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Abstract: The standard theory of optimal income taxation under uncertainty has been 

developed under the assumption that individuals maximize expected utility. However, 

prospect theory has now been established as an alternative model of individual behaviour, 

with empirical support. This paper explores the theory of optimal income taxation under 

uncertainty when individuals behave according to the tenets of prospect theory. It is seen that 

many of the standard results are either overturned, or modified in interesting ways. The 

validity of the First Order Approach requires new conditions that are developed in the paper. 

And when these conditions are valid, it is shown that optimal marginal tax rates on low 

incomes will tend to be lower under prospect theory than under expected utility theory. 

 

Key words: redistributive taxation, income uncertainty, moral hazard, prospect theory, loss 

aversion 

 

JEL classification: D81, H21. 
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1 Introduction 

 

In principal-agent models with moral hazard, the agent’s income and utility depends 

randomly on effort. In one of his Nobel prize winning contributions, Mirrlees (1974) 

characterizes optimal income taxation where the government is the principal and ex ante 

identical individuals are the agents1. In this contribution, as in most principal-agent analysis, 

expected utility theory is used as a description of agents’ behaviour under uncertainty. In his 

Nobel Lecture, Mirrlees (1997, p. 1324) calls for closer scrutiny of this approach:  

 

‘Problems of this kind are usually analysed with the assumption that people try to maximise 
their expected utility. There are good reasons for thinking that may be a mistake. At least the 
consequences of alternative theories of decisions under uncertainty for these situations should 
be explored.’ 
 

One such alternative theory of decision making under uncertainty has in turn led to another 

Nobel prize. Prospect theory, developed by Kahneman and Tversky (1979), has garnered 

significant empirical support (see Kahneman’s Nobel lecture, 2003, and Camerer and 

Lowenstein, 2003). In prospect theory, an individual’s utility depends on how the outcome 

deviates from some reference point, rather than directly on the absolute value of the outcome. 

Individuals are loss averse, in other words, a loss leads to a larger change in welfare than a 

gain of a similar size. Finally, individuals may misperceive probabilities underlying the 

decision problem. 

 

The purpose of this paper is to confront the Mirrlees project of characterizing optimal income 

taxation with moral hazard under uncertainty, with the Kahneman project of developing 

alternatives to standard expected utility theory. In the original Mirrlees’ (1974) formulation of 

the income tax model, workers and the government maximise workers’ expected utility over 

income and effort. Our purpose is to introduce elements of prospect theory into individual 

behaviour, in keeping with the emerging empirical consensus. However, the preferences used 

by the social planner remains an open question. Should the government maximize individual 

welfare as the individual sees it, ie should it be “welfarist”? Or, as is suggested in some recent 

                                                 
1 Of course the case with no uncertainty but where individuals differ in their productivities, was also introduced 
and explored by Mirrlees (1971) in the more famous of his Nobel prize winning contributions. We will refer to 
this “adverse selection” case from time to time, but our focus is on the “moral hazard” case where there is 
uncertainty but no ex ante differentiation among individuals. 
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behavioural economics literature, should it be “non-welfarist” and use expected utility theory 

to evaluate outcomes, even though individuals use prospect theory? The latter approach is 

relatively common in conventional public economics, and has been used recently in the 

behavioural public economics literature as well.2 In this paper we develop a general approach 

that encompasses both welfarist and non-welfarist perspectives, and then specialise to draw 

implications for each case.  

 

When prospect theory is used as a description of individual behaviour, another interesting 

connection to earlier tax analysis emerges. What determines the reference income level which 

individuals use in assessing losses and gains in prospect theory? One plausible specification is 

that individuals compare their ex post outcome relative to the mean of the outcome for other 

individuals. This comes very close to models of optimal taxation with utility interdependence 

(or envy), explored in the conventional optimal taxation setting without income uncertainty 

(e.g. Oswald, 1983 and Tuomala, 1990). Thus, parts of this paper can also be seen as 

conducting an analysis of taxation with utility interdependence under income uncertainty. 

Another possibility is that the reference point could be a past consumption level. Then the 

analysis bears resemblance to habit formation models, such as Ljunqvist and Uhlig (2000) or 

Carroll, Overland and Weil (2000).  

