
Federal University of Campina Grande

Department of Systems and Computation

Postgraduate Coordination in Computer Science

Master thesis

Recommender Systems for UML Class Diagrams

Saulo Soares de Toledo

Campina Grande, Paraíba, Brazil

September 5, 2016

Federal University of Campina Grande

Department of Systems and Computation

Postgraduate Coordination in Computer Science

Recommender Systems for UML Class Diagrams

Saulo Soares de Toledo

Master’s thesis submitted to the Postgraduate Coordination in Computer

Science of the Federal University of Campina Grande - Campus I in par-

tial fulfillment of the requirements for the Master’s degree in Computer

Science.

Main area: Computer Science

Research line: Recommender Systems for Software Engineering

Franklin de Souza Ramalho

Leandro Balby Marinho

(Advisors)

Campina Grande, Paraíba, Brazil

c©Saulo Soares de Toledo, September 5, 2016

 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG

T649r

 Toledo, Saulo Soares de.

 Recommender systems for UML class diagrams / Saulo Soares de Toledo. –

Campina Grande, 2016.

 128 f. : il. color.

 Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de

Campina Grande, Centro de Engenharia Elétrica e Informática, 2016.

 "Orientação: Prof. Dr. Franklin de Souza Ramalho, Prof. Dr. Leandro Balby

Marinho”.

 Referências.

 1.

 1. Engenharia de Software. 2. Diagrama de Classe. 3. Sistemas de

Recomendação. 4. OntoRec. I. Ramalho, Franklin de Souza. II. Marinho, Leandro

Balby. III. Título.

 CDU 004.41(043)

Resumo
Modelos UML são usados de várias formas na engenharia de software. Eles podem mo-

delar desde requisitos até todo o software, e compreendem vários diagramas. O diagrama

de classes, o mais popular dentre os diagramas da UML, faz uso de vários elementos UML

e adornos, tais como abstração, interfaces, atributos derivados, conjuntos de generalização,

composições e agregações. Atualmente, não há maneira fácil de encontrar este tipo de di-

agrama com base nestas características para a reutilização ou a aprendizagem por tarefas

de exemplo. Por outro lado, Sistemas de Recomendação são ferramentas e técnicas que

são capazes de descobrir os elementos mais adequados para um usuário, dentre muitos ou-

tros. Existem várias técnicas de recomendação, que usam informações dos elementos de

várias maneiras, ao uso da opinião de outros usuários. Sistemas de recomendação já foram

utilizadas com sucesso em vários problemas da engenharia de software, a exemplo da reco-

mendação de partes de código para reuso (como métodos, por exemplo) e da identificação do

desenvolvedor mais adequado para trabalhar em certas áreas do software. Este trabalho tem

como objetivo propor e avaliar (i) uma representação baseada em conteúdo para diagramas

de classe e as preferências do usuário, (ii) um novo algoritmo de recomendação baseado no

conhecimento, (iii) a aplicação deste algoritmo e outros dois outros do estadodaarte para a

recomendação de diagramas de classe UML e (iv) uma avaliação destas abordagens contra

uma sugestão aleatória. Para atingir este objetivo, foi realizado um estudo de caso com es-

tudantes de ciência da computação e egressos. Depois de comparar os algoritmos, os nossos

resultados mostram que, para o nosso conjunto de dados, todos eles são melhores do que

uma recomendação aleatória.

i

Abstract
UML models are used in several ways in the software engineering. They can model from

requirements to the entire software, and comprise several diagrams. The Class diagram, the

most popular among the UML diagrams, makes use of several UML elements and adorn-

ments, such as abstraction, interfaces, derived attributes, generalization sets, compositions

and aggregations. Currently, there is no easy way to find this kind of diagram based on

these features for reuse or learning by example’s tasks, for instance. On the other hand,

Recommender Systems are powerful tools and techniques that are able to discover the most

appropriate elements to an user among many others. There are several recommender techni-

ques, from using the elements’ information in several ways, to using other users’ opinions.

Recommender systems were already used successfully in several software engineering pro-

blems, as discovering pieces of code to recommend (as methods, for example) and finding

the best developer to work in certain software problems. This work aims to propose and

evaluate (i) a content-based Recommender System’s representation for class diagrams’ fea-

tures and user’s preferences, (ii) a new knowledge-based recommender algorithm, (iii) the

application this algorithm and two other state of the art content-based ones to the recommen-

dation of UML class diagrams and (iv) an evaluation of these approaches against a random

suggestion. To achieve this goal, we conducted a case study with computer science students

and egresses. After comparing the algorithms, our results show that, for our dataset, all of

them are better than a random recommendation.

ii

Acknowledgement
First and foremost, thanks to God Almighty, whose many blessings have made me what I

am today and allowed me to complete this work.

I am forever grateful to my advisors Franklin Ramalho and Leandro Marinho for having

believed on me and in my job. I will never forget their commitment with my work. Franklin

first believed on me while proposing to work with Leandro, that also accepted to be my

advisor. I have learned a lot about how to be a researcher from them.

I am also deeply grateful to the Professor Francisco Neto for his time and guidance with

this work’s experiments. I also learned a lot with him.

I would like to thank Thaciana Cerqueira for our several hours of discussion about recom-

mender systems and UML, and her contributions to this work. I also would like to thank the

Professor Matheus Gaudêncio who made great contributions especially in the first months of

my Master’s degree.

I also thank my girlfriend Emanuele Montenegro. Despite not having directly participa-

ted in this work, she helped me throughout the rest I needed to be able to finish this master

thesis, whether solving other tasks for me, whether encouraging me and being present all the

time. I could not be here without her.

I thank my parents, Zélia Toledo and Severino Toledo, for their patience and support, they

did more for me than I can pay. And I thank my sister, Zeneide Toledo, and my brothers,

Sérgio Toledo, Sidney Toledo, Sílvio Toledo and Simões Toledo, for their support.

I thank the students Alberto Medeiros and Gustavo Alves. They have participated as

research students in this master thesis. They have made some contributions, like starting

building a new version of the tool used in our experiments, or downloading several UML

class diagrams from an UML repository.

I thank my friends Adson Diego, Alysson Filgueira, Antonio Ricardo, Carol Cabral,

Catharine Quintans, Emanuel Batista, Everton Galdino, Fernando Ferreira, Guilherme Ne-

ves, Katyusko Farias, Luiz Antonio, Renata Paiva and Vladwoguer Bezerra that, directly or

indirectly, contributed to my research. I also thank all the participants of the experiments of

this work.

iii

To my parents Zélia Toledo and Severino Toledo.

iv

Contents

1 Introduction 1

1.1 Problem . 2

1.2 Research Objectives . 3

1.3 Research scope . 3

1.4 Contributions . 4

1.5 Relevance of the proposal . 4

1.6 Dissertation Structure . 5

2 Background 6

2.1 UML Class Diagrams . 6

2.1.1 UML Metamodel . 9

2.1.2 MetaObject Facility (MOF) and XML Metadata Interchange (XMI) 10

2.2 Information Retrieval . 11

2.2.1 The Bag-of-Words model . 11

2.2.2 Term Frequency - Inverse Document Frequency (tf-idf) 12

2.3 Recommender Systems . 13

2.4 Ontologies and knowledge representation 16

2.4.1 The semantic web . 16

2.4.2 Resource Description Framework (RDF) 17

2.4.3 The Ontology Web Language (OWL) 18

3 Techniques for UML Class Diagrams Recommendations 20

3.1 User and item profiles . 21

3.2 Recommender systems approaches proposed in this work 22

v

CONTENTS vi

3.2.1 Random items recommendation 23

3.2.2 Bag-of-words based approach . 24

3.2.3 Item’s vector (content) based approach 27

3.2.4 Knowledge-based approach . 29

4 OntoRec: A Recommender Profile Generation Approach Based on Ontologies 36

4.1 Features versus Classes . 37

4.2 The need of inheritance . 39

4.3 The Mapping Table . 39

4.4 The τ parameter . 41

4.5 Preparing the user vector . 41

4.5.1 The λ parameter . 44

4.5.2 The υ parameter . 45

4.5.3 Breadth-First Search (BFS) approach 46

4.5.4 τ -nth Ancestor approach . 46

4.6 Calculating the recommended items . 47

5 Evaluation 50

5.1 Problem statement . 50

5.2 Setup . 51

5.2.1 Context and scope . 51

5.2.2 Experiment design . 53

5.2.3 Execution . 56

5.2.4 Results and analysis . 57

5.2.5 Practical significance (interpretation) 60

5.3 Additional experiment . 62

5.3.1 Context and scope . 63

5.3.2 Execution . 64

5.3.3 Experiment design . 64

5.3.4 Results and analysis . 65

5.3.5 Practical significance (interpretation) 68

5.4 Validity Threats . 70

CONTENTS vii

5.4.1 Conclusion validity threats . 70

5.4.2 Internal validity threats . 71

5.4.3 Construct validity threats . 72

5.4.4 External validity threats . 72

6 Related Works 73

6.1 Traditional Recommender Systems . 73

6.2 Recommender Systems for Software Engineering 74

6.3 Recommender Systems for UML Models 75

7 Conclusion 76

7.1 Limitations . 77

7.2 Future work . 78

A OntoRec formalizations 88

A.1 Information Model . 88

A.2 τ formal definition . 90

A.3 User vector preparation details . 90

A.3.1 The Breadth-First Search (BFS) approach source code 92

A.3.2 τ -nth Ancestor approach source code 93

B Bag-of-words algorithm search strings 94

C Vargha Delaney and Wilcoxon tables for all data 97

D Vargha Delaney and Wilcoxon tables for the top-3 results of the auxiliary exper-

iment 99

E Vargha Delaney and Wilcoxon tables for the top-5 results of the auxiliary exper-

iment 114

List of Symbols

IDF - Inverse Document Frequency

IR - Information Retrieval

MOF - MetaObject Facility

OMG - Object Management Group

OWL - Ontology Web Language

PCOA - Presence of Composite Aggregation

PABC - Presence of Abstract Class

PADV - Presence of Attribute with Default Value

PAO - Presence of Abstract Operation

PASC - Presence of Association Class

PDA - Presence of Derived Attribute

PEN - Presence of Enumeration

PGS - Presence of Generalization Set

PNAA - Presence of Navigation Arrows in Associations

POD - Presence of Dependency

POG - Presence of Generalization

POI - Presence of Interface

POP - Presence of Port

POQ - Presence of Qualifier

PRI - Presence of Realized Interface

PSA - Presence of Static Attribute

PSHA - Presence of Shared Aggregation

PSO - Presence of Static Operation

PTC - Presence of Template Class

viii

ix

RDF - Resource Description Framework

RS - Recommender System

TF - Term Frequency

UML - Unified Modeling Language

XMI - XML Metadata Interchange

XML - eXtensible Markup Language

List of Figures

2.1 Example of UML Class Diagram adapted from Warmer and Kleppe [60] . . 7

2.2 Part of the UML metamodel extracted from OMG [40] 9

2.3 A first simple text document . 13

2.4 A second simple text document . 13

2.5 A typical Recommender System operation 14

2.6 An RDF triple example extracted from W3C [58] 17

3.1 The random recommendation algorithm 24

3.2 The bag-of-words recommendation algorithm 26

3.3 The vector’s based recommendation algorithm 28

3.4 The knowledge-based recommendation algorithm 30

3.5 The UML class diagrams ontology . 34

4.1 Simplified class diagram ontology . 38

4.2 Ontology inheritance example for OntoRec 40

4.3 Example of path for mapped feature . 42

4.4 Example for τ = 1 . 42

4.5 Example for τ = 2 . 43

4.6 Example for τ = 3 . 43

4.7 Elements to be ignored if λ = 1 . 45

4.8 A simple example to present the υ parameter 46

4.9 The steps for υ = 0 . 47

4.10 The result for υ = 1 . 47

4.11 The knowledge-based algorithm BFS approach example 48

4.12 The knowledge-based algorithm τ -nth approach example 49

x

LIST OF FIGURES xi

5.1 The screen where the user informs his interests 57

5.2 Example of screen where the user evaluates the tool’s recommendations . . 58

5.3 The final form about the tool and the recommendations 59

5.4 The features usage . 60

5.5 Precision by approach for each recommender approach 60

5.6 Precision by approach boxplots for each recommender approach 61

5.7 Precision of the recommendation approaches for the top-3 items with differ-

ent amounts of searched features . 66

5.8 Precision of the recommendation approaches for the top-5 items with differ-

ent amounts of searched features . 67

List of Tables

2.1 The first document term count . 13

2.2 The second document term count . 13

3.1 Examples of search strings for the bag-of-words approach 25

3.2 Examples of user and items profiles . 29

3.3 Feature’s mapping to the UML metamodel 32

4.1 UML class diagrams examples . 39

4.2 A Mapping Table Example . 40

4.3 A sample user profile . 42

5.1 The experiment’s final form . 55

5.2 Normality tests for all data . 58

5.3 Some form results . 61

5.4 Normality tests by user profile length for top-3 results 68

5.5 Normality tests by user profile length for top-5 results 69

5.6 Kruskal-Wallis by user profile length for top-3 results 69

5.7 Kruskal-Wallis by user profile length for top-5 results 70

B.1 Search strings for the bag-of-words approach (1) 94

B.2 Search strings for the bag-of-words approach (2) 95

B.3 Search strings for the bag-of-words approach (3) 96

C.1 Wilcoxon test results for all data . 97

C.2 Vargha Delaney test results for all data . 98

D.1 Vargha Delaney test results for top-3 results and profile length 1 100

xii

LIST OF TABLES xiii

D.2 Wilcoxon test results for top-3 results and profile length 1 101

D.3 Vargha Delaney test results for top-3 results and profile length 2 102

D.4 Wilcoxon test results for top-3 results and profile length 2 103

D.5 Vargha Delaney test results for top-3 results and profile length 3 104

D.6 Wilcoxon test results for top-3 results and profile length 3 105

D.7 Vargha Delaney test results for top-3 results and profile length 4 106

D.8 Wilcoxon test results for top-3 results and profile length 4 107

D.9 Vargha Delaney test results for top-3 results and profile length 5 108

D.10 Wilcoxon test results for top-3 results and profile length 5 109

D.11 Vargha Delaney test results for top-3 results and profile length 6 110

D.12 Wilcoxon test results for top-3 results and profile length 6 111

D.13 Vargha Delaney test results for top-3 results and profile length 7 112

D.14 Wilcoxon test results for top-3 results and profile length 7 113

E.1 Vargha Delaney test results for top-5 results and profile length 1 115

E.2 Wilcoxon test results for top-5 results and profile length 1 116

E.3 Vargha Delaney test results for top-5 results and profile length 2 117

E.4 Wilcoxon test results for top-5 results and profile length 2 118

E.5 Vargha Delaney test results for top-5 results and profile length 3 119

E.6 Wilcoxon test results for top-5 results and profile length 3 120

E.7 Vargha Delaney test results for top-5 results and profile length 4 121

E.8 Wilcoxon test results for top-5 results and profile length 4 122

E.9 Vargha Delaney test results for top-5 results and profile length 5 123

E.10 Wilcoxon test results for top-5 results and profile length 5 124

E.11 Vargha Delaney test results for top-5 results and profile length 6 125

E.12 Wilcoxon test results for top-5 results and profile length 6 126

E.13 Vargha Delaney test results for top-5 results and profile length 7 127

E.14 Wilcoxon test results for top-5 results and profile length 7 128

Source Code List

2.1 XMI representation for the simple class diagram displayed 10

2.2 A brief example of RDF . 17

2.3 A brief example of OWL . 19

A.1 Common code for both algorithm approaches 91

A.2 BFS approach code snippet . 92

A.3 τ -nth approach code snippet . 93

xiv

Chapter 1

Introduction

The UML (Unified Modeling Language) [39] is a family of graphical notations (diagrams),

described by a single metamodel (a model that represents another model), for purposes of

description and project of software systems (mainly that ones developed by using the Object

Oriented software development paradigm [61]). Standardized by OMG (Object Management

Group)1, it currently defines 13 types of diagrams, each one with its specific purpose.

