implementing domain-
specific concepts, deployment of DSM methods has not become the phenomenon in
software industry. Because every method has its strengths and weaknesses in a certain
development context, we cannot evaluate it apart from understanding what the
objective is and how the organization will use it to realize the objective. The
organizational development environment forms an important factor in relation to the
usage of DSM methods [24]. In the following, we further discuss it from the
perspective of the organizational strategies, the organizational support, and the
technical support.

Organizational strategy for software development – The DSM methods
accelerate the development process in organizations whose strategy is to develop a
family of products. Due to the great commonality of products within the same
application domain, organizations can accumulate knowledge and experience in their
previous development projects, which makes it easy for them to abstract domain
concepts and rules, and to deploy the DSM methods. Meanwhile, if applications in a
given domain are developed by following the same DSM method, systematic reuse
can be achieved across different development projects, which improves the efficiency
and effectiveness the product family development. However, if the organization aims

175

at the project-based development, the development activities are not limited to a given
application domain. It becomes difficult to invest on the DSM method for every
individual development projects.

 Organizational support of the new method deployment - Some empirical
studies [17, 24] show interesting evidence for that the most widely used techniques in
software development date back to techniques from the pre-structured and structured
eras. The software industry is notoriously slow and reluctant to accept new techniques
[17, 29]. Because organizations get used to their development approaches and the
environment, introducing a new method need much additional attention to the
supporting tools, the data transformation, the staff training, etc. Therefore, instead of a
standalone activity, deployment of DSM methods is a part of an organization’s overall
process improvement strategy and requires years of investment before it pays off. It
needs a clear management vision and commitment to introduce and sustain DSM
methods.

Technical support – Technical support drives successful deployment of methods.
DSM methods can be deployed in several well-established domains, such as the
domain of graphical user interfaces, while they are not well deployed outside the
well-established domains. Besides the lack of knowledge about the application
domain, existing tools rarely provide a proper metamodeling language and the
associated facilities that flexibly support developers to specify and implement
software development methods according to their needs. Therefore, due to the
immature status of the DSM method, and the insufficient tool-based support, it is too
early for organizations to adapt it . In addition, the competence of method developers
forms an additional factor that affect the deployment of DSM.

Apparently, the different strategies for moving into DSM require further attention.
In the following sections, we discuss some of these strategies.

4.1 Greenfield Development

Greenfield development provides a strategy to develop domain-specific methods
from scratch. It is mostly used to develop methods in an emerging application domain
where it is hard for developers to deploy a generic modeling method for solution
specification. Examples of the application domain include diverse applications in E-
business or embedded software [30].

According to the method development process model [18], a domain-specific
method is developed by method engineers who are familiar with the application
domain. Different from the generic modeling methods, the DSM method focuses on
identifying the domain concepts and their structure. In general, the commonalities of
applications within the same domain are abstracted as domain concepts and defined in
the method, while the variables are defined as concepts with an interface to assign
value to variation parameters. The domain rules and the mapping between domain
concepts and the programming code are encoded into the conceptual structure of
domain models.

It is worth noting that the DSM development is an iterative and incremental
process. As the experience and knowledge of the application domain is accumulated,
more requirements are raised to improve the DSM methods. Therefore, DSM is a

176

long-term program of an organization. The organization’s maturity level increases
along with the improvement of DSM.

4.2 Transforming Generic Models to Domain-S pecific Models

In most cases, DSM methods are developed according to existing modeling methods.
Similar to the greenfield development approach, the key issue is to identify the
domain concepts and rules out of the existing models. However, the transformation
from a generic method to a domain-specific method is a process to extend the
semantics and notations of existing methods to specify the underlying concepts of a
problem domain.

For simplicity, assume that the application has been modeled using UML, and the
model includes items such as packages, interfaces, classes, etc. Typically, before
developing the domain-specific methods, some experience of developing applications
for the problem domain has already been gained, i.e. the method engineers know the
needs of the application development. Even if there are uncertainties, it is better that
the most experienced developers solve them in advance. In large, the process may go
as follows.

1) Identify the immediately useful elements. E.g. in the GUI example a

method to add items to a pull-down menu might be such an element.
2) Identify the necessary elements that could not be directly picked from the

UML model.
3) Design the packaging by extending the notation of the UML. Notice that

elements from Step 1 and Step 2 could be put in the same concept in the
DSM.

4) Finalize the implementation of the DSM model for the necessary part.
Notice that here it is also possible to model the implementation in the
original UML model.

5) Verify the model with some example implementation.

Different development groups within the same organization may need different DSM
models, which may be based on the same UML model. Instead of a general-purpose
method, the essential of DSM methods is to cater for a specific problem domain.
Therefore, there is no need to model them all in a general good-for-all model, because
they may be overlapping but not equally the same.

5. Conclusion

Software application development is market-driven. Developing a quality application
to meet stakeholders’ needs requires development methods to fit into the development
environment. Given that the development methods are easy to construct and thus
modify with a proper tool-based support , it is important to provide a modeling method
designed specifically to aid in software development within the application domain.

177

This paper elaborates on the philosophy and principles of the DSM. It clarifies that
rais ing abstraction level for solution representation is the essential feature of DSM,
which is realized by generating new high-level domain concept and hiding detailed
and implementation-specific information. This leads to improved understandability
and systematic application development. In addition, it also improves the maturity of
the software development process with more consistency and quality.

The discussion helps organizations to understand the principle of abstraction level
rising, and the approaches to realizing it. The paper briefly suggests strategies to
deploy the DSM for application development within an organization. Future research
on how to apply DSM method to improve the maturity of software development
process forms an emerging topic in this area. In addition, the relationships between
DSM and other software development paradigms, such as software reuse and OMG’s
model driven architecture (MDA), are all areas worth exploring.

References

1. MetaCASE, Domain Specific Modelling: 10 Times Faster Than UML. 2000, MetaCASE

Consulting.
2. Wada, H., et al. A Model Transformation Framework for Domain Specific Languages: An

Approach Using UML and Attribute-Oriented Programming. in Proc. of the 9th World
Multi-Conference on Systemics, Cybernetics and Informatics. 2005. Orlando, FL, USA.

3. Wile, D. Lessons learned from real DSL experiments. in Proc. of the 36th Hawaii
International Conference on System Sciences. 2003.

4. Wegener, H. Balancing Simplicity and Expressiveness: Designing Domain-Specific Models
for the Reinsurance Industry. in Proc. if the 4th OOPSLA Workshop on Domain-Specific
Modeling. 2004.

5. Zhang, Z., Model Component Reuse - Conceptual foundations and application in the
metamodeling-based systems analysis and design environment, in Jyväskylä Studies in
Computing. 2004, University of Jyväskylä: Jyväskylä. p. 76.

6. Sage, A.P., Systems Management for Information Technology and Software Engineering.
1995: John Wiley & Sons.

7. Wynekoop, J.L. and N.L. Russo, System Development Methodologies: Unanswered
Questions and the Research-Practice Gap. Journal of Information Technology, 1995. 10: p.
65 - 73.

8. Rumbaugh, J., et al., Object Oriented Modeling and Designing. 1991, Englewood Cliffs
New Jersey: Prentice-Hall.
9. Yourdon, E., Modern Structured Analysis. 1989, Englewood Cliffs, New Jersey: Prentice-

Hall.
10.Lyytinen, K., K. Smolander, and V.-P. Tahvanainen. Modelling CASE environments in

systems development. in Procs. of the first international conference on advanced
Information System Engineering. 1989. Kista, Sweden.

11.Telelogic, Telelogic Doors. 2005. http://www.telelogic.com/products/doorsers/doors/
12.Rational, Visual Modeling with Rational Rose.

http://www.rational.com/products/rose/index.jsp?SMSESSION=NO, IBM Corporation.
13.Kelly, S., K. Lyytinen, and M. Rossi. MetaEdit+: A Fully Configurable Multi-User and

Multi-Tool CASE and CAME Environment. in Proceedings of the 8th International
Conference CAISE'96. 1996: Springer-Verlag.

14. Avison, D.E. and G. Fitzgerald, eds. Information Systems Development: Methodologies,
Techniques and Tools. Information System Series. 1995, McGraw-Hill Book Company.

178

15. Fitzgerald, B., The Use of Systems Development Methodologies in Practice: a Field Study.
Information Systems Journal, 1997(7): p. 201 - 212.

16. Russo, N.L., R. Hightower, and J.M. Pearson. The Failure of Methodologies to Meet the
Needs of Current Development Environments. in Proceedings of the British Computer
Society’s Annual Conference on Information System Methodologies. 1996.

17. Barry, C. and M. Lang, A comparison of 'traditional' and multimedia information systems
development practices. Information and Software Technology, 2003. 45(4): p. 217-227.

18. Tolvanen, J.-P., Incremental Method Engineering with Modeling Tools: Theoretical
principles and Empirical Evidence, in Department of Computer Science and Information
Systems. 1998, University of Jyväskylä: Jyväskylä.

19. Hardy, C.J., J.B. Thompson, and H.M. Edwards, The Use, Limitations, and Customisation
of Structured Systems Development Methods in the United Kingdom. Information and
Software Technology, 1995. 37(9): p. 467 - 477.

20. Necco, C.R., C.L. Gordon, and N.W. Tsai, Systems analysis and design: current practices.
MIS Quarterly, 1987. 11: p. 461–476.

21. Lang, M. Hypermedia systems development: Do we really need new methods? in
Proceedings of the Informing Science + IT Education Conference. 2002. Cork, Ireland:
InformingScience.org.

22. OMG, Catalog of OMG Modeling and Metadata Specifications. 2005, Object management
Group, Inc.

23. Checkland, P. and J. Scholes, Soft Systems Methodology in Action. 1990, Chichester:
Wiley.

24. Fitzgerald, B., Systems development methodologies: the problem of tenses. Information
Technology & People, 2000. 13(3): p. 174-185.

25. Iseger, M., Domain-specific modeling for generative software development. 2005,
http://www.ITarchitect.co.uk.

26. Hofstede, A.H.M.t. and T.F. Verhoef, Meta-CASE: Is the game worth the candle.
Information System Journal, 1996(6): p. 41 - 68.

27. Kelly, S., Towards a Comprehensive MetaCASE and CAME Environment: Conceptual,
Architectural, Functional and Usability Advances in MetaEdit+, in Dept. of Computer
Science and Information Systems. 1997, Jyväskylä University: Jyväskylä.

28. Kelly, S., Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM. 2004.
29. Gibbs, W.W., Software's Chronic Crisis. Scientific American, 1994. 271(3, September): p.

86 - 95.
30. DSM, DSM Case Studies and Examples. 2004.

179

The MICAS Tool

Johan Lilius1, Tomas Lillqvist1, Torbjörn Lundkvist1, Ian Oliver2,
Ivan Porres1, Kim Sandström2, Glenn Sveholm1, and Asim Pervez Zaka1

1 Department of Computer Science, Åbo Akademi University, Finland
2 Nokia Research Center, Helsinki, Finland

Abstract. The MICAS architecture is a novel SoC architecture for SoC
design for mobile phone peripherals. Characteristic for MICAS is the
separation of data-�ows from control-�ows. To design MICAS �modules�
we have implemented a tool that is based on UML and MDA. The tool
makes it possible to visually specify a MICAS system by dragging and
dropping modules, busses, and connections onto a canvas. The design can
then be transformed into a SystemC simulator for further testing. The
MICAS tool is implemented using CORAL. CORAL is a metamodel-
independent software platform to create, edit and transform new models
and metamodels at run-time. CORAL provides support for a number of
languages, including UML and MOF.

1 Introduction

The move to developing systems from high-level models and generating the code
and intermediate model automatically is generally known as Model Based De-
velopment (MBD) [13] of which the OMG's Model Driven Architecture (MDA)
is one implementation. While the concepts of MBD are not new in principle, we
are now at a point where the technologies to support the introduction of these
engineering principles into system development is possible; standard languages
such as UML, representation formats such as MOF and XMI have been created.
The increase in abstraction a�orded by these techniques means that the engineer
can now concentrate more on "what" the system is rather than on "how" the
system is to do it. MBD can be characterized by diagram in �gure 1.

The basic ingredients are models, languages and platforms. The basic devel-
opment step in a model based development method transforms models - written
in some language such as some pro�le of UML - into more detailed models
by architecting the model onto a particular platform. In MDA terminology the
source model of this transformation is known as a platform independent model

(PIM) and the target model as a platform speci�c model (PSM). The distinction
between a language and a platform is sometimes di�cult to make because a
language often implies a certain platform (c.f. Java and J2EE). In the context
of this paper we shall keep this notions separate. A language is understood as
a subset of UML speci�ed by a pro�le. A platform is a collection of elements,
such as available compilers, frameworks, architectures and even properties such
as whether certain types of communication are synchronous, asynchronous (or

180

ModelLanguage
expressed in

Platform

Architecture

ModelLanguage
expressed in

tr
an

sf
or

m
at

io
n

re
la

tio
ns

hi
p

eg
: r

ef
in

em
en

t

generates

architected on to

Fig. 1. The basic structure of Model Based Development

even "don't care" in very generic places). The stricter the properties means that
the platform is more concrete (less abstract) and implementation oriented.

We distinguish between the following kinds of transformations:

� A transaction is the most restricted form of transformation. In a transaction
neither the language, nor the platform changes. Typical transactions are
normal editing of a model i.e. addition of class or objects etc.

� A translation keeps the platform constant, but changes the language. We
have explored the translation of SA/RT models into UML models in [15].

� A transformation allows both the platform and the language to change,
although the language of the source diagram must be able to express the
concepts required by the platform. A transformation is characterized by the
change of level of abstraction or platform and thus the move of a design
towards its implementation. A typical transformation would be code gener-
ation.

The transformations are supposed to be automatic in nature but necessity in
the amount of information required for a fully automatic transformation dic-
tates some manual components - these however should be expressed through the
architecture.

Much MBD work has focused on single platforms (notably Java based frame-
works) with monolithic architectures (c.f. [3]). The longterm goal of our work is
to develop a model-based development method for Hardware/Software systems3.
In such a context we may have a number of platforms onto which a model could
be potentially mapped and for each platform many ways in which that model
could be architected onto that platform.

This paper discusses the �rst version of a tool that we are developing whose
aim is to help explore di�erent ways that a model (i.e. an application) could be
architected onto a platform and thus help us in our long-term goal. The tool can
be seen as a case study in MBD where we try to automate as much as possible of
the process of architecting. The goals of this tool development are among others:

3 An overview of our ideas applied to protocol processor application design can be
found in [7]

181

1. To act as a case study in MBD, and to help us understand what parts of the
process of architecting can be automated. At the same time we will also gain
deeper insights into how a platform should be de�ned in an MBD process.

2. To act as a driver for the development of the CORAL [14] framework. Several
features, e.g. the transformation engine and the model management support,
have been designed and implemented because the need arose in the context
of this tool development.

The version of the tool presented in this paper is developed to help us ar-
chitect applications onto the MICAS platform (c.f. section 2 below). MICAS is
a novel hardware platform that is developed at NOKIA. It intended as an im-
plementation platform for applications with high data-streaming requirements,
where also the sources and sinks of theses data-streams may change dynamically
during the execution.

The tool consists of a number of components. The basic interface is a diagram
editor (see �gure 3) that is used to design a speci�c instances of the MICAS
platform onto which the application will be mapped. This instance is represented
as model in a UML-pro�le, the MICAS pro�le. The tool also implements a
number of transactions (c.f. above) for the MICAS models that add more detail
to the model. The �nal result of this series of transactions is a model that can
easily transformed into SystemC. The SystemC code can then be compiled and
linked to obtain a simulation model of the application.

The structure of this paper is as follows. We will �rst discuss the general
ideas behind the MICAS architecture and present the MICAS simulation frame-
work. Then we will present the MICAS editor and discuss the transformations
implemented in the tool. Finally we will close o� with some conclusions and
discussion of future work.

2 The MICAS Platform

The aim of this section is to motivate and explain the ideas behind the MICAS
architecture. Our basic design assumption is that we have a considerably large
set of hardware processes that process a considerable amount of data. These
processes are referred to as modules. Modules may input and output data which
at an abstract level can be considered data streams. The main goal when de-
veloping the MICAS platform has been to address designs where these streams
have a great variation over time in where from and where to they are routed.
Such applications are typically complex multimedia applications like, personal
video recorders (PVR), media streaming stations etc.

It's often problematic to design an e�cient architecture for silicon process
communications since the quality of a particular design layout is determined by
applications and application loads. A number of typical solutions exist to design
silicon architectures capable of �exible inter-process data communication. One
solution is the universally connected network [5], which could be implemented as
an all connected switching matrix or a universally connective bus. The problem
with such a solution is that it does not scale when the number of communicating

182

Fig. 2. An overview of the MICAS platform

processes grow. One single resource will handle all inter-process communication
and it will either become a bottleneck or unreasonably complex.

Network on chip solutions, more speci�cally lattice or grid network archi-
tectures [9, 8, 10, 12], implement data transfer in a network of nodes where each
node may be a hardware process or a module in he meaning described above. The
streaming data is transfered as packets from node to node in a network where
routing decisions are typically made in each node. In our opinion this kind of a
solution is �exible and scalable but it has several drawbacks. The transfer delay
is considerable because of node delay. Routing in a grid network is sometimes
computationally complex, and the routing algorithms are often complicated and
unreliable. The routing performance is often veri�ed by statistical means and
testing, and their performance is prone to the risk of congestion and deadlocks
in untypical tra�c situation.

Cascading architectures or streaming architectures [11] lend from the design
of ALUs. The communicating processes are divided into layers that are unidi-
rectionally and fully connected to the next layer of processes. The architecture
facilitates a cascading �ow of data between these successive layers of processes.
Such an architecture is computationally very e�cient. It's very fast with a small
delay while still using a quite modest amount of silicon resources. The design
methodology for a cascading architecture becomes di�cult if the number of pro-
cesses and the number of possible data streaming applications grows large. A
consequence of necessary restrictions made during design is a lack of �exibility
and a strict dependence to given applications.

We propose to use a combination of a universally connected network and a
grid network based solutions. We call the resulting platformMICAS. An overview
of its structure is given in �gure 2. The communicating processes, called modules

in MICAS - are divided into clusters that are universally interconnected via a

183

bus. Buses in turn are connected to each other via bridges, as nodes in a grid
network. The MICAS platform forms a clustered networking architecture. One
domain is designated the master domain. It will be controlled from the outside
of the MICAS system, in the picture by a RTOS. In practice this could be an
interface to the Symbian operating system on a mobile phone.

The network can be plain wires, bluetooth, or WLAN for example. The idea
is that the exact communication between silicon-domains is encapsulated into a
socket, which is the connector between two domains. Presently the exact struc-
ture of a socket is still open, so for the examples used in this project we have
assumed that the socket is just a plain electrical connection using wires. The
�nal version of the socket will include a protocol for detecting the connection
and disconnection of a domain.

Since communication between processes is dynamic in terms of change in
actual source destination pairs, there is a need for controlling and con�guring
the connections. There is also a need to setup and control the modules. Some
architectures, especially packet based architectures like the grid network solution,
have an intimate dependency between the application data and its control. In
such a system routing data is included in each routed data packet. This implies
that knowledge of routing resides in the source of data and that routing decisions
are distributed to the nodes.