 

The paper first reviews the standard, benchmark, model of optimal taxation with moral hazard 

under income uncertainty, in Section 2. As is common in models of this kind, we mostly 

focus on results based on the so-called “first-order approach”. This section therefore also 

examines the exact conditions under which this approach is valid, an issue that will seen to be 

relevant when prospect theory is introduced. Section 3 develops a solution to the tax problem 

under uncertainty with moral hazard in the general setting where individuals use one set of 

preferences to evaluate outcomes, but the government uses a different set of preferences. 

Section 4 then interprets these general results when individual behaviour is described by 

prospect theory, but the government uses expected utility theory to evaluate outcomes. The 

case where individuals and the government both use prospect theory is discussed in the 

Appendix. Section 5 extends the analysis by considering the case where the reference income 

of prospect theory is endogenised. Section 6 concludes.  

                                                 
2 An example of the former is Kanbur, Keen and Tuomala (1994), while O’Donoghue and Rabin (2003) is an 
example of the latter. 
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2. The standard model 

 

Consider an economy, as in Mirrlees (1974), where the worker-consumer does not know what 

income he or she will receive for each possible level of effort. Thus the worker’s gross 

income, z, depends randomly on effort, y. There is a single worker or, alternatively, all 

workers are ex ante identical. Thus income differences are not due to differences in innate 

skills (as in conventional optimal income taxation model under certainty, Mirrlees, 1971), but 

due to luck (for any given level of effort). Let ),( yzf  and ),( yzF  denote the continuous 

density and distribution functions of income z given that effort y is undertaken by the worker; 

it is assumed that they are continuously differentiable for all z and y. The worker-consumer 

chooses effort y to maximize expected utility 

 

(1) ∫ dzyzfyxu ),(),( , 

 

where )(zTzx −=  is the after tax income / consumption. As in much of the literature, we 

concentrate on an additively separable specification of the utility function, written as 

yxvyxu −= )(),( . The consumer is risk averse, hence 0,0 <′′>′ vv . The first-order 

condition for the maximisation of (1) is 

 

(2) 01)( =−∫ dzfxv y  

 

The government is utilitarian and maximises (1) subject to the individual optimisation 

constraint (2) and the budget constraint which, for large identical population with independent 

and identically distributed states of nature, can be written in the form 

 

(3) [ ]∫ =− 0),( yzfxz  

 

Taking multipliers α and λ for the constraints (2) and (3) respectively, the Lagrangean and the 

first-order condition wrt x (pointwise optimisation) are as follows: 

 

(4) [ ]{ } ydzfxvyzfxzxvL y −−+−+= ∫ ααλ )(),()()(  
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(5) 
v

g
′

=+
λ

α1 , 

 

where ffg y= is the likelihood ratio. This approach, where incentive compatibility is 

modelled using equation (2), is the so-called first-order approach (FOA). Mirrlees (1975, 

1999) was the first to point out that FOA is not necessarily a valid procedure in a potentially 

large number of cases, because it might lead to a local instead of a global optimum. Mirrlees 

(1976), Rogerson (1985), Jewitt (1988) and Alvi (1997) have explored conditions under 

which the FOA provides necessary and sufficient conditions for the optimisation. When the 

utility function is separable as in our set-up, sufficient conditions are the so-called monotone 

likelihood ratio condition (MLRC) and convex distribution function condition (CDFC). We 

demonstrate this below to provide a comparison to the novel cases in later sections. 

 

First, as an intermediate step, it must be checked that consumption is increasing in income / 

effort, i.e. )(zx′  is positive. The right-hand side of the first-order condition in (5) is increasing 

in )( yz , since 0<′′v . The left-hand side of (5) is increasing with )( yz , provided that α >0, 

since 0>′g  when we assume that the MLRC (monotone likelihood ratio condition) holds.  

 

Following Jewitt (1988) and Laffont and Martimort (2002) we now show that α  is indeed 

positive. Dividing (5) byλ , multiplying it with f and integrating over the support [ ]zz,  yields 

 

(6) ∫= fdz
v'
11

λ
 

 

since ∫ = 0dzf y . Using (5) again gives 

 

(7)  ∫
′

−
′

= fdz
vv

g 11
λ

α  

 

Multiply both sides by vf and integrate over the support [ ]zz,  to get 
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(8) 
)
'

1,cov(

)
'

1,cov(

v
v

v
vdzvf y

=

=∫

λ

α

λ

α

 

 

where cov() denotes the covariance operator. The second line follows from the incentive 

constraint (2). Since v  and 'v  covary in opposite, we necessarily have 0≥α . However, the 

only case where the covariance is zero is when x is constant irrespective of income. But then 

the worker has no incentives to provide positive effort. Therefore, to induce effort, 0>α . 