UML is widely used by companies that can store from some to several hundreds of dia-

grams in its files. Commonly, the production of UML models increases with time, especially

in companies who adopt methodologies like model-driven development (MDD) [50], where

models are pivotal elements. Unfortunately, finding UML diagrams for reuse, searching or

even learning with examples is not an easy task. Lucrédio et al. [29] agree that the current

search engines lack features to find UML models. Even if there is a database of UML dia-

grams, there is the need to identify items that meet the user needs, and a way to do that is

through Recommender Systems. More than performing searches in a database, these systems

identify the user needs based on the user’s profile before recommending items.

In the context of software engineering, it is normal that several artifacts begin to be ex-

plored in the context of recommendation. For instance, Robillard et al. [48] did a survey in

this area and presented, among others: Strathcona, a tool that retrieves relevant source code

examples to help developers to use frameworks in a more efficient way; Dhruv, that recom-

mends people and artifacts relevant to error reports; and Expertise Browser, that recommends

experts (people) detecting past changes for a given piece of code or document.

1http://www.omg.org/

1

http://www.omg.org/

1.1 Problem 2

The context of source code has already been extensively studied, and the proposal to do

the same with UML class diagrams sounds promising. According to Miles and Hamilton

[34], this diagram is the most popular among the language. It is also fairly often pointed

out in several studies as the most used among the UML diagrams [14] [15]. Class diagrams

describe the types of the objects in the system and its several static relationships that exists

between them. There are numerous study possibilities by linking Recommender Systems and

UML, (i) in the industry, where there are companies with several hundred UML diagrams

archived that could be useful, and (ii) in the university, where good examples could be useful

to those students who are learning about the language.

This chapter introduces this work. Section 1.1 presents the problem that is studied. Sec-

tion 1.2 presents the research objectives. Section 1.3 presents the research scope. Section 1.4

summarizes the research contributions. Section 1.5 briefly discuss about the relevance of this

work. Finally, Section 1.6 presents the structure of this document.

1.1 Problem

Despite the increasing number of researches related to Recommender Systems for Software

Engineering, it is believed that this is an area that can still be quite explored. Some of

their subareas lack related studies, as UML for example. The closest proposal related to

UML was the search engine for UML models proposed by Lucrédio et al. [29]. Their work

apply information retrieval techniques in the UML metamodel to find relevant diagrams, and

requires that the user provides a search string as an input in order to find them. Each UML

diagram has its own context of use, some of them are used to model systems, others are best

to describe requirements and so on. Thus, we decided that we should start by proposing a

study for one of these diagrams, the class diagram, instead of proposing an approach that

combine them all.

The main problem tackled in this work is how to recommend UML class diagrams. Thus,

we need to discover what approaches could be applied in order to have good recommenda-

tions. Also, the conventional recommendation approaches were not originally designed for

this problem, and we should investigate some ways of using them in our context.

1.2 Research Objectives 3

1.2 Research Objectives

This research work aims to apply some classical state-of-the-art recommender system algo-

rithms and propose new algorithms to UML class diagrams, comparing them to each other

and against a random recommendation approach, in order to discover if they are suitable to

recommend these diagrams. Our specific goals are:

• to investigate the suitability of the proposed content-based approaches (the bag-of-

words, reused from information retrieval techniques [32], and the approach based in a

features vector adapted from content-based recommender systems [45]) in the context

of the recommendation of UML class diagrams;

• to investigate the suitability of the proposed knowledge-based approach, a completly

new recommender system approach based in an ontology created to this purpose, in

the context of the recommendation of UML class diagrams;

• to investigate if the proposed approaches are better than a simple random based rec-

ommendation;

• to investigate which of the proposed approaches have better results.

1.3 Research scope

In this work we propose and conduct a study that compare four ways of recommending UML

class diagrams to users: (i) a random baseline, that randomly suggests items to the users, (ii)

a bag-of-words algorithm, reused from information retrieval techniques [32], that identify

UML diagrams by considering them as text files and performing word searching, (iii) a

content-based algorithm adapted from content-based recommender systems [45] that uses an

also proposed profile vector to identify relevant diagrams and (iv) a newly knowledge-based

approach that identifies related items by discovering features related to that ones in the user

profile.

By reusing, adapting or proposing the four presented approaches and comparing them,

we want to identify ways of recommending UML class diagrams based on the user’s inter-

1.4 Contributions 4

ests, discovering if they are suitable to recommend these diagrams. An empirical study was

performed in order to achieve this goal.

1.4 Contributions

In order to meet the objectives of this work, it proposes four algorithms, as previously pre-

sented. The random algorithm is a baseline for comparison. The bag-of-words algorithm

is adapted from information retrieval techniques, and it is an adaptation of an old technique

commonly used in textual search to the context of UML. It simple consider the UML di-

agrams files as text files, allowing it to perform searches in the UML diagram’s database;

this is completely possible because of the XMI file format, explained in Subsection 2.1.2.

The other two approaches are based in the recommender systems theory: a content-based

approach and a knowledge-based approach. The content-based technique is an adaptation of

how several content-based algorithms work to the context of UML. The knowledge-based

approach is a completely new generic recommender algorithm and has the Chapter 4 dedi-

cated to it. The similarities and the differences between all the algorithms are presented in

the Chapter 3.

The proposed recommender systems based approaches need a representation for the users

and items. These representations are known as user profile and item profile. This work also

proposes a representation for them in Section 3.1.

In order to evaluate the proposals, the algorithms were implemented together with a

tool that allow subjects to execute the experiment (see Section 5.2 for details). It is also a

contribution of this work an empirical study of the proposed algorithms in order to investigate

the suitability of them in the context of UML.

1.5 Relevance of the proposal

The amount of information in software development is increasing. Today’s software is more

complex than some years ago, and the software technology is evolving every day. The

amount of information related to it is overwhelming and the software engineering should

also evolve to successfully keep pace and guide the software development. This complexity

1.6 Dissertation Structure 5

requires planning, abstraction and documentation methods, and UML is designed for those

tasks, among others.

On the other hand, the recommendation systems play an important role for situations in-

volving information overload, and the software engineering area has already received great

contributions from them [48]. However, the solutions proposed until now are mostly de-

pendent on the application’s source code or very specific artifacts. UML does not contain

the source code of the final application, and there are no solutions directed to the context of

UML class diagrams related to recommendation.

We propose an investigation of recommender algorithms to the UML class diagram con-

text with the purpose of reducing the lack of research in this area. The results of this study can

also be used later for learning purpose researches as, for example, when a student searches

for features that he/she want to learn, and the system can recommend the best diagrams.

The extension of the current study by incrementing researches in educational psychology

and cognitive science could be done in future in order to address this issue.

1.6 Dissertation Structure

The remaining of this document is organized as follows. Chapter 2 presents a brief sum-

mary of UML Class Diagrams, Recommender Systems and some information retrieval con-

cepts related with this research. Chapter 3 presents the proposed recommender techniques.

Chapter 4 formalizes the OntoRec algorithm, our knowledge-based recommender approach.

Chapter 5 presents the experiment design of proposed work, its factors and treatments, sub-

jects and objects, result analysis and some of its threats to the validity. Chapter 6 presents

some approaches related to this research. Finally, Chapter 7 presents our conclusions and

suggestions for further work.

Chapter 2

Background

Before presenting the work proposal, it is important to know some of the fundamental con-

cepts from the related areas: UML class diagrams, ontologies, information retrieval and

recommender systems. The following subsections present a brief resume of the background

related to these terms in order to base the study. Section 2.1 presents the UML class dia-

grams, their main elements, a brief introduction to the UML metamodel and the concepts of

MetaObject Facility (MOF) and XML Metadata Interchange (XMI). Section 2.2 introduces

Information Retrieval (IR) and some related concepts, bag-of-words and tf-idf. Section 2.3

presents the concept of Recommender Systems. Finally, Section 2.4 presents what are on-

tologies, the semantic web, the Resource Description Framework (RDF) and the Ontology

Web Language (OWL).

2.1 UML Class Diagrams

UML is a modeling language standardized by OMG (Object Management Group), a con-

sortium of companies created to define standards that support software development and

systems’ interoperability [17, 34]. UML was born in 1997, from the unification of vari-

ous graphical object-oriented modeling languages that appeared in the late ’80s and early

’90s [17]. It currently defines 13 types of diagrams, split into 2 categories, the structure

diagrams, and the behavior diagrams.

The Class Diagram is the most popular among the UML diagrams and the most used of

the structure diagrams [34]. It states the object types at a system and the static relationships

6

2.1 UML Class Diagrams 7

that exist between them, besides showing the operations and properties of each class and

other related features, such as property strings and cardinalities [17]. Figure 2.1 illustrates a

high level class diagram by means of minor adaptations of the class diagram used in Warmer

and Kleppe [60].

Figure 2.1: Example of UML Class Diagram adapted from Warmer and Kleppe [60]

Next are presented some of the most important elements that can be present in class

diagrams:

• Class: The most basic element in this diagram, a class is a blueprint to build a specific

type of object. There are several classes in Figure 2.1, like Customer, for example;

• Association: A solid line that represents a relationship between classes, like that one

between Service and ServiceLevel in Figure 2.1. Associations can also be aggregations

or compositions, indicating relationships of the type part-whole and continence;

• Association Classes: They are modeling elements that have both association and class

2.1 UML Class Diagrams 8

properties. In Figure 2.1 we have Membership as an association class, where Customer

and LoyaltyProgram are related by a Membership;

• Generalization: According to OMG [40], it is “a taxonomic relationship between

a more general classifier and a more specific classifier”. The instances of the more

specific one are indirect instances of the more general one, and has its features. For

example, the relation between the classes Burning and Transaction in Figure 2.1;

• Enumerations: They are elements who enumerates a fix set of literals. Color, in

Figure 2.1, is an enumeration, whose literals are gold and silver;

• Attributes and Operations: Respectively, characteristics like name and title at Cus-

tomer, and actions, like enroll at LoyaltyProgram, in Figure 2.1, for a class;

• Derived attributes: Attributes that are derived from others. For example, age is de-

rived from dateOfBirth at Customer in Figure 2.1;

• Property-strings: Textual approaches for represent properties (for attributes and asso-

ciations) that are named values denoting characteristics of elements and have semantic

impact [27]. A common example is {ordered}, present at association between Loyal-

tyProgram and ServiceLevel in Figure 2.1;

• Abstract Classes: Classes that do not provide a complete declaration and thus cannot

be directly instantiated. They are intended to be used by other classes [40];

• Interfaces: According to [40], an interface “represents a declaration of a set of coher-

ent public features and obligations”. They specify a contract which every element that

performs it should follow;

• Dependencies: They are relationships that indicate whether the change in the defini-

tion of a particular element may cause changes to the other;

• Packages: UML constructs that enable you to organize model elements into groups.

Packages can contain classes, other packages, interfaces, enumerations and other UML

diagrams’ elements [27]. An example is the package RoyalAndLoyal in Figure 2.1.

2.1 UML Class Diagrams 9

More details about UML Class diagrams can be found at OMG [40]. Also, in order

to introduce how UML class diagrams are described and stored in computer files, the Sub-

section 2.1.1 will briefly introduce what is the UML metamodel and the Subsection 2.1.2

will introduce the concepts of MetaObject Facility (MOF) and XML Metadata Interchange

(XMI). These concepts will be taken up later in this work.

2.1.1 UML Metamodel

The UML metamodel is an abstract grammar containing all the concepts (metaclasses) that

can be used with UML and the relationships between them. Thus, every element of a model

is an instance of a metaclass [60]. As an example, the UML Metamodel has a metaclass

called Class from which every class in a UML model is instance of. In other words, the

UML metamodel is a model that describe UML models. Figure 2.2, extracted from OMG

[40], presents an excerpt of the UML metamodel as an example.

Figure 2.2: Part of the UML metamodel extracted from OMG [40]

One of the ways to describe the UML metamodel is by using the MetaObject Facility

2.1 UML Class Diagrams 10

(MOF)1 specification [37], an OMG standard that defines the language to define modeling

languages. MOF is defined using MOF itself, and it can describe the UML metamodel [24].

2.1.2 MetaObject Facility (MOF) and XML Metadata Interchange

(XMI)

XML Metadata Interchange (XMI) [38] is an OMG standard for exchanging metadata infor-

mation via Extensible Markup Language (XML). XMI is used to define, share, manipulate

and integrate XML data and objects [38]. It is recommended by OMG itself to represent

MOF [37] models. This file format is also used for integration between tools, applications

and repositories, and is typically useful as interchange format for UML tools.

There are several vendor specific formats to represent UML models in a computer en-

vironment, but many UML modeling softwares (despite frequent interoperability problems

between data generated by them) also support the XMI file format, an OMG standard for

exchanging metadata information via Extensible Markup Language (XML).

XMI defines rules for defining schemes for any MetaObject Facility (MOF) model [38],

a metadata management framework and a set of metadata services that enable the develop-

ment and interoperability of a model and systems directed by metadata [37]. UML, whose

metamodel can be described in MOF, can be represented in XMI [39].

The XMI Source Code 2.1 contains a snippet of the XMI representation of the diagram

at Figure 2.1. Note the classes defined at lines 5 and 8, and the generalization (inheritance)

line 9.

Source Code 2.1: XMI representation for the simple class diagram displayed

1 <? xml v e r s i o n ="1.0" e n c o d i n g ="UTF-8"?>

2 <uml:Model x m i : v e r s i o n ="2.1" xmlns :xmi ="http://schema.omg.org/spec/XMI

/2.1" xmlns :uml ="http://www.eclipse.org/uml2/3.0.0/UML" x m i : i d ="

_qb8akM37EdqwVrslYOdUDA">

3 < packagedElement x m i : t y p e ="uml:Package" x m i : i d ="_w8IxIM37EdqwVrslYOdUDA

" name="RoyalAndLoyal">

4 . . .

1http://www.omg.org/mof/

http://www.omg.org/mof/

2.2 Information Retrieval 11

5 < packagedElement x m i : t y p e ="uml:Class" x m i : i d ="_Sp6mINxcEeOTpaO0nxLrdA

" name="Transaction">

6 . . .

