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Abstract

The regulated rewriting mechanism is one of the most efficient methods to
augment the Chomsky hierarchy with a large variety of language classes. In
this paper we investigate the derivation process in regulated rewriting gram-
mars such as matrix grammars, programmed grammars, and random context
grammars by studying their Szilard languages. We prove that Szilard languages
associated with unrestricted derivations in these grammars can be recognized
in logarithmic time and space by indexing alternating Turing machines. Hence,
these classes of Szilard languages belong to the UE∗ -uniform NC1 class [40]. In
general, leftmost Szilard languages of regulated rewriting grammars can be rec-
ognized in logarithmic space and square logarithmic time. Hence, these classes
of languages belong to NC2 [40].

1 Introduction

When we consider a formal grammar one of the very first tasks is to study the
derivation mechanism of the system in question. Once derivation properties have
been settled on, we can go further by studying closure properties, decidability prop-
erties, or the computational power of that generative device. One of the most
important tools to investigate the derivation mechanism in formal language theory,
is the Szilard language. If labels are associated with productions in one-to-one cor-
respondence, then each terminal derivation can be expressed as a word over the set
of labels, such that labels in this word are concatenated in the same order they have
been used during the derivation. Informally, the Szilard language associated with a
generative device is the set of all words obtained in this way.

The concept of Szilard language has been first introduced for Chomsky gram-
mars, under the name of “label language”, “associate language”, or “derivation lan-
guage”, in [19], [34], [36], and [43]. Roots of Szilard languages come from [2] and [42].
The notion has been extended afterwards for several other generative devices, such
as pure context-free grammars [30] and regulated rewriting grammars [13], [15], [35],
and [41]. If restrictions are imposed on the derivation order then particular classes of
Szilard languages, such as leftmost Szilard languages [27], canonical label languages
[6], and depth-first and breadth-first Szilard languages [29] are obtained.
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Hierarchies and closure properties of Szilard languages associated with (pure)
context-free grammars are considered in [30], [31], [32], [36], and [42]. Szilard lan-
guages of (pure) context-free grammars are very weak in closure properties. They
are not closed under union, concatenation, homomorphism and inverse homomor-
phism, Kleene +, or intersection with regular languages. Hence, none of them form
even a trio family1 of languages. In [42] it is proved that the closure of Szilard
languages of context-free grammars under the intersection with regular languages
equals the family of derivation languages associated with context-free matrix gram-
mars. Another characterization of matrix context-free languages by means of Szilard
languages is provided in [11]. There exists a proper hierarchy of Szilard languages of
pure context-free grammars with respect to the degree of grammars [30]. There exits
also a proper hierarchy of Szilard languages of context-free grammars with respect
to a certain homomorphism [31].

Decidability properties of Szilard languages associated with context-free gram-
mars are investigated in [26], [31], [34], and [36]. The emptiness, finiteness, and
equivalence problems are decidable for these languages [36]. The inclusion problem
for leftmost Szilard languages is decidable [26], [34], and for unrestricted Szilard lan-
guages it is NP-complete [31]. The fitting problem [24] and the left fitting problem
[25], i.e., whether a given leftmost Szilard language is in the family of Szilard lan-
guages, are decidable, too. Several operations on Szilard languages and semilinearity
properties of these languages are studied in [21] and [28], respectively.

Time and space bounds of Turing machines or multicounter machines to recog-
nize Szilard languages associated with Chomsky grammars, are presented in [37] and
[23]. In [37] it is proved that (leftmost) Szilard languages of context-free grammars
can be recognized by a linear bounded2 (realtime) multicounter machine. Since each
realtime multicounter machine can be simulated by a deterministic off-line3 Tur-
ing machine with logarithmic space, in terms of the length of the input string [18],
it follows that the class of Szilard languages and (leftmost) Szilard languages as-
sociated with context-free grammars are contained4 in DSPACE(log n). In [9] we
strengthened this result by proving that the above classes of Szilard languages can
be accepted by an indexing alternating Turing machine (henceforth indexing ATM)
in logarithmic time and space. Since the class of languages recognizable by an index-
ing ATM in logarithmic time equals the UE∗-uniform NC1 class [40], we obtain that
the above classes of Szilard languages are strictly contained in NC1, i.e., the class
of Boolean functions computable by polynomial size Boolean circuits, with depth
O(log n) and constant fan-in [45].

Characterizations of (leftmost) Szilard languages of context-free and phrase-

1A family of languages is called trio if it is closed under λ-free homomorphism, inverse homo-
morphism, and intersection with regular languages.

2A multicounter machine is linear bounded if it works in realtime, i.e., there exists a constant k
such that during the computation the contents of each counter is less than k|w|, where |w| is the
length of the input string.

3An off-line Turing machine is a Turing machine equipped with a read-only input tape and a
read-write working tape. It is allowed to shift both heads on both directions. Otherwise, it works
similar to a Turing machine.

4DSPACE(logn), or the L class, is the class of languages recognizable by an off-line deterministic
Turing machine using logarithmic space.
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structure (unrestricted) grammars in terms of Turing machine resources are pro-
vided in [23]. It is proved that log n is the optimal space bound for an on-line5 de-
terministic Turing machine to recognize (leftmost) Szilard languages of context-free
grammars. It is also an optimal bound for an off-line deterministic Turing machine
to recognize leftmost Szilard languages of phrase-structure grammars. However, the
optimal bound for an on-line deterministic Turing machine to recognize leftmost
Szilard languages of context-free and phrase-structure grammars is n, where n is
the length of the input word. Since leftmost Szilard languages of phrase-structure
grammars are off-line recognizable by a deterministic Turing machine that uses only
logarithmic space, in terms of the input string, leftmost Szilard languages of phrase-
structure grammars are included in DSPACE(log n). In [9] we proved that the class
of leftmost Szilard languages of phrase-structure grammars is strictly included in
NC1 under the UE∗-uniformity restriction.

Regulated grammars are formal grammars composed of Chomsky rules for which
the derivation mechanism obeys several filters and controlling constraints that allow
or prohibit the use of the rules during the generative process. For formal definitions
and results concerning grammars with regulated rewriting the reader is referred to
[13]. In this paper we deal with three types of rewriting mechanisms provided by
matrix grammars, programmed grammars, and random context grammars. These
grammars are equivalent concerning their generative power [13], but they are in-
teresting because each of them uses totally different regulating restrictions in the
derivation mechanism, providing thus good structures to handle a large variety of
problems in formal languages, computational linguistics, programming languages,
and even graph theory.

This work is dedicated to the complexity of Szilard languages associated with
these three types of regulated grammars. The main aim is to relate the corresponding
classes of Szilard languages to parallel complexity classes, such as ALOGTIME,
NC1, and NC2, where ALOGTIME is the class of languages recognizable by an
indexing ATM in logarithmic time [4], [7]. Approaching Szilard languages to low level
complexity classes, such as NC1 and NC2, is the most natural way to relate these
classes to circuit complexity classes [45], bringing thus new insights in finding fast
parallel algorithms to recognize classes of languages generated by the above regulated
mechanisms. Based on the method used in [9] we prove that unrestricted Szilard
languages associated with matrix, programmed, and random context grammars are
contained in the UE∗-uniform NC1 class. In general, leftmost Szilard languages of
regulated rewriting grammars can be recognized in logarithmic space and square
logarithmic time. Hence, these classes of leftmost Szilard languages belong to the
NC2 class [40].

The paper is structured as follows. In Section 2 we introduce the main notions
concerning Chomsky grammars and the Chomsky hierarchy. We also present several
complexity results of (leftmost) Szilard languages associated with context-free and
phrase-structure grammars. In Section 3 we present complexity results for Szilard
languages associated with matrix grammars. Section 4 is dedicated to the complexity
of Szilard languages of programmed grammars, while in Section 5 we investigate

5An on-line Turing machine is an off-line Turing machine with the restriction that the input
head cannot be shifted to the left.
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the complexity of Szilard languages associated with random context grammars. We
conclude in Section 6 with some remarks on Szilard languages of regulated grammars
with context-sensitive and phrase-structure rules.

2 Chomsky Grammars and Szilard Languages - Prereq-
uisites

Chomsky grammars [8] have played a crucial role in the field of theoretical computer
science, especially in formal languages and programming languages. In this section
we introduce the main notions and notations that concern Chomsky grammars and
the Chomsky hierarchy. We briefly present several complexity results that concern
Szilard languages associated with Chomsky grammars. We assume the reader to be
familiar with the basic notions of formal language theory [33], [42].

Let X be a finite nonempty alphabet. We denote by λ the empty string, by |x|a
the number of occurrences of the letter a in the string x, and by |x| the length of
x ∈ X∗. We denote by |X| the cardinality of the set X.

Definition 1 A phrase-structure grammar (PSG) or Chomsky grammar (CG) is a
quadruple G = (N,T, P, S), where N and T , N ∩ T = ∅, are finite sets of nonter-
minals and terminals, respectively. S ∈ N − T is the axiom, and P is a finite set of
rules of the form α→ β, α ∈ (N ∪ T )∗N(N ∪ T )∗ and β ∈ (N ∪ T )∗.

In the sequel, for any phrase-structure rule p of the form α → β, α and β are
called the left-hand side and the right-hand side of p, respectively. If β ∈ T ∗, then
p is called terminal rule. Otherwise, p is called non-terminal rule. If β = λ, then p
is called erasing rule.

Definition 2 Let G = (N,T, P, S) be a PSG and let x, y ∈ (N ∪ T )∗. We say
that x directly derives y, written as x ⇒G y, if there exist α1, α2, α, β ∈ (N ∪ T )∗,
such that x = α1αα2, y = α1βα2, and α → β ∈ P . We denote by ⇒∗G the
reflexive and transitive closure of ⇒. The language generated by G is defined as
L(G) = {w|w ∈ T ∗, S ⇒∗G w}.

Definition 3 Let G = (N,T, P, S) be a PSG.

1. If no restrictions are imposed on rules in P then G is called recursively-
enumerable or unrestricted (type 0) grammar.

2. If each rule in P is of the form αAγ → αβγ, where A ∈ N , α, γ ∈ (N ∪ T )∗,
β ∈ (N ∪ T )+, then G is a context-sensitive (type 1) grammar. Moreover, G
may contain the rule S → λ, assuming that S does not occur on the right-hand
side of any rule in P .

3. If each rule in P is of the form α→ β, |α| ≤ |β|, then G is a monotonous (type
1) grammar. Moreover, the grammar may contain the rule S → λ, assuming
that S does not occur on the right-hand side of any rule in P .
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4. If each rule in P is of the form α → β, α ∈ N and β ∈ (N ∪ T )∗, then G is a
context-free (type 2) grammar.

5. If each rule in P is of the form α→ β, α ∈ N and β ∈ T ∗ ∪ T ∗N , then G is a
regular (type 3) grammar.

Note that the definitions of a type 1 grammar provided at items 2 and 3 are
equivalent, in the sense that the grammars generate the same class of languages.
We denote by REG, CFG, CSG, and PSG the set of all regular (type 3), context-
free (type 2), context-sensitive or monotonous (type 1), and phrase-structure (type
0) grammars, respectively. The classes of languages generated by REGs, CFGs,
CSGs, and PSGs are denoted by REGL, CFL, CSL, and PSL, respectively. The
class PSL equals the class of recursively enumerable languages, also denoted by
RE. Between these classes of languages the next inclusions (Chomsky hierarchy)
hold REGL ⊂ CFL ⊂ CSL ⊂ RE.

If rules in a CG are uniquely labeled, then each terminal derivation6 in the
grammar can be expressed as a unique word over the set of all labels. Informally,
the Szilard (control) word associated with a terminal derivation in a CG, is obtained
by concatenating the labels of components in the same order they have been used
during the derivation. The Szilard language associated with a CG is the set of all
words obtained in this way. In the sequel, for the sake of simplicity, we use the same
notation both for a rule and the label associated with it.

Definition 4 Let G = (N,T, S, P ) be a CG, P = {p1, p2, ..., pk} the set of produc-
tions, L(G) the language generated by G, and w a word in L(G). The Szilard word
of w associated with the derivation D: S = w0 ⇒pi1

w1 ⇒pi2
... ⇒pis ws = w is

defined as SzD(w) = pi1pi2 ...pis , pij ∈ P , 1 ≤ j ≤ s. The Szilard language of G is
Sz(G) = {SzD(w)|w ∈ L(G), D is a derivation of w}.

Definition 5 Let G = (N,T, S, P ) be a CG. A terminal derivation D: S = w0 ⇒pi1
w1 ⇒pi2

...⇒pis ws = w is a leftmost derivation of w, if for each 1 ≤ j ≤ s, wj−1 =
uj−1αjvj−1 ⇒pij

uj−1βjvj−1 = wj , uj−1 ∈ T ∗, where pij is the rule αj → βj in P .

The leftmost Szilard language of a grammar G is Szleft(G) = {SzD(w)|w ∈ L(G), D
is a leftmost derivation of w}.

Consider SZ(X) = {Sz(G)|G is an X-grammar} and SZL(X) = {Szleft(G)|G is
an X-grammar}, the classes of Szilard languages and leftmost Szilard languages
associated with X-grammars, where X ∈ {REG,CF,CS, PS}. It is well known
that SZ(REG) ⊂ REGL, SZ(CF ) and CFL are incomparable, SZ(PS) ⊂ CSL
and SZL(PS) ⊂ CFL. Concerning the time and space of Turing machines rec-
ognizing Szilard languages, the best upper bounds known so far are SZ(PS) ⊆
NTIME(n2) ⊆ DLINSPACE, SZ(CF ) ⊆ DSPACE(log n), and SZL(PS) ⊆
DSPACE(log n) [23], [37].

An indexing ATM [7] is an alternating Turing machine that is allowed to write
any binary number on a special tape, called index tape. This number is interpreted

6That is a derivation that leads to a word in the language.
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as an address of a location on the input tape. With i, written in binary on the index
tape, the machine can read the symbol placed on the ith cell of the input tape. Using
universal states to relate different branches on the computation, an indexing ATM
can read an input string of length n, in O(log n) time. For the formal definition and
complexity results on ATMs the reader is referred to [4], [7], and [40].

The next results concerning the Szilard languages of CFGs, CSGs, and PSGs are
provided in [9].

Theorem 1 Each language L ∈ X, X∈{SZ(CF ), SZL(CF ), SZL(CS), SZL(PS)}
can be recognized by an indexing ATM in O(log n) time and space.

As a consequence of Theorem 1 and the properties of ATMs [40], we have

Theorem 2 SZ(CF ), SZL(CF ), SZL(CS), SZL(PS) ⊂ NC1⊆ DSPACE(log n).

Due to the weak restrictions imposed on the types of rules and derivation mech-
anism, the Chomsky hierarchy is a sparse hierarchy. However, if restrictions are
imposed on rules and on the classical derivation mechanism in CGs, this hierarchy
can be substantially augmented with a rich variety of language classes. A possi-
bility to achieve this goal is to make use of regulated rewriting mechanisms which
consist of several filtering and controlling constraints imposed on derivations. These
constraints may allow or forbid some derivations to develop, by generating terminal
strings. For formal definitions and results concerning the large variety of regulated
rewriting mechanisms the reader is referred to [13].

In the sequel we only deal with matrix grammars, programmed grammars, and
random context grammars. We describe the derivation mechanism for these regu-
lated rewriting grammars and we present new results concerning the complexity of
the corresponding Szilard languages.

3 Szilard Languages of Matrix Grammars

Matrix grammars (MGs) are regulated rewriting grammars in which rules are grouped
into matrices. A matrix can be applied if the left-hand side of the first rule in the
matrix sequence occurs in the sentential form. Once a matrix becomes active, rules
are applied one by one, according to the order provided by the finite sequence defin-
ing the matrix. MGs with appearance checking are particular MGs, in which some
rules occurring in the matrix sequence can be passed over.

MGs with context-free rules have been first defined in [1] in order to increase the
generative power of CFGs. The definition has been extended for the case of phrase-
structure rules in [13]. The generative power of these devices has been studied in
[13], [14], and [41].

3.1 Matrix Grammars - Prerequisites

Definition 6 A matrix grammar with appearance checking is a quintuple G =
(N,T, S,M,F ) where N , T , and S are specified as in a CG, M = {m1,m2, ...,mk},
k ≥ 1, is a finite set of sequences of Chomsky rules of the formmj = (pj1 , pj2 , ..., pjk(j)

),
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k(j) ≥ 1, 1 ≤ j ≤ k, and F is a subset of all productions occurring in the elements of
M , i.e., F ⊆ {pjr |1 ≤ j ≤ k, 1 ≤ r ≤ k(j)}. A matrix grammar G = (N,T, S,M,F )
without appearance checking has F = ∅. If all rules in M are phrase-structure (PS),
context-sensitive (CS), context-free (CF), or regular (REG) rules then G is a PS,
CS, CF, or REG matrix grammar, respectively.

Definition 7 Let G = (N,T, S,M,F ) be a MG and V = N ∪ T . We say that
x ∈ V + directly derives y ∈ V ∗ in appearance checking mode by application of a rule
p of the form α→ β, written as x⇒ac y, if one of the following conditions hold: i)
x = x1αx2 and y = y1βy2, or ii) the rule α→ β is not applicable to x, i.e., α is not
a substring of x, the rule p belongs to F , and x = y, i.e., x is not changed.

Hence, when a matrix mj , 1 ≤ j ≤ k, becomes active, rules in mj ∩ F can be
passed over if they cannot be applied, i.e., if the nonterminal rewritten by a rule in
mj ∩ F does not occur in the sentential form on which mj is applied, or it occurs
but rewriting it the derivation is blocked or never ends (because of the exceeding
number of nonterminals). However, rules in mj ∩ F must be effectively applied, if
this is possible, i.e., nonterminals rewritten by rules in mj ∩F occurs in the current
sentential form and rewriting them leads to terminal derivations.

Definition 8 Let G = (N,T, S,M,F ) be a MG and V = N ∪ T . For mj =
(pj1 , pj2 , ..., pjk(j)

), k(j) ≥ 1, 1 ≤ j ≤ k, and x, y ∈ V ∗, we define x ⇒mj y by
x = x0 ⇒ac

pj1
x1 ⇒ac

pj2
x2 ⇒ac

pj3
... ⇒ac

pjk(j)
xjk(j)

= y. The language L(G) generated

by G, with appearance checking, is defined as the set of all words w ∈ T ∗ such that
there is a derivation D: S ⇒mi1

y1 ⇒mi2
y2 ⇒mi3

... ⇒miq w, for some q ≥ 1,
1 ≤ ij ≤ k, 1 ≤ j ≤ q.

Denote by L(M,X) and L(M,X, ac) the classes of languages generated by MGs
and MGs with appearance checking, respectively, withX-rules7, X ∈ {REG,CF,CF−
λ,CS, PS}. The following inclusions hold [13], [14]:
1. CFL ⊂ L(M,CF − λ) ⊂ L(M,CF − λ, ac) ⊂ CSL ⊂ L(M,CF, ac) = RE,
2. CFL ⊂ L(M,CF − λ) ⊂ L(M,CF ) ⊂ RE,
3. L(M,X) = L(M,X, ac) = XL, X ∈ {REG,CS, PS}.

Since rules in a MG are arranged into matrices, and rules inside each matrix are
applied in a predefined order, for the case of MGs it is more convenient to associate
labels with matrices than with rules. In this manner each terminal derivation in
a MG can be expressed as a word over the set of labels associated in one-to-one
correspondence with matrices in the grammar, such that labels are concatenated in
the same order they have been used during the derivation. Informally, the Szilard
language associated with a MG is the set of all words obtained in this way. In the
sequel, for the sake of simplicity, we use the same notation both for a matrix and
the label associated with it. Formally, we have

Definition 9 Let G = (N,T, S,M,F ) be a MG, M = {m1,m2, ...,mk} the set of
matrices of G, L(G) the language generated by G, and w ∈ L(G). The Szilard word

7By CF − λ we denote a non-erasing context-free rule, i.e., a rule of the form α → β, where
α ∈ N , β ∈ (N ∪ T )+.
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of w associated with the derivation D: S ⇒mi1
y1 ⇒mi2

y2 ⇒mi3
...⇒miq w in G is

defined as SzD(w) = mi1mi2 ...miq , mij ∈M , for some q ≥ 1, 1 ≤ ij ≤ k, 1 ≤ j ≤ q.
The Szilard language of G is Sz(G) = {SzD(w)|w ∈ L(G), D is a derivation of w}.

We denote by SZM(X) and SZMac(X) the classes of Szilard languages associ-
ated with matrix grammars and matrix grammars with appearance checking with
X rules, X ∈ {CF,CS, PS}, respectively.