On the other hand a stream based control gives the possibility to control
data transfer separately from a third entity, separating data �ow from control
�ow. In the MICAS paradigm we have chosen to let all data communication be
con�gured and controlled from a central unit - a controller. Behavior, any routing
or other dynamic behavior of the network is centrally located. The advantage is
that any future updates or changes in dynamic behavior is easily done in one
part of the design. An additional advantage is that the dynamic behavior can
be implemented in a programmable device such as a FPGA or a microprocessor.
Updates can be done in the �eld without updating the silicon

The controlling device serves at the same time as a command interface to
any external entity. It de�nes what services the domain is providing. Note that
the set of services may be dependent on what slave domains are connected to
the master domain (e.g. a printing service is only available if a printing domain
is connected to the master domain). From a programmers point of view this
command interface acts as a hardware abstraction layer.

The canonical example we will use in the rest of the paper consists of a
simple application that streams picture data from a camera through an image
manipulator that adds a watermark to the picture to a screen. We will also use
this example to explain the programming interface of MICAS modules. A UML
diagram using the MICAS pro�le that shows the structure of this example is
given in �gure 3. The diagram is a re�nement of the UML object diagram, where
we have created custom pictorial elements for all the MICAS stereotypes in the
pro�le. At the moment we have one diagram that contains all the domains, i.e.
in the picture there are 2 domains. In the future we will add a separate domain
interconnection diagram to show the high-level structure of the system.

184

Fig. 3. The canonical example in the MICAS tool.

The application functions as follows. The camera and the image manipulator
are in a di�erent domain from the screen. We assume that the screen-domain
is the master domain that is controlled by a RTOS (the SoC_subsystem in
the diagram). From the RTOS the master domain obtains a macro-command

stream-picture (not shown in the �gure). This macro-command is a service
provided by the screen-domain MICAS component. We will ignore the discovery
of service process needed for the the screen-domain to discover that the camera-
domain is connected. The screen-domain now starts allocating streams, i.e. con-
nections on the busses. A stream may have parameters like bandwidth etc. The
needed stream on the screen-domain is the connection of the socket to the screen.
The screen is then put into a listening mode, i.e. when data will be streaming
on the bus the screen module will display it. Next the screen-domain tunnels

a macro-command stream-picture-to-socket to the camera-domains micro-
controller. The micro-controller on the camera-domain now sets up the needed
streams, from the camera to the image-manipulator and the socket, and starts
the stream. When the master-domain receives the command stop-streaming then
it starts the inverse process of tearing down the communication and stopping
the modules. A number of abstractions are involved at this level of the design.
First the components are described on a high-level of abstraction, quite a lot of
structural detail is missing and this will be added in the transformation stage.
Also the designer does not speci�ed any kind of bus protocol (streaming, block
transfer, etc.). The idea is that at this level of the design the designer will only

185

specify QoS properties, like required bandwidths. The transformation tool will
eventually be used to explore di�erent physical bus implementations.

Designing a MICAS system then consists of 2 tasks:

1. Con�guring an instance of the MICAS hardware: i.e. de�ning what domains
exist, what modules exist in a domain, and how they are interconnected with
busses.

2. Programming the services of a MICAS domain: i.e. de�ning what macro-
commands are available in which domain.

We call the resulting UML models the MICAS structural model, and the MICAS
dynamic model respectively.

From an MBD point of view (c.f. �gure 1) the MICAS platform consists of
the MICAS hardware components (modules, busses, bridges, sockets) that exist,
and the rules that govern the interconnection of these components. The act of
designing a speci�c platform instance (that can be done using the tool described
below) then is the act of architecting an application onto the MICAS platform.

3 The MICAS SystemC simulator

This section describes the MICAS SystemC [6] simulator and its constituent
components and concepts. The simulator is one possible realization of the MICAS
platform. We have made some speci�c design-choices as to the speci�c busses
that we use, and to the way the modules are interfaced with the micro-controller.
Speci�cally we postulate that all MICAS modules will interface to a bus through
an OCP interface [4], and that the all modules will reside in a segment of the
memory space of the micro-controller.

OCP is standard proposed for interfacing IP-blocks to busses. OCP is an
abstract bus-speci�cation in the sense that it speci�es the services and protocols
that the bus must satisfy, but it does not specify the physical properties of the
bus. In our simulator the physical bus is an AMBA bus [2] a bus available e.g as
the physical interface of ARM processors. Each MICAS module provides an OCP
interface. To connect it to the AMBA bus it needs to be connected trough an
OCP-AMBA converter, that translates between the OCP and AMBA signaling.
The SystemC converter modules are parameterized on the bus-width, that can
be speci�ed by the designer.

The control of modules in a domain is done by the micro-controller. Each
module has a number of control-register that reside in the memory-space of
the micro-controller at speci�c addresses. Sending a command to a module then
consists of writing to the memory location of the modules control-register. Some-
times the modules need to communicate with the micro-controller. This is ac-
complished through an interrupt mechanism. Since the number of MICAS mod-
ules in a domain is not constrained and most micro-controllers provide only a
maximum of 8 interrupts we have implemented an interrupt controller that is
parameterizable in the number of interrupts. At the moment the maximum num-
ber of interrupts is 256, which is speci�ed as a constant in the SystemC �le. The

186

MODULE
MA/SL BUFFER: NA/32

MODULE

PRI: 1MA/SL BUFFER: 32/NA

MODULE
PRI: 1 MA/SL BUFFER: 32/NA

MODULE

MA/SL BUFFER: NA/32

MODULE

PRI: 2 MA/SL BUFFER: 32/32

W: 32

socket_control_SFR_register_1 :

interrupt_SFR_register_1 :

DPRAM_1 :

interrupt_controller_1 :

display :

AHB_bus_1 :

inverter_1 :

Master_microcontroller_2 :

Socket2_1 :

sfr_bridge_1 :

module_SFR_register_1 :

Soc_subsystem :

module_SFR_register_4 :

interrupt_controller_2 :

sfr_bridge_2 :

module_SFR_register_3 :

Camera_1 :

module_SFR_register_2 :

Socket1_1 :

interrupt_SFR_register_2 :

socket_control_SFR_register_2 :

Slave_microcontroller_2 :

Image_Manipulator_1 :

bus1 :

bus2 :

socket_control_SFR_register

interrupt_SFR_register

DPRAM

interrupt_controller

Display

AHB_bus

inverter

Master_microcontroller

Socket2

sfr_bridge

module_SFR_register

SoC_subsystem

module_SFR_register

interrupt_controller

sfr_bridge

module_SFR_register

Camera

module_SFR_register

Socket1

interrupt_SFR_register

socket_control_SFR_register

Slave_microcontroller

Image_Manipulator

Bus

Bus

Fig. 4. An example MICAS con�guration

micro-controller we have chosen to work with is an asynchronous version of the
industry standard 8051 micro-controller [1].

Assume now that we have a MICAS model described at the abstraction level
described in the previous section 3. The task of the designer is the to map (i.e.
architect) this model onto the components of the SystemC library, adding the
bits and pieces that are missing. Figure 4 shows parts of the result of mapping
the system onto the SystemC library (the full mapping would be too big to �t
the page).

We will start describing the picture starting from the SoC_subsystem to
the middle-left. The SoC_subsystem represents the controlling entity for the
MICAS master domain. It communicates with the MICAS system trough a
dual-ported memory (DPRAM_1), to which it connects through an AMBA
bus (AHB_bus_1). The memory communicates with the micro-controller using
an interrupt. The data ports of the DPRAM_1 are thus directly connected to
the micro-controller, and there is a connection to an interrupt-controller (inter-
rupt_controller_1). The interrupt-controller connects to the micro-controllers
interrupt port, and to a interrupt_SFR_register that contains the informa-
tion about the interrupt number to service. This register is then connected to
a sfr_bridge that acts as a synchronous/asynchronous bridge. The sfr_bridge
connects to the di�erent control registers of the MICAS modules and sockets
(socket_control_SFR_register_1 and modules_SFR_register_1). It should by
now be obvious to the reader that this concrete con�guration can be derived au-
tomatically from the model in Figure 3. Indeed this is the case as we shall see in
the next section. A �nal point to note is that neither in Figure 3 nor in Figure 4
have we speci�ed any type for the connections (the lines), nor have we speci�ed

187

exactly to which ports in the hardware components the should be connected. It
turns out that this information can be deduced from the diagram because it is
part of the structural constraints of the MICAS pro�le.

4 The MICAS Editor

Coral [14] is a highly customizable modeling tool based on the OMG standards.
Coral is a metamodel-based tool and it allows the user to de�ne a new mod-
eling language by creating a new model. Coral supports the UML as just one
of its metamodels. It is possible to extended UML or to combine it with other
user-de�ned modeling languages. Coral implements the OMG XMI and XMI[DI]
standards for model interchange. Therefore, it is possible to interchange models
with commercial modeling tools. If the other tool supports XMI[DI], Coral can
also exchange diagrams without any loose of information.

We can create new diagram editors to edit models in Coral. This is of course
necessary when providing tool support for a new modeling language, but it is
also possible to rede�ne the diagrammatic representation of existing languages,
such as UML diagrams. This is useful when we extended the UML language
with domain-speci�c pro�les using stereotypes and tagged values. In this case,
the appearance of UML diagrams can be rede�ne based on the presence of these
stereotypes and tagged values. However, since the models are based on the stan-
dard UML, it is still possible to interchange the models with other modeling
tools. Finally, we should note that the Coral tool provides a high-level API to
query, transform and generate code from models. By using Coral we have been
able to create a tool prototype and use it to validate the approach described
in the paper. The Coral modeling tool is open source and it can be download
from http://mde.abo.fi. The MICAS editor is built as a pro�le in Coral. A
pro�le makes it possible to extend the basic functionality of Coral by adding
specialized features. These features typically include adding actions for context-
menus, toolbars and diagram editors, and can be designed to have direct access
to the models loaded into the pro�le and manipulate them at run-time. Within
a pro�le it is also possible to customize the visual appearance of the elements in
the diagram editor, making it possible for an element to be rendered di�erently
depending on the underlying model data. Due to the nature of the Coral pro-
�le mechanism, the pro�les are separated from core Coral, enabling loading and
unloading of a pro�le without losing the core Coral functionality. The MICAS
pro�le for Coral is built upon the standard UML 1.4 pro�le in Coral. This has
been accomplished without modifying the structure of the UML 1.4 language it-
self � the pro�le uses a subset of standard UML 1.4 constructs to store all model
data. This preserves compatibility with UML 1.4 tools, with the exception of
any customized rendering, should the MICAS pro�le be unavailable. However,
using this technique, there must be clear semantics of any element used in the
models.

A conceptual overview of the MICAS modeling language is shown in Figure 5.
This language is a description on a higher level, the actual constructs used when

188

owner

modelElement

*
*

interface

ports

component*
specification1

ports

type

2*

owner

specification

ModelElement

Library

MicasProject

owner

*

ComponentLink

0..1

1 Specification

Model
Container

PortType

Interface Port

Substitution

Fig. 5. A conceptual metamodel for the MICAS modeling language

creating the models are expressed using UML 1.4. The MICAS language uses
Objects to represent a component in a design, and Class for speci�cations and
ports. Component connections are speci�ed with Links. Classi�cation of MICAS
language constructs are implemented using Stereotypes. Parameters needed in
the components are speci�ed with TaggedValues. By using a di�erent MICAS
pro�le in Coral, it is possible to rede�ne the semantics and the visual appearance
of the elements and create a modeling language that internally appears as UML,
but for the user is a di�erent language.

A MICAS project consists of two parts, the library and the actual model.
The �rst part is a library that is a static model containing speci�cations for
the components used in a MICAS model. The speci�cations contain information
about the interfaces a component has in order to connect to another component
in a design. The interfaces in turn specify which ports are available and the
type of the port. Since each port has a designated role, the port type serves
as classi�cation of the port, providing information about size, direction and its
purpose in a design. This information is used to determine exactly to which
port in a connected interface in another component a port should connect to.
Additionally, a library can contain a set of substitution models that can be used
for substituting a component in a design. This step will be discussed further
below. The second part of the project is the model containing the actual design.
When creating a project, the user has access to one or more libraries that contain
components that can be used in the designs. Coral provides the ability to assign
toolbar actions to add skeleton components for the component types to the
designs. The skeleton components contain a set of default values that later can
be modi�ed. These components do not have a speci�cation by default - the
user needs to select a speci�cation from the libraries that speci�es the role of
the component in the design. When the components have been added to the

189

dpram :

int_ctrl_1_MCU_2 :

AHB_Bus :

interrupt_SFR_reg :

MCU_2 :

inv :

Sfr_bridge_mcu_2 :

MCU_2 :

DPRAM

interrupt_controller

AHB_bus

interrupt_SFR_register

inverter

sfr_bridge

Master_microcontroller

Fig. 6. The substitution model for a master micro-controller.

design, the user can then link the components together specifying component
interaction, i.e connecting the interfaces together. Since a component can have
several interfaces, Coral provides specialized links for commonly used interfaces.
Most notably, the design the user creates with the library, is a simpli�cation
of the full con�guration. The user design contains only the component needed
to determine a speci�c con�guration, additional components needed for e.g. a
speci�c micro-controller can be left out to give the user an opportunity to focus
more on the actual layout of con�gurable components. The transformation step
in the work-�ow, which is automated, takes care of additional components needed
to provide a fully detailed design that can be mapped to executable code.

The transformation is based on a set of rules that the library creator has
set up. Every rule provides a matching criteria, a set of edge relinking rules and
a substitution model. The matching criteria in our case is the type of the ele-
ment and matches only one element at a time. Edge relinking rules are needed
to re-connect the edges properly to the substitution model. Figure 6 shows the
substitution mode for a master micro-controller. When a match is found it re-
places that element with the contents from the substitution model. To avoid
loosing the information in the replaced element, the element is copied into the
substitution model. After that all the edges that were connected to the replaced
element have to be re-linked to the elements in the substitution model. The re-
sult of this relinking process can be seen in �gure 4, and was described at the
bottom of page 8. Edge relinking rules works as follows. For each substitution
rule there has to be at least one edge relinking rule. The edge relinking rules
are compared to all the adjacent edges of the replaced element. The criteria for
choosing the right relinking rule is the type of the connected element. A relinking
rule simply tells the transformator where in the substitution model to connect
the edges from the replaced element. The transformation always works on a copy
of the input model. This way the transformation doesn't destroy any of the ini-
tial information. The idea behind the transformation is to add the most basic
elements to the model. These elements are often converters from asynchronous
to synchronous signals and internal parts of the micro-controller. The elements
that the model creator adds to the model are the more complex elements that
often need user input. In most cases it is enough to apply transformations on
components in the model - however, there are some cases when we also need to
transform edges, but this case will not be discussed here.

190

MODULE

PRI: 2 MA/SL BUFFER: 32/32

MODULE

MA/SL BUFFER: NA/32

W: 32

MODULE
PRI: 1 MA/SL BUFFER: 32/NA

sc_clock MicasClk("MicasClk", 10, SC_NS, 0.5);

Bus<32> bus1("bus1");
Camera<32,32> Camera_1("Camera_1");
Image_Manipulator<32,32,32,32> Image_Manipulator_1("Image_Manipulator_1");
Socket1<32,32> Socket1_1("Socket1_1");

bus1.Clk(MicasClk);
Camera_1.Clk(MicasClk);
Image_Manipulator_1.Clk(MicasClk);
Socket1_1.Clk(MicasClk);

Camera_1 << bus1;
Image_Manipulator_1 << bus1;
Image_Manipulator_1 >> bus1;
Socket1_1 >> bus1;

Image_Manipulator_1 :

Socket1_1 :

bus1 : Camera_1 :

Image_Manipulator

Socket1

BusCamera

Fig. 7. A example code generation transformation

After running the transformation with all its rules a new model is generated
(e.g. the model in �gure 4. This model is a closer representation of the hardware
design that will be translated into SystemC modules. Now the code generation
can read this model from top to bottom and create the SystemC code. It is a
straightforward mapping of one model component per SystemC module. The �rst
thing that is generated when you run the code generation is the C++ module
declarations. After that all the edges from the model are parsed to determine all
the connections between the components. For each edge there will be a function
call to an overloaded operator� function. Inside this function all the ports that
the two component have in common will be connected. By having only one
function call per edge the main �le will be much cleaner and readable than
having all the signals connected in the same place. For each pair of component
types that are connected, there will be an overloaded operator function. To
know which ports should be connected the ports are parsed from the component
speci�cation and passed to a port matching algorithm. This algorithm compares
all ports from one component to all ports in the other component and returns the
set of connectable port pairs. The actual matching is simply done by comparing
the stereotype of one port with the stereotype of the other port. If they have the
same stereotype they are considered to match. However, only input ports can
be connected to output ports so this is also checked. A concrete example of the
result of code generation is shown in �gure 7. The �gure should be self-evident.
For each MICAS component a corresponding SystemC object is created. The
connections are set up, and a clock is created.

5 Summary and future work

We have presented a tool that allows us to generate a SystemC simulator for
a MICAS application. The starting point of the generation is a model of the
application described using the UML MICAS pro�le. The generation process
consists of a number of well de�ned transformations that add detail to this
model until it reaches a level from which there exists an 1-1 mapping onto the
concepts of the SystemC library.

191

A number of things remain to be done. The MICAS simulation framework
is not complete yet. We plan to add proper modelling of QoS concepts for the
busses, which will also imply that we have to design a routing mechanism. We
also plan to add a better programming interface for macro-commands. This will
involve the design of an action language with its own pro�le to properly intergate
it into the Coral tool. Currently we are already exploring an extension of our
techniques to the mapping of applications to both Symbian and MICAS.

References

1. 80c51 general description and datasheet. http://www.semiconductors.philips.

com/cgi-bin/pldb/pip/p87c554sbbd.html.
2. Amba overview and speci�cation (rev 2.0). http://www.arm.com/products/

solutions/AMBAOverview.html.
3. Andromda. http://www.andromda.org/.
4. Open core protocol community. http://www.ocpip.org/home.
5. Sonics' technical overview. white paper. http://www.sonicsinc.com/sonics/

support/documentation/.
6. Systemc community. http://www.systemc.org.
7. Marcus Alanen, Johan Lilius, Ivan Porres, and Dragos Truscan. Model-driven Soft-

ware Development - Volume II of Research and Practice in Software Engineering,
chapter A Case Study on Developing Protocol Processing Applications Using a
Model-Driven Approach. Springer Verlag, 2005.

8. A. Andriahantenaina. Spin: a scalable, packet switched, on-chip micro-network.
In Design Automation and Test in Europe Conference (DATE'2003), pages 70�73,
2003.

9. L. Benini and G. De Micheli. Networks on chips: a new soc paradigm. IEEE
Computer, 35(1):70�78, Jan 2002.

10. J. Liang, S. Swaminathan, and R. Tessier. asoc: A scalable, single-chip communi-
cations architecture. In IEEE International Conference on Parallel Architectures
and Compilation Techniques, pages 37�46, 2000.

11. E. Mattan. Stream architectures - e�ciency and programmablity. In 2004 Inter-
national Symposium on System-on-Chip, 2004.

12. A. V. Mello, L. Ost, N. Calazans, and F. Moraes. Evaluation of routing algorithms
in mesh based nocs. Technical report, Facultade de Informatica PUCRS - Brazil.,
2003.