7 < / packagedElement >

8 < packagedElement x m i : t y p e ="uml:Class" x m i : i d ="_UQPDsNxcEeOTpaO0nxLrdA

" name="Burning">

9 < g e n e r a l i z a t i o n x m i : i d ="_l55-M9xeEeOTpaO0nxLrdA" g e n e r a l ="

_Sp6mINxcEeOTpaO0nxLrdA" / >

10 < / packagedElement >

11 . . .

12 < / packagedElement >

13 < / uml:Model>

2.2 Information Retrieval

Information Retrieval (IR) is the activity of finding material of an unstructured or semi-

structured nature, filtering document collections or further processing a set of retrieved doc-

uments, usually from large collections, to satisfy an information need. IR techniques are

appropriate when users know what they are looking for, once they need to provide a query

to be used by technique in order to retrieve some information. IR tries to locate relevant

content [30]. Google [7] is an example of IR application; it searches for terms in a very

large database of websites, using IR algorithms to recover relevant results quickly. The next

subsections present some of the IR concepts used in this work: the Subsection 2.2.1 presents

the bag-of-words model, and the Subsection 2.2.2 presents the tf-idf weighting scheme.

2.2.1 The Bag-of-Words model

The bag-of-words model is a representation used by many IR systems. Each document is

described as a multiset of its own words [32]. This multiset, B, can be described as a set of

pairs, word along with the number of ocurrences B = {(wi, f(wi))|1 ≤ i ≤ j}, where j is

the amount of words of B, and f is a function that returns the number of occurrences for the

word wi at the current document.

As an example, if we get a document composed by the sentence “class diagrams are

2.2 Information Retrieval 12

UML diagrams“, we could represent B as

B = {(class, 1), (diagrams, 2), (are, 1), (UML, 1)}

This model does not store any kind of semantics, since there is only the number of occur-

rences for each word and the order it occurs does not matter for the model. To demonstrate

this behavior, consider the sentence “UML diagrams are class diagrams”: we know that this

is not true because UML is much more than just class diagrams, and this sentence has a

different meaning from the previous one, but its representation as a bag-of-words is the set

B illustrated above, the same as the correct sentence.

2.2.2 Term Frequency - Inverse Document Frequency (tf-idf)

Another well known concept of IR that is frequently used is the tf-idf f weighting scheme.

This is the combination of the definitions of term frequency (tf) and inverse document fre-

quency (idf). tft,d represents the frequency of the term t in document d [32].

Also, there are terms that are less important than others, and just the frequency of the

term is not enough. Terms too frequent are common and less important, terms less frequent

are more specific to that document and, therefore, more important. To attenuate the effect

of terms that occur too often in the document collection, we have the inverse document

frequency of the term t, idft, that is defined as [32]:

idft = log
N

dft
(2.1)

Here, N is the number of documents at collection, and dft is document frequency of the

term t, i.e. the number of documents that have t [32]. If dft is low, i.e. the term is rarer, idft

is higher. The tf-idf scheme is, then, described as follows [32]:

tf-idft,d = tft,d × idft (2.2)

The example next presents two simple text files’ contents, one in Figure 2.3 and other in

Figure 2.4, and their frequency tables are shown in Table 2.1 and Table 2.2, respectively.

Since there are 2 documents, N = 2. Calculating the tf-idf for the term “UML” in the

first document, the tfUML,1 = 1 and idfUML = log2
2
= 0. Finally, tf-idfl|l|,1 = 0 because this is

a term that occurs in all documents.

2.3 Recommender Systems 13

1 Class diagrams are UML diagrams.

Figure 2.3: A first simple text document

1 UML models are useful.

Figure 2.4: A second simple text document

Table 2.1: The first document term count

Term Class diagrams are UML

Count 1 2 1 1

Table 2.2: The second document term count

Term UML models are useful

Count 1 1 1 1

On the other hand, the term “diagrams” occurs two times at the same document in Fig-

ure 2.3, so we have tfdiagrams,1 = 2 and idfdiagrams = log2
1
≈ 0, 301. Finally, tf-idfdiagrams,1 ≈

0, 602.

2.3 Recommender Systems

Recommender Systems (RS) are software tools and techniques to solve the information over-

load problem, where users are faced with more information than they can handle [46]. Many

RS algorithms were inspired at the idea users often rely on recommendations that are passed

by others, directly or indirectly (through recommendation texts, reviewers’ opinions, news-

papers etc.) [46]. Despite some RS approaches have taken techniques from IR, the idea of

the RS is to differentiate the relevant content. IR techniques are more interested in identify-

ing similar items, and sometimes this is not what the users need. Some RS techniques can

try to discover what other items could be also useful for the users, even if they are not so

similar. Figure 2.5 shows a typical RS operation, in which the user starts by stating his/her

2.3 Recommender Systems 14

preferences (implicitly or explicitly); then the system uses that preferences to build a profile

for the user; with that profile and after getting the items, the system uses the user profile to

identify relevant items to recommend to him/her. Usually recommender systems recommend

a limited number n of items to the user, which can be user-defined.

Figure 2.5: A typical Recommender System operation

Over the years, emerged RS applications for Software Engineering, as eRose, Strathcona,

Suade and others [48]. In general, any Recommender System refers to three types of objects:

the items, the users and the transactions [46]. Namely:

• Item is a generic term used to identify each one of the elements that are recommended

by the Recommender System. The value of an item may be, for example, positive

when a user like it, negative otherwise. According to the Recommender System core

technology, the item can be described by a set of features and properties [46]. This

feature set is the item profile [1];

• User is another key concept. The recommendations, in general, are directed to some-

one and, to do it, the Recommender System needs to collect the preferences of that

individual, whether explicitly or implicitly expressed. This features’ set is the user

profile [46];

2.3 Recommender Systems 15

• Transaction is a recorded interaction between a user and the Recommender System.

Several of them generate a data set that contains very important information that are

generated during the human-machine interaction and which are useful to the recom-

mendation algorithm who generates the system suggestions [46].

Jannach et al. [21] presents a well-known classification of Recommender Systems into

four different approaches, namely:

• Collaborative filtering: Systems that, considering that users that shared tasted in the

past will do the same now and in the future, recommend for the current user A the items

selected by a similar user B that are “unknown” by A. Discovering similar users is

done by the similarity of their historical data (e.g., purchased books history). Classical

examples are the user-based news recommendation based on users with similar tastes

presented in Resnick et al. [44] or in Goldberg et al. [19];

• Content-based: Systems where the content of the items being recommended is the

main focus, generating recommendations based on features associated with the com-

pared items [46] and the ratings that the user gives to items [9]. They have taken ideas

from IR techniques, as the way of describing items and comparing them, for instance,

but their difference lies in the purpose of each one as previously noted. One example

is the news filter proposed by Lang [26];

• Knowledge-Based: Systems that recommend products mainly based on domain-

specific knowledge about how certain items’ features match preferences and needs

of users. Burke [8] introduces and gives some examples of this type of system;

• Hybrid Recommender Systems: Systems that combine the previous approaches in

order to compensate some of the disadvantages from one approach with the strengths

from another. Burke [9] introduces several possible combinations of recommendation

approaches to generate this type of system.

Formally, a RS can be described as the following function:

s : U × I → R (2.3)

2.4 Ontologies and knowledge representation 16

where U = {u1, u2, ..., um} is the set of users, I = {i1, i2, ..., in} is the set of items, n is

the amount of items, m the amount of users) and s is a function that estimates the utility, a

real number, of i ∈ I to u ∈ U .

2.4 Ontologies and knowledge representation

An ontology is a basic structure around which a knowledge base can be built [51]. We can

consider two perspectives while talking about ontologies: a traditional one coming from phi-

losophy, that focuses on categorical analysis (what are the existing entities and what are the

categories of these entities) to inventory reality, and a computer science perspective known

as ontology as technology, that focuses on the same questions but focuses on creating arti-

facts of reality to be used by software [42]. Despite similar, they are different perspectives

and we are interested on the second definition.

Ontologies are being used in Computer Science and related fields because they help to

categorize and structure entities and concepts of interest. Areas like artificial intelligence,

knowledge representation, information science and database management frequently make

use of ontologies [23]. Ontologies can be used to model the knowledge of artificial intelli-

gence, educational data, medical information or any knowledge that one want to represent in

a way to be processed by computers. One well known use of ontologies is at semantic web,

that we present next.

2.4.1 The semantic web

The Semantic Web was proposed by Berners-Lee et al. [6] in 2001, which proposed a way

to connect facts instead of just documents, adding semantic meaning to the elements and

its connections. This extension of the Web allows machines to use that semantic data to

understand what is being transferred, learning about the data and proposing better results

to humans. As an example, imagine two web pages, a personal blog and a page who sells

digital books; if the owner of the blog create a post about a book who is specifically sold

by the other page, machines could use semantic data to connect one page to another, where

they can find more information as, for example, some related books. In order to achieve this

goal, it was necessary to create new languages and patterns specifically designed for data,

2.4 Ontologies and knowledge representation 17

and the major were the Resource Description Framework (RDF) [57] and the Web Ontology

Language (OWL) [56], which we briefly present later.

2.4.2 Resource Description Framework (RDF)

RDF is a general-purpose language for data interchange on the Web [57]. It can be written

in XML [59] and its core structure is represented by a set of triples consisting of a subject, a

predicate and an object:

• Subject: An entity;

• Predicate: Also called a property of a triple. A subject can have one or more of them;

• Object: An object that belongs to one or more resources. An object can point to

instances or be primitive types like string, boolean, integer or float.

A set of triples is called an RDF graph [58]. You can see an example of RDF triple at

Figure 2.6 [58].

Figure 2.6: An RDF triple example extracted from W3C [58]

The Source Code 2.2 is an example that shows the object “algorithmBook” (line 5) that

has a predicate “coverColor” pointing to the object “blue” (both in line 6).

Source Code 2.2: A brief example of RDF

1 <rdf :RDF

2 x m l n s : r d f ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 x m l n s : f e a t u r e ="http://www.saulotoledo.com.br/bookfeatures#">

4

5 < r d f : D e s c r i p t i o n r d f : a b o u t ="http://www.saulotoledo.com.br/books#

algorithmBook">

6 < f e a t u r e : c o v e r C o l o r r d f : r e s o u r c e ="http://www.saulotoledo.com.br/

colors#blue" / >

2.4 Ontologies and knowledge representation 18

7 < / r d f : D e s c r i p t i o n >

8 < / rdf :RDF>

2.4.3 The Ontology Web Language (OWL)

RDF is not enough to describe rich ontologies, and the Ontology Web Language (OWL) is a

W3C2 proposal defined on top of it with this purpose in mind [56]. In order to classify things

in terms of their meaning, OWL defines [55]:

• Classes: Describes the domain concepts. It is a way to classify individuals which

share characteristics into groups;

• Individuals: Members (instances) of a class;

• Properties: Allows us assert general facts about the members of classes and specific

facts about individuals.

The Source Code 2.3 is an example that represents in the OWL format some metaclasses

of the UML metamodel. We model the UML metaclasses “Classifier” (line 12), “Behav-

ioredClassifier” (line 17) and “Interface” (line 23). “BehavioredClassifier” and “Interface”

extends “Classifier” by using the “subClassOf” relationship (lines 19 and 25). “Classifier”

has a property called “isAbstract” (defined in line 6, relationship with “Classifier” on line 7).

We also represent an individual whose ontology class is “Interface” (line 29).

2World Wide Web Consortium (http://www.w3.org/)

http://www.w3.org/

2.4 Ontologies and knowledge representation 19

Source Code 2.3: A brief example of OWL

1 < !DOCTYPE rdf :RDF [(. . .)] >

2 <rdf :RDF xmlns="¨classmmo;#" (. . .) >

3 < !−− OWL header o m i t t e d f o r b r e v i t y −−>

4

5 < !−− D e f i n i t i o n o f t h e p r o p e r t y i s A b s t r a c t −−>

6 < o w l : D a t a t y p e P r o p e r t y r d f : a b o u t ="¨classmmo;#isAbstract">

7 < r d f s : d o m a i n r d f : r e s o u r c e ="¨classmmo;#Classifier" / >

8 < r d f s : r a n g e r d f : r e s o u r c e ="&xsd;boolean" / >

9 < / o w l : D a t a t y p e P r o p e r t y >

10

11 < !−− OWL C l a s s D e f i n i t i o n − C l a s s i f i e r −−>

12 < o w l : C l a s s r d f : a b o u t ="¨classmmo;#Classifier">

13 < r d f s : l a b e l > C l a s s i f i e r < / r d f s : l a b e l >

14 < / o w l : C l a s s >

15

16 < !−− OWL C l a s s D e f i n i t i o n − B e h a v i o r e d C l a s s i f i e r −−>

17 < o w l : C l a s s r d f : a b o u t ="¨classmmo;#BehavioredClassifier">

18 < r d f s : l a b e l > B e h a v i o r e d C l a s s i f i e r < / r d f s : l a b e l >

19 < r d f s : s u b C l a s s O f r d f : r e s o u r c e ="¨classmmo;#Classifier" / >

20 < / o w l : C l a s s >

21

22 < !−− OWL C l a s s D e f i n i t i o n − I n t e r f a c e −−>

23 < o w l : C l a s s r d f : a b o u t ="¨classmmo;#Interface">

24 < r d f s : l a b e l > I n t e r f a c e < / r d f s : l a b e l >

25 < r d f s : s u b C l a s s O f r d f : r e s o u r c e ="¨classmmo;#Classifier" / >

26 < / o w l : C l a s s >

27

28 < !−− An i n s t a n c e o f t h e c l a s s I n t e r f a c e − a car −−>

29 < r d f : D e s c r i p t i o n r d f : a b o u t ="¨classmmo;#car">

30 < !−− Car i s an i n d i v i d u a l (i n s t a n c e) o f t h e I n t e r f a c e c l a s s −−>

31 < r d f : t y p e r d f : r e s o u r c e ="¨classmmo;#Interface" / >

32 < !−− There i s no a b s t r a c t i n t e r f a c e s −−>

33 < u m l c l a s s m m o : i s A b s t r a c t > f a l s e < / u m l c l a s s m m o : i s A b s t r a c t >

34 < / r d f : D e s c r i p t i o n >

35 < / rdf :RDF>

Chapter 3

Techniques for UML Class Diagrams

Recommendations

This work proposes to recommend UML class diagrams to users interested in receiving rec-

ommendations of diagrams that could be useful for them based in a set of features they have

informed. In order to achieve this goal, we try to find the best recommender approach for

this scenario by proposing and comparing four proposals: (i) a random recommendation ap-

proach, (ii) a bag-of-words based approach, (iii) a classic content-based approach and (iv) a

knowledge based approach.

The random approach is a baseline that randomly suggests items and does not need to

know the diagrams’ content. The bag-of-words approach uses the content of the XMI file as

text to identify relevant items. On the other hand, the content-based and the knowledge-based

approaches need to represent the items’ and users’ profiles in some way, and it is a common

practice into Recommender Systems area to do it as vectors [45]. With that in mind, we

propose a vector representation for users and UML class diagrams items.