At each step of derivation a MG nondeterministically chooses which matrix is
applied, if the nonterminal rewritten by the first rule of the sequence that identifies
the matrix occurs in the sentential form. Once a component becomes active, it
works deterministically, in the sense that the order in which the rules are applied
is predefined by their order in the matrix sequence. However, the order in which
multiple occurrences of a nonterminal in a sentential form are rewritten, is still
nondeterministically chosen. A possibility to reduce the high nondeterminism in
MGs is to impose an order on which nonterminals occurring in a sentential form can
be rewritten. As in the case of CGs, the most significant is the leftmost derivation
order [12], [13], [17], [41]. In this paper we focus only on three types of leftmost
derivation, defined in [13] for MGs with context-free rules, as follows.

Definition 10 Let G = (N,T, S,M,F ) be a MG with CF rules. A derivation in G
is called

• leftmost-1 if each rule used in the derivation either rewrites the leftmost non-
terminal occurring in the current sentential form or it cannot be applied in
this leftmost derivation manner and it is passed over (the appearance checking
case),

• leftmost-2 if at each step of a derivation, the leftmost occurrence of a nonter-
minal which can be rewritten is rewritten,

• leftmost-3 if each rule used in the derivation either rewrites the leftmost oc-
currence of its left-hand side in the current sentential form, or it cannot be
applied in this leftmost derivation manner and it is passed over (the appearance
checking case).

Note that the above definition is universally applicable for regulated rewriting
grammars such as programmed or random-context grammars.

In terms of matrices, for the case of leftmost-1 derivation, once a matrix becomes
active, i.e., the first rule of the matrix rewrites the leftmost nonterminal occurring in
the sentential form, each rule in the sequence that defines the matrix must rewrite
the leftmost nonterminal occurring in the current sentential form. If a certain rule
of a matrix, applied in leftmost-1 derivation manner, cannot rewrite the leftmost
nonterminal then the rule is passed over if this belongs to F .

A matrix is applicable in leftmost-2 derivation manner if its first rule rewrites the
leftmost nonterminal that can be rewritten. In other words, if the first rule of matrix
mj rewrites, in leftmost-2 derivation manner, the first occurrence of a nonterminalX,
then no other matrix mj′ exists such that the first rule in mj′ rewrites a nonterminal

8



X ′, where X ′ occurs before X in the sentential form on which mj has been applied.
No other restrictions are imposed on the rules that defines the matrix sequence.

A matrix is applicable in leftmost-3 derivation manner if each rule of the matrix
rewrites the leftmost occurrence of its left-hand side occurring in the sentential
form. If a certain rule in the matrix sequence, applied in leftmost-3 derivation
manner, cannot rewrite the leftmost occurrence of its left-hand side, i.e., either the
nonterminal does not occur, or rewriting the leftmost occurrence of this nonterminal
leads to a never ended derivation, then the rules is passed over if this belongs to F .

Szilard languages associated with leftmost-i, i ∈ {1, 2, 3}, derivations are defined
in the same way as in Definition 9, with the specification that D is a leftmost-i
derivation of w. We denote by SZMLi(X) and SZMLaci (X) the classes of leftmost-
i, i ∈ {1, 2, 3}, Szilard languages associated with MGs and MGs with appearance
checking with X rules, X ∈ {CF,CS, PS}, respectively.

Henceforth, in any reference to a MG G = (N,T,A1,M, F ), A1 is considered
to be the axiom, N = {A1, A2, ..., Am} the ordered finite set of nonterminals, and
M = {m1,m2, ...,mk} the ordered finite set of labels associated with matrices in
M . If G is a MG without appearance checking, then F = ∅. Otherwise, G is a MG
with appearance checking. Each matrix mj , 1 ≤ j ≤ k, is a sequence of the form
mj = (pj1 , pj2 , ..., pjk(j)

), k(j) ≥ 1, where each pjr , 1 ≤ r ≤ k(j), is a PS rule of the
form αjr → βjr , αjr ∈ (N ∪ T )∗N(N ∪ T )∗ and βjr ∈ (N ∪ T )∗. If G is specified
as being a MG with CS or CF rules, then each rule in mj is a CS or CF rule, as
defined in Definition 3.

We define the net effect of rule pjr , 1 ≤ r ≤ k(j), with respect to each nonter-
minal Al ∈ N , 1 ≤ l ≤ m, as being the difference dfAl(pjr) = |βjr |Al − |αjr |Al .

If G is a MG without appearance checking, then the net effect of matrix mj

with respect to each nonterminal Al ∈ N , 1 ≤ l ≤ m, is the sum sAl(mj) =

Σ
k(j)
r=1dfAl(pjr). To each matrix mj we associate a vector V (mj) ∈ Zm defined by

V (mj) = (sA1(mj), sA2(mj), ..., sAm(mj)), where Z is the set of integers. Depending
on the context, the value of V (mj) taken at the lth place, 1 ≤ l ≤ m, i.e., Vl(mj),
is also denoted by VAl(mj) or Vαjr (mj) if pjr is a rule of the form αjr → βjr and
αjr = Al.

If G is a MG with appearance checking, then a policy of a matrix mj is a
choice of mj of using a certain combination of rules in mj ∩ F , along with all
rules in mj − F , 1 ≤ j ≤ k. Let `qj be a policy of mj identified by the sequence
mq
j = (pqj,1, p

q
j,2, ..., p

q
j,ξqj

).

The net effect of matrix mj with respect to policy `qj and nonterminal Al ∈

N is defined by the sum sAl(`
q
j) = Σ

ξqj
r=1dfAl(p

q
j,r). To each policy `qj , identi-

fied by the sequence mq
j , we associate a vector V (`qj) ∈ Zm defined by V (`qj) =

(sA1(`qj), sA2(`qj), ..., sAm(`qj)). The value of V (`qj) taken at the lth place, 1 ≤ l ≤ m,
is denoted by Vl(`

q
j) = sAl(`

q
j), or by Vαqj,r

(`qj) = sαqj,r
(`qj), where pqj,r is a context-free

rule of the form αqj,r → βqj,r.

9



3.2 On the Complexity of Unrestricted Szilard Languages

In this subsection we focus on Szilard languages of MGs with CF rules, with or
without appearance checking. The case of Szilard languages of MGs with CS and
PS rules is briefly discussed in Section 6. For Szilard languages associated with MGs
without appearance checking and CF rules we have the next result.

Theorem 3 Each language L ∈ SZM(CF ) can be recognized by an indexing ATM
in O(log n) time and space.

Proof. Let G = (N,T,A1,M, F ) be an arbitrary MG, without appearance checking,
with CF rules. Hence, each matrix mj , 1 ≤ j ≤ k, is a sequence of CF rules,
mj = (pj1 , pj2 , ..., pjk(j)

), where each pjr is of the form αjr → βjr , αjr ∈ N and
βjr ∈ (N ∪ T )∗, 1 ≤ r ≤ k(j). Consider an indexing ATM A composed of an input
tape that stores an input word, η ∈ M∗, of length n, η = η1η2...ηn, an index tape
to read the input symbols, and a working tape composed of three tracks.

At the beginning of the computation the first track stores k+ 1 vectors, V 0 that
corresponds to the axiom, i.e., V 0

1 = V 0
A1

= 1 and V 0
l = V 0

Al
= 0, 2 ≤ l ≤ m, and

V (mj), 1 ≤ j ≤ k. The other two tracks are initially empty.

Level 1 (Existential) In an existential state A guesses the length of η and verifies
the correctness of this guess, i.e., writes on the index tape n, and checks whether
the nth cell of the input tape contains a terminal symbol and the cell n+ 1 contains
no symbol. The correct value of n is recorded in binary on the second track of the
working tape. This procedure requires O(log n) time and space.

Level 2 (Universal) A spawns n universal processes ℘i, 1 ≤ i ≤ n.

• The first process reads η1 = (pη1,1, pη1,2, ..., pη1,kη1
). ThenA checks whether αη1,1 =

A1 and sdfαη1,r+1 = V 0
αη1,r+1

+
∑r
l=1 dfαη1,r+1(pη1,l) ≥ 1, 1 ≤ r ≤ kη1−1, i.e., whether

the nonterminal αη1,r+1 rewritten by the (r+ 1)th rule of η1, exists in the sentential
form generated up to the rth step of the derivation performed by η1. The process
℘1 returns 1 if these conditions hold. Otherwise, ℘1 returns 0.

• For each ℘i, 2 ≤ i ≤ n−1, A counts the number of occurrences of each matrix mj ∈
M , 1 ≤ j ≤ k, in η(i) = η1η2...ηi−1. Let us consider that each mj occurs in η(i) of c

(i)
j

times, 0 ≤ c(i)
j ≤ i−1. Then, for each 1 ≤ l ≤ m, A computes the values s

(i)
l = V 0

l +∑k
j=1 c

(i)
j Vl(mj), i.e., A computes the number s

(i)
l of occurrences of nonterminal Al

in the sentential form upon which ηi is applied. Consider ηi = (pηi,1, pηi,2, ..., pηi,kηi )

and αηi,1 = Aqi , 1 ≤ qi ≤ m. Then A checks whether s
(i)
qi = s

(i)
αηi,1

≥ 1, i.e., whether
the matrix ηi can start the computation. For each 1 ≤ r ≤ kηi − 1, A checks

whether8 sdfαηi,r+1 = s
(i)
αηi,r+1 +

∑r
l=1 dfαηi,r+1(pηi,l) ≥ 1, i.e., whether the rules pηi,r,

2 ≤ r ≤ kηi , can be applied in the same order they occur in ηi. Each process ℘i,
2 ≤ i ≤ n− 1, returns 1 if these conditions hold. Otherwise, it returns 0.

8Note that s
(i)
αηi,r+1 is actually the sum s

(i)
l where αηi,r+1 is the lth nonterminal occurring in

V (mj).

10



• The last process ℘n counts the number c
(n)
j of occurrences of each mj , 1 ≤ j ≤ k, in

η(n) = η1η2...ηn−1, and computes the sums s
(n)
l = V 0

l +
∑k
j=1 c

(n)
j Vl(mj) and s

(n,out)
l =

V 0
l +

∑k
j=1c

(n)
j Vl(ηj) + Vl(ηn), 1 ≤ l ≤m. Consider ηn = (pηn,1, pηn,2, ..., pηn,kηi ),

and αηn,1 = Aqn , 1 ≤ qn ≤ m. Then ℘n returns 1, if s
(n)
qn ≥ 1, sdfαηn,r+1 =

s
(n)
αηn,r+1 +

∑r
l=1 dfαηn,r+1(pηn,l) ≥ 1, for each 1 ≤ r ≤ kηn − 1, and s

(n,out)
l = 0, for

each 1 ≤ l ≤ m. Otherwise, ℘n returns 0.

Each of the above processes uses the third track of the working tape for auxiliary

computations, i.e., to record in binary the elements c
(i)
j , 2 ≤ i ≤ n, 1 ≤ j ≤ k, and

to compute the sums s
(i)
l , 2 ≤ i ≤ n, sdfαηi,r+1 , 1 ≤ r ≤ kηi − 1, 1 ≤ i ≤ n, and

s
(n,out)
l , 1 ≤ l ≤ m. The input η is accepted if all ℘i, 1 ≤ i ≤ n, returns 1, i.e., all n

universal branches are labeled by 1. If at least one of the above process returns 0,
then η is rejected.

The counting procedure used by each process ℘i, 1 ≤ i ≤ n, is a function in
the UE∗-uniform NC1 class. The same observation holds for the summation of a
constant number of vectors or multiplication of an integer of at most log n bits long
with a binary constant. Hence, all the above operations can be performed by an
ATM in log n time and space. The out-degree of the computation tree at this level is
n. By using a divide and conquer procedure the computation tree can be converted
into a binary tree of height at most log n. Consequently, the procedure requires
O(log n) time and space. 2

Corollary 1 SZM(CF ) ⊂ NC1.

Proof. The claim is a direct consequence of Theorem 3 and results in [40]. The
inclusion is strict since there exists L = {pn|n ≥ 0} ∈ NC1 − SZM(CF ). 2

Corollary 2 SZM(CF ) ⊂ DSPACE(log n).

Proof. SZM(CF ) ⊂ NC1 ⊆ DSPACE(log n). 2

Note that Theorem 3 holds also for any MG with CF rules and appearance
checking, for which all rules in mj∩F , 1 ≤ j ≤ k, are passed over during any terminal
derivation performed by the grammar. The proof is similar to the demonstration
provided in Theorem 3, in which the net effect of each matrix mj , 1 ≤ j ≤ k, applied
in appearance checking mode, with respect to each nonterminal Al ∈ N , 1 ≤ l ≤ m,
is computed by the sum sAl(mj) = sAl(`

q
j) = Σp∈mj−FdfAl(p), where `qj is that

policy of mj that uses only rules in mj − F , in the same order they occur in mj .
Let G be a MG with CF rules and appearance checking, for which some of the

rules in mj ∩ F , 1 ≤ j ≤ k, can be passed over and some of the rules have to
be effectively applied. When reading a symbol ηi, 1 ≤ i ≤ n, as in the proof of
Theorem 3, an indexing ATM A cannot precisely estimate which of the rules in
mj ∩ F , 1 ≤ j ≤ k, have been previously applied or not. Hence, A has to consider
all possibilities of computing the net effect of each matrix mj , 1 ≤ j ≤ k, occurring
in the Szilard word, with respect to the definition of appearance checking mode.

11



If cj = |mj∩F |, then each matrixmj , 1 ≤ j ≤ k, may have
(
cj
0

)
+
(
cj
1

)
+...+

(
cj
cj

)
=

2cj policies. Namely, there exist
(
cj
0

)
choices of using no rule from mj ∩ F ,

(
cj
1

)
choices of passing over only one rule from mj ∩ F ,

(
cj
2

)
choices of passing over two

rules from mj ∩F , and so on. These policies are distinct, because each of them uses
a distinct combination of rules in mj ∩ F . By defining an order on these policies
we can uniquely label them. Thus, to the qth policy of matrix mj , we associate the
label `qj , 1 ≤ q ≤ 2cj , 1 ≤ j ≤ k. According to this observation, each matrix mj

may have 2cj choices of computing its net effect. Although this means a very high
nondeterminism, in terms of ATM resources, we still have the following

Theorem 4 Each language L ∈ SZMac(CF ) can be recognized by an indexing ATM
in O(log n) time and space.

Proof. Let G = (N,T,A1,M, F ) be a MG with appearance checking and CF rules.
Consider an indexing ATM A having a similar configuration as the machine used in
Theorem 3, and let η ∈M∗, η = η1η2...ηn be an input word of length n. To decide,
by using logarithmic time and space, whether η belongs to Sz(G) or not, A works
as follows.

Level 1 (Existential) In order to guess the length of η, A proceeds with the proce-
dure described at Level 1, Theorem 3. Then A proceeds with Levels 2-3.

Levels 2-3 (Universal-Existential) A spawns n universal processes ℘i, 1 ≤ i ≤ n,
(Level 2). Each process checks whether the symbol placed at the ith position in η,
i.e., ηi, 1 ≤ i ≤ n, is the label of a matrix that can be applied in appearance check-
ing after the matrices occurring in the Szilard word before ηi. This is performed as
follows.

• The first process reads η1. Suppose that η1 is the label of a matrix with 2cη1

policies, where cη1 = |η1∩F |, and that each policy `qη1
, 1 ≤ q ≤ 2cη1 , is characterized

by a sequence of rules mq
η1

= (pqη1,1
, pqη1,2

, ..., pq
η1,ξ

q
η1

), where pqη1,r are rules in η1 of

the form αqη1,r → βqη1,r, α
q
η1,r ∈ N , 1 ≤ r ≤ ξqη1

, |η1−F | ≤ ξqη1
≤ |η1|. Then A checks

whether there exists at least one sequence mq
η1

, 1 ≤ q ≤ 2cη1 , such that αqη1,1
= A1

and whether sdfαqη1,r+1
= V 0

αqη1,r+1
+
∑r
l=1 dfαqη1,r+1

(pqη1,l
) ≥ 1, 1 ≤ r ≤ ξqη1

− 1, i.e.,

whether the nonterminal9 rewritten by the (r+1)th rule of mq
η1

, exists in the senten-

tial form generated up to the rth step of derivation performed by mq
η1

, 1 ≤ r ≤ ξqη1
−1.

The process ℘1 returns 1 if these conditions hold. Otherwise, ℘1 returns 0.

• For each ℘i, 2 ≤ i ≤ n − 1, consider c
(i)
j the number of occurrences of each ma-

trix mj , 1 ≤ j ≤ k, in η(i) = η1η2...ηi−1. For each mj , A guesses a t
(i)
j -tuple of

integers (c
(i)
j,1, c

(i)
j,2, ..., c

(i)

j,2cj−1
, c

(i)

j,2cj
), where each c

(i)
j,q, such that 0 ≤ c

(i)
j,q ≤ c

(i)
j and∑2cj

q=1 c
(i)
j,q = c

(i)
j , represents the number of times the policy `qj , 1 ≤ q ≤ 2cj , can be

used when matrix mj is activated on η(i). Then A spawns N (n) = O(n
∑k

j=1
2cj

)

9Recall that dfαqη1,r
(pqη1,l) = |βqη1,l|αqη1,r − |α

q
η1,l
|αqη1,r , 1 ≤ r ≤ ξqη1 , 1 ≤ l ≤ r, and 1 ≤ q ≤ 2cη1 .
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existential branches10 (Level 3), each of which holds k sequences of t
(i)
j -tuples, one

tuple for each matrix mj , 1 ≤ j ≤ k. On each branch, A computes the sums11

s
(i)
l = V 0

l +
∑k
j=1

∑2cj
q=1 c

(i)
j,qVl(`

q
j), 1 ≤ l ≤ m. Suppose that ηi is a matrix with

2cηi policies, where cηi = |ηi ∩ F |, and that each policy `qηi , 1 ≤ q ≤ 2cηi , is iden-
tified by the sequence mq

ηi = (pqηi,1, pqηi,2, ..., pq
ηi,ξ

q
ηi

), where pqηi,r are rules in ηi of

the form αqηi,r → βqηi,r, 1 ≤ r ≤ ξqηi , |ηi − F | ≤ ξqηi ≤ |ηi|. Then A computes

sdfαqηi,r+1
= s

(i)

αqηi,r+1
+
∑r
l=1 dfαqηi,r+1

(pqηi,l), 1 ≤ r ≤ ξqηi − 1, and it checks whether

1. s
(i)

αqηi,1
≥ 1, i.e., the first rule of policy12 `qηi can be applied on η(i) = η1η2...ηi−1,

2. sdfα
p
q
ηi,r+1

≥ 1, for each 1 ≤ r ≤ ξqηi − 1, i.e., the rules of the policy `qηi can be

applied, one by one, in the order defined by the sequence mq
ηi .

If conditions 1 and 2 hold, ℘i returns 1. Otherwise, ℘i returns 0, 2 ≤ i ≤ n− 1.

• Suppose c
(n)
j is the number of occurrences of matrix mj , 1 ≤ j ≤ k, in η(n) =

η1η2...ηn−1. For each mj , A guesses a t
(n)
j -tuple of integers (c

(n)
j,1 , c

(n)
j,2 , ..., c

(n)

j,2cj−1
,

c
(n)

j,2cj
), such that 0 ≤ c(n)

j,q ≤ c
(n)
j and

∑2cj
q=1 c

(n)
j,q = c

(n)
j , where each c

(n)
j,q represents the

number of times the policy `qj , 1 ≤ q ≤ 2cj , can be used when matrix mj is activated

in η(n). Then A spawns N (n) existential branches (Level 3), each of which holds k

sequences of t
(n)
j -tuples, 1 ≤ j ≤ k. On each branchA checks whether the last matrix

ηn can be applied on η(n). This is performed as follows. For each 1 ≤ l ≤ m, A
computes the values s

(n)
l = V 0

l +
∑k
j=1

∑2cj
q=1 c

(n)
j,q Vl(`

q
j) = V 0

l +
∑k
j=1

∑2cj
q=1 c

(n)
j,q sAl(`

q
j),

i.e., the number of occurrences of Al in the sentential form on which ηn is applied,

according to the k tuples t
(n)
j guessed on that branch, 1 ≤ j ≤ k. Suppose that

ηn ∈ M is a matrix with 2cηn policies, where cηn = |ηn ∩ F |, and that each policy
`qηn , 1 ≤ q ≤ 2cηn , is identified by a sequence of rules mq

ηn = (pqηn,1, pqηn,2, ..., pq
ηn,ξ

q
ηn

),

where pqηn,r are rules in ηn of the form αqηn,r → βqηn,r, α
q
ηn,r ∈ N , 1 ≤ r ≤ ξqηn ,

|ηn−F | ≤ ξqηn ≤ |ηn|. For each ξqηn-tuple, 1 ≤ q ≤ 2cηn , and for each 1 ≤ r ≤ ξqηn−1,

A computes the sums sdfαqηn,r+1
= s

(n)

αqηn,r+1
+
∑r
l=1 dfαqηn,r+1

(pqηn,l) and s
(n,out)
l =

s
(n)
l + Vl(`

q
ηn) = s

(n)
l + sAl(`

q
ηn), 1 ≤ l ≤ m. Then A checks whether

1. s
(n)

αqηn,1
≥ 1, i.e., the first rule of policy `qηn can be applied on η(n) = η1η2...ηn−1,

10The number of all possible vectors V ∈Nh that can be obtained by filling in all places in V with
s distinct values is sh. Hence, the problem is how many possibilities there exist to chose s distinct
values, from the set {0, 1, 2, ..., c(i)j }, such that substituting all places V l in V with these values to

have
∑h

l=1
V l = c

(i)
j . This number is O(c

(i)
j
h), where h = 2cj . Since c

(i)
j may depend on n (the

length of the input string) for all matrices mj , 1 ≤ j ≤ k, there will be O(n

∑k

j=1
2
cj

) guesses.