 

Finally, it remains to be shown that expected utility is concave. For this, rewrite the expected 

utility as follows: 

 

(9) [ ]

∫

∫

∫

−−=

−−=

−

ydzyzFxvzxv

ydzyzFxvyzvF

ydzyzfxv
z
z

),(''))((

),(''),(

),()(

 

 

where the second line follows from integration by parts and the third from using the property 

that 0),( =yzF  and 1),( =yzF . From the last row, since 'v  and 'x  are positive, the expected 

utility is concave in y if yyF >0. This property is called the convexity of the distribution 

function condition (CDFC). Therefore, the FOA is a valid strategy given that MLRP and 

CDFC hold. 

 

We can now turn to the properties of the solution. Differentiate (5) again with respect to z and 

reorganise to obtain the shape of )(zx′ : 

 

(10) 
v

gvx
′′

′′
−=′

λ

α
2)(  

 

Denote the coefficient of absolute risk aversion as )/()( vv ′′′−=δ . Based on (10), the 

marginal tax rate ( )(zTMTR ′= ) is therefore given by 
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(11) 
λδ

α gvxMTR
′′

−=′−= 11  

 

This shows that the optimal marginal tax rate is a compromise between risk aversion and 

providing incentives. If the consumers become more risk averse, the marginal tax rate 

increases, ceteris paribus. On the other hand, if effort is more tightly connected with income 

( g ′  goes up), workers' effort can be more reliably tracked, and the optimal marginal tax rate 

is reduced.  

 

3. Moral hazard and non-welfarism 

 

The standard solution presented above was based on “expected utility welfarism” – the 

government used the same objective function as the individuals in assessing social welfare, 

namely maximising expected utility. In non-welfarist welfare economics, the individuals' and 

the government's objective functions differ. Seade (1980) derives optimal tax rules under a 

general non-welfarist objective function for the adverse selection case. Kanbur et al (1994) 

and Pirttilä and Tuomala (2004) consider the implications of poverty alleviation as a policy 

objective on optimal income taxation and the combination of income commodity taxation 

rules, respectively. All these papers deal with the Mirrlees (1971) formulation of optimal tax 

policy, where individuals' innate skill levels differ. Our purpose is here to provide a general 

non-welfarist tax analysis in the moral hazard situation. The tax rules are then interpreted 

from the prospect theory viewpoint in Section 4. 

 

Consider a situation where the government uses a utility function yxvyxu −= )(),( , whereas 

the individuals themselves maximise their welfare using another utility function, say, ),(~ yxu . 

For simplicity, let us concentrate on the case where the difference is only related to the utility 

derived from consumption. Then we define yxeyxu −≡ )(),(~ . The individual maximises this 

with respect to effort, giving rise to the first-order condition 

 

(12) 01)( =−∫ dzfxe y  
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The government maximises its utility function subject to (12) and the budget constraint (3). 

The Lagrangean and the first-order condition are now: 

 

(13) [ ]{ } ydzfxeyzfxzxvL y −−+−+= ∫ ααλ )(),()()(  

 

(14) 0=−′+′ ffefv y λα  

 

Differentiation of (14) yields  

 

(15) 
gev

gex
′′+′′

′′
−=′

α

α . 

 

Let us first revisit the conditions when the FOA is a valid solution procedure for this 

optimisation problem. Again, as an intermediate step, consumption x should be increasing in 

income z. The numerator of (15) is positive, assuming that α >0 and 0>′e , and that MLRC 

holds. Given that the numerator is positive, the denominator must be negative, i.e. 

0<′′+′′ gev α . If both the government's and the individuals' utility function exhibit decreasing 

marginal utility, this is always satisfied. Alternatively, one function, say e, may not be 

concave, but its impact is offset by the concavity of v.  

 

The next step is to show that α >0. Rearrange (14) to get 

 

(16) 
'

1
'
'1

v
g

v
e

=+

λ

α

λ
 

 

Integrating over the support [ ]zz,   yields 

 

(17) ∫= fdz
v'
11

λ
 

 

and the first-order condition can be written as: 
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(18) ∫−= fdz
vv

g
v
e

'
1

'
1

'
'

λ

α  

 

By multiplying with v and integrating over the support [ ]zz,  one obtains 

 

(19) )
'

1,cov(
'

'
v

vg
v
ve

=∫
λ

α  

 

The right-hand side is always non-negative. So is the term multiplying α  on the left. 