Before discussing about the techniques, Section 3.1 presents the profiles that are used by

the content-based and the knowledge-based approaches. Then, Section 3.2 presents each one

of four recommender algorithm proposals.

20

3.1 User and item profiles 21

3.1 User and item profiles

In order to generate recommendations with a content-based or a knowledge-based algorithm,

a suitable representation for the items’ and users’ profiles is necessary. Initially in this work

context, there is a set of UML diagrams for which there is no enough information about

the domain where they came from; thus, this work needs a representation that ignores the

diagrams’ domain. One way to describe these diagrams could be by using a set of features

that users might be interested in, such as interfaces, generalizations, enumerations and so on.

Thus, this work represents their profiles as a vector where each component is one of these

features, extracting them from the class diagrams. About the users, once they are interested

in that diagrams, this work represents their interests as a vector in the same format.

Thinking about the features that should compose this vector, this work proposes, based

in the UML metamodel, the set of UML class diagram’s features presented below (where

“P” in the acronym stands for “presence of”):

• Composite Aggregation (PCOA): The diagram has at least one composition;

• Shared Aggregation (PSHA): The diagram has at least one aggregation;

• Association Class (PASC): The diagram has at least one association class;

• Dependency (POD): The diagram has at least one dependency;

• Attribute with Default Value (PADV): The diagram has at least one attribute initial-

ized with a default value;

• Realized Interface (PRI): The diagram has at least one realized interface;

• Generalization (POG): The diagram has at least one generalization;

• Interface (POI): The diagram has at least one interface (even if it is not realized);

• Derived Attribute (PDA): The diagram has at least one derived attribute;

• Static Operation (PSO): The diagram has at least one static operation;

• Port (POP): The diagram has at least one port;

3.2 Recommender systems approaches proposed in this work 22

• Qualifier (POQ): The diagram has at least one qualifier;

• Abstract Class (PABC): The diagram has at least one abstract class;

• Enumeration (PEN): Indicates whether the diagram has at least one enumeration;

• Navigation Arrows in Associations (PNAA): In UML, an association can be uni or

bi-directional. If an association is uni-directional, an arrow indicating the direction

must be present. If it is bi-directional, arrows in both sides of the association are

optional. This feature indicates whether the diagram visualization has at least one

association with at least one navigation arrow;

• Generalization Set (PGS): Diagram has at least one generalization set;

• Template Class (PTC): The diagram has at least one template class;

• Static Attribute (PSA): The diagram has at least one static attribute;

• Abstract Operation (PAO): The diagram has at least one abstract operation.

In the profile vector, the value for each feature can be 0 (absence) or 1 (presence). As

an example, the diagram in Figure 2.1 contains the enumeration “Color” and its value for

PEN is 1; the value for PASC is also 1, since the diagram contains the association class

“Membership”; but it does not contains ports, thus the value for POP is 0. It is a limitation

of this proposal consider only binary features. A future work could evaluate the quantity for

each vector component, but some of these features can appear more frequently than others

(ports and template classes are less common than dependencies, for instance), and this can

interfere in the results and should be carefully considered.

3.2 Recommender systems approaches proposed in this

work

As introduced before, this work proposes and compares four recommender approaches, that

are detailed below. The Subsection 3.2.1 presents the random algorithm; the Subsection 3.2.2

presents the bag-of-words based algorithm adapted from Information Retrieval techniques;

3.2 Recommender systems approaches proposed in this work 23

then the Subsection 3.2.3 presents a content-based algorithm that uses well known Recom-

mender System techniques; finally the Subsection 3.2.4 presents the main concepts of a new

knowledge-based recommender systmem algorithm. All these approaches returns the top-n

items, considering that the top-n items for the random algorithm can be formed by any of

them in any order.

Considering the contexts of the users and diagrams could be useful to improve the rec-

ommendations, since different groups of users can be interested in different types and details

of diagrams. However, the following proposals do not consider it for simplicity, since this

task requires a study that consider grouping users and diagrams. This can be accomplished

in a future work.

3.2.1 Random items recommendation

This proposal collects all UML diagrams from the database into a set, shuffles them and

returns n items. The idea behind this approach is to be a baseline for algorithms comparison.

All permutations should occur with equal likelihood.

The approach’s results can vary between different implementations. We have created our

own implementation for this algorithm by using Collections.shuffle()1 from the Java API.

The internal applied algorithm in this method is unknown but, for example, the OpenJDK2

implementation3 basically does a θ(n) Fisher-Yates shuffle [16]. Figure 3.1 presents this

approach’s algorithm: the user states his/her preferences, but the system ignores them and

just shuffles the items, recommending n random ones to the user.

This approach is limited to randomly recommend items and represents the worst possible

recommendation. As it simply randomizes the results, it also ignores the context of the

diagrams, their domains or any patterns they could represent, and cannot detect any of the

elements or describe relations between them unless it is for a lucky draw.

1You can find more information about at Oracle’s documentation for Java: http://docs.oracle.

com/javase/6/docs/api/java/util/Collections.html
2An open source JDK implementation. You can find more about at http://openjdk.java.net/
3This particular source code is available at http://hg.openjdk.java.net/jdk7/jdk7/jdk/

file/9b8c96f96a0f/src/share/classes/java/util/Collections.java

http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html
http://openjdk.java.net/
http://hg.openjdk.java.net/jdk7/jdk7/jdk/file/9b8c96f96a0f/src/share/classes/java/util/Collections.java
http://hg.openjdk.java.net/jdk7/jdk7/jdk/file/9b8c96f96a0f/src/share/classes/java/util/Collections.java

3.2 Recommender systems approaches proposed in this work 24

Figure 3.1: The random recommendation algorithm

3.2.2 Bag-of-words based approach

Since UML diagram files can be stored in the XMI file format, we can consider them as

simple text files and extract a set of words and their occurrences. After that, we can use

the bag-of-words model introduced in Subsection 2.2.1 to represent the diagrams, and the

tf-idf weighting scheme, introduced in Section 2.2.2, to get the recommended UML class

diagrams. Since the bag-of-words set is extracted from the file contents, this approach can be

considered as a naive content-based one. This entire approach is a well-known IR technique

that is reused in this study; the only innovation is its application to XMI files.

In summary, the algorithm indexes the files and then rank by using tf-idf. To perform

searches, the user provides a search string to a tool that runs the algorithm. The Table 3.1

contains an example of the search strings used for each user feature that can be found in

the user/item profiles: most of the “or” symbols are used to search for UML1.x and UML2.x

files (the XMI dialect changes while representing different versions of UML); others are used

to identify different elements that could be considered in that search (operations are present

in classes or interfaces, and the system can search for both, for instance); the plus signs are

used to identify what elements should be found together (as an example, for presence of

static attributes – PSA – classes (i.e. “uml:Class”) with attributes (i.e. ownedAttribute) that

are static (i.e. “isStatic=true”). The complete list of strings can be found in Appendix B.

Figure 3.2 presents this approach’s algorithm: the user states his/her preferences; after,

the system builds the search string by concatenating the strings for all features selected by

3.2 Recommender systems approaches proposed in this work 25

Table 3.1: Examples of search strings for the bag-of-words approach

User selected feature Search string

Presence of Static Operation (PSO) (("uml:Class" || "UML:Class") ||

("uml:Interface" || "UML:Interface" ||

name="interface")) + (ownedOperation ||

"UML:Operation") + ("isStatic=true" ||

"ownerScope=classifier") + (packagedEle-

ment || "UML:Model")

Presence of Attribute with Default Value

(PADV)

(("uml:Class" || "UML:Class") ||

("uml:Interface" || "UML:Interface" ||

name="interface")) + (ownedAttribute

|| "UML:Attribute") + (defaultValue ||

Attribute.initialValue) + (packagedElement

|| "UML:Model")

Presence of Association Class (PASC) ("uml:AssociationClass" ||

"UML:AssociationClass") + (pack-

agedElement || "UML:Model")

3.2 Recommender systems approaches proposed in this work 26

the user; then, the system searches for the items and orders the results by using the values

for tf-idf (see Subsection 2.2.2) and finally recommend the n best results. Each search string

starts with the most specific term and finishes with the most general one, that is always

present in UML files, precluding thus the system returns an empty result. If the system does

not find items that are equivalent to the entire string, it will return items that correspond to

the more generic one. For instance, the PASC string contains “uml:AssociationClass” and

“packagedElement”, if this combination does not exists in the UML class diagram database,

the system will search for just “packagedElement”.

Figure 3.2: The bag-of-words recommendation algorithm

Considering w as the number of words in the XMI document and d the number of dia-

grams, extracting the terms from the diagrams costs θ(w · d), since for each diagram, each

word should be verified. Searching is also a linear θ(w · d) for the same reason. The tf-idf in

the end is θ(w2 ·d) and the top-n calculations is θ(d · log d). Thus, the total cost of calculating

the top-n results in this algorithm is θ(w · d) + θ(w2 · d) + θ(d · log d, that is θ(w2 · d).

This model is simple to implement, since there is no need to create a new user and item’s

representations in addition to the bag-of-words structure. Frameworks that provide indexing

and search technologies, as Apache Lucene4, facilitate the implementation of this approach.

Unfortunately, there is a major issue with our implementation: it cannot differentiate between

the elements tags and their names or values, and this can lead to wrong results; if there are

comments in the file containing any substring used by the search string, for instance, there

4https://lucene.apache.org/

https://lucene.apache.org/

3.2 Recommender systems approaches proposed in this work 27

will be a wrong count of that element. This choice was made because the research database

does not contain these situations (unless there has been human error, a threat for the validity

for the results of this research that should have a minor impact), and implementing a custom

parsing that ignores the attributes’ values and others should be costly, time consuming and

would complicate the algorithm definitions.

This approach is limited to the use of XMI files, since it needs to read the UML files

as text, and contains the previously mentioned issue with the elements and tag names. It

also cannot diferentiate the “isStatic” from attributes and operations, for instance, since it

searches for this string in the entire file, and this can also lead to wrong results. In addition,

it ignores the context of the diagrams, their domains or any patterns they could represent.

Finally, it can only detect the presence or absence of a determined feature and can not identify

the quantity of a determined element in the diagrams or describe relations between them.

3.2.3 Item’s vector (content) based approach

The previous proposal, that is based in Information Retrieval techniques, trust in the files’

content as strings, and this can lead to mistakes as previously introduced. Also, in that pro-

posal, the term count must be done in the current file and in all the other files in order to

calculate the tf-idf for them. With that in mind, this work proposes another way to recom-

mend diagrams by using an items’ vector Recommender System content-based approach.

Figure 3.3 presents its algorithm: the user states his/her preferences; after, the system, by

using the profile defined by a set F = {f1, f2, ..., fg} of features (see Section 3.1) to describe

items (i.e. UML class diagrams) and users’ interests, calculates the similarity between the

user’s profile and each item stored in the database; finally recommend the n most similar

results.

Considering m as the vector dimension, the user’s profile as a vector ~u, and the item’s

one as a vector ~i, we use the cosine similarity function (Equation 3.1) [3] to calculate the

proximity between users and items.

sim(~u,~i) =

∑m

k=1
uk · ik√∑m

k=1
(uk)2 ·

√∑m

k=1
(ik)2

(3.1)

The cosine similarity returns a value between 0 and 1. A value of 1 indicates that both

3.2 Recommender systems approaches proposed in this work 28

Figure 3.3: The vector’s based recommendation algorithm

vectors are equal. The top-n items for the user u ∈ U are computed as presented at Equa-

tion 3.2, calculating the similarity between ~u and each~i ∈ I , and returning the n elements

with higher similarities (notice the n parameter in argmax).

top-n(~u) :=
n

argmax
~i∈I

sim(~u,~i) (3.2)

Considering the data summarized in Table 3.2, i1 as a representation for the diagram from

Figure 2.1, and i2 as a representation for a similar diagram, but that does not have the features

presence of enumerations (PEN) and presence of derived attributes (PDA), both features that

were selected by the user, lets compute the top-1 elements. After applying Equation 3.1

between u1 and each item, the results are sim(~u1, ~i1) ≈ 0.866 and sim(~u1, ~i2) ≈ 0.333.

Finally, top-1(u1) comprises i1 (the diagram from Figure 2.1).

Considering w as the number of words in the XMI document and d the number of dia-

grams, extracting the items’ vectors for the diagrams costs θ(w · d) because each word in the

XMI file must be checked to identify if it represents the presence of a feature. Once it is done

it can be stored in a database. On the other hand, considering that the number of features

is a constant c, the cosine similarity has a constant cost, since if depends of the length of

the vectors (that is the number of features), and the similarity for all diagrams is θ(c · d).

Finally, the top-n is calculated and costs θ(d · log d). Thus, the total cost of the approach is

3.2 Recommender systems approaches proposed in this work 29

Table 3.2: Examples of user and items profiles

PCOA PSHA PASC POD PADV PRI POG POI PDA PSO

u1 0 0 1 0 0 0 0 0 1 0

i1 0 0 1 0 0 0 1 0 1 0

i2 0 0 1 0 0 0 1 0 0 0

POP POQ PABC PEN PNAA PGS PTC PSA PAO

u1 0 0 0 1 0 0 0 0 0

i1 0 0 0 1 0 0 0 0 0

i2 0 0 1 0 0 0 0 0 0

θ(c · d) + θ(d · log d), that is θ(d).

The idea of using the a vector similarity method between profile and item’s vectors and

returning the top-n items is a well-known RS technique. The innovation of this approach lies

in describing UML diagrams as vectors in order to be possible to apply this technique.

This approach is limited to a static description of the diagrams and users, disregarding

the context of them, the domains of the diagrams or any patterns they could represent. It

also can only detect the presence or absence of a determined feature and can not identify the

quantity of a determined element in the diagrams or describe relations between them.

3.2.4 Knowledge-based approach

The previously presented proposals can identify features in the diagrams that were selected

by the users, but they are unable to discover other features that the user might be interested in.

The knowledge-based approach uses the same vector used by the item’s vector content-based

one, but uses knowledge-based information to increment it with values of partial interests in

features that were not selected by the user. In other words, it discovers in what other features

the user might be interested in and the weight of the interest. Therefore, we use almost the

same algorithm, but before calculating the similarity, we apply a transformation on the user’s

vector, expanding it to contain other features than those explicitly indicated by the user.

3.2 Recommender systems approaches proposed in this work 30

Figure 3.4 presents the approach proposal: the user states his/her preferences; next, the

algorithm builds an initial user profile and expands it by using a newly proposed knowledge-

based generic algorithm that uses (i) the user’s preferences, (ii) an OWL ontology file, (iii) a

feature-to-ontology class/attribute mapping table, and (iv) some adjustment parameters; then

it calculates the similarity between the user’s profile and each item stored in the database;

finally recommend the n most similar results. We named the proposed knowledge-based

algorithm OntoRec and it is a completely new algorithm.

Since the idea is to recommend UML class diagrams, it was built an ontology based on

the UML metamodel of the current version of the UML language, 2.4.15. The following

topics contains a brief introduction about how the entire approach was built, starting in how

its ontology was built, after explaining the concept of mapping table that is used by the

algorithm, then introducing the algorithm parameters, and finally a brief summary about

how the recommendations are performed. Further details about this approach can be found

in Chapter 4 and in Appendix A.

