Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informatica

Coordenac¢ao de Pos-Graduacao em Ciéncia da Computacao

Leveraging the Entity Matching Performance
through Adaptive Indexing and Efficient

Parallelization

Demetrio Gomes Mestre

Tese submetida a Coordenagdo do Curso de Pés-Graduagdao em Ciéncia
da Computagdo da Universidade Federal de Campina Grande - Campus
I como parte dos requisitos necessarios para obtencao do grau de Doutor

em Ciéncia da Computacao.

Area de Concentracio: Ciéncia da Computagio

Linha de Pesquisa: Sistemas de Informagdo e Banco de Dados

Prof. Dr. Carlos Eduardo Santos Pires

(Orientador)

Campina Grande, Paraiba, Brasil

(©Demetrio Gomes Mestre, 23/05/2018

M586I

Mestre, Demetrio Gomes.

Leveraging the entity matching performance through adaptive indexing
and efficient parallelization / Demetrio Gomes Mestre. — Campina Grande,
2018.

155 1. :il. color.

Tese (Doutorado em Ciéncia da Computagcdo) — Universidade Federal
de Campina Grande, Centro de Engenharia Elétrica e Informética, 2017.
"Orientacdo: Prof. Dr. Carlos Eduardo Santos Pires".
Referéncias.

1. Entity Matching. 2. Métodos de Indexacéo de EM. 3. EM em Tempo
Real. 4. Computacéo Paralela. 5. Balanceamento de Carga. 6. MapReduce.
7. Spark. |. Pires, Carlos Eduardo Santos. Il. Titulo.

CDU 004(043)

FICHA CATALOGRAFICA ELABORADA PELO BIBLIOTECARIO GUSTAVO DINIZ DO NASCIMENTO CRB - 15/515

"LEVERAGING THE ENTITY MATCHING PERFORMANCE THROUGH ADAPTIVE
INDEXING AND EFFICIENT PARALLELIZATION"

DEMETRIO GOMES MESTRE

TESE APROVADA EM 27/03/2018

CARLOS EDUARDO SANTOS PIRES, Dr., UFCG
Orientador(a)

NAZARENO FERREIRA DE ANDRADE, Dr., UFCG
Examinador(a)

CLAUDIO DE SOUZA BAPTISTA, PhD., UFCG
Examinador(a)

DANIEL CARDOSO MORAES DE OLIVEIRA, Dr., UFF
Examinador(a)

ANA CAROLINA BRANDAO SALGADO, Dra., UFPE
Examinador(a)

CAMPINA GRANDE - PB

Resumo

Entity Matching (EM), ou seja, a tarefa de identificar entidades que se referem a um mesmo
objeto do mundo real, ¢ uma tarefa importante e dificil para a integracdo e limpeza de
fontes de dados. Uma das maiores dificuldades para a realizacdo desta tarefa, na era de
Big Data, € o tempo de execugdo elevado gerado pela natureza quadratica da execugdo da
tarefa. Para minimizar a carga de trabalho preservando a qualidade na detec¢do de entidades
similares, tanto para uma ou mais fontes de dados, foram propostos os chamados métodos de
indexacdo ou blocagem. Estes métodos particionam o conjunto de dados em subconjuntos
(blocos) de entidades potencialmente similares, rotulando-as com chaves de bloco, e
restringem a execugdo da tarefa de EM entre entidades pertencentes a0 mesmo bloco.
Apesar de promover uma diminuicao considerdvel no niimero de comparagdes realizadas, os
métodos de indexacao ainda podem gerar grandes quantidades de comparagdes, dependendo
do tamanho dos conjuntos de dados envolvidos e/ou do niimero de entidades por indice
(ou bloco). Assim, para reduzir ainda mais o tempo de execugdo, a tarefa de EM pode
ser realizada em paralelo com o uso de modelos de programagdo tais como MapReduce
e Spark. Contudo, a eficicia e a escalabilidade de abordagens baseadas nestes modelos
depende fortemente da designa¢do de dados feita da fase de map para a fase de reduce, para
o caso de MapReduce, e da designacdo de dados entre as operacdes de transformacdo, para
o caso de Spark. A robustez da estratégia de designacdo de dados € crucial para se alcangar
alta eficiéncia, ou seja, otimizacdo na manipulacdo de dados enviesados (conjuntos de
dados grandes que podem causar gargalos de memoria) e no balanceamento da distribuicao
da carga de trabalho entre os nds da infraestrutura distribuida. Assim, considerando que a
investigacdo de abordagens que promovam a execucao eficiente, em modo batch ou tempo
real, de métodos de indexagdo adaptativa de EM no contexto da computacio distribuida
ainda ndo foi contemplada na literatura, este trabalho consiste em propor um conjunto
de abordagens capaz de executar a indexacdo adaptativas de EM de forma eficiente, em
modo batch ou tempo real, utilizando os modelos programaticos MapReduce e Spark. O
desempenho das abordagens propostas € analisado em relagdo ao estado da arte utilizando
infraestruturas de cluster e fontes de dados reais. Os resultados mostram que as abordagens

propostas neste trabalho apresentam padrdes que evidenciam o aumento significativo de

desempenho da tarefa de EM distribuida promovendo, assim, uma reducido no tempo de

execucgdo total e a preservacdo da qualidade da deteccdo de pares de entidades similares.

Palavras-chave: Entity Matching, Métodos de indexacao de EM, EM em tempo real,

Computagdo Paralela, Balanceamento de Carga, MapReduce, Spark.

i

Abstract

Entity Matching (EM), i.e., the task of identifying all entities referring to the same real-
world object, is an important and difficult task for data sources integration and cleansing.
A major difficulty for this task performance, in the Big Data era, is the quadratic nature of
the task execution. To minimize the workload and still maintain high levels of matching
quality, for both single or multiple data sources, the indexing (blocking) methods were
proposed. Such methods work by partitioning the input data into blocks of similar entities,
according to an entity attribute, or a combination of them, commonly called “blocking key”,
and restricting the EM process to entities that share the same blocking key (i.e., belong to
the same block). In spite to promote a considerable decrease in the number of comparisons
executed, indexing methods can still generate large amounts of comparisons, depending
on the size of the data sources involved and/or the number of entities per index (or block).
Thus, to further minimize the execution time, the EM task can be performed in parallel
using programming models such as MapReduce and Spark. However, the effectiveness
and scalability of MapReduce and Spark-based implementations for data-intensive tasks
depend on the data assignment made from map to reduce tasks, in the case of MapReduce,
and the data assignment between the transformation operations, in the case of Spark. The
robustness of this assignment strategy is crucial to achieve skewed data handling (large
sets of data can cause memory bottlenecks) and balanced workload distribution among all
nodes of the distributed infrastructure. Thus, considering that studies about approaches that
perform the efficient execution of adaptive indexing EM methods, in batch or real-time
modes, in the context of parallel computing are an open gap according to the literature,
this work proposes a set of parallel approaches capable of performing efficient adaptive
indexing EM approaches using MapReduce and Spark in batch or real-time modes. The
proposed approaches are compared to state-of-the-art ones in terms of performance using
real cluster infrastructures and data sources. The results carried so far show evidences
that the performance of the proposed approaches is significantly increased, enabling a

decrease in the overall runtime while preserving the quality of similar entities detection.

il

Keywords: Entity Matching, EM Indexing, real-time EM, Parallel Computing, Load
Balancing, MapReduce, Spark.

v

Acknowledgment

To the almighty God, for His infinite mercy and to be the ever-present support in the difficult
moments.

To my advisor (Carlos Eduardo Pires), for all the patience during this long journey and
for the dedication of the countless meetings and revisions necessary to improve the work
developed.

To my parents Heleno Mestre and Maria Helena Mestre, my sisters Débora e Daniele,
my wife Palloma and my daugther Ester, for the support and encouragement.

To my friends at the Data Quality Laboratory (Andreza, Veruska, Dimas, Brasileiro and
Nobrega), for the countless contributions and discussions about my work, and for the com-
pany in various adventures during the Ph.D. journey.

To the BigSEA project and State University of Paraiba, for the financial incentive (essen-
tial to my research) and support.

To the teachers (who were indescribably competent in their teachings), employees of

COPIN and the Federal University of Campina Grande for the support.

Everyday life is like programming, I guess. If you love something you can put beauty into
it. (Donald Knuth)
Thus far the Lord has helped us. 1 Samuel 7:12

Contents

1 Introduction

1.1
1.2

1.3
1.4
1.5
1.6

2.1

22

2.3

Relevance L
Objectives o e e e
1.2.1 General Objective
1.2.2 General Hypothesis
1.2.3 Specific Objectives
Methodology e
Main Resultso
Research Indicators Achieved

Document Structure e e

Theoretical Foundation

Entity Matching
2.1.1 Indexing Methods or Blocking
2.1.2 Multi-pass Indexing Methods
2.1.3 Quality Measurement of EM Indexing Methods
Distributed Computing and the Entity Matching Task
22.1 MapReduce
2.2.2 EM Indexing Methods using MapReduce
2.2.3 Limitations of the MapReduce-based EM Indexing Methods
2.2.4 EM Indexing Methods using Spark
2.2.5 Limitations of the Spark-based EM Indexing Methods
Map-Matching
2.3.1 Matching Public Bus Trajectories

vi

O 0 N N9 O O o i B

CONTENTS vii

2.3.2 The Map-matching Bus Trajectories Problem 31

2.4 Final Considerations o 33

3 Related Work 34
3.1 Entity Matching 34

3.2 EMIndexing Methods, 35

3.3 MapReduce-based EM Indexing Methods 37

3.4 Spark-based EM Indexing Methods 40

3.5 Map-matching Bus Trajectories 41

3.6 Final Considerations 44

4 An Efficient MapReduce-based Approach for the Multi-pass Duplicate Count

Strategy 45
4.1 General Multi-pass MR-based DCS++ Workflow 46
4.1.1 First MR Job: Sorting and Selecting 48

4.1.2 Second MR Job: MultiPAM Partition Allocation Matrix Generation 49

4.1.3 Third MR Job: Multi-pass MR-DCS++ 54
42 Evaluation e 59
4.2.1 Robustness: Degree of skewness 60
4.2.2 Scalability: Number of Nodes Available 61
4.2.3 Matching Quality vs. Execution Time 65
4.3 Final Considerations 68

S Enhancing Entity Matching Efficiency through Adaptive Blocking and Spark-

based Parallelization 69
5.1 Blocking the Adaptive Windowing 71
5.1.1 Blocked Adaptive Windowing 71
5.1.2 Blocked Adaptive Windowing Variants 72
5.2 Spark-based Adaptive Windowing 78
5.2.1 Spark-based BAW (S-BAW) 78
5.3 Evaluation 82

5.3.1 Stand-alone Evaluation: BAW and its variants 83

CONTENTS viii

5.3.2 Parallel Evaluation: S-BAW and itsvariants 94
5.4 Final Considerationso e 100

6 Using Adaptive Indexing and Spark-based Parallelization to Streamline Bus

Trajectories Matching 102

6.1 Problem Definition 103

6.2 BULMAtechnique, 104
6.2.1 Blocking Strategies 105

6.2.2 Finding the Correct Shape 106

6.3 Parallelizing BULMA Technique 109
6.3.1 Spark-based BULMA (S-BULMA) 111

6.4 Real-Time BULMA (BULMA-RT). 113
6.4.1 Blocking Strategies o 114

6.4.2 Finding the Correct Shape in Real-time 115

6.5 Spark-based Real-Time BULMA 116

6.6 Evaluation 117
6.6.1 Map-matching Quality vs. Execution Time 119

6.6.2 Scalability: Number of Executors Available 123

6.6.3 Threatstovalidity 124

6.7 Final Considerations 125

7 Conclusions and Future Work 126
7.1 Conclusions e 126

7.2 Future Work 129

A Input Data Sources for the Map-matching Bus Trajectories Approaches 145
A.1 GTFSshapefiles 145
A.2 Bus Position Data (Vehicle Location) 145

B Toolkit for Parallel Entity Matching 147
B.1 Use-Case Overview it 147
B.2 Proposed Architecture 148

B.2.1 Web Application Tool for ParallelEM 148

CONTENTS ix
B.2.2 REST API for the Parallel EM Tool 149
B.2.3 Distributed Processing Ecosystem 149
B.24 EMService 150
B.2.5 Structures and Functions 151
B.2.6 System Graphic Unit Interfaces 153

List of Symbols

API - Application Programming Interface

AVL - Automatic Vehicle Location

BAW - Blocked Adaptive Windowing

BULMA - BUS Line MAtching

BULMA-RT- BUS Line MAtching Real-Time

DAG - Acyclic Directed Graph

DCS - Duplicate Count Strategy

DFS - Distributed File System

DNA - Deoxyribonucleic Acid

EM - Entity Matching

EMaasS - Entity Matching as a Service

FP - False-Positives

FN - False-Negatives

GPS - Global Positioning System

GTES - General Transit Feed Specification

HDFS - Hadoop Distributed File System

JSF - Java Server Faces

MR - MapReduce

MR-DCS++- MapReduce-based Duplicate Count Strategy
OBAW - Overlapped Blocked Adaptive Windowing
RDD - Resilient Distributed Datasets

REST - REpresentational State Transfer

ROBAW - Retrenched Overlapped Blocked Adaptive Windowing
SBM - Standard Blocking Method

xi

SNM - Sorted Neighborhood Method

SQL - Structured Query Language

S-BAW - Spark-based Blocked Adaptive Windowing

S-BULMA - Spark-based BUS Line MAtching

S-BULMA-RT- Spark-based BUS Line MAtching Real-Time

S-DCS++ - Spark-based Duplicate Count Strategy

S-OBAVW - Spark-based Overlapped Blocked Adaptive Windowing

S-ROBAW - Spark-based Retrenched Overlapped Blocked Adaptive Windowing
TN - True-Negatives

TP - True-Positives

XML - eXtensible Markup Language

List of Figures

2.1
2.2

2.3
24

2.5

2.6

4.1
4.2

4.3

4.4
45
4.6
4.7

Execution example of the Standard Blocking Method. 15
Execution example of the Sorted Neighborhood method with fixed window
SIZEW =3, e e 16
Execution example of the Sorted Blocks method using the window size w = 3. 18
Execution example of the DCS++ method with initial adaptive window size
Winitial = O+« « « v o e e e e e e e e e e e e 19
A dataflow example of a MR-based SBM, denoted as Basic (n = 9 input
entities, m = 3 map tasks and » = 2 reduce tasks). 25
Example of a route containing two shapes representing two predefined tra-
jectories. Each of the trajectories starts at a different point, and thus leads to

a different sequence of bus stops to be visited by the bus on the route. . . . 32

Overview of the multi-pass MR-DCS++ matching process workflow. 47
Example dataflow for computation of the entity sorting with two window

PASSES. « v e 51
Example dataflow for computation of the Partition Allocation Matrix (PAM)

fortwo window passes. e 54
Example dataflow for the Multi-pass MR-DCS++ strategy with w;p;tia = 3. 58
Execution times for different data skews using w = 1000 (n=20, m=40, r=40). 61
Execution times and speedup for both approaches using DS1 (w =100). . . 62
Execution times and speedup for both approaches using DS2 (w =1000). . 63

xii

LIST OF FIGURES xiii

4.8 Comparison of the approaches for multi-pass SN using MR-DCS++ (w =

1000) for DS2 with n = 20 nodes. p x single-pass MR-DCS++ [62] per-

forms single-pass MR-DCS++ p times whereas 1 x multi-pass MR-DCS++
performs multi-pass MR-DCS++ one time. 64

4.9 Execution times for both multi-pass approaches using DS2 (w = 1000) vary-
ing the number of nodes and passes. 66

4.10 Comparison of quality and execution time for multi-pass RepSN and MR-
DCS++ with one and two passes using different window sizes. 67

5.1 Execution example of the BAW and OBAW methods with adaptive initial
WINAOW SIZE Winitial = S « « « « + o e e e e e e e e e e e e 73

5.2 Execution example of the Retrenched BAW method with adaptive initial
WINAOW SIZE€ Winitial = Dv « « « v v e e e e e e e e e e e e 77
5.3 Overview of the S-BAW matching process workflow. 79
5.4 Example of dataflow for the S-BAW strategy with w;,i1ia0 =3. 81

5.5 Best similarity threshold study for DCS++ varying the similarity threshold
valueusing DS1.o 84
5.6 Recall collected for DS1 varying the initial window size. 86
5.7 Number of comparisons for DS1 varying the initial window size. 86
5.8 Reduction ratio for DS1 varying the initial window size. 87
5.9 F-Measure collected for DS1 varying the initial window size. 89
5.10 Number of comparisons performed for DS1 varying the window size. 89
5.11 Reduction ratio for DS1 varying the initial window size. 90

5.12 Execution results for two passes involving the F-Measure collected for DS1
and a perfect classifier varying the initial window size values. 91

5.13 Execution results for two passes involving the number of comparisons per-
formed for DS1 and a perfect classifier varying the initial window size values. 91

5.14 Execution results for two passes using the perfect classifier for the reduction
ratio varying the initial window size values. 92

5.15 Execution results for two passes involving the F-Measure collected for DS1
and an imperfect classifier varying the initial window size values. 93

LIST OF FIGURES xiv
5.16 Execution results for two passes involving the number of comparisons per-
formed for DS1 and an imperfect classifier varying the initial window size
values. 93
5.17 Execution results for two passes using the imperfect classifier for the reduc-
tion ratio varying the initial window size values. 94
5.18 Execution times for different data skews using w = 1000 (n=20). 96
5.19 Execution times and speedup of the approaches using DS3 (w =1000) . . . 97
5.20 Comparison of quality and execution time for the approaches using different
WINdOW SIZES. o o e e e e 98
6.1 Sequence alignment of bus trajectories. 105
6.2 Example of BULMA execution for route 022 containing three shapes. 108
6.3 General workflow of S-BULMA. 112
6.4 General workflow of Spark Streaming-based real-time BULMA. 118
6.5 Sensibility analysis of ¢psg.o 120
6.6 Comparative performance of all bus tripsin DS-GPS 121
6.7 Comparative performance considering only the noisy, missing and sparse bus
trips in DS-GPS datasource 122
6.8 Execution time of each technique varying the number of days processed. . . 123
6.9 Execution time and speedup for BULMA. 124
B.1 Parallel EM toolkit architecture. 150
B.2 Listing the filesofthe HDFS. 153
B.3 Uploading a JAR library containing a Spark-based EM program. 154
B.4 Submitting the execution of the Spark-based EM program. 154
B.5 Running the Spark-based EM program. 155
B.6 Showing the output of the Spark-based EM program. 155

List of Tables

3.1
3.2
33

6.1
6.2

Al
A2

Comparative table of indexing methods 37
Comparative table of windowing models 40
Comparative table of Map-matching algorithms 43
BULMA OutputData 110
DS-GPS statistics 119
GTFSshapefiles 146
Bus PositionData o 146

XV

Chapter 1

Introduction

In recent years, both academy and industry have attracted interest in efficient techniques to
handle the problems brought by the complex and runtime costly data-intensive tasks when the
volume of data is large [14]. Due to the impressive increasing of data generation (Big Data
era), one of the main interests is the search for innovative techniques that allow for efficient
processing, analyzing and mining of data sources. One of the most intriguing tasks in this
scenario, which has been recognized to be of increasing importance in many application
domains, is the Entity Matching [67].

Entity Matching (EM), also known as Entity Resolution, Deduplication, Record Linkage,
or Reference Reconciliation [52], is the task of identifying entities referring to the same real-
world object. Matching records that refer to the same entity from several data sources is
an important mechanism to integrate/combine information and improve data quality, as well
as to enrich data to enable a more effective data analysis. Thus, the task is a fundamental
problem in every information integration and data cleansing application [49], e.g., to find
duplicate publication titles or to match authors in Digital Libraries data sources. It is also
essential for other types of applications, such as web pages deduplication [14], plagiarism
detection [22], and click fraud detection [65]. However, together with its importance comes
its difficulties. In practice, the EM execution is high costly when the data sources involved
are too large. For example, the matching of two data sources, each one containing one
million entities, would result in about one trillion of possible entity pair comparisons.

There are two typical situations when we need to resolve entities in data sources. The

first refers to the task of finding similar entities in a single data source, and the second one

refers to the special case of finding similar entities available in two or more data sources [52].
Both situations share two major challenges that makes the EM task execution computational
costly, especially in the Big Data era.