Therefore we necessarily have 0≥α . Again, to induce a positive effort level, α  cannot be 

equal to zero. Hence, α  is positive. 

 

It remains to show that the objective function is concave. This has actually been already 

shown above in equation (9). To summarise, 

 

Proposition 1. The first-order approach is a valid solution procedure if the monotone 

likelihood ratio and convexity of the distribution function properties hold and a novel 

condition is valid, namely a combination of v ′′  and e ′′ is sufficiently negative.  

 

We now turn to the interpretation of the tax rule. Note first that in the standard case of the 

previous section, the marginal tax rate, given in (11), can be rewritten as 

vg
gvMTR

′′+

′′
+=

)1(
1

α

α  by (5). By adding and subtracting gv ′′α  to the right-hand side of (15), 

dividing it by vg ′′+ )1( α , and rearranging, the marginal tax rate of this section can be written 

as  

 

(20) 








′′+

′−′′
−

′′+

′′

′′

′′
+

+
+=′−=

vg
evg

vg
gv

v
eg

gxMTR
)1(

)(
)1(1

111
α

α

α

α

α

α . 

 

The first term in the brackets on the right-hand side of (20) is similar to the tax rule in the 

welfarist setting. It is, however, multiplied by a novel term that depends on the relative 

concavity of v and e. In addition, there is another new term, the second-term within the 
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brackets, arising from the non-welfarist objective. It measures the difference between the 

welfare assessments of the individual and the government. Depending on the magnitude of e 

and v, this term may either increase or decrease the marginal tax rate. The following 

proposition summarises: 

 

Proposition 2. The marginal tax rate in the non-welfarist moral hazard problem is a 

combination of the standard marginal tax rule and a new term measuring the deviation 

between individual and social preferences.  

 

The structure of the non-welfarist tax rule in (20) for the moral hazard case is similar in spirit 

to the non-welfarist rule calculated by Seade (1980) for the adverse selection case. Note 

finally that if ve = , the rule collapses to the standard welfarist rule, expressed in equation  

(11) in the previous section. 

 

4. Prospect theory and moral hazard 

 

This section interprets the general analysis in the previous section by assuming that individual 

behaviour is described by prospect theory, while government behaviour is described by 

expected utility theory. The case where both principal and agent use prospect theory is 

discussed in the appendix. 

 

In prospect theory, the utility function is replaced by a value function. The key assumptions 

about the value function are that it ‘is (i) defined on deviations from the reference point; (ii) 

generally concave for gains and convex for losses; (iii) steeper for losses than for gains’ 

(Kahneman and Tversky 1979). The two latter properties capture the idea that individuals are 

loss averse. Hence, the value function takes the S-shaped value as in Figure 1. 
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Figure 1: An example of a value function. 

 

  

 

Individuals now maximise the expectation of the value function  

 

(21) ydzyzfxxe −−∫ ),()(  

 

which is again additively separable between effort and income. The reference income, which 

is the basis of comparison for the individual, is depicted by x . The reference income is for 

the moment assumed to be exogenous; it is endogenised in Section 5.  

 

To capture the shape of the value function, we make the following assumptions about the 

properties of the utility function:3 

 

                                                 
3 In prospect theory, there is a kink in the value function at the reference income. Here it is assumed that the 
second derivative smoothly changes from positive to zero and to negative to guarantee differentiability. 
Differentiability is crucial for the “first order approach” to principal-agent problems. Analysis of the non-
differentiable case is a topic for future research. 
 

gainslosses

value
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(22) 
xxforexxforexxfore

e
==′′><′′<>′′

>′

0,0,0
,0

 

 

We can now utilise the results of the previous section by assuming that the government is 

non-welfarist, using v, and the individuals' e has its shape from prospect theory. For the 

moment we also assume that the government and the individual have the same perception of 

probabilities—the misperception issue will be dealt with presently. It will be helpful to 

rewrite x′  in (15), using (14) as  

 

(23) 
)( vv

gex
ev ′−−′

′′
=′

λδδ

α , 

 

where vvv ′′′−=δ  is the coefficient of absolute risk aversion and eee ′′′=δ  is the degree of 

loss aversion. Note that both are defined to be positive for xx < . The term v′−λ  is positive 

because of (14). The marginal tax rate is  

 

(24) 
)(

11
vv

gexMTR
ev ′−−′

′′
−=′−=

λδδ

α , 

 

For the first-order approach to be a valid solution procedure, x should be increasing in z. For 

xx ≥ , this is always the case because then 0≤eδ , and the denominator in (23) and the term 

at the right of (23) are positive.  