Figure 3.4: The knowledge-based recommendation algorithm

Considering w as the number of words in the XMI document and d the number of dia-

grams as in the item’s vector based approach (Section 3.2.3), extracting the items’ vectors

for the diagrams also costs θ(w · d) for the same reasons, and once it is done it can also be

5Available at http://www.omg.org/spec/UML/2.4.1/

http://www.omg.org/spec/UML/2.4.1/

3.2 Recommender systems approaches proposed in this work 31

stored in a database. In the same way, the total cost of the approach disregarding the vector

expansion is θ(d), but the total cost of this approach is higher and is detailed in Appendix A.

As the content-based approach, despite the extension of the user profile, this approach

is also limited to a static description of the users and diagrams, disregarding the context

of them, the domains of the diagrams or any patterns they could represent. It also can not

identify the quantity of a determined element in the diagrams or describe relations between

them.

Building the ontology

According to Section 3.1, the user profile vector contains a well defined feature set. In the

UML metamodel, each one of these features can be found as (i) a metaclass or as (ii) a

meta-attribute. Thus, the next step is to connect the feature list to the ontology’s elements

(classes or properties, in this case) and, to do that, we have mapped each feature from the

profile’s vector to classes or attributes from the UML metamodel. As an example, consider

the feature presence of static operations (PSO): this feature was connected to the attribute

“isStatic” of the class “Operation” in the UML metamodel. After applying this process to all

of the features, the mapping table required by OntoRec (see Section 4.3 for details) presented

at Table 3.3was built.

The approach’s ontology is a simplified version of the UML metamodel in which are

considered just the elements related to the feature set. Thus, the classes and attributes in

the ontology are the same as in the UML metamodel. Each unique related UML metaclass

presented in Table 3.3 is built as a class in the resulting ontology. After that, all its ancestors

until Element (that is the top ancestor element according to the UML metamodel) are also

represented as classes in the ontology. The inheritance relationships between all classes are

also built into the ontology as a “is subclass of” relationship. Lastly, all the related properties

in that table are modeled as attributes of their respective classes. It is important to note that

some features are mapped directy to classes, as presence of association classes (PASC), once

the metaclass AssociationClass is enough to describe it; others are mapped to attributes as

presence of abstract classes (PABC) and presence of template classes (PTC), once they are

more related to attributes in the metamodel than to the metaclass Class.

Figure 3.5 presents a graphical representation of the reached ontology; as an ex-

3.2 Recommender systems approaches proposed in this work 32

Feature Related metaclass in Related meta-attribute in

the UML metamodel the UML metamodel

PSA Property isStatic

PADV Property defaultValue

PSO Operation isStatic

PRI Interface -

PASC AssociationClass -

PABC Class isAbstract

PTC Class isTemplate

PEN Enumeration -

PCOA Association ownedEnd.aggregation = composite

PDA Property isDerived

PGS GeneralizationSet -

PNAA Association navigableOwnedEnd

POD Dependency -

POP Port -

POQ Property qualifier em Property

PSHA Association ownedEnd.aggregation = shared

POG Generalization -

POI Interface -

PAO Operation isAbstract

Table 3.3: Feature’s mapping to the UML metamodel

3.2 Recommender systems approaches proposed in this work 33

ample, “isDerived” is an attribute from the class “Property”, which is a subclass of

“StructuralFeature”, “ConnectableElement” and “DeploymentTarget”. It is important to note

that are modeled only the generalizations from the UML relationships. Other approaches

could consider others relationships between the classes, as dependencies, compositions and

others, but this is not the case and can be addressed in future works.

The mapping table

There is a semantic difference between the ontology class or attribute and a feature in the list:

a feature is something that the user is interested in, the classes and attributes are things that

have semantic meaning in the ontology space. In order to connect these concepts, OntoRec

needs a structure which links them. This structure is named mapping table. This table

will somehow link features and the ontology classes to use the ontology knowledge to infer

a proximity result between features. For instance, one can connect the diagram’s feature

presence of abstract classes (PABC) to the attribute “isAbstract” in the class “Class” in the

ontology.

Note that a feature can be mapped to a class or an attribute, and we have done something

similar before when we mapped features to the UML metamodel’s classes. Thus, we already

have the mapping table: the Table 3.3, considering that the metaclasses are ontology classes.

The adjustment parameters

OntoRec receives the same vector used in the content-based approach and enriches it with

background knowledge. The updated vector is then used to calculate the recommendations.

To discover knowledge to enrich the input vector, it is necessary to choose some fine

tuning parameters. The main parameter is τ , and it ranges from 1 to the height of the ontology

graph that, according to Figure 3.5 (that represents the proposed ontology), is 7. For now,

one needs to know that the higher is τ , the higher is the chance to affect other features. If τ

is smaller, the enhanced vector is very similar to the first one.

With this in mind, it is possible to deduce that if a lower value for τ is chosen, the rec-

ommendations will be similar to that from the content-based approach, and this is something

that is not wanted. The higher is τ , the more features it affects, and if τ is the height of

the ontology, it will affect all features. Since recommending all features is like suggesting

3.2 Recommender systems approaches proposed in this work 34

Figure 3.5: The UML class diagrams ontology

3.2 Recommender systems approaches proposed in this work 35

all books in a library for somebody that is looking for a few of them, a lower value for τ

is desirable. Therefore, this work uses τ = 3 as the value to be used in the experiments.

τ will allow that the approach affect the nearest features, discovered by OntoRec by using

inheritance; in Figure 3.5, “Abstraction” and “Usage” are closer to each other than “Usage”

and “Property”, for instance.

OntoRec has also two binary parameters, λ and υ. λ will make OntoRec ignore elements

with only one child , increasing the chance to discover similar nodes, and υ will decrease

the final values of the discovered features. This work does not comprises an experiment to

discover the impact of choosing different values for these parameters. . Thus, we chosen

λ = 1 and υ = 0 as an initial setup, which is the way the algorithm was thought before

the idea of these parameters, but they were proposed because we believe that they can be

important and should be evaluated in future researches. This is also true about the other

parameters: different ontologies and problems could be affected in a distinct way for different

setups, but this should be evaluated by an specific experiment.

Finally, OntoRec computes the enhanced vector values by navigating through the ontol-

ogy nodes, and it does this task by using one of two approaches: the Breadth-First Search

(BFS) and the τ -nth Ancestor approaches. The same way as before, once both will do the

same job and there is no statistical data to support this decision, it was chosen the simplest

one: the BFS approach.

After these configuration options, it is possible to run the knowledge-based approach.

Running the recommendations

This is the last step for this approach. Since all the OntoRec’s prerequisites are set, it is

just needed to get the user’s interest vector and send it (with all the other requirements) to

OntoRec. The algorithm will return a new expanded user’s interest vector. OntoRec does

not calculate similarity, it only enriches the input vector with background knowledge. Thus,

this work has have chosen to use the same similarity approach that was used on one of the

proposed content-based approaches: the cosine similarity. The recommendation is then done

as described in that approach.

Chapter 4

OntoRec: A Recommender Profile

Generation Approach Based on

Ontologies

One of the main contributions of this work is the proposal of the OntoRec (Ontology based

Recommendations), an algorithm that generates new profiles (user’s or items’ ones) based

on an ontology. OntoRec was initially developed as an algorithm to recommend UML dia-

grams based on an ontology representation of the UML metamodel, but evolved to a generic

algorithm that can be used for any situation where similar ontologies can be defined and

used.

The main idea of OntoRec is to use a domain ontology to discover related concepts that

may be of interest to users. It maps the initial user profile to elements in the ontology in order

to discover related attributes, giving them different weights based on how much related they

are. Thus, the algorithm can be used to expand user profiles to discover possible related

concepts for each profile.

In order to achieve its results, OntoRec needs to know how to use the ontology to infer

what diagrams can be useful to the users. The users inform in what features they are initially

interested, so OntoRec uses the classes of the ontology that represents each one of the se-

lected features and its attributes to discover other features that can be useful to them. Thus,

the first step is to understand what are the differences and similarities between ontology

classes and domain features (Section 4.1).

36

4.1 Features versus Classes 37

Going further, once is known how OntoRec discover how ontology classes are useful for

its processing, it should be known how OntoRec rely in the subclasses relationships in the

ontology to discover related classes that were not selected by the user, and that can be useful

(Section 4.2).

After that, it is time to understand more deeply as the algorithm relates features in the

real world to classes and attributes in the ontology, explaining what is the mapping table,

a structure that lists the features and their respective classes and attributes in the ontology

(Section 4.3).

OntoRec contains some configuration parameters. They can change the results of the

algorithm and must be defined before its execution. The first and most important parameter

is τ , that defines the number of ancestors of a class in an ontology that can be achieved. τ

is presented in details in Section 4.4. Section 4.5 introduces how the user profile is built,

and this is done with the help of two other parameters, λ (Subsection 4.5.1) and υ (Subsec-

tion 4.5.2) and a third that is a choice of the routing method that is used by the algorithm

to navigate the ontology (Subsections 4.5.3 and 4.5.4). The last three parameters are de-

tailed in the discussion about the user vector prepared by OntoRec in Section 4.5. Support

information can be found in the Appendix A.

4.1 Features versus Classes

The first main issue we should consider before starting to describe OntoRec is the difference

between what we call “features” and the ontology concept “classes”. Classes are the concepts

presented in the ontology and features are qualities in the real world problem. Therefore, lets

imagine that we have an ontology based on the UML metamodel to represent a UML class

diagrams database. In this ontology, each UML metaclass is modeled as an ontology class,

and a relationship “subclass of” for each subclass relationship. In order to simplify our

example, suppose that the diagram in Figure 4.1 (that is a simplification of the Figure 3.5)

represents the final ontology. The elements depicted by boxes are ontology classes, and

the elements depicted by circles are attributes. For instance, “isStatic” is an attribute of

“Feature”, that in turn is a subclass of “RedefinableElement”.

Now, suppose that it is desirable to create a Recommender System to recommend UML

4.1 Features versus Classes 38

Figure 4.1: Simplified class diagram ontology

class diagrams to users by using the information in the ontology in Figure 4.1, using the

relationship between the classes to discover diagrams to recommend to the user. With this

information, it is possible to answer the following question: “if the user is interested in static

attributes, what other features he could be interested in?”

Considering that users are interested in features like presence of static attributes, in-

terfaces, generalization sets and others, these features are used to build a binary profile.

Together, they compose an user or item profile that describes the interest or presence of the

related feature. Table 4.1 presents some hypothetical UML class diagrams to illustrate our

discussion. The features in the table are some of the described in Section 3.1. The diagrams

may contain more than one of each feature.

Put all these concepts, it is finally possible to explain the difference between a feature

like “Presence of Interface (PIN)” and the ontology class “Interface”. Although they are

related, the first one is some kind of interpretation of the problem instance, the second one

is a static concept in the ontology domain. OntoRec uses the concept of mapping table

4.2 The need of inheritance 39

Table 4.1: UML class diagrams examples

Diagram Name PSA PDA POP PIN PGS

Class Diagram 01 Yes Yes Yes No No

Class Diagram 02 No No Yes No No

Class Diagram 03 Yes No Yes No No

Class Diagram 04 Yes No No Yes No

Class Diagram 05 No Yes No No Yes

(see Section 4.3) to link both concepts and use the relationship among the concepts of the

ontology to infer a proximity value between concepts in our problem setting.

4.2 The need of inheritance

OntoRec relies on the ontology relationship “is subclass of”. This is a main definition of

the algorithm that reduces its complexity. Only this kind of relationship and the classes

attributes are considered by OntoRec, and every class in the ontology (except the root) should

be subclass of another one. One should also avoid circular dependencies (where some class

ancestor is subclass of one of its descendants), or OntoRec will enter in an infinite loop while

trying to find all paths between an ancestor and its mapped children.

One can note that in this kind of relationship there are inherited attributes. In our

example, “StructuralFeature”, “Property” and “Port” are descendants of “Feature”, so the

first three have, by inheritance, the attribute “isStatic”, as shown in Figure 4.2 .

4.3 The Mapping Table

In the previous section, features that are related to classes (“Presence of Interface (POI)”,

that is related to the class “Interface”, for example)and features related to attributes (“Pres-

ence of Static Attribute”, that is related do the attribute “isStatic”) have been defined. The

mapping table is an OntoRec structure that is capable to map features from the user profile

to classes or attributes from the ontology, whether the last ones are inherited or not. Ta-

4.3 The Mapping Table 40

Figure 4.2: Ontology inheritance example for OntoRec

ble 4.2 is an example of mapping table: in this table there is a mapping, for instance, from the

feature “POI” directly to the class “Interface”, whereas there is a mapping from the feature

“PSA” to the attribute “isStatic” of the class “Property”.

Profile feature Ontology class Ontology attribute

POI Interface -

PGS GeneralizationSet -

POP Port -

PSA Property isStatic

PDA Property isDerived

Table 4.2: A Mapping Table Example

In Figure 4.1, the attribute “isStatic” is connected to the class “Feature”. The profile

in Table 4.2 contains a feature called “PSA”, that stands for presence of static attribute,

whose meaning is closer to “Property” than “Feature”. Since “Property” is a descendant of

“Feature”, the attribute “isStatic” was mapped into “Property”, which it is possible due to

the inheritance presented in Section 4.2.

By using the mapping table, every time that is considered a feature in the recommender

algorithm, the mapped ontology elements are used to infer the most (or less) related features.

The next sections will present how this is used by the algorithm.

4.4 The τ parameter 41

4.4 The τ parameter

The τ parameter is known as influence range factor; it defines how much ancestors can

be achieved given a mapped selected feature. Figure 4.3 helps to illustrate an example of

how this parameter works: considering that the feature presence of static attribute (PSA)

is mapped to the attribute isStatic into Property as explained in Section 4.3, if τ is 3, it is

possible to achieve, as exemplified by e0 → e1 → e2 → e3 in that figure, the following τ -nth

ancestors:

• MultiplicityElement: by the path isStatic → Property → StructuralFeature →

MultiplicityElement;

• TypedElement: by the paths isStatic → Property → StructuralFeature →

TypedElement or isStatic→ Property→ ConnectableElement→ TypedElement;

• MultiplicityElement: by the path isStatic → Property → StructuralFeature →

Feature;

• NamedElement: by the path isStatic → Property → DeploymentTarget →

NamedElement;

• ParameterableElement: by the path isStatic→ Property→ ConnectableElement→

ParameterableElement (the example in Figure 4.3).

τ makes the algorithm behave as if the other ancestors dit not exist. Another example

will help to explain the parameter: considering the feature presence of static attribute (PSA)

mapped as before, if τ is 1, it is only possible to achieve the classes in Figure 4.4, and the

other classes do not exists in that iteraction, while if τ is 2 the achieved classes are presented

in Figure 4.5. Finally, if τ is 3 the achieved classes are presented in Figure 4.6.