The first challenge relies on the fact that each entity (from the same or different data
sources) needs to be compared with all others, i.e., to calculate the entity similarity based
on the Cartesian product (naive'). The application of the Cartesian product implies the task
execution time to reach an asymptotic complexity O(n?), which makes the EM task ineffi-
cient when dealing with large data sources (with sizes in the order of millions of entities).
This generation condition of data-intensive processing, characterized as a batch processing,
is indicated when the EM must be applied over data sources whose data does not have a dy-
namic nature?. When the data source has a dynamic nature, such as sensor streaming storage,
the second challenge, related to the high frequency of modifications in large data sources,
emerges. Regarding data sources whose periodicity to process new data is small, perform the
EM task within a short time interval, and still maintain a high EM quality (matching rate), is
rather challenging [75].

To address the first challenge, which means to minimize the workload caused by the
Cartesian product execution and still maintain high levels of matching quality, a commonly
used solution is to reduce the search space by applying indexing (blocking) techniques [14,
61,62,93]. Such methods work by partitioning the input data into blocks of similar entities,
according to an entity attribute, or a combination of them, commonly called “blocking key”,
and restricting the EM process to entities that share the same blocking key (i.e., belong to
the same block). For instance, it is sufficient to compare entities of the same publication
year when matching published articles. Among the existing indexing methods in the state
of the art, the methods that have adaptive characteristics are the most promising in terms of
performance. Such methods have the ability to adapt (resize) the entity search space based
on the detection rate of similar entities. Thus, the adaptive indexing methods promote the
decrease of the amount of comparisons made unnecessarily and the increase of the quality

of the EM. Adaptive indexing methods are part of the study object of this thesis and will be

'Naive approaches are those that compute the Cartesian product in a data source
2A data source is considered dynamic when modifications, i.e., insertions, deletes or updates, occur period-

ically in the data

detailed in Chapter 2.

In spite to promote a considerable decrease in the number of comparisons executed, in-
dexing methods can still generate large amounts of comparisons, depending on the size of
the data sources involved and/or the number of entities per index (or block). This condition
of data-intensive processing (batch) is not indicated when the EM needs to be applied over
dynamic data sources. Due to the high processing frequency of new entities in large data
sources, it is impractical to process the EM task in batch whenever modifications are applied
in the data sources. Thus, the second challenge is a demand for EM real-time strategies ca-
pable of promoting the rapid updating of the EM results as new data arrives. These strategies
are known in the literature as strategies of real-time EM or real-time record linkage [75].
Their purpose is to promote a considerable reduction in the EM execution time in relation
to the execution time required to process the EM in batch and also to achieve EM results
similar to those achieved when the EM processing is applied in batch.

Nevertheless, even using indexing methods or real-time EM strategies, EM remains a
heavy task to be processed for large volumes of data [50]. In particular, in the case of
real-time EM, if the data streaming is large, the processing of the EM task may still be
computationally costly [96]. Thus, to mitigate these difficulties, distributed computing has
become an important resource for efficiently processing data and computationally intensive
application tasks in the era of Big Data [50]. Extensive powerful distributed and parallel
hardware and service infrastructures capable of processing millions of these tasks are avail-
able around the world. Aiming at making efficient use of such cluster environments, many
programming models have been created to deal with a vast amount of data. In this context,
MapReduce (MR) [23] and Spark [104], programming models for parallel processing on
cluster infrastructures, have given to the data management community a powerful "chain-
saw" to tackle Big Data problems. Its simplicity, flexibility, fault tolerance and capability for
being a scalable parallel data-processing makes MR and Spark excellent resources for the
efficient workload distribution of data-intensive tasks.

Therefore, the EM task in batch and real-time are interesting problems to be treated
with distributed solutions. With the usage of several map and reduce tasks through the MR
and Spark models, the EM task execution in batch or real-time can be executed in parallel

efficiently. More details about the usage of the MR and Spark models to address the EM

1.1 Relevance 4

problems will also be presented in Chapter 2.

1.1 Relevance

It is a fact that data is among the most important assets of an organization. With the increase
of the data volume and improvement of the information systems capabilities to collect data
from various sources, organizations are gathering large amounts of data. However, these
commonly distributed and/or heterogeneous data sources often receive dirty data (i.e., in-
accurate/incomplete/erroneous). Thus, data quality problems related to redundant data are
increasingly plentiful [14]. As mentioned previously, EM is a task of high computational
complexity, especially when handling large volumes of data. Excessive redundancy de-
creases data reliability and usability, causes unnecessary spending, customer dissatisfaction,
produces poor performance indicators, and inhibits understanding of data and its values [67].
That is why EM is a problem studied over 40 years and still remains a very active research
topic [3,14,30,31,34,35,56,67,95,97].

Lately, huge EM research advances in the field of Computer Science have been seen, es-
pecially in areas such as Data Mining, Machine Learning, Information Retrieval, Database,
and Data Warehousing [31,35]. As the volume of data sources maintained by the organiza-
tions grows and the data understanding and its values are recognized as one of the greatest
difficulties in the processing of such data sources, the task of identifying similar entities
in these data sources, heterogeneous or not, has become more pervasive than ever before.
Several EM solutions have been proposed powered by sophisticated approaches involving
machine learning, natural language, and graphs processing [14,36, 68,74, 107]. These tech-
niques have improved both the quality and execution time of detecting similarities in large
data sources containing millions of entities.

Despite the advances, due to the enormous proportions that the data sources have
achieved recently, the techniques (especially indexing techniques) elaborated during these
40 years (without taking into account parallelization mechanisms) have become inefficient
in terms of execution time [30,47]. In the current context, it is no longer interesting to have
an EM process that runs for several days [16]. To overcome this inefficiency, the scientific

community has emphasized the use of distributed computing to process EM tasks by propos-

1.2 Objectives 5

ing distributed approaches that reflect the same behavior of already consolidated serialized
approaches [50,61]).

Thus, in order to enable the already consolidated EM approaches to execute without de-
lay over data sources sized in the order of millions of entities, it is notorious the demands
for studies about the EM task performance gain, in terms of execution time. This notoriety
is among the reasons why this doctoral thesis is partially included in the EUBra-BIGSEA
project. This project is a research and innovation action funded by the European Commis-
sion under the co-operative program Horizon 2020 (grant agreement No. 690116). EUBra-
BIGSEA is the result of the 3rd BR-EU Coordinated Call for Information and Communica-
tion Technologies (ICT), announced by the Brazilian Ministry of Science, Technology and
Innovation (MCTT).

In the context of the BIGSEA project, the smart city applications developed during
the project faced several problems regarding the integration of the transportation open data
sources. Several predictive algorithms embedded in these applications needed high-quality
data sources linkage of the historical geospatio-temporal information of public bus trans-
portation to mitigate the built-in margin of the predictive models error and thus provide
high-quality bus trip/time predictions. Regardless of recent advances in the availability and
formats for sharing transport data between transportation companies and the government
or citizens, the formats and inconsistencies commonly prevalent in historical transport data
pose a number of EM challenges for performing bus trajectories matching in order to enable
a high-quality data sources integration of the historical geospatio-temporal information of

public bus transportation.

1.2 Objectives

In this section, the general objective and specific objectives of this work are presented.

1.2.1 General Objective

In view of the existing demands for new EM approaches in parallel, the scope of this work
covers improving the performance in terms of execution time by preserving with small losses

the quality levels of EM results in the context of structured and dynamic large data sources.

1.2 Objectives 6

1.2.2 General Hypothesis

Considering that the investigation of efficient EM adaptive indexing methods and real-time
EM approaches in the context of distributed computing have not yet been contemplated in
the literature, the general objective of this doctoral thesis is to propose a set of approaches
capable of performing efficient adaptive indexing and real-time EM approaches using the
programmatic models MapReduce and Spark. Thus, the general hypothesis of the work is
to evaluate if the proposition of new approaches for adaptive indexing of the EM task and
real-time EM in parallel are able to reduce significantly the execution time of the large-scale

EM task and maintain with small losses the quality levels of EM results.

1.2.3 Specific Objectives

Considering the proposed general objective, this doctoral thesis has the following specific

objectives:

1. To model, prototype and evaluate efficient parallel EM indexing approaches consider-
ing the parallelization of the Duplicate Count Strategy (DCS++) [28], an state-of-the-

art adaptive indexing method;

2. To model, prototype and evaluate new methods for EM adaptive indexing, aiming at
reducing even more the number of unnecessary comparisons, as well as approaches

for the efficient parallelization of these new methods;

3. To model, prototype and evaluate a new method of EM indexing, in the context of
bus trajectories matching (batch mode), as well as the approach for the efficient paral-

lelization of this method;

4. To model, prototype and evaluate a new approach of EM adaptive indexing, in the
context of real-time bus trajectories matching, as well as the approach for the efficient

parallelization of this method.

1.3 Methodology 7

1.3 Methodology

Aiming at proposing solutions to the EM problems and challenges investigated in this work,
a methodology has been used that divided doctoral research into micro research projects.
For each research project, a preliminary planning has been carried out which specifies a de-
tailed description and a schedule for the following activities: 1) theoretical foundation and
relevance justification of the problem or the bibliographic survey area considered; ii) reading
of books, articles and technical reports related to the problem considered; iii) proposing new
approaches and/or methodologies to address the challenges of EM considered; iv) defini-
tion of hypothesis and planning of an experimental design aiming to evaluate the research
hypothesis considered; v) formatting and discussion of the results obtained in the previous
activity; vi) listing the lessons learned and conclusions from conducting the research; and
vii) definition of future work.

In this work, new EM adaptive indexing methods and efficient parallel approaches of
these new methods were proposed using the well-known programmatic models MapReduce
and Spark. More specifically, we accomplished the following objectives: 1) Investigate solu-
tions for EM in parallel; ii) Propose an efficient EM approach using MapReduce based on a
well-known state-or-the-art adaptive indexing method; iii) Propose an EM adaptive indexing
method that combines the traditional blocking method with the adaptive indexing method,
as well as the approach for the efficient Spark-based parallelization of this new method; iv)
Propose an EM indexing method, in the context of batch bus trajectories matching, as well as
the approach for the efficient parallelization of this new method; v) Propose an EM adaptive
indexing, in the context of real-time bus trajectories matching, as well as the approach for

the efficient parallelization of this method.

1.4 Main Results

The main result of this work is the propositions of MapReduce and Spark-based EM adaptive
indexing approaches, as well as the Spark streaming-based real-time EM approach since the
efficient parallelization of the EM adaptive indexing methods and real-time EM approach

are open questions in literature. In this context, different approaches to reduce the execution

1.5 Research Indicators Achieved 8

time of the parallel EM approaches executed in cluster environments have been investigated.

Therefore, it was proposed:

1. An efficient EM approach using MapReduce based on a well-known state-or-the-art

adaptive indexing method;

2. An EM adaptive indexing method that combines the traditional blocking method with
the adaptive indexing method, as well as the approach for the efficient Spark-based

parallelization of these new method;

3. An EM indexing method, in the context of batch bus trajectories matching, as well as

the Spark approach for the efficient parallelization of this new method;

4. An EM adaptive indexing method, in the context of real-time bus trajectories matching,
as well as the Spark streaming approach for the efficient parallelization of this new

method.

Experimental evaluations were carried out to evaluate the efficacy and efficiency of the
approaches and methods proposed in the work. Such evaluations indicate, in short, that
the new approaches present solutions that significantly decrease the execution time of the
EM task and achieve efficacy results equivalent to those achieved by competing methods.
In addition, the parallel approaches proposed in this thesis were added as the main native

library of the parallel Entity Matching tool described in Appendix B.

1.5 Research Indicators Achieved
So far, the following research indicators have been achieved:

1. Acceptance of the article "Estimating Inefficiency in Bus Trip Choices from a User
Perspective with Schedule, Positioning and Ticketing Data" [9] at the IEEE Transac-

tions on Intelligent Transportation Systems (2018).

2. Publication of the article "An Efficient Spark-based Adaptive Windowing for Entity
Matching" [64] at the Journal of Systems and Software (2017).

1.6 Document Structure 9

3. Publication of the article "Towards the Efficient Parallelization of Multi-pass Adaptive
Blocking for Entity Matching" [63] at the Journal of Parallel and Distributed Comput-
ing (2017).

4. Publication and presentation of the paper "Adaptive Sorted Neighborhood Blocking
for Entity Matching with MapReduce" [62] in the Proc. of 30th ACM/SIGAPP Sym-
posium on Applied Computing (2015), Salamanca, Spain.

1.6 Document Structure
The remainder of this document is organized as follows:

1. Chapter 2 - Theoretical Foundation: describes the topics for promoting the theoret-
ical basis for understanding the work presented in this document. The text describes
important concepts related to EM, such as indexing methods and real-time EM. In ad-
dition, the main concepts and definitions related to MapReduce and Spark-based EM

indexing methods are presented.

2. Chapter 3 - Related Work: presents a bibliographical review regarding the main re-
lated work found in the literature and their respective proposals. Essentially, the works
are divided into five groups: works describing Entity Matching and its applications,
studies that investigate EM indexing methods, works involving MapReduce-based EM
indexing methods, works involving Spark-based EM indexing methods and works that

deal with the execution of the Bus Trajectories EM task.

3. Chapter 4 - An Efficient MapReduce-based Approach for the Multi-pass Dupli-
cate Count Strategy: presents an efficient MapReduce-based approaches for a well-

known state-of-the-art EM adaptive indexing method.

4. Chapter 5 - Enhancing Entity Matching Efficiency through Adaptive Blocking
and Spark-based Parallelization: introduces the proposition of a new class of adap-
tive indexing methods that combines the following methods: traditional blocking and

Sorted Neighborhood Adaptive in order to reduce the number of unnecessary compar-

1.6 Document Structure 10

isons. In addition, it presents efficient Spark-based approaches for the new class of

adaptive indexing methods.

5. Chapter 6 - An Effective Unsupervised Spark-based Map-Matching Technique to
Identify Bus Trajectories: introduces the proposition of a new EM adaptive indexing
method able to identify bus trajectories. In addition, it presents efficient Spark-based
approaches for this new EM adaptive indexing method which can be performed in

batch or real-time modes.

6. Chapter 7 - Conclusions: presents the conclusions of the developed work and the

main perspectives of the future work.

Chapter 2

Theoretical Foundation

In this chapter, we present the necessary topics for understanding our proposals. The ap-
proaches described in this document belong to the context where Entity Matching (EM) is
performed over cluster computing environments. Therefore, a description of the EM and dis-
tributed programming models (i.e., MapReduce and Spark) used in this work is necessary.
The aim is to present their definitions and how EM can benefit from these models.

Topics are organized into three sections. Section 2.1 presents and formalizes the EM task
and also describes the main EM indexing methods. Section 2.2 presents the most popular
parallel programming models, known as MapReduce and Spark. In addition, it describes how
the EM task can benefit from the usage of the MapReduce and Spark models and describes
the limitations that must be taken into account when modeling EM approaches based on
these models. Section 2.3 presents the Map-Matching problem and its notation to deal with

bus trajectories matching.

2.1 Entity Matching

As mentioned in Chapter 1, Entity Matching (EM), also known as Entity Resolution, Dedu-
plication, Record Linkage, or Reference Reconciliation [52], is the task of identifying en-
tities referring to the same real-world object. It can be applied to both single and multiple
distributed (including heterogeneous) data sources. Entities considered in these data sources
commonly refer to people, such as patients, customers or tourists, but may also refer to

publications or citations, products, business, among others. For example, in master data

11

2.1 Entity Matching 12

management applications', a system needs to identify that the names "Jon S. Stark", "Stark,
Jon" and "Jon Snow Stark" are potentially referring to the same person.
Before we formally define the Entity Matching problem, two aspects that are part of the

EM task need to be clarified. These are: entity types and similarity functions.

Entity Types

The entity type refers to the set of elements (entities) that present the same semantic structure,
e.g., a product or an employee, similar to the concept of object. The methods for Entity
Matching in relational data sources assume that each tuple represents an entity and the values
of its attributes describe it. Thus, similar values between two tuples indicate that the tuples
are (potentially) duplicates. Unlike the EM methods used in relational data sources, the EM
methods used for complex data structures and XML data are much more complex, due to the
semi-structured and hierarchical nature of data representation [83]. The problem relies on
the difficulty of determining when a child element represents part of an entity’s description
(as with relational attributes) or if it represents a related object (as it happens when there is a
relationship with another table). In addition, elements describing the same type of entity are

not necessarily structured in the same way.

Similarity Functions

Entity Matching requires a procedure to determine whether two entities are similar enough
to represent the same object in the real world. A similarity function, or simply a matcher,
specifies how the similarity between two entities is computed. The authors of [52] distinguish

two types of matchers: attribute value matchers [12,20] and context matchers [13] [7].

e Attribute value matchers use a similarity function (or distance) in the values of a
pair (comparison) of the corresponding attributes or the concatenation attributes of
the input data sources. Typically, it returns values between 0 and 1 indicating the
degree of similarity (or distance) between two entities. The most common functions
of this matcher type are the token-based similarity (e.g., the Jaccard coefficient, cosine

similarity and similarity using g-grams), edit distance-based similarity (e.g., Jaro and

"'A set of tools that consistently define and manage non-transactional entities (master data) in an organization

2.1 Entity Matching 13

Jaro-Winkler distance) and hybrids (e.g., the extended Jaccard similarity, the Monge-

Elkan measure and the simple TF-IDF measure) [21].

e Context matchers consider the context or semantic relationships between different
entities for the similarity computation. For example, to know whether a publication is
similar to another whose first author (of the two publications) has the same name, it is

necessary to analyze the contextual information such as its affiliations or co-authors.

Thus, the Entity Matching problem, to any approach or tool that has to solve it, can be
defined as follows:

Formal Definition: Given two sets of entities A € R and B € S of comparable en-
tities from data sources R and S, the Entity Matching (EM) problem is to identify all
correspondences between entities in A x B representing the same real-world object. The
definition includes the special case of finding pairs of equivalent entities within a sin-
gle source (A = B,R = S). Thus, the relation of comparable entities denotes that
Rg = (ay,as,...,a,), where each a; corresponds to a comparable attribute of the entity.
An entity belonging to relation £ has an assigned value for each attribute. This means that
an entry source S contains a finite number of entity sets e = [(a1, v1), (ag, v2), ..., (an, v,)].
The similarity detection result is represented by a set of correspondences in which each
correspondence ¢ = (e;, €;, s) correlates two entities e; and e;, from the sources R and S
followed by a similarity value s € [0, 1] which indicates the similarity degree between the
two entities.

The formal definition presents in its description one of the biggest EM problems: the
identification of all entities referring to the same real-world object in A x B. The problem
relies on the heaviness of the EM task execution since there is a need for the application of
similarity functions over the Cartesian product of all entities from the sets A and B. The
quadratic complexity O(n?), resulting from this process, indicates that the task is highly
ineffective when the number of entities from the sets A and B reaches a size in the order of
millions [53].

Nevertheless, recent works have shown that both academy and industry are no longer
interested in spending days executing the EM process [16] due to the financial cost associated

with the waiting time, even if the data sources involved in the process are voluminous. For

2.1 Entity Matching 14

instance, in the case where a data source presents a high number of redundant entities for
a long period, the lack of confidence and usability of such data and, consequently, clients
dissatisfaction will increase. Therefore, when we deal with EM over large data sources, the
usage of EM indexing methods becomes an essential strategy to reduce the search space of

entities and, thus, leverage the EM task execution.

2.1.1 Indexing Methods or Blocking

To avoid the prohibitively expensive workload caused by the Cartesian product execution
and still maintain the matching quality, a straightforward manner is to reduce the search
space by applying indexing (blocking) techniques [14, 61, 62,93]. Such methods work by
partitioning the input data into blocks of similar entities, according to an entity attribute, or
a combination of them, commonly called “blocking key”, and restricting the EM process to
entities that share the same blocking key (i.e., belong to the same block). For instance, it is
sufficient to compare entities of the same publication year when matching published articles.

A complete survey [15] performed by Christen provides a detailed discussion of six in-
dexing methods (with a total of 12 variations of them). The work also describes a theoretical
analysis of the methods’ complexity and an empirical evaluation of them over a variety of
both real and synthetic data sets. The empirical investigation showed that the Standard (tra-
ditional) Blocking [5], (fixed) Sorted Neighborhood [39], Sorted Blocks [26] and Adaptive
Windowing [100] achieved the highest duplicate detection rates (F-Measure) for a vast num-
ber of parameter settings. For this reason, these indexing methods have been considered in

this work.