 

However, if xx < , the denominator in (23) may be either positive or negative. Then the FOA 

remains valid if the coefficient of loss aversion is sufficiently smaller than the coefficient of 

risk aversion, i.e. )( vv ev ′−>′ λδδ . This is equivalent to the novel condition found in 

Proposition 1. However, with sufficiently strong loss aversion, )( vv ev ′−<′ λδδ , the 

denominator and the right-hand side of (23) are negative, i.e. consumption would be 

decreasing in income (effort). This violates the validity of the first-order approach. Therefore, 

the following proposition holds. 
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Proposition 3. With sufficiently strong loss aversion, the first-order approach is not a 

valid solution procedure for the entire range of realised income, when the individuals' 

decisions are based on prospect theory. 

 

The optimal solution is therefore non-continuous. For consumption above the reference level, 

the marginal tax rate is given by (24). For low consumption and strong loss aversion, a 

randomised schedule is optimal. To see this, note that loss aversion, the convexity of the value 

function, implies that the consumer is in fact risk loving, if income is below the reference 

point. It is therefore conceivable why conditions needed for an insurance scheme are then not 

valid. In contrast, a risk-loving consumer by definition prefers a randomised schedule ( xx ,0 ), 

where 0x  is the smallest possible value of income, to a certain combination of 0x  and x . 

This suggests that the following position holds. 

 

Proposition 4.  In a non-welfarist moral hazard tax problem, when the individuals' 

decision making is based on prospect theory, the optimal incentive structure for incomes 

below the reference point ( xx < )  is a randomised schedule ( xx ,0 ) if individuals' loss-

aversion sufficiently outweighs the government's risk aversion. If the government's risk 

aversion sufficiently outweighs individuals' loss-aversion or income is above the 

reference point ( xx > ), the FOA is valid and the marginal tax rate is given by (24).  

 

Then the overall tax schedule is a combination of the randomisation for xx ≤  and a typical 

tax function with some redistribution for xx > . The point that randomisation may be 

desirable in moral hazard context is not new. Holmström (1979) and Arnott and Stiglitz 

(1988) have shown, however, that randomisation is never optimal for a standard, concave, 

moral hazard problem as in Section 2. Rather, it can become optimal in more complicated 

situations (Arnott and Stiglitz 1988).4  

 

It is interesting to examine how the continuous part of the solution, the marginal tax rate 

given in (24), changes when loss aversion changes. Since v′−λ  is positive, an increase in 

(positive) eδ  tends to reduce the marginal tax rate. Ceteris paribus, the marginal tax rate of the 

                                                 
4 Of course, the question remains how randomisation can be implemented in real world tax policy. One of the 
ideas presented in this context is lax control of tax evasion. 
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non-welfarist solution with prospect theory is therefore smaller than one given by the 

standard solution.5 It may be surprising that the fact that individuals dislike losses – in the 

present framework ending up with smaller income than the average – results in a smaller 

marginal tax rate than in the standard case. However, it follows from a desire by the 

government to reduce the possibility that an individual ends up with a small income. Then it 

is in the individuals' and the government’s interest to reduce the marginal tax rate to induce 

more effort. A reduction in the marginal tax rate is also understandable due to the fact that 

that for a range or income, individuals are risk loving, i.e. 0>′′e . Then the need for insurance 

is diminished. When income is above the reference level, e has a standard risk aversion 

feature, i.e. 0<
′

′′
=

e
e

eδ . Then the income tax offers insurance. 

 

Of course, this kind of comparative static analysis treats the Lagrangean multipliers as fixed 

when changing the parameters and the functions of the model.6 It is clear that the results then 

are at best an approximation. To gain better understanding of the form of optimal schedule 

would require numerical simulations. They are challenging in the present case with a partly 

convex objective function. This is a topic for further research. 

 

In this class of models, the sign of the change in the marginal tax rate – i.e. whether the 

marginal tax rate increases or decreases with income – cannot be solved in general. However, 

one can find a formulation that helps gain intuition of the terms affecting the marginal tax. 