4.5 Preparing the user vector

For OntoRec each user profile is a vector in which each component represents a different

feature. Considering the mapping table described previously in Table 4.2, each feature in the

user profile is identified by 1 if the user is interested on it, or 0 if the user is not interested

4.5 Preparing the user vector 42

Figure 4.3: Example of path for mapped feature

Figure 4.4: Example for τ = 1

in that feature. Table 4.3 contains an example of user profile where the user is interested in

the features presence of interfaces (POI) and presence of derived attributes (PDA), but not

in the others in that table.

Table 4.3: A sample user profile

POI PGS POP PSA PDA

u 1 0 0 0 1

OntoRec recalculates the user’s profile, discovering what we define as “partial interests”.

4.5 Preparing the user vector 43

Figure 4.5: Example for τ = 2

Figure 4.6: Example for τ = 3

To do that, OntoRec employs two approaches: the Breadth-First Search (BFS) and the

τ -nth Ancestor. The Subsections 4.5.3 and 4.5.4 will present each one of them in detail.

Each approach executes one time for each feature that was selected by the user, starting from

it and calculating weights for all the other features with value 0 based on how far are the

other features from the starting one in the ontology. In order to discover what features can be

4.5 Preparing the user vector 44

reached from the starting one, they use the τ parameter. By using the example in Table 4.3

both approaches will calculate the weights for the features with value 0 if they are reachable

according to the parameter τ , starting in “POI” and by using its mapping to the ontology;

after finishing the first iteration, it will calculate again by starting in “PDA”; if a feature

contains a nonzero value (and was not selected by the user), the final weight for that feature

will be the mean between the old and the new value. Selecting the approach that will be used

is a configuration task before running the algorithm.

Considering presence of interface (POI) as the starting element, OntoRec will use the

ontology to discover some elements that are related. We define as related to a given element

m the mapped elements that are descendants of the τ -nth ancestors ofm, whatever the chosen

approach is. Thus, the parameter τ is important.

Independently of the selected approach, it considers the parameters λ (subsection 4.5.1)

and υ (subsection 4.5.2) that, as we will see later, changes the amount of covered paths that

will be used to calculate the partial interest values.

After discovering the distances between the starting and destiny features, it is time to

compute the score of the related feature. We define this score in the Equation 4.1 below:

score(m) : 1− distance

pathsSum
(4.1)

If m is a feature of interest of the user, the value of this score is always 1. If m already

has another previous score value, the new score value is the mean between the current value

and the old one.

4.5.1 The λ parameter

To explain this parameter, consider the Figure 4.7. There, it is possible to check that

some elements as “ConnectableElement” and “Classifier” just have one direct descendant

(all of them are displayed in red boxes in the figure). Suppose that we want a path with

length 2 starting from “isStatic” to some ancestor. If λ = 1, considering the path high-

lighted in Figure 4.3, “ConnectableElement” will be ignored and the result path will be

(“isStatic”→ “Property”→ “ParameterableElement”). “Property” is marked as red because

its only child is “Port” and the others are properties, but the owner of the property is not

4.5 Preparing the user vector 45

ignored: since “isStatic” is a property of “Property”, it is not ignored even if λ = 1. If

λ = 0, “ConnectableElement” will not be ignored and the result path will be (“isStatic”→

“Property”→ “ConnectableElement”).

Figure 4.7: Elements to be ignored if λ = 1

The idea behind the λ parameter is that elements with just one direct specialization does

not classify the elements below, and may be ignored. However, the validity of this informa-

tion depends more of the problem instance than of the algorithm, and the parameter value

should be defined for each application of OntoRec.

4.5.2 The υ parameter

This parameter will define if the paths to other mapped nodes will be added to the sum of the

paths used to calculate the weights for other nodes. In order to introduce how this parameter

works, it will be presented an example where it will be calculated the weight of other features

concerning one of the features selected by the user. As instance, it will be considered an user

vector with 3 features, “POP”, “PDA” and “PSA”, and τ = 1. The starting point is in

4.5 Preparing the user vector 46

Figure 4.8, in which the notes represent the mapped features, and the user image represents

an user’s interest in that feature.

Figure 4.8: A simple example to present the υ parameter

Proceeding with the weight calculations for our example and considering υ = 0, no paths

will be ignored and we have the Figure 4.9. The variable “pathsSum” is used to count the

the sum of visited paths and will be, later on Figure 4.9e, used to calculate the user’s interest

for features he/she do not selected. If we stop here, the result weight for “PDA” is 0.5.

Considering υ = 1, the algorithm will identify that “POP” is already chosen by the user

and ignores the path described in Figures 4.9a and 4.9b. The result is that fewer paths will

be covered and we will have the Figure 4.10, and we will have a different result for “PDA”,

that is 1.

4.5.3 Breadth-First Search (BFS) approach

This approach considers the ontology as a graph, using the well known Breadth-First Search

(BFS) algorithm [12] to find the lesser distance to other mapped features. This distance will

be used later to infer the “amount” of “partial interest” of the user for the other mapped fea-

tures. Figure 4.11 shows an example of the path used to reach the node “GeneralizationSet”

starting from “isStatic” in “Property”, considering that the τ -nth class is “Element”.

4.5.4 τ -nth Ancestor approach

This approach considers the ontology as a graph, walking to the τ -nth ancestor, and complete

the path from there to each mapped feature except the starting one by using the BFS algo-

rithm. Figure 4.12 shows an example of the path used to reach the node “GeneralizationSet”

starting from “isStatic” in “Property”, considering that the τ -nth class is “Element”.

4.6 Calculating the recommended items 47

(a) υ = 0, step 1 (b) υ = 0, step 2

(c) υ = 0, step 3 (d) υ = 0, step 4

(e) υ = 0, step 5

Figure 4.9: The steps for υ = 0

Figure 4.10: The result for υ = 1

4.6 Calculating the recommended items

After adjusting the profile vector by using the parameters and instructions presented in the

previous sections, all we need to do is to recommend items based on the that profile. OntoRec

is focused on expanding a profile, thus any vector similarity approach can be used next.

In order to use a vector similarity approach, the items’ profiles should have the same

format as the user’s profiles.

4.6 Calculating the recommended items 48

Figure 4.11: The knowledge-based algorithm BFS approach example

Some suggestions of methods commonly used to compute the similarity between vectors

are the cosine similarity and the euclidean distance [30]. One can be free to use one of them

or any other known approach.

4.6 Calculating the recommended items 49

Figure 4.12: The knowledge-based algorithm τ -nth approach example

Chapter 5

Evaluation

In order to evaluate the proposed profiles and recommendation algorithms, we have per-

formed an empirical study that compares them. This study included 51 participants. It

was reformulated by Cerqueira [10]1 and was conducted with Computer Science equivalent

courses volunteer students and egress. First, Section 5.1 presents the problem statement; the

setup is introduced in Section 5.2, covering the context and scope (Subsection 5.2.1), the ex-

periment design (Subsection 5.2.2), the execution (Subsection 5.2.3), the results and analysis

(Subsection 5.2.4) and the interpretation of the results (Subsection 5.2.5). A complementary

experiment was necessary to explain some results of the first one, and is presented in Sec-

tion 5.3, covering topics similar to the first one. Finally, the threats to the validity of the

results are presented in Section 5.4.

5.1 Problem statement

Finding UML class diagrams can be a challenge. Check them one by one looking for some

set of features is a tiring job, and we want to facilitate this task to users by recommending

suitable diagrams. In order to explore this problem, we investigated 4 recommender ap-

proaches, trying to find their strengths and weaknesses, and if at least one of them is suitable

to recommend UML class diagrams. Thus, we propose the following research questions and

1A PHD student at Federal University of Campina Grande that is applying the approaches defined in this

work to UML sequence diagrams. She suggested changes that allowed a less tiring test process to volunteers,

as well as a qualitative set of questions to the end of the experiment.

50

5.2 Setup 51

how we plan to answer them:

• RQ1. Are the proposed recommender approaches different regarding to their recom-

mendation accuracy?

• RQ2. How different are the approaches taken 2 by 2?

As we will see later in the analysis, the responses for the previous research questions led

us to a third research question, that is evaluated in a complementary experiment:

• RQ3. As we increase the number of selected features to be found, do the precision for

all proposed algorithms behave similarly?

5.2 Setup

We have executed an experiment with human subjects whose design, execution and analysis

are presented below.

5.2.1 Context and scope

To answer the research questions we have decided to execute an experiment where the sub-

jects represent developers that request UML class diagrams of their interest in a repository.

To formalize their interests, the subjects select different UML class diagrams’ properties,

defining a user profile. Also, the research subjects should have some knowledge about UML

class diagrams, and we ensure that by requiring that they have attended at least one UML

discipline in a higher education course.

In this experiment we have one factor, that comprises the different recommender ap-

proaches we need to apply to answer the research questions. For the recommender ap-

proaches, we have the following 4 treatments (each one already described in Section 3.2): (i)

random (a baseline for the experiment), (ii) bag-of-words, (iii) items’ vector content-based

approach and (iv) knowledge-based approach.

To execute the experiment we need to have objects, i.e. a set of UML class diagrams that

contains all the properties that allow us to explore user’s interest. We had a total of 325 UML

5.2 Setup 52

class diagrams, obtained from the following sources2:

• by downloading from the GenMyModel tool website3, an on-line UML editor with

code generation features. They have made available some public diagrams in the tool

repository that could be exported and downloaded in the XMI format;

• by applying reverse engineering of open source systems written in the Java language,

randomly chosen from the most downloaded projects at SourceForge4. These diagrams

were manually inspected to remove generated << use >> relationships (this kind of

relationship was generated in large quantities by the adopted tool and could make the

diagrams difficult to read by the subjects). The tool used to generate these diagrams is

now deprecated and their last information is available at its vendor’s website5. Also,

UML is more expressive and platform independent than Java code, and the quality of

the conversion from Java code to UML depends on the tool that is used to do the job.

Listing the risks of the conversion demands the job of evaluating each source code

and the generated diagrams for each particular Java and UML feature; this is a time

consuming task which was disregarded in this work;

• by downloading from the UML repository by the Chalmers University of Technology

and the Universiteit Leiden6. The UML class diagrams available in this repository are

for UML 1.x, were automatically processed and their XMI files contain errors. We

manually inspected one by one, (i) removing diagrams that describe other contexts

rather than object oriented software (as database modeling and metamodels represen-

tations, for instance), (ii) fixing all XMI features that are significant to the experiment

according to the UML images provided along with the diagrams (some diagram im-

ages presented generalizations, but the generalization relationship was missing at cor-

respondent XMI, for instance; this problem also happened with other features)7 and

2This experiment’s XMI files are available at http://www.saulotoledo.com.br/masters_

thesis/uml_recsys_database.tar.gz
3http://www.genmymodel.com/
4http://sourceforge.net/
5https://www.polarsys.org/topcased
6Available at http://cse-poros.cse.chalmers.se/
7It is important to know that we do not cleaned all features in these files, but just that ones that we are using

at profiles.

http://www.saulotoledo.com.br/masters_thesis/uml_recsys_database.tar.gz
http://www.saulotoledo.com.br/masters_thesis/uml_recsys_database.tar.gz
http://www.genmymodel.com/
http://sourceforge.net/
https://www.polarsys.org/topcased
http://cse-poros.cse.chalmers.se/

5.2 Setup 53

(iii) removing too small diagrams (diagrams containing only 1 to 3 classes and no

relationships).

When comparing the proposed recommender approaches, we want to know which of

them brings better results to the users. In general, metrics such as precision, recall and

f-measure are widely used as quality measures by information retrieval and recommender

systems communities [43]. Precision is defined as the fraction of recovered items that are rel-

evant, whereas recall is the fraction of relevant instances that were recovered, and f-measure

is the harmonic mean between the two previous metrics [43].

We cannot compute recall because this metric requires the relevant diagrams for each

user to be known beforehand, but we just know the intersection between the relevant and

recovered ones (i.e. the numerator of Equation 5.1). If we do not know recall, we can not

compute the f-measure. Thus, we just use the metric precision (Equation 5.1) to identify the

quality of the recommender approach proposals:

precision =
|{relevant items} ∩ {recov. items}|

|{recov. items}|
(5.1)

After receiving the recommendations, the participants can accept (or not) some of the

recommended diagrams. This information is therefore used to calculate the metric precision

for all approaches.

5.2.2 Experiment design

We have obtained a total of 51 answers through a convenience sample, grouped into different

educational backgrounds, distributed in the following way:

• 11 undergraduate subjects;

• 17 graduated subjects;

• 14 postgraduate students subjects;

• 9 postgraduated subjects.

There is no relationship between the groups above and the experience with UML. Thus,

we considered them all as equal in the analyses.

5.2 Setup 54

In order to answer the research questions, we have one unit of analysis (UA) that aims

to answering the research questions by using all the collected data and have one factor and

four treatments.

For the experiment, the participants performed the following five steps: (i) they filled

out the questionnaire presented below reporting their interests regarding the diagrams to

be recommended; (ii) after that, the recommendations were generated by the approach by

applying the four algorithms described in Chapter 3; (iii) since evaluating all diagrams from

the database would be unpractical (there are too many diagrams to be checked there), it

was presented the top-3 computed diagrams of each approach for the participants; (iv) next,

they judged the class diagrams recommended by the system as accepted or not accepted, i.e.

that satisfies or not their search needs; and (v) finally, they filled out the qualitative set of

questions presented in Table 5.1 about the tool and the recommendations.

The aforementioned questionnaire asked to the subject which of the following features

he/she was interested to see in UML class diagrams:

• Composite Aggregation;

• Shared Aggregation;

• Association Class;

• Dependency;

• Attribute with Default Value;

• Realized Interface;

• Generalization;

• Interface;

• Derived Attribute;

• Static Operation;

• Port;

• Qualifier;

• Abstract Class;

• Enumeration;

• Navigation Arrow in Association;

• Generalization Set;

• Template Class;

• Static Attribute;

• Abstract Operation.

Cerqueira [10] contributions adopted in this work were the following: (i) the questions

style for the user’s interests selection step; (ii) the way we run all approaches for all users

5.2 Setup 55

Table 5.1: The experiment’s final form

Question number Question

1 According to the information you have selected, the recommenda-

tions of the diagrams were useful?

2 Which positive features led you to conclude that the recommended

diagrams were useful?

3 Which negative features led you to conclude that the recommended

diagrams were not useful?

4 Overall, how satisfied were you with the recommendations made by

the tool?

5 Would you use this type of search tool again to find UML diagrams

according to your information needs?

6 Would you have any suggestions to improve the tool? If you could

change something, what would you do differently?

— we also randomize the algorithms order, so the user do not know which algorithm he is

evaluating (in fact, the user does not know in any way that he is evaluating more than one

recommender approach); (iii) the idea of showing only the top-3 instead of top-5, to decrease

the number of diagrams to be evaluated by the volunteers — since we have 4 algorithms, we

show 4 pages, each one with the top-3 for each algorithm; (iv) the qualitative set of questions

in Table 5.1, presented at the end of the experiment.