11Recall that Vl(`
q
j) = sl(`

q
j) = Σ

ξ
q
j

r=1dfAl(p
q
j,r), where the policy `qj is identified by the sequence

mq
j = (pqj,1, pqj,2, ..., pq

j,ξ
q
j

), |mj − F | ≤ ξqj ≤ |mj |.
12Note that s

(i)

α
q
ηi,1

is actually the sum s
(i)
l where αqηi,1 is the lth nonterminal occurring in V (mj).
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2. sdfαqηn,r+1
≥ 1, for each 1 ≤ r ≤ ξqηn − 1, i.e., the rules of the policy `qηn can be

applied in the order defined by the sequence (pqηn,1, pqηn,2, ..., pq
ηn,ξ

q
ηn

),

3. s
(n,out)
l = 0, for all 1 ≤ l ≤ m, i.e., at the end of the application of policy `qηn

the sentential form contains no nonterminal.

The process ℘n returns 1, if conditions 1− 3 hold. Otherwise, ℘n returns 0.
Since at each process ℘i, 1 ≤ i ≤ n, A checks all possible combinations of policies

of matrices that occur before the matrix labeled by ηi in the Szilard word, including
policies for ηi, and all branches are universally considered, the input η is accepted
if all universal branches are labeled by 1.

The computation tree described above has only three levels. At the first and
second level A spawns n existential and universal branches, respectively. By using a
divide and conquer algorithm each of these levels can be converted into an ordinary
binary tree of height log n. All nodes in the first (existential) tree, excepting the
nodes placed at the last level, function as “OR gates”, while nodes in the second
(universal) tree function as “AND gates”. The nodes placed at the last level are
labeled by symbols occurring in η, in both trees. Leaves of the first (existential) tree
are roots of the second (universal) tree.

For each node labeled by ηi, 1 ≤ i ≤ n, placed at the last level of the “universal”

tree, A spawns O(n
∑k

j=1
2cj

) existential branches. Each existential tree at this level
can be converted into a binary tree, of height O(

∑k
j=1 2cj log n) = O(log n), with

only “OR gates”, excepting the leaves. On each leaf of this tree, A has stored on the

third track of the working tape, a certain combination of k sequences of t
(i)
j -tuples,

1 ≤ j ≤ k, and a certain policy `qηi , 1 ≤ q ≤ 2cηi , for which A checks conditions of
types 1− 2, for 1 ≤ i ≤ n− 1, and conditions of types 1− 3, for i = n.

All functions used in the algorithm, such as counting and addition, are in NC1.
The binary tree, on which the computational tree of A can be unfolded, has the
height O(log n). Hence, the time complexity of A is O(log n).

In order to store each sequence mq
ηi , 1 ≤ q ≤ 2cηi , 1 ≤ i ≤ n, the k (binary)

t
(i)
j -tuples (c

(i)
j,1, c

(i)
j,2, ..., c

(i)

j,2cj
), and all sums computed in binary at Levels 2-3, A

needs only O(log n) space. Sequences mq
ηi and vectors V (lqηi) can be stored on the

first track of the working tape of A. The other elements, such as the t
(i)
j -tuples and

auxiliary sums, can be stored (in binary) on the third track of the working tape. 2

Corollary 3 SZMac(CF ) ⊂ NC1.

Corollary 4 SZMac(CF ) ⊂ DSPACE(log n).

3.3 On the Complexity of Leftmost Szilard Languages

MGs are highly nondeterministic rewriting systems. First, due to the nondeter-
ministic manner in which nonterminals can be rewritten, and second, due to the
appearance checking restrictions on which rules in a matrix can be passed over. The
second type of nondeterminism can be avoided by omitting the appearance checking
mode. The first type of nondeterminism can be reduced by imposing an order on
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the manner in which nonterminals are rewritten, similar to leftmost derivations in
CGs. As in the case of CGs, the leftmost derivation order leads to more interesting
results. In this section we focus on the complexity of Szilard languages associated
with leftmost-i derivations, i ∈ {1, 2, 3}, (Definition 10) introduced in [13]. However,
results provided for these three types of derivations can be generalized for several
other leftmost derivations introduced in [12], [17], or [41]. Hence, proofs provided
in this subsection can be considered as “prototypes” for a large variety of complex-
ity results concerning several types of leftmost Szilard languages. For the case of
leftmost-1 Szilard languages we have

Theorem 5 Each language L ∈ SZML1(CF ) can be recognized by an indexing
ATM in O(log n) time and space.

Proof. Let G = (N,T,A1,M, F ) be a MG without appearance checking and CF
rules, working in the leftmost-1 derivation manner. Consider an indexing ATM A
having a similar configuration as the machine used in the proof of Theorem 3, and
let η ∈M∗, η = η1η2...ηn be an input word of length n. In order to guess the length
of η, A proceeds with the procedure described at Level 1 (Existential), Theorem 3.
Then A spawns (Level 2) n universal processes ℘i, 1 ≤ i ≤ n.

• On the first process A reads η1, where η1 = (pη1,1, pη1,2, ..., pη1,kη1
), and it checks

whether αη1,1 = A1 and sdfαη1,r+1 = V 0
αη1,r+1

+
∑r
l=1 dfαη1,r+1(pη1,l) ≥ 1, 1 ≤ r ≤

kη1 − 1, i.e., whether the nonterminal αη1,r+1 rewritten by the (r + 1)th rule of η1,
exists in the sentential form generated up to the rth step of the derivation performed
by η1. Then A checks whether rules in η1 can be applied in a leftmost-1 derivation
manner. In order to check this property, from right-to-left in η1, A checks whether
each rule pη1,r, 2 ≤ r ≤ kη1 , can rewrite the first nonterminal occurring in the
right-hand side of the previous rule pη1,r−1, if this is a non-terminal rule. If pqη1,r−1

is a terminal rule, then A searches backward in η1 for the non-terminal rule that
produces the nonterminal rewritten by rule pη1,r. In this respect A existentially
guesses (Level 3) an integer s (finite in this case) such that the rule pη1,s is a non-
terminal rule. A counts the number of rules existing in η1 between rule pη1,s and
rule pη1,r (excluding pη1,r). Suppose that this number is sv, i.e., sv = r − s. Then,
A counts the number of nonterminals that each rule existing between pη1,s+1 and
pη1,r−1 has on its right-hand side. Suppose that this number is sq. For sv and sq,
A checks whether the (sv − sq)th nonterminal existing on the right-hand side of rule
pη1,s equals the nonterminal rewritten by rule pη1,r, i.e., αη1,r.

If pη1,s is the right rule that produces in the sentential form the nonterminal
rewritten by rule pη1,r, and this is the r̄th nonterminal occurring on the right-hand
side of rule pη1,s, then for the case of leftmost-1 derivation order, the following
relation must hold r̄ + sq = sv. This is because each nonterminal produced in the
sentential form by rules used in a leftmost-1 derivation manner, between pη1,s and
pη1,r (including nonterminals existing up to the r̄th nonterminal on the right hand
side of pη1,s), must be fully rewritten by these rules. The nonterminals existing
in the sentential form before pη1,s is applied will be rewritten only after the new
nonterminals produced between pη1,s and pη1,r are fully rewritten.
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However, guessing an integer s that satisfies the above condition is not sufficient,
since between pη1,1 and pη1,r, there may exist several rules pη1,s with this property.
In order to eliminate those rules pη1,s that does not produce the real nonterminal
rewritten by pη1,r, for each s found at Level 3, A universally branches (Level 4)
all rules used between pη1,s and pη1,r. On each branch that takes the rule pη1,l,
s < l < r, A checks whether

1. αη1,l equals αη1,r,
2. if αη1,r is the r̄th nonterminal occurring on the right-hand side of rules pη1,s,

s̄q is the number of nonterminals produced between rules pη1,s+1 and pη1,l−1, and
s̄v = l − s is the number of rules used between rule pη1,s and pη1,l (excluding rule
pη1,l), then the following condition holds r̄ + s̄q = s̄v,

3. the number of nonterminals αη1,r rewritten between rules pη1,s and pη1,l−1 are
equal with the number of nonterminals αη1,r produced between these rules, up to
the r̄th nonterminal occurring on the right-hand side of pη1,s (excluding the r̄th

nonterminal).
On each universal branch A returns 0 if conditions 1− 3 hold, which means that

the r̄th nonterminal occurring on the right-hand side of rule pη1,s is not the real
nonterminal rewritten by pη1,r. Hence, the existential branch that guessed s, must
be canceled. Otherwise, A returns 1. If all universal branches spawned for pη1,s

at Level 4, return 1, then the rule pη1,s is the rule that produce the nonterminal
rewritten by pη1,s in leftmost-1 derivation manner. In this case ℘1 returns 1.
• For each ℘i, 2 ≤ i ≤ n, A proceeds as follows. A counts the number of

occurrences of each matrix mj , 1 ≤ j ≤ k, in η(i) = η1η2...ηi−1. Suppose that

this number is c
(i)
j , 0 ≤ c

(i)
j ≤ i − 1. Then, for each 1 ≤ l ≤ m, A computes the

values s
(i)
l = V 0

l +
∑k
j=1 c

(i)
j Vl(mj), i.e., A computes the number s

(i)
l of occurrences

of nonterminal Al in the sentential form upon which ηi is applied. Consider ηi =

(pηi,1, pηi,2, ..., pηi,kηi ) and αηi,1 = Aqi , 1 ≤ qi ≤ m. Then A checks whether s
(i)
qi =

s
(i)
αηi,1

≥ 1, i.e., whether the matrix ηi can start the computation. For each 1 ≤
r ≤ kηi − 1, A checks whether13 sdfαηi,r+1 = s

(i)
αηi,r+1 +

∑r
l=1 dfαηi,r+1(pηi,l) ≥ 1, i.e.,

whether the rules pηi,r, 2≤r≤kηi , can be applied in the same order they occur in ηi.
Then, A checks whether rules in ηi can be applied in a leftmost-1 derivation

manner. In this respect, A checks, from right-to-left in the sequence ηi = (pηi,1,
pηi,2, ..., pηi,kηi ), whether each rule pηi,r, 2 ≤ r ≤ kηi , rewrites the first nonterminal
occurring on the right-hand side of the previous rule pηi,r−1, if this is not a terminal
rule. If pηi,r−1 is a terminal rule, then A first searches backward in ηi, as in ℘1,
for an integer s such that rule pηi,s produces in the sentential form the nonterminal
rewritten by pηi,r. If no rule with this property can be found in ηi, A searches
backward in η(i) = η1η2...ηi−1 for a matrix ηv such that there exists a non-terminal
rule in ηv that produces the nonterminal rewritten by pηi,r.

In this order, A spawns i − 1 existential branches (Level 3), and each branch
takes the matrix ηv, 1 ≤ v ≤ i − 1. Suppose that ηv is defined by the sequence
(pηv ,1, pηv ,2, ..., pηv ,kηv ). A checks whether there exists a non-terminal rule pηv ,s,

13Note that s
(i)
αηi,r+1 is actually the sum s

(i)
l where αηi,r+1 is the lth nonterminal occurring in

V (mj).
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1 ≤ s ≤ kηv , in ηv, such that pηv ,s produces the nonterminal rewritten by pηi,r. This
is performed as follows.

Denote by sv the number of rules used in the derivation process between rule pηv ,s
of matrix ηv and rule pηi,r−1 of matrix ηi (including rules pηv ,s and pηv ,r−1). Suppose
that q of these rules (without counting the rule pηv ,s) are non-terminal. Denote by sq
the total number of nonterminals produced by the q non-terminal rules used between
pηi,s+1 and pηv ,r−1. Then, as in process ℘1, A checks whether αηi,r is the (sv − sq)th
nonterminal occurring on the right-hand side of rule pηv ,s. Note that sv, q, and sq
can be computed by A through a trivial counting and summation procedure.

Each existential branch spawned at Level 3, is labeled by 1 if there exists a rule
pηv ,r with the above properties. For each existential branch at Level 3, labeled by 1,
A checks whether the r̄th nonterminal occurring in βηv ,s is indeed the nonterminal
αηi,r rewritten by rule pηi,r, i.e., no other rule used between rule pηv ,s of matrix `qηv
and rule pηi,r of matrix ηi rewrites the r̄th nonterminal αηi,r, occurring in βηv ,s. In
this respect A universally branches (Level 4) all symbols occurring between ηv+1

and ηi−1. There are v − i − 1 such branches. On each branch holding a matrix ηl,
defined by (pηl,1, pηl,2, ..., pηl,kηv ), v < l < i, A settles on a non-terminal rule pηl,s̄,
1 ≤ s̄ ≤ kηl , and it checks whether

1. αηl,s̄ equals αηi,r,
2. r̄ + s̄q = s̄v, providing that αηi,r is the r̄th nonterminal occurring on the

right-hand side of rule pηv ,s, s̄q is the number of nonterminals produced between
rules pηv ,s+1 and pηl,s̄−1, and s̄v is the number of rules used between pηv ,s and pηl,s̄
(excluding rule pηl,s̄),

3. the number of nonterminals αηi,r rewritten between rules pηv ,s and pηl,s̄−1 is
equal to the number of nonterminals αηi,r produced between these rules, up to the
r̄th nonterminal occurring on the right-hand side of rule pηv ,s (excluding the r̄th

nonterminal).
Besides, for ℘n, as in Theorem 3, A checks whether at the end of the application

of matrix ηn the sentential form contains no nonterminal, i.e., condition

4. s
(n,out)
l = 0, where s

(n,out)
l = V 0

l +
∑k
j=1 c

(n)
j Vl(ηj) + Vl(ηn), 1 ≤ l ≤ m, must

hold.
On each universal branch (at Level 4) A returns 0 if conditions 1 − 3 hold.

Otherwise, it returns 1. If all universal branches spawned for the value s at Level 4
return 1, then rule pηv ,s (found at Level 3) is the rule that produces the nonterminal
rewritten by pηi,r in the leftmost-1 derivation manner. Then the existential branch
spawned at Level 3, corresponding to this s value, will be labeled by 1.

Each process ℘i, 2 ≤ i ≤ n returns 1 if there exists an existential branch at Level
3, labeled by 1. Otherwise, ℘i returns 0.

Note that, for each ℘i, 1 ≤ i ≤ n, A does not have to check whether matrices
ηv and ηl can be applied in a leftmost-1 derivation manner. Nor even if they can
be applied, according with the definition of a derivation step in a MG. If ηv and
ηl do not satisfy these requirements, then the wrong logical value returned by ℘i is
“corrected” by the 0 value returned by processes ℘v or ℘l, since all these processes
are universally considered.

As in Theorem 4, each of the above processes uses the third track of the working
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tape for auxiliary computations, to store in binary the k sequences of t
(i)
j -tuples,

1 ≤ j ≤ k, and the sequence mq
ηi that characterizes lqηi , 1 ≤ q ≤ 2cηi , 1 ≤ i ≤ n. It

is easy to estimate that A performs the whole computation in logarithmic time and
space. 2

Corollary 5 SZML1(CF ) ⊂ NC1.

Corollary 6 SZML1(CF ) ⊂ DSPACE(log n).

The algorithm described in the proof of Theorem 5 cannot be applied for the case
of leftmost-1 Szilard languages with appearance checking. The explanation is that,
in the proof of Theorem 5, for any matrix ηi, 2 ≤ i ≤ n, A has to guess a policy of a
matrix ηv that contains a non-terminal rule that produces the nonterminal rewritten
by rule pηi,r of ηi. However, even if process ℘v returns the true value, which means
that at its turn ℘v can be applied in a leftmost-1 derivation manner on the substring
η1η2...ηv−1, the process ℘i cannot “see” with which policy ηv works in a leftmost-1
derivation manner, since all branches (or processes) spawned at the same level of the
computation tree of A are independent on each other. Hence, the policy of matrix ηv
(guessed by ℘v) that provides the rule that produces the nonterminal rewritten by
pηi,r, may not work in leftmost-1 derivation manner upon η1η2...ηv−1. That is why,
for the case of leftmost-1 derivations in matrix grammars with appearance checking
another algorithm should be applied.

In the sequel, we focus on the letfmost-i, i ∈ {1, 2, 3}, derivation procedures and
we describe an ATM that recognizes letfmost-i, i ∈ {1, 2, 3}, Szilard languages in
logarithmic space and square logarithmic time.

In order to simulate letfmost derivations in matrix grammars and to check
whether a given word η ∈ M∗, η = η1η2...ηn, belongs to the class SZMLaci (CF ),
i ∈ {1, 2, 3}, for each matrix ηi, 1 ≤ i ≤ n, the ATM must have information concern-
ing the order in which the first occurrence of each nonterminal Al ∈ N , 1 ≤ l ≤ m,
occurs in the sentential form at any step of the derivation. This can be obtained
either by sequentially reproducing the derivation up to the ith step on which ηi is
applied, or by letting the ATM to guess the possible order in which the first oc-
currences of nonterminals in N occur in the sentential form on which ηi is applied.
Then the ATM has to check whether the guessed order is correct, in the sense that ηi
can be applied in letfmost-i, i ∈ {1, 2, 3}, derivation manner on the sentential form
built upon this order and whether the computation leads to a terminal derivation.
In order to describe the way in which the parallel procedure works we introduce the
notion of ranging vector. A ranging vector associated with a matrix mj , 1 ≤ j ≤ k,
or a policy of this matrix, provides the order in which the first occurrences of non-
terminals in N occur in the sentential form obtained after mj has been applied at
that step of derivation.

Definition 11 Let G = (N,T,A1,M, F ) be a MG with appearance checking, where
M = {m1,m2, ...,mk} is the ordered finite set of matrices in M . Suppose that each
matrix mj has 2cηi policies, where cηi = |ηi ∩ F |. Let SF`qj

be the sentential form

obtained after matrix mj with policy `qj , 1 ≤ j ≤ k, 1 ≤ q ≤ 2cj , has been applied at
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a certain step of derivation in G. The ranging vector associated with the sentential
form SF`qj

and policy `qj , denoted14 by S(`qj), is a vector in Nm defined as

Sl(`
q
j) =


0, if Al ∈ N does not occur in SF`qj

, i.e., |SF`qj |Al = 0,

i,
if the first occurrence of Al in SF`qj

is the ith element in the

order of first occurrences of nonterminals from N in SF`qj
.

Example 1 Consider S(`qj) = (3, 0, 2, 1, 0) ∈ N5 the ranging vector associated with
the policy `qj of a matrix mj . The sentential form, obtained after the application of
policy `qj , looks like SF`qj

= tA4X4A3X3,4A1X1,3,4, where t ∈ T ∗, X4 ∈ ({A4} ∪ T )∗,

X3,4 ∈ ({A3, A4} ∪ T )∗, X3,4,1 ∈ ({A1, A3, A4} ∪ T )∗. Note that, S(`qj) also provides
the information concerning the leftmost nonterminal occurring in a sentential form
useful for the leftmost-1 derivation, for example A4 above.

If matrix mj′ with policy `qj′ , is applied in the Szilard word before matrix mj with

the policy `qj , then S(`qj) can be nondeterministically computed knowing the ranging
vector S(`qj′), for all leftmost-i, i ∈ {1, 2, 3}, derivation cases (as in Examples 2,3,
and 4).