The derivative of the marginal tax rate can be written as follows: 

 

(25) ( ) [ ])(2 gegxexvgegegxe
z

MTR
′′′+′′′′+′′′′

′′
−′′′+′′′′=

∂

∂
α

ξ

α

ξ

α , 

 

where gev ′′+′′= αξ . The sign of (25) remains ambiguous in general. However, one can 

notice, following Low and Maldoom (2004), that the marginal tax rate is the less progressive, 

the higher is v ′′′ . The third derivative measures the importance of precautionary incentives 

('prudence'). Other things equal, an increase in prudential behaviour reduces the progressivity 

of the marginal tax rate. In the present context, the progressivity also depends on e ′′′ . Unlike 
                                                 
5 This effect can also been found from the formulation (20) of the marginal tax rate by considering a small 
increase in e ′′  on the MTR, and noting that the first term in the brackets is negative. 
6 The problem is similar in standard analysis of moral hazard, such as in Varian (1980).  
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for prudence, similar intuition has not been developed, to our knowledge, for the third 

derivative of the value function contained in the prospect theory. One can note that if e ′′′  is 

positive, loss aversion decreases with income, and the marginal income tax rate becomes less 

progressive.  

 

There is one element of prospect theory which we have not addressed yet. This is the 

possibility that the government and individuals perceive the distribution of z in a different 

manner. Indeed prospect theory also maintains that individuals do not assess probabilities 

with the true density function, say f, but with some transformation )( fπ , which underweighs 

high probabilities and overweighs small probabilities (Kahneman and Tversky 1979).  

 

This has potentially two problems. First, the weighting schemes do not always satisfy 

stochastic dominance. Second, weighting schemes may not necessarily be easily extended to a 

continuum of outcomes. These problems are addressed in the cumulative version of prospect 

theory (Tversky and Kahneman 1992). In this context, one must assume that the distribution 

function used by the individuals have some of the standard properties for the first-order 

approach to be valid (monotone likelihood ratio and convexity of the distribution function). In 

principle, there is no particular reason why these could not hold. While the level of density 

function differs between the true f and )( fπ , it does mean that the properties of the 

distribution function should change. 

 

Introducing )( fπ  to the optimisation problem is straightforward.7 Then in the optimal tax 

rule the government corrects ‘wrong’ perceptions by the individuals in its marginal tax rate, 

(24), through newly defined 
π

π yf
g

′
= . This observation bears interesting resemblance to the 

merit good analysis of Sandmo (1983). He builds on the idea that individuals may 

misperceive probabilities of uncertain outcomes. The ex post economic outcome, resulting 

from misinformed choices, is therefore inefficient. Instead of evaluating welfare based on 

individuals’ expected utility, he proposes to specify the social welfare function in terms of 

individuals’ ex post or realised utility levels. Such a formulation means that consumer 

sovereignty is only disregarded ex ante. The case for government intervention arises because 

                                                 
7 For brevity, these calculations are not presented here. They are available from the authors upon request. 



 16

consumer demands do not adequately represent their tastes due to distorted information. 

Similar reasoning applies here. The marginal tax rate differs from one in the standard model 

by correcting the way misperceived probabilities affect the choice for effort.  

 

Finally, one can also consider a case where both the government and the individuals apply 

prospect theory as the basis of decision making. This situation can be called “prospect theory 

welfarism”, as the government accepts the individuals' valuation for evaluation of social 

welfare. This problem can be analysed as a special case of the model in Section 3, when the 

objective function for the government and for the individual has the properties stipulated in 

(22). The analytics of this case are presented in full in the Appendix, but the results remain 

broadly the same. The first-order approach is not valid for the full range of income, 

randomisation becomes optimal for incomes below the reference point, and above the 

preference point, the marginal tax rate provides some, less than full, insurance. A key 

difference is that the formula for the marginal tax rate for income above the reference point is 

similar to the standard solution of Section 2, and does not include a term correcting for the 

difference between private and social valuation (as they are the same). 

 
 

5. Endogenous reference point 

 

Prospect theory brings to center stage the reference level of income around which the value 

function is defined. But what determines this reference point? If we assume that the reference 

income is somehow related to the overall economy then we are in a terrain familiar to optimal 

tax theory. Oswald (1983) and Tuomala (1990), for example, consider the implication of 

utility interdependence (or 'envy') – the situation in which individual's utility is negatively 

affected by others' income – on optimal income taxation. But in these models differences are 

due to differences in ex ante skill levels. In the Mirrlees moral hazard model, differences arise 

due to luck. 

 

An additional problem related to utility interdependence is that it is not clear whether it 

should be allowed to enter the social welfare function: is envy a trait one wants to honour? 