Standard Blocking Method

The Standard Blocking Method (SBM) uses a blocking key to partition the set of entities
into disjoint partitions (or blocks) [14]. Thereafter, the matching technique is applied over
the Cartesian product of all entities belonging to each disjoint block. A blocking key can also
be composed of more than one attribute, e.g., the publication year attribute can be combined
with the publication authors attribute.

Thus, given one or more data sources, with n entities, which must be submitted to an

2.1 Entity Matching 15

EM task, the SBM will generate b blocks. Supposing that all blocks generated have the
same number of entities n/b, the total number of comparisons between entity pairs will be
O(n?/b) [5]. Obviously, this is a generalization to calculate the complexity of the SBM in
the best case of distribution of entities (among the blocks). However, this assumption rarely
holds when dealing with real data sources because the number of entities in each block can
vary. For example, in the context of movies, where the blocking key is the year of production,
it is likely that the number of movies produced in the year 1970 is less than the number of
movie produced in 2016. Thus, the number of entity comparisons in the block of 2016 will
be greater than the number of comparisons of entities in the block 1970. This difference in
the block sizes may lead the problem of data skewness [49], which will be better explained
in Section 2.2.3.

Publication Title l

Camera Phone Bans Exp.

Publication Title l_

Cam| Camera Phone Bans Exp. I 10 comparisons

Periodic load balancing Cam| Camera model for recip.

Teaching Social Simul. Per | Periodic load balancing

Per | Periodic load balancing
Periodic load balancing Per
Perturbations of Shifts. Per | Perzodic load balancing

BlockKey Generation

Teams of pushdown aut. Tea | Teaching Social Simul.

B D
C B
Camera model for recip. D * E
E Perturbations of Shifts. F
F H
G C
H G

Perzodic load balancing Tea | Teams of pushdown aut.

Teams of pushdown aut. | Tea | Teams of pushdown aut. | |

Figure 2.1: Execution example of the Standard Blocking Method.

For example, Figure 2.1 shows that the input set PublicationT'itle consists of n =9
entities (from Camera Phone Bans Exp. to Teams of pushdown aut.) represented by letters
L (from A to I). All the entities are grouped according to their blocking key K (Cam, Per,
or T'ea) which in turn is composed by the first three letters of the publication title. Note that
the pairs of entity comparisons generated correspond to the Cartesian product of all entities
sharing the same blocking key. Thus, the number of comparisons performed is 10 (1 for
block C'am, 6 for block Per, and 3 for block T'ea). Assuming an uniform distribution of
entities per block, the approximate number of comparisons generated by SBM is % . (”7: —n),
where b is the number of blocks. The running example presented in this subsection will be

used throughout Chapter 2.

2.1 Entity Matching 16

Note that, even using EM blocking strategies, EM remains a heavy task when processed
over large volumes of data [50]. If the data is very large, even blocking the set of entities into
disjoint partitions, such partitions may also have a large volume and the EM task will still be
computationally costly [96]. In this case, distributed computing is an important resource for
efficiently processing data and computationally intensive application tasks in the era of Big

Data [50].

Fixed windowing: Sorted Neighborhood Method

Sorted Neighborhood Method (SNM) [38] is one of the most popular indexing methods. It
sorts all entities using an appropriate blocking key, e.g., the first three letters of the entity
name, and only compares entities within a predefined (and fixed) distance window w. SNM
thus reduces the execution complexity to O(n - w) for the actual matching. Figure 2.2 shows
an execution example of SNM for a window size w = 3. Initially, the window includes
the first three entities (A, D, B) and generates three pairs of comparisons [(A — D), (A —
B), (D — B)]. After that, the window is slided down (one entity) to cover the entities D,
B, E and two more pairs of comparisons are generated [(D — E), (B — E)|. The sliding
process is repeated until the window reaches the last three entities (C, G, I). In this process,
the number of comparisons generated is (n — w/2) - (w — 1) which results in 15 comparisons

for the example.

Publication Title .

Camera Phone Bans Exp.

folruiintie | TR

Cam] Camera Phone Bans Exp. I 15 comparlsons

Figure 2.2: Execution example of the Sorted Neighborhood method with fixed window size

Periodic load balancing Cam| Camera model for recip.

Teaching Social Simul. Per | Periodic load balancing

Per | Periodic load balancing
Per | Perturbations of Shifts.

Periodic load balancing

Perturbations of Shifts. Per | Perzodic load balancing

Teams of pushdown aut. Tea | Teaching Social Simul.

[N KN == Bl Rull B2 iw)

B

C
Camera model for recip. D

—

E

G

H

Perzodic load balancing Tea | Teams of pushdown aut.

>
&
-7
>
a
=
o
wv
+
c
=
L
vl
T
o
=
o
(L
>
&
b
=
=]
o
—
o

Teams of pushdown aut. | Tea | Teams of pushdown aut. | |

w = 3.

SNM presents a critical performance disadvantage due to the fixed and difficult to config-

2.1 Entity Matching 17

ure window size: if it is selected too small, some duplicates might be missed. For example,
in Figure 2.2, the similar pair B — H is not detected. On the other hand, a too large window
leads to unnecessary comparisons. For instance, in Figure 2.2, the computation of the pair
A — B is unnecessary. Note that if detection quality is more relevant than the execution time,
the ideal window size should be equal to the size of the largest duplicate sequence in the data
set. Thus, it is common to request the intervention of a data specialist to solve this tradeoff

(small/large window size).

Sorted Blocks Method

The Sorted Blocks [26] rises as an attempt to combine the best features of the Standard
Blocking and the fixed Sorted Neighborhood methods. It consists in sorting the entities
based on a sorting key, but instead of sliding a fixed size window over all entities, blocks are
created and the entities are compared within these blocks. In other words, it compares each
next entity with the rest of the entities of the current partition aiming to avoid the Cartesian
product of all entities in the current partition.

The Sorted Blocks has two variants. The first one enables fixing the maximum partition
size. This means that a new partition is created every time the maximum partition size is
reached. By doing this, the variant prevents too large blocks and allows all entities to be
compared with its predecessors and successors according to the sorting order. The second
variant, i.e., Sorted Blocks using window, uses the maximum partition size as the window
size to slide a fixed window over the entities within a partition. The first element in the
current window is removed every time the maximum number of entities within one partition
is reached (end of the partition). This second variant is similar to the (fixed) Sorted Neigh-
borhood Method. In the evaluation experiments presented in [26], the Sorted Blocks using
window method presented the most promising performance result.

Figure 2.3 shows an execution example of Sorted Blocks using a window size w =3 and a
max. partition size equals to 4 (the size of largest block - Per). Initially, the window includes
the first three entities (A, D, B) and generates two pairs of comparisons [(A — D), (D — B)].
After that, the window is slided down to the next partition (or block) since the end of the
actual partition is reached. The next window covers entities B, £, F' and two more pairs

of comparisons are generated [(B — E), (B — F')|. The sliding process is repeated until the

2.1 Entity Matching 18

Publication Title Publication Title

Camera Phone Bans Exp. Cam| Camera Phone Bans Exp.

—

—a\r‘\I'anIUUOJ>-

11 comparisons

Figure 2.3: Execution example of the Sorted Blocks method using the window size w = 3.

Periodic load balancing Cam| Camera model for recip.

Per | Periodic load balancing
Pe
Pe

Per | Perzodic load balancing

Teaching Social Simul.

=

Periodic load balancing
Perturbations of Shifts.

=i

Periodic load balancing

Perturbations of Shifts.

Teams of pushdown aut. Tea| Teaching Social Simul.

A

B

C
Camera model for recip. D

—p

F

G

H

Perzodic load balancing Tea| Teams of pushdown aut.

>
U
X
P
o
b=
(=]
(%]
+
=
2
-
o
[F]
=
(1}
o
>
)
-4
-
[~
=]
—
o

Tea | Teams of pushdown aut.

Teams of pushdown aut.

window reaches the last three entities (C', G,). Thus, the number of comparisons performed

s 11.

Adaptive Windowing: Duplicate Count Strategy (DCS)

To overcome the tradeoff disadvantage of the fixed window size, the authors of [28] proposed
an efficient SNM variation denoted as Duplicate Count Strategy (DCS) that follows the idea
of increasing the window size in regions of high similarity and decreasing it in regions of
low similarity. They also proved that their improved variant of DCS, known as DCS++,
overcomes the performance of traditional SNM by obtaining at least the same matching
results with a significant reduction in the number of entity comparisons.

The Duplicate Count Strategy (DCS) is based on the SNM and adapts the window size
according to the number of already identified duplicate entities. The more duplicates of an
entity are found within a window, the larger is the window. On the other hand, if no du-
plicate of an entity within its neighborhood is found, then DCS assumes that there are no
duplicates or the duplicates are very far away in the sorting order of entities. Since the win-
dow size increases and decreases according to the number of already identified duplicates,
the set of compared entities may be different from the original SNM. Adapting the window
size sometimes implies in additional comparisons, but it can also reduce the number of com-
parisons. The DCS basic strategy consists in increasing the window size by one entity. Let
d be the number of detected duplicates within a window, ¢ the number of comparisons and

¢qar a threshold of duplicate detection rate with 0 < ¢g44- < 1. DCS increases the window

2.1 Entity Matching 19

size as long as ‘El > @gar- Thus, ¢4q, defines the average number of detected duplicates per

comparison.

DCS++ Strategy

According to the authors of [28], DCS++, a multiple entity increase variant, consists in an
improvement of the DCS basic strategy. Instead of increasing the window by just one entity,
DCS++ adds for each detected duplicate the next w — 1 adjacent entities of that duplicate to
the window while % < ¢q4r- Entities are added only once to that window and the window is
no longer increased when % < Qaar < ﬁ DCS++ calculates the transitive closure to save
some of the comparisons: let us assume that the pairs (¢;,) and (;,¢;) are duplicates, with
i < k < [. Calculating the transitive closure returns the additional duplicate pair (¢, ;).
Hence, it is not necessary to verify the window W (k, k4w — 1) and thus this window can be
skipped. The key idea used in DCS++ to save unnecessary comparisons is to skip windows
(comparisons) by transitive closure. Every time the window slides to the next entity, the size
of the window is set to the initial value. An experimental evaluation showing the performance
advantages of DCS++ in relation to the traditional SNM and DCS methods is shown in [28].

Publication Title . Publication Title l _

Camera Phone Bans Exp. Cam| Camera Phone Bans Exp. I 12 comparisons

Ir

Figure 2.4: Execution example of the DCS++ method with initial adaptive window size

Periodic load balancing Cam| Camera model for recip.

Teaching Social Simul. Per | Periodic load balancing

Per | Periodic load balancing
Per | Perturbations of Shifts.

Periodic load balancing

Perturbations of Shifts. Per | Perzodic load balancing

Teams of pushdown aut. Tea| Teaching Social Simul.

B

@
Camera model for recip. D

-

F

G

H

[N Eal == Bl Bul B2l Aw)

Perzodic load balancing Tea| Teams of pushdown aut.

>
)
X
>
o
t
o
w
+
c
(=]
=]
©
]
[=
()]
o
>
)
4
3
v
(=]
—
oo

Tea| Teams of pushdown aut. | |

Teams of pushdown aut.

Winitial = O-

Figure 2.4 shows an execution example of Adaptive Windowing (DCS++) for a window
Size Winiir = 3. Note that, initially, the window includes the first three entities (A, D, B)
and generates two pairs of comparisons [(A — D),(A — B)]. Since A — D and A — B

are regarded as non-match and since no duplicate entities are identified, there is no need to

2.1 Entity Matching 20

increase the window size. After that, the window slides to the next entity (5). From B, the

next comparison B — E is regarded as a match. Thus, the following relation is tested: if

CEZ > ﬁ, where d is the number of already detected duplicates within the window and c
is the number of comparisons already done also within the window, then w is increased by
Winitiar — 1 adjacent entities of that duplicate (£). Since % > ﬁ, w is increased by two
adjacent entities of /2. Now, w covers B, E, F' and H; the new comparisons generated are
B-F and B-H. Since B-F'is regarded as a non-match, the w increasing test is not satisfied.
Then, the comparison B-H is performed.

Since B-H is regarded as a match, the w increasing test is satisfied once more resulting in
true (% > 0.5) and the window is increased by two again. This time, the window is increased
from H, the last duplicate found. Now, w covers B, F, F', H, C' and GG; B is compared with
the rest of the entities within the window. The window is no longer increased due to the lack
of new matches. Note that the pair F/-H is regarded as a match due to the transitive closure
assumption. After that, w is set to the initial value (three) and the window slides to the next

entity (C). The windows starting with the entities £ and F' were skipped also due to the

transitive closure assumption. Thus, the number of comparisons performed is 12.

2.1.2 Multi-pass Indexing Methods

It is important to highlight that the usage of EM indexing methods introduces an extra chal-
lenge related to choosing an ideal/effective blocking key, which may appear especially when
dealing with dirty (i.e., inaccurate, incomplete or erroneous) input data. In this case, it may
not be sufficient to use a single blocking key to find all duplicates. To overcome this chal-
lenge, multiple blocking keys (e.g., using multiple or the combination of entity attributes)
are considered [38]. For each generated blocking key, a new "round" of entity comparisons
is performed over the set of blocked entities according to the respective blocking key. Thus,
the multi-pass variant is an important resource for the cases in which the effectiveness of the
similarity detection is essential. The multi-pass variant execution of each method described

in this work was considered in our evaluation.

2.1 Entity Matching 21

2.1.3 Quality Measurement of EM Indexing Methods

In order to conduct the measurement of EM quality of the indexing methods, involved in this
work, when applied over single or multiple data sources, this subsection describes the set of
metrics utilized. To calculate the value of these metrics, it is necessary to use a data source
that represents a truth table which contains the true results of the similarity relationships
between all possible pair of comparisons. This truth table can be obtained by the manual or
automatic labeling of the pairs of comparison of real data sources [91]. Based on this truth
table, the entity pairs blocked by a given EM indexing method can be classified into one of

the following categories [17]:

e true-positives (TP): are those pairs of entities that have been classified as similar and,

in fact, they refer to the same entity;

o false-positives (FP): are those pairs of entities that have been classified as similar,

however, according to the truth table, they do not refer to the same entity;

e true-negatives (TN): are those pairs of entities that have been classified as non-similar

and, in fact, they do not refer to the same entity;

o false-negatives (FN): are those pairs of entities that have been classified as non-

similar, however, according to the truth table, they refer to the same entity.

It is common that the number of true-negatives in EM results is much greater than the
sum of the true-positives, false-negatives, and false-positives numbers. The reason for this
is the nature of the comparison process, given that there are much more entity pairs that
refer to different objects than those pairs of entities that refer to the same object [14]. An
interesting result of an EM indexing method is when its indexing scheme enables the correct
classification of the true-positives and, at the same time, promotes the reduction of possible
false-positives and false-negatives.

Based on the number of true-positives (TP), true-negatives (TN), false-positives (FP) and
false-negatives (FN), different quality metrics can be evaluated. Next, we show the most

common metrics and how they should be utilized to assess the quality of the EM task.

2.1 Entity Matching 22

Efficacy Metrics

The efficacy of the EM task is commonly evaluated using standard metrics, such as accuracy
(A), recall (R), precision (P) and F-measure (F). The evaluation uses the truth table to deter-
mine how close to the "perfect" result a given method can achieve. These metrics are defined

as follows.

e Recall (R): percentage of entity pairs correctly classified as true-positive over the total

TP

of truly positive entity pairs. This quality metric is calculated as follows: R = 77-7-

e Precision (P): percentage of entity pairs correctly classified as true-positive over the
total of entity pairs classified as positive. This quality metric is calculated as follows:

_ _ TP
P = 5pirp

e F-measure (F): harmonic mean of precision and recall. This quality metric is calcu-

. _ 2xPxR
lated as follows: F' = %.

Performance Metrics for the Indexing Methods

To evaluate the indexing methods, three metrics are commonly used: pairs completeness,

reduction ratio, F-score, execution time and speed-up. These metrics are defined as follows.

e Pairs Completeness (PC): indicates which part of the truly positives entity pairs have
been preserved by the indexing method. Thus, PC' corresponds to the recall metric and
the achievement of high values, in this metric, is crucial to the method be considered

of high efficacy;

e Reduction Ratio (RR): indicates the fraction of all possible entity pairs that have
been automatically considered as non-matching by the indexing method due to its

assumptions of reducing the entities search space;

e F-score (Fs): harmonic mean of pairs completeness and reduction ratio. This quality

2XPCxRR

metric is calculated as follows: F' = PCLBR -

e Execution Time (ET): indicates the time during which a indexing method is running

(executing).

2.2 Distributed Computing and the Entity Matching Task 23

e Speed-Up (SU): indicates the improvement in execution speed of an EM task executed
on two similar architectures with different resources, e.g., number of available nodes
(this metric was particularly used in this work to measure the performance gain of the

EM parallel approaches).

The aforementioned quality and performance metrics were utilized to evaluate the quality

and performance of the strategies proposed in this work.

2.2 Distributed Computing and the Entity Matching Task

Distributed computing has received a lot of attention lately to perform data-intensive tasks.
Extensive powerful distributed hardware and service infrastructures capable of processing
millions of these tasks are available around the world and have being used by industry to
streamline its heavy data processing. To make efficient use of these distributed infrastruc-
tures, sophisticated parallel programming models, such as the MapReduce (MR) [23] and
Spark [104] emerge as a major alternatives. The reason is that these programming models
can efficiently perform the distributed data-intensive tasks through map and reduce-like op-
erations, can scale parallel shared-nothing data-processing and is broadly available in many

distributions.

2.2.1 MapReduce

MapReduce is a programming model designed for parallel data-intensive computing in
shared-nothing clusters with a large number of nodes [23]. The key idea relies on data
partitioning and storage in a Hadoop Distributed File system, known as HDFS?). Entities
are represented by (key, value) pairs. The computation is expressed with two user-defined

functions:
map : (keyim, value,) — list(keyimy, valueym,)

reduce : (keYimp, list(valueyy,y,)) — list(keyou, value ;)

SHDFS is a stable distributed file storage system for large volumes of data that comes as standard Hadoop

2.2 Distributed Computing and the Entity Matching Task 24

Each of these functions can be executed in parallel on disjoint partitions of the input data.
For each input key-value pair, the map function is called and outputs a temporary key-value
pair that will be used in a shuffle phase to sort the pairs by their keys and send them to the
reduce function. Unlike the map function, the reduce function is called every time a tempo-
rary key occurs as map output. However, within one reduce function only the corresponding
values list(valuey,,,) of a certain key,,,, can be accessed. A MR cluster consists of a set of
nodes that run a fixed number of map and reduce jobs. For each MR job execution, the num-
ber of map tasks (m) and reduce tasks (r) is specified. The framework-specific scheduling
mechanism ensures that, after a task has finished, another task is automatically assigned to
the released process.

Although there are several frameworks that implement the MapReduce programing
model, in the scientific community, Hadoop is the most popular implementation of this
paradigm. For this reason, the approaches presented in this work were implemented and

evaluated using Hadoop.

2.2.2 EM Indexing Methods using MapReduce

Parallel EM implementation using blocking approaches with MR can be proposed in a simple
or complex manner [50]. In a simple way, the approaches can be proposed to execute the EM
task in parallel without major concerns regarding the MapReduce model limitations, such as
the workload balancing and bottlenecks generated by the high consumption of distributed
infrastructure resources (the MapReduce limitations will be discussed in Section 2.2.3). In a
complex way, sophisticated strategies are utilized by the approaches to mitigate the influence
of the MapReduce model limitations. In this section, for the sake of understanding, a simple
MR-based SBM, denoted as Basic [49], will be described and exemplified.

In the Basic approach, the map process defines the blocking key for each input entity and
outputs a key-value pair (blockingKey, entity). Thereafter, the default hash partitioning in
the shuffle phase can use the blocking key to assign the key-value pairs to the proper reduce
task. The reduce process is responsible for performing the entity matching computation for
each block. An evaluation of the Basic approach showed a poor performance due to the
data skewness caused by varying size of blocks [49]. The data skewness problem occurs

when the match work of large blocks of entities is assigned to a single reduce task. It can

2.2 Distributed Computing and the Entity Matching Task 25

lead to situations in which the execution time may be dominated by a few reduce tasks and
thus enable serious memory and load balancing problems when processing too large blocks.

Therefore, concerns about lack of memory and load imbalances become necessary.