Finally, we formally define this experiment as follows:

• In order to answer RQ1, by performing the following hypothesis test:

H1-0: The precisions for all algorithms are equal

H1-1: The precisions for all algorithms are different

• In order to answer RQ2, considering the combinations 2 by 2 of all approaches, and

the approaches ai and aj , with i 6= j, we do it in 2 ways:

5.2 Setup 56

1. By using the Vargha Delaney effect size metric [54] to understand the probability

of having differences between the approaches ai and aj;

2. By performing the following hypothesis test to compare the approaches ai and

aj:

H2-0: The precisions for the approaches ai and aj are equal

H2-1: The precisions for the approaches ai and aj are different

5.2.3 Execution

Since there is no survey tool able to execute the proposed algorithms, we have chosen to

build a web tool by using the Java language to allow volunteers to execute the proposed

experiment. The source code of the tool as well as the software database and instructions

on how to replicate the experiment are available at GitHub8. The user opens the tool and,

after agreeing to participate in the experiment, he/she is directed to a page where he/she can

provide his/hers interests (Figure 5.1). After that, he/she can evaluate some recommenda-

tions according to the selected features (Figure 5.2). Finally, he/she fills out an open form

(Figure 5.3).

This tool (i) uses Apache Lucene9 in the bag-of-words algorithm implementation to cre-

ate the indexes and conduct the searches, (ii) extract the diagram’s profile vector from their

corresponding XMI representations and (iii) uses a Java implementation of the OntoRec al-

gorithm that we have developed for our experiments that is also available at GitHub10.

The users have participated in this experiment in places of their own choice, by running

their own personal computers, and by means of an internet access. They also have chosen

their own time to start the experiment.

To analyze the experiment results, we have used the GNU R11 software tool. All the

evaluation scripts are available for download and replication at GitHub12.

8https://github.com/saulotoledo/UMLRecExperiment
9http://lucene.apache.org/core/

10https://github.com/saulotoledo/OntoRec
11http://www.r-project.org/
12https://github.com/saulotoledo/UMLRecExpAnalysis

https://github.com/saulotoledo/UMLRecExperiment
http://lucene.apache.org/core/
https://github.com/saulotoledo/OntoRec
http://www.r-project.org/
https://github.com/saulotoledo/UMLRecExpAnalysis

5.2 Setup 57

Figure 5.1: The screen where the user informs his interests

5.2.4 Results and analysis

As 43 from 51 subjects mixed among all educational background groups marked that al-

ready had professional experience, we have decided not to analyze the professional experi-

ence because we have very unbalanced groups (only 8 from 51 subjects without professional

experience).

Figure 5.4 shows the number of times the subjects selected each feature. Some features

are more frequently selected than others; presence of interfaces (POI) and presence of ab-

stract classes were the most selected, and presence of ports and presence of qualifiers were

the less selected. Each subject also selected about 8/19 features on average. We evaluated,

as the result data of the study, the precision computed by using the diagrams selected as ac-

cepted by the test subjects. We applied some normality tests to help to decide what statistical

tests we should apply in the data. Among the possibilities, we have chosen the Shapiro-Wilk

and the Anderson-Darling tests for normality, two widely used methods to detect if the data

comes from a normal distribution [52]. The null hypothesis for both tests is that the data is

normally distributed. If the p-value is less than the chosen α level, we reject the null hypoth-

5.2 Setup 58

Figure 5.2: Example of screen where the user evaluates the tool’s recommendations

esis and there is evidence that the data tested are not from a normally distributed population.

Table 5.2 summarizes the testing results, showing us that we cannot detect normality for any

significant value of α; W and A are the statistics in which the tests are respectively based on.

Table 5.2: Normality tests for all data

Test name Results

Shapiro-Wilk W = 0.84

p-value = 1.02× 10−13

Anderson-Darling A = 12.10

p-value = 3.7× 10−24

The results on Table 5.2 are expected because, since we just evaluate the top-3 diagrams

5.2 Setup 59

Figure 5.3: The final form about the tool and the recommendations

for each algorithm, there are only four possible values for the precision: 0 (no diagram was

indicated as relevant), 0.33 (1/3 diagram was indicated as relevant), 0.66 (2/3 diagrams were

indicated as relevant), 1 (all diagrams were indicated as relevant). Figure 5.5 shows the

mean of the precisions for each approach; the means are almost equal, even to the random

approach. Figure 5.6 shows their respectives boxplots; their medians are all the same.

Since the data is not normal, Kruskal-Wallis, a non-parametric test, is applied [62]. We

had a p-value of 0.5344, a very high value for any reasonable value of α, indicating that

the test support the idea that the null hypothesis is true, i.e. the approaches precisions are

equivalent. Again, we cannot detect any significant difference between the approaches, an

expected result after visualizing the Figure 5.6.

After that, we have decided to realize a posthoc analysis by testing the pairs of ap-

proaches, ignoring the others in an attempt to find some difference. Thus, we have applied

the Vargha Delaney effect size metric to understand the probability of having differences

between the groups [54]. We have also applied the Wilcoxon pairwise hypothesis test to

compare each group with each other [62] (its null hypothesis is that there is no difference

between the two compared approaches). The results are summarized at Appendix C, in Ta-

bles C.1 and C.2. Again, we do not have found statistical evidence that there is a better

approach: all p-values are too high for any significant value of α in the Wilcoxon tests (i.e.

5.2 Setup 60

0

5

10

15

20

25

30

35

PABC PADV PAO PASC PCOA PDA PEN PGS PNAA POD POG POI POP POQ PRI PSA PSHA PSO PTC
Features

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure 5.4: The features usage

0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

P
re

ci
si

on
 m

ea
ns

Figure 5.5: Precision by approach for each recommender approach

the null hypothesis is true and both approaches are equivalent), and the effect sizes are all

small in the Vargha Delaney tests. These results lead us to a next unity of analysis, where we

will investigate their causes.

5.2.5 Practical significance (interpretation)

We have achieved no statistical significance in the results, and we have some guesses about

the results. First, we believe that we had a low number of diagrams recommendations for

each approach (top-3), a limitation of the experiment design. A single value chosen (or not

chosen) by the user penalizes the precision result by a factor of 25% (remember that we

just have four options: from 0 to 3 diagram selections by the user), increasing the precision

variance in the results. This is easily verified at previous boxplots (see Figure 5.6). Thus, the

Vargha Delaney and Wilcoxon tests, that are also non-parametric (which further decreases

5.2 Setup 61

Figure 5.6: Precision by approach boxplots for each recommender approach

the precision of the results) and sensible to the data variance, could not identify differences.

Most subjects (41 of them) filled out the final form. Table 5.3 summarizes the main

evaluation of their answers and told us some information: (i) subjects would use a similar

tool to search for UML diagrams, and further investigation may be valuable; (ii) subjects

have a positive feeling about the recommendations related to have the selected features;

(iii) subjects think that the recommended diagrams were too big and containing too many

information, making them difficult to understand.

Table 5.3: Some form results

Analysis factor Yes No Uncertain /

Not applicable

Subject would use similar tools 33 1 7

Subject is satisfied with results 34 1 6

Diagrams were easy to understand 2 22 17

By analyzing the other form responses, we have noticed that the subjects tried to find the

exact features they have selected in the beginning. As the subjects selected a high number of

features on average, there is a high chance that the recommended diagrams contain at least

one of the selected features. In addition, this increases the chance the most complex and

5.3 Additional experiment 62

biggest diagrams be recommended. We think that if we had limited to one or two features,

it should be easier to identify differences between the approaches in our statistical tests. We

also think that this could also reduce the rejection of users for difficult diagrams pointed

in Table 5.3, since the system should recommend smaller diagrams with fewer features.

Nevertheless these problems are increased by the small size of the experiment database.

The knowledge-based algorithm also increases the chance to recommend items contain-

ing similar features to the selected ones if the exact ones were not found. 11 subjects an-

swered that they were trying to find the exact items at recommendations. We understand that

the subjects did not have a background context that allowed them to do this kind of evalu-

ation, and they remained searching only by the exact selected items. Thus, this experiment

model is not exploring the full potential of the knowledge-based recommender approach, and

we do not had the time to execute a proper experiment for this algorithm in the scope of this

work.

Although we have no conclusions about the best approach, we think that it is possible to

repeat the experiment and get better results by (i) reducing the size of choices the subjects

do in the beginning (limiting the number of features to select there to 2, for instance); (ii)

increasing the number of recommended diagrams (from top-3 to top-5, for instance); (iii)

increasing the number of subjects; and (iv) increasing the database size. In order to check

our assumptions, we have proposed an complementary experiment, presented in Section 5.3.

5.3 Additional experiment

The main experiment did not find statistical differences between the proposed recommender

approaches, including the random one. In order to understand the causes, we made some

assumptions, in which we should:

1. reduce the size of choices the subjects do in the beginning;

2. increase the number of recommended diagrams;

3. increase the number of subjects;

4. increase the database size.

5.3 Additional experiment 63

Since the subjects answered that they have selected as accepted the diagrams that had at

least one of the selected features, we can simulate this behavior by automatic running the

algorithms and checking if the recommended ones contains at least one of the selected fea-

tures. Therefore, we proposed a simple experiment to check some of the above assumptions

by simulating users’ input and evaluation.

5.3.1 Context and scope

Our idea was to generate sets of features of different sizes, execute all the approaches for

each set and automatically evaluate the relevant ones.

First, in order to generate the user profiles, we counted the number of times each feature

was selected by the subjects in the previous experiment (if we just have 2 subjects, one that

selected POI and PGS, and other that selected POI and PDA, the feature POI was selected

2 times, and PGS and PDA just one time each, for instance). Thus, we discovered that some

of them are selected more frequently than others, i.e. subjects seem to be more interested in

a particular subset, and we selected the 8 of them that were more selected by all subjects, ,

creating the set F = {POI, PABC,POG,POD,PSA, PEN,PASC, PRI}. After that,

we got all the possible subsets of F , 2F , i.e. all the possible combinations of its elements.

Then, we ignored the empty set {} ∈ 2F and the set F : there is only one possible subset of F

with all elements, that is F itself, but we want a greater number of possibilities to compare

them with each other. After that, we had a total of 28 − 2 = 254 possible profile candidates.

It is important to note that we could to combine all of our 19 features, generating a set of

219 − 2 = 524286 possibilities, but besides being very costly, 256 is much larger than the

subjects responses we had at experiment. Thus, there is no need for now to compute more

combinations than that.

We executed all of our approaches for each of the previously computed profile candi-

dates, and checked the adequacy of the recommendations by confirming if the recommended

diagrams contained at least one of the searched features. In this scenario, we could even

compute recall, that is defined as in Equation 5.2 [43], because we can discover the relevant

items to the user, but we preferred not to do it for two reasons: (i) we have too much dia-

grams with the same features at database, leading us to high number of relevant items when

comparing to the numerator of the Equation 5.2, which maximum is 3, generating very small

5.3 Additional experiment 64

values of recall; and (ii) we are running this experiment to check some assumptions related

to the previous one, that does not have recall.

recall =
|{relevant items} ∩ {recov. items}|

|{relevant items}|
(5.2)

With this experiment, we could not increase our database size, but we could calculate the

impact of a different number of choices in the beginning of the experiment, the the number

of recommended diagrams and the number of subjects.

5.3.2 Execution

We generated the 254 profile candidates and automated the execution of the recommender

portion of the tool built for the previous experiment (see Subsection 5.2.3). Further instruc-

tions about how to replicate this execution can be found at GitHub repository for that tool13.

The acceptance of the recommended items was simulated by using GNU R scripts, also

available in a GitHub repository14 with the experiment results analysis scripts.

5.3.3 Experiment design

We have a total of 254 simulated answers, distributed in 7 groups containing from 8 to 70

elements. This time, besides of the factor different recommender approaches from the

previous experiment, we have a second one that comprises our different groups, leading us

to another unity of analysis composed by a full factorial experiment design with two factors,

each one with four treatments. For this analysis, since we could run a full factorial analysis,

we have preferred it instead of a dimensionality reduction one.

The four treatments are the same as the previous experiment: (i) random; (ii) bag-of-

words; (iii) items’ vector content-based approach; and (iv) knowledge-based approach. We

used the same objects of the previous experiment and did not evaluate the final form.

This experiment answer RQ3 and, in order to do it, we separated our data in groups

where its components contain registers whose profile vectors have the same length. For each

group we checked the formal tests defined to answer RQ1 and RQ2.

13https://github.com/saulotoledo/UMLRecExperiment
14https://github.com/saulotoledo/UMLRecExpAnalysis

https://github.com/saulotoledo/UMLRecExperiment
https://github.com/saulotoledo/UMLRecExpAnalysis

5.3 Additional experiment 65

5.3.4 Results and analysis

Figure 5.7 shows the precisions for the top-3 recommendations of each recommender ap-

proach, considering the quantity of features in the searches. As we increase the number of

searched features, the algorithms tend to recommend relevant items more frequently, includ-

ing the random. In order to explain why even a random selection of items we can recommend

items that contain at least one of the searched features, we believe that our database is very

small and poorly diversified: it lacks of examples with less features, and each diagram con-

tains too many of them.

One could think that each of the recommender approaches should recommend only dia-

grams containing all the searched features, but this is unpractical because, as we have 19 fea-

tures, there are about 219 = 524288 possible searches, and we should have a larger database

to have diagrams for all of them. In this situation, too many searches would return empty.

Figure 5.8 goes a little deeper in our assumptions, it shows the precisions for the top-5

recommendations of each recommender approach, also considering the quantity of features

in the searches. Comparing it with the Figure 5.7, we can see that most of the time the

medians of the random approach for the precision in the top-5 results are lower than for the

other approaches. Also, we can see a slight variation in the bag-of-words one for profiles

lengths 1, 2 and 3 that we do not see in the top-3 results.

Even increasing the number of searches to 70, although there is no statistical difference

between the bag-of-words and the content-based approaches, the bag-of-words one recom-

mend more outliers than the content-based one.

The knowledge-based algorithm increases the chance to recommend similar features, and

some of them overlapped the importance of some of the main features. Further studies are

necessary to identify in what cases this can lead us to worse results, but we had best results

compared with the random approach.

In the same way as in the Section 5.2.4, we checked the normality of the data, and the

results are presented at Tables 5.4 and 5.5. As expected, there is no normality for the same

reason as in Subsection 5.2.4.

As the analysis in Subsection 5.2.4, we applied Kruskal-Wallis because there is no evi-

dence that our data comes from a normal distribution. The results are presented at Tables 5.6

and 5.7 and, this time, we found statistical significance for almost all groups, except for the

5.3 Additional experiment 66

●0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

3
Precisions by approach for

profile length = 1
(built with 8 elements)

●

●●

●●●

●

●●

●

0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

3

Precisions by approach for
profile length = 2

(built with 28 elements)

●●●●

●

●●●●●●

●

●

0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

3

Precisions by approach for
profile length = 3

(built with 56 elements)

●●●●●●●●●●●●●●

0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

3

Precisions by approach for
profile length = 4

(built with 70 elements)

●●●●●●●●●●●

●●0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

3

Precisions by approach for
profile length = 5

(built with 56 elements)

●●●●●

0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

3

Precisions by approach for
profile length = 6

(built with 28 elements)

● ●●

0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

3

Precisions by approach for
profile length = 7

(built with 8 elements)

Figure 5.7: Precision of the recommendation approaches for the top-3 items with different

amounts of searched features

last one, where all approaches are statistically equal.