13. Ian Oliver. Model based testing and re�nement in mda based development. In
Forum on Design Languages 2004, Lille, France, 2004.

14. I. Porres. A toolkit for model manipulation. Software and Systems Modeling, 2(4),
December 2003.

15. Dragos Truscan, Jõao M. Fernandes, and Johan Lilius. Tool support for uml- dfd
model-based transformations. In 1th IEEE International Conference and Workshop
on the Engineering of Computer-Based Systems (ECBS 2004). IEEE Computer
Society, 2004.

192

Tool Support for Quality-Driven Design

Jakub Rudzki1, Imed Hammouda2, and Tommi Mikkonen2

1 Solita Oy, Satakunnankatu 18 A, 33210 Tampere, Finland
2 Tampere University of Technology, P.O.BOX 553, 33101 Tampere, Finland
jakub.rudzki@solita.fi, imed.hammouda@tut.fi, tommi.mikkonen@tut.fi

Abstract. This work presents an example of quality-driven design tool
support. The tool investigated is MADE (Modeling and Architecting
Design Environment) - a pattern-based modelling tool. In the proposed
approach, a set of alternative design solutions are gathered and linked
with some quality attributes. As an example, the solutions are applied to
a design of remote interfaces with distinct quality requirements, which
are high performance and high flexibility. The tool allows to select one
of defined solutions and ensures that the design contains all required ele-
ments. It is concluded that the MADE tool provides entry level quality-
driven tool support and has potential to provide wider quality support
with extended solution library.

1 Introduction

Constant quality improvement in software production is essential not only from
a technical point of view but also as an assurance of customer satisfaction and
business success. Even though the quality itself can be perceived differently from
the end user and the development team point of view [17], in most general terms
it can be defined as a fulfilment of certain requirements imposed on a final soft-
ware product [17]. The requirements may concern many aspects of the software,
and they can be defined in terms of levels of quality attributes. For example, they
can specify performance-related requirements, security, maintainability require-
ments, etc. While all these quality attributes, defined for a particular software
system, determine its behaviour, they also impose or restrict certain design solu-
tions [4,8]. The fulfilment of the required quality attributes is not an easy task,
since many of the requirements are dependent on each other and an improve-
ment in one can deteriorate another one [7]. Therefore, it is important not only
to know the design strategies to accomplish one quality requirement, but also
the potential conflicts between the requirements.

During software production many strategies [4,6,8,20] are used to ensure that
the required quality attributes are met. The most common strategy is to verify
the requirements fulfilment at a late development stage by studying the whole
software system (or a part of it). Such strategy relies heavily on the experience of
the design team. Since most of the quality attributes are very closely linked with
the system architecture [4,8], late adjustments of once-taken design decisions
are costly and difficult to perform. For example, if a system has been designed

193

as a highly modular distributed system, it may have problems with meeting
requirement of high performance due to excessive remote communication. On
the other hand, if a system has been designed to be one monolithic piece of
software, but it is required to be highly flexible, the requirement may not be
easy to fulfil either. In all the above examples, any corrections at a late stage of
a design process would prove to be extremely difficult and costly. Therefore, early
introduction of quality attributes into the design process increases the chances
that the final design will be optimal in terms of quality requirements.

Additionally, in order to design a system in accordance with required qual-
ity attributes, the designer must know the most optimal solutions that improve
particular quality characteristics. The designer can rely on their experience or
can utilise a design tool. Finally, even when an optimal design solution is chosen
(based on experience or selected by a design tool), it is essential that the solu-
tion is applied correctly. A design tool can help to correctly implement a certain
solution also at the implementation stage. Therefore, our research problem fo-
cuses on the kind of tool support aiding the design process, implementation, and
ensuring that the final software system meets the quality requirements.

In this paper we propose a tool that assists a designer during the design
process in creating a design with constant and conscious design solutions that
have particular impact on the overall software quality. This tool allows a designer
to select proven design strategies (e.g., design patterns) that influence quality
attributes. The tool also addresses the problem of a correct implementation of the
selected solution by ensuring that essential parts of the solution are implemented.

This paper is structured as follows. In Section 2, quality attributes and re-
lated design problems are discussed. Section 3 provides an overview of a tool
supporting quality-driven design. In Section 4, the case study used for the tool
evaluation is presented. Related work is discussed in Section 5. Finally, conclu-
sions are presented in Section 6.

2 Quality Attributes

Quality attributes can be of very diverse nature. Some quality attributes can be
expressed directly in terms of numbers, while others, on the other hand, can be
difficult to define quantitatively. For example, performance can be expressed as
throughput (in number of operations per unit of time), or as average response
time (average time that is needed to complete an operation). Therefore, perfor-
mance as a quality attribute can be precisely expressed in numbers. However,
usability for example, is a very abstract concept that is difficult to define quan-
titatively. Still, even this quality attribute can be defined. For example, it can
be realised as a requirement of highly customisable user interface. In that case,
it is still possible to find a suitable design strategy that allows customising the
user interface, despite the fact that it is a feature that cannot be directly mea-
sured. Other examples of quality attributes include flexibility and modularity.
These quality attributes are linked with class or package coupling (dependency)
metrics and can be estimated already during design stage.

194

Based on the above examples, it is possible to identify the following apparent
groups of software quality attributes: attributes that are directly measurable, but
cannot be measured at the design stage; attributes that are not measurable at all;
and attributes that are possible to estimate using a set of metrics already at the
design stage. Regardless of the group a quality attribute belongs to, it is possible
to identify some design strategies that improve the attribute [2,3,8]. Although
the fulfilment of the quality-related requirements cannot be fully evaluated at
the design stage (for example performance must be measured) it is possible to
use all strategies that encourage best results for certain quality attributes.

The design of a software system brings up a few quality-related problems.
First, it is the ability to identify a correct design strategy to address a quality-
related problem. The second problem is a correct implementation, in terms of
design realisation not only coding, that contains all the essential parts of the
chosen solution. Finally, the design choices should be documented in order to
give a clear indication of chosen design strategies.

3 Design Tools

3.1 Design Tool Features

A desired tool that supports a quality-driven design process should have certain
properties that would allow it to be truly useful. The most important properties
should include:

– ability to define desired quality requirements,
– prioritisation of the requirements,
– provision of a number of proven design solutions benefiting quality attributes,
– flexibility for adding new design solutions and quality attribute definitions,
– ability to apply a chosen solution in a controlled manner,
– identification of quality attribute conflicts,
– ability to always allow the designer to have the final decision,
– ability to backtracking design decisions applied to a system.

Even though this list contains many properties that are difficult to implement
especially for a fully automatic tool, some of them are possible to address by the
tool presented in this work. The biggest benefit of a tool that would possess all
the previously-mentioned properties would be a standardised yet flexible way of
designing software ensuring that design decisions are taken with quality require-
ments in mind. This, in turn, would result in a better design and in some cases
identification of strong requirement conflicts that are impossible to solve.

The definition of design solutions that support certain quality attributes is
a complex problem. This issue can be approached in many ways. For example,
based on a set of metrics that can be estimated during the design, well-known
solutions, and even experimental data, it is possible to select design strategies
that promote particular quality attributes. At the same time, it should be con-
sidered how the solutions influence other quality attributes to identify potential

195

conflicts between quality requirements [7]. Having identified the design solutions,
they can be used to provide a number of design suggestions to a designer during
the design phase. It would be sufficient if the solutions just indicated a better
option, not in quantitative terms. The suggestions would be anyway helpful for
a designer. The suggestions could be expressed informally that design A is the
most optimised for a particular quality attribute q1 whereas design B provides
a compromised solution that have a sufficient positive influence on the same
attribute q1 but at the same time the solution does not worsen another quality
attribute q2. An extensive set of collected design solutions can be built based
on measurements or just gained experience, which can be also limited to specific
domain.

After obtaining a set of design strategies linked with quality requirements,
they would create a core part of the tool. The tool’s logic must provide the
ability to choose one solution and to ensure that it is correctly applied. The
solutions could create a structure of patterns that used one by one during the
design process would result in a full design determined by quality requirements.

3.2 MADE Tool

The ”Modeling and Architecting Design Environment” (MADE)3 [13] tool is
a design tool that allows creating patterns that correspond to certain UML
class diagram structures. An example UML diagram, the corresponding MADE
pattern, and a list of tasks are depicted in Figure 1. The figure presents two
solutions A and B, solution B has been selected and its elements are presented
with striped background. The MADE’s elements are referred to as roles (in this
case class roles), which correspond to the classes in the UML class diagram.
For the selected solution B, the abstract class B has its representation in the
pattern as role AbstractB, and the concrete implementation B corresponds to
the role BImplementation. In the context of MADE, the term pattern refers
to any configuration of roles, constrains, relations, and dependencies. A MADE
pattern can, for example, define what kind of a class should be created - its
visibility, attributes, and methods. Constrains can be applied to a method name,
for instance, so that the name must have a specific prefix. Also relations to other
classes can be defined. A class can be required to extend another class. After
defining a set of patterns they can be applied to an implementation. In that
case, the applied pattern creates a list of tasks that the implementer has to
follow. Some of the tasks are mandatory, whereas others can be optional. MADE
ensures that all mandatory tasks are completed, otherwise errors in the design
are indicated.

MADE patterns are applied to UML class diagrams. Therefore, patterns can
define any model elements that are allowed by UML, not necessarily classes. So
far MADE has been used to define complex systems in order to identify and track
possible design violations during system maintenance and refactoring [12]. If an
update of a MADE-modelled system was performed, any negative effects in other

3 http://practise.cs.tut.fi/∼mda/

196

http://practise.cs.tut.fi/~mda/�

Fig. 1. MADE patterns and UML diagram example

parts of the system would be detected. The ability of the tool to model complex
UML structures as systems of patterns qualify it as an example tool that can
support quality-driven design. Since it is possible to define patterns that apply
some constrains on a UML class diagram, a set of patterns can represent differ-
ent design solutions. The solutions for one problem should represent alternative
designs that differ only by some influence on specific quality attributes.

Having a set of design solutions and defined quality requirements, a designer
can select a solution that is the most suitable for a particular problem. In that
case, a pattern is applicable only to a part of a system, so that in each step a
designer can choose the best solution. The choice does not have to be dictated
by the same quality attribute in all cases, but the tool can give alternatives and
indicate their influence on certain quality attributes.

4 Case Study

To verify the applicability of the quality-driven tool support we used the MADE
environment as an example design tool to solve a sample design problem.

4.1 Design Problem

In order to demonstrate the benefits of a quality-driven design tool support, the
MADE tool was used to design a simple system. The example system was a sim-

197

Fig. 2. Document Version Control system architecture overview

ple Document Version Control system4. A general architecture of this system is
depicted in Figure 2. The system was meant to be remotely accessible. The qual-
ity requirements for the system were high performance for all internal operations
(document uploading, access right management, etc.) and high flexibility for the
external client operations (mostly document querying). As a consequence, two
interfaces were to be designed. One internal interface that provided the highest
level of performance and external interface that ensured high flexibility.

4.2 Solution

In order to solve this design problem using the MADE tool, a set of alternative
design solutions had been defined in terms of patterns that later could be used to
generate a real implementation. Since the problem of performance in distributed
systems has been discussed a number of times, for example, concerning the J2EE
technology [9,1,22], and additionally some empirical results have been presented
[24], it was possible to define three example alternative design solutions for
remote interfaces. The solutions were based on two well-known design patterns
Facade and Command [10]. Two solutions were direct implementations of the
design patterns, however, the third solution Combined Command was based on
the Command pattern, but provided a possibility to reduce the number of remote
calls required to complete a task. All three design alternatives are presented in
Figure 3.

In general, design patterns are used numerous times [1,22] in distributed sys-
tems; naturally their implementations must be adopted to be suitable in that
domain. In the case of J2EE, for example, the Facade can be implemented as
4 The functionality of the system itself is not relevant for the demonstration

198

Fig. 3. Alternative design solutions of a remote interface

a Session Bean that exposes service methods to the clients. The Command de-
sign pattern, however, is usually implemented as a set of Command classes that
take parameters as attributes and a method that executes the command. In that
Command design pattern implementation a client creates and initiates appropri-
ate command objects with required parameters, then the commands are passed
to the remote location (server-side) and executed. Finally, a command object
is returned to the client and then all execution results can be retrieved from
the command object. In the case of Combined Command, the design pattern
can be implemented as a simple list with command objects that are passed and
executed at a remote location. The only difference comparing to a single com-
mand is that a number of commands are executed as a result of only one method
call. In any variant of the Command solution, the solution requires an abstract
Command class with common functionality needed for command execution, a
set of Command classes with specific functionality required by the client, and a
command executor on the remote location (server-side).

After the design solutions had been defined, they had to be linked with quality
attributes that later could be used for taking optimal design decisions. Based on
experimental data [24] the Facade solution was defined as a high performance
design for remote interfaces, but with a fixed interface. The Command solution,
on the other hand, was degraded in terms of performance, but its interface was
flexible. The Combined Command solution was a compromised solution that
potentially could achieve better performance than Command and Facade, but
only if method call reduction was possible.

199

Fig. 4. MADE patterns and UML diagram for performance solution

4.3 Implementing Solutions in MADE

The design solution roles were alternative options that had to be chosen by a de-
signer. Each solution contained its description with listed benefits and drawbacks
on performance and flexibility. The design choices are depicted in Figures 4, 5,
and 6 as Choices. In order to model the solutions in MADE a starting point
defining required methods was needed. Therefore, for each solution a business
interface was defined. The interface contained all methods (services) that a par-
ticular solution had to provide. As the interface could define any services there
were no limits on the number of methods, however, since they had to be acces-
sible for clients they had to be public.

Facade-based Solution. In the case of Facade solution the relation between
the business interface and Facade implementation was straightforward in the
simplest case. Figure 4 presents facade solution with highlighted (striped back-
ground) roles that constitute the solution and mappings to UML classes. The
Facade implemented the business interface, so all methods and their signatures
remained unchanged. Therefore, in addition to mandatory role for the business
interface, the solution include facade implementation role and operation role.
A list of tasks provides information to the designer how a design should be
generated for the Facade solution.

200

Fig. 5. MADE patterns and UML diagram for flexibility solution

Command-based Solution. The Command solution, depicted in Figure 5,
could not be resolved by simple implementation of the business interface. Hence,
each service method corresponded to a Command class, and each parameter of
the service method was mapped to an attribute of the command. This mapping
was defined in MADE as a set of roles: abstract command role, concrete com-
mand role, and command executor role. The concrete command role depended on
a service method of the business interface. Each service method in the business
interface required one concrete command implementation.

Combined Command-based Solution. The Combined Command solution, pre-
sented in Figure 6, was practically identical with the Command solution. The
only difference between the two solution is that for Command Combined a com-
bined command had to be designed.

The defined design solutions were applied to solve the two design problems
related to internal and external interfaces of the example (Document Version
Control) system. The MADE design view and corresponding UML diagram in
Rational Rose with the defined solutions are shown in Figure 7. As the first
step, an internal business interface was defined, the interface contained methods
allowing for document creation, update, and access right modification. Next, a
solution that provided the highest performance was applied. Based on the pro-
vided in design solution descriptions the Facade solution was the most optimal.

201

Fig. 6. MADE patterns and UML diagram for compromised solution

After choosing the solutions, a list of tasks was created that define this solution.
In this case the list included the following main points: business interface imple-
mentation, and implementation of all methods defined in the business interface.
If any of the mandatory tasks was not resolved, the task was highlighted and an
error was indicated in the task list, as well in the design as a red dot next to the
role name. This verifying mechanism ensured that the chosen solution was cor-
rectly implemented. The external interface, which was required to provide high
flexibility, was designed in a similar way. First, the business interface with meth-
ods for document querying was defined. Next, an optimal solution was selected;
in this case Command solution was the optimal one. After the solution selection,
a list of tasks was generated by MADE. The tasks included: creation of com-
mand executor implementation (a helper class where the command classes were
executed), creation of abstract command, and finally command classes that cor-
responded to all methods of the business interface. The order of implementation
was important, the abstract command had to be defined before any command
class. The order was a logical consequence of the fact that all commands extend
the abstract command. As in the Facade case, tasks were marked as unresolved
until all tasks were completed.

A design of two interfaces was created as a result of all the above-described
steps. One internal interface was designed for high performance, and the other
external interface was designed to be highly flexible. The final design has been

202

(a) MADE design view

(b) UML class diagram in Rational Rose

Fig. 7. Remote interface implementation

203

based on two design choices dictated by defined quality requirements. Trusting
that the solutions provided the most optimal designs in terms of the quality
requirements, the final design was the optimal design considering desired quality
characteristics.

4.4 Evaluation

The example design showed that MADE tool was able to provide support for
a static design (UML class diagram) based on certain known design solutions
that could be applied to ensure desired quality levels. The presented case study
demonstrated how the tool could be utilised to solve a real design problem. The
benefits from using MADE include:

– assurance that, once chosen, a design solution will be implemented correctly
(designer must follow a list of tasks).

– Any modifications of already existing design that compromise original design
solution are identified and shown (i.e., presented as unresolved bindings).

– Additionally, the design solutions used can be highlighted on a UML di-
agram, which helps to localise the design parts responsible for particular
quality attributes.

– Finally, the MADE tool helps to document design decisions made by showing
alternative solutions that have not been used for that system.

The tool allows for much flexibility in using it; the designers are able to
create and modify existing design solutions to adjust them to particular needs,
for example, to some specific domains.

Based on the presented case, the MADE modelling environment can be con-
sidered as a tool that fulfils most of the requirements imposed on a quality-driven
support tool, specified in Section 3.1. The are naturally possible improvements
in the tool that could include more extensive set of provided design solutions
corresponding to quality attributes. Moreover, it would be desirable to include
sequence diagrams as additional diagrams used for quality analysis.

5 Related Work

The concept of a tool that would support a software development process and
allow monitoring of the software quality is not new. There are already tools that
provide support for quality attributes fulfilment during a development process.
For example, the ’Metric-Driven Analysis and Feedback’ system [25] constantly
monitors a set of metrics that correspond to certain quality attributes. The sys-
tem gives a comprehensive view on the software state and levels of particular
metrics that can be adjusted to the project needs. The metric monitoring is
beneficial if the software system is already designed correctly, meaning in a way
that does not prevent achieving the assumed quality levels. Another approach by
Janakiram and Rajasree suggests quality estimation already at the analysis stage
[16]. In that solution the quality attributes are taken into account in a very early

204

stage of software production. Both of the approaches may be complementary so-
lutions to the tool presented in this work that together could increase the overall
software quality by constant supervision at all stages of software development.

The ability to measure, or sometimes just to estimate, software quality nat-
urally is related to design decisions, which in turn have impact on quality at-
tributes. As identification of links between certain quality attributes and design
decisions is very important, it has been discussed in many publications [2,3,5,4].
The authors present various aspects of design related to quality attributes, e.g.,
architectural patterns (called attribute primitives) and their impact on specific
quality attributes. Moreover impact on additional quality attributes that are
not of main interest in particular solution is discussed. Apart for only qual-
ity attributes the problem of quality-driven design has been addressed [21,18].
Suggested solutions include subjective design quality evaluation as well as tool-
based evaluation [21]. There are also examples of quality analysis of real systems
using architectural patterns (quality attribute design primitives) [18], the analy-
sis provide additional information of real systems that can be used to create
domain-specific design solutions.