Example 2 Consider S(`qj′) = (4, 1, 3, 2, 0) the ranging vector associated with the

sentential form SF`q
j′

, obtained after the policy `qj′ of matrix mj′ has been applied,

at the ith step of derivation, such that SF`q
j′

contains one occurrence of A1, two

occurrences of A3, and arbitrary number of occurrences of A2 and A4. Then SF`q
j′

looks like SF`q
j′

= tA2X2A4X2,4A3X2,3,4A1X̄2,3,4, where t ∈ T ∗, X2 ∈ ({A2} ∪ T )∗,

X2,4 ∈ ({A2, A4} ∪ T )∗, X2,3,4, X̄2,3,4 ∈ ({A2, A3, A4} ∪ T )∗.
Suppose that matrix mj , with the policy `qj , identified by the sequence mq

j =

(A4 → tA5, A3 → λ), t ∈ T ∗, is applied at the (i + 1)th step of derivation. If
mq
j rewrites the first occurrence of A4 in SF`q

j′
and the second occurrence of A3 in

SF`q
j′

, then the sentential form obtained after `qj has been applied, in the leftmost-2

derivation manner, may look like

• SF`qj = tA2X2A5X̄2A4X2,4A3X̄2,4A1X̃2,4, t ∈ T ∗, X2, X̄2 ∈ ({A2} ∪ T )∗,

X2,4, X̄2,4, X̃2,4,∈ ({A2, A4} ∪ T )∗, i.e., S(`qj) = (5, 1, 4, 3, 2),

• SF`qj = tA2X2A5X̄2A3X̃2A4X2,4A1X̄2,4, t ∈ T ∗, X2, X̄2, X̃2 ∈ ({A2} ∪ T )∗,

X2,4, X̄2,4 ∈ ({A2, A4} ∪ T )∗, i.e., S(`qj) = (5, 1, 3, 4, 2), or like

• SF`qj = tA2X2A5X̄2A3X̃2A1X̆2A4X2,4, t ∈ T ∗, X2, X̄2, X̃2, X̆2 ∈ ({A2} ∪ T )∗,

X2,4 ∈ ({A2, A4} ∪ T )∗, i.e., S(`qj) = (4, 1, 3, 5, 2).

Note that, since the first rule in `qj rewrites A4, `qj is eligible to be applied in
leftmost-2 derivation manner, if and only if there is no other policy of mj and no
other matrix in M , distinct of mj , for which the first rule in the matrix sequence
rewrites A2.

14If `qj is not yet “decided” or F = ∅, then instead of S(`qj) the notation S(mj) is used.
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Example 3 Ifmj with the policy `qj , defined by the sequencemq
j = (A4 → tA5, A3 →

λ), is applied in the leftmost-3 derivation manner on SF`q
j′

characterized by the

ranging vector S(`qj′) = (4, 1, 3, 2, 0) in Example 2, then after rewriting A4, `qj must
rewrite only the first occurrence of A3 in SF`q

j′
. Note that, matrix mj with pol-

icy `qj , can be applied in leftmost-3 derivation manner, even if there exists another
policy of mj , or other matrix in M distinct of mj , for which the first rule in the
matrix sequence rewrites A2. By applying `qj in the leftmost-3 derivation man-

ner on SF`q
j′

= tA2X2A4X2,4A3X2,3,4A1X̄2,3,4, where t ∈ T ∗, X2 ∈ ({A2} ∪ T )∗,

X2,4 ∈ ({A2, A4} ∪ T )∗, X2,3,4, X̄2,3,4 ∈ ({A2, A3, A4} ∪ T )∗, we may obtain

• SF`qj = tA2X2A5X̄2A4X2,4A3X̄2,4A1X̃2,4, where t ∈ T ∗, X2, X̄2 ∈ ({A2}∪T )∗,

X2,4, X̄2,4, X̃2,4 ∈ ({A2, A4} ∪ T )∗, i.e., S(`qj) = (5, 1, 4, 3, 2),

• SF`qj = tA2X2A5X̄2A4X2,4A1X̄2,4A3X̃2,4, t ∈ T ∗, X2, X̄2 ∈ ({A2} ∪ T )∗,

X2,4, X̄2,4, X̃2,4 ∈ ({A2, A4} ∪ T )∗, i.e., S(`qj) = (4, 1, 5, 3, 2),

• SF`qj = tA2X2A5X̄2A1X̃2A4X2,4A3X̄2,4, t ∈ T ∗, X2, X̄2, X̃2 ∈ ({A2} ∪ T )∗,

X2,4, X̄2,4 ∈ ({A2, A4} ∪ T )∗, i.e., S(`qj) = (3, 1, 5, 4, 2), or

• SF`qj = tA2X2A5X̄2A1X̃2A3X̆2A4X2,4, t ∈ T ∗, X2, X̄2, X̃2, X̆2 ∈ ({A2} ∪ T )∗,

X2,4 ∈ ({A2, A4} ∪ T )∗, i.e., S(`qj) = (3, 1, 4, 5, 2).

Example 4 For the leftmost-1 derivation case the matrix mj with the policy `qj ,
defined by the sequence mq

j = (A4 → tA5, A3 → λ) cannot be applied, since neither
the first nor the second rule cannot rewrite the leftmost nonterminal occurring in
the current sentential form. Matrix mj with the policy `qj , defined by the sequence
(A2 → tA3, A3 → λ), t ∈ T ∗, can be applied in the leftmost-1 derivation manner
on SF`q

j′
= tA2X2A4X2,4A3X2,3,4A1X̄2,3,4, where t ∈ T ∗, X2 ∈ ({A2} ∪ T )∗, X2,4 ∈

({A2, A4} ∪ T )∗, X2,3,4, X̄2,3,4 ∈ ({A2, A3, A4} ∪ T )∗, introduced in Example 2. In
this case we may obtain

• SF`qj = tA2X2A4X2,4A3X2,3,4A1X̄2,3,4, where t ∈ T ∗, X2 ∈ ({A2}∪T )∗, X2,4 ∈
({A2, A4} ∪ T )∗, X2,3,4, X̄2,3,4 ∈ ({A2, A3, A4} ∪ T )∗, i.e., S(`qj) = (4, 1, 3, 2, 0),

• SF`qj = tA4X4A2X2,4A3X2,3,4A1X̄2,3,4, where t ∈ T ∗, X4 ∈ ({A4}∪T )∗, X2,4 ∈
({A2, A4} ∪ T )∗, X2,3,4, X̄2,3,4 ∈ ({A2, A3, A4} ∪ T )∗, i.e., S(`qj) = (4, 2, 3, 1, 0),

• SF`qj = tA4X4A3X3,4A2X2,3,4A1X̄2,3,4, where t ∈ T ∗, X4 ∈ ({A4}∪T )∗, X3,4 ∈
({A3, A4} ∪ T )∗, X2,3,4, X̄2,3,4 ∈ ({A2, A3, A4} ∪ T )∗, i.e., S(`qj) = (4, 3, 2, 1, 0),
or

• SF`qj = tA4X4A3X3,4A1X̄3,4A2X2,3,4, where t ∈ T ∗, X4 ∈ ({A4} ∪ T )∗,

X3,4, X̄3,4 ∈ ({A3, A4} ∪ T )∗, X2,3,4 ∈ ({A2, A3, A4} ∪ T )∗, i.e., S(`qj) =
(3, 4, 2, 1, 0).
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In the sequel we briefly describe an ATM A that checks whether an input word
η ∈ M∗, η = η1η2...ηn, belongs to SZMLaci (CF ), i ∈ {1, 2, 3}. First A guesses n-
tuple of vectors < = (S(η1), S(η2), ..., S(ηn)), where each S(ηv) is the ranging vector
associated with the matrix ηv, 1 ≤ v ≤ n. There may exist O(cn) such n-tuples
of ranging vectors, where c is a constant that depends on the number of vectors
in Nm that can be built upon the set {0, 1, ...,m}. For instance, if we have the
information that a certain sentential form has only m − s distinct nonterminals,
then there are (m− s+ 1)m guesses that may provide the ranging vector associated
with this sentential form. Hence, c = O(

∑m−1
s=1 (m − s + 1)m). According to this

observation, A spawns O(cn) existential branches, each of them holding an n-tuple
of type <. A branch will be labeled by 1 if each vector in <, i.e., <v = S(ηv),
1 ≤ v ≤ n − 1, provides15 a possible order of first occurrences of nonterminals in
N in the sentential form on which ηv ends the vth step of derivation, the matrix
ηv+1 can be applied upon S(ηv) in the leftmost-i, i ∈ {1, 2, 3}, derivation manner,
and whether the derivation performed in the leftmost-i manner by using all ranging
vectors in <, leads to a word in the language.

On each existential branch, A proceeds with an universal and existential level as
in Levels 2−3 in the proof of Theorem 4. Briefly, A spawns n universal processes ℘i,
1 ≤ i ≤ n. On each process A spawns a polynomial number of existential branches,
each of them holding a possible configuration of policies used by matrices occurring
in the input word up to the matrix ηi, and computes the net effect according to this
configuration. A guesses a policy `qηi and, based on this net effect, checks whether
matrix ηi with the policy `qηi can be applied, in the leftmost-i, i ∈ {1, 2, 3}, derivation
manner, on the current sentential form for which the order of first occurrences of
nonterminals in N is provided by the vector S(ηi−1) in <. Then A checks whether
S(ηi) is a ranging vector on which `qηi may complete the ith step of derivation, in
leftmost-i, i ∈ {1, 2, 3}, derivation manner.

Recall that the policy `qηi can be applied, in leftmost-1 derivation manner on
the ranging vector S(ηi−1) if the first rule in `qηi rewrites the nonterminal Al for
which Sl(ηi−1) = 1, and each rule in `qηi rewrites the leftmost nonterminal occurring
in the sentential form built according to the information provided by S(ηi−1) after
applying the first rule in `qηi .

The policy `qηi can be applied, in leftmost-2 derivation manner on the ranging
vector S(ηi−1) if there exists an index l, 1 ≤ l ≤ m, such that the first rule of `qηi
rewrites Al and there is no matrix mj , mj 6= ηi, and no policy `qmj of mj , 1 ≤ j ≤ k,
such that the first rule in `qmj rewrites a nonterminal Al′ with Sl′(ηi−1) < Sl(ηi−1).

For the case of leftmost-3 derivation manner A does not have to check the above
leftmost-2 condition, since the first rule of the policy `qηi is allowed to rewrite the first
occurrence of its left-hand side, i.e., Al, even if there exist several other matrices for
which the left-hand side of the first rule, say Al′ , may be placed in the sentential form
before Al, i.e., Sl′(ηi−1) < Sl(ηi−1). Hence, for the leftmost-3 derivation case `qηi can
be applied if the first rule in `qηi rewrites any nonterminal Al for which Sl(ηi−1) 6= 0.
The same condition must be checked for any rule in `qηi , applied on the sentential
form built according to the information provided by S(ηi−1).

15S(ηn) must be the null vector.
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Note that the ranging vector S(ηi−1) does not provide complete information
concerning the shape of the sentential form obtained after the application of matrix
ηi−1, since S(ηi−1) provides only the order of the first occurrences of each nonter-
minal in N . Hence, the position of the second, third, and so on, occurrence of a
nonterminal must be considered according to the order provided by S(ηi−1).

To verify whether S(ηi) is a possible ranging vector on which `qηi may complete

the ith step of derivation, A builds all possible ranging vectors that can be computed
starting from S(ηi−1) in the leftmost-i, i ∈ {1, 2, 3}, derivation manner. Then A
checks whether S(ηi) is one of the ranging vectors computed in this way.

Each process ℘i returns 1 if there exists at least one configuration of policies
used by matrices occurring in the input word up to the matrix ηi, and at least one
policy `qηi of ηi, that satisfies the above leftmost-i, i ∈ {1, 2, 3}, requirements.

If all processes ηi, 1 ≤ i ≤ n, returns 1 then < is a correct guess and the
existential branch holding this tuple is labeled by 1. The input is accepted if there
exists at least one existential branch, holding an n tuple <, labeled by 1. Otherwise,
the input is rejected.

Note that guesses yielded by different branches at a certain level of the computa-
tion tree of an ATM are independent on each other. If the ranging vectors composing
< are separately guessed by each process ℘i, 1 ≤ i ≤ n − 1, then A cannot check
whether the policy `qηi that works in a leftmost-i, i ∈ {1, 2, 3}, derivation manner on
the ranging vector S(ηi−1) yields the same ranging vector for which the policy `qηi+1

is guessed by process ℘i+1 to work in a leftmost-i, i ∈ {1, 2, 3}, derivation manner
on the ranging vector S(ηi). Therefore, A has to guess from the very beginning an
n-tuple < of ranging vectors associated with each matrix in η and to universally
check the correctness of this guess through the processes ℘i. In other words, the
whole n-tuple < must be seen by all the universal processes ℘i, 1 ≤ i ≤ n.

It is easy to observe that the first level of the computation tree associated with
A can be ”unfolded”, by using a divide and conquer procedure, into a computation
tree of height O(log cn) = O(n) in which each node has the out-degree 2. To record
the < vector A needs O(n) space. Hence, this algorithm cannot be related to the
parallel complexity classes NC1 and NC2. In order to improve the linear time and
space resources to logarithmic (the logarithmic uniformity assumptions required by
the NC classes) we divide the input string of length n, into (log n)logn substrings
of length log n, and apply the above algorithm for each substring. Briefly, the new
algorithm works as follows.

The ATM A performs a number of log n “iterated” divisions, where n is the
length of the input word. Dividing n by [log n] we obtain16 a quotient Q1 and a
remainder R1, i.e., n = Q1 [log n] +R1, where 0 ≤ R1 < log n. Dividing the quotient
Q1 by [log n] we obtain a new quotient Q2 and a remainder R2, i.e., n = (Q2 [log n]+
R2) [log n] +R1, with 0 ≤ R2 < log n. We continue this procedure until the resulted
quotient can be no longer divided by [log n]. Suppose that Q` is this quotient, then
n = ((...((Q` [log n] + R`) [log n] + R`−1) [log n] + ...) [log n] + R2) [log n] + R1, with
1 ≤ Ql < [log n] and 0 ≤ Rl < [log n], l ∈ {1, 2, ..., `}. It is easy to prove that
` < log n.

16By [a] we denote the floor value of a, where a is a real number.
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A guesses an R1-tuple of ranging vectors associated with the first R1 matrices
occurring in η = η1η2...ηn and checks, similar as in the algorithm described above,
whether the substring η1η2...ηR1 is valid, according to the leftmost-i, i ∈ {1, 2, 3},
derivation procedure. Then A guesses a [log n]-tuple of ranging vectors associated
with matrices placed at the [log n] cutting points in η obtained by dividing the
interval [R1 + 1...n] into [log n] intervals of length Q1. A continues with this routine
for each interval of length Q1 as follows.
A checks, in parallel, whether the first R2 matrices in each Q1-interval forms

a valid substring of a leftmost-i, i ∈ {1, 2, 3}, Szilard word. Then, in parallel for
each Q1-interval, A guesses another [log n]-tuple of ranging vectors associated with
matrices placed at the [log n] cutting points in η obtained by dividing each interval
of length Q1−R2 into [log n] intervals of length Q2. This procedure is repeated until
intervals of length Q` < log n are obtained. At this point, A checks whether the
substring of η corresponding to the Q`-intervals, are valid according to the leftmost-
i, i ∈ {1, 2, 3}, derivation order. It can be proved that all cutting points are right
edges of these intervals. If correct ranging vectors can be found for all intervals and
all cutting points, then η is a correct leftmost-i, i ∈ {1, 2, 3}, Szilard word.

On the other hand, the division operation is a function in the NC1 class17 [5].
Since A performs a number of logn divisions, the computation tree associated with
A has at least log n levels. At each level A needs O(log clogn) = O(log n) time to
check the correctness of a substring of length at most log n, O(log n) time to perform
the division operation, and O(log n) space (which is reused at each level) to record
the ranging vectors. Hence, the above algorithm requires log2 n time and log n space.

Theorem 6 Each language L ∈ SZMLaci (CF ), i ∈ {1, 2, 3}, can be recognized by
an indexing ATM in O(log2 n) time and O(log n) space.

Proof. We prove the claim for the leftmost-2 derivation. For the leftmost-1 and
leftmost-3 cases the proof is almost the same. Let G = (N,T,A1,M, F ) be a MG
with appearance checking, and A an indexing ATM with a similar configuration as
in the proof of Theorem 3. Let η ∈ M∗, η = η1η2...ηn, be an input word of length
n. To guess the length of η, A proceeds with the Level 1 (Existential), Theorem 3.

Level 2 (Existential) Consider the quotient Q1 and the remainder R1 of the divi-
sion of n by [log n], where 0 ≤ R1 < [log n]. A spawns O(clogn) existential branches,
each branch holding an R1-tuple of ranging vectors <R1 = (S(η1), S(η2), ..., S(ηR1)),
where18 c = O(

∑m−1
s=1(m− s+ 1)m) and S(ηv) is the ranging vector associated with

matrix ηv, 1 ≤ v ≤ R1. Then A checks whether all vectors in <R1 are correct,
according to the leftmost-2 derivation order. This can be done in O(log n) space
and O(log n) parallel time through Levels 3-4.

Levels 3-4 (Universal-Existential) A spawns (Level 3) R1 universal processes ℘
(R1)
v ,

1 ≤ v ≤ R1.

17It is actually a function in the logspace-uniform T C0 class [20].
18The constant c depends on the number of vectors in Nm that can be built upon the set
{0, 1, ...,m}. Here and throughout the paper, c = O(

∑m−1

s=1
(m − s + 1)m). At page 21 we have

explained the manner in which this constant can be computed.
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• On ℘
(R1)
1 A checks whether there exists a policy for η1 that can be applied in

leftmost-2 derivation manner on the axiom A1 and ends this step of derivation with

the ranging vector S(η1). Process ℘
(R1)
1 returns 1 if these conditions hold.

• On each ℘
(R1)
v , 2 ≤ v ≤ R1, A counts the number of occurrences of each ma-

trix mj ∈ M , 1 ≤ j ≤ k, in η(v) = η1η2...ηv−1. Suppose that each mj oc-

curs c
(v)
j times, 0 ≤ c

(v)
j ≤ v − 1, in η(v). A guesses k tuples of integers t

(v)
j =

(c
(v)
j,1 , c

(v)
j,2 , ..., c

(v)

j,2cj−1
, c

(v)

j,2cj
), where c

(v)
j,q with 0 ≤ c

(v)
j,q ≤ c

(v)
j and

∑2cj
q=1 c

(v)
j,q = c

(v)
j ,

represents the number of times the policy `qj of matrix mj , 1 ≤ q ≤ 2cj , can be

used when mj is activated on η(v). Then A spawns (Level 4) N (R1)=O(R

∑k

j=1
2cj

1 )

existential branches, each of which holds k tuples t
(v)
j (one tuple for each matrix).

On each branch, A computes s
(v)
l = V 0

l +
∑k
j=1

∑2cj
q=1 c

(v)
j,q Vl(`

q
j), 1 ≤ l ≤ m. Suppose

that ηv is a matrix with 2cηv policies, where cηv = |ηv ∩F |, and that each policy `qηv ,
1 ≤ q ≤ 2cηv , is identified by the sequence mq

ηv=(pqηv ,1, pqηv ,2, ..., pq
ηv ,ξ

q
ηv

), 1 ≤ r ≤ ξqηv ,

|ηv − F | ≤ ξqηv ≤ |ηv|. Then A computes sdfαqηv,r+1
= s

(v)

αqηv,r+1
+
∑r
l=1 dfαqηv,r+1

(pqηv ,l),

1 ≤ r ≤ ξqηv − 1, and, as in Theorem 4, it checks

1. s
(v)

αqηv,1
≥ 1, i.e., pqηv ,1 can be applied on η(v) = η1η2...ηv−1,

2. sdfαqηv,r+1
≥ 1, 1 ≤ r ≤ ξqηv − 1, i.e., rules of policy `qηv can be applied one by

one in the order defined by the sequence mq
ηv ,

3. S(ηv−1) is a possible ranging vector with which ηv−1 ends the (v − 1)th step

of derivation, i.e., Sl(ηv−1) = 0, if s
(v)
l = 0, and Sl(ηv−1) > 0, if s

(v)
l > 0,

1 ≤ l ≤ m. Then A checks whether policy `qηv of ηv, can be applied on S(ηv−1)
in the leftmost-2 derivation manner, i.e., there exists an index l, 1 ≤ l ≤ m,
such that pqηv ,1, the first rule in mq

ηv , rewrites Al, i.e., Sl(ηv−1) 6= 0, and there is
no matrix mj , mj 6= ηv, and no policy `qmj of mj , such that the first rule in `qmj
rewrites a nonterminal Al′ with Sl′(ηv−1) < Sl(ηv−1). Then A verifies whether
S(ηv) is a possible ranging vector on which `qηv ends the vth step of derivation in
leftmost-2 manner. Note that S(ηv) can be (nondeterministically) computed
knowing the rules of the policy `qηv applied in leftmost-2 derivation manner on
S(ηv−1) (Example 2).

Each ℘
(R1)
v , 2 ≤ v ≤ R1, returns 1 if there exist at least one t

(v)
j -tuple and at

least one policy `qηv of ηv, that satisfy the above leftmost-2 requirements. If each

℘
(R1)
v , 1 ≤ v ≤ R1, returns 1 then <R1 is a correct guess and the existential branch

holding the [log n]-tuple, spawned at Level 2, is labeled by 1.