Map: Blocking Reduce: Matching *

o
[
[EE |E
o [1 avo | Pairs
-l .0
S - bBOY 2 sov [AND-AND *
anD BEY | cIa 3 caa (B =) CIA-CAE =
BOY [I= & CIA - CIA % e _
T =3
ca [0 B (K|S HlT CAE- CIA o
rer] 1 AND © o AND-AND*
AND AND a0 £
u 21 2 sur | “Pairs || £ gl
SUT ey | BuT £ | Bov-BOY*
soy [| Boy 2 Boy ||F BOY-BUT =
e @ BOY-BOY* g BUT-BUT*
Fe] o g
B (K|S Bl & BOY-BUT
BuT E s BUT - BOY
CAE 3 CAE -
CIA D -l o
BUT 2 BuT [[= BUT- BUT*
=]
CIA 3 caa || BOY-BUT

Figure 2.5: A dataflow example of a MR-based SBM, denoted as Basic (n = 9 input entities,

m = 3 map tasks and r = 2 reduce tasks).

Figure 2.5 illustrates an example for n = 9 entities from a data source input S using
m = 3 map tasks and r = 2 reduce tasks. Note that, first, in the partitioning step, the input
set S is split into m partitions according to each map task. Then, each map task reads the data
in parallel and determines the value of the blocking key K for each input entity of its partition
according to the first letter of the entity. Thus, the entities starting with the letter A receive
1 as blocking key value, the ones starting with the letter B receive 2 as blocking key value
and so on. For instance, AN D has 1 as a blocking key value, because the entity starts with
the letter A. After the blocking step (Map phase), all entities are dynamically distributed by
a partitioning function in such a way that all entities sharing the same blocking key value are
sent to the same reduce task. Note that in the example of Figure 2.5, entities having blocking
keys 1 and 3 are sent to the reduce task 0 and the remaining entities are sent to the reduce
task 1. The reduce functions (which process the reduce tasks) group the entities which are

arriving locally and perform the matching of entities in parallel. For example, the reduce task

2.2 Distributed Computing and the Entity Matching Task 26

0 detected the similar pairs, marked with an "*", (AN D, AN D) and (CIA, CIA). Finally,

the outputs of the reduce are merged and returned as a general EM result of the input .S.

2.2.3 Limitations of the MapReduce-based EM Indexing Methods

Although the implementation of several MR-based approaches seems intuitive, it is impor-
tant to note that there are three limitations inherent to the MR model capable of deteriorating
or, even, making the execution of such approaches impracticable. Dealing such limitations
can increase the complexity of the MR approaches which intends to be fully effective in
terms of performance and should, therefore, be taken into account when developing new

approaches. The limitations are described as follows.

Disjoint Data Partitioning

In the MR model, each map function reads the entities belonging to a single data partition and
sends the entities also to a single output partition without possibility exchange information
between the map functions (even with those that have not yet been initialized). Such situation
can cause complications in the entities mapping when there is a need to compare entities
belonging to different partitions. An example of this limitation can be seen in the use of
the SBM when comparisons of a large block need to be split into two comparisons sets to
be performed by two distinct tasks. It is necessary to ensure that the entities involved in
such comparisons, which will be executed by the corresponding reduce task, be assigned
appropriately to avoid the loss of comparisons and thus change the original behavior of the

indexing method.

Load Balancing

Load balancing is related to the uniformity of the workload distribution between two or more
distributed tasks in order to optimize the utilization of the resources, maximize performance,
minimize response time and avoid overhead problems. Thus, in terms of load balancing
for MR-based EM, what is sought is that each reduce task executes approximately the same
number of entity comparisons. For this, the usage of some strategies, such as entity repli-

cations and fixing the number of entities per input partition, is generally indispensable to

2.2 Distributed Computing and the Entity Matching Task 27

promote the uniformity of the workload distribution.

The exact number of comparisons depends on various factors relevant to the in question
problem (in this case, EM), such as data skewness (difference in sizes of entity blocks),
number of available reduce tasks, EM indexing method used, among others. Thus, it is
evident that the balancing solution must be treated in the proposed approach and, in this
case, the default mechanism of the MR model for load balancing do not help in the solution.
For example, in the systematic of the Basic approach (presented in Section 2.2.2), depending
on how the blocking key is defined, there may be the generation of blocks with very large and
small number of entities, which causes data skewness. Then, since all entities of the same
block are sent to the same reduce task, the computation of pairs of large blocks can occupy
a node for a long time and thus leave other nodes idle due to the disparity (imbalance) of the

tasks size.

Memory bottlenecks

As mentioned earlier, all entities of the same block are sent for a single reduce task. Since
a reduce task only can process a data row each time, similar to a SQL cursor, this means
that all entities of the same block must be loaded into memory before being processed by the
reduce function. Thus, the memory of a given node may not be sufficient to accommodate
the entity pool storage of a very large block and the MR process may present instability. The
problem of memory is strongly related to the problem of load unbalance, that is, gains in the

load balancing optimization imply gains in the decrease of memory consumption per node.

2.2.4 EM Indexing Methods using Spark

MapReduce is one of the most popular cluster computing programming models. However,
the model has some drawbacks. In addition to the fact that each MR job reads its input data,
processes it, and then writes the output back into the distributed HDFS file system, iterative
applications commonly used in the machine learning and graph analysis contexts, which
require several iterations over the same data, may have their execution time deteriorated due
to the repetitive (unnecessary) access to the HDFS. To improve these constraints of the MR

model, Spark is driven by the Resilient Distributed Datasets (RDDs) that provide in-memory

2.2 Distributed Computing and the Entity Matching Task 28

(main) data structures to be used as immediate data cache throughout the nodes cluster.
Because RDDs can be kept in memory, programs can iterate over RDDs often efficiently.
Some scientists risks to say that Spark arises to succeed the MR in the efficient parallelization
of computationally intensive tasks [55].

However, there are those who say that Spark was developed to improve, not replace,
the Hadoop processing stack [82]. Like other storage systems, such as HBase and Amazon
S3, Spark was also designed to read and write data in the Hadoop Distributed File System
(HDES). In this way, Hadoop users can enrich their processing capabilities by combining
Spark with MapReduce, HBase, and other frameworks for processing and storing large vol-
umes of data. In addition, it is becoming easier for every Hadoop user to take advantage of
Spark’s capabilities. The Hadoop resource manager, known as Yet Another Resource Ne-
gotiator (YARN), acts as a pivot for consistent operations transmission, providing security,
tools for data governance through the Hadoop cluster and Hadoop-Spark integration.

Spark has APIs in Scala, Java and Python and libraries for streaming, graph process-
ing and machine learning [104]. Unlike the double-step topology of MR [23], Spark has
an advanced acyclic directed graph execution (DAG) engine that supports cyclic data flows.
Spark also presents a programming model and offers a functional API based on Resilient
Distributed Datasets (RDDs) [104]. RDD is the basic data structure of Apache Spark. It is
an immutable collection of objects which computes on the various nodes of the cluster. The
RDD structure is: resilient, due to the fault-tolerant with mechanisms that can recompute
missing or damaged partitions according to node failures in Spark; distributed, since the data
resides on multiple nodes; and a dataset, since it represents records of the data under process-
ing. The abstraction of RDDs provides transformations (for example, map, flatmap, reduce,
reduceByKey, filter, group-by, and join) and actions (for example, count and collect) that
operate on partitioned data sets distributed along cluster nodes. A Spark program executes
a sequence of transformations that end with an action and returns a value as a result (for
example, a list of similar entities referenced by the RDD) to the Spark manager program,
which can initiate another sequence of RDD transformations.

A parallel implementation of Spark-based EM using the SNM method can be developed
using existing window sliding implementations. In a simplified way, SNM can be imple-

mented using the SlidingRDD model, which returns an RDD from grouping entities of its

2.3 Map-Matching 29

parent RDD in fixed size blocks by passing a sliding window over them. The SlidingRDD
model is part of the MLIib?, i.e., the main scalable machine learning library of the Spark. The
Spark-based SNM implementation uses the SlidingRDD model to run the fixed size sliding

window on a set of entities partitions sorted according to a specific blocking key.

2.2.5 Limitations of the Spark-based EM Indexing Methods

Of the three limitations inherent to the MR model which are capable of deteriorating or even
prevent the execution of the aforementioned approaches, only the mandatory use of disjoint
partitions is no longer a problem in the Spark model. With the possibility of using Broadcast
variables, it is possible to allow the nodes to communicate with the others cluster nodes.
Broadcast variables allow the maintenance of a (read-only) variable in cache on each worker
node, rather than sending a copy of the data to each worker. These variables can be used,
for example, to efficiently provide each worker a copy of a look-up data source, thereby
avoiding the mappers and reducers to read complementary data of the HDFS. However, the
load balancing and memory bottleneck problems are still difficulties that must be treated

during the proposition of Spark-based approaches.

2.3 Map-Matching

In this section, we present the necessary topics for understanding our proposal to address
an EM task related to the matching of trajectories from the sequences of noisy geospatio-
temporal open data sources. Since the task involves the geo-spatial EM over a digital map,
this EM task is known in the literature as map-matching task [73]. In its most common
formulation, map-matching aims to identify the segments of a street graph that represent the
true state of noisy position observations such as those coming from GPS [73]. Thus, our
proposal, developed to address this (EUBra-BIGSEA project) task, is applied as practical
experience in the usage of the (adaptive) indexing methods and distributed computing in

another EM contexts.

“http://spark.apache.org/mllib/

2.3 Map-Matching 30

2.3.1 Matching Public Bus Trajectories

It is increasingly common the availability of data sources related to the transit services opera-
tions. Considering public bus services, two data sources are most often available by the tran-
sit department of several cities: (i) shapes and schedules of bus operations; and (ii) automatic
vehicle location either at a certain moment or historically. In the following, we describe for-
mats and other characteristics of each data source and discuss challenges in matching entities

within these data sources.

Transit Routes and Schedule

The standard for the description of transit routes and schedule is the General Transit Feed
Specification (GTFS). This specification was developed by Google and defines formats for
files to be provided by an operator or authority to describe transit supply at three levels.
In the first level, routes describe meta-information such as route name, transit mode, textual
description, and the operator of the different services. In the second level, Predefined bus tra-
Jectories capture variations of a service over a given route represented by shape linestrings.
The shape linestrings are of two types: complementary shapes that must join other shapes to
form a complete route; and circular shapes that describe a complete route. The third level
described in GTES is the stop times, which describe the time at which a trip is expected to
stop at reference locations.

In addition to this description, the location and meta-information of bus stops are typ-
ically specified, and GTFS files from a city normally specify system operation in different
situations, such as weekdays and weekends, or public holidays. Among the data sources
considered in this work, GTFES is by far the most often available. It is also worthwhile to
comment that, since public transport systems must adapt and evolve according to multiple
factors, GTFS information in a city must be dynamic. Naturally, there is often some delay
for the information available in GTFS files to reflect operational changes. Section A.1 of

Appendix A describes the schema of the GTFS data sources.

2.3 Map-Matching 31

Vehicle Location

Automatic Vehicle Location (AVL) systems typically track the position of the fleet providing
public transport in a city using the Global Positioning System (GPS). GPS devices on buses
send data to a server that is commonly able to construct a real-time view of the system, as
well as to create a historical record of vehicle movement. The open data made available
to transport system authorities normally contains, for each message sent by a vehicle, a
timestamp, the vehicle id, coordinates, and sometimes the route associated to the ongoing
trip. The periodicity of data transmission from the vehicles to the server is configurable, but
often uses a value in the order of dozens of seconds. In the city we consider in this thesis,
this amounts to over 200MB of GPS data in an ordinary day. Section A.2 of Appendix A
describes the schema of the AVL data sources.

AVL data normally contains no reference for the trajectory or schedule of the ongoing
trip the vehicle sending data. In other words, by standard there is no key to directly asso-
ciate a bus on a trip with a trip in the GTFS schedule or with a trajectory among those that
comprise a route. This association is further complicated by the fact that sometimes vehicles
deviate from prescribed trajectories. This may happen for example due to a traffic change
or to an emergency. For this reason the construction of bus trajectories histories as a re-
sult of matching shapes (predefined bus trajectories) with GPS (Global Positioning System)
data can be considered a challenging task. The shapes income consists of predefined bus
trajectories described by multiple stops, each one represented by a set of coordinates. This
problem is treated in the literature as map-matching task and is a very-well studied task in
the field of Geographic Information Systems (GIS) [73]. Map-matching attempts to identify

the segments of a street graph that represent the true state of noisy position observations [73].

2.3.2 The Map-matching Bus Trajectories Problem

In the context of map-matching public bus trajectories, the literature usually considers that
there exists only one shape (in our case one predefined bus trajectory) per route (e.g., [25]
[88] [89] [8] [86] [76]). This literature has addressed this problem through several tech-
niques to identify the trajectory performed by a bus on a digital map using sophisticated

map-matching machine learning techniques.

2.3 Map-Matching 32

Nevertheless, to the best of our knowledge, no technique has addressed how to efficiently
match noisy position observations to multiple shapes that have different starting geo-spartial
points. Figure 2.6 shows an example from the Curitiba GTFS specification where this prob-
lem arises: there are two shapes describing trajectories with the same direction that a bus
from route 022 may follow during the day. Similar settings happen in other routes amount-
ing to up to six trajectories, and we have observed similar multiplicities in the specifications

of the cities, such as Curitiba (Brazil) and Sao Paulo (Brazil).

Boa Vista ~ T Tingai

&
Boa Vista Tingui
Atua 53

;{; . Josi Pilarzin
o e B
¢ Bacacher|
o g i
e b Fd ;
z irr 5

SHo Jodo | Pilarzin

N

Bom Retiro %

Centro Civico:

Rua'ri | Centro Civico

Juvevé Juveve

da Gloria % Allo da Gloria

530/ Franciscol’ Ve
3 Alto da Rua

Altg da Rua
Y Curitiba x;;

Curitiba

< & i) Cristo Rei & B
“Camp@Po i ’ s Estd
iy, ¢ Batel N e \ 5 Campigg o Batel P
A : ~2v7Jardim Botdnicode gl g# e Aall &
- T ly i 3
Rebougas -vfr 5 iy N Rebougas /
< e e
g 425 Vila Torres B i W3 Vila Torres]
semi@rio g S 4 i [semiflrio g . g
e e (NAt® 5 4 et ot At
et o Prads, Velho -y % Couru o e Pradc Velho - 3
Vila [zabel £ - { 2 mdas) o Vila Izabel £y e 2l -
g Parolin dricas | B B 3 7 Parelin 4 ericas Bt
& - 80, %
Santa Quitéria | Guabirotuba a0 e Qliteria Guabirotuba e
b X
5 A i & AY \
Guaira 2 5 b Guaira 2 o
B ot |) o o :)
Portao MJ—*‘"’“M S 80 Portao mwﬂﬁm‘ Sena el
B @ % e & 5, 3
: 3 s e
G s Lindsia Fanrvéf zuen &55 L = s e Lindsia Fannéf fizuen géﬁ,—
& ¥ E f & o

Uberaba Uberaba

g,

N@o Mundo E Ngyo Mundo

3 * ¥
o0 BR4T6 J BRATE
: / h. ./
o0% £ y e

! Az L

[l

Figure 2.6: Example of a route containing two shapes representing two predefined trajecto-
ries. Each of the trajectories starts at a different point, and thus leads to a different sequence

of bus stops to be visited by the bus on the route.

Most of the state-of-the-art techniques are able to detect whether or not the bus in our
example is performing route 022. However, none of them are able to indicate if a bus in this
setting is performing a trajectory from point A or B. This renders it impossible to integrate
bus trips matched by such techniques with scheduled trips in GTFS or to use predictive mod-
els to estimate the time a bus will arrive at a given stop, as it may indeed be performing a
trajectory that will not pass through that stop. For instance, in Figure 2.6, if a classification
error occurs during the generation of the bus trajectories history (e.g., a bus becomes associ-

ated with the shape depicted on the right of Figure 2.6 instead of the - correct - left one), a

2.4 Final Considerations 33

predictive algorithm can be trained to estimate an arrival time at point C' (erroneously), since
the bus is programmed to finish its trip at point A (according to shape depicted on the left).
In Chapter 6, we addressed such matching bus trajectories problem by proposing two
novel unsupervised techniques that are capable of matching a bus trajectory (in batch and
real-time, respectively) with the correct shape when there are multiple shapes for the same

route. We also proposed efficient Spark-based approaches for these new techniques.

2.4 Final Considerations

The topics presented in this chapter aimed at promoting the theoretical basis necessary to
facilitate the understanding of the following chapters. For that, the main aspects related to
the context of EM with and without parallelism were described. Firstly, the Entity Matching
problem was described and formally defined, and a discussion was presented on the block-
ing methods, where several indexing methods were highlighted, since they are the methods
discussed in this work. Then, the models of MapReduce and Spark were described, and how
these models can be used to benefit the EM task execution. The limitations of the MR and
Spark models were presented and discussed from the standpoint of using these models in the
context of EM.

Finally, the necessary topics for understanding our proposal to solve a map-matching
task related to the identification of bus trajectories from the sequences of noisy geospatio-
temporal data sources were described. In the following chapter, the related work regarding
several works involving the context of EM indexing methods, MapReduce and Spark-based

EM and matching bus trajectories mentioned in this chapter will be presented.

Chapter 3

Related Work

In this chapter, we present the main works found in the literature. Essentially, the related
work is divided into five groups: works describing Entity Matching and its applications,
studies that investigate EM indexing methods, works involving MapReduce-based EM in-
dexing methods, works involving Spark-based EM indexing methods and works that utilize
EM approaches to solve the specific problem of matching bus trajectories regarding the pres-

ence of multiple shapes (with different starting geo-spatial points) related to the same route.

3.1 Entity Matching

Entity Matching (EM) is a very studied research topic for more than forty years [67]. The
task has been investigated under various names including record or data linkage, entity reso-
lution, object identification, field matching, merge/purge, deduplication, reference reconcili-
ation, and others (see [14, 18,67,70] for recent overviews). One of the major EM difficulties
is the computationally expensive execution, mainly when comparison functions involved
in the EM process have a computation complexity that is quadratic in the lengths of the
attribute values (that most commonly are strings). Figure 2.1 helps to illustrate that even
when matching small samples, the majority of comparisons between records will correspond
to non-matches (in the example, there are 36 possible comparisons and only four are true
matches).

Thus, the aim of EM indexing is to reduce the number of entity pairs that are compared in

detail as much as possible, by removing entity pairs that unlikely correspond to true matches.

34

3.2 EM Indexing Methods 35

At the same time, all entity pairs that possibly correspond to true matches (i.e., where the two
entities of a pair refer to the same object) need to be considered for the detailed comparison.
Without the indexing step, the matching of two data sources that contain m and n entities,
respectively, would result in m x n detailed entity pair comparisons. For large databases, this
is clearly not feasible. In the recent years, many EM indexing methods have been proposed

and evaluated as described in recent works [2, 14,52,70, 83, 94].

3.2 EM Indexing Methods

The study of EM traditionally focused on improving the accuracy or execution time perfor-
mance of EM over static data sources (assuming that the logic and data are immutable during
the matching). In this context, the Standard Blocking [5] is the most traditional of all EM
indexing methods. As discussed in Subsection 2.1.1, it uses a blocking key to partition the
set of entities into disjoint blocks and restricts the matching over the Cartesian product of all
entities belonging to each disjoint block. Thus, the overall number of comparisons depends
on the number of blocks and the block sizes. The authors of [52] defined the blocking ap-
proaches into disjoint (using a blocking key predicate, e.g., the zip code of a person record)
and overlapping (e.g., Sorted Neighborhood Method).

Several approaches of the SNM have been proposed with the feature of multiple windows
passes. The multi-pass feature is necessary to improve the accuracy due to the high depen-
dence on the sorting key discussed in Subsection 2.1.2 [67]. The authors of [100] proposed
an Adaptive Sorted Neighborhood Method that generates blocks with different sizes using a
window resizing and performs the pairwise comparisons between entities belonging to these
blocks. The assumption is that, in a sorted data set, similar entities are likely to be closer,
although the sorting is done lexicographically and not by distance. They present two meth-
ods and compare them with the (fixed) SNM. The Incrementally Adaptive-SNM (IA-SNM)
is a method that incrementally increases and decreases the window size according to a spec-
ified threshold. The Accumulative Adaptive-SNM (AA-SNM) on the other hand follows the
idea of generating windows that overlap one entity. This strategy enables AA-SNM to group
multiple adjacent windows into one block through transitivity.