It is also worth mentioning that some of the quality aspects of software can
be modelled already at design level. For instance, performance of a system can be
modelled as an UML diagram [11] containing artefacts influencing performance.
The performance estimation is created based on empirical data, simulations, or
assumed values. All the research in this area allows for gathering existing design
solutions, as well as defining new ones, that have specific impact on software
quality, and utilising them as a base for quality-driven design tool support.

The presented example tool-support for quality-driven design relies heavily
on an assumption that the provided design solutions reflect optimal approaches
for addressing certain quality requirements. Therefore, a reliable estimation of
quality attributes for a particular design solution is vital. The quality attributes
can be defined in terms of software metrics. Especially object-oriented metrics
have been defined many times [15,19,17]. Moreover, the links between the metrics
and the quality of software are presented in many papers [14,23]. For example,
metrics for object-oriented design (MOOD) [14] define a set of metrics that are
validated theoretically and empirically, so that they provide a reliable view on
software system quality.

6 Conclusions

In this paper we introduced an approach for tool-assisted quality-driven design.
We used the approach to solve a design problem of creating a remote interface
with high performance as the main quality requirement. The tool provides three
alternative solutions that have different implications on performance. In the
proposed approach, if the quality requirements are conflicting (e.g., performance
and flexibility), the designer can manually choose a strategy that is the best in
a given situation depending on the strength of certain requirements and their
priorities. This approach allows creating designs that were optimised for specific

205

set of quality attributes. The most important benefit of this approach is that,
already at the design stage, the quality attributes are taken into account, which
in turn makes more likely that the resulting design and consequently a whole
software system will fulfil all quality requirements.

The quality-driven tool support discussed in this paper makes the design
process more quality-oriented, and the presented MADE environment is an ex-
ample tool that fulfils most of requirements for such a tool. Future work should
focus on further tool improvement. The improvements might include the ability
to analyse an existing design and point design decisions that affect certain qual-
ity attributes. Moreover, a language (e.g., quality attribute-specific role types)
allowing the definition of quality attributes and requirement conflict would ad-
ditionally enrich the approach.

7 Acknowledgements

We would like to thank all participants of the ’Software Engineering Research’
seminar, organised at Tampere University of Technology and led by Kai Koskimies,
for their comments and feedback that helped to improve this paper.

References

1. Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices
and Design Strategies. P T R Prentice-Hall, Englewood Cliffs, NJ 07632, USA,
2001.

2. Felix Bachmann and Len Bass. Introduction to the attribute driven design method.
In ICSE ’01: Proceedings of the 23rd International Conference on Software Engi-
neering, pages 745–746, Washington, DC, USA, 2001. IEEE Computer Society.

3. Felix Bachmann, Len Bass, and Mark Klein. Moving from quality attribute require-
ments to architectural decisions. In STRAW’03 : Second International SofTware
Requirements to Architectures Workshop located at ICSE’03, pages 122–130, Port-
land, OR, USA, 2003.

4. Len Bass, Mark Klein, and Felix Bachmann. Quality attribute design prim-
itives. Technical Note CMU/SEI-2000-TN-017, Software Engineering Institute
(SEI), 2000.

5. Leonard J. Bass, Mark Klein, and Felix Bachmann. Quality attribute design prim-
itives and the attribute driven design method. In PFE ’01: Revised Papers from
the 4th International Workshop on Software Product-Family Engineering, pages
169–186, London, UK, 2002. Springer-Verlag.

6. Jørgen Bøegh, Stefano Depanfilis, Barbara Kitchenham, and Alberto Pasquini.
A method for software quality planning, control, and evaluation. IEEE Softw.,
16(2):69–77, 1999.

7. Barry W. Boehm and Hoh In. Identifying quality-requirement conflicts. In ICRE,
page 218, 1996.

8. Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving a
Product-line Approach. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 2000.

206

9. Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
2002.

10. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, Massachusetts,
1994.

11. Object Management Group. UML profile for schedulability, performance, and time,
version 1.1. Technical Report formal/05-01-02, Object Management Group, Inc.,
2005.

12. Imed Hammouda. A tool infrastructure for model-driven development using as-
pectual patterns. In Sami Beydeda, Matthias Book, and Volker Gruhn, editors,
Model-driven Software Development – Volume II of Research and Practice in Soft-
ware Engineering. Springer, 2005.

13. Imed Hammouda, Johannes Koskinen, Mika Pussinen, Mika Katara, and Tommi
Mikkonen. Adaptable concern-based framework specialization in UML. In ASE,
pages 78–87, 2004.

14. Rachel Harrison, Steve J. Counsell, and Reuben V. Nithi. An evaluation of the
mood set of object-oriented software metrics. IEEE Trans. Softw. Eng., 24(6):491–
496, 1998.

15. Brian Henderson-Sellers. Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

16. D. Janakiram and M. S. Rajasree. Request: Requirements-driven quality estimator.
SIGSOFT Software Engineering Notes, 30(1):4, 2005.

17. Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

18. Anna Liu, Len Bass, and Mark Klein. Analyzing enterprise javabeans systems
using quality attribute design primitives. Technical Note CMU/SEI-2001-TN-025,
Software Engineering Institute (SEI), 2001.

19. Mark Lorenz and Jeff Kidd. Object-oriented software metrics: a practical guide.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

20. Francisca Losavio. Quality models to design software architecture. Journal of
Object Technology, 1(4):165–178, September-October 2002.

21. Mika Mäntylä. Developing new approaches for software design quality improvement
based on subjective evaluations. In ICSE, pages 48–50. IEEE Computer Society,
2004.

22. Floyd Marinescu. EJB Design Patterns. The MiddleWare Company, 2002.
23. John C. Munson and Tagi M. Khoshgoftaar. The use of software complexity metrics

in software reliability modeling. Proceedings of the IEEE International Symposium
on Software Reliability Engineering, pages 2–11, 1991.

24. Jakub Rudzki. How design patterns affect application performance - a case of a
multi-tier j2ee application. In Nicolas Guelfi, Gianna Reggio, and Alexander B.
Romanovsky, editors, FIDJI, volume 3409 of Lecture Notes in Computer Science,
pages 12–23. Springer, 2004.

25. Richard W. Selby, Adam A. Porter, Douglas C. Schmidt, and Jim Berney. Metric-
driven analysis and feedback systems for enabling empirically guided software de-
velopment. In ICSE, pages 288–298, 1991.

207

Model Driven Engineering in Automatic Test
Generation

Endre Domiczi1, Jüri Vain2

1 Mentorite Oy, Akadeemia tee 21, 12618 Tallinn, Estonia
edo@iki.fi

2 Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia
vain@ioc.ee

Abstract. The work in this paper describes test code generation from a UML
model of the System Under Test (SUT) to TTCN-3. The UML model is marked
up according to the UML 2 Testing Profile (U2TP) then transformed to a
UPPAAL model. UPPAAL is a tool environment for modeling, validation and
verification of real-time systems modeled as networks of timed automata. From
the UPPAAL model we generate TTCN-3 code skeletons. New elements in the
transformations are the usage of state diagrams and object diagrams (Test Data
Pools) as starting points for the transformations. Test generation based on state
space exploration frequently generates inefficient tests. We exploit the
UPPAAL model-checker features that can check invariant and reachability
properties. Test traces skeletons are generated using environment automata syn-
thesis. Test goals and strategies are carried over into the UPPAAL environment
as temporal and timing constraints. The generated traces are provably correct
with respect to these properties.

1 Introduction

The complexity of modern systems has increased significantly and the necessity
for thorough and systematic testing is a must. Manual test generation is error-prone,
and slow. To make test generation effective it must be automated (often called Com-
puter Aided Test Generation, i.e.CATG) and derived from the original system speci-
fication. This also ensures repeatability. Test generation based on the exploration of
the state space exploration is helpful but is often inefficient; the tests do not to cover
specific parts due to an incomplete or missing specification or at the other extreme it
is impossible to execute all the test cases due to the formidable number.

Plain UML models focus primarily on the definition of system structure and be-
havior. As is, it provides only limited means for describing test objectives and test
procedures. The need for solid testing resulted in a UML profile for the testing do-
main, the UML 2.0 Testing Profile (U2TP) [3,4].

U2TP bridges the gap between design and test by providing means for using UML
for both system modeling and test specification. This allows reuse of UML design
documents and models for testing and computer-aided test generation .

The UML Testing Profile provides support for the specification of test suites, in-
cluding test behavior and the generation of a verdict on the correctness of the test
case.

208

Using elements of the U2TP, e.g. stereotypes, the original model is “marked up”.
Later on these markings guide the mapping from the original model to test specifica-
tion model. This is analogous to the approach applied when transferring from PIM to
PSM then executable model.

The profile introduces four logical concept groups covering the following aspects:
test architecture, test behavior, test data and time

 In its present state our test generation methodology and the prototype tool focus
on test behavior and data. We assume that the test architecture is defined by some
already existing tool such as TT Workbench. Time aspects will be introduced in the
methodology as the result of ongoing research.

As a case study, the methodology will be evaluated by applying it to a UML model
of the OBSAI (Open Base Station Architecture Initiative) model.

The rest of the paper is structured as follows: After a short introduction of UML
Testing Profile in the next section mandatory and optional test aspects of UML Test-
ing Profile are discussed.

Then the transformations related to automatic test generation are described
In section 4, we will show a UML model for the software management part of a BTS
as described in OBSAI. Section 5 evaluates our testing methodology by applying it to
the UML model. Some conclusions are drawn and future work discussed in Conclu-
sion.

2 From PIM to PSM to code

We followed the path recommended by MDA and shown as applied by PathMate
in Fig. 1.

The three parts of the toolset cooperate to turn models into executable systems:
 • Transformation Maps – Generate code. C, C++, or Java software with off-the-
shelf Transformation Maps (or custom maps for other languages or specific plat-
forms)
 • Transformation Engine – The Engine transforms platform independent models
into working applications using the platform specific markups
 • Spotlight – For verify and debugginof the application logic

209

Fig.
1. A toolset for MDA [9]

3 A Case Study: OBSAI

The approach introduced in this paper is illustrated by OBSAI case-study. The
OBSAI (Open Base Station Architecture Initiative) family of specifications provides
the architecture, function descriptions and minimum requirements for integration of a
set of common modules into a base transceiver station (BTS). The example presented
here is based on the Software Management (SwM) part of the OAM&P interface at
RP1 (Reference Point 1 interface for the Control Plane (C-Plane, a.k.a. "signaling")
and Management Plane (MPlane, a.k.a. "OAM&P").) (see Fig. 2.).

Fig. 2. BTS Reference Architecture The OBSAI operation request scenario corresponds
to the "S3 Request/Response” pattern described in [12] (Fig)

210

Fig. 3. Operation Request State Model

4 A Methodology for Testing

4.1 Test generation by model transformations

Simon Pickin et al in [2] present a method for the automated synthesis of test cases
(with built in oracle in the form of test verdicts) from test objectives described as
high-level scenarios. The method was supported by a prototype tool.

The inputs to the method are:
 a set of test objectives, in a UML sequence diagram based notation,
 a UML model of the application, comprising at least a class diagram and a state

diagram for each of the main classes,
 a description of the initial state of the application in the form of a UML object or

deployment diagram.
Test cases – are represented in a UML sequence diagram based notation – exactly
defining the ordering of call sequences and associated test verdicts.
The tools applied were:
 UMLAUT: which manipulates the UML meta-model, enabling automatic model

transformation
 TGV is a test synthesis tool based on an on-the-fly and partial traversal of the

enumerated state graph of the specification.

211

We transform UML models using U2TP as markup for the purpose of model trans-
formation with the goal of test generation. In our first “manufactural” version the
U2TP markup guides encoding the transformations as Python scripts. Having tested
these transformations on our case study application(s) in the next version we wish to
use code generators. Candidates are the built-in code generators of the UML tools
used for our case study model (Poseidon/Velocity/, Enterprise Architect) or Cheetah a
Python-powered template engine and code generator. This latter has the advantage of
being vendor independent, “source forge” and gives users the flexibility and power of
the Python language. For example Cheetah lets one inherit and extend one template
from another.

The set of transformations needed for test generation in our experimental system is
following. We assume that as a starting point the SUT (System Under Test) is given
in form of UML 2 model with U2TP markup, then the syntax of UML state diagram
is transformed to Mealy machine format that carries more restricted semantics. Fur-
ther the model of SUT is converted to timed automata format of UPPAAL model
checker and is extended with its dual so called “environment” automaton and with
“observer“ automaton that detect the traces relevant to the test goal. The test trace
skeletons generated by Uppaal are further extended with concrete test data. From
those the TTCN-3 testcase scripts are finally generated. Since for conversions be-
tween UML and Uppaal models the XSLT transformation technology and standard
parsing are used we focus in the following more on semantic aspects of model trans-
formations.

4.2 A step-by-step description of the transformations

1. Create model in your UML tool.
A fragment of OBSAI case study model is depicted in Fig. 4 as a UML Statechart.
2. Export UML model from your UML tool in XMI format
3. Convert the XMI format UML model into UPPAAL format implemented in Py-

thon language.
UPPAAL [13] is an integrated tool environment for modeling, validation and verifi-
cation of real-time systems modeled as networks of timed automata, extended with
data types (bounded integers, arrays, etc.). The tool is developed in collaboration
between the Department of Information Technology at Uppsala University, Sweden
and the Department of Computer Science at Aalborg University in Denmark.
For generating the control skeletons of test traces by Uppaal model checker the test
data defined as UML object diagrams are abstracted away using predicate abstraction
[10]. It means that input/output symbols of the Mealy automata extracted from SUT
UML model denote equivalence classes of the original test data sets. That is the first
reduction step of the model state space to be explored by model checking.

212

Fig. 4. Statechart in the primary (UML) model

4. Convert Prolog representation of the SUT into UPPAAL and
add the test goals to the Prolog representation.
Our target is to synthesize the provably correct (relatively complete and sound) set

of test cases regarding the test goal provided. Soundness means that the parallel com-
position of models used for finding diagnostic traces by model checking procedure
has to be able to generate a (potentially infinite) set of traces satisfying the test goal.
For obvious reasons we restrict the test generator with goals being satisfied only with
a finite set of traces.
Such test goals (see Fig. 5.) are related to the state space exploration, for example:

- All transitions: Every specified transition is exercised once. This exercises all
states, all events, and all actions. No particular sequence is required, and any
sequence that exercises each transition once will suffice.

- All n-transition sequences: Every specified transition sequence of n events is
exercised once.

- All round-trip paths: Every sequence of specified transitions beginning and end-
ing in the same state is exercised once. The shortest round-trip path is a tran-
sition that loops back on the same state. A test suite that achieves all round-
trip-path coverage will reveal all incorrect or missing event/action pairs.

Relative completeness means that the test goals are restricted to those providing
only finite trace sets. It must be stressed that in many cases even finite trace sets are
practically undecidable. Therefore we allow practical resource (time and memory)
bounds to be specified for our test generator.

Trace generation bases on “closed world” model consisting in addition to SUT
automaton also in its dual so called “environment” automaton. The “environment”
automaton synthesized using an approach similar to that described in [8] guarantees
that all possible input sequences are presented to the SUT automaton. The third com-
ponent in the model is “observer” automaton that recognizes the SUT automaton

213

transition sequences satisfying the test goal and signals about that by reaching a pre-
defined state “target”. That way the model checking is bound to solving the state
reachability problem stated in CTL [11] as E<> observer.target.

It must be noted that because of the model construction principles described above
the query given is the same for any test generation task regardless of the goal applied.
5. Extracting test data type information from XMI; i.e. the original UML model into

TTCN-3
6. Convert the UPPAAL trace into TTCN-3.

The last step in the sequence of transformations refines the abstract test data
presented in the trace and selects the proper data item from the test data pool. The
TTCN-3 code generator extracts the test data tpe information from XMI of the
original SUT UML model and using predefined code templates generates an
executable script (Fig. 6).

Fig.5. Test goals represented in UML with U2TP stereotypes present

module SwM_TC1
{type charstring TFailure ("fileNotAvailable",
"fileIntegrityNOK");
 type record swCheckReq {
 universal charstring filename,
 integer expectedChecksum};
 type port TypePort_1 message {
 inout all};
 type component TypeComponent_1 {
 port TypePort_1 Port_1}
 testcase UpdateSoftware ()
 runs on TypeComponent_1
 {var swDownloadReq swDownloadReq_1;

214

swDownloadReq_1.sourceFilename := correctSourceFileSpec";
 swDownloadReq_1.destFilename := "DF1";
 Port_1.send(swDownloadReq_1);
 timer timer1 := 60.0;
 timer1.start;
 template swDownloadResp swDownloadResp_1 :=
 {status := "OK"}
 alt {
 [] Port_1.receive(swDownloadResp_1){}
 [] Port_1.receive {
 setverdict(fail);
 goto TC_END;}
 [] timer1.timeout {
 setverdict(fail);
 goto TC_END;}}
 template swCheckResp swCheckResp_1 :=
 {fileIntegrity := "OK}
 alt {
 [] Port_1.receive(swCheckResp_1) {}
 [] Port_1.receive {
 setverdict(fail);
 goto TC_END;}}
 template swActivateResp swActivateResp_1 :=
 {status := "OK",
 failureReason := ?}
 alt {
 [] Port_1.receive(swActivateResp_1) {}
 [] Port_1.receive {
 setverdict(fail);
 goto TC_END;}}
 setverdict(pass);
 label TC_END;}
 control {execute (UpdateSoftware());}}
 with { encode "SOAP" }

Fig. 6. TTCN-3 code

5 New elements in our approach

 We use UML state diagrams and object diagrams as starting points for our set of
transformations (test generation).

 We use ENVironment automata synthesis for generation of test traces (skeletons).
Test Goals/Objectives are of style “all transactions at least once with the length of
traces minimized” or “all traces of length n”, “ percentage n of all transactions
covered”

 Temporal and timing constraints are satisfied when generating traces with the
UPPAAL engine. The traces are provably correct with respect to properties given

215

in the test goals/strategies. UPPAAL has been chosen over SPIN, because timing
will be used in the future.

6 Conclusion and Outlook

We have been able to generate TTCN-3 scripts starting from the UML model. It
was possible to specify test partitions, test data despite lack of proper object diagram
support in UML tools.

In the future one should be able to check consistency of the object diagrams with
the original UML model. In our specific application the messages had to be simplified
because modeling data structures of messages in the tools was not sufficient.

Test goals and strategies were also specified, however not in the “primary” model,
i.e. the UML model. A “standardized” way of specifying test goals, e.g. a certain state
should be traversed n times, has to be established. This should also be changed in the
next version.

Also, code generation templates should be taken into use.