The non-welfarist approach, such as ours, does not suffer from this criticism. Utility 

interdependence affects the way people behave, which the government must take into account 
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as a constraint when designing tax schedules, but allowing for envy need not be included in 

the government objective function. 

 

We endogenise the reference income x  in the following way. As in utility interdependence 

models, suppose it is a function of aggregate consumption as follows 

 

(26) ∫= fdzzxzx )()(φ  

 

where φ  are the weights given for each individual's consumption. Simple examples are where 

the sum ofφ :s is equal to one, when x is equal to aggregate consumption, or when 
n
1

=φ  

where n is the number of individuals, when x is equal to average consumption. With no loss 

in generality, here we concentrate on the former. 

 

Denoting the Lagrange multiplier related to the constraint in (26) as µ , the Langrangean with 

endogenous x  looks like: 

 

(27) [ ] [ ]{ } xydzfxxeyzfxxzxvL y µααµλ −−−−++−+= ∫ )(),()()(  

 

The first-order conditions for x and x are 

 

(28) 0=+−′+′ fffefv y µλα  

(29) 0=−′− µα yfe  

 

From (29), one notices that 0<′−= yfeαµ . Rewrite (28) as  

 

(30) 
v

g
v
e

′
−=+

1)(
'
'1 µλα  

 

Differentiation of (30) yields  
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(31) ge
v
v

v
veevgx ′′=






′

′′
−+

′

′′′−′′′
′ αλµα )(  

 

Rearranging of (31) gives 

 

(32) [ ] gegegex ev ′′=−−−′ αδαδαµλ ')'(  

 

Utilising the definitions vvv ′′′−=δ  and eee ′′′=δ , and the property that 'vge =′−− αµλ  

(from equation 28), one can write  

 

(33) 
ev gev

gex
δαδ

α

'−′

′′
=′  

and 

 

(34) 
ev gev

gexMTR
δαδ

α

'
11

−′

′′
−=′−=  

 

Now for the FOA to be valid, x must again be increasing in z. Assuming that 0>α , the 

numerator of (33) is positive. Using (29), the denominator is positive if )( µλδδ −′−>′ vv ev , 

i.e if risk aversion is sufficiently higher than loss aversion. Because of 0<µ , the condition is 

more stringent than in the case, derived in the previous section, where the reference income 

was exogenous. The intuition is that an increase in an individual's income now has a smaller 

social value, as it reduces the perceived utility by others.  

 

With some manipulation, one can then show that α  is indeed positive in this setting as well,8 

and the rest of the conditions stay the same. Therefore, the conditions for the FOA to be valid 

are the monotone like ratio property, the convexity of the distribution function, and that risk 

aversion is higher than a new threshold level that is dependent on loss aversion and the 

magnitude of envy. If the last condition is not satisfied, randomisation again occurs. 

 

                                                 
8 A crucial step for showing this is to demonstrate that a counterpart of equation (17) can be derived in the 
presence of µ  in the first-order condition (28). This is possible by substituting for µ  from (29) in (28). 
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For the marginal tax rate, the following result emerges: 

 

Proposition 5. When the reference income is a positive function of aggregate income, 

the optimal incentive structure for incomes below the reference point ( xx < )  is a 

randomised schedule ( xx ,0 ) if individuals' loss aversion outweighs the government's 

risk aversion. If the government's risk aversion outweighs individuals' loss-aversion or 

income is above the reference point ( xx > ), the FOA is valid and marginal tax rate 

tends to rise in comparison to the case with exogenous reference level. 

  

The first part of this follows from the invalidity of the FOA. The second part is due to the 

presence of 0<µ  in (34). By (29), It increases v′ , and therefore increases the marginal tax 

rat compared to the case where x  exogenous. The intuition is that it is optimal to reduce the 

incentives for exerting effort as higher effort and higher income have a negative externality by 

increasing the reference income of other individuals in the economy. The presence of µ  

therefore introduces a corrective (or externality-internalising) element to the marginal tax rate. 

 

A similar effect has been earlier found in utility interdependence models in the conventional 

income tax framework. The intuition obtained there therefore carries over to the present moral 

hazard case. It is interesting that while the general tax rules in the moral hazard and the 

adverse selection cases have little in common, the influence of utility interdependence on tax 

rates in both cases is similar. Note finally that the presence of utility interdependence does not 

change the incentive structure below the reference income, as the solution is not continuous. 