However, the work presented in [28] showed that both IA-SNM and AA-SNM do not im-

3.2 EM Indexing Methods 36

prove the performance of SNM. Moreover, the authors proposed a new Adaptive Windowing
method (DCS++) that adapts the window size according to the number of already identified
duplicate entities. As mentioned earlier, the method follows the idea that the more duplicates
of an entity are found within a window, the larger is the window. On the other hand, if no
duplicate of an entity within its neighborhood is found, then DCS++ assumes that there are
no duplicates or the duplicates are very far away in the sorting order of entities. They also
compared DCS++ against the (fixed) SNM, the IA-SNM and AA-SNM methods and showed
by empirical evaluation that DCS++ outperforms the three competitor methods.

The authors of [26] proposed a generalization of Standard Blocking and the (fixed) Sorted
Neighborhood. This hybrid method, known as Sorted Blocks, rises as an attempt to combine
the best of the Standard Blocking and the (fixed) Sorted Neighborhood method. The strategy
is to divide the sorted entities into disjoint blocks and overlap some defined boundary area to
approximate windowing. The results presented in this work suggest that the Sorted Blocks
variant that creates new partitions when the maximum partition size is reached outperforms
the Standard Blocking, (fixed) Sorted Neighborhood, IA-SNM, and all other Sorted Blocks
variant methods. However, the difficulty in this hybrid method, for all Sorted Blocks vari-
ants, is that they require more parameters than the Standard Blocking or the (fixed) Sorted
Neighborhood, which makes configuration slightly more difficult. The evaluation also lacks
evidence about the sensibility of these parameters. Thus, the Sorted Blocks Method was
included in the experimental evaluation presented in Chapter 5.

Table 3.1 presents a comparative table of the indexing methods considered in this work.

The methods are compared according to the following features:

e Indexing type: the type of indexing strategies utilized by the methods. For instance, if

the type is blocking, windowing or both;

e Search space: the manner in which the methods generate the candidate pair compar-
isons. For instance, if the search space is generated by the employ of the Cartesian

product or a (fixed or adaptive) window sliding;

e Windowing adaptability: the type of a windowing method adaptability. For instance, if
the adaptability is based on a multiplying factor (e.g., linear or geometric increasing)

or matching rate (e.g., duplicate detection rate in a certain region of entities). The

3.3 MapReduce-based EM Indexing Methods 37

Table 3.1: Comparative table of indexing methods
Windowing Adaptability

Methods | Criteria Indexing Type Search Space Multiplying Matching
Factor Rate
. Cartesian Product
Standard Blocking [5] Blocking
in each block
Sorted) . . .
Windowing Slides a fixed window NO NO
Neighborhood [38]
IA-SNM and
Windowing Slides an adaptive window YES NO
AA-SNM [100]
Blocking and Performs a blocking and
Sorted Blocks [26] NO NO
Windowing slides an fixed window
Duplicate Count . . Slides an adaptive window YES, only on
Windowing NO
Strategy ++ [28] Overcomes TA-SNM [100] matching detection

66 9

hyphens (“-”) means not applicable.

As it can be seen, although Table 3.1 presents two types of adaptive indexing methods
(in relation to the windowing adaptability), there are at least two characteristics that were
not properly exploited by the methods presented in this subsection. The first is regarding
the adaptation of window size in regions with low duplicate detection rates. The second
is regarding the increase of the window to perform adjacent block overlapping in order to
increase the detection of pairs of similar entities. These features were not yet exploited by

existing indexing methods in the literature.

3.3 MapReduce-based EM Indexing Methods

As modern databases are becoming larger, deduplicating or matching them requires increas-
ingly massive amounts of computing power and storage resources. Researchers have begun
to investigate how modern parallel and distributed computing environments can be employed
to reduce the time required to conduct large-scale entity matching projects [6,47,54,87,92].
A considerable number of approaches that consider parallel EM have been proposed in recent
years [77], but there is still much to be done in the era of Big Data.

The first works in order to evaluate the parallel Cartesian product of two sources are
described in [46, 80]. The approaches proposed in these works were designed to promote

a simple parallelization, since the objective was only to emit entity pairs for the available

3.3 MapReduce-based EM Indexing Methods 38

nodes in the distributed infrastructure without emphasizing the use of optimization mecha-
nisms, such as load balancing and reduction of memory consumption. To address this gap,
the authors of [47] propose a generic model for parallel entity matching based on general
partitioning strategies that take memory and load balancing requirements into account.

In this context, when we deal with MapReduce-based large-scale Entity Matching, two
well-known data management problems must be treated: load balancing and skew handling.
MR has been criticized for neglecting the problem of data skewness [24]. For this reason,
works such as the parallel hash join processing [57], a skew handling mechanism available
in parallel database systems, spent time injecting treatments for the data skewness into user-
defined MR functions, such map, reduce, part, and group. Our work does not aim to prioritize
skew handling, but to minimize its effects on performance by efficiently distributing entity
replication among all nodes. Another approach to address the load imbalances promoted
by the presence of data skewness was proposed by the authors of [69]. They applied a
static load balancing mechanism, but it is not suitable due to arbitrary join assumptions.
The authors employ a previous analysis phase to determine the data sources’ characteristics
(using sampling) and thereafter avoid the evaluation of the Cartesian product. This approach
focus on data skew handle in the map process output, which leads to an overhead in the map
phase and large amount of map output.

MapReduce has already been employed for EM (e.g., [45,92,105]). In the work [92] only
one mechanism of near duplicate detection by the PPjoin paradigm adapted to the MapRe-
duce framework can be found. In addition, the authors of [92] have not conducted studies
considering the robustness of their approach regarding load balance and data skewness. The
works [19,40,43,50, 60,61, 101] studied load balancing and skew handling mechanisms to
MapReduce-based EM for the standard blocking approach but do not consider the sorted
neighborhood method. The work [90] presents another approach for parallel processing
entity matching on a cluster infrastructure. This study does not involve the Sorted Neighbor-
hood Method, but explains how a single token-based string similarity function performs with
MR. The approach is based on a complex workflow consisting of several MapReduce jobs.
It also suffers from load imbalances since some reduce tasks process more comparisons than
others.

The authors of [49] study load balancing for MR-based traditional single- and multi-pass

3.3 MapReduce-based EM Indexing Methods 39

Sorted Neighborhood Method (SNM). The RepSN approach follows a different blocking
approach (fixed window size) that is by design less vulnerable to skewed data. It comprises
two MR jobs. The first one calculates the Key Partitioning Matrix (KPM) that collects and
specifies the number of entities per key and pass separated by input partitions. The matrix
is used by the map tasks of the second MR job to automatically tailor entity redistribution
among the reduce tasks. The second job performs the automatic partitioning using the KPM
in the map phase and the window sliding in the reduce phase. However, its fixed window
size design is the reason of the serious disadvantage mentioned earlier in Section 2.1.1, i.e.,
if the window size is defined too small, some duplicates might be missed whereas a too large
window is defined, many unnecessary comparisons will be executed. Due to its proximity
with our work, we compared the RepSN approach [49] (state of the art) with our work in the
experimental evaluation presented in Chapter 4.

Finally, the work [58] presents a MapReduce-based multi-pass approach (Partition-Sort-
Map-Reduce) with adaptive sliding window. The idea consists in changing the window size
through a fuzzy strategy of assigning unexplained weights as a factor to increase and decrease
the window size according to the duplicate detection rate. Although this work is strongly
related to ours, we did not consider it in our experimental evaluation due to three main
reasons. The first one is the impossibility to reproduce. The work lacks of major details
about the approach’s model and implementation (e.g., the rectifying procedure). The second
one is the lack of theoretical or experimental evidences that the strategy proposed by the
authors overcomes the DCS and DCS++ strategies. Lastly, there is no experimental study
about how the approach handles data skew and load balancing issues.

Table 3.2 presents a comparative of the windowing approaches considered in this work.

The approaches are compared according to the following features:

e Windowing search space: the manner in which the approaches generate the candidate

pair comparisons;
e #MapReduce jobs: the number of MapReduce jobs performed by the approach;

e [oad balancing: indicates whether (or not) the approach presents load balancing han-

dling mechanisms;

3.4 Spark-based EM Indexing Methods 40

Table 3.2: Comparative table of windowing models

Windowing #MapReduce | Load Balancing

Approaches | Criteria Reproducibility
Search Space Jobs Handling
Slides a
SNM [22] ZERO NO YES
fixed window
Slides a
DCS++ [16] ZERO NO YES
fixed window
Slides a
RepSN [30] TWO YES YES
fixed window
Partition-Sort- Slides an
ONE NO NO
Map-Reduce [24] adaptive window

e Reproducibility: indicates whether (or not) the approach can be duplicated from its

publication.

As it can be seen, although Table 3.2 presents one MR-based adaptive indexing method
(in relation to the windowing search space), the load balancing feature was not yet explored

by existing adaptive windowing approaches in the literature.

3.4 Spark-based EM Indexing Methods

Nevertheless, the usage of Hadoop MapReduce as a platform for EM has some drawbacks
[82]. Hadoop MapReduce is not designed for an interactive usage. It is made for Big Data
batch processing since it lacks the ability to cache intermediate results (in main memory) to
be used for multiple alternatives. For these reasons, it is common to find models of MR-based
EM approaches using more than one MapReduce job [50].

In a previous work [62], it was proposed an approach for the MapReduce-based Duplicate
Count Strategy. The solution provides an efficient parallelization of the DCS++ method [28]
by using multiple MR jobs. However, the solution presented in [62] neither considered RDDs
nor broadcast variables®, since MR does not provide such features. Their usage can decrease

the number of jobs employed by MR approaches. In Chapter 5, we compare the MR-based

Broadcast variables allow the program execution to keep a read-only variable cached on each machine

rather than shipping a copy of it with tasks.

3.5 Map-matching Bus Trajectories 41

DCS++ (MR-DCS++) approach [62] (state of the art) with our work in an experimental
evaluation.

Apache Spark emerged as an alternative to provide features such as interactive usage
and in-memory (main memory) data structures and broadcast variables [4,10,78,79, 81, 84].
However, to the best of our knowledge, no work involving Spark-based adaptive windowing

technique for EM has been proposed.

3.5 Map-matching Bus Trajectories

Large volumes of geospatial-temporal data including GPS sequences have become popular
data sources for various machine learning and pattern recognition algorithms. These algo-
rithms, when designed to execute the Map-matching objects represented in a digital map,
tend to be optimized in order to achieve a desired numerical calculation speed of the map-
matching and polling frequency of the location data [1,11,41]. Most map-matching related
work deals with high-frequency GPS polling, which is GPS routing commonly used by au-
tomobiles. The authors of [73] provide a review of various traditional high-frequency GPS
polling map-matching techniques. Most of the techniques seem to have been designed con-
sidering Hidden Markov Models (HMM) using the Viterbi algorithm introduced by works
such as [42,44,51,85,102]. Lately, more sophisticated techniques capable of mapping noisy
and sparse GPS sequences of vehicles into road sequences have been proposed. The survey
presented in [106] describes some of these sophisticated techniques and how they benefit
from the usage of HMM, such as the ones proposed in [25] and [88].

Less map-matching literature is devoted to low-frequency GPS polling. Many of the
sophisticated techniques which deal with high-frequency GPS polling, such as [8, 72], rely
heavily on the immediate past of the trace, heavily weighting the probability that a vehicle
has stayed on the same road. However, the techniques which deal with low-frequency GPS
polling cannot benefit from such probability strategy since a vehicle can perform two or more
turns between polls. For this reason, the works [103] and [99] present techniques to address
the low-frequency GPS polling map-matching problem by first collecting the subset of simi-
lar matches between the bus (GPS) trajectory and the route. Then, they use a coordinate point

to indicate the direction of the bus trajectory and search for the most similar route to that bus

3.5 Map-matching Bus Trajectories 42

(GPS) trajectory. The authors of [103] note that there could be many routes between two
coordinates and suggest the usage of the shortest path (using Dijkstra’s algorithm) between
them as the most similar route to the bus (GPS) trajectory.

Several researchers have studied the algorithmic logic used for choosing correct trajec-
tories in map-matching algorithms, which is complicated due to the presence of overpasses,
sharp turns, errors in measurements, and ambiguity [73]. In [73], the authors noted that the
wrong associations (matching) between trajectories and the routes may lead to a sequence
of bad matches. In a probabilistic framework that handles multiple hypotheses, the authors
of [71] utilized topological data such as road connection, direction, and road facility infor-
mation to identify trajectories.

Regarding map-matching of bus routes, it is generally a trivial task to know where a
bus should go. Basically, it consists in following the bus assigned route and programmed
arrival times when the bus is supposed to travel along that route. In the GTFS terminology,
the bus has a route identifier. Buses may have to make detours for various reasons, but
the general assumption is that they will follow their route. This difference simplifies the
map-matching process from projecting onto a graph the linkage of a road network with the
polylines as defined by the GTFS data. In this sense, the authors of [8] developed a system
architecture that estimates the route shapes depicted by the bus GPS traces aiming to map-
match and complete trip prediction on the GPS points. They also considered high-frequency
GPS data and HMM in the development of the map-matching and trip prediction algorithms.
The authors of [86] proposed a method to improve the positioning accuracy by exploiting
the information of speed bumps readily available in bus parking garages to tune its position
and velocity. This matching algorithm provides an accuracy of around five meters, which
matches the detected landmark to the right bumps.

As mentioned in Subsection 2.3.2, none of the aforementioned techniques are able to
deal with multiple shapes (with different starting geo-spatial points) related to the same bus
route. Nevertheless, the work presented in [76] is close to ours. It shows a method for
inferring transit network topology from commonly available data feeds. It makes use of
a Bag-of-Roads strategy which is a sparse vector containing the number of road segments
traversed by a bus b, where its i-th element denotes the frequency of bus b traversing the road

segments. Then, it selects the top-k nearest predefined routes according to the Euclidian

3.5 Map-matching Bus Trajectories 43

Table 3.3: Comparative table of Map-matching algorithms

Works | Criteria Map-matching object Indexing type Frequency of GPS polling | Parallel approach
Yang J, et al. (2005) [103] Digital map NONE LOW NONE
Wu D, et al. (2007) [99] Digital map NONE LOW NONE
Dong W, et al. (2009) [25] Digital map NONE HIGH NONE
Thiagarajan A, et al. (2009) [88] Digital map NONE HIGH NONE

. Attribute-based
Biagioni J, et al. (2011) [8] Digital map LOW NONE

indexing (roads)

Attribute-based
Tan G, et al. (2014) [86] Digital map HIGH NONE

indexing (roads)

Single Predefined
Top-k nearest
Raymond R, et al. (2016) [76] Trajectories (shapes) HIGH NONE
predefined routes
per route

distance and Cosine similarity. Their results show good performance using routing between
the bus trajectory stops as a form of map-matching. Although the authors of [76] provide
interesting techniques that are able to detect the correct route performed by a bus, their
technique is also not able to deal with multiple shapes (with different starting geo-spatial
points) related to the same route (as exemplified in Subsection 2.3.2). In Chapter 6, we show
experimentally their lack of robustness in treating the problem of multiple shapes referring
the same route effectively.

Table 3.3 presents a comparative table of the bus trajectory Map-matching algorithms

considered in this work. The algorithms are compared according to the following features:

e Map-matching object: the object compared (to match) with the GPS trajectory of the
vehicle. For instance, if the algorithm considers a Digital map or (single or multiple)

predefined trajectories per route to match with the GPS trajectory of the vehicle;

e Indexing type: the indexing type utilized by the algorithm to reduce the search space.
For instance, if the search space is generated by the employ of top-k nearest routes,

attribute-based indexing, among others;

e Frequency of GPS polling: Frequency of each vehicle GPS polling. For instance, if

the frequency is high or low;

e Parallel approach: the parallel approach utilized by the work. For instance, None,

MapReduce, Spark or others.

3.6 Final Considerations 44

As it can be seen, although Table 3.3 presents two types of Map-matching objects, i.e.,
Digital map and single predefined trajectories (shapes) per route, and two types of indexing
methods, there are at least three characteristics that were not properly exploited by the al-
gorithms presented in this subsection. The first is regarding the map-matching of the GPS
trajectory of the vehicle with multiple predefined trajectories (shapes) per route. The second
is regarding the application of new indexing strategies in order to perform the Map-matching
task within a short time interval, and still maintain a high Map-matching quality. Finally,
the third is regarding the efficient parallelism of the algorithms. These features were not yet

exploited by existing map-matching works in the literature.

3.6 Final Considerations

The results presented in this chapter show in detail a bibliographical review regarding the
main related work found in the literature and their respective proposals. Essentially, the
works are divided into five groups: works describing Entity Matching and its applications,
studies that investigate EM indexing methods, works involving MapReduce-based EM in-
dexing methods, works involving Spark-based EM indexing methods and works that utilize
Map-matching techniques to solve the specific problem of matching bus trajectories regard-
ing the presence of multiple shapes (with different starting geo-spatial points) related to the
same route. In the following, Chapters 4 and 5 will present the contributions of this work with
respect to the execution of the EM task in parallel based on MapReduce and Spark. Chapter
6 will present the contributions of the work regarding the execution of the Bus Trajectories

map-matching task in parallel based on Spark.

Chapter 4

An Efficient MapReduce-based
Approach for the Multi-pass Duplicate
Count Strategy

As mentioned in Section 2.1, the SNM presents a critical performance disadvantage due to
the fixed and difficult to configure window size: if it is selected too small, some duplicates
might be missed. On the other hand, a too large window results in unnecessary comparisons.
To overcome this disadvantage, the authors of [28] proposed an efficient SNM variation,
denoted as Duplicate Count Strategy (DCS). The method follows the idea of increasing the
window size in regions of high similarity and decreasing the window size in regions of low
similarity. They also proved that their improved variant of DCS, known as DCS++, over-
comes the performance of traditional SNM by obtaining at least the same matching results
with a significant reduction in the number of entity comparisons. For this reason, this chapter
presents efficient MapReduce-based approaches for the DCS++.

Even with the significant advances in the SNM design, EM remains a critical task in terms
of performance when applied to large data sources. Thus, this chapter presents the contri-
butions regarding a MR-based approach capable of combining the efficiency gain achieved
by the DCS++ method with the benefit of efficient parallelization of data-intensive tasks in
cluster infrastructures. The aim is to decrease even more the execution time of EM tasks
performed with the SNM (briefly, combine the best of the two worlds). In this sense, we

make the following contributions in this chapter:

45

4.1 General Multi-pass MR-based DCS++ Workflow 46

e We propose the multi-pass MapReduce-based Duplicate Count Strategy (MultiMR-
DCS++), a MR-based approach that provides an efficient parallelization of the multi-
pass DCS++ method [28] by using multiple MR jobs and applying a tailored data
replication during data redistribution to allow the resizing of the adaptive window.
The approach also addresses the data skewness problem with an automatic data parti-
tioning strategy that is combined with MultiMR-DCS++ to provide a satisfactory load

balancing across the available nodes;

e The approach MultiMR-DCS++ is evaluated against the MR-based multi-pass SNM
state-of-the-art approach RepSN [50] (fixed window). The evaluation shows that our
approach provides a better performance by diminishing the overall EM execution time.
The experiments are performed using a real cluster environment and real-world data

sSources.

Initially, we proposed an approach for the single-pass MapReduce-based Duplicate
Count Strategy. The work is presented in [62] and provides an efficient parallelization of the
DCS++ method [28] by using multiple MR jobs. However, this solution presented in [62]
does not support the performance of a multi-pass DCS++ variant within the same MR jobs.
This means that, to perform the multi-pass DCS++, the MR process must be repeated for
each pass. In this chapter, we present a more sophisticated model in terms of robustness and
extensibility that addresses both the single- and multi-pass MR-DCS++ without the need of

the MR process serialization.

4.1 General Multi-pass MR-based DCS++ Workflow

Occasionally, when dealing with dirty (inaccurate, incomplete or erroneous) input data, it is
not sufficient to use a single blocking key to generate satisfactory EM results. Even using
an adaptive window size, if the blocking is not ideal, it is quite common that the similar-
ity between distant entities remains considerable. Multi-pass SNM addresses this problem
by employing multiple blocking keys (e.g., using multiple entity attributes) and matching
passes in order to combine the duplicates identified by the different passes. One advantage

of using multiple passes is that, if the blocking is not ideal, individual passes can be done

4.1 General Multi-pass MR-based DCS++ Workflow 47

with relatively small window sizes and consequently improve the EM effectiveness and effi-
ciency [38].