Level 5 (Existential) Let Q2 be the quotient and R2 the remainder of Q1 divided
by [log n], 0 ≤ R2 < [log n]. A spawns O(clogn) existential branches, each of them
holding a 2 [log n]-tuple of ranging vectors <cR2

= (S(ηR1), S(ηR1+R2), S(ηR1+Q1),
S(ηR1+Q1+R2), ..., S(ηR1+([logn]−1)Q1

), S(ηR1+([logn]−1)Q1+R2
)), where S(ηR1) is the

ranging vector belonging to the <R1-tuple found correct at Levels 3-4, and each S(ηj)
is a guessed ranging vector associated with matrix ηj , j ∈ {R1 +R2, R1 +Q1, R1 +
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Q1 +R2, R1 +2Q1, ..., R1 +([log n]−1)Q1, R1 +([log n]−1)Q1 +R2, R1 +[log n]Q1}.
Because <R1 is not useful anymore, the space used by A to record <R1 is allocated
now to record <cR2

.

Level 6 (Universal) On each existential branch from Level 5, A spawns [log n]

universal processes ℘
(Q1)
i1

, 0 ≤ i1 ≤ [log n]− 1. Each process ℘
(Q1)
i1

takes the interval
[R1+i1Q1...R1+i1Q1+R2], and checks whether the ranging vectors S(ηR1+i1Q1) and
S(ηR1+i1Q1+R2), 1 ≤ i1 ≤ [log n]− 1, provide a correct order in which the leftmost-2
derivation can be performed between matrices ηR1+i1Q1 and ηR1+i1Q1+R2 . Besides

S(ηR1+i1Q1) and S(ηR1+i1Q1+R2), each ℘
(Q1)
i1

also keeps, from the previous level, the
ranging vector S(ηR1+(i1+1)Q1

). In this way each S(ηR1+i1Q1), 1 ≤ i1 ≤ [log n] − 1,

guessed at Level 5, is redirected to only one process, i.e., to ℘
(Q1)
i1−1.

Level 7 (Existential) For each process ℘
(Q1)
i1

, 0 ≤ i1 ≤ [log n]−1, A spawns O(clogn)
existential branches (guesses), each branch holding an (R2 + 1)-tuple of ranging
vectors <R2 = (S(ηR1+i1Q1), S(ηR1+i1Q1+1), ..., S(ηR1+i1Q1+R2−1), S(ηR1+i1Q1+R2)).
Then A checks whether all vectors in <R2 are correct according to the leftmost-

2 derivation requirements. This can be done, for each process ℘
(Q1)
i1

, 1 ≤ i1 ≤
[log n]− 1, in O(log n) time and space, through Levels 8-9 as follows.

Levels 8-9 (Universal-Existential) For each branch spawned at Level 7, i.e., for

each 0 ≤ i1 ≤ [log n] − 1, A spawns R2 universal processes ℘
(R2)
v , 1 ≤ v ≤ R2.

On each ℘
(R2)
v , A checks whether each substring ηR1+i1Q1ηR1+i1Q1+1...ηR1+i1Q1+v

is correct according to the leftmost-2 derivation requirements, and whether each

ranging vector in <R2 is correct. This is performed as follows. For each ℘
(R2)
v ,

1 ≤ v ≤ R2, A counts the number of occurrences of each matrix mj ∈M , 1 ≤ j ≤ k,
in η(i1,v) = η1η2...ηR1+i1Q1+v−1. Denote by xi1 = R1 + i1Q1. Suppose that each

mj occurs c
(i1,v)
j times, 0 ≤ c

(i1,v)
j ≤ xi1 + v − 1, in η(i1,v). Then A guesses a

t
(i1,v)
j -tuple of integers of the form (c

(i1,v)
j,1 , c

(i1,v)
j,2 , ..., c

(i1,v)

j,2cj−1
, c

(i1,v)

j,2cj
), where c

(i1,v)
j,q

with 0 ≤ c
(i1,v)
j,q ≤ c

(i1,v)
j and

∑2cj
q=1 c

(i1,v)
j,q = c

(i1,v)
j , represents the number of times

the policy `qj of matrix mj , 1 ≤ q ≤ 2cj , can be used when mj is activated on

η(i1,v). A spawns (Level 9) N (R2) = O(c
(i1,v)

∑k

j=1
2
cj

j ) = O(n
∑k

j=1
2cj

) existential

branches, each of which holds k tuples t
(i1,v)
j , 1 ≤ j ≤ k. On each existential branch,

A computes the sums s
(i1,v)
l =

∑k
j=1

∑2cj
q=1 c

(i1,v)
j,q Vl(`

q
j), 1 ≤ l ≤ m. Suppose that

ηxi1+v is a matrix with 2
cηxi1+v policies, where cηxi1+v = |ηxi1+v ∩ F |, and that each

policy `qηxi1+v
, 1 ≤ q ≤ 2

cηxi1+v , is identified by the sequence mq
ηxi1+v

= (pqηxi1+v ,1
,

pqηxi1+v ,2
, ..., pq

ηxi1+v ,ξ
q
ηxi1

+v

), where |ηxi1+v − F | ≤ ξqηxi1+v
≤ |ηxi1+v|.

A computes the net effect of each rule inmq
ηxi1+v

, i.e., sdfαqηxi1+v,r+1
= s

(i1,v)

αqηxi1+v,r+1
+∑r

l=1 dfαqηxi1+v,r+1
(pqηxi1+v ,l

), 1 ≤ r ≤ ξqηxi1+v
− 1, and it checks whether

1. s
(v)

αqηxi1+v,1
≥ 1, i.e., pqηxi1+v ,1

the first rule of `qηxi1+v
, can be applied on η(i1,v),
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2. sdfαqηxi1+v,r+1
≥ 1, 1 ≤ r ≤ ξqηxi1+v

− 1, i.e., rules of policy `qηηxi1+v
can be

applied one by one in the order defined by the sequence mq
ηxi1+v

. Furthermore,

A checks the following leftmost-2 conditions:

3. S(ηxi1+v−1) is a possible ranging vector with which matrix ηxi1+v−1 ends the

(xi1 + v − 1)th step of derivation, i.e., Sl(ηxi1+v−1) = 0, if s
(i1,v)
l = 0, and

Sl(ηxi1+v−1) > 0, if s
(i1,v)
l > 0, 1 ≤ l ≤ m. The policy `qηxi1+v

of ηxi1+v, can be

applied on S(ηxi1+v−1) in a leftmost-2 manner, i.e., A checks whether there
exists an l, 1 ≤ l ≤ m, such that pqηxi1+v ,1

, the first rule of `qηxi1+v
, rewrites Al

and there is no matrix mj , mj 6= ηxi1+v, and no policy `qmj of mj , such that the
first rule in `qmj rewrites a nonterminal Al′ with Sl′(ηxi1+v−1) < Sl(ηxi1+v−1),
Sl(ηxi1+v−1) 6= 0. Then A checks whether S(ηxi1+v) is a possible ranging

vector on which `qηxi1+v
ends the (xi1 + v)th step of derivation. Note that

S(ηxi1+v) can be nondeterministically computed knowing S(ηxi1+v−1) and the
rules composing `qηxi1+v

.

Each ℘
(R2)
v , 1 ≤ v ≤ R2, is said partially correct if there exist at least one

t
(i1,v)
j -tuple (guessed at Level 9) and at least one policy `qηxi1+v

of ηxi1+v, that satisfy

conditions 1 − 3. If ℘
(R2)
v is not partially correct, it is labeled by 0. Note that, at

this moment we cannot decide whether ℘
(R2)
v can be labeled by 1, since we do not

know whether S(ηxi1 ) is valid, i.e., whether matrix ηxi1 indeed ends the xthi1 step of
derivation with the ranging vector S(ηxi1 ), and whether ηxi1 can be applied in the
leftmost-2 derivation manner upon the ranging vector S(ηxi1−1) (which is not yet

guessed19). The logical value of each ℘
(R2)
v will be decided at the end of computation,

when it will be known whether S(ηR1+i1Q1) is a valid ranging vector with respect
to the matrices that compose the subword ηR1+(i1−1)Q1

...ηR1+i1Q1−1. A partially

correct process ℘
(R2)
v is labeled by a symbol �. If all processes ℘

(R2)
v are labeled by

�, then the existential branch holding the <R2-tuple, provided at Level 7, is labeled

by �. Otherwise, this branch is labeled by 0. A process ℘
(Q1)
i1

, yielded at Level 6,
will be labeled by � if there exists at least one existential branch labeled by � at

Level 7. Otherwise, ℘
(Q1)
i1

returns 0.

Suppose that we have run the algorithm up to the (`−1)th “iterated” division of
n by [log n], i.e., we know the quotient Q`−1 and the remainder R`−1 of Q`−2 divided
by [log n], i.e., Q`−2 = Q`−1 [log n]+R`−1. More precisely, Q`−2 = Q`−1 [log n]+R`−1

and n = ((...((Q`−1 [log n]+R`−1) [log n]+R`−2) [log n]+ ...) [log n]+R2) [log n]+R1,
with Q`−1 ≥ [log n], 0 ≤ Rl < [log n], l ∈ {1, 2, ..., `− 1}, and ` ≤ [log n].

Level 5(` − 1) (Existential) Consider the quotient Q` and the remainder R`
of Q`−1 divided by [log n], 0 ≤ Q`, R` < [log n]. Since Q`−2, R`−2 and R`−1

19S(ηxi1−1) will be guessed at the last level of the computation tree associated with A, when all
the remainders of the “iterated” division of n by [logn] will be spent, and when ηR1+i1Q1−1 will
actually be the last matrix occurring in the suffix of ηR1+(i1−1)Q1

...ηR1+i1Q1−1 of length Q`, the
last quotient of the “iterated” division.
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are no more needed, the space used to record them is now used to record Q`
and R`, still keeping Q`−1. Denote by xi`−2

=
∑`−1
l=1Rl +

∑`−2
l=1 ilQl. For each

existential branch labeled by � at Level 5` − 8, A spawns O(clogn) existential
branches (guesses), each of which holds a 2 [log n]-tuple of ranging vectors <cR` =
(S(ηxi`−2

), S(ηxi`−2
+R`), S(ηxi`−2

+Q`−1
), S(ηxi`−2

+Q`−1+R`), ..., S(ηxi`−2
+([logn]−1)Q`−1

),

S(ηxi`−2
+([logn]−1)Q`−1+R`)), such that S(ηxi`−2

) is the ranging vector belonging to

the tuple <R`−1
found correct at Level 5`−8. Because <R`−1

is no more needed, the
space used by A to record <R`−1

is allocated now to record the tuple <cR` . Then A
proceeds with the Level 5`− 4, similar to Levels 6, 11, ..., 5`− 9.

Level 5` − 4 (Universal) On each existential branch spawned at Level 5(` − 1),

A spawns [log n] universal processes ℘
(Q`−1)
i`−1

, 0 ≤ i`−1 ≤ [log n] − 1. Denote by

xi`−1
=
∑`−1
l=1 Rl+

∑`−1
l=1 ilQl = xi`−2

+ i`−1Q`−1, 0 ≤ i`−1 ≤ [log n]−1. Each process

℘
(Q`−1)
i`−1

takes the interval [xi`−1
...xi`−1

+R`], and checks whether the ranging vectors
(guessed at Level 5(` − 1)) S(ηxi`−1

) and S(ηxi`−1
+R`), 0 ≤ i`−1 ≤ [log n] − 1, pro-

vides a correct order in which the leftmost-2 derivation can be performed between

matrices ηxi`−1
and ηxi`−1

+R` . Besides S(ηxi`−1
) and S(ηxi`−1

+R`), each ℘
(Q`−1)
i`−1

, also

keeps, from the previous level, the ranging vector S(ηxi`−2
+(i`−1+1)Q`−1

). Then A
continues with Level 5`− 3, similar to Levels 7, 12, ..., 5`− 8.

Level 5` − 3 (Existential) For each process ℘
(Q`−1)
i`−1

, 0 ≤ i`−1 ≤ [log n] − 1, A
spawns O(clogn) existential branches, each branch holding an (R` + 1)-tuple <R` =
(S(ηxi`−1

), S(ηxi`−1
+1), ..., S(ηxi`−1

+R`−1), S(ηxi`−1
+R`)) of ranging vectors. Then A

checks whether all vectors in <R` are correct. This can be done, for each process

℘
(Q`−1)
i`−1

, 0 ≤ i`−1 ≤ [log n] − 1, in O(log n) time and space, through Levels 5` − 2
(Universal) and 5`− 1 (Existential) similar to Levels 3-4, 8-9, ..., (5`− 7)-(5`− 6).

Levels (5`−2)-(5`−1) (Universal-Existential) For each existential branch spawned

at Level 5`− 3, A spawns R` universal processes ℘
(R`)
v , 1 ≤ v ≤ R`. On each ℘

(R`)
v ,

1 ≤ v ≤ R`, A spawns N (R`) = O((xi`−1
+ v)

∑k

j=1
2cj

) = O(n
∑k

j=1
2cj

) existential
branches, each of which holds a possible configuration of policies used by matrices
occurring in η(i`−1,v) = η1η2...ηxi`−1

+v−1, and computes the net effect according to
this configuration. A guesses a policy `qηxi`−1

+v
and, based on the net effect com-

puted before, checks whether ηxi`−1
+v with the policy `qxi`−1

+v can be applied, in

leftmost-2 derivation manner, on the sentential form having the associated ranging
vector S(ηxi`−1

+v−1) in <R` . Then A checks whether S(ηxi`−1
+v) in <R` is a possi-

ble ranging vector on which `qηxi`−1
+v

ends the (xi`−1
+ v)th step of derivation. Note

that S(ηxi`−1
+v) can be nondeterministically computed, knowing the ranging vector

S(ηxi`−1
+v−1) and the sequence of rules that defines `qηxi`−1

+v
.

Each process ℘
(R`)
v , 1 ≤ v ≤ R`, that satisfies the above conditions is partially

correct, and it is labeled by a �. Otherwise, ℘
(R`)
v is labeled by 0. If all ℘

(R`)
v are

labeled by �, then the existential branch holding the tuple <R` , provided at Level

5`− 3, is labeled by �. Otherwise, this branch is labeled by 0. The process ℘
(Q`−1)
i`−1

,
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yielded at Level 5` − 4, will be labeled by � if there exists at least one existential

branch labeled by � at Level 5`− 3. Otherwise, ℘
(Q`−1)
i`−1

is labeled by 0.
At this level the only substrings of η left unchecked are those substrings that

corresponds to intervals IQ`−1
= [
∑`−1
l=1 Rl +

∑`−2
l=1 ilQl + i`−1Q`−1 +R`...

∑`−1
l=1 Rl +∑`−2

l=1 ilQl+(i`−1 +1)Q`−1] = [xi`−2
+i`−1Q`−1 +R`...xi`−2

+(i`−1 +1)Q`−1], 0 ≤ il ≤
[log n]−1, 1 ≤ l ≤ `−1, and besides the cutting points P u` =

∑u
l=1Rl+

∑u−1
l=1 ilQl+

(iu + 1)Qu, 1 ≤ u ≤ `− 1.

Level 5` (Existential) Each interval IQ`−1
can be divided into [logn] subintervals

of length 1 ≤ Q` < [log n]. Hence, A spawns O(clogn) existential branches each of
which holds a [log n]-tuple of ranging vectors <cQ` = (S(ηxi`−1

+R`), S(ηxi`−1
+R` +Q`),

..., S(ηxi`−1
+R`+([logn]−1)Q`)), where S(ηxi`−1

+R`) is the ranging vector found valid

at Level 5`− 3.

Level 5`+1 (Universal) For each existential branch spawned at Level 5`, A spawns

[log n] universal processes ℘
(Q`)
i`

, 0 ≤ i` ≤ [log n]− 1. Each ℘
(Q`)
i`

takes an interval of

length Q` of the form [
∑`
l=1Rl+

∑`−1
l=1 ilQl+i`Q`...

∑`
l=1Rl+

∑`−1
l=1 ilQl+(i`+1)Q`].

Denote by xi` =
∑`
l=1Rl +

∑`−1
l=1 ilQl + i`Q`, 0≤ i`≤ [log n] − 1. For each interval

[xi` ...xi`+1], A checks whether the substring ηxi` ... ηxi`+1 , 0 ≤ i` ≤ [log n] − 1, is
valid according to the leftmost-2 derivation order.

Level 5` + 2 (Existential) For each ℘
(Q`)
i`

, 0 ≤ i` ≤ [log n] − 1, A spawns O(clogn)
existential branches, each branch holding an (Q`+ 1)-tuple of ranging vectors <Q`=
(S(ηxi` ), S(ηxi`+1), ..., S(ηxi`+Q`−1), S(ηxi`+1)). In each <Q`-tuple the first vector
S(ηxi` ) and the last vector S(ηxi`+1) have been guessed at Level 5`. They are ranging
vectors associated with matrices placed in cutting points, i.e., end points of intervals
of length at most log n. They are also overlapping points of two consecutive intervals
of type [xi` ...xi`+1]. Hence, each ranging vector S(ηxi` ) is checked two times. Once
if it is a valid vector on which matrix ηxi`+1 can be applied in leftmost-2 derivation
manner, and twice if by applying ηxi` on the sentential form built by using the
ranging vector S(ηxi`−1) a sentential form with the associated ranging vector S(ηxi` )
is obtained.

As all intervals of type [xi` ...xi`+1] are universally checked, the tuple <cQ` spawned
at Level 5` is labeled by 1, if all ranging vectors S(ηxi` ) and all vectors composing <Q`
are correct. To check whether all ranging vectors in <Q` are correct, for each process

℘
(Q`)
i`

, 0 ≤ i` ≤ [log n]−1, A follows the same procedure, that requires O(log n) time
and space, described at Levels 5`− 2 (Universal) and 5`− 1 (Existential).

For the last substring of length Q` in η, i.e., the suffix of η of length Q` of the form

η∑`

l=1
Rl+

∑`−1

l=1
([logn]−1)Ql+([logn]−1)Q`

...η∑`

l=1
Rl+

∑`−1

l=1
([logn]−1)Ql+[logn]Q`

, on ℘
(Q`)
[logn]−1

A must check whether the matrix η∑`

l=1
Rl+

∑`−1

l=1
([logn]−1)Ql+[logn]Q`

= ηn ends up

the computation. This can be checked as in process ℘n, Theorem 3.
Each cutting point P u` =

∑u
l=1Rl +

∑u−1
l=1 ilQl + (iu + 1)Qu can be equiva-

lently rewritten as
∑u+1
l=1 Rl +

∑u
l=1 ilQl + [log n]Qu+1, due to the equality Qu =

[log n]Qu+1 + Ru+1, for any 1 ≤ u ≤ ` − 1. Furthermore,
∑u+1
l=1 Rl +

∑u
l=1 ilQl +

[log n]Qu+1 is equal with
∑u+1
l=1 Rl+Ru+2+

∑u
l=1 ilQl+([log n]−1)Qu+1+[log n]Qu+2,
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due to the equality Qu+1 = [log n]Qu+2 +Ru+2, for any 1 ≤ u ≤ `− 2. By applying
this transformation k times, where k = `−u, each P u` can be equivalently rewritten as∑u+1
l=1Rl+Ru+2+...+Ru+k+

∑u
l=1 ilQl+([log n]−1)(Qu+1+...+Qu+k−1)+[log n]Qu+k,

where u+ k = `.
In this way each cutting point P u` , yielded at Level 5u by the <cRu+1

-tuple,

1 ≤ u ≤ ` − 1, is in fact the end point of an interval of the form [
∑`
l=1Rl +∑`−1

l=1 ilQl + i`Q`...
∑`
l=1Rl +

∑`−1
l=1 ilQl + (i` + 1)Q`] for which 0 ≤ il ≤ [log n]− 1,

1 ≤ l ≤ `−1, i` = [log n]−1. Hence, the decision on the correctness of each ranging
vector S(η∑u

l=1
Rl+

∑u−1

l=1
ilQl+(iu+1)Qu

) = S(ηPu
`

) will be actually taken by a process

of type ℘
(Q`)
[logn]−1.

Since the validity of each cutting point is decided by a process of type ℘
(Q`)
[logn]−1,

the logical value returned by this process is ”propagated” up to the level of the
computation tree that has spawned the corresponding cutting point, and thus each �
symbol receives a logical value. The input is accepted, if going up in the computation
tree, with all �’s changed into logical values, the root of the tree is labeled by 1.