References

1. Michael Ebner: TTCN-3 Test Case Generation from Message Sequence Charts (2004)
2. Simon Pickin, Claude Jard, Yves Le Traon, Thierry Jéron, Jean-Marc Jézéquel, Alain Le

Guennec: System Test Synthesis from UML Models of Distributed Software (2002)
3. UML Testing Profile - Request For Proposal, OMG Document (ad/01-07-08), April 2002
4. UML Testing Profile, Draft Adopted Specification at OMG (ptc/03-07-01), 2003,

http://www.omg.org/cgi-bin/doc?ptc/2003-07-01.
5. Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen, and Holger Pals: From Design to Test

with UML - Applied to a Roaming Algorithm for Bluetooth Devices (2004)
6. OBSAI_RP1_v1.0; http://obsai.live.visionwt.com/
7. http://www.cheetahtemplate.org/; http://sourceforge.net/projects/cheetahtemplate/
8. Laurent Bartholdi and Zoran Sunik:Some solvable automaton groups (2004)
9. Peter J. Fontana: Effective MDA; Architecture for High Performance Systems; Pathfinder

Solutions, (2004)
10. Thomas Bally, Byron Cooky, Satyaki Das, and Sriram K. Rajamaniy. Refining approxima-

tions in software predicate abstraction. Proc. of TACAS'04 [Tenth International Conference
on Tools and Algorithms for the Construction and Analysis of Systems], Barcelona (2004)

11. Timed Automata: Semantics, Algorithms and Tools, Johan Bengtsson and Wang Yi. In
Lecture Notes on Concurrency and Petri Nets. W. Reisig and G. Rozenberg (eds.), LNCS
3098, Springer-Verlag, 2004.

12. SOAP Version 1.2 Usage Scenarios, http://www.w3.org/TR/
13. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on Uppaal In proceed-
 ings of the 4th International School on Formal Methods for the Design of Computer,
 Communication, and Software Systems (SFM-RT'04). LNCS 3185.

216

Design Profiles: Specifying and Using Structural
Patterns in UML

Imed Hammouda, Mika Pussinen, Anna Ruokonen, Kai Koskimies, and Tarja Systä

Tampere University of Technology, Institute of Software Systems
{imed.hammouda, mika.pussinen, anna.ruokonen, kai.koskimies,

tarja.systa}@tut.fi

Abstract. The concept of a design profile is proposed, integrating UML profiles
with pattern-like specification style and generative capabilities. With proper tool
support, design profiles allow the checking of design models against architec-
tural rules, and the generation of models based on existing models. Design pro-
files provide an intuitive way of specifying complex structural relationships and
configurations in models. The specification of design profiles using UML class
diagrams and existing tool support are discussed. The practical applicability of
the design profile concept is demonstrated by specifying the standard design
rules of the EJB (Enterprise Java Beans) platform, and by developing a design
environment for EJB based on these rules.

1 Introduction
A major trend in software engineering is a shift from code-centric to architecture-

centric software development. Architecture is seen as a key asset for explaining the
system structure [Joh92], for guiding the system development [JBR99], for reusing
software [Bos00], and for assessing the quality of a system in its early development
stages [CKK02]. In particular, product-line architectures [CN02] have emerged as an
effective means for reducing operational costs through reuse when developing product
variants. Companies adopting the product-line approach use and maintain a large set of
software assets that are shared by a variety of different products, concurrently devel-
oped and reused by different projects. This calls for a well-orchestrated development
process and a robust software architecture shared by the product variants.

Even though the importance of software architectures has been acknowledged,
proper mechanisms and notations for defining architectural rules and conventions in a
systematic manner and tool support linking them to detailed design models have been
missing. In principle, the architectural descriptions can be enforced on design models
in two ways: design models (or parts of them) can be generated on the basis of architec-
tural models, or existing design models can be validated against architectural models
afterwards.

The Unified Modeling Language (UML) [OMG05] has established itself in software
industry as a de facto standard for describing software models. Although UML was not
specifically aimed at architectural modeling, in practice it has become the most popular
architecture description language as well, in spite of its well-known deficiencies in this
respect (e.g. [MT00]). Using UML also for architecture design not only allows a

217

smooth shift from the architecture design to detailed design, but also allows using the
same tool environment throughout the design phases.

Profiles are UML’s built-in extension mechanism to customize UML to a certain
context, purpose, or domain (e.g. the domain supported by a product-line platform). A
profile in practice defines a set of stereotypes defining the concepts to be used in the
selected context or domain and constraints restricting the usage of these concepts.
UML profiles thus provide a mechanism to define architectural rules and conventions
relevant in the selected context. In [SeX03], Selonen and Xu present an approach in
which they have adopted UML profiles for this purpose. Their profiles are defined in
UML class diagram notation, covering both stereotype definitions and structural con-
straints. The idea is to give the structural constraints in the form of example-like dia-
grams, which show the allowed relationships with instances of stereotypes. Selonen and
Xu further propose tool support for validating design-level models against these pro-
files.

In this paper, we propose a new type of profile, a design profile, which integrates
UML profiles with generative properties. This concept is developed with two main
usage scenarios in mind: first, it can be used for checking an existing design model
against architectural rules specified in the profile, and second, it can be used for guid-
ing the construction of a new design model according to the architectural rules given in
the profile. In the former usage scenario, we generalize the approach of [SeX03] by
supporting the specification of arbitrary structural model patterns rather than just binary
relationships. If a profile is viewed as a specialized modeling language (which it indeed
is), the former usage scenario can be seen as syntax checking, while the latter usage
scenario can be regarded as an application of the idea of syntax-directed editors. We
argue that design profiles could be a first step towards powerful tool support for using
domain or platform specific architectural modeling languages based on UML, allowing
smooth and consistent transition from architecture design to detailed design.

Design profiles are defined using design forms. A design form, given as a UML
class diagram, is a description of certain structural properties that must be satisfied by
any model given as an instance of a profile. A design profile consists of a set of design
forms, and additional specifications concerning a set of design forms rather than a
single form. Design forms rely heavily on the notion of aspectual patterns [Ham04,
Ham05]. In this paper, we assume that software models are given as class diagrams. In
principle, a similar concept could be introduced for other diagram types as well, but
this will not be discussed here.

We proceed as follows. In the following section, we briefly review the use of UML
profiles for architectural conformance checking, along the lines in [SeX03]. In Section
3, we discuss the generative background of design forms. In Section 4, we introduce the
design form concept in detail, and in Section 5, we discuss the current tool support. In
Section 6, we show how design forms can be applied for specifying a design language
for EJB based applications. Related work is discussed in Section 7 and we conclude
with final remarks in Section 8.

218

2 Architectural Conformance Checking Using UML Profiles
Especially in platform-based software development, the designers are assumed to

follow strict architectural rules, constraints, and conventions implied by the platform.
Detailed design models that are in conflict with the platform architecture may result in
poor performance, hampered maintenance, inconsistent functionality, or simply unreal-
izable models. Thus, existing design models should be validated against the architec-
tural descriptions. Such conformance checks might result in a list of architectural viola-
tions found from the models. These violations should then be considered as indicators
for changes required on the models. The changes needed can be made manually or
repairing tasks could be generated based on the violation information, enabling a gen-
erative and tool-assisted way to repair the models.

Support for architectural conformance checking of existing design models allows the
designer more freedom in constructing the designs. It further allows checking the con-
formance of an existing implementation against the architectural rules, assuming that
the code is first reverse engineered to design-level models. In addition, tool support for
this approach assumes that the architectural rules and conventions are systematically
defined.

In [SeX03], Selonen and Xu present an approach in which they have adopted UML
profiles for defining architectural rules and conventions relevant in the selected do-
main. Their profiles are defined in UML class diagram notation, covering both stereo-
type definitions and structural constraints. The idea is to give the structural constraints
in the form of example-like class diagrams, which show the allowed relationships with
instances of stereotypes. Selonen and Xu further propose tool support for validating
design-level models against these profiles.

As an example, let us consider a layered architecture designed for a course repository
system. The system consists of three layers: a presentation layer that consists of GUI
components, an application layer that contains components for the course repository
management, and a domain layer containing data storage (i.e. course repository) infor-
mation. The stereotypes <<Presentation_layer>>, <<Application_layer>>, and <<Do-
main_layer>>, corresponding to the three layers, are introduced as subtypes of a sub-
system, as illustrated in the left most column in Figure 1. It is further assumed that the
stereotype <<invocation>> is introduced accordingly as a subtype of a UML depend-
ency. Simplified invocation rules defined for such a three-layered architecture are de-
picted as an architectural profile in the middle column in Figure 1: presentation layer
components can only call application layer components, which, in turn, are allowed to
call domain layer components. Namely, the profile is interpreted so that all other de-
pendencies, except of the ones explicitly defined in the profile, are considered to be
illegal. While UML profiles can only contain stereotypes, constraints, data types, and
tag definitions [OMG05], the associations in Figure 1 (the middle column) are in prin-
ciple illegal. However, they could be expressed e.g. using OCL constraints, and thus
the architectural profile can be normalized into a standard UML profile, as presented in
[SeX03, Sel05]. A design level model that is valid with respect of the layering profile is
depicted on the right in Figure 1.

219

Figure 1. A layering profile on the left and a design level model that is confor-
mant with the profile on the right

UML profiles that use UML class diagram notation are intuitive and easy to con-

struct with any CASE-tool having sufficient support for UML. They further provide the
architect and/or the designer a lot freedom in what kinds of rules and constraints she
wants to define; it is a matter of the interpretation and application of the profiles how
and where the rules are to be applied. For instance, architectural profiles can be used to
define global architecture-level rules that are to be applied for the whole design model
or more local design-level rules that are to be applied for any selected design frag-
ments.

3 Generative Model Development
In [Ham05], so-called aspectual patterns have been introduced as a vehicle for

specifying fragments of models for various purposes. Aspectual patterns rely on a gen-
eral idea of a pattern, which defines a set of roles that can be bound to model elements
and a set of constraints which define the required structural relationships and properties
of the model elements bound to the roles. Existing tool support [Ham04] allows the
specification of patterns and guides a designer to apply the structural composition de-
fined by the pattern in a model.

The pattern concept becomes a generative tool with a simple extension: a role can be
associated with the specification of a so-called default element that is automatically
generated as the element to be bound to the role, if desired. Since the default element
can be given as a parameterized template depending on the elements bound to other

220

roles, a pattern can define a complex generation of new model elements based on exist-
ing elements.

As a simple example of a generative pattern, assume that we would like to refactor a
design by applying the Facade design pattern [Gam95]. Given a set of classes B1, ... ,
Bk and their operations, we want to produce a new model where the services of the Bi
classes are accessed through a common class F (for Facade) whose operations are the
union of the (significant) operations of the Bi classes. A generative pattern yielding the
desired model transformation is given in Figure 2.

In Figure 2, operation roles are marked with dark grey, class roles with medium
gray, and association roles with light gray. The dependencies between roles are denoted
with arrows, the grey arrows stand for containment relationship. The default elements
of roles are here given by specifying the properties that are needed to generate the
elements. Note that the properties of other roles can be used in these specifications, as
long as the dependencies are followed. Assuming that the left-hand part of the pattern
has been bound to actual UML elements (shown on the lower left-hand part of the
figure), a model fragment (shown on the lower right-hand part of the figure) can be
generated automatically based on the default element descriptions, and the elements of
this fragment can be bound to the appropriate roles on the right-hand side of the pat-
tern. In Figure 2, class bindings and some of the operation bindings are shown with
broken arrows; association bindings are left out completely to simplify the figure.

A benefit of existing tool support [Ham04] for this kind of pattern concept is that the
generation can be carried out stepwise, allowing the designer to intervene in the genera-
tion process. In this way a designer may e.g. provide certain elements by hand, or edit a
generated element. The tool checks that in all cases the required properties of the
bound elements still hold.

A

p

B B'

p'

CourseManager

name =
A.name

name =
B.name

end1 = A
end2 = B

signature =
p.signature

+

*

s

CourseFacade

getCourseDescr
getStaffDescr

CourseEntity

getCourseDescr

CourseStaff

getStaffDescr

CourseManager

CourseEntity

getCourseDescr

CourseStaff

getStaffDescr

A' F

r t

end1 = A'
end2 = F

end1 = F
end2 = B'

q

signature =
p.signature

name =
prefix(A)+
"Facade"

Figure.2. A generative pattern for model transformation

221

On a high abstraction level, the concept of an aspectual pattern comes close to a
UML profile specification, especially when interpreted as in [SeX03]. A profile defines
a set of stereotypes, while a pattern defines a set of roles. Concrete model elements are
instances of the stereotypes, which corresponds to the bindings of roles to model ele-
ments. In both cases, structural constraints associated with roles and stereotypes further
limit the legal instantiation of the pattern and profile, respectively.

The unification of patterns and profiles has been studied at conceptual level in
[Sel04]. In this paper, we will go a step further and discuss the concrete realization of
such unification. An important tool-level benefit of the marriage of profiles and genera-
tive patterns is the ability to produce new models under the control of the profile. The
checking of models against profiles becomes essentially a pattern detection problem,
studied extensively in the context of recognizing design patterns (e.g. [Heu03]). We are
currently exploring the application of existing pattern detection techniques for perform-
ing automatic binding of roles, given a model and a set of pattern specifications
[Wen05].

4 Tool Concepts
In this section, we propose a set of formalisms that we use as tool concepts for achiev-
ing the two model development scenarios discussed earlier: architectural conformance
checking and generative model development. The conceptual models for the formal-
isms are given in terms of UML class diagrams.

4.1 Design Profiles

A design profile is a structural entity used to define the architectural rules and con-
straints for an arbitrary model fragment. Here, we assume that model fragments are
expressed as UML class diagrams. Figure 3 depicts the structure of design profiles. A
design profile, which is specified as a stereotyped UML package, may contain zero or
more sub-profiles. In addition, each profile consists of zero or more design forms, zero
or one global forms, and zero or one composition forms. The lifetime of the sub-
profiles and forms depends on the lifetime of the parent profile. This property is de-
picted by the containment relationship shown in Figure 3.

Figure 3. Conceptual model for design profiles

222

4.2 Design Forms

Design forms represent the core elements of design profiles. Briefly, a design form
describes an organized collection of model elements, defining both their properties and
inter-relationships.

Figure 4. Conceptual model for design forms

Figure 4 depicts a conceptual model for design forms. A design form is a collection

of hierarchically organized roles rather than concrete elements. A design form is instan-
tiated in a particular context by binding the roles to certain model elements. Each role
can be associated with a set of constraints expressing conditions that must be satisfied
by the element(s) bound to a role.

Among other properties, a metamodel is generally assumed to define a containment
relationship between the model elements. For example, a UML class may contain a
UML operation. In any binding of roles to concrete elements, the containment relation-
ships of the bound elements must respect the hierarchy of the roles.

Furthermore, the metamodels define properties for the model elements that can be
checked by constraints. Constraints may refer to the elements bound to other roles,
implying dependencies between the roles. For example, a constraint of an association
role may require that the association bound to this role must appear between the classes
bound to certain class roles, thus implying a dependency from the association role to
the two class roles.

A role is associated with a type, which determines the kind of model elements that
can be bound to the role. A role type typically corresponds to a metaclass in the meta-
model of a given notation. For example, there is a role of type UML class that corre-
sponds to the UML class metaclass in the metamodel for UML. As an example con-
straint, an inheritance constraint checks the generalization/specialization relationship
between two UML classes.

A multiplicity (cardinality) is defined for each role. The cardinality of a role gives
the lower and upper limits for the number of elements playing the role in an instantia-
tion of the design form. For example, if a class role has cardinality [0..1], the class is

223

optional in the design form, because the lower limit is 0. The other possible cardinality
values are [1..1] for exactly one concrete element, [0..n] for any number of concrete
elements including zero, and [1..n] for at least one concrete element.

4.3 Global Forms

Global forms are used to specify global constraints defined for a group of elements
within a design profile. Figure 5 depicts our solution for expressing global forms. For
class diagrams, we can define eight possible kinds of elements, whose names are given
in form of <<any*>>. For instance, anyClass is a reserved term used for specifying
global forms. Any design form element of type class becomes associated with the
global constraints defined for the element named anyClass in the global form. The
constraints themselves are specified as a UML note attached to the stereotype kind.

Figure 5. Conceptual model for global forms

4.4 Composition Forms

Composition forms are used to define overlapping relationships between individual
roles defined in different design forms. The roles can be at any level in the hierarchy of
the design form to which the composition form applies. An overlapping relationship
between two roles means that the two roles should be composed dynamically and
bound to the same model element. Yet, the two roles still keep their own role views on
the model element, e.g. different list of constraints. Figure 6 depicts how overlapping
relationships should be specified, i.e. using UML associations to relate the element
pairs.

Figure 6. Conceptual model for composition forms

In Section 6, we present concrete examples of the tool concepts discussed above.

For exploiting the tool concepts, the next section presents a concrete implementation
of a development environment for design profiles.

224

5 Tool Support - MADE
First, we give a brief introduction to the tool platform. Second, we discuss the main
components of the platform architecture.

5.1 Tool Introduction

In order to demonstrate the design profile concept, we use a prototype tool environ-
ment known as MADE (Modeling and Architecting Development Environment)
[Ham04]. The MADE platform itself is the result of integrating three different tools:
JavaFrames [Hak01], xUMLi [Aea02, PS04], and Rational Rose [Ros05]. JavaFrames
is a pattern-oriented development environment built on top of Eclipse [Ecl05]. Rational
Rose is used as a UML editor. The third component, xUMLi, is a CASE-tool-
independent research platform for processing UML models and is used for integrating
JavaFrames and Rational Rose. The MADE tool has originally been developed as a
stepwise modeling and architecting environment. The tool has been used to manage
different kinds of development scenarios [Ham05].

The primary use of the MADE tool has been to synthesize models based on architec-
tural guidelines and rules expressed using a pattern-based tool concept [Hak01].
MADE patterns are role-based structures that can be seen as an isomorphic representa-
tion of design forms. In this work, we extend the MADE environment in two ways.
First, we exploit the MADE pattern mechanism to achieve a tool infrastructure for
representing and applying design profiles. In addition, the pattern composition mecha-
nism, which comes with MADE, can be used to model composition forms. Global
forms, in turn, can be expressed as global constraints attached to MADE pattern roles.
Second, in addition to the existing generative mechanism, we augment the MADE tool
with support for conformance checking functionality.

5.2 Tool Architecture

Figure 7 depicts the architecture of the MADE environment. We distinguish between
the following components. For each component, we give the current usage, develop-
ment, and integration state.

Rational Rose GUI

 Pattern Tool GUI

Tr
an

sf
or

m
at

io
n

to
ol

Pattern engine

A
ut

om
at

ic
 b

in
di

ng
 to

ol

Ta
sk

-d
riv

en
 in

st
an

tia
tio

n
to

ol

Design
profile

Patterns Pattern
instances

Model

Events

Figure 7. Tool Architecture

225

Rational Rose GUI. Currently, Rational Rose is being used as the UML editor. The
purpose of the CASE tool is two-fold. First, it is used to specify design profiles: design
forms, global forms and composition forms. Second, it is used to manage the UML
models to which the design profiles are applied. As discussed earlier, this component is
integrated into the platform using the xUMLi research tool.

Transformation tool. This component is used to transform the specification of de-

sign profiles, modeled as class diagrams, into MADE pattern representation. At this
stage, this tool provides support for fully automatic transformation of design forms.
Composition forms and global forms, however, are currently transformed manually.
This missing feature is being developed.

Pattern engine. This is the core of the tool used to manage the binding process

based on the MADE pattern specification. The pattern engine transforms a partially
bound MADE pattern into a to-do binding list, i.e. pattern instance. The pattern in-
stance is then given to other tool components, applying the corresponding pattern to the
design model under study. The pattern engine updates the to-do binding list every time
a binding is established between a pattern role and a model element, In addition, the
pattern engine checks that the constraints of the bound roles are satisfied, and generates
corrective tasks if this is not the case. For this, this component receives events from
Rational Rose.