A basic strategy when thinking about multi-pass DCS++ is to utilize a naive approach to
implement the multiple passes, i.e., run the single-pass MR-DCS++ p times and employ one
of the p different blocking key functions per pass. However, this approach requires p scans
of the input data source and introduces additional overhead for executing the p MapReduce

processes.

Camera Samsung DV150
Iphone 4 white 16G
IPod Touch Apple 5"

Cam| Camera Samsung DV150

Cam| Camera Digital DSLR Sony
Iph | Iphone 4 white 16G

Iph | Iphone 4 white 16G

Iph | Iphone 5 16G

Iph | Iphon. 4 white 16G

IPo | IPod Touch Apple 5"

IPo | IPod Nano 16G Original
IPo | IPod Nano 16G Original

: E-H
Iphone 4 white 16G

Iphone 5 16G

IPod Nano 16G Original
Iphon. 4 white 16G
IPod Nano 16G Original

A
B
C
Camera Digital DSLR Sony D*
E
F
G
H
|

—mﬁI-nl"'lUUU)>-|_

>
@
~
>
o
=
<]
wn
+
c
=]
=
©
o
]
c
(7}
U]
>
Gl
¥
=
3
o
o
m

Figure 4.1: Overview of the multi-pass MR-DCS++ matching process workflow.

In practice, new challenges arise when proposing adaptive MR-based EM approaches.
An interesting line of reasoning when we deal with MR-based EM is to define an efficient
MR approach (with load balancing handling) by knowing previously the number of entity
comparisons generated by the serialized blocking (windowing) method. In this sense, how
do we define an efficient MR approach when the blocking (windowing) method adapts ac-
cording to the duplicate detection rate (like the DCS++ strategy)? Also, how do we assign
entity comparisons to the proper reduce tasks with load balancing handling without knowing
all the necessary entity comparisons? Finally, how can we build a windowing model that is
capable of performing multiple passes in the same MR job execution? Our better answer to
solve these research questions is to propose a Multi-pass MR-based DCS++ approach for
EM processing.

Thereby, our approach uses three MR jobs as illustrated in Figure 4.1. The first MR
job sorts all the entities (SNM requirement) and splits them to generate sorted partitions
containing approximately the same amount of entities according to each pass. The aim of

this job is to enable the generation of an approximately equal number of entities comparisons

4.1 General Multi-pass MR-based DCS++ Workflow 48

per sorted partition. The idea is to provide an effective load balancing by sliding the adaptive
window over the same number of entities in each EM parallel execution unit (reduce task).
After that, the job emits the first and last entities of each sorted partition to the second MR
job. In turn, the second MR job performs early comparisons between the first and last entities
of each partition aiming to define the partitions that must be attached to each other, and thus,
enable the growth of the adaptive window without losing relevant comparisons. Finally, the
third MR Job performs the adaptive window sliding to detect the duplicate pairs.

In the remainder of this section, each MR job is detailed with a running example involv-

ing 12 entities (product descriptions) and 3 blocking keys in each pass.

4.1.1 First MR Job: Sorting and Selecting

SNM assumes an ordered list of entities based on the chosen blocking key. Since the input
data source consists of an unordered entity collection, a preprocessing job is necessary to
sort entities p times (according to the number of passes) and select the boundary entities of
the sorted partitions generated for each pass (more details in Section 4.1.2). To this end, the
map function determines the p blocking keys for each entity and outputs p key-value pairs
(pass - block K ey, entity) with a map output key = (pass - block Key), where pass means
the (window) pass index, and value = (entity), as shown in lines 3 to 7 of Algorithm 1. The
key-value pairs are partitioned based on the average number of entities per reduce task, as

follows:
S|
* —_—
r

£=p (4.1)

where p is the number of passes, II represents the set of partitions of Source R and r cor-
responds to the number of reduce tasks. The average number of entities (&) is necessary to
treat the skewness problem by allocating the same number of entities to each reduce task.
The reduce task’s key-value pairs are sorted by the key (according to SNM) and the reduce
function generates the additional output partitions with the sorted entities. The reduce func-
tion also generates an output with the boundary entities of each sorted partition according to
the proper pass. It selects the last entity of the sorted partition 0, the first and the last entities
of intermediate sorted partitions and the first entity of the last sorted partition according to

each pass (lines 16 to 20 of Algorithm 1). Note that the sorted partition index value is equal

4.1 General Multi-pass MR-based DCS++ Workflow 49

to the reduce task index.

Figure 4.2 shows the computation of the sorting and selecting MR job. The 12 entities
(A — L) of source R (initially unsorted) are divided (according to the number of map tasks
available) into three input partitions (II): 0, 1, and 2. Each entity has two blocking keys,
the first (BK7) is generated with the three first letters of the product description (cam, iph,
and ipo) and the second corresponds to the two first letters of product manufacturer (apple
= ap, samsung = sa, sony = so). The map output keys of £ is 0.cam and 1.so because
E’s blocking key in the first pass is cam and in the second pass is so. The first key (of
E)) is assigned (by the combiner function) to the second reduce task because the amount
of entities assigned to the first reduce task for the first pass reached the average number of
entities per reduce task (§ = % = 4). The second key (of F) is assigned to the third
reduce task because the amount of entities assigned to the first and second reduce tasks for
the second pass reached the average number of entities per reduce task. The second reduce
task generates an additional output sorted partition with the sorted entities F, F', G and H
of the first pass and J, K, L and B of the second pass. An output with the sorted partition
boundary entities £, H (first pass), J and B (second pass) preceded by O or 1 as the pass
index and 1 as the corresponding sorted partition index (the second reduce task index) is also

generated.

4.1.2 Second MR Job: MultiPAM Partition Allocation Matrix Genera-
tion

As mentioned in Section 2.1, an important step of the second MR job is to detect where the
boundary pairs are located in the sorted partitions. This job is responsible for indicating the
sorted partitions that must be replicated to the proper reduce task in such a manner that the
DCS++ adaptive window can be performed without changing the duplicate detection rate
presented by the serialized algorithm. To achieve this, the algorithm uses a boundary pair
inference strategy to know the exact moment to stop indicating sorted partitions.

The output of this MR job is the Multi-pass Partition Allocation Matrix (MultiPAM).
The key idea of the MultiPAM generation is to process the boundary entities of each sorted

partition which shares the same pass index. The MultiPAM is a Pass x m — 1 xm — 1

4.1 General Multi-pass MR-based DCS++ Workflow 50

Algorithm 1 First MR Job: Sorting and Selecting
1: function map_configure(jobCon f)

2: p < getNumberO f Passes();

3: function map(k = unused, v = entity)

4: forj=1—p,j++do

5 pass < j — 1; //pass index

6: blockKey < generateBlockingK ey(j, entity);
7: emit(k = pass - blockK ey, v = entity);

>
Shuffle: combines the records (with a combiner function) under the average (§{ = p * %)
number of entities per reduce task constraint, partitions the records by the first part of the (com-

bined) key (redIndex) and sorts the records by the entire key.

8: function reduce_configure(jobConf)
9: numPartitions < get NumberO f Partitions(); > //getNumberOfPartitions - returns the

number of partitions generated from the data source

10: function reduce(k = redIndex - pass - blockK ey, list(v) = list(entity))
11: entityIndex < 0;

12: for each entity € list(entity) do

13: //To HDFS

14: additionalOutput(pass - block K ey - entityIndex, entity)

15: entityIndex 4+ +;

16: if redIndex # 0O then

17: firstE < getFirstEntity(list(entity));

18: emit(k = pass - redIndex,v = firstFE); > //redIndex - the reduce task index
19: if redIndexr < numPartitions — 1 then

20: lastE < getLastEntity(list(entity));

21: emit(k = pass - redIndex,v = lastFE);

4.1 General Multi-pass MR-based DCS++ Workflow 51

Map: Key Generation Reduce: Entity Selection

Key = Pass.BlockKey

Output = Pass.Partition.Entity

Key #
0.0.cam A

Source R, Products Tlg BK} BK3

>
P 0.0.cam A
% = 0.0.cam B
Iphone 4 16G F iph ap = 8 T Output 0
Ipod Touch Apple 5) ipo ap g = P Soem D > 0.0.D
Camera Samsung DV150 B cam sa ‘s 'E # p_F Lol
Iphone 5 16G I iph ap = 8 U:lrap G
D —
= E 0l1ap H
5 = 01.ap |
c [
5
. © S 1.0.cam E
Source Ry Products TTy BK] BK3 g - 1.0.iph F Output 1
iPod Nano 16G Original L ipo ap i E 1.0.ph G .
Camera Digital DSLR Sony A cam so -g - 1.0.iph H
Camera Samsung DV150 C cam sa ; ‘-Iq'-": 11ap |
Iphone 4 16G G iph ap -g > 11lap K
o) izl |
= W L apilt
8 = 11sa B
2 8
Q
_&’ = Key #
P 2.0.ph_|
w 0.
Source R; Products ‘I'[i' BK3 BK% u:) : 2.0.po J
Camera Samsung DV150 D cam sa ‘S = i Qutput
o o 2.0.ipo K
Iphone 4 166G H iph ap * = = 2.0.ipo L * L]
Ipod Touch Apple 5" K ipo ap 8 = 2.1sa C 1.2.C
1] b
Camera Sony Digital DSLR E cam so o 21sa D
2150 A
* BK = BlockKey 21s0 E

Figure 4.2: Example dataflow for computation of the entity sorting with two window passes.

4.1 General Multi-pass MR-based DCS++ Workflow 52

matrix (where m is the number of map tasks) that specifies which sorted partitions must be
replicated and attached to other sorted partitions according to the respective pass index.

The MultiPAM computation using MR is straightforward. The map function determines
the reduce task that will process each entity and outputs a key-value pair with a composite
map output key = (RedIndex - Pass - PartitionIndex) and the value = (entity). The key-value
pairs are partitioned based on the RedIndex to ensure that the first entity of each partition
is assigned to each reduce task whose RedIndex < Partitionlndex, as shown in lines 8 and
16 to 18 of Algorithm 2. The last entity of each partition is assigned to the reduce task
whose RedIndex = Pass + 1 (if Pass + 1 refers to an out of bounds reduce task then
RedIndex = 0), as shown lines 21 to 24 of Algorithm 2. In the shuffle phase, the reduce
task’s key-value pairs are grouped by the first two parts of the key (RedIndex - Pass) and
sorted by the entire key. Thereafter, the reduce function performs the comparisons between
the entity whose RedIndex = PartitionIndex and each entity sharing the same pass index
(Pass) and whose RedIndex <> Partitionlndex aiming to find the comparisons that return a
similarity value below ®,,,;,, (lines 28 to 30 of Algorithm 2). For each comparison performed
where the similarity value is above ®,,;,, the reduce function outputs triples in the form
(Pass, partition_target -> partition_origin, similarity). The reduce function stops comparing
when a similarity value below ®,,;,, is found (lines 31 to 34 of Algorithm 2).

Continuing with the running example, in Figure 4.3, the map function output key of D
is 0.0.0 because D is assigned to the reduce task whose index is 0, belongs to pass index
0 and its partition is equal to 0. This key is assigned to the first reduce task that processes
comparisons between D and the first entity of each partition belonging to pass index 0 aiming
to find the comparison that returns a similarity value below ®,,,;,,. Thus, D is compared to
E (the first entity of the second partition) and [(the first entity of the third partition). Since
the comparison between D and E returns a similarity value above ®,,,;,, in the first pass (0),
E’s partition (1) must be replicated and attached to the D’s partition (0) to allow the growth
of the adaptive window without any possibility of comparison loss. Then, the MultiPAM is
updated with the new assignment (multiPAM[0,1,0] = 1). Note that the comparison between
D and [returns a similarity value below ®,,,;,,. This indicates that £’s partition contains the

boundary pair and thus it is no longer necessary to perform new comparisons.

4.1 General Multi-pass MR-based DCS++ Workflow 53

Algorithm 2 Second MR Job: MultiPAM Generation

1:
2:

A O

*®

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:

27

28:
29:
30:
31:
32:
33:
34:

function map_configure(jobCon f)
numPartitions < get NumberO f Partitions();
reduceTasks < jobCon f.numReduceTasks();
entityTurn < 0; > // entityTurn - the turn of the entity (identifies the first or last entities of a partition)
function map(k = unused, v = pass - partitionIndex - entity)
if partitionIndex = O then
redIndex < getNextReduceTask(); > //getNextReduceTask - returns the reduce task with the fewest number of assigned
entity comparisons
emit(k = redIndex - pass - partitionIndex,v = entity);
else
if partitionIndex = numPartitions —1 then
for j = 0 — partitionIndex — 1, j++ do
redIndex < getNextReduceT ask();
emit(k = redIndex - pass - partitionIndex,v = entity);
else
if entityTurn = 0 then
for j = 0 — partitionIndex — 1, j++ do
redIndex <+ getNextReduceTask();
emit(k = redIndex - pass - partitionIndex,v = entity);
entityTurn + +;
else
for j = 0 — partitionIndex — 1, j++ do
redIndex + (pass + 1);
if redIndex > reduceTasks — 1 then
redIndex < 0;
emit(k = redIndex - pass - partitionIndex,v = entity);
entityTurn — —;

>

Shuffle: sorts records by (redIndex - pass) and shuffles them.

: function reduce(k = redIndex - pass - partitionIndex, list(v) = list(entity))
firstE < getFirstEntity(list(entity));
for j = 1 — list(entity).size(), j++ do
stmV alue < matches(firstE, list(entity).get(j))
if simValue < ®,,;, then
break; //ISTOP
else

multiP AM [pass][redIndex][j] <+ 1;

4.1 General Multi-pass MR-based DCS++ Workflow 54

Map: Entity Replication Reduce: Reduce Specification

Group by (RedIndex.Pass.Partition)

Key = RedIndex.Pass.Partition

Output Source 0

Camera Samsung DV150 0.0.D
Iphone 5 16G 1.0.1

Output Source 1

Camera Sony Digital DSLR 0.1.E
Iphone 4 16G 0.1H ’
Ipod Touch Apple 5" 1.1)
Camera Samsung DV150 1.1.B

Output Source 2

Iphone 5 16G 0.2 ’
Camera Samsung DV150 1.2.C

Multi-pass Partition

Comparisons Allocation Matrix
P (Multi-pass PAM)
= N

[0, 250, D - 1]

Comparisons

Partitioning by RedIndex

Figure 4.3: Example dataflow for computation of the Partition Allocation Matrix (PAM) for

two window passes.

4.1.3 Third MR Job: Multi-pass MR-DCS++

The third job performs the distributed DCS++ denoted as MultiMR-DCS++. It assigns the
sorted partitions to the reduce tasks in such a manner that each reduce function can perform
the DCS++ adaptive windowing multiple times without missing any relevant comparison.

To be more specific, our approach uses the following key ideas:

o MultiMR-DCS++ assigns and attaches sorted partitions to perform the DCS++ adap-
tive windowing to each pass without any loss of relevant comparisons. To prevent the
data skewness problem (memory bottlenecks), the sorted partitions are set to have the

same number of entities;

o MultiMR-DCS++ improves the load balancing by fixing the same number of entities
to each sorted partition. Furthermore, for each reduce task, MultiMR-DCS++ fixes
the maximum number of window’s slides per pass according to the fixed number of

entities in each sorted partition aiming to increase even more load balancing.

The execution of MultiMR-DCS++ makes use of the MultiPAM as well as the composite
map output keys. Each map function generates a well-defined composite key that (together
with the associated pass and partition) allows the partition to be assigned to the proper reduce

tasks. The composite key thereby combines information about the target reduce task(s) and

4.1 General Multi-pass MR-based DCS++ Workflow 55

the entity itself. MultiMR-DCS++’s mappers output key-value pairs with key = (RedIndex -
Pass - PartitionIndex - EntityIndex) and value = (entity). The reduce task index has a
value between O and 7 - 1 and is used by the MR function part to perform assignments to
the reduce tasks. Since the reduce index, pass index and partition index are part of the key,
the MR function group takes only the reduce index into account and the key-value pairs are
sorted by the entire key, it is ensured that each reduce function only receives entities in the
correct order.

In the map phase, each map task m reads the MultiPAM and verifies to which reduce
task the entities of its corresponding sorted partitions must be assigned. The number of
replications for each entity is defined according to the number of reduce tasks indicated by
the MultiPAM. For example, if the MultiPAM indicates that partition 3 (of the pass index
0) must be assigned to the reduce tasks 1 and 2, the entities belonging to partition 3 (of the
pass index 0) must be replicated twice (i.e., to the reduce tasks 1 and 2). For the purposes of
memory bottlenecks avoidance and load balancing optimization, the map function allocates
the tasks generated by the odd passes from the first to the last reduce task and the even passes
from the last to the first reduce task. This is calculated by pass mod 2 as shown in line 30 of
Algorithm 3.

In the reduce phase, each reduce task r receives the assigned entities grouped by the
entire key. Since the key has the information of the pass index, partition index and entity
index, the entities are placed in the correct order in such a manner that MultiMR-DCS++
can process the adaptive window slide in each pass, as shown in Algorithm 3. The size of
the first window is passed as a context parameter (w) to the reduce function. Its value is
increased according to the definitions (of DCS++) discussed in Section 2.2. However, for
load balancing purposes, the window only slides until the last entity whose partition index is
equal to the reduce task index. Since after every window’s slide the window size is set to the
initial value, there is no problem on splitting the window sliding among the reduce tasks.

In our running example, as shown in Figure 4.4, the MultiPAM (generated in the second
MR job) indicates that the sorted partition IT} (for the pass index 0) must be attached to
[T, (the process of reading the MultiPAM is by line for each pass index) and IIf, has to be
attached to I1) (see Figure 4.3). The map task replicates the entities of II} and I, once. The

map task also sets to the redIndex of each replicated entity key the same value of the pass

4.1 General Multi-pass MR-based DCS++ Workflow 56

Algorithm 3 Third MR Job: Multi-pass MR-DCS++

1: function map_configure(j0bCon f)
2: multiPAM <+ getMultiPAM();

reduceTasks < jobConf.numReduceT asks();

. function map(k = unused, v = pass - blockKey - entity)

partitionIndex < getCurrentMapIndex(); > //getCurrentMapIndex - returns the index of the current map task

if pass mod 2 = 0 then

3

4

5

6: if partitionIndex = 0 then
7

8 redIndex <+ 0;
9

emit(k = redIndex - pass - partitionIndex,v = entity);

10: else
11: redIndex < reduceTasks — 1;
12: emit(k = redIndex - pass - partitionIndex,v = entity);
13: else
14: if partitionIndex = reduceTasks — 1 then
15: if pass mod 2 = 0 then
16: redIndex < partitionIndex;
17: emit(k = redIndex - pass - partitionIndex,v = entity);
18: for j = partitionIndex — 1 downto 0, j—— do
19: if multiP AM [pass|[partitionIndex][j] = 1 then
20: emit(k = j - pass - partitionIndex,v = entity);
21: else
22: redIndex < 0
23: emit(k = redIndex - pass - partitionIndex,v = entity);
24 for j = 1 to reduceTasks — 1, j++ do
25: if multiP AM [pass]|[partitionIndex][j] = 1 then
26: emit(k = j - pass - partitionIndex,v = entity);
27: else
28: redIndex < partitionIndex
29: emit(k = redIndex - pass - partitionIndex,v = entity);
30: if pass mod 2 = 0 then
31: for j = partitionIndex — 1 downto 0, j—— do
32: if multiP AM [pass|[partitionIndex][j] = 1 then
33: emit(k = j - pass - partitionIndex,v = entity);
34: else
35: for j = partitionIndex + 1 to reduceTasks-1, j++ do
36: if multiP AM [pass|[partitionIndex][j] = 1 then
37: emit(k = j - pass - partitionIndex,v = entity);

>

Shuffle: partitions the records by the first part of the key (redIndex), groups by the two first parts of the key (redIndex - pass), and sorts

the records by the entire key.

38: function reduce(k = redIndex - pass - partitionIndex - entityIndex, list(v) = list(entity))
39: doperformDCS + +(list(entity));
40: while partitionIndex = getCurrent ReduceT ask();

4.1 General Multi-pass MR-based DCS++ Workflow 57

and partitionIndex indicated by the MultiPAM. For example, £ belongs to partition 1 (of
the pass index 0) and thus is assigned to the reduce task 1, and since the MultiPAM indicates
that IT} has to be attached to IIj, (of the pass index 0), £ is replicated and assigned to the
reduce task 0.