 

6. Conclusion 

 

This study analysed a model of optimal non-linear income taxation under income uncertainty, 

along the lines of Mirrlees (1974), from a non-welfarist point of view where the government's 

and the individuals' objective functions differ. It then interpreted the optimal income tax rule 

derived under non-welfarism assuming that the individuals' decision making follows prospect 

theory as developed by Kahneman and Tversky (1979). 
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As does most of the literature in the area, we focused on the so-called first-order approach for 

solving the optimisation problem. The conditions for the validity of this approach include a 

novel requirement in the non-welfarist case. And the marginal income tax rate was shown to 

be a combination of the standard, welfarist, rule, and a new term that corrects for the 

differences between individuals' and government's assessment of welfare. 

 

The non-welfarist tax rule becomes particularly relevant when agent's behaviour is interpreted 

using prospect theory instead of expected utility maximisation. It appeared that changing the 

underlying assumption of agent behaviour in moral hazard models has a surprisingly drastic 

influence on optimal compensation structure / marginal tax rates.  

 

In particular, one can show that the solution is non-monotonic under prospect theory. This 

follows from loss aversion, in other words convexity of the value function, implied by 

prospect theory, when the consumers are in fact risk-loving for a certain range of low 

incomes.  If consumers' loss aversion is sufficiently strong and it offsets the government's risk 

aversion, it becomes optimal to offer a randomised tax schedule for low incomes. A corollary 

of this finding is that the solution procedure commonly applied in this sort of models, the 

first-order approach, is not valid for the full range of income. If government's loss aversion 

outweighs individuals' risk aversion, the optimal solution is a function of both risk aversion 

and loss aversion. In this case the optimal marginal tax rate under prospect theory is likely to 

be smaller than in the conventional moral hazard models for small incomes. By this policy, 

the government attempts to enhance effort to reduce the possibility that individuals incur 

losses from low income. 

 

These findings have potentially important implications. For income taxation models, some of 

the results indicate a more likely case for progressive income taxation than one derived from 

conventional models. For economic research in general, the results of this paper show that it 

may become worthwhile assessing the robustness of other results, derived using expected 

utility maximisation, to assumptions that are more in line with findings in behavioural 

economics. 
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Appendix: Prospect theory welfarism 

 

The government's objective function is now the same as the individuals, i.e., e. The 

Lagrangean and the first-order condition with respect to x (pointwise optimisation) are as 

follows: 

 

(A.1) [ ]{ } ydzfxxeyzfxzxxeL y −−−+−+−= ∫ ααλ )(),()()(  

 

(A.2) 
e

g
′

=+
λ

α1  

 

Differentiate (A.2) again with respect to z and reorganise to obtain the shape of )(zx′ : 

 

(A.3) 
e

gex
′′

′′
−=′

λ

α
2)(  

 

To provide incentives for exerting effort, x should be increasing in z. Depending on whether 

realised income is above or below the reference income, x , three cases emerge. 

 

1) For income above the reference income, xx > , consumption x is indeed increasing in 

income z,  since the value function has similar properties to the standard case of Section 2. In 

other words, ve = . The first-order approach is valid (following the arguments of equations 

(5)-(9), and the marginal tax rate is given by (11).  

 

2) If xx = , the right-hand side of (A.3) is not defined. 

 

3) If the income is below the reference income, xx < , the right-hand side of (A.3), i.e. )(zx′ , 

is non-negative only if 0<α , since 0>′′e . Using a similar procedure as in Section 2, one 

can determine the sign of α  from 

 



 24

 (A.4) 
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e
e
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λ

α

λ

α

 

 

Equation (A.4) is a counterpart of earlier equation (8). Now e  and 'e  covary in the same 

directions for xx <  , we necessarily have 0≤α . However, the only case where the 

covariance is zero is when x is constant irrespective of income. But then the worker has no 

incentives to provide positive effort. Therefore, to induce effort, 0<α . 

 

However, if 0<α , a relaxation in the incentive constraint reduces the social welfare 

determined by (A.1). For a meaningful government optimisation problem this cannot hold. 

Therefore, one must conclude that the FOA is not valid for income below the reference level. 

As in prospect theory non-welfarism, the first-order approach is not a valid solution procedure 

for the entire range of realised income. 

 

The optimal incentive solution is again non-continuous. For incomes at or below the reference 

point ( xx ≤ ), it is a randomised schedule ( xx ,0 ). For income above the reference point 

( xx > ), the FOA is valid and the standard solution, given in equation (11), applies.  

 