Pattern tool GUI. This component is used for user interaction with the MADE envi-

ronment. User interactions can be classified into three main categories: selecting the
design profiles to apply, using the selected profiles to generate design models (genera-
tive mode), and using selected the profiles to check for conformance of existing models
(conformance checking mode). A prototype for this component has been developed and
integrated in the MADE environment.

Task-driven instantiation tool. When the generative mode is selected, the pattern

engine generates a task for each unbound role that can be bound in the current situa-
tion, taking the dependencies and cardinalities of roles into account. Using this instan-
tiation tool, tasks can be performed in two modes. A role can be bound to an existing
element, or a default element is first generated according to role specification and then
the element is bound to the role. The task list gets updated after a task has been per-
formed, usually creating new tasks. This component is fully functional and integrated in
the MADE environment.

Automatic binding tool. When the conformance checking mode is selected, the pat-

tern is automatically bound to an existing design model. In some situations, however,
the user may be prompted for certain decisions, for example if the tool cannot decide
which model element to consider in a certain binding, among a list of candidate model
elements. This component is currently being developed. At this stage, a working proto-
type has been implemented but has not been yet integrated into the MADE environ-
ment.

226

6 Case Study
We have defined a simple design profile in order to guide modeling of EJB applica-

tions. Our EJB Design Profile consists of three design forms EJBLocalEntityBean,
EJBSessionBean, and SessionFacade, a global form EJBCommon, and a composition
form EJBSessionFacade. The profile hierarchy is presented in Figure 8. Design forms,
specifying a certain EJB component, can be applied individually or as a part of a design
pattern defined by a composition form. In this case study, we use EJB Design Profile in
order to model a simple Web service. We will apply a Session Façade design pattern
[Alu01] in order to construct a simple Course Repository Web service.

Figure 8. EJB design profile

6.1 Design Forms

For this case study, we have defined design forms to specify container managed Lo-
cal Entity bean and stateless Session bean components. As an example, Figure 9 shows
the Local Entity bean design form. We have used notes (attached to classes) in order to
visualize the naming properties and cardinalities and to be able to define them inde-
pendently of any particular CASE-tool. In practice, to make it more convenient to spec-
ify the properties, menu extensions in the CASE-tool could have been used. This, how-
ever, might make the properties hidden from the user and might restrict the implemen-
tation to be tool-specific.

If the cardinality differs from the default value (1..1), we use the notation ele-
ment.cardinality to specify the cardinality. To allow multiple business methods, for
example, we specify EJBBusinessMethod.cardinality=0..*. We also provide an alterna-
tive way to define the cardinalities using extended property page in Rational Rose with
the drop-down menu. The menu could be extended also for specifying the naming
properties.

227

EJBImplementation
- EJBPersistenceType = Container
- EJBCmpField
- EJBRelationshipField
- EJBPrimaryKeyFileld

+ EJBGetCmpField()
+ EJBSetCmpField()
+ EJBCreate()
+ EJBRemove()
+ EJBLoad()
+ EJBStore()
+ EJBActivate()
+ EJBPassivate()
+ EJBPostCreate()
+ EJBSetEntityContex()
+ EJBUnsetEntityContext()
+ EJBBusiness()

EJBLocalEntityHome

+ EJBFindByPrimaryKey()
+ EJBFinderMethod()
+ EJBHomeMethod()
+ EJBRemoveMethod()
+ EJBCreateMethod()

EJBLocalRemote

+ EJBBusinessMethod()

EJBPrimaryKeyClass
- EJBPrimKeyField

EJBRealizeRemote
EJBRealizeHome

EJBPrimaryKey

EJBInstantiate

EJBFindByPrimaryKey.cardrinality=1..1
EJBCreateMethod.cardrinality=1..*
EJBHomeMethod.cardrinality=0..*
EJBFinderMethod.cardrinality=0..*
EJBRemoveMethod.cardrinality=0..*

EJBCreateMethod.naming=RegExp(create.*)
EJBFinderMethod.naming=RegExp(find.*)
EJBRemoveMethod.naming=RegExp(remove.*)
EJBFindByPrimaryKey.naming=findByPrimaryKey

EJBCreateMethod.defaultName=create
EJBFinderMethod.defaultName=find
EJBRemoveMethod.defaultName=remove

EJBBusinessMethod.cardrinality=0..*

EJBPersistenceType.cardinality=1..1
EJBPrimaryKeyField.cardinality=1..1
EJBCmpField.cardinality=0..*
EJBRelationshipField.cardinality=0..*

EJBGetCmpField.naming
=get<#:EJBImplementation.EJBCmpField.i.shortName.capFirst>
EJBSetCmpField.naming =
set<#:EJBImplementation.EJBCmpField.i.shortName.capFirst>
EJBBusiness.naming =
<#:EJBLocalRemote.EJBBusinessMethod.i.shortName>
EJBCreate.naming
=ejb<#:LocalEntityHome.EJBCreateMethod.i.shortName.capFirst>
EJBRemoveMethod.naming =
ejb<#:EJBLocalEntityHome.EJBRemoveMethod.i.shortName.capFirst>

EJBCreate.defaultName=ejbCreate
EJBLoad.defaultName=ejbLoad
EJBStore.defaultName=ejbStore
EJBSetEntityContext.naming=
setEntityContext
EJBUnsetEntityContext.naming=
unsetEntityContext
EJBActivate.naming=ejbActivate
EJBPassivate.naming=ejbPassivate

Figure 9. Local Entity Bean

Naming properties can be of fixed values, expressed as regular expressions, or sim-
ply refer to elements bound to other roles. In the latter case, the naming property im-
plies that there is an implicit dependency between the roles. The naming property de-
fines the allowed values for the element bound to the corresponding role. The value of
defaultName property is used as a default name for the concrete elements when they are
generated.

The EJB 2.1 specification [EJB2.1] defines several naming restrictions for EJB
methods. In order to illustrate this in design forms, consider home method create, de-
fined in the local home interface. This method must start with the prefix ‘create’. In
addition, the method must have a corresponding bean method in the implementation
class and should be prefixed with ‘ejb’. In the design form specification, the methods
are represented using EJBCreateMethod in EJBLocalEntity Home interface and EJB-
Create in EJBImplementationClass implementation class. The corresponding naming
rules can be expressed using naming constraints EJBCreateMethod.naming = Re-
gExp(create.*), attached to EJBLocalEntityHome interface, and EJBCreate.naming =
ejb<LocalEntityHome.EJBCreateMethod.i.shortName.capFirst> attached to EJBIm-
plementationClass class. The latter constraint refers to role instance of EJBCreate-
Method and implies that for each method instance a corresponding method in the im-
plementation class must be generated. For the generated method, naming constraint is
used as default value overriding a possible defaultName defined. A role reference is
always denoted by the notation <referredRoleName>.We will also use a function to
capitalize the first letter of the EJBCreateMethod, as required in the EJB specification.
In addition to these constraints, a default method name ‘create’ has been attached. In
the same manner, we can create e.g. getter and setter methods for any attribute role with
any cardinality. As an example, we have EJBCmpField with cardinality 0..* in EJBIm-
plementationClass (Figure 9).

228

In some cases it might be useful to define more restricting constraints e.g., parameter
constraints or requiring the operation signatures to be equal. This might be essential for
more efficient use of the EJB design profile. In the scope of this example, however, we
want to illustrate the main concepts of the design profiles as well as show how they can
be used in order to capture design rules of Enterprise Java Beans.

6.2 Global Forms

To define design profile specific constraints we have defined one global form,
EJBCommon. We have attached a naming constraint to anyPackage role, presented in
Figure 10. The constraint is for ensuring that all the instantiated packages should start
with prefix ‘Course’, ‘Staff’ or ‘Student’. By adding the global constraint, we want to
restrict the instantiated applications and their subsystems to use these domain-specific
concepts.

EJBCommon
<<globalForm>>

an yPackag e

naming=RegExp(Course.*|Staff.*|Student.*)

Figure 10. Global form

6.3 Composition Forms

Session Façade, as represented in this example, is concerned with the component re-
lationships and the pattern roles are bound to a certain component, a subsystem, not
separating the remote and home interfaces. In Figure 11, the package on the left hand
side shows the form representation of Session Façade. The cardinalities define that
multiple elements can be bound to businessComponent and businessEntity roles. Ses-
sion Façade design pattern is platform-specific implying that its implementation has a
connection to a certain components in the EJB platform. sessionFaçade role is sup-
posed to be bound to a stateless session bean and a component bound to businessEntity
role should be a local entity bean. businessComponent role can be bound to any busi-
ness components from the profile or any arbitrary class. If an arbitrary class (not de-
fined in the design profile) is bound to the role no additional rules are related to it.

The package on right hand side in Figure 11 defines the composition form for Ses-
sion Facade. The composition rules are defined as role references. All the role refer-
ences are expressed as classes, where the prefix of the name defines the design form
and the postfix defines the role name. The dependency between two role references
defines overlapping roles. Composition form EJBSesionFacade defines two composi-
tion rules: (1) sessionFacade role of SessionBean design form is overlapping with
EJBSessionBean role of the EJBSession design form (2) businessEntity role is overlap-
ping with EJBLocalEntityBean role of the EJBLocalEntity design form.

229

EJBSe ssion Facade
<<compositionForm>>

SessionFacade
<<designForm>>

E JBLo cal Ent ity::EJBLo cal Ent ityB ean SessionFacade::businessEntity

EJBSession::EJBSessionBean SessionFacade::sessionFacadesessionFacade

busine ssEntit y

busine ssCompon ent businessComponent.
cardinal i ty=1..*

businessEntity.cardinal i ty
=1..*

Figure 11. Session Façade design form and composition form

The Session Façade design pattern is constructed as a composition of the three
above mentioned design forms: EJBLocalEntityBean, EJBSessionBean and SessionFa-
cade. Composition rules for patterns are defined textually using pair of pattern roles
(Figure 12). In addition to overlapping roles, pattern composition rules also define that
SessionFacade must be applied first. When the SessionFacade is applied and the over-
lapping roles are bound, new tasks will be generated. For example, when sessionFa-
cade package role is bound, the user gets a new task to bind the same package to EJB-
SessionBean role. Therefore, only one package is created and bound to both roles.

Figure 12. Pattern composition in MADE

6.4 Applying EJB Design Forms

In the current user interface Apply form and Show applied forms actions are avail-
able (of Figure 13 left hand side). Each applied design form should have a target pack-
age and a target diagram. The target diagram can be specified by ‘Select location’ -
dialog (Figure 13). The target package for the generated form instance is the parent
package of the selected diagram. After selecting the target, a new design form instance
is created and opened up into the INARI task window (on the right Figure 13). By
selecting the option ‘Show applied forms’, the user gets a dialog showing all design
form instanced applied in the current package.

230

Figure 13. Applying design forms

We have applied the SessionFacade composition pattern for constructing a simple
Course Repository Service. The Session Façade CourseService, implemented as a
stateless session bean, provides the service endpoint and encapsulates the business
components. The business components, CourseEntity and StaffEntity, container man-
aged entity beans, handles and stores the course-related data. We have added an addi-
tional value object class Course to enable efficient data transferring [Alu01]. On the
left hand side of Figure 14, the CourseService package represents the package structure
of the application. The CourseFacade package, on the right hand side, shows the inter-
nal structure of the CourseFaçade component.

 CourseFacade
<<sessionFacade, EJBSessionBean>>

CourseFacadeHome

<<EJBCreateMethod>> + create()
<<EJBRemoveMethod>> + remove()

<<EJBSessionHome>>

CourseFacadeImpl

<<EJBSessionType>> - EJBSessionType = Stateless
<<EJBReference>> - CourseLocalHome courseHome
<<EJBReference>> - CourseStaffLocalHome staffHome

<<EJBActivate>> + ejbActivate()
<<EJBBusiness>> + void addCourse(Course)
<<EJBBusiness>> + void removeCourse(int number)
<<EJBBusiness>> + Course[] findAl lCourses()
<<EJBBusiness>> + Course findByCourseNumber(int number)
<<EJBBusiness>> + String[] findAllPersonsResponsible()
<<EJBConstuctor>> + CourseFacadeImpl()
<<EJBCreate>> + ejbCreate()
<<EJBPassivate>> + ejbPassivate()
<<EJBRemove>> + ejbRemove()
<<EJBSessionContext>> + ejbSessionContext()

<<EJBImplementation>>

EJBRealizeHome

CourseFacadeRemote

<<EJBRemoteMethod>> + void addCourse(Course course)
<<EJBRemoteMethod>> + void removeCourse(int number)
<<EJBRemoteMethod>> + Course []findAl lCourses()
<<EJBRemoteMethod>> + Course findByCourseNumber(int number)
<<EJBRemoteMehod>> + String [] findAllPersonsResponsible()

<<EJBRemoteInterface>>
<<EJBInstantiate>>

<<EJBReal izeRemote>>

CourseService

CourseEntity
<<businessEntity, EJBLocalEnti tyBean>>

CourseFacade
<<sessionFacade, EJBSessionBean>>

CourseStaff
<<businessEnti ty, EJBLocalEnti tyBean>>

Figure 14. Course Repository Service

The elements instantiated from the design profile will automatically get the same
stereotype name as the corresponding role name. A stereotype indicates that a model
element is bound to a certain role and that there are some rules applied to it from the
design profile. In this example, profile stereotypes start with a capital letter and pattern
roles with a lower case e.g. <<EJBEntityBean>>, <<businessComponent>>. When
an entity bean element is bound to a business entity role, multiple stereotypes are used
and are given, for example, as <<EJBEntityBean, businessEntity>>. When an entity

231

bean is bound to a pattern role, there are two sets of validity rules to be satisfied: inter-
nal rules from the component design form and external rules from the Session Façade
design pattern that is applied. Both rules, however, can be violated when the model is
modified. The recorded binding information can then be used to maintain the model by
generating a new repairing task for every violated rule. The task is shown in the INARI
task window (on the right in Figure 13).

7 Related Work
An approach for validating UML design models against architectural rules and con-

ventions, given as architectural profiles, has earlier been proposed by Selonen and Xu
in [SeX03]. Architectural profiles are extended UML profiles specialized for describ-
ing architectural constraints and rules for a given domain [Sel05]. The structural con-
straints and rules are given e.g. in a form of a class diagram, as in design forms. A set
of conformance rules are then used to check whether a given UML model conforms to
those constraints and rules. The design models to be validated are annotated with the
stereotypes defined in the profile. This enables the conformance operations to identify
which architectural rules are to be applied for each model element. This approach has
been implemented in artDECO toolset [Aea02, PS04], which allows the conformance
checks to be run and configured. In addition, it allows listing the errors found and
browsing their sources in the models. The approach by Selonen and Xu and artDECO
tool has been applied when maintaining a large-scale product platform architecture and
real-life product-line products built on top of this platform [Riva04].

Conformance checking using design forms follows the ideas presented by Selonen
and Xu. We aim at providing support, similar to using the error browser of artDECO
toolset, for the designer to manually browse and act on the violations. In addition to
that, application of design forms allows the generation of repairing tasks based on the
violation information. The designer can then repair them by using the design form in a
generative way.

Generative approaches for constructing running systems have been commonplace
since the early days of computing. The most recent manifestation of generative ap-
proaches is MDA (Model-Driven Architecture, [OMG03]), where platform-dependent
system models are generated from higher-level models using various model transforma-
tion techniques. In principle, MDA and its accompanying technologies can be regarded
as a framework for model-based software development, analogous to compiler tech-
nologies of conventional programming languages. However, compiler technologies are
a mature, well-established area both theoretically and in practice, whereas model trans-
formations are in their infancy. Design profiles could be seen as a first, modest step in
developing the counterpart of context-free grammars for model-based software devel-
opment.

UML profiles introduce the ability to tailor the UML metamodel for different plat-
forms or domains. Enterprise JavaBeans (EJB) technology is the server-side component
architecture for J2EE (see EJB 2.1 [EJB2.1]). A UML Profile for EJB [JSR26] defines
standard mapping between EJB architecture and UML. The profile presented in
[JSR26] is, however, out of date since it supports EJB specification version 1.1. The
UML 2.0 Superstructure [OMG05] specification gives example component profiles for

232

J2EE/EJB, .NET, COM and CORBA. They only define common stereotypes and are
provided as illustration of how UML can be customized. The EJB design profile, de-
scribed in this paper, is constructed based on these three specifications.

8 Discussion
We have proposed a new kind of a UML profile, a design profile, for specifying struc-
tural rules for models expressed as UML class diagrams. Typically, such rules capture
architecture-level decisions or their implications. We have shown that a design profile
can support two central usage scenarios: checking a model against architectural rules,
and tool-supported guidance of creating architecturally correct models. A prototype
tool environment supporting design profiles has been implemented; however, the auto-
mated pattern detection support required by the first scenario is still under work
[Wen05].

The idea of design profiles can be generalized in a straightforward way for other
than class diagrams. For example, if an architecture implies certain behavioral rules,
design profiles can be given for behavioral models given as sequence diagrams. In that
case the design form notation is naturally a sequence diagram as well. However, a
particular diagram type may require specific conventions for specifying design forms,
characteristic to the diagram type. For example, in the case of sequence diagrams it
may be necessary to specify that certain messages cannot happen in a certain context,
or that certain messages have to take place in a particular order, with arbitrary inter-
vening messages. Such rules are difficult to express as sequence diagrams without
adopting special conventions. We are currently investigating the required notation for
expressing behavioral design profiles as sequence diagrams [Kos05].

Acknowledgements

This research has been financially supported by TEKES, Nokia, Plenware Group,
Solita, TietoEnator, Plustech, and GeraCap.

References

[Aea02] J. Airaksinen, K. Koskimies, J. Koskinen, J. Peltonen, P. Selonen, M. Siikarla, and T.

Systä: xUMLi: Towards a Tool-independent UML Processing Platform, In Proc. the 10th
NWPER Workshop, pages 1-15, IT University of Copenhagen, Denmark, 2002.

[Alu01]D. Alur, J. Crupi, and D. Malks: Core J2EE Patterns, Best Practises and Design Strate-
gies. Sun Microsystems Press, A Prentice Hall Title, 2001.

[Bos00] J. Bosch: Design & Use of Software Architectures: Adopting and evolving a product-
line approach, Addison.Wesley, 2000.

[CKK02] P. Clements, R. Kazman, and M. Klein: Evaluating Software Architectures – Methods
and Case Studies, Addison-Wesley, 2002.

[CN02] P. Clements and L. Northrop: Software Product Lines: Practices and Patterns, Addi-
son.Wesley, 2002.

[Ecl05] Eclipse WWW site, 2005. At URL http://www.eclipse.org.

233

[EJB2.1] Enterprise JavaBeans TM Specification, Version 2.1. Sun MicroSystems 2005. At
http://java.sun.com/products/ejb/docs.html.

[Ham05] I. Hammouda: A Tool Infrastructure for Model-Driven Development Using Aspectual
Patterns. In Sami Beydeda, Matthias Book, and Volker Gruhn, eds., Model-driven Software
Development - Volume II of Research and Practice in Software Engineering. Springer, 2005.