The <Rh̄ , <cRh̄ , <Q` , and <cQ`-tuples of ranging vectors, 1 ≤ h̄ ≤ `, the sequences
mq
j , the vectors V (`qj), 1 ≤ j ≤ k, and auxiliary net effects computed by A during

the algorithm, are stored by using only O(log n) space, in a similar manner as in
Theorem 4. It is easy to observe that A has O(log n) levels. Since at each level A
spawns either O(nc) or O(clogn) existential branches, where c is a constant, (each
level being thus convertible into a binary tree with O(log n) levels), and at each Level
5h̄, 1 ≤ h̄ ≤ `, A performs a division operation, which requires O(log n) time and
space, A performs the whole computation in O(log2 n) parallel time and O(log n)
space. 2

Corollary 7 Each language L ∈ SZMLi(CF ), i ∈ {1, 2, 3}, can be recognized by
an indexing ATM in O(log n) space and O(log2 n) time.

Proof. The proof is similar to the proof provided for Theorem 6. The main differ-
ence is that at each Level 5h̄ + 4, 0 ≤ h̄ ≤ `, A does not have to spawn N (Rh̄+1) =

O(R

∑k

j=1
2cj

h̄+1 ) existential branches in order to guess the t
(ih̄,v)
j -tuples of integers that

for each matrix mj , 1 ≤ j ≤ k, provide the number of times each policy of mj can
be used in the substring η(ih̄,v). However, this does not decrease the time resources
needed, since A has to perform log n division operations, each of which requiring
O(log n) time and space. Hence, the parallel time is still O(log2 n). 2

Corollary 8 SZMLi(CF ) ∪ SZMLaci (CF ) ⊂ NC2, i ∈ {1, 2, 3}.

Corollary 9 SZMLi(CF ) ∪ SZMLaci (CF ) ⊂ DSPACE(log2 n), i ∈ {1, 2, 3}.

4 Szilard Languages of Programmed Grammars

Programmed grammars are regulated rewriting grammars in which the application
of a rule is conditioned by its occurrence in the so called success field associated with
the rule previously applied in the derivation process. If a rule is effectively applied
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then the next rule to be used is chosen from its success field. For programmed
grammars working in appearance checking mode, if the left-hand side of a rule,
named to be applied by the previous rule, does not occur in the current sentential
form then a rule from its failure field, must be applied. Programmed grammars
have been introduced in [38], as a generalization of phrase-structure grammars with
applications in natural language processing. This is possible due to the success
and failure fields that prescribe an order in which productions can be used during
the derivation. Extended versions of context-free programmed grammars, namely
stochastic context-free programmed grammars, have been effectively used in pattern
recognition [22] and [44]. For more results on the generative capacity of PGs the
reader is referred to [38], [39], and [13].

4.1 Programmed Grammars - Prerequisites

Definition 12 A programmed grammar (PG) is a quadrupleG = (N,T, S, P ) where
N , T , and S are specified as in a CG. P is a finite set of triples (programmed grammar
rule) of the form r = (p, σ, ϕ) where p is an unrestricted Chomsky rule, σ and ϕ are
subsets of P , called the success field and failure field of r, respectively. If ϕ = ∅,
for any r ∈ P , then G is a programmed grammar without appearance checking,
otherwise G is a programmed grammar with appearance checking. If all rules in
P are phrase-structure (PS), context-sensitive (CS), context-free (CF), or regular
(REG) rules then G is a PS, CS, CF, or REG programmed grammar, respectively.

Definition 13 Let G = (N,T, S, P ) be a PG and V = N ∪ T . The language
L(G) generated by G is defined as the set of all words w ∈ T ∗ such that there is a
derivation D: S = w0 ⇒ri1

w1 ⇒ri2
w2 ⇒ri3

... ⇒ris ws = w, s ≥ 1, and for rij =
(αij → βij , σij , ϕij ), 1 ≤ j ≤ s − 1, either wj−1 = w′j−1αijw

′′
j−1, wi = w′j−1βijw

′′
j−1

for some w′j−1, w′′j−1 ∈ V ∗ and rij+1 ∈ σij , or αij does not occur in wj−1, wj−1 = wj
and rij+1 ∈ ϕij .

Denote by L(P,X) and L(P,X, ac) the class of languages generated by PGs and
PGs with appearance checking, respectively, with X-rules, X ∈ {REG,CF,CF −
λ,CS, PS}, then L(M,X) = L(P,X) and L(M,X, ac) = L(P,X, ac), [13]. Hence
1. CFL ⊂ L(P,CF − λ) ⊂ L(P,CF − λ, ac) ⊂ CSL ⊂ L(P,CF, ac) = RE,
2. CFL ⊂ L(P,CF − λ) ⊂ L(P,CF ) ⊂ RE,
3. L(P,X) = L(P,X, ac) = XL, X ∈ {REG,CS, PS}.

Let G = (N,T, S, P ) be a PG. If labels are associated with triplets20 r =
(p, σ, ϕ) ∈ P , in one-to-one correspondence, then the Szilard language associated
with G is defined as follows.

Definition 14 Let G = (N,T, S, P ) be a programmed grammar, P = {r1, r2, ..., rk}
the set of productions, L(G) the language generated by G, and w a word in L(G).
The Szilard word of w associated with the derivation D: S = w0 ⇒ri1

w1 ⇒ri2
w2 ⇒ri3

... ⇒ris ws = w, s ≥ 1, is defined as SzD(w) = ri1ri2 ...ris , rij ∈ P ,

20As in the case of MGs, for the sake of simplicity, we use the same notation both for a triple
and the label associated with it.
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1 ≤ j ≤ s. The Szilard language of G is Sz(G) = {SzD(w)|w ∈ L(G), D is a
terminal derivation of w}.

Let SZP (X) and SZP ac(X) be the classes of Szilard languages associated with
programmed grammars and programmed grammars with appearance checking, re-
spectively, with X rules, X ∈ {CF,CS, PS}.

Definition 10 is applicable also for leftmost-i, i ∈ {1, 2, 3}, derivations in PGs
with CF rules [13]. In terms of triplets r = (pr, σr, ϕr) ∈ P , where p is a CF rule of
the form αij → βij , αij ∈ N , these derivations can be explained as follows.

For the case of leftmost-1 derivations, after r has been effectively applied in
leftmost-1 manner, the rule from σr that rewrites the leftmost nonterminal occurring
in the current sentential form must be applied. If no rule in σr can rewrite the
leftmost nonterminal occurring in the sentential form, then a rule in ϕr′ , where
r′ = (pr′ , σr′ , ϕr′) is an arbitrary rule in σr must be applied leftmost-1 manner.

For the case of leftmost-2 derivations, after r has been effectively applied in
leftmost-2 manner, the rule from σr that rewrites the leftmost nonterminal that can
be rewritten by rules in σr (not necessary the leftmost nonterminal occurring in
the sentential from) must be applied. If no rule in σr can be applied in leftmost-2
manner, then a rule in ϕr′ , where r′ = (pr′ , σr′ , ϕr′) is an arbitrary rule in σr, that
rewrites the leftmost nonterminal that can be rewritten by rules in ϕr′ , must be
applied.

For the case of leftmost-3 derivations, after r has been effectively applied in
leftmost-3 manner, a rule from σr that rewrites the leftmost occurrence of its left-
hand side in the current sentential form must be applied. If no rule in σr can be
applied in leftmost-3 manner, then a rule in ϕr′ , where r′ = (pr′ , σr′ , ϕr′) is an
arbitrary rule in σr, must be applied in leftmost-3 manner.

Szilard languages associated with leftmost-i, i ∈ {1, 2, 3}, derivations can be
defined in the same way as in Definition 14, with the specification that D is a
leftmost-i derivation of w.

We denote by SZPLi(X) and SZPLaci (X) the classes of leftmost-i, i ∈ {1, 2, 3},
Szilard languages associated with PGs and PGs with appearance checking with X
rules, X ∈ {CF,CS, PS}, respectively.

Let G = (N,T, P,A1) be an arbitrary programmed grammar with appearance
checking, where A1 is the axiom, N = {A1, A2, ..., Am} and P = {r1, r2, ..., rk} are
the finite sets of ordered nonterminals and labels, respectively.

For each production r = (pr, σr, ϕr) ∈ P , where pr is a rewriting rule of the form
αpr → βpr , αpr ∈ (N ∪ T )∗N(N ∪ T )∗, and βpr ∈ (N ∪ T )∗, its net effect during
the derivation D with respect to each nonterminal Al ∈ N , 1 ≤ l ≤ m, is given
by the difference dfAl(pr) = |βpr |Al − |αpr |Al . To each rule r we associate a vector
V (r) ∈ Zm defined by V (r) = (dfA1(pr), dfA2(pr), ..., dfAm(pr)), where Z is the set
of integers. The value of V (r) taken at the lth place, 1 ≤ l ≤ m, is denoted by Vl(r).

4.2 On the Complexity of Unrestricted Szilard Languages

In this subsection we focus on unrestricted Szilard languages of PGs with CF rules.
Leftmost Szilard languages are studied in Subsection 4.3. The case of Szilard lan-
guages of PGs with CS and PS rules is briefly discussed in Section 6.
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Theorem 7 Each language L ∈ SZP (CF ) ∪ SZP ac(CF ) can be recognized by an
indexing ATM in O(log n) time and space.

Proof. We give the proof for the class SZP ac(CF ). For the class SZP (CF ) the
proof is simpler. Let G = (N,T, P,A1) be a PG with CF rules and appearance
checking. Consider an indexing ATM A composed of an input tape that stores an
input word, γ ∈ P ∗, of length n, γ = γ1γ2...γn, an index tape to read the input
symbols, and a working tape composed of three tracks. Each label γi corresponds to
a triple in P of the form rγi = (pγi , σγi , ϕγi), where pγi is a rule of the form αγi → βγi ,
αγi ∈ N , and βγi ∈ (N ∪ T )∗, 1 ≤ i ≤ n. At the beginning of the computation the
first track of the working tape of A stores k + 1 vectors, V 0 corresponding to the
axiom, i.e., V 0

1 = 1 and V 0
l = 0, 2 ≤ l ≤ m, and V (rj), 1 ≤ j ≤ k.

Level 1 (Existential) In an existential state A guesses the length of γ in a similar
manner as in Level 1, Theorem 3. A stores the binary value of n in the second track
of its working tape.

Levels 2-3 (Universal-Existential) A spawns n universal processes (Level 2) ℘i,
1 ≤ i ≤ n.

• The first process ℘1 reads γ1 and checks whether αγ1 = A1. It returns 1 if the
equality holds. Otherwise, ℘1 returns 0.

• The second process ℘2 reads γ2 and checks whether γ2 ∈ σγ1 . It returns 1 if the
equality holds. Otherwise, ℘2 returns 0.

• For each ℘i, 3 ≤ i ≤ n − 1, A counts the number of occurrences of each rj ∈ P ,

1 ≤ j ≤ k, in γ(i−1) = γ1γ2...γi−2. Suppose that rj occurs c
(i−1)
j times in γ(i−1),

0 ≤ c
(i−1)
j ≤ i − 2. Since for some occurrences of rj = (pj , σj , ϕj) in γ(i−1), pj may

be either effectively applied (because its left-hand side αγj occurs in the sentential
form) or it is a dummy rule (because pj cannot be applied), for each 1 ≤ j ≤
k, A guesses a pair of arbitrary large integers t

(i−1)
j = (c

(i−1)
j,a , c

(i−1)
j,d ) such that

c
(i−1)
j,a + c

(i−1)
j,d = c

(i−1)
j , where c

(i−1)
j,a is the number of times rj is effectively applied

up to the (i−1)th step of derivation, and c
(i−1)
j,d is the number of times rj is a dummy

rule in γ(i−1). Since there exist O(n2) guesses, A spawns O(n2) existential branches

(Level 3). On each existential branch holding a pair t
(i−1)
j , A computes the sums

s
(i−1)
Al

= V 0
l +

∑k
j=1 c

(i−1)
j,a Vl(rj), i.e., the number of occurrences of nonterminal Al in

the sentential form obtained at the (i−1)th step of derivation, and it checks whether
one of the following conditions holds:

1. s
(i−1)
αγi−1

≥ 1 and γi ∈ σi−1, i.e., γi−1 is effectively applied and the next rule must
be chosen from its success field,

2. s
(i−1)
αγi−1

= 0 and γi ∈ ϕi−1, i.e., γi−1 is a dummy rule and the next rule must be
chosen from its failure field.

• On the last process ℘n, A counts the number of occurrences c
(n−1)
j , of each rj ,

1 ≤ j ≤ k, in γ(n−1) = γ1γ2...γn−2. ThenA spawnsO(n2) existential branches (Level
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3), each branch holding a pair t
(n−1)
j = (c

(n−1)
j,a , c

(n−1)
j,d ) of arbitrary large integers such

that c
(n−1)
j,a + c

(n−1)
j,d = c

(n−1)
j , where c

(n−1)
j,a is the number of times rj is effectively

applied up to the (n−1)th step of derivation, and c
(n−1)
j,d is the number of times rj is a

dummy rule in γ(n−1). Then A computes the sums s
(n−1)
Al

= V 0
l +

∑k
j=1 c

(n−1)
j,a Vl(rj),

s
(n,out,a)
Al

= s
(n−1)
Al

+ dfAl(pγn−1) + dfAl(pγn) and s
(n,out,d)
Al

= s
(n−1)
Al

+ dfAl(pγn), 1 ≤
l ≤ m, and it checks whether one of the following conditions holds:

1. s
(n−1)
αγn−1

≥ 1, γn ∈ σn−1, s
(n)
αγn ≥ 1, s

(n,out,a)
Al

= 0, 1 ≤ l ≤ m,

2. s
(n−1)
αγn−1

= 0, γn ∈ ϕn−1, s
(n)
αγn ≥ 1, s

(n,out,d)
Al

= 0, 1 ≤ l ≤ m.

Each process ℘i, 3 ≤ i ≤ n, returns 1, if one of the conditions 1 − 2 holds.
Otherwise it returns 0. Finally, γ is accepted if all ℘i, 1 ≤ i ≤ n, return 1, i.e., all
n universal branches are labeled by 1.

Each of the above processes uses the third track of the working tape for auxiliary

computations, i.e., to record in binary the elements c
(i−1)
j , c

(i−1)
j,a , and c

(i−1)
j,d ), 3 ≤ i ≤

n, 1 ≤ j ≤ k, and to compute the sums s
(i−1)
Al

, 3 ≤ i ≤ n, and s
(n,out,a)
Al

, 1 ≤ l ≤ m.
The counting procedure used by each process ℘i, 1 ≤ i ≤ n, is a function in

the UE∗-uniform NC1 class. The same observation holds for the summation of a
constant number of vectors or multiplication of an integer of at most log n bits long
with a binary constant. Hence, all the above operations can be performed by an
ATM in log n time and space. The out-degree of the computation tree at this level is
n. By using a divide and conquer procedure the computation tree can be converted
into a binary tree of height at most log n. Consequently, for the whole computation
A uses O(log n) time and space. 2

Corollary 10 SZP (CF ) ∪ SZP ac(CF ) ⊂ NC1.

Corollary 11 SZP (CF ) ∪ SZP ac(CF ) ⊂ DSPACE(log n).

4.3 On the Complexity of Leftmost Szilard Languages

The algorithm described in the proof of Theorem 5 cannot be applied for the case
of leftmost-1 SZLs of PGs with appearance checking. As for the case of MGs, the
explanation is that, in the proof of Theorem 5, even if process ℘v returns the true
value, which means that at its turn γv can be applied in a leftmost-1 derivation
manner on γ1γ2...γv−1, the process ℘i cannot “see” whether γv has been effectively
applied in the derivation, or it is only a dummy rule, since all branches spawned at
the same level of the computation tree of A are independent on each other. Hence,
for the case of leftmost-1 derivation in PGs with appearance checking an algorithm
similar to that described in Theorem 6 must be applied. Using a similar method as
in Theorem 5 we have

Theorem 8 Each language L ∈ SZPL1(CF ) can be recognized by an indexing ATM
in O(log n) time and space.

Corollary 12 SZPL1(CF ) ⊂ NC1.
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Corollary 13 SZPL1(CF ) ⊂ DSPACE(log n).

In order to simulate derivations of type letfmost-i, i ∈ {1, 2, 3}, and to check
whether a given word γ ∈ P ∗, γ = γ1γ2...γn, belongs to SZPLaci (CF ), as in the case
of MGs, for each triplet γi, 1 ≤ i ≤ n, the ATM must have information concerning
the order in which the first occurrence of each nonterminal Al ∈ N , 1 ≤ l ≤ m,
occurs in the sentential form at any step of derivation. In this respect we redefine
the notion of a ranging vector for PGs. A ranging vector associated with a triple
rj = (pj , σj , ϕj) ∈ P , 1 ≤ j ≤ k, provides the order in which first occurrences of
nonterminals in N occur in the sentential form obtained after rj has been applied
at that step of derivation. Similar to the Definition 11, for the case of PGs we have

Definition 15 Let G = (N,T, S, P ) be a PG with appearance checking and CF
rules, where P = {r1, r2, ..., rk} is the ordered finite set of triples in P . Let SFrj
be the sentential form obtained after triplet rj = (pj , σj , ϕj), 1 ≤ j ≤ k, has been
applied at a certain step of derivation in G. The ranging vector associated with
SFrj , denoted by S(rj), 1 ≤ j ≤ k, is a vector in Nm defined as

Sl(rj) =


0, if Al ∈ N does not occur in SFrj , i.e., |SFrj |Al = 0,

i,
if the first occurrence of Al in SFrj is the ith element in the
order of first occurrences of nonterminals from N in SFrj .

Note that if rj′ = (pj′ , σj′ , ϕj′) is applied in the Szilard word before rj =
(pj , σj , ϕj) then the ranging vector S(rj) can be computed knowing S(rj′). This
observation holds for all leftmost-i, i ∈ {1, 2, 3}, derivations.

Example 5 Consider the ranging vector S(rj′) = (3, 0, 2, 1, 0) ∈ N5, associated
with the sentential form SFrj′ obtained after the application of the PG rule rj′ , i.e.,

SFrj′ = A4X4A3X3,4A1X̄3,4, X4 ∈ ({A4} ∪ T )∗, X3,4, X̄3,4 ∈ ({A3, A4} ∪ T )∗.
If in rj = (pj , σj , ϕj), pj is the rule A3 → tA5, then rj can be applied in leftmost-

2 derivation manner after rj′ , if either rj′ has been effectively applied in leftmost-2
manner, rj ∈ σj′ , and no rule in σj′ rewrites A4, or rj′ is a dummy rule (case in
which the shape of the sentential form SFrj′ is actually borrowed from the very last
PG rule effectively applied before rj′), rj ∈ ϕj′ , and no rule in ϕj′ rewrites A4.

The triplet rj = (pj , σj , ϕj) can be applied in leftmost-3 derivation manner after
rj′ , if either rj′ has been effectively applied in leftmost-3 manner, rj ∈ σj′ , and the
rule pj rewrites the first occurrence of A3 in SFrj′ (even if there may exist rules in
σj′ that rewrites the first occurrence of A4 in SFrj′ ), or rj′ is a dummy rule, rj ∈ ϕj′ ,
and the rule pj rewrites the first occurrence of A3 in SFrj′ .

Note that, in this example, the PG rule rj = (pj , σj , ϕj), where pj is the rule
A3 → tA5, cannot be effectively applied in leftmost-1 derivation manner on SFrj′
(since pj cannot rewrite A4). However, rj may occur in the Szilard word as a dummy
rule, if either rj′ has been effectively applied in leftmost-1 manner, rj ∈ σj′ , and no
rule in σj′ rewrites A4, or rj′ is a dummy rule, rj ∈ ϕj′ , and there is no rule in σj′

able to rewrite A4.
Depending on the position of the second occurrence of A3 in SFrj′ , the sentential

form obtained after pj has been applied on SFrj′ may look like
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• SFrj = A4X4A5A3X3,4A1X1,3,4, X4 ∈ ({A4} ∪ T )∗, X3,4 ∈ ({A3, A4} ∪ T )∗,
X1,3,4 ∈ ({A1, A3, A4} ∪ T )∗, i.e., S(rj) = (4, 0, 3, 1, 2),

• SFrj = A4X4A5X̄4A3X3,4A1X1,3,4, X4, X̄4 ∈ ({A4} ∪ T )∗, X3,4 ∈ ({A3, A4} ∪
T )∗, X1,3,4 ∈ ({A1, A3, A4} ∪ T )∗, i.e., S(rj) = (4, 0, 3, 1, 2), or like

• SFrj = A4X4A5X̄4A1X1,4A3X1,3,4, X4, X̄4 ∈ ({A4}∪ T )∗, X1,4 ∈ ({A1, A4}∪
T )∗, X1,3,4 ∈ ({A1, A3, A4} ∪ T )∗, i.e., S(rj) = (3, 0, 4, 1, 2).

Using a similar method as in Theorem 6, for the case of leftmost-i derivations,
i ∈ {1, 2, 3}, we have

Theorem 9 Each language L ∈ SZPLaci (CF ), i ∈ {1, 2, 3}, can be recognized by
an indexing ATM in O(log n) space and O(log2 n) time.