Once all entities are positioned, the reduce function starts sliding the window. In our
example, we use ®,,,, = 0.9 (the similarity threshold that indicates if a pair of entities is
similar), a = 0.5 (the minimum interval value that the window size can increase and keep
performing relevant comparisons) which implies that ®,,,;,, = 0.9 — 0.5 = 0.4 (the minimum
threshold that indicates if a pair is out of the limits of the boundary pair). In practice, the
D, and « values are defined according to the characteristics of the data. We also use w =
3 which implies that, according to the DCS++ strategy, the increasing condition threshold
due to the duplicate detection rate is 44, = ﬁ = ﬁ = 0.5.

Thus, in the reduce task O and pass index 0, the first window generated covers entities
A, B, and C. This results in the following comparisons: A-B and A-C'. Both comparisons
are regarded as non-matches and since no duplicate entities are identified, there is no need
to increase the window. Therefore the window slides to the next entity (5). From B, the
next comparison B-C'is regarded as a match (framed). Thus, the following relation is tested:
if ‘zl > ﬁ, where d is the number of already detected duplicates within the window and
c is the number of comparisons already done also within the window, then w is increased
by winitia — 1 adjacent entities of that duplicate (C'). Since % > % w 1s increased by
two adjacent entities of C. Now, w covers B, C', D and F; the new comparisons generated
are B-D and B-FE. Since B-D is regarded as a match, the w increase test is loaded once
more resulting in true (% > 0.5) and the window is increased by two again. This time, the
window is increased from D, the last duplicate found. Now, w covers B, C', D, E and F/;
B is compared with the rest of the entities within the window. The window is no longer
increased due to the lack of new matches. After that, w is set to the initial value (3) and the
window slides to the next entity (C'). Although the windows starting with C' and D present
the partition index equal to the reduce index, they are skipped due to the transitive closure
related to B (B is similar to C' and D). The thick curve in Figure 4.4 indicates the end of the

window’s sliding. Also note that the window starting with £ is executed in the reduce task

1.

4.1 General Multi-pass MR-based DCS++ Workflow 58

Map: Partitioning Reduce: Sliding Adaptive Windows
Key = RedIndex.Pass.Partition.Index Group by (RedIndex.Pass.Partition.Index)

Sorted Partition 0 TT, BK"
Camera Digital DSLR Sony
Camera Samsung DV150 B cam
Camera Samsung DV150 C cam
Camera Samsung DV150 D cam

>

Iphone 4 16G F ap
Iphane 4 16G G ap
Iphone 4 166G H ap
Iphane 5 16G | ap Pass 1 = C-A

c-efd

>
Sorted Partition 1 T} BK" =
Camera Sony Digital DSLR E cam %
Iphone 4 166 F iph e
Iphone 4 16G G_iph = Comparisons (w = 3)
Iphone 4 16G H Iph g‘l Pass 0 = [E -FE-G
Ipod Touch Apple 5"] ap = . ’
Ipod Touch Apple 5" K ap 3
Ipod Nano 16G Original L ap ‘g
Camera Samsung DV150 B sa o .
1112 K J-B,L-B,L-C,
1113 L g
’ 114 B
11N
11230 B *

Sorted Partition 2
Iphone 5 16G

T,
|
Ipod Touch Apple 5" J
Ipod Touch Apple 5" K ipo
L
&

IPod Nano 16G Original
Camera Samsung DV150

Comparisons (w = 3)
PassO=[1-J,1-K,

Camera Samsung DV150 D sa 2024 L ’ e KIJ = L]
Camera Digital DSLR Sony A s0 2101 F

Camera Sony Digital DSLR E 50 2102 G

2.1.03 H
2104 1

* BK = BlockKey

Figure 4.4: Example dataflow for the Multi-pass MR-DCS++ strategy with w;;tiqa1 = 3.

4.2 Evaluation 59

The same strategy is performed in the pass index 1 of the reduce task 0. Note that,
in the second pass, a new match that was not found in the first pass was detected, i.e., A-
E, showing the importance of ideal blocking keys selection. If the blocking is not ideal,
this example shows that the multi-pass SNM can be an important resource to improve the
similarity detection effectiveness. Moreover, our evaluation shows that multi-pass SNM can

achieve high match quality even with smaller window sizes.

4.2 Evaluation

In the following, we evaluate the single- and multi-pass MR-DCS++° against the single-
and multi-pass RepSN’ approaches, regarding three critical performance factors: degree of
skewness (Section 4.2.1), the efficiency in the usage of the nodes available (n) in the cluster
environment (Section 4.2.2) and the trade-off between the matching quality and execution
time (Section 4.2.3). In each experiment, we broadly evaluate the algorithms aiming to
investigate their robustness against data skew, how they can scale with the increasing of the
number of available nodes and their robustness in maintaining the EM quality while their
execution time decreases.

We ran our experiments on a 20-node HP Pavilion P7- 1130 cluster. Each node has
one Intel IS5 processor with four cores, 4GB of RAM and one 1TB of hard disk. Thus the
cluster consists of 80 cores and 20 disks. Each node was configured with Windows 7, 64-
bit, JAVA 1.6, cygwin, and Hadoop 0.20.2. Each node runs at most two map and reduce
tasks (1 core/1GB of RAM for each task) in parallel (default configuration of Hadoop). The
replication factor used in the HDFS was configured with “3x” (by default).

We used three real-world data sources. The first data source (DS1) is a sample of the
Ask’s database that contains about 214,000 (8.8-107 bytes) question records. The second data
source (DS2) is by an order of magnitude larger and contains about 1.46 million (2.96 - 108
bytes) publication records. The third data source (DS3) is small and contains about 7,800
(1.6 - 10° bytes) DBLP and Google Scholar publication records (based on [53]) presenting

the following attributes (fields): id, title, authors and publication year. This third data source

®The codes and data sources are available in https://sites.google.com/site/demetriomestre/activities
"Executed using the deduplication tool (Dedoop) available in the author’s homepage at http://dbs.uni-

leipzig.de/howto_dedoop

4.2 Evaluation 60

was utilized due to the absence of a gold standard for DS1 and DS2 necessary to evaluate the
approaches’ matching quality.

For the experiments whose purpose was to investigate the execution time of the ap-
proaches, the similarity between two entities was computed using the Jaro-Winkler dis-
tance [48] of their comparing attributes (i.e., the question for DS1 and the publication title
for DS2). Those pairs with a similarity ®,,,, > 0.7 were regarded as matches. We uti-
lized o = 0.4 since the comparisons with a similarity distance below 0.3 (®,,;, = 0.7 — 0.4)
have proven to be unpromising. For the third experiment, two entities were regarded as
matches if their comparing attributes (i.e., publication title) have a q-gram similarity ®,,,, >
0.75. Since EM quality analysis is important in this experiment, the matcher was modified
due to the better accuracy provided by the g-gram strategy for these kinds of attributes. In
this case, we utilized a = 0.5 since the comparisons with a similarity distance below 0.25

(®nin, = 0.75 — 0.5) have proven to be unpromising.

4.2.1 Robustness: Degree of skewness

In this experiment, we study the robustness of the load balancing approaches to handle data
skew. In this case, data skew occurs when there is a region of high similarity that enables the
increasing of the adaptive window. This window increasing generates new entity compar-
isons and thus is supposed to leverage the EM execution time during the window sliding on
that region. Since the adaptive window increases only when a new duplicate entity is found,
for this study, we control the degree of data skew by modifying the number of duplicates in
the data source. The aim is to replace non-duplicated entities by duplicated ones purposely
according to an input percentage. Given a fixed number of entities e in the data source, the
number of duplicate entities d is equal to d = e - s, such that s > 0 is the percentage that
represents the degree of skew (the degree of duplication). To exemplify, suppose we have
100 entities (e) and we set s = 0 (no skewness) then there are no duplicate entities in the
data source. In turn, if we want 10% of duplicate entities, then we set s = 0.1, and thus,
d =100 % 0.1 = 10. To compare the load balancing approaches for different data skews, we
are interested at the execution time of the approaches when the data source presents regions
with high similarity detection.

The execution time of the approaches for different data skews of DS1 (n = 20, m = 40,

4.2 Evaluation 61

r =40, w = 1000) is shown in Figure 4.5. As we can see, the execution time of MultiRepSN
is similar in all scenarios. On the other hand, since MultiRepSN employs a fixed window
size, the workload balance is uniform. Also note that MultiMR-DC'S + + outperforms Mul-
tiRepSN in the scenarios which there is duplicate detection. Only in the case that there is no
duplicates in the data source, the execution time of the approaches was similar. This result
confirms that even with the increasing of the window size in regions of high duplicate detec-
tion (which leads to more entity comparisons), the usage of the transitive closure mechanism
works by minimizing the execution time. According to our experiment, the reason why the
execution time is decreased as the degree of skewness grows is that the time saved due to
the reduction of unnecessary comparisons (promoted by the transitive closure mechanism)
is higher than the time spent by the additional entity comparisons (generated due to the in-
creasing of the window size). Therefore, the results we have carried out indicate that there
is no scenario in which MultiRepSN outperforms MultiMR-DC'S + + in terms of execution

time due to unbalanced workloads.

=4=—MultiMR-DCS++ —@— MultiREPSN

170

160

140

130 '\\

110 ¥

100 — .
—
90 N
80
70

L 4

executiontimeins

(] 04 02 03 04 05 06 07 08 09 1
data skew factor(s)

Figure 4.5: Execution times for different data skews using w = 1000 (n=20, m=40, r=40).

4.2.2 Scalability: Number of Nodes Available

Scalability is important for many reasons and one of them is the financial issue. For instance,

the number of nodes should be carefully estimated since distributed infrastructure suppliers

4.2 Evaluation

62

usually charge per hired machines even if they are underutilized [50]. Some suppliers also

charge per processing cycles, which highlights the need to avoid unnecessary entities com-

parisons. To evaluate the approaches’

scalability by varying the number of available nodes,

we study their behavior for the single-pass and multi-pass executions.

Single-pass Execution

To analyze the scalability of the two multi-pass approaches executing just one pass, we vary

the number of nodes from 1 up to 20.

Following the Hadoop’s documentation, for n nodes,

the number of map tasks is set to m = 2 - n and the number of reduce tasks is set to r = m.

The values of the execution times are shown in Figure 4.6 (DS1) and Figure 4.7 (DS2). Since

the number of comparisons also grows with the window size (increasing the execution time),

we defined the same window size for both approaches according to the magnitude of the data

source size to avoid benefiting a specific approach. For DS1 and DS2, we utilized w = 100

and w = 1000, respectively, aiming at

verifying the scalability of the two approaches when

performing a small and large (w > 400 [50]) window size.

——+—MultiMR-D CS++ —=—MultiREPSN

speedup MultiMR-DCS++ === speedup MultiREPSN

300

b e RN
HPUON®OWLO

3

Time in secs

8

e
O N W
speedup

[s]

. <

N WA U N

9 10 11 12 13 14 15 16 17 18 19 20
Nodes

Figure 4.6: Execution times and speedup for both approaches using DS1 (w = 100).

4.2 Evaluation 63

=———=MultiMR-D CS++ ——=—MultiREPSN - = « = - speedup MultiMIR-D CS++ == == speedup MultiREPSN

- 20

30000 4 . 5

27000 =

\ 3%

24000 =2 16

= A 15

'f.’ -’

. 21000 o - 14

8 \\ - "" - 13
% 18000 = 2 g
£ \\ IO S -1
g 15000 ",‘ "' - 10 o

F 12000 T .

v 350 i
8 300 .
» v 250 B
ol S 200 \Q\ i
g o 150

E

[

[y
(@]
o
/
T
HNWLE OO

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Nodes

Figure 4.7: Execution times and speedup for both approaches using DS2 (w = 1000).

Both MultiMR-DC'S 4+ and MultiRepSN scale almost equally for the smaller and larger
data sources DS1 and DS2, respectively. These results show their ability to evenly distribute
the workload across reduce tasks and nodes. However, due to the difficulties presented by the
traditional SNM related to the fixed (and difficult to configure) window size, its performance
is depreciated by the execution of many unnecessary comparisons. This problem is the main
reason why the MultiRepSN approach always performs slower than MultiMR-DCS++ even
presenting by design an uniform load balancing mechanism. The difference is highlighted
by the speedup.

In the evaluation with DS1, MultiMR-DCS++ saved 102,038 comparisons due to the
adaptive window, which resulted in a decrease of execution time. Also, note that with the
increase in number of nodes, the execution time difference between the approaches decreases
due to a better division of the unnecessary comparisons among the nodes performed by
MultiRepSN approach.

However, in the evaluation with DS2 (Figure 4.7), the performance difference between
the two approaches is almost two nodes in favor of MultiMR-DCS++, according to the

speedup with n = 20. This means that a huge data source and a large window size can

4.2 Evaluation 64

depreciate fairly the execution of MultiRepSN.

Multi-pass Execution

For this experiment, we firstly compare the MultiMR-DCS++ approach against the naive
strategy, i.e., the repeated execution of single-pass MR-DCS++ [62], aiming to verify if
there is any difference in the execution time of the strategies. Figure 4.8 shows the result
of 1 to 3 passes employing w = 1000. We utilize the following three blocking functions
in each pass: first letter, first three letters, and first five letters of the publication title. In
practice, the usage of these blocking functions is not common, however since the purpose of
this evaluation is to measure execution time, they are valid because they change the sorting

order of the entities.

—— p x single-pass MR-DCS++ —#— 1 x multi-pass MR-DCS++ |

360
340

320 //
220 .
280

260 ////
« 240
¢ 200
'E 180 Y
E 160 el

il

F 140
120 e

80
60

20

Passes

Figure 4.8: Comparison of the approaches for multi-pass SN using MR-DCS++ (w = 1000)
for DS2 with n = 20 nodes. p x single-pass MR-DCS++ [62] performs single-pass MR-
DCS++ p times whereas 1 x multi-pass MR-DCS++ performs multi-pass MR-DCS++ one

time.

Note that the execution time grows linearly with the number of passes because the num-

ber of processed pairs is linear to the number of entities and passes. The p x single-pass

4.2 Evaluation 65

MR-DCS++ [62] strategy mainly suffers from the fact that the input data needs to be read
and parsed p times whereas the additional overhead of multiple MR-DCS++ executions is
relatively low. MultiMR-DCS++, on the other hand, avoids the p-fold input reading and
clearly outperforms the p x single-pass MR-DCS++ strategy. The execution time improve-
ments increase with more passes, e.g., from about 14% for two passes to 17% for three
passes.

We also compare the MultiMR-DCS++ approach against the MultiRepSN one varying
the number of available nodes and passes aiming to verify their behavior with respect to the
execution time as the number of nodes and passes increase. In this experiment, we utilize
the larger data source DS2, employ w = 1000 and apply the same three (passes) blocking
functions mentioned at the beginning of the section.

As we can note, the MultiMR-DCS++ approach outperforms MultiRepSN approach in
the three scenarios (i.e., one, two and three passes). This result is due to the difficulties
presented by the traditional SNM related to the fixed (and difficult to configure) window size,
its performance is depreciated by the execution of unnecessary comparisons. As the number
of passes increases, the number of unnecessary comparisons is considerably increased. Note
that, with n = 20, the execution time difference between the two approaches, in the scenario
with three passes (around 77 secs), is much greater than the execution time difference in
the scenario with one pass (around 42 secs). This problem is the main reason why the
MultiRepSN approach always performs slower than MultiMR-DCS++ even presenting by
design an uniform load balancing mechanism. Also, note that, even with the number of
unnecessary comparisons being increased due to the increasing number of passes, there is
a kind of compensation being held in the execution time difference between the approaches
due to a better division of the unnecessary comparisons among the nodes as the number of

nodes is increased.

4.2.3 Matching Quality vs. Execution Time

Finally, we study the trade-off between the match quality, in terms of F-Measure (i.e., the
harmonic mean of precision and recall [14]) and the execution time. The data sources used
so far could not be applied for this evaluation due to the absence of a gold standard necessary

for the match quality calculations. As aforementioned, we utilized another publication data

4.2 Evaluation 66

—+—MultiMR-DCS++ (1 pass) —#— MultiMR-DCS++ (2 passes) —x— MultiMR-DCS++ (3 passes)

——MultiREPSN (1 pass) =~ MultiREPSN (2 passes) —o— MultiREPSN (3 passes)

75000 1100
N

69000 =% 1000

AN 900

800
700

_—
600 -~
\ \\ ~
500 ~
\

400
300 T
ANN 200

i
8
/
bz
Time in secs

Figure 4.9: Execution times for both multi-pass approaches using DS2 (w = 1000) varying

the number of nodes and passes.

source (based on [53]) that contains about 7,800 records and along with the data source
there is the gold standard needed to compute the precision, recall and F-Measure metrics.
Two window sizes w = 500 and w = 1000 for the single-pass MultiRepSN and MultiMR-
DCS++ approaches are employed and compared with other three multi-pass MultiRepSN
and MultiMR-DCS++ strategies with two passes (passes=2) and window sizes w; = wy =
100, w; = wy = 200 and w; = wo = 500, respectively. The blocking keys used this time
are the first word of the publication title (pass #1) and the first author’s name (pass #2),
respectively. As mentioned earlier, two entities are considered a match if their titles have a
g-gram similarity ®,,,, > 0.75. In this case, we utilize o = 0.5 since the comparisons with
a similarity distance below 0.25 (®,,;, = 0.75 — 0.5) have proven to be unpromising. This
time, we run our experiments on four nodes (m = r = 8) due to the small size of the data
source. Otherwise, if a large number of nodes were utilized, due to the small data source,
the executions would be instantaneous and it would be difficult to highlight the differences
between the execution times.

The left part of Figure 4.10 shows the observed execution times along with the number

4.2 Evaluation 67

of comparisons and the precision, recall and F-measure collected values for the execution of
the two approaches with window sizes w = 500 and w = 1000 (one pass each). The right
part shows the results of the execution of the two approaches for two passes with window
sizes wy = wy of 100, 200 and 500. Precision, recall and F-Measure are computed including

all pairs that have been directly identified and those generated by transitive closure.

| Singlepass | Multi-pass (passes=2
|| MultiRepsN | MultiMF ultiRepSN | MultiMR-DCS++

Window size w=500 |w=1000| w=500 |w=1,000fiw,=w,=100|w;=w,=200}w,=w,=500 Jw,=w,=100 jw;=w,=200 Jw,=w,=500
#Comparisons =3.68010° | =7.12010°[=2.45:10° | =4.43.10°f] =1.51+10°|=2.99:10°| =7.3610° | =1.07-10°| =2.11+10° | =4.98-10°
Execution time (in secs) 93 124 72 98 67 82 138 60 69 101

Matching Quality Matching Quality
Precision 92.33% | 91.57% | 88.97% | 88.22% W 93.26% | 93.10% | 92.21% | 87.63% | 90.55% | 85.37%
Recall 63.91% | 64.63% | 70.39% | 71.03% | 66.86% | 68.09% | 70.66% | 75.70% | 78.25% | 80.30%
F-Measure 75.53% | 75.77% | 78.59% | 78.69% W 77.88% | 78.65% | 80.01% | 81.23% | 83.96% | 82.76%

Figure 4.10: Comparison of quality and execution time for multi-pass RepSN and MR-

DCS++ with one and two passes using different window sizes.

In all cases, both for single and multi-pass, Figure 4.10 shows that the number of com-
parisons performed by MultiRepSN is significantly higher than the amount performed by
Multi-MR-DCS++ (under the same window size condition). For instance, single-pass Multi-
RepSN for w = 1000 performs about 2.7 million more comparisons than MultiMR-DCS++.
In this case, the difference is also highlighted by the execution time since MultiMR-DCS++
(98 secs) outperforms MultiRepSN (124 secs) by 21%. This indicates that MultiMR-DCS++
performs efficiently the task distribution among the nodes since MultiRepSN by design has
a robust load balancing mechanism (due to the fixed window size) since the execution time
difference between the two approaches is still significant given the gain with the saved com-
parisons. In terms of matching quality, although the slight decrease in the precision, due to
the false negatives generated by the wrong transitive closure assumptions, MultiMR-DCS++
outperforms MultiRepSN in all cases with respect to recall and F-Measure due to its ability
to increase the window in regions of high similarity and perform better guesses about which
comparisons not to perform (by skipping them). Furthermore, the recall of MultiRepSN
approach is compromised since it misses some real duplicates due to the usage of a fixed
window size.