[Hak01] M. Hakala, J. Hautamäki, K. Koskimies, J. Paakki, A. Viljamaa, and J. Viljamaa: Gen-
erating Application Development Environments for Java Frameworks. In Proc. GCSE 2001,
pages 163–176, Erfurt, Germany, September 2001. Springer, LNCS 2186.

[Ham04] I. Hammouda, J. Koskinen, M. Pussinen, M. Katara, and T. Mikkonen: Adaptable
Concern-based Framework Specialization in UML. In Proc. ASE 2004, pages 78–87, Linz,
Austria, September 2004.

[Heu03] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe: Automatic Design Pattern Detec-
tion. In Proc. IWPC 2003, pages 94-103, Portland, Oregon, USA, 2003

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh: The Unified Software Development Process,
Addison-Wesley, 1999.

[Joh92] R. Johnson: Documenting Frameworks Using Patterns. In Proc. OOPSLA '92, pages 63-
76, Vancouver, Canada, October 1992.

[JSR26] UML/EJB Mapping Specification: UML Profile for EJB. Rational Software Corpora-
tion, 2005. At http://jcp.org/aboutJava/communityprocess/review/jsr026/.

[Kos05] J. Koskinen, K. Koskimies, T. Mikkonen, and T. Systä: Behavioral UML Profiles and
their Application, 2005. Manuscript, submitted.

[MT00] N. Medvidovic, R.N. Taylor: A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE TSE 26,1, pages 70-93, January 2000.

[OMG03] MDA guide version 1.0.1, 2003. At http://www.omg.org/.

[OMG05] The Object Management Group: Unified Modeling Language Specification, version
2.0, May, 2005. At http://www.omg.org/uml/.

[PS04] J. Peltonen and P. Selonen: An Approach and a Platfrom for Building UML Processing
Tools, In Proc. WoDiSee’04 workshop of ICSE'04, pages 51-57, 2004.

[Riva04] C. Riva, P. Selonen, T. Systä, and J. Xu: UML-based Reverse Engineering and Model
Analysis Approaches for Software Architecture Maintenance, In Proc. ICSM'04, 2004.

[Ros05] Rational Rose WWW site, 2005. At http://www.rational.com/products/rose/index.jsp.

[Sel03] P. Selonen: Set Operations for the Unified Modeling Language, In P. Kilpeläinen and N.
Päivinen (eds.), In Proc. SPLST’03, pages 70-81, Kuopio, Finland, June, 2003.

[SeX03] P. Selonen and J. Xu: Validating UML Models Against Architectural Profiles. In Proc.
ESEC 2003, pages 58-67, 2003.

[Sel05] P. Selonen: Model Processing Operations for the Unified Modeling Language, doctoral
dissertation, Tampere Univ. of Tech., Finland, 2005.

[Wen05] S. Wenzel: Automatic Detection of Incomplete Instances of Structural Patterns in
UML Class Diagrams, 2005. Manuscript, submitted.

234

Visualizing and Comparing Web Service Descriptions
in UML

Juanjuan Jiang, Juha Lipponen1, Petri Selonen, and Tarja Systä

Tampere University of Technology, Institute of Software Systems
juanjuan.jiang@tut.fi, juha.ta.lipponen@nokia.com,

{petri.selonen, tarja.systa}@tut.fi

Abstract. Web services are described and located using the Web Service
Description Language (WSDL). While considerable tool support is available
for generating WSDL descriptions from existing service interfaces, these tools
may differ in how the generation is done. During the evolution of the service,
its interface may also change, requiring the generation of a new WSDL
description as well. Consequently, it is important to understand the WSDL
descriptions and to be able to compare them. In this paper we present an
approach to analyze and compare WSDL descriptions at UML level. We show
the applicability and usefulness of the approach with two case studies. We first
use the approach to compare tool support available for constructing Web
services in terms of WSDL descriptions they generate for the same example
Web service. In the second case study we explore and compare two different
versions of a particular Web service and its interface.

1 Introduction

Technologies supporting the construction of distributed systems, such as CORBA,
DCOM, and RMI have traditionally been used for system-to-system communication.
However, these technologies have not completely reached the goal of allowing any
systems to communicate with each other. Instead, these technologies are more or less
middleware, platform, or language dependent. The next step towards this goal was the
introduction of the Web service concept. Web services are software systems designed
to support interoperable machine-to-machine interaction over a network [23]. They
aim at making the information exchange easy by providing a way to integrate systems
loosely and independently from the platforms and programming languages used. In
the last couple of years the interest towards Web services has rapidly increased, both
from the research and from the business perspective.

Web services use XML-based standards such as Web Service Description Lan-
guage (WSDL) [24] and Simple Object Access Protocol (SOAP) [25]. WSDL is an
XML format for describing network services as collections of communication end-
points capable of exchanging messages. It is the current standard way to describe and
locate Web services. Thus, WSDL can be seen as a key for Web service interopera-

1 Currently working at Nokia

235

bility. The cross-platform interactions, in turn, are handled using SOAP. Although
SOAP and WSDL are still under development, they have been generally accepted as
the basic technology to be used in Web services. Even though there is a general
agreement on these standards, many challenges and problems still exist. First, these
standards are constantly evolving, yielding to e.g. version problems. Second, the
specifications contain many open and optional issues, which allow a variety of differ-
ent ways to use them in implementations.

A lot of tool supports are currently available to construct Web services. Many Web
service toolkits allow automatic generation of WSDL descriptions from existing in-
terface implementations to be exposed to Web service clients. These approaches are
used especially to create RPC-style (Remote Procedure Call) interfaces for Web ser-
vices. In these approaches the designer does not really have a control on how WSDL
descriptions are constructed. Furthermore, when WSDL descriptions are automati-
cally generated, they often simply reflect the existing (e.g. Java) interface and do not
really consider the client side. Even though being an easy way to develop the inter-
face definition, the costs come with the inflexibility: the evolvement of service inter-
face often requires changes in WSDL documents, which in turn may require changes
in clients’ ends. Thus, it is important to understand the WSDL descriptions and to be
able to detect changes in them. Moreover, the tool support available varies in how the
WSDL generation is done. For instance, the bindings to the transport mechanisms or
types used in operation descriptions may vary. Therefore, it is useful to be able to
compare the different tools with respect of how they generate the WSDL descriptions.

In this paper2 we present an approach that provides UML-based [20] support to
visualize and compare WSDL descriptions. This is enabled by tool support for trans-
forming WSDL documents to UML representations [8] and by applying set opera-
tions for comparing UML diagrams pair-wise [21,17]. Using the UML class diagram
notation, the service descriptions are easy to comprehend by a software engineer.
The results of the application of the set operations are also visualized as UML class
diagrams: colors are used to highlight the shared parts and parts that belong to one
model but not the other.

The proposed approach can be used e.g. to compare Web service tool support. We
present a case study, in which we have developed the same service using four differ-
ent commonly used toolkits. We will show that even in the case of a relatively simple
Web service, the generated WSDL documents vary. A short summary of the approach
is characterized by the authors in [7].

The proposed approach can also be used to analyze the evolution of a Web service
or changes due to supporting different versions of Web service standards (WSDL and
SOAP) or different binding mechanisms used. We have used the approach to com-
pare two WSDL documents generated from two versions of the same Web service.
Since changes in WSDL documents may require changes in the client side, it is im-
portant for the clients to know what has been changed in the WSDL document. Our
approach provides a way to visualize these differences. The engineer can then easily
recognize the points of possible changes and conclude whether changes in the client
side are needed.

2 This paper is an extension of [7]

236

2 Approach and Tool Support

The introduced tools are built on top of xUMLi [1,15], a CASE-tool independent
software platform supporting the development of various kinds of UML processing
facilities. It allows users to build arbitrary UML model processing operations and to
combine them using a scripting mechanism to construct more complicated operations.
The tools are implemented as xUMLi compliant COM components.

The workflow for comparing different Web services descriptions at UML level
starts from transforming WSDL documents to UML views. These views contain
redundant UML data in most cases; for every occurrence of a certain WSDL element
type (e.g. port) a new class representing this instance is created. Thus, these views are
abstracted to efface instance information and to capture the logical structure of the
documents. Comparisons between the views and/or abstract views are then carried
out using set operations that identify and visualize the differences in them. The result-
ing differences are finally exported to a UML CASE-tool. We currently use Rational
Rose. These differences between UML models are distinguished by different colors
in Rose. Exploring the UML diagrams, users can easily conclude differences between
WSDL documents.

2.1 UML-based Reverse Engineering of WSDL Documents

A WSDL document in the proposed approach is first transformed into a UML class
diagram using an extended UML profile that describes the structure of WSDL docu-
ments [8]. The profile defines the types of elements that may occur in WSDL docu-
ments using stereotypes. The allowed relationships among the elements are also de-
fined in this profile. All the stereotypes, except of «Extension», represent key ele-
ments specified in WSDL, SOAP, XML Schema, and WS-I specifications. Stereotype
«Extension» is designed for extensible elements that are currently not defined in the
profile. Elements in WSDL document are modeled as classes in the UML class dia-
gram, and attributes of the elements are placed as attributes of the corresponding
classes. The stereotypes represent the qualified names of the elements and are con-
cluded from the class name and the namespace definition, following the WSDL stan-
dard and WS-I profile practices. For instance, even though any namespace prefix can
be used and the choice is not semantically significant, WS-I Basic Profile uses prefix
“wsdl” for namespace http://schemas.xmlsoap.org/wsdl/. Finally, the aggregation
relationships are formed based on element-subelement relationships in the WSDL
document.

As an example, let us consider a particular Web service InstantMessageAlert by
BindingPoint to explain how WSDL document is transformed to UML models. This
service is for sending instant messages. The WSDL document of a free version of
InstantMessageAlert3 Web service allows up to 3 messages per device per day. The
generated view (UML class diagram) contains quite a lot of classes (263) and associa-

3 Available at http://www.bindingpoint.com/ws/imalert/imalert.asmx?wsdl

237

tions (262). To save space, Figure 1 presents a corresponding UML class diagram
only including service and port content with some of the attributes omitted.

Fig. 1. A partial view of a WSDL of InstantMessageAlert service

Fig. 2. A part of an abstract view for a WSDL of InstantMessageAlert service

Since this approach uses stereotypes specified in the WSDL profile, the view typi-

cally has many classes with the same stereotype. For instance, in Figure 1, there are
several classes that all have a stereotype «wsdl:port». The abstraction operation aims
at constructing a class diagram that no longer focuses on these individual classes, but
rather illustrates what kinds of classes (identified by stereotypes) are used and how
many times and how these different types of classes relate. Three principles are used
when composing an abstract view of the (possibly reverse engineered) detailed UML
class diagram representation of the service description. These principles are applied
in consecutive steps:

i. classes having the same stereotypes are mapped to one class with the
shared stereotype;

ii. associations are mapped with the same association in the abstracted view,
if the corresponding ends of the associations are joint according to the
principle in step (i);

iii. multiplicities of associations are defined according to the times of ap-
pearances of the associations mapped to it;

iv. the stereotype is changed to equal the class if needed; and
v. attributes are removed.

Following the rules of abstract operations, the view in Figure 1 is transformed to

238

an abstract view shown in Figure 2. The entire abstract view includes 27 classes and
33 associations. Comparing with the low-level view, the abstract view is compressed
and reduced by 236 classes and 229 associations.

2.2 Set Operations on UML Diagrams

UML diagrams can describe a system from different perspectives, on different levels
of abstraction, and at different stages of software development process, making them
dependent on each other. The dependencies can be exploited using UML set opera-
tions [17]. Set operations like union, intersection, and difference are binary operations
that on the basis of two UML diagrams of a particular type produce a new UML dia-
gram of that same type. The connectivity properties of the operations allow them to
be combined into more complex expressions (e.g. symmetric difference). The opera-
tions can be used for merging the modeling artifacts produced by several designers
and to support incremental software development. They also provide a mechanism for
composing and decomposing of models according to different concerns. Moreover,
they provide a way to improve model comprehension as the designers and stake-
holders can compare and slice models according to different viewpoints, especially
when accompanied with suitable visualization tools (e.g. coloring).

The set operations are based on deriving a correspondence relationship among ele-
ments that are seen to represent the same semantic concept. Correspondence is used
as a criterion for resolving the possible conflicts between the model elements (e.g.
inconsistent multiplicities), and as a basis for performing the actual operation. Obvi-
ous correspondence criteria include the type (metaclass) and name of the model ele-
ments, and a repository identifier when available. In addition, the context of the
model elements specifying their semantics is required to be corresponding. The con-
text can comprise, for example, the end elements of a relationship, or a composite
element (e.g. class) of part elements (e.g. attribute).

The basic definitions offer a starting point for applying whatever rules and heuris-
tics might be available for the given domain. While the correspondence definitions
can be arbitrary complex, in practice the way humans use identifiers makes names
and types of the model elements a very useful correspondence criterion. The de-
scribed approach works on static models, and static structure models in particular.
Depending on the naming scheme used, it can be also used on instance-level structure
diagrams.

In the context of this study, the operations are used for comparing the UML mod-
els representing different WSDL documents against each other. By visually highlight-
ing their intersection and difference against their union, the user is provided an intui-
tive way for observing the commonalities and variations between the models. A con-
crete implementation for the operations is presented by van der Ven [21]. The set
operations have been earlier applied when comparing UML-based reverse engineer-
ing methods provided by different CASE-tools [9].

When applying the set operations for UML-level Web service descriptions, the
correspondence relationship is defined as follows:

239

i. two classes are corresponding, if their names are matching (string com-
parison), and

ii. two aggregation relationships are corresponding, if their end elements
(aggregating and aggregated classes) are corresponding.

Note that two classes are matched only by their names, not considering their
stereotypes. Since the abstraction operation changes the stereotype to equal the class
name if needed, the set operations might find more matches when applied to compare
abstract level model than when applied to compare low-level models. An example of
this is shown later. Note also that in the current version the multiplicities of aggrega-
tions are ignored.

3 Comparing Web Services Tool Support

In our first case study we compare popular toolkits supporting the construction of
Web services by implementing the same example Web service using four different
toolkits and by comparing the generated WSDL documents. Tools used in this case
study all support, at least, two basic methods to create Web services. Developer can
point out the interface functions of a Web service and then use a tool to generate the
WSDL document. This method is referred to as “Code to WSDL” in the sequel. Al-
ternatively, she can write manually the WSDL document and then use a tool to gener-
ate the necessary code for a Web service. This method is referred to as “WSDL to
code” in the sequel. “Code to WSDL” is usually a better choice for developers who
are unfamiliar with Web services, since it is an easy and fast method and the devel-
oper does not need to be familiar with details of WSDL. However, “code to WSDL”
has also downsides that may cause interoperability problems. When WSDL descrip-
tions are automatically generated, they often simply reflect the existing code interface
and do not really consider the client side. Comparing with “code to WSDL”, “WSDL
to code” is a safer choice since the developer has the control on the construction of
the WSDL description. Therefore, such interoperability problems are less likely to be
created by accident. However, this approach is typically less efficient from the de-
signer’s point of view. Moreover, she should have enough knowledge for construct-
ing WSDL documents. In this case study, the “code to WSDL” approaches supported
by chosen Web service toolkits are compared. The WSDL documents they generate
for the same example Web service are compared and the differences are analyzed.

3.1 Tools Used in the Case Study

Table 1 shows the tools used in the case study. All the toolkits have been available for
some time, and they all follow basically the same way of constructing WSDL docu-
ments when using the “Code to WSDL” approach. IBM’s and Oracle’s tools use
components made by Sun Microsystems, and both of them use Java as their pro-
gramming language. When using Microsoft’s toolkit, the developer can choose from

240

multiple programming languages. For this case study C# was chosen. WSDL docu-
ments were generated using the default options of these tools.

Table 1. Tools used in the case study

Tool Developer Version Progr. lang.
.NET Framework [11] Microsoft 1.1 C#
Java Web Service Developer
Pack [19]

Sun Microsys-
tems, Inc.

1.3 Java

Application Server Contain-
ers for J2EE 10g [13]

Oracle 1.0.3.0
(developer
preview)

Java

WebSphere SDK for Web
Services [6]

IBM 5.1 Java

3.2 Implementing a Sample Web Service

JWSDP, WSDK and OC4J offer basically same kind of support for “code to WSDL”
method. The developer first constructs the interface class of the Web service. Based
on the information on the interface class, a tool then generates a WSDL document
and the binding classes for the server program and the implementation of the Web
service. .NET has a bit simpler “code to WSDL” process from the point of view of
the developer. She only points out the functions (by adding a [WebMethod] mark on
them) to be included in the interface of the Web service. The WSDL document itself
is generated dynamically by a request of a client.

The implemented Web service gives a client a chance to get information about
events that can happen in the stock market. The Web service needs the following
information from the client: an event (e.g. rate of a certain stock) and a connection
(e.g. email). After this the Web service checks once in a while, if the event has oc-
curred. If it has, the connection is used to inform the client.

StockEventInterface

getArrayOfEvents() : String[]
getArrayOfConnections : String[]()
makeEventForUser(int userID, Message event, Message Connection) : String
getEventMessage(int eventID) : Message
getConnectionMessage(int connectionID) : Message

Fig. 3. An interface of the implemented Web service

Figure 3 shows the interface of the Web service. The functions available have

varying return and parameter types, namely, string, integer, and arrays. There is also a
developer-defined bean type custom class (Message in the interface in Figure 3),
which is a class with get and set operations. This way we hoped to find as many of
the differences that the toolkits make when constructing the WSDL document as
possible. At the code level, the only difference among the implemented Web services
is that .NET did not add the set and get operations for the variables of the custom

241

class to the WSDL document. Instead, the developer has to define the custom class
variables public if she wants them to be included in the WSDL document.

3.3 Differences in WSDL Documents

Table 2. Class-level differences in abstract views

Tool .NET JWSDP OC4J WSDK
.NET 0 1 1 1
JWSDP 4 0 3 4
OC4J 1 0 0 1
WSDK 0 0 0 0

The generated WSDL descriptions are transformed to UML class diagrams (views)
using WSDL2UML operation. They are further abstracted (abstract views) to visual-
ize the logical structure of the descriptions in a more compact form. Comparing dif-
ferent WSDL documents follows the workflow described in section 2. The set opera-
tions highlight the discovered differences when applied to two views or two abstract
views. Crosschecking of the results of the application of the set operations on the
abstract views are listed in Table 2. The amount of different classes (i.e., elements in
the WSDL document) found are listed so that a number of a cell indicates how many
elements are found from the abstract view constructed from a WSDL document gen-
erated by a tool naming the row but not found from the abstract view constructed
when using a tool naming the column. For example, the cell whose row is named
“JWSDP” and column is named “.NET”, means that there are four elements in the
WSDL document generated by JWSDP tools (called WSDL_JWSDP in what fol-
lows), which are not in WSDL document generated when using .NET toolkit (called
WSDL_.NET in what follows).

 Fig. 4 shows the merged abstract views generated when using JWSDP and .NET
toolkits. Green elements (middle grey in the picture) are common to both of the ab-
stract views, red elements (dark grey in the picture) are not included in WSDL_.NET,
and yellow elements (light grey in the picture) are the ones that are not included in
WSDL_JWSDP. There are obviously also differences in aggregations; the differing
classes (red and yellow) are aggregated to other classes. For simplicity, the multiplic-
ities are left out.