Corollary 14 SZPLaci (CF ) ⊂ NC2, i ∈ {1, 2, 3}.

Corollary 15 SZPLaci (CF ) ⊂ DSPACE(log2 n), i ∈ {1, 2, 3}.

5 Szilard Languages of Random Context Grammars

Random Context Grammars (RCGs) are regulated rewriting grammars in which the
application of a rule is enabled by the existence in the current sentential form of
some nonterminals that provide the context under which the rule in question can
be applied. These nonterminals are listed by the so called permitting context of
that rule. The use of a rule may be also disabled by the existence, in the current
sentential form, of some nonterminals that provide the forbidden context under
which the rule in question cannot be applied. These nonterminals are listed by the
so called forbidding context of that rule.

RCGs with context-free rules have been first introduced in [46] to cover the
gap existing between the classes CFLs and CSLs. A generalization of RCGs for
phrase-structure rules can be found in [13]. The generative capacity and several
descriptional properties of RCGs can be found in [10], [13], [16], [46], and [47].

5.1 Random Context Grammars - Prerequisites

Definition 16 A random context grammar (RCG) is a quadruple G = (N,T, S, P )
where N , T , and S are specified as in a Chomsky grammar. P is a finite set of
triples (random context rules) of the form r = (p,Q,R), where p is an unrestricted
Chomsky rule of the form α → β, α ∈ (N ∪ T )∗N(N ∪ T )∗, β ∈ (N ∪ T )∗, Q and
R are subsets of N , called the permitting and forbidding context of r, respectively.
If R = ∅, then G is a permitting random context grammar. If Q = ∅, then G is
a forbidding random context grammar. If all rules in P are phrase-structure (PS),
context-sensitive (CS), context-free (CF), or regular (REG) rules then G is a PS,
CS, CF, or REG random context grammar.

A permitting RCG, is also said to be a RCG without appearance checking. If
R 6= ∅, then the grammar is called a RCG with appearance checking.
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Definition 17 Let G = (N,T, S, P ) be a RCG and V = N ∪ T . The language
L(G) generated by G is defined as the set of all words w ∈ T ∗ such that there is
a derivation D: S = w0 ⇒ri1

w1 ⇒ri2
w2 ⇒ri3

... ⇒ris ws = w, s ≥ 1, where
rij = (αij → βij , Qij , Rij ), 1 ≤ j ≤ s − 1, wj−1 = w′j−1αijw

′′
j−1, wi = w′j−1βijw

′′
j−1

for some w′j−1, w′′j−1 ∈ V ∗, all symbols in Qij occur in w′j−1w
′′
j−1, and no symbol of

Rij occur in w′j−1w
′′
j−1.

Denote by L(RC,X) and L(RC,X, ac) the class of languages generated by RCGs
without appearance checking (R = ∅) and RCGs with appearance checking (R 6= ∅),
respectively, with X-rules, X ∈ {REG,CF,CF − λ,CS, PS}, then L(M,X) =
L(RC,X) and L(M,X, ac) = L(RC,X, ac), [13]. Hence
1. CFL ⊂ L(RC,CF − λ) ⊂ L(RC,CF − λ, ac) ⊂ CSL ⊂ L(RC,CF, ac) = RE,
2. CFL ⊂ L(RC,CF − λ) ⊂ L(RC,CF ) ⊂ RE,
3. L(RC,X) = L(RC,X, ac) = XL, X ∈ {REG,CS, PS}.

Let G = (N,T, S, P ) be a RCG. If labels are associated with triplets21 r =
(p,Q,R) ∈ P , in one-to-one correspondence, then the Szilard language associated
with a RCG is defined as follows.

Definition 18 Let G = (N,T, S, P ) be a RCG, P = {r1, r2, ..., rk} the set of pro-
ductions, L(G) the language generated by G, and w a word in L(G). The Szilard
word of w associated with the derivation D: S = w0 ⇒ri1

w1 ⇒ri2
w2 ⇒ri3

...⇒ris
ws = w, s ≥ 1, is defined as SzD(w) = ri1ri2 ...ris , rij ∈ P , 1 ≤ j ≤ s. The Szilard
language of G is Sz(G) = {SzD(w)|w ∈ L(G), D is a terminal derivation of w}.

Denote by SZRC(X) and SZRC(X)ac the classes of Szilard languages associated
with RCGs without appearance checking and RCGs with appearance checking and
X rules, X ∈ {CF,CS, PS}, respectively.

Definition 10 is applicable also for leftmost-i, i ∈ {1, 2, 3}, derivations in RCGs
with CF rules [13]. In terms of triplets r = (pr, Qr, Rr) ∈ P , where pr is a CF rule of
the form αpr → βpr , αpr ∈ N , βpr ∈ (N∪T )∗, and Qr and Rr are the permitting and
forbidding context of r, respectively, these derivations can be explained as follows.

A production r = (pr, Qr, Rr) ∈ P can be applied in leftmost-1 derivation man-
ner if pr rewrites the leftmost nonterminal occurring in the sentential form, as long
as the sentential form on which r is applied contains all nonterminals in Qr and no
nonterminal in Rr.

A production r = (pr, Qr, Rr) ∈ P can be applied in leftmost-2 derivation man-
ner if the rule pr rewrites the leftmost nonterminal that can be rewritten by any
rule in P eligible to be applied on the current sentential form, in the sense that if
any other rule r′ = (pr′ , Qr′ , Rr′) ∈ P can be applied, because the sentential form
contains all nonterminals in Qr′ and no nonterminal in Rr′ , then the nonterminal
rewritten by r′ follows in the sentential form the nonterminal rewritten by r.

A production r = (pr, Qr, Rr) ∈ P can be applied in leftmost-3 derivation man-
ner if the rule pr rewrites the leftmost nonterminal that can be rewritten by r, as
long as the sentential form on which r is applied contains all nonterminals in Qr and
no nonterminal in Rr.

21As in the case of PGs, for the sake of simplicity, we use the same notation both for a triple and
the label associated with it.
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Szilard languages associated with leftmost-i, i ∈ {1, 2, 3}, derivations can be
defined in the same way as in Definition 18, with the specification that D is a
leftmost-i derivation of w.

We denote by SZRCLi(X) and SZRCLaci (X) the classes of leftmost-i, i ∈
{1, 2, 3}, Szilard languages associated with RCGs and RCGs with appearance check-
ing with X rules, X ∈ {CF,CS, PS}, respectively.

Let G = (N,T, P,A1) be an arbitrary RCG with CF rules, where A1 is the
axiom, N = {A1, A2, ..., Am} and P = {r1, r2, ..., rk} are the finite sets of ordered
nonterminals and labels associated in one-to-one correspondence, respectively. For
each production r = (pr, Qr, Rr) ∈ P , where pr is a rewriting rule of the form
αpr → βpr , αpr ∈ N , and βpr ∈ (N ∪ T )∗, its net effect during the derivation
D with respect to each nonterminal Al ∈ N , 1 ≤ l ≤ m, is given by dfAl(pr) =
|βpr |Al − |αpr |Al . To each rule r we associate a vector V (r) ∈ Zm defined by V (r) =
(dfA1(pr), dfA2(pr), ..., dfAm(pr)), where Z is the set of integers. The value of V (r)
taken at the lth place, 1 ≤ l ≤ m, is denoted by Vl(r).

5.2 On the Complexity of Unrestricted Szilard Languages

Theorem 10 Each language L ∈ SZRC(CF )∪SZRCac(CF ) can be recognized by
an indexing ATM in O(log n) time and space.

Proof. Let G = (N,T, P,A1) be an arbitrary RCG with appearance checking and
CF rules, where A1 is the axiom, N = {A1, A2, ..., Am} and P = {r1, r2, ..., rk} are
the finite sets of ordered nonterminals and labels associated in one-to-one corre-
spondence, respectively. Consider an indexing ATM A composed of an input tape
that stores an input word, γ ∈ P ∗, of length n, γ = γ1γ2...γn, an index tape to
read the input symbols, and a working tape composed of three tracks. Each label
γi corresponds to a triple in P of the form (pγi , Qγi , Rγi), where pγi is a CF rule
of the form αγi → βγi , 1 ≤ i ≤ n. At the beginning of the computation the first
track stores k+ 1 vectors, V 0 that corresponds to the axiom, i.e., V 0

1 = V 0
A1

= 1 and
V 0
l = V 0

Al
= 0, 2 ≤ l ≤ m, and V (ri), 1 ≤ i ≤ k. The other two tracks are initially

empty.

Level 1 (Existential) In an existential state A guesses the length of γ in a similar
manner as in Level 1, Theorem 3. The binary value of n is stored in the second
track of the working tape of A.

Level 2 (Universal) A spawns n universal processes ℘i, 1 ≤ i ≤ n.

• The first process reads γ1 and checks whether αp1 = A1. It returns 1 if the equality
holds. Otherwise, ℘1 returns 0.

• For each ℘i, 2 ≤ i ≤ n − 1, A counts the number of occurrences of each rule

rj ∈ P , 1 ≤ j ≤ k, in γ(i) = γ1γ2...γi−1. Suppose that each rj occurs c
(i)
j times,

0 ≤ c(i)
j ≤ i− 1, in γ(i). Then A computes the sums s

(i)
Al

= V 0
l +

∑k
j=1 c

(i)
j Vl(rj), i.e.,

the number of times each nonterminal Al, 1 ≤ l ≤ m, occurs in the sentential form

obtained at the ith step of derivation. Each ℘i returns 1 if s
(i)
αγi
≥ 1, s

(i)
X ≥ 1 for each

X ∈ Qγi , and s
(i)
Y = 0 for each Y ∈ Rγi . Otherwise, ℘i returns 0.
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• The last process ℘n counts the number of occurrences c
(n)
j , of each rj , 1 ≤ j ≤ k,

in γ(n) = γ1γ2...γn−1, and computes the sums s
(n)
Al

= V 0
l +

∑k
j=1 c

(n)
j Vl(rj), s

(n,out)
Al

=

V 0
l +

∑k
j=1 c

(n)
j Vl(rj) +Vl(γn), 1 ≤ l ≤ m. Process ℘n returns 1, if s

(n)
αγn ≥ 1, s

(n)
X ≥ 1

for each X ∈ Qγn , s
(n)
Y = 0 for each Y ∈ Rγn , and s

(n,out)
Al

= 0 for each 1 ≤ l ≤ m.
Otherwise, ℘n returns 0.

Finally, γ is accepted if all ℘i, 1 ≤ i ≤ n, returns 1, i.e., all n universal branches
are labeled by 1. If at least one of the above process returns 0, then γ is rejected.

The computation tree of A has only two levels (in which each node has un-
bounded out-degree). By using a divide and conquer algorithm each of these levels
can be converted into a binary tree of height O(log n). All functions used in the
algorithm, such as counting and addition, are in NC1. Therefore, the time com-
plexity of A is O(log n). In order to store (on the third track of the working tape)

the (binary) value of c
(i)
j , and to compute (in binary) s

(i)
Al

and s
(n,out)
Al

, A needs only
O(log n) space. 2

Corollary 16 Each language generated by a permitting (forbidding) random context
grammar can be recognized by an indexing ATM in O(log n) time and space.

Corollary 17 SZRC(CF ) ∪ SZRCac(CF ) ⊂ NC1.

Corollary 18 SZRC(CF ) ∪ SZRCac(CF ) ⊂ DSPACE(log n).

5.3 On the Complexity of Leftmost Szilard Languages

Theorem 11 Each language L ∈ SZRCL1(X)∪SZRCLac1 (X), X ∈ {CF,CS, PS}
can be recognized by an indexing ATM in O(log n) time and space.

Proof. Let G = (N,T, P,A1) be a RCG with appearance checking, working in
leftmost-1 derivation manner. Consider an indexing ATM A having a similar struc-
ture as in the proof of Theorem 10. Let γ = γ1γ2...γn ∈ P ∗, be an input word
of length n. In order to guess the length of γ, A proceeds with the procedure de-
scribed at Level 1 -Existential, Theorem 3. Then A spawns (Level 2 -Universal) n
universal processes ℘i, 1 ≤ i ≤ n, and (briefly) proceeds as follows. For each ℘i,
1 ≤ i ≤ n, A checks as in Theorem 10, whether each triple γi can be applied on
γ(i) = γ1γ2...γi−1 according to Definition 17. Then A checks whether rule pγi can be
applied in a leftmost-1 derivation manner on γ(i). To do so, A spawns at most i− 1
existential branches (Level 3 -Existential) each branch corresponding to a label γv,
1 ≤ v ≤ i − 1, such that pγv in (pγv , Qγv , Rγv) is a non-terminal rule. Denote by q
the number of non-terminal rules used in γ between γv+1 and γi−1 (including γv+1

and γi−1), and by sq the total number of nonterminals produces by these rules, and
let s = i − v − sq. A checks whether αγi is the sth nonterminal occurring on the
right-hand side22 of rule pγv .

22If pγv is the rule that produces the nonterminal rewritten by rule pγi , and this is the sth

nonterminal occurring on the right-hand side of pγv , then for the case of leftmost-1 derivation
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An existential branch spawned at Level 3, is labeled by 1 if pγv satisfies these
properties. For each existential branch labeled by 1 at Level 3, A checks whether
the sth nonterminal occurring in βγv is indeed the αγi nonterminal rewritten by rule
pγi , i.e., no other rule used between rule pγv of γv and rule pγi of γi rewrites the sth

nonterminal, equal to αγi , in βγv (for which a relation of type “s+ sq = i− v” may
also hold). Hence, A universally branches (Level 4-Universal) all symbols occurring
between rules γv+1 and γi−1. On each branch holding a triple γl = (pγl , Ql, Rl),
v < l < i, A checks whether

1. αγl equals αγi ,
2. s + s̄q = l − v, providing that αγi is the sth nonterminal occurring on the

right-hand side of rule pγv (found at Level 3) and s̄q is the number of nonterminals
produced between rules pγv and pγl ,

3. the number of nonterminals αγi rewritten between pγv and pγl is equal to the
number of nonterminals αγi produced between these rules, up to the sth nonterminal
occurring on the right-hand side of rule pγv .

On each universal branch (Level 4) A returns 0 if conditions 1 − 3 hold. Oth-
erwise, it returns 1. Note that, for each ℘i, 1 ≤ i ≤ n, A does not have to check
whether γv and γl, can be applied in leftmost-1 derivation manner. This condition is
checked by each of the processes ℘v and ℘i, since all of them are universally consid-
ered. It is easy to estimate that A performs the whole computation in logarithmic
time and space. 2

Corollary 19 SZRCL1(X) ∪ SZRCLac1 (X) ⊂ NC1, X ∈ {CF,CS, PS}.

Corollary 20 SZRCL1(X)∪SZRCLac1 (X) ⊂ DSPACE(log n), X ∈ {CF,CS, PS}.

In order to simulate letfmost-i derivations, i ∈ {2, 3}, and to check whether
γ = γ1γ2...γn ∈ P ∗ belongs to SZRCLaci (CF ), for each triplet γi, 1 ≤ i ≤ n, as in
the case of PGs, an ATM must have information concerning the order in which the
first occurrence of each nonterminal Al ∈ N , 1 ≤ l ≤ m, occurs in the sentential
form at any step of derivation. In this respect we introduce the notion of ranging
vector for RCGs.

Definition 19 Let G = (N,T, P,A1) be a RCG with appearance checking and CF
rules, where P = {r1, r2, ..., rk} is the ordered finite set of triplets in P . Let SFrj
be the sentential form obtained after triplet rj = (pj , Qj , Rj), 1 ≤ j ≤ k, has been
applied at a certain step of derivation in G. The ranging vector associated with
SFrj , denoted by S(rj), 1 ≤ j ≤ k, is a vector in Nm defined as

Sl(rj) =


0, if Al ∈ N does not occur in SFrj , i.e., |SFrj |Al = 0,

i,
if the first occurrence of Al in SFrj is the ith element in the
order of first occurrences of nonterminals from N in SFrj .

order, we must have s + sq = i − v. This is because each nonterminal produced in the sentential
form by rules used in a leftmost-1 derivation manner, between pγv and pγi (including nonterminals
existing up to the sth nonterminal on the right-hand side of pγv ), must be fully rewritten by these
rules. The nonterminals existing in the sentential form before pγv has been applied, will be rewritten
only after the new nonterminals produced between pγv and pγi are fully rewritten.
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Note that if rj′ = (pj′ , Qj′ , Rj′) is applied in the Szilard word before rj =
(pj , Qj , Rj) then the ranging vector S(rj) can be computed knowing S(rj′). This
observation holds for both leftmost-2 and leftmost-3 derivations.

Example 6 Consider the ranging vector S(rj′) = (3, 0, 2, 1, 0) ∈ N5, associated
with the sentential form SFrj′ obtained after the application of the RC rule rj′ , i.e.,

SFrj′ = A4X4A3X3,4A1X̄3,4, X4 ∈ ({A4} ∪ T )∗, X3,4, X̄3,4 ∈ ({A3, A4} ∪ T )∗.
If in rj = (pj , Qj , Rj), pj is the rule A3 → tA5 and if Qj = {A3, A4} and

Rj = {A5}, then rj can be applied in leftmost-2 derivation manner after rj′ , if there
is no other RC rule rj′′ = (pj′′ , Qj′′ , Rj′′) ∈ P , such that pj′′ rewrites A4, SFrj′
contains all nonterminals in Qj′′ and no nonterminal in Rj′′ . The sentential form
obtained after pj has been applied on SFrj′ has the same form as in Example 5.

Note that, rule rj can be applied in leftmost-3 derivation manner after rj′ , by
rewriting the leftmost occurrence of A3 in S(rj′), even if there exist a RC rule rj′′ ∈ P
able to rewrite A4.

Theorem 12 Each language L ∈ SZRCLi(CF ) ∪ SZRCLaci (CF ), i ∈ {2, 3} can
be recognized by an indexing ATM in O(log n) space and O(log2 n) time.

Proof. We prove the claim for the leftmost-2 derivation in RCGs with appearance
checking. For the case of RCGs without appearance checking, or RCGs with ap-
pearance checking working in leftmost-3 derivation manner, the proof is similar.

Let G = (N,T, P,A1) be an arbitrary RCG, with appearance checking, working
in leftmost-2 derivation manner, and A be an indexing ATM with a similar configu-
ration as in the proof of Theorem 10. Let γ = γ1γ2...γn ∈ P ∗, be an input of length
n. To guess the length of γ, A proceeds with the procedure described at Level 1
(Existential), Theorem 3.

Level 2 (Existential) Consider the quotient Q1 and the remainder R1 of the divi-
sion of n by [log n], where 0 ≤ R1 < [log n]. A spawns O(clogn) existential branches,
each branch holding an R1-tuple <R1 = (S(γ1), S(γ2), ..., S(γR1)) of ranging vectors,
where c = O(

∑m−1
s=1(m− s+ 1)m)23 and S(γv) is the ranging vector associated with

γv, 1 ≤ v ≤ R1. A checks (Levels 3) in O(log n) time and space, whether all vectors
in <R1 are correct, in the sense that S(γv) can be obtained from S(γv−1) by applying
rule γv in leftmost-2 derivation manner on the sentential form built from S(γv−1).

Level 3 (Universal) A spawns R1 universal processes ℘
(R1)
v , 1 ≤ v ≤ R1.

• Process ℘
(R1)
1 reads γ1 = (pγ1 , Qγ1 , Rγ1) and it checks whether γ1 can be applied

on A1, i.e., αγ1 =A1, and whether S(γ1) is the ranging vector associated with βγ1 .

If these conditions hold, ℘
(R1)
1 returns 1. Otherwise, it returns 0.

• For each ℘
(R1)
v , 2 ≤ v ≤ R1, A counts the number of occurrences of each RC rule

rj ∈ P , 1 ≤ j ≤ k, in γ(v) = γ1γ2...γv−1. Suppose that each rj occurs c
(v)
j times in

23The constant c depends on the number of vectors in Nm that can be built upon the set
{0, 1, ...,m}. If a certain sentential form has only m − s distinct nonterminals, then there are
(m − s + 1)m guesses that may provide the ranging vector associated with this sentential form.
Hence, here and throughout the paper, c = O(

∑m−1

s=1
(m− s+ 1)m).
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γ(v), 0 ≤ c(v)
j ≤ v− 1. For each 1 ≤ l ≤ m, A computes s

(v)
Al

= V 0
l +

∑k
j=1 c

(v)
j Vl(rj),

i.e., the number of times nonterminal Al occurs in the sentential form obtained at
the vth step of derivation. Then A checks whether

1. s
(v)
αγv ≥ 1, s

(v)
X ≥ 1 for each X ∈ Qγv , and s

(v)
Y = 0 for each Y ∈ Rγv , i.e., rule

pγv can be applied on γ(v),

2. S(γv−1) is a possible ranging vector with which γv−1 ends the (v− 1)th step of

derivation, i.e., Sl(γv−1) = 0 if s
(v)
l = 0, and Sl(γv−1) 6= 0 if s

(v)
l ≥ 0, for each

1 ≤ l ≤ m,

3. for any RC rule r = (p,Q,R) ∈ P (p of the form αp → βp), r 6= γv, with

s
(v)
αp 6= 0, s

(v)
X 6= 0 for each X ∈ Q, and s

(v)
Y = 0 for each Y ∈ R, we have

Sαpv (γv−1) < Sαp(γv−1), i.e., pγv can be applied in leftmost-2 manner on γ(v)

with the associated ranging vector S(γv−1),

4. S(γv) is a possible ranging vector on which γv ends the vth step of derivation.

Each ℘
(R1)
v , 2 ≤ v ≤ R1, returns 1 if the above 1 − 4 conditions hold. If all

processes γv, 1 ≤ v ≤ R1, return 1 then <R1 is a correct guess and the existential
branch holding the [log n]-tuple, spawned at Level 2, is labeled by 1.