Note that both approaches achieve a significant better F-Measure when performed with

two passes due to the improved recall. For instance, the MultiMR-DCS++ F-Measure value

4.3 Final Considerations 68

using one pass with w = 1000 is 78.69% whereas using two passes with w = 100 (38 secs
faster) is 81.23%, about 3% higher. Hence, in this case the consideration of multiple blocking
keys helps to find many more matches despite the smaller window sizes.

The shown results confirm that MultiMR-DCS++ is able to preserve with small losses
the quality levels of EM results even with smaller window sizes and that it can outperform
single-pass MR-DCS++ not only in preserving the quality levels of EM results but also in

efficiency due to reduced window sizes.

4.3 Final Considerations

In this chapter, we proposed a novel Multi MR-based approach for solving the problem of
the adaptive SNM parallelization, multi-pass MR-DCS++. The solution provides an effi-
cient parallelization of the DC'S + + method [28] by using multiple MR jobs and applying
a tailored data replication during data redistribution to allow the resizing of the adaptive
window. The approach also addresses the data skewness problem with an automatic mech-
anism of data partitioning that can be combined with MR-DCS++ to ensure a satisfactory
load balancing across all available nodes. Our evaluation on a real cluster environment us-
ing real-world data demonstrated that MultiMR-DCS++ scale with the number of available
nodes. We compared our approach against an existing one (RepSN) for single and multi-pass
and verified that MultiMR-DCS++ in both cases overcomes RepSN in performance (execu-
tion time and matching quality) terms. In the following chapter, we will investigate if a
combination of two competing methods, i.e., blocking and the adaptive windowing, as well

as its Spark-based model, can improve the efficiency of the Entity Matching task.

Chapter 5

Enhancing Entity Matching Efficiency
through Adaptive Blocking and

Spark-based Parallelization

As mentioned in Chapter 1, detecting similar or matching entities (records) is difficult due
to the need of applying specific matching techniques on the Cartesian product of all input
entities which leads to a computational cost in the order of O(n?). This means that the
application of such approach is ineffective, specially in scenarios with predefined time re-
strictions [66]. The main way to minimize the workload caused by the Cartesian product
execution and still maintain the matching quality is to reduce the search space by applying
indexing (blocking) techniques [14], [61], [94], [63] (broadly discussed in Chapter 2).

A complete survey shown in [15] provides a detailed discussion of six indexing methods
(with a total of 12 variations of them). The work also describes a theoretical analysis of
the methods’ complexity and an empirical evaluation of them over a variety of both real
and synthetic data sources. The empirical investigation showed that Standard (traditional)
Blocking [5] and Adaptive Windowing [100] achieved the highest duplicate detection rates
(F-Measure) according to all the parameter settings. The study provides evidence that a
generalization involving these two methods can possibly enable the reduction of the overall
number of comparisons and still maintain the high values of duplicate detection rate.

Moreover, it is known that open source parallel programming models for data-intensive

tasks emerged as a new paradigm to run jobs which previously used to be complex and

69

70

costly to run, such as Entity Matching over Big Data sources [14]. These new programming
models, such as Spark [104], can run on commodity hardware and provide high scalability,
fault tolerance and flexibility to distributed systems. Thus, given the pair-wise comparison
nature of the problem, EM is a data-intensive and performance critical task that also demands
studies on how it can benefit from the Spark framework and its efficient resources.
Therefore, given that a generalized method involving the Standard Blocking and the
Adaptive Windowing as well as its efficient Spark-based parallelization has not yet been

proposed, to the best of our knowledge, we make the following contributions in this chapter:

e We propose a new generalized indexing method, denoted as Blocked Adaptive
Windowing (BAW), which combines the best features of the Standard blocking and

Adaptive Windowing methods;

e We propose two variants of BAW, denoted as Overlapped Blocked Adaptive
Windowing (OBAW), which enables blocking overlap, and Retrenched OBAW
(ROBAW), which combines both the blocking overlap and a retrenchment strategy

to also adapt the window size in regions of entities with low duplicate detection rates;

e We propose the Spark-based Blocked Adaptive Windowing (S-BAW), a Spark-based
approach that provides an efficient parallelization of the blocking method proposed in
this chapter. The proposed approach also addresses the data skew problem with an
automatic data partitioning strategy that provides a satisfactory load balancing across

all available nodes;

e We evaluate the new generalized algorithm and its variants against the main state-of-
the-art indexing methods (i.e., Standard Blocking, fixed Sorted Neighborhood, Adap-
tive Windowing and the generalization of the Standard Blocking with the fixed Sorted
Neighborhood) and show that the new generalized method provides better performance
by diminishing the overall number of comparison pairs and still maintaining high val-
ues of duplicate detection quality. Furthermore, we evaluate S-BAW and its variants
against the main state-of-the-art parallel approaches and show that the formers achieve
better performance by diminishing the overall EM execution time. The evaluation

employs a real cluster environment and uses real-world data sources.

5.1 Blocking the Adaptive Windowing 71

5.1 Blocking the Adaptive Windowing

In this section, we present a new generalized method, denoted as Blocked Adaptive
Windowing (BAW), which combines the search space reduction promoted by the Stan-
dard Blocking method with the adaptability efficiency of the Adaptive Windowing method
(DCS++). In addition, we also present two variants of BAW that improve both the efficiency

and efficacy of this method.

5.1.1 Blocked Adaptive Windowing

The Blocked Adaptive Windowing (BAW) method is based on the combination of Standard
Blocking (SB) [5] and Adaptive Windowing (DCS++) [28] aiming to mix the assumptions
that blocking and sorting the entities, based on a blocking/sorting key, approximates entities

that have a higher probability of being duplicates. Basically, BAW follows the idea of:

e sorting the entities based on a sorting key;
e blocking the entities according to a blocking/sorting key; and

e performing the DCS++ method within each block.

The motivation behind this strategy is to decrease even more the number of non-matching
comparisons by bounding the areas where the adaptive window can act in such a manner to
avoid unnecessary comparisons (from different blocks). For instance, it does not make sense
to compare publication titles from different years. Thus, the Adaptive Windowing method
(DCS++) slides until the end of each block is reached. When the end of a block is reached,
the initial size of the window in the subsequent iterations is decreased by 1 and the window
size is no longer increased. Algorithm 4 shows the pseudo-code of the BAW strategy. Note
that, as shown in lines 3 to 5, DCS++ is performed considering each block as an independent
data source.

To illustrate the BAW method, Figure 5.1 shows the same execution example presented
in Section 2.1.1. For each block, the Adaptive Windowing (DCS++) utilized a window
Size Winiiqr = 3. Note that, initially, the window includes the first two entities (A, D) and

generates one pair of comparison [(A — D)]. After that, the window slides to the next entity

5.1 Blocking the Adaptive Windowing 72

Algorithm 4 Blocked Adaptive Windowing (BAW)

1: function BAW (entities, blockingKey key, initial window size w, threshold ¢4q;-)

2: sorts entities by key;

3: blockedEntities[] + extract Blocked Entities ByBlockingK ey();
4: for b =1 — blockedEntities.size(), b++ do

5: DSC + +(blocked Entities|b], w, ¢qar); //per forms DCS + +

(B) belonging to block Per. From B, the next comparison B — E is considered a match.
Thus, the following relation of DCS++ is tested: if g > ﬁ, where d is the number of earlier
detected duplicates within the window and c is the number of comparisons already done also

within the window. Thus, w is increased by w;,i+it — 1 adjacent entities of that duplicate

1

37, W is increased by

(E), as long as the block boundaries are not surpassed. Since % >
two adjacent entities of £/. Now, w covers B, F, F' and H; the new comparisons generated
are B-F and B-H. Since B-F'is regarded as a non-match pair, the w increasing test is not
loaded. Then, the comparison B-H is performed. Since H is the last entity of block Per,
the w increasing test is no longer loaded (to avoid the comparisons of entities belonging to
different blocks).

Note that the pair £-H is regarded as a match due to the transitive closure assumption.
The windows starting with entities /2 and F' were also skipped for the same reason. After
that, w is set to the initial value (three) and the window slides to the next block (1'ea),
starting from entity C'. The example also shows that the number of comparisons to detect

the four duplicates decreases by five (comparisons) with respect to the DCS++ method (see

Subsection 2.1.1). At the end, the number of comparisons performed is seven.

5.1.2 Blocked Adaptive Windowing Variants

As we can notice, BAW is recommended when an ideal/effective blocking key is provided
due to the delimitation of proper regions of entities. By doing that, the adaptive window
can act in such a manner to avoid unnecessary entity comparisons (from different blocks).
However, when dealing with dirty (i.e., inaccurate, incomplete or erroneous) input data, it
may not be possible to use an effective blocking key. Even using an adaptive window size,
if the blocking is not ideal, it is quite common that the similarity value between entities
belonging to different blocks remains considerable. For this reason, we propose the first

BAW variant, denoted as Overlapped Blocked Adaptive Windowing (OBAW), to enable

5.1 Blocking the Adaptive Windowing 73

blocking overlap.

Overlapped Blocked Adaptive Windowing - OBAW

The idea of overlapping the Blocked Adaptive Windowing is to allow the adaptive Window-
ing to surpass the end of a block and cover entities from adjacent blocks. The strategy works
as follows: the adaptive sliding window is performed within the block, but, instead of stop-
ping to increase the window when the end of the block is reached (such as BAW), OBAW
enables the adaptive window to increase beyond the limits of the current block. In addition,
it decreases the adaptive window size when the end of the block is near and only overlaps the
blocks if the adaptive window size needs to increase. Algorithm 5 shows the pseudo-code
of the OBAW strategy. Note that, as shown in lines 7 and 8, DCS++ is performed in each
block and if the window has to increase at the end of the block; entities from the next block

are placed together as far as the window increases.

Publication Title l Publication Title

Camera Phone Bans Exp. Cam| Camera Phone Bans Exp.

I 7 comparisons 9 comparisons
E-H

>
)
x A
z ,
Periodic load balancing | B £ Cam| Camera model for recip. | D
© — -
Teaching Social Simul. | C A Per | Periodic load balancing | B
Camera model for recip. | D ’ g Per | Periodic load balancing | E EH
Periodic load balancing | E g Per | Perturbations of Shifts. | F i
Perturbations of Shifts. | F E Per | Perzodicload balancing |H
Teams of pushdown aut.| G E Tea | Teaching Social Simul. |C
Perzodic load balancing | H E Tea | Teams of pushdown aut.| G
o
Teams of pushdown aut.| | Tea | Teams of pushdown aut.| |

Figure 5.1: Execution example of the BAW and OBAW methods with adaptive initial win-

dow size Winitial = 3.

In the running example of the OBAW method shown in Figure 5.1, for each block, the
Adaptive Windowing (DCS++) utilized a window size w;y;tiq; = 3. Initially, the window
includes the first two entities (A, D) and generates one pair of comparison [(A — D)|. After
that, the window slides to the next entity (53) belonging to block Per. From B, the next
comparison B — F is regarded as a match. Thus, the following relation according to DCS++
is tested: if % > ﬁ, where d is the number of previously detected duplicates within the
window and c is the number of comparisons already done also within the window, then w is

increased by w;n;tia — 1 adjacent entities of that duplicate (E).

5.1 Blocking the Adaptive Windowing 74

Algorithm 5 Overlapped Blocked Adaptive Windowing (OBAW)

1: function OBAW (entities, blocking K ey key, initial window size w, threshold ¢)

20 Wingtial = w;
sorts entities by key;
blockedEntities|| + extractBlocked Entities ByBlockingKey();
for b = 1 — blocked Entities.size(), b++ do
DSC + +(blocked Entities[b], w, ¢qar); //per forms DCS + +
//The following lines are placed at the end of DSC + +

//getRemainingEntities returns the remaining entities of block b that were not yet considered in the adaptive window sliding

R AN AN

if w > blocked Entities|b].get Remaining Entities() and w > w;nitiq; then
10: blocked Entities[b].add Entities(get Entities(blockedEntities[b + 1],w — blockedEntities[b].get Remaining
Entities()));

Since % > w 1is increased by two adjacent entities of £. Now, w covers B, E, F,

1
3-1°
and H; the new comparisons generated are B-F"and B-H. Since B-F is regarded as a non-
match pair, the w increasing test is not loaded. Then, the comparison B-H is performed.
Since B-H is regarded as a match, the w increasing test is loaded once more resulting in
true (% > 0.5) and the window is increased by two again, ovarlapping the next block (7'ea)
by 2 entities. This time, the window is increased from H, the last duplicate found. Now, w
covers B, E, F', H, C' and G; B is compared with the rest of the entities within the window.
The window is no longer increased due to the lack of new matches. Note that, the pair £-H
is regarded as a match due to the transitive closure assumption. After that, w is set to the
initial value (three) and the window slides to the next block (7'ea), starting from entity C.
The example shows that the number of comparisons (nine) required by OBAW to detect the

four duplicates decreases by three comparisons with respect to the DCS++ method even with

OBAW enabling block overlapping (see Subsection 2.1.1).

Retrenched OBAW - ROBAW

Retrenched Blocked Adaptive Windowing attacks a vulnerability of the DCS++ method re-
lated to the window inadaptability to decrease in regions of entities with almost no duplicate
detection and, consequently, reduce the number of unnecessary comparisons. In order words,
the execution of DCS++, in regions of entities with rare presence of duplicates, performs
almost similar to the SNM with fixed window size (i.e., DCS++ worst case) [28]. To over-
come this vulnerability, we propose a retrenchment adjust in the adaptability of the window

in regions of rare presence of duplicates. This window retrenchment is only applied when

5.1 Blocking the Adaptive Windowing 75

a non-matching pair is detected and the constraint d = 0 is satisfied, where d is the num-
ber of detected duplicates within the current window. When a new duplicate is found and
‘El >= @44, the window size is set to its original size and the increasing strategy of DCS++
is applied normally.

The retrenchment strategy works as follows: every time a non-matching pair is detected
and d = 0, the similarity value (sv) (e.g., sv = 0.5) is utilized to set a global variable, called

rf+sv
2

retrenchment factor (rf), with a new value according to rf = . This retrenchment

factor is then used to calculate the percentage of the window size that must be retrenched.

1007 f

The percentage of retrenchment (W Rpercentage) 18 calculated as: W Rpercentage = p—
matching

For instance, assume that the similarity threshold (to decide whether a comparison pair is
a match or not) is @marching = 0.7, the actual retrenchment factor is 7f = 0.3 and the new
pair of entities is regarded as a non-match with a similarity value sv = 0.4. This means that
rf = Tf% = % = 0.35 and W Rpercentage = % = % = 50. Thus, the window
size must be retrenched in 50% of the number of remaining entities (which have not been
compared yet) within the current window. The intuition behind this strategy is that, if a
similarity value of a non-matching pair within the current window is becoming distant from
Omatching, the current window size must be decreased proportionally.

The ROBAW variant was designed to overlap blocks and retrench the adaptive window
size in regions of entities that do not present duplicate detection. Algorithm 6 shows the
pseudo-code of the ROBAW strategy. Note that, as shown in lines 7 to 11, DCS++ is per-
formed in each block and, if the window needs to increase at the end of a block, the entities
from the next block are placed together as far as the window increases according to the
DCS++ strategy. Lines 14 to 26 show that the retrenchment algorithm must be added to
the DCS++ procedure responsible for adapting the window size to enable the retrenchment
feature.

In Figure 5.2, some changes in the original running example (Figure 5.1) were made to
enable a proper illustration of the ROBAW execution. Firstly, the block C'am was removed
and the block Per received two more entities (A and D). Also, some of the existing entities
(E, F and H) were changed aiming a better illustration. Finally, the Adaptive Windowing
(DCS++) utilized a window size Wn;tiar = 5.

In Figure 5.2, we can see that the window includes the first five entities (A, D, B, E/, F))

5.1 Blocking the Adaptive Windowing 76

Algorithm 6 Retrenched Blocked Adaptive Windowing (ROBAW)

1: function ROBAW (entities, blockingK ey key, initial window size w, threshold ¢4q;-)

20 Wingtial = w;

3: sorts entities by key;

4: wSizeBeforeRetrenchment = w;

5. rf=0;

6: blockedEntities[] + extractBlocked Entities ByBlockingKey();

7: forb=1— blockedEntities.size(), b++ do

8: DSC + +(blocked Entities|b], w, ¢pqqr); / /per forms DCS + +

9:

10: /[The following lines are placed in ROBAW to support overlapping blocks;

11: if w > blocked Entities[b].get Remaining Entities() and w > w;ntiq: then

12: blockedEntities[b].add Entities(get Entities(blockedEntitiesb + 1],w — blockedEntities[b].get Remaining
Entities()));

13:

14: //The following lines are placed inside ROBAW (more specifically inside the method responsible for adapting the window if
necessary) to enable the window size retrenchment;

15: if d == 0 and isNonDuplicate(current Pair) then

16: sv = getSimilarity(currentPair);

17: rf=(rf+sv)/2;

18: W Rpercentage = (100 % 7f) /$matching:

19: if alreadyRetrenched() == false then

20: wSizeBeforeRetrenchment = w;

21: retrenchBy(w.get RemainingEntities(), W Rpercentage)
22: lastW R = W Rpercentages

23: else if W Rpercentage > lastW R then

24: w.size = wSizeBe foreRetrenchment;

25: retrenchBy(currentWindowRemaining Entities(),
26: W Rpercentage);

27: else

28: w.size = wSizeBe foreRetrenchment;

5.1 Blocking the Adaptive Windowing 77

and generates four pairs of comparisons [(A — D), (A — B), (A — E), (A — F)]. Since the
first two comparisons were regarded as non-match (d = 0), the process of retrenchment is
started. Firstly, r f is updated: r f = % = 0.2. Afterwards, W Rpcrcentage 18 also updated:
W Rpercentage = % = (100%0.2)/0.7 = 28 (assume 0.7 is the threshold that determines
whether a comparison pair matches or not). In other words, 28% of the remaining entities
must be removed from the current window; in this case, the entity F. Thus, the comparison
pair A-F is not evaluated. Since one retrenchment was performed, another retrenchment
will be performed only if the next W Ry centage 1S greater than 28. After that, the rest of
the comparisons are performed and, as the end of the block is approaching, the window size
is retrenched by one entity until it reaches the end of the block (as explained in Subsection
5.1.2). However, one duplicate was found (F-H) and since it is the first comparison, the
window increasing evaluation requires the window size to be increased from that duplicate
(H). Thus, the window is allowed to overlap the blocks and proceed the regular adaptive

increasing. With this strategy, the ROBAW method can perform comparisons of entities

from different blocks that have a high probability of being duplicates.

o runcaron e I

Per | Perceptrons. 15 comparisons

Retrenchment due
the end of the block

Per | Percept.-based image ret.

Per | Periodic load balancing

Per | Perimeter Search.

Per | Persisten Threads

Per | Persistent Threads

Tea | Teaching Social Simul.

Tea | Teams of pushdown aut.

N KN == Bxsll Bl Bvc2 lv)

Match found -> Overlap

Tea| Teams of pushdown aut. | |

Figure 5.2: Execution example of the Retrenched BAW method with adaptive initial window

S1Z€ Winitial — 5.

5.2 Spark-based Adaptive Windowing 78

5.2 Spark-based Adaptive Windowing

An interesting line of reasoning when we deal with Spark-based EM is to define an effi-
cient approach (with load balancing handling) by knowing previously the entity comparisons
generated by the serialized blocking (windowing) method. However, how do we define an
efficient Spark-based approach when the blocking (windowing) method adapts according to
the duplicate detection rate (such as BAW and its variants strategies)? How do we assign
entity comparisons to the proper workers with load balancing handling without previously
knowing all the necessary entity comparisons? To answer these research questions, we pro-
pose a Spark-based BAW for EM processing using multiple transformation steps. Each step

is detailed with examples in the following subsections.

5.2.1 Spark-based BAW (S-BAW)

To provide an efficient workload distribution among the workers and also enable the BAW
method to be efficiently executed in a Spark workflow, we perform the adaptive windowing
EM processing employing three transformation steps as illustrated in Figure 5.3. The key
idea is to improve the load balancing by fixing the same number of entities at each worker
input partition. By doing this, the number of entities processed by each worker will be the
same, leading the worker to perform a maximum number of window’s slides (due to the
fixed partition size). This mechanism improves load balanci