WSDL_JWSDP has four elements that do not occur in a WSDL_.NET. Three of
these elements, namely xs:complexContent, xs:restriction and xs:attribute, are gener-
ated to help the client side developer by providing some attributes, for example ar-
rays, in a way that they can be used directly, not via a custom class. When using the
other toolkits, the client side developer has to get the array attribute from a custom
class with a get operation, which makes programming a bit more complicated.

Oracle and JWSDP toolkits added an import element, which was not done by the
other case study tools. This element was used to import the SOAP encoding
(http://schemas.xmlsoap.org/soap/encoding/). .NET toolkit added this encoding in the
wsdl:definition element, but the WSDK toolkit did not add the encoding.

242

xs:attribute
(from JWSDP_Abstract)

<<xs:attribute>>

xs:restriction
(from JWSDP_Abstract)

<<xs:restriction>>

xs:sequence
(from JWSDP_Abstract)

<<xs:sequence>>

xs:complexContent
(from JWSDP_Abstract)

<<xs:complexContent>>

xs:element
(from JWSDP_Abstract)

<<xs:element>>
xs:import

(from JWSDP_Abstract)

<<xs:import>>

xs:complexType
(from JWSDP_Abstract)

<<xs:complexType>>
wsdl:input

(from JWSDP_Abstract)

<<wsdl:input>>
wsdl:output

(from JWSDP_Abstract)

<<wsdl:output>>

xs:schema
(from JWSDP_Abstract)

<<xs:schema>>

wsdl:part
(from JWSDP_Abstract)

<<wsdl:part>>
wsdl:operation

(from JWSDP_Abstract)

<<wsdl:operation>>

wsdl:types
(from JWSDP_Abstract)

<<wsdl:types>>

wsdl:message
(from JWSDP_Abstract)

<<wsdl:message>>
wsdl:portType

(from JWSDP_Abstract)

<<wsdl:portType>>

soap:binding
(from JWSDP_Abstract)

<<soap:binding>>

wsdl:definition
(from JWSDP_Abstract)

<<wsdl:definitions>>

soap:operation
(from JWSDP_Abstract)

<<soap:operation>>

soap:body
(from JWSDP_Abstract)

<<soap:body>>

wsdl:service
(from JWSDP_Abstract)

<<wsdl:service>>

soap:address
(from JWSDP_Abstract)

<<soap:address>> wsdl:binding
(from JWSDP_Abstract)

<<wsdl:binding>>

wsdl:binding.operation
(from JWSDP_Abstract)

<<wsdl:binding.operation>>

wsdl:binding.operation.input
(from JWSDP_Abstract)

<<wsdl:binding.operation.input>>
wsdl:binding.operation.output

(from JWSDP_Abstract)

<<wsdl:binding.operation.output>>

wsdl:port
(from JWSDP_Abstract)

<<wsdl:port>>

Extension
(from NET_Abstract)

<<Extension>>

Fig. 4. An abstract UML model illustrating the differences in the WSDL documents generated

by JWSDP and .NET toolkits

WSDL document generated by the tool that comes with the .NET toolkit included

something extra, which was shown in the abstract model as Extension element. When
looking at the concrete model we found out that .NET toolkit adds SOAP 1.2 support
automatically. This can be concluded when applying the set operations to low-level
views. A part of the views is shown in Figure 5. The coloring is the same as one used
in Figure 4. Only two corresponding classes were found: soap:address and
wsdl:definitions. The rest of the elements belong only to the WSDL document gener-
ated by .Net tools. The reason for this is the class names in these low level models
differ, mostly by the prefixes used. Other case study tools did not in charge of SOAP
1.2, at least not automatically. Thus, Web services constructed by .NET can be ac-
cessed with both 1.1 and 1.2 versions of SOAP.

4 Analyzing WSDL Evolution

In our second case study we analyze and compare WSDL documents composed for
two versions of InstantMessageAlert Web service by BindingPoint; a free version
(InstantMessageAlert) and an advanced version requiring a license key (InstantMes-
sageAlert Pro). We applied our approach to study what kind of and how many differ-

243

ences exist in the WSDL descriptions. The free version has been introduced in Sec-
tion 2.1 and a part of the view is shown in Figure 1. The advanced version4 allows up
to 3000 messages per device per month.

soap12:body ..
(from NET_Concrete)

<<Extension>>
soap12:body ...

(from NET_Concrete)

<<Extension>>

soap12:operation.
(from NET_Concrete)

<<Extension>>
wsdl:input...
(from NET_Concrete)

<<wsdl:binding.operation.input>>
wsdl:output.
(from NET_Concrete)

<<wsdl:binding.operat ion.output>>

wsdl:operation.......
(from NET_Concrete)

<<wsdl:binding.operat ion>>

wsdl:binding.
(from NET_Concrete)

<<wsdl:binding>>

soap:address
(from JWSDP_Concrete)

<<soap:address>>

wsdl:port
(from NET_Concrete)

<<wsdl:port>>

wsdl:def initions
(from JWSDP_Concrete)

<<wsdl:def initions>>

wsdl:serv ice
(from NET_Concrete)

<<wsdl:serv ice>>

soap12:address
(from NET_Concrete)

<<Extension>>

wsdl:port.
(from NET_Concrete)

<<wsdl:port>>

Fig. 5. Part of the concrete UML -model of the WSDL document generated by the tool that

comes with the .Net

Table 3. Attribute differences discovered in WSDL documents of InstantMessageAlert and
InstantMessageAlert Pro

Classes with at-
tribute differences Free version Advanced ver-

sion
wsdl:port name="InstantMessageA

lertSoap"
name="InstantM

essageAlertPro-
Soap”

wsdl:port bind-
ing="tns:InstantMessageAle
rtSoap"

bind-
ing="tns:InstantMes
sageAlertProSoap

soap:address loca-
tion="http://www.bindingp
oint.com/ws/imalert/imalert
.asmx"

loca-
tion="http://www.bi
nding-
point.com/ws/imaler
tpro/imalertpro.asmx
"

Obeying the rules used in the transformation of the free version, the advanced ver-

sion is transformed to a view and an abstract view. Comparing abstract views by

4 located at http://www.bindingpoint.com/ws/imalertpro/imalertpro.asmx?WSDL

244

applying the set operations, we did not find any differences in classes nor associa-
tions. We further compared the views to detect detailed differences. As a result, set
operations highlight classes in which attribute differences occur. Table 3 lists the
attribute differences existing in classes wsdl:port and soap:address, meaning that
there are attribute differences in the corresponding elements in the WSDL documents.

Let us assume a scenario, in which the client side uses currently the free version
but intends to employ the advanced version. An interesting question in this case is:
what kinds of conditions require client applications to be modified when sending
messages to InstantMessageAlert Pro? As a starting point we compared the abstract
views and found no differences. We therefore know that the advanced version still
supports SOAP and HTTP. By examining the transport binding mechanism of
WSDL and the structure of HTTP and SOAP messages, we noticed that certain types
of changes in WSDL documents require modifications in the client side. We next
discuss these conditions, separately considering SOAP and HTTP aspects.

SOAP binding defines how SOAP messages are to be carried within or on top of
another protocol. SOAP message can e.g. be embedded in HTTP requests or re-
sponses. In some cases, changes in WSDL documents require corresponding modifi-
cations in HTTP requests or responses. In this paper, we only discuss the modifica-
tions of HTTP requests. We noticed that the client side should be modified in fol-
lowing cases:

1.1 HTTP request line should be updated if differences exist in attributes location
of soap:address elements.

1.2 HTTP line SOAPAction should be updated if differences exist in attribute soa-
pAction of soap:operation elements. SOAPAction field can be used to indicate
the intent of the SOAP HTTP request. In SOAP 1.1, SOAPAction field is man-
datory but in version 1.2 this feature was made optional.

1.2 Elements in the SOAP body should be updated if differences exist in attributes
type or element of wsdl:part elements.

1.4 Wrappers of elements in SOAP body should be updated if differences exist in
the attributes style of soap:operation elements, for instance, the value of attrib-
ute style is changed from “document” to “rpc”.

We further noticed that HTTP request line, in turn, should be changed in the fol-
lowing situations:

2.1 Differences exist in attributes location of http:address elements. For example,
the value of the location attribute for InstantMessageAlert is
“http://www.bindingpoint.com/ws/imalert/imalert.asmx”, while for InstantMes-
sageAlert Pro it is
“http://www.bindingpoint.com/ws/imalertpro/imalertpro.asmx”. Therefore,
when the client uses “HTTP GET” to request for sending a message to Instant-
MessageAlert Pro, the request line should be changed from “GET
/ws/imalert/imalert.asmx/…” to “GET /ws/imalertpro/imalertpro.asmx/…”.

2.2 Differences exist in values of attributes verb of http:binding elements. For in-
stance, the value of verb is changed from “POST” to “GET”.

2.3 Differences exist in values of attributes location of http:operation elements.
2.4 Differences exist in attributes type or element of wsdl:part elements.

245

As mentioned above, based on the abstract view comparison, we know that the
basic WSDL document structures are same. The differences are found, however,
when comparing the views. They exist in attributes of elements wsdl:port,
soap:address, wsdl:portType, wsdl:service etc. After exploring the differences we
found out that only few of the differences meet some of the conditions above. The
conditions met are 1.1 and 2.1. That is to say, client side just needs to modify pieces
of code where HTTP request line in either SOAP or HTTP messages is generated.

5 Related Work

Web service evolution has not been intensively researched, which can be due to the
fact that large-scale Web service deployment is not yet very common. Managing the
evolution of small-scale Web services is possible without specific tool support.

The evolution and versioning of Web services has been addressed by Wilde in
[22]. Wilde proposes an approach to both deal with extensions to Web service vo-
cabulary and describe the semantics the extensions. The latter one enables forward
compatibility of Web services: older versions of the Web service in question can use
the semantics descriptions to dynamically adopt to a later version of the service. The
semantics of the extensions are described using a declarative language. While the
problem domain comes close to the one we discuss in the second case study (Section
3.2), our approaches differ considerably. We do not aim at describing the semantics
of changes in a case of a particular Web service. Instead, we provide a general pur-
pose visualization technique that helps the user to easily identify the changes, based
on which she can conclude the sources and semantics of them. We provide support
for both comparing the logical differences and the detailed differences between two
WSDL instances.

We are not aware of approaches specifically targeted to visualizing the evolu-
tional aspects of Web service descriptions. However, various approaches and tools
for visualizing aspects concerning software evolution have been presented. Lanza
introduces a concept evolution matrix, which illustrates the evolution of classes in an
object-oriented software system [10] based on selected software product metrics
calculated for the subject system. By analyzing the evolution matrix, the user can
conclude various aspects concerning the size of the system, added and removed
classes, and overall growth and stagnation phases during the evolution of the system.
Based on case studies, Lanza further identifies various ways the classes evolve over
their lifetime. As Lanza, we also detect the removal and addition of classes. In addi-
tion, we detect changes in associations. However, we do not aim at visualizing
longer change or stagnation trends. Gall et al. present an approach in which a three-
dimensional visualization technique is used to support the analysis of the evolution
of large software systems at abstract, subsystem level [5]. The 3D visualization used
allows showing both system structure and evolution history in the same view. Our
approach differs from these approaches e.g. by the visualization technique used; the
set operations are applied to UML class diagrams, which may represent either the
abstract or low-level views of service descriptions. However, the underlying ap-
proach can also be used for comparing subsystem-level models. The visualization

246

technique used depends on the metamodel selected, but so far we have limited our-
selves to the UML notation. In this paper we have only discussed the pair-wise com-
parisons but the set operations have been designed to also allow the comparison of
several models, which in turn could be used to support visualization of evolution
histories.

From the viewpoint of aspect-oriented design, the operations can be seen as a re-
stricted mechanism for composing and decomposing models, each describing a sin-
gle concern or subject. Clarke [4] addresses merging of models through composition
semantics, which also play a key role in the Theme/UML approach [2]. The ap-
proach is based on extending the UML metamodel and deriving composition rela-
tionships between individual subjects. In contrast, the set operations rely solely on
the UML standard itself and are implemented and integrated on an existing UML
modeling environment. As pointed out by Clarke ([3], pp. 58-60), several develop-
ment methodologies (e.g. Catalysis by D’Souza [18]) provide different integration
approaches for merging models.

Similar UML-based techniques have been presented by Ohst et al. [12] and by
Porres and Alanen [16]. The former discuss visualizing the differences between two
UML diagram versions, while the latter formalize how to calculate the union and
difference of UML models. They both assume that there exists unique repository
identifiers and that the different models share a common ancestor. Further, they rely
on using proprietary UML tools.

6 Summary

In this paper we have discussed an approach to analyze and compare WSDL descrip-
tions at UML level. The WSDL documents are first transformed to UML class dia-
grams. Since these low-level views, in which each WSDL element is represented as a
UML class, are typically large and contain redundant information, they are next ab-
stracted to more compact UML class diagrams that visualize the logical structures of
the WSDL descriptions. UML set operation can then be used to compare either the
low-level or abstract views. The result of an application of the set operations is also
given as a UML class diagram; differences between UML models are distinguished
by different colors. Studying the UML diagrams, users are able to easily conclude
differences existing in WSDL documents.

If logical differences can be found by applying the set operations to the abstract
views, the sources for these differences can be examined by comparing the low-level
views. In some cases the abstract views do not necessarily differ but detailed differ-
ences may still occur and they can be found by comparing low-level views.

The key for set operations is the correspondence relationship that can be defined
differently for diverse purposes and focus points. The coloring used in the result
model indicates the differences found according to the chose focus points. In the
case studies presented in this paper, structural relationships (i.e., differences in con-
tainment relationships of elements), element naming, namespace definitions, and
possible extensions used were chosen as such focus points.

247

In the first case study we compared popular toolkits supporting the construction
of Web services by implementing the same example Web service using four differ-
ent toolkits and by comparing the generated WSDL documents. A summary of the
differences found was presented. Since these toolkits indeed vary in how the WSDL
documents are generated, tool support for comparing such differences is useful.

In our second case study we analyzed and compared WSDL documents composed
for two versions of InstantMessageAlert Web service by BindingPoint. Our ap-
proach provides useful and applicable support for version control and maintenance
of Web service descriptions. Especially if WSDL descriptions are generated auto-
matically from service interfaces, the evolution of the interface may require a new
version of the WSDL description to be generated. This, in turn, may require changes
in the client sides. Therefore, from the clients’ point of view it is important to under-
stand and analyze the changes in WSDL descriptions. Our approach provides such
support by allowing the WSDL descriptions to be visualized and compared at differ-
ent abstraction levels in UML.

Parts of the approach presented in this paper are based on previous work by the
authors. The methods for transforming WSDL descriptions to UML class diagrams
and abstracting them have been presented in [8]. That paper further introduces vari-
ous structural rules related to WSDL descriptions presented as profiles, one of them
being the WSDL profile. The UML set operations, in turn, have been presented in
[17]. In this paper we combined these works to form an approach to analyze and
compare WSDL descriptions, present two different case studies in which the ap-
proach has been used, and present a detailed analysis of the results of the case stud-
ies.

7 Acknowledgements

This research has been financially supported by TEKES, Nokia, Plenware Group, and
Solita. The authors would like to thank Jan van der Ven for implementing set opera-
tions and Jani Airaksinen for all the valuable technical support. The authors would
also like to thank BindingPoint for collaboration as well as Kai Koskimies and
Tommi Mikkonen for their valuable comments.References.

References

1. J. Airaksinen, K. Koskimies, J. Koskinen, J. Peltonen, P. Selonen, M. Siikarla, and T. Systä,
"xUMLi: Towards a Tool-independent UML Processing Platform", In: K. Østerbye (Ed.),
Proc. of the 10th NWPER Workshop, IT University of Copenhagen, Denmark, 2002, pp. 1-
15.

2. E. Baniassad, S. Clarke, Theme: An Approach for Aspect-Oriented Analysis and Design, In
Proc. ICSE’04, Edinburgh, Scotland, May 2004.

3. S. Clarke, Composition of Object-Oriented Software Design Models, PhD Thesis, Dublin
City University, 2001.

248

4. S. Clarke, Extending standard UML with model composition semantics, Science of Com-
puter Programming, Volume 44, Issue 1, pp. 71-100. Elsevier Science, July 2002.

5. H. Gall, M. Jazayeri, and C. Riva, Visualizing software release histories: The use of color
and third dimension, In Proc of ICSM'99, IEEE Computer Society, 1999.

6. IBM, IBM WebSpehere SDK for Web Services,
http://www-136.ibm.com/developerworks/webservices, 2004.
7. J. Jiang, J. Lipponen, P. Selonen, and T. Systä, UML-level analysis and comparison of Web

service descriptions, In Prof. of CSMR 2005, pp. 236-240.
8. J. Jiang and T. Systä, UML-Based Modeling and Validity Checking of Web Service De-

scriptions, a manuscript.
9. R. Kollmann, P. Selonen, E. Stroulia, T. Systä, and A. Zündorf, A Study on the Current State

of the Art in Tool-Supported UML-Based Static Reverse Engineering, In Proc. of WCRE
2002, 2002, pp. 22-33.

10. M. Lanza, The Evolution Matrix: Recovering Software Evolution using Software Visuali-
zation Techniques, In Proc. of IWPSE'01, IEEE Computer Society, 2001, pp. 28-33.

11. Microsoft, .Net Framework,
http://msdn.microsoft.com/webservices/, 2004
12. D. Ohst, M. Welle, and U. Kelter, Differences between versions of UML diagrams, In Proc.

of ESEC’03, 2003, pp. 227-236.
13. Oracle, Oracle Application Server for J2EE,

http://www.oracle.com/technology/tech/webservices/, 2004.
14. J. Peltonen, Visual Scripting for UML-based Tools, In Proc. of ICSSEA 2000, Paris,

France, December, 2003.
15. J. Peltonen and P. Selonen, An Approach and a Platfrom for Building UML Processing

Tools, In Proc. of WoDiSee’04 workshop of ICSE'04, 2004, pp. 51-57.
16. I. Porres, and M. Alanen, Difference and Union of Models, In Proc. of UML 2003, San

Fransisco, USA, 2003, pp. 2-17.
17. P. Selonen, Set Operations for the Unified Modeling Language, In P. Kilpeläinen and N.

Päivinen (eds.), In Proc. of SPLST’03, Kuopio, Finland, June, 2003, pp. 70-81.
18. D. D’Souza, and A.C. Wills, Objects, Components and Frameworks with UML, The Ca-

talysis Approach, Addison-Wesley, 1998.
19. Sun Microsystems Inc., Java Web Service Developer Pack,

http://developers.sun.com/techtopics/webservices/, 2004.
20. The Object Management Group: Unified Modeling Language Specification, version 1.5

(formal/03-03-01), March, 2003. On-line at http://www.omg.org/uml/
21. J. van der Ven, An Implementation of Set Operations on UML Diagrams. Master’s thesis,

Rijksuniversiteit Groningen, Instituut voor Wiskunde en Informatica, 2004.
22. E. Wilde, Semantically Extensible Schemas for Web Service Evolution", In Proc. of

ECOWS'04, Erfurt, Germany, September 2004.
23. World Wide Web Consortium, http://www.w3.org/, 2004.
24. World Wide Web Consortium, Web Services Description Language (WSDL),

http://www.w3.org/, 2004.
25. World Wide Web Consortium, Simple Object Access Protocol (SOAP),

http://www.w3.org, 2004.

249