Level 4 (Existential) Let Q2 be the quotient and R2 the remainder of Q1 divided
by [log n], 0 ≤ R2 < [log n]. A spawns O(clogn) existential branches, each branch
holding a 2 [log n]-tuple <cR2

=(S(γR1), S(γR1+R2), S(γR1+Q1), S(γR1+Q1+R2), ...,
S(γR1+ ([logn]−1)Q1

), S(γR1+ ([logn]−1)Q1+R2
)), where S(γR1) is the ranging vector be-

longing to the <R1-tuple found correct at Level 3. Because the <R1-tuple is not useful
anymore, the space used by A to record the <R1 is allocated now to record <cR2

.

Level 5 (Universal) On each existential branch from Level 4, A spawns [log n] uni-

versal processes ℘
(Q1)
i1

, 0 ≤ i1 ≤ [log n] − 1. Each process ℘
(Q1)
i1

takes the interval
[R1 + i1Q1...R1 + i1Q1 + R2], and checks whether the ranging vectors S(γR1+i1Q1)
and S(γR1+i1Q1+R2), 1 ≤ i1 ≤ [log n] − 1, provide a correct order in which the
leftmost-2 derivation can be performed between γR1+i1Q1 and γR1+i1Q1+R2 . Besides

S(γR1+i1Q1) and S(γR1+i1Q1+R2), each ℘
(Q1)
i1

also keeps, from the previous level,
the ranging vector S(γR1+(i1+1)Q1

). In this way each ranging vector S(γR1+i1Q1),

1 ≤ i1 ≤ [log n]− 1, guessed at Level 4, is redirected to only one process, i.e., ℘
(Q1)
i1−1.

Level 6 (Existential) For each universal process ℘
(Q1)
i1

, 0 ≤ i1 ≤ [log n]−1, A spawns

O(clogn) existential branches, each branch holding an (R2 + 1)-tuple of ranging
vectors <R2 = (S(γR1+i1Q1), S(γR1+i1Q1+1), ..., S(γR1+i1Q1+R2−1), S(γR1+i1Q1+R2)).
Then A checks whether all vectors composing <R2 are correct ranging vectors ac-
cording to the leftmost-2 derivation requirements. This can be done, for each process

℘
(Q1)
i1

, 1 ≤ i1 ≤ [log n], in O(log n) time and space, through Level 7 as follows.

Level 7 (Universal) For each existential branch spawned at Level 6, A spawns R2

universal processes ℘
(R2)
v , 1 ≤ v ≤ R2. On each ℘

(R2)
v , A checks whether each sub-

string γR1+i1Q1γR1+i1Q1+1...γR1+i1Q1+v is correct according to the leftmost-2 deriva-
tion order, and whether each ranging vector in <R2 is correct. In this respect, for
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each ℘
(R2)
v , 1 ≤ v ≤ R2, A counts the number of occurrences of each RC rule rj ∈ P ,

1 ≤ j ≤ k, in γ(i1,v) = γ1γ2...γR1+i1Q1+v−1. Suppose that each rj occurs c
(i1,v)
j

times, 0 ≤ c
(i1,v)
j ≤ R1 + i1Q1 + v − 1, in γ(i1,v). For each 1 ≤ l ≤ m, A computes

s
(i1,v)
Al

= V 0
l +

∑k
j=1 c

(i1,v)
j Vl(rj), i.e., the number of times Al occurs in the sentential

form obtained at the (R1 + i1Q1 +v)th step of derivation. Then A checks conditions
of type 1− 4 (Level 3) for the RC rule γR1+i1Q1+v.

Each ℘
(R2)
v , 1 ≤ v ≤ R2, is said partially correct if conditions of type 1−4 (Level

3) hold. If ℘
(R2)
v is not partially correct, it is labeled by 0. Note that, as for the case

of MGs, at this moment we cannot decide whether ℘
(R2)
v can be labeled by 1, since

we do not know whether S(γR1+i1Q1) is valid, i.e., whether γR1+i1Q1 indeed ends the
(R1 + i1Q1)th step of derivation with the ranging vector S(γR1+i1Q1), and whether
γR1+i1Q1 can be applied in the leftmost-2 derivation manner upon the ranging vec-

tor S(γR1+i1Q1−1). The logical value of each ℘
(R2)
v will be decided at the end of

computation, when it will be known whether S(γR1+i1Q1) is a valid ranging vector
with respect to the RC rules that compose the subword γR1+(i1−1)Q1

...γR1+i1Q1−1.

A partially correct process ℘
(R2)
v is labeled by �. If all ℘

(R2)
v are labeled by �,

then the existential branch holding the tuple <R2 , provided at Level 6, is labeled by

�. Otherwise, this branch is labeled by 0. ℘
(Q1)
i1

, yielded at Level 5, will be labeled
by � if there exists at least one existential branch labeled by � at Level 6. Otherwise,

℘
(Q1)
i1

returns 0.

Suppose we have run the algorithm up to the (` − 1)th “iterated” division of n
by [log n], i.e., we know the quotient Q`−1 and the remainder R`−1 of Q`−2 divided
by [log n].

Level 4(` − 1) (Existential) Let Q` be the quotient and R` the remainder of Q`−1

divided by [log n], 0 ≤ Q`, R` < [log n]. Since Q`−2, R`−2 and R`−1 are no more
needed, the space used to record them is now used to record Q` and R` in binary,
still keeping Q`−1. Denote by xi`−2

=
∑`−1
l=1 Rl +

∑`−2
l=1 ilQl. For each existential

branch labeled by � at Level 4` − 6, A spawns O(clogn) existential branches, each
branch holding a 2 [log n]-tuple <cR` = (S(γxi`−2

), S(γxi`−2
+R`), S(γxi`−2

+Q`−1
),

S(γxi`−2
+ Q`−1+ R`), ..., S(γxi`−2

+ ([logn]−1)Q`−1
), S(γxi`−2

+([logn]−1)Q`−1+ R`)), where

S(γxi`−2
) is the ranging vector belonging to tuple <R`−1

found correct at Level 4`−5.
Because <R`−1

is no more needed the space used to record <R`−1
is allocated now

to record <cR` . Then A proceeds with Level 4`− 3, similar to Levels 5,..., 4`− 7.

Level 4` − 3 (Universal) On each existential branch spawned at Level 4(` − 1),

A spawns [log n] universal processes ℘
(Q`−1)
i`−1

, 0≤i`−1≤[log n]−1. Denote by xi`−1
=∑`−1

l=1 Rl+
∑`−1
l=1 ilQl = xi`−2

+i`−1Q`−1, 0 ≤ i`−1 ≤ [log n]−1. Each ℘
(Q`−1)
i`−1

takes the
interval [xi`−1

...xi`−1
+R`], and checks whether the ranging vectors (guessed at Level

4(` − 1)) S(γxi`−1
) and S(γxi`−1

+R`), 0 ≤ i`−1 ≤ [log n] − 1, provide a correct order
in which the leftmost-2 derivation can be performed between γxi`−1

and γxi`−1
+R` .

Besides S(γxi`−1
) and S(γxi`−1

+R`), each ℘
(Q`−1)
i`−1

, also keeps from the previous level

S(γxi`−2
+(i`−1+1)Q`−1

). A continues with Level 4`− 2, similar to Levels 6, ..., 4`− 6.
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Level 4`−2 (Existential) For each universal process ℘
(Q`−1)
i`−1

, 0 ≤ i`−1 ≤ [log n]−1, A
spawns O(clogn) existential branches, each branch holding an (R`+1)-tuple of rang-
ing vectors <R` =(S(γxi`−1

), S(γxi`−1
+1), ..., S(γxi`−1

+R`−1), S(γxi`−1
+R`)). Then A

checks whether all vectors composing <R` are correct. This can be done, for each

process ℘
(Q`−1)
i`−1

, 0 ≤ i`−1 ≤ [log n] − 1, in O(log n) time and space, through Level
4`− 1 similar to Levels 3, 7, ..., 4`− 5.

Level 4` − 1 (Universal) For each existential branch spawned at Level 4` − 2, A
spawns R` universal processes ℘

(R`)
v , 1 ≤ v ≤ R`. On each ℘

(R`)
v , A checks (as at

Levels 3, 7, ..., 4` − 5) whether each substring γxi`−1
...γxi`−1

+v and each ranging
vector in <R` is correct according to the leftmost-2 derivation order.

Each process ℘
(R`)
v , 1 ≤ v ≤ R`, that satisfies the above conditions is partially

correct, and it is labeled by a �. Otherwise, ℘
(R`)
v is labeled by 0. If all ℘

(R`)
v ’s are

labeled by �, then the existential branch holding the tuple <R` , provided at Level

4` − 2, is labeled by �. Otherwise, this branch is labeled by 0. Process ℘
(Q`−1)
i`−1

,
yielded at Level 4`− 1 is labeled by � if there exists at least one existential branch

labeled by � at Level 4`− 2. Otherwise, ℘
(Q`−1)
i`−1

is labeled by 0.

At this level the only substrings of γ left unchecked are those substrings that
corresponds to the intervals of the form IQ`−1

= [
∑`−1
l=1 Rl +

∑`−2
l=1 ilQl + i`−1Q`−1 +

R`...
∑`−1
l=1 Rl +

∑`−2
l=1 ilQl + (i`−1 + 1)Q`−1], 0 ≤ il ≤ [log n]− 1, 1 ≤ l ≤ `− 1, and

besides the cutting points P u` =
∑u
l=1Rl +

∑u−1
l=1 ilQl + (iu + 1)Qu, 1 ≤ u ≤ ` − 1.

On each interval of type IQ`−1
, A proceeds with Level 4`.

Level 4` (Existential) Each interval IQ`−1
can be divided into [log n] subintervals of

length 1 ≤ Q` < [log n]. Hence, A spawnsO(clogn) existential branches each of which
holds a [log n]-tuple of ranging vectors <cQ` = (S(γxi`−1

+ R`), S(γxi`−1
+ R`+ Q`), ...,

S(γxi`−1
+R`+([logn]−1)Q`)), S(γxi`−1

+R`) is the ranging vector found valid at Level

4`− 1.

Level 4`+1 (Universal) For each existential branch spawned at Level 4`, A spawns

[log n] universal processes ℘
(Q`)
i`

, 0 ≤ i` ≤ [log n]− 1. Each ℘
(Q`)
i`

takes an interval of

length Q` of the form [
∑`
l=1Rl+

∑`−1
l=1 ilQl+i`Q`...

∑`
l=1Rl+

∑`−1
l=1 ilQl+(i`+1)Q`].

Denote by xi` =
∑`
l=1Rl +

∑`−1
l=1 ilQl + i`Q`, 0≤ i`≤ [log n] − 1. For each interval

[xi` ...xi`+1], A checks whether the substring γxi` ... γxi`+1 is valid according to the
leftmost-2 derivation order.

Level 4` + 2 (Existential) For each ℘
(Q`)
i`

, 0 ≤ i` ≤ [log n] − 1, A spawns O(clogn)
existential branches, each branch holding an (Q`+ 1)-tuple of ranging vectors <Q`=
(S(γxi` ), S(γxi`+1), ..., S(γxi`+Q`−1), S(γxi`+1)). In each <Q` the vectors S(γxi` ) and
S(γxi`+1) have been guessed at Level 4`. They are ranging vectors associated with
triplets placed in cutting points, i.e., edges of intervals of length [log n]. They are
also overlapping points of two consecutive intervals of type [xi` ...xi`+1]. Hence,
each ranging vector S(γxi` ) is checked two times. Once if it is a valid vector on
which γxi`+1 can be applied in leftmost-2 derivation manner (checked by process
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℘
(Q`)
i`

). Then, if by applying γxi` on the sentential form built upon the ranging vec-
tor S(γxi`−1) a sentential form with an associated ranging vector equal to S(γxi` ) is

obtained (this is checked by ℘
(Q`)
i`−1).

As all intervals of type [xi` ...xi`+1] are universally checked by processes ℘
(Q`)
i`

,
the tuple <cQ` spawned at Level 4` is labeled by 1, if all ranging vectors S(γxi` )
and all vectors in <Q` are correct. To check whether all ranging vectors in <Q` are

correct, for each process ℘
(Q`)
i`

, 0 ≤ i` ≤ [log n] − 1, A follows the same procedure,
that requires O(log n) time and space, described at Levels 4`− 1 (Universal).

For the last substring of length Q` in γ, i.e., the suffix of γ of length Q`
of the form γ∑`

l=1
Rl+

∑`−1

l=1
([logn]−1)Ql+([logn]−1)Q`

...γ∑`

l=1
Rl+

∑`−1

l=1
([logn]−1)Ql+[logn]Q`

,

℘
(Q`)
[logn]−1 must check whether the triple γ∑`

l=1
Rl+

∑`−1

l=1
([logn]−1)Ql+[logn]Q`

= γn ends

up the computation. This is done as for process ℘n, Theorem 10.
Each cutting point P u` =

∑u
l=1Rl +

∑u−1
l=1 ilQl + (iu + 1)Qu can be equiva-

lently rewritten as
∑u+1
l=1 Rl +

∑u
l=1 ilQl + [log n]Qu+1, due to the equality Qu =

[log n]Qu+1 + Ru+1, for any 1 ≤ u ≤ ` − 1. Furthermore,
∑u+1
l=1 Rl +

∑u
l=1 ilQl +

[log n]Qu+1 is equal with
∑u+1
l=1 Rl+Ru+2+

∑u
l=1 ilQl+([log n]−1)Qu+1+[log n]Qu+2,

due to the equality Qu+1 = [log n]Qu+2 +Ru+2, for any 1 ≤ u ≤ `− 2. By applying
this transformation k times, where k = `−u, each P u` can be equivalently rewritten as∑u+1
l=1Rl+Ru+2+...+Ru+k+

∑u
l=1 ilQl+([log n]−1)(Qu+1+...+Qu+k−1)+[log n]Qu+k,

where u+ k = `.
In this way each P u` , yielded at Level 4u by <cRu+1

, 1 ≤ u ≤ ` − 1, is in fact

the right edge of an interval of the form [
∑`
l=1Rl +

∑`−1
l=1 ilQl + i`Q`...

∑`
l=1Rl +∑`−1

l=1 ilQl+(i`+1)Q`] for which 0 ≤ il ≤ [log n]−1, 1 ≤ l ≤ `−1, i` = [log n]−1. The
decision on the correctness of each ranging vector S(γ∑u

l=1
Rl+

∑u−1

l=1
ilQl+(iu+1)Qu

) =

S(γPu
`

) will be actually taken by a process of type ℘
(Q`)
[logn]−1.

Since the validity of each cutting point is decided by a process of type ℘
(Q`)
[logn]−1,

the logical value returned by this process is ”propagated” up to the level of the
computation tree that has spawned the corresponding cutting point, and thus each �
symbol receives a logical value. The input is accepted, if going up in the computation
tree, with all �’s changed into logical values, the root of the tree is labeled by 1.

The tuples <Rh̄ , <cRh̄ , <Q` , <cQ` , 1 ≤ h̄ ≤ `, vectors V (rj), 1 ≤ j ≤ k, and aux-
iliary net effects computed by A during the algorithm, are stored by using O(log n)
space, in a similar manner as in Theorems 10 and 11.

It is easy to observe that A has O(log n) levels. Since at each level A spawns

either O(nc1) or O(clogn
2 ) existential branches, where c1 and c2 are constants, (each

level being thus convertible into a binary tree with O(log n) levels), and at each
Level 4h̄, 1 ≤ h̄ ≤ `, A performs a division operation, which requires O(log n) time
and space [20], A will perform the whole computation in O(log2 n) parallel time and
O(log n) space. 2

Corollary 21 SZRCLi(CF ) ∪ SZRCLaci (CF ) ⊂ NC2, i ∈ {2, 3}.

Corollary 22 SZRCLi(CF ) ∪ SZRCLaci (CF ) ⊂ DSPACE(log2 n), i ∈ {2, 3}.
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6 Remarks on Szilard Languages of Regulated Rewrit-
ing Grammars with PS Rules

The derivation mechanism in MGs, PGs, or RCGs is quite similar to the deriva-
tion mechanism in Chomsky grammars. In the case of MGs, the only difference is
that productions are grouped into matrices composed of a finite number of rules
obeying a predefined order and some constraints that prohibit the use of some of
rules composing the matrix sequence. For the case of PGs constraints are imposed
by the success and failure lists that prescribe the rules eligible to be applied at a
certain step of derivation, while for the case or RCGs constraints are provided by
the permitting and forbidding contexts that enable or disable a rule to be applied.
These restrictions do increase the generative power of MGs, PGs, or RCGs [13] but
they do not change the complexity of the corresponding Szilard languages.

On the other hand Definition 10 of leftmost-i, i ∈ {1, 2, 3}, derivations in MGs,
PGs, or RCGs with CF rules, can be naturally generalized for PS rules as follows.

Let G = (N,T, S,M,F ) be a MG with PS rules, where M = {m1,m2, ...,mk},
each mj is a finite sequence of the form mj = (pj1 , pj2 , ..., pjk(j)

), k(j) ≥ 1, and each
rule pji ∈ mj , 1 ≤ i ≤ k(j), is of the form αpji → βpji , αpji ∈ (N ∪ T )∗N(N ∪ T )∗,
βpji ∈ (N ∪ T )∗. Consider Pα = {αpji |1 ≤ j ≤ k, 1 ≤ i ≤ k(j)} the set of the
left-hand sides of all rules in mj , 1 ≤ j ≤ k.

Consider G = (N,T, S, P ) a PG or RCG with PS rules, where P = {r1, r2, ..., rk}
and each rule pj ∈ P , 1 ≤ j ≤ k, is of the form αpj → βpj , αpj ∈ (N ∪T )∗N(N ∪T )∗

and βpj ∈ (N ∪T )∗. Consider Pα = {αpj |1 ≤ j ≤ k} the set of the left-hand sides of
all rules in P .

Definition 20 A derivation in G, where G is a MG, PG or RCG is called

• leftmost-1 if each rule used in the derivation rewrites the leftmost substring
α occurring in the current sentential form, such that if α0α is a prefix of the
current sentential form, then α0 ∈ T ∗ and α ∈ Pα,

• leftmost-2 if at each step of derivation, the leftmost occurrence of α ∈ Pα that
can be rewritten is rewritten,

• leftmost-3 if each rule used in the derivation rewrites the leftmost occurrence
of its left-hand side in the current sentential form.

In [9] we proved that the class of leftmost Szilard languages of PS (and particu-
larly of CS) grammars can be recognized in logarithmic time and space by indexing
ATMs. The case of leftmost-1 derivation in MGs, PGs, or RCGs with CF or PS rules
is in fact a generalization of the leftmost derivation in CGs (Defintion 5). Using a
similar method as in [9] it can be proved that Theorems 5, 8, and 11 hold for classes
of leftmost-1 Szilard languages of MGs, PGs, or RCGs (with or without appearance
checking) with CS or PS rules, too. Hence, we have

Theorem 13 Each L ∈ SZML1(X)∪SZPL1(X)∪SZRCL1(X)∪SZRCLac1 (X),
X ∈ {CS,PS} can be recognized by an indexing ATM in O(log n) time and space.

Corollary 23 SZML1(X) ∪ SZPL1(X) ∪ SZRCL1(X) ∪ SZRCLac1 (X) ⊂ NC1,
X ∈ {CS,PS}.
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Corollary 24 SZML1(X)∪SZPL1(X)∪SZRCL1(X)∪SZRCLac1 (X) ⊂ DSPACE
(log n), X ∈ {CS,PS}.

For the moment we have no results concerning the complexity of leftmost-1 Szi-
lard languages of MGs and PGs with appearance checking and PS rules, or leftmost-i,
i ∈ {2, 3}, Szilard languages of MGs, PGs, and RCGs, with or without appearance
checking, and PS rules.
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