We also realized a posthoc analysis by testing every pair of approaches, by using the

Vargha Delaney effect size metric and the Wilcoxon pairwise hypothesis test. Details of the

5.3 Additional experiment 67

●

●0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

5
Precisions by approach for

profile length = 1
(built with 8 elements)

●●

●

●

●●

●●

0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

5

Precisions by approach for
profile length = 2

(built with 28 elements)

●●●●

●●●

●●●●●●

● ●

●

0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

5

Precisions by approach for
profile length = 3

(built with 56 elements)

●●●●●●●

●

●●●●●●●

0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

5

Precisions by approach for
profile length = 4

(built with 70 elements)

●●●●●●●●●●●

0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

5

Precisions by approach for
profile length = 5

(built with 56 elements)

●●●●●

●

0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

5

Precisions by approach for
profile length = 6

(built with 28 elements)

●

●

0.00

0.25

0.50

0.75

1.00

Bag−of−Words Content−based Knowledge−based Random
Approach

pr
ec

is
io

nT
op

5

Precisions by approach for
profile length = 7

(built with 8 elements)

Figure 5.8: Precision of the recommendation approaches for the top-5 items with different

amounts of searched features

tests are presented at Appendixes D and E for the top-3 and top-5 analysis, respectively. It

is difficult to say that one approach is better than another one, except for the random, that is

the worst for all situations.

5.3 Additional experiment 68

Table 5.4: Normality tests by user profile length for top-3 results

User profile length Shapiro-Wilk Anderson-Darling

1 W = 0.68 A = 4.7

p-value = 4.26× 10−7 p-value = 6.10× 10−12

2 W = 0.61 A = 21.09

p-value = 6.81× 10−16 p-value = 3.7× 10−24

3 W = 0.6 A = 42.87

p-value = 1.67× 10−22 p-value = 3.7× 10−24

4 W = 0.55 A = 60.68

p-value = 3.08× 10−26 p-value = 3.7× 10−24

5 W = 0.48 A = 57.11

p-value = 2.95× 10−25 p-value = 3.7× 10−24

6 W = 0.54 A = 24.53

p-value = 3.95× 10−17 p-value = 3.7× 10−24

7 W = 0.33 A = 10.59

p-value = 6.08× 10−11 p-value = 3.7× 10−24

5.3.5 Practical significance (interpretation)

We identified that the more features are selected for searching, the harder it is to identify

differences between the approaches in terms of precisions. This partially explains why we

had the same results for all approaches in the experiment described in Section 5.2 (when

the users selected about 8 features on average), but do not explain why the user medians

for the experiment with humans remains 0.66 (see Figure 5.5 for details), and not 1 as we

automatically calculated in the automated experiment. We believe that this last behavior is

related to human misunderstanding, since the users wrote the diagrams were too big and

difficult to understand.

When we increased from top-3 to top-5, the p-value for the test with the user profile

length 7 decreased from 0.27 to 0.09, i.e. a closer result to find statistical significance that

there are difference between the approaches, which is consistent with our assumption that

we should try to increase the number of recommended items in future experiments to better

5.3 Additional experiment 69

Table 5.5: Normality tests by user profile length for top-5 results

User profile length Shapiro-Wilk Anderson-Darling

1 W = 0.70 A = 4.21

p-value = 1.02× 10−6 p-value = 1.03× 10−10

2 W = 0.68 A = 16.34

p-value = 2.28× 10−14 p-value = 3.7× 10−24

3 W = 0.63 A = 38.23

p-value = 9.78× 10−22 p-value = 3.7× 10−24

4 W = 0.6 A = 52.87

p-value = 5× 10−25 p-value = 3.7× 10−24

5 W = 0.54 A = 49.22

p-value = 6.17× 10−24 p-value = 3.7× 10−24

6 W = 0.58 A = 21.85

p-value = 2.64× 10−16 p-value = 3.7× 10−24

7 W = 0.38 A = 9.07

p-value = 1.75× 10−10 p-value = 1.6× 10−22

Table 5.6: Kruskal-Wallis by user profile length for top-3 results

User profile length Kruskal-Wallis (p-value)

1 5.49× 10−4

2 1.25× 10−10

3 2.2× 10−16

4 2.2× 10−16

5 3.061× 10−13

6 9.009× 10−11

7 0.27

evaluate the results. In both Tables 5.6 and 5.7, we just could not find statistical significance

for the user profile length 7. The pairwise tests and the effect size evaluations presented

in the Appendixes D and E also confirm this assumption: more difference is identified for

5.4 Validity Threats 70

Table 5.7: Kruskal-Wallis by user profile length for top-5 results

User profile length Kruskal-Wallis (p-value)

1 6.13× 10−4

2 3.13× 10−14

3 2.2× 10−16

4 2.2× 10−16

5 2.2× 10−16

6 1.526× 10−14

7 0.09

smaller profile sizes.

The knowledge-based algorithm sometimes has lower precision values than the other

approaches, and this is related to the diversification it applies to the user profile in order

to discover similar items. The impacts of this diversification should be further evaluated in

an experiment that is more appropriate to this algorithm, i.e. that consider situations where

similar features may be appropriate to the users.

5.4 Validity Threats

We identified some validity threads to this experiment and group them as presented by

Wohlin et al. [62].

5.4.1 Conclusion validity threats

The main conclusion validity threat is that we could not identify the UML knowledge level

of the users. Thus, we could not create groups and balance them because of the lack of this

information, and the participation of the users was voluntary and independent. Nonetheless,

since all of our subjects are not specialists in UML, we believe that this validity threat is not

meaningful for our study.

Conclusion validity threats are also commonly related to the selected statistical methods.

Since we have not normality in our results, we could not apply other but non-parametric

5.4 Validity Threats 71

tests. This choice decreases our statistical power, but is also was the best choice we had.

We also could have applied a pairwise test with Bonferroni correction, but we thought that

was more appropriate to choose the pairwise separately to check if there is some difference

ignoring the other techniques, even so we could find no statistical significance.

5.4.2 Internal validity threats

A common internal validity threat is a bad design of the testing instrumentation. We have

thoroughly tested the tool used in the experiment and the algorithm implementations prior to

the experiment execution in order to prevent this kind of validity threat. Also related to this

threat was the low number of suggestions to be evaluated by the users, the top-3; we prefer

recommending only 3 items because we think that the user could have more time to evaluate

each diagram without making the experiment too much boring.

We had a low number of subjects to evaluate all the possible combinations of feature se-

lections and compare results. Nonetheless, we got a more than expected number of subjects

concerning experiments with humans. Also, the subjects executed the experiment by using

their own internet access; thus, we need to trust that they have evaluated the recommenda-

tions diligently.

The experiment database was also limited, presenting a low number of UML class dia-

grams; some features had only a few examples, and several combination of possibilities that

subjects may choose in the beginning of the experiment did not exist in the database. In

order to mitigate this threat we tried to increase the number of UML models in the database

by searching for publicly available databases. The quality of the models is another threat,

and we have ensured it by manually checking our database models one by one, removing

from our experiment database models that were not suitable to the experiment (models pre-

senting modeling errors, mix of class diagrams with other type of UML diagrams, models

with unreadable images and so on).

Another important threat in this category is related to the problem where users tried

to find the exact selections while evaluating our proposed knowledge-based algorithm. We

have introduced before that the idea of this algorithm is to increase the chance to recommend

similar items, but the users searched only for the exact selected items. This is another threat

infeasible to mitigate in this experiment and probably requires further studies to answer if

5.4 Validity Threats 72

this kind of proposal is suitable to this context.

5.4.3 Construct validity threats

We think that the selected approaches were appropriate to our experiment. There are surely

several implementations for these approaches, and several others possible choices, but the

chosen approaches are feasible to be implemented and representative for the recommender

systems’ context. The chosen approaches are also well explored in other research contexts

besides ours, and we think that could be good choices to be applied.

The set of features to be selected by the subjects is also something to be considered as a

possible construct validity threat. We believe that we have mitigated this threat by selecting

a set of features that are easy to be identified by users and which generate questions about

UML class diagrams.

5.4.4 External validity threats

Unfortunately we had a low number of participants, and we had no enough representativeness

to generalize our results. We also had a low number of UML models, and this is another

problem while trying to generalize our results. In future experiments we plan to increase the

number of subjects and increase our UML class diagrams database. We tried to mitigate these

threats by searching for publicly available UML class diagrams databases and for experiment

subjects.

Chapter 6

Related Works

In this chapter we review the approaches to recommender systems, including traditional

recommender systems, recommender systems for software engineering and recommender

systems for UML models.

6.1 Traditional Recommender Systems

The major traditional approaches are usually classified into four categories: collaborative

filtering, content-based approaches, knowledge-based approaches and hybrid approaches.

Collaborative filtering models try to predict the utility of items for a particular user based

on the items previously rated by multiple users. The main challenge in designing collab-

orative filtering methods is that the underlying rating matrices are sparse [2]. There have

been many collaborative systems developed in the academia and the industry. The Grundy

system [47] was the first recommender system, which used stereotypes to build user models

based on the amount of information specified for each user. Later on, The Usenet News [25],

Ringo [49] and Video Recommender [20] were the first systems to use collaborative filtering

to prediction users’ preferences. We did not find any publicly available repository of interac-

tion data between users and UML models. Thus, we did not have to make recommendations

using collaborative filtering.

The content-based approach to recommendation is based on the content of the items be-

ing recommended and has its roots in information retrieval [5]. This approach recommend

items similar to those that a user liked in the past [35]. The user’ profile can be matched with

73

6.2 Recommender Systems for Software Engineering 74

item descriptions to make recommendations and have some advantages in making recom-

mendations for new items when sufficient rating data are not available for that item [2]. Our

approach used this method because it was possible to define the users’ and items’ profiles

and it is reasonable to compare with other retrieval information methods, like bag-of-words.

To improve recommendation accuracy, knowledge-based techniques exploit background

knowledge about the recommendable items. For example, the system Entrée [53] uses

some domain knowledge about cuisines and foods to recommend restaurants to its users.

Knowledge-based recommendation systems have been developed for application domains

where domain knowledge is readily available in some structured machine-readable form,

e.g., as an ontology [36]. For example, the Quickstep and Foxtrot systems [33] use re-

search paper topic ontology to recommend online research articles to the users. To increase

the accuracy of recommendations of our approach, we define an ontology for UML mod-

els, increasing our reach to recommendations based on the content of the features of class

diagrams.

6.2 Recommender Systems for Software Engineering

The idea of building Recommender Systems for Software Engineering artifacts is not new,

but most of them are related to source code and some other artifacts [48]. We selected some

works that led us to conduct this study.

In the context of Software Engineering, recommendation systems are used to minimize

the effort of the developer and help her have faster access to artifacts of interest. Most works

aim to increase the reusability, providing ease of maintenance, improving productivity and

making suggestions according to the preferences of the developer.

Cubranic et al. [13] exploits recommender systems for bug fixes. Ye and Fischer [63],

Lozano et al. [28], and McCarey [31] propose to recommend classes and methods based on

the current class being used by the developer. Ankolekar et al. [4] go beyond recommen-

dation methods and indicate artifacts based on the bug fix process, differing from Cubranic

et al. [13] by the approach adopted in the bug fix process; they both use information from

different developers to correct a defect. Finally, Palma et al. [41] recommend project arti-

facts, specifically design patterns, taking a different approach than the others because it is

6.3 Recommender Systems for UML Models 75

more focused on identifying problem contexts.

Other studies deal with comparisons between algorithms of recommendation systems,

suggesting improvements, improving the user profile and even new recommendation algo-

rithms, but no one has focused on recommending systems for software engineering, specifi-

cally for design.

6.3 Recommender Systems for UML Models

Despite the lack of proposals relating Recommender Systems and UML, we have identified

some works that are related to this one. The idea of building Recommender Systems for

Software Engineering artifacts is not new, but most of them are related to source code and

some other artifacts [48]. We selected some works that led us to conduct this study.

The work of Cerqueira et al. [11] is a study that uses a variation of this works’ proposals,

the bag-of-words and the vector’s content-based approaches, but is focused on sequence

diagrams with different users’ and items’ profiles. Also, Cerqueira [10] documented the

experiment definitions that were adopted in our test tool.

Lucrédio et al. [29] investigated a way to use metamodel information to build a search

mechanism to models (including UML models). They use Information Retrieval techniques

to extract information from models in order to perform their searches. The main differences

between our works are: (i) while they built a search engine based on search strings that

uses information retrieval techniques, we proposed an user profile and compared some rec-

ommender systems approaches; and (ii) while they search for any kind of model based on

metamodel information, we plan to recommend only UML class diagrams, based on a set of

features also extracted from the metamodel, but specific to this type of diagram.

Finally, Gašević et al. [18] and Kim and Lee [22] proposed ways to transforming UML

models into OWL ontologies. We have not used their approaches directly, but they have

inspired us about how to do it, by using the metamodel classes as ontology classes.

The aforementioned works are important and represent an emerging area where recom-

mender system techniques are used for searching and recommending software engineering

artifacts. This research complements these works by being one of the first research efforts in

using recommender systems for recommending UML models.

Chapter 7

Conclusion

In this work we proposed and compared four ways of recommending UML class diagrams:

(i) a random baseline, that randomly suggest items to users; (ii) a bag-of-words approach,

that identify features in UML diagrams by using search terms; (iii) a content-based recom-

mender approach that uses information extracted in the form of vector profiles from the UML

diagrams; and (iv) a newly knowledge-based approach that uses an extended version of the

user profile vector indicating other features that might interest the user. We also proposed a

profile for users and items to be used by recommender systems.

Two of the proposed approaches, the bag-of-words and the vector’s content-based ones,

are the application of state-of-the-art algorithms to UML class diagrams. The random ap-

proach is a baseline for testing purposes. The knowledge-based approach, the last of them,

is a generic new way to identify wishes not explicitly indicated by the users.

In order to compare the algorithms, we conducted two experiments, a first one by using

humans, and a second automated experiment to test some assumptions we have proposed to

justify the first experiment results. We could not find statistical significance in the first ex-

periment, even when comparing the proposed approaches with the random one. Thus, in the

second experiment we have increased the number of executions, evaluated the top-3 and the

top-5 results, and controlled the number of selected features that indicates the user’s inter-

ests in order to evaluate what happens with the results when we increase their number. The

second experiment confirms the following assumptions: (i) reducing the size of choices the

user have in the beginning of the experiment increases the quality of the recommendations,

i.e. the proposed approaches are better if the number of searched features at the same time

76

7.1 Limitations 77

is reduced; (ii) increasing the number of recommended diagrams lead to better results, what

is proved by the better p-values and effect size results when recommending the top-5 instead

of the top-3 diagrams. We also believe that the best results we had in the second experiment

are related to the increased number of subjects. It was not possible to increase the database

size, but this could also lead to better results.

Another factor that should be better evaluated in future works is the diversification of the

recommendation. This is only made by the knowledge-based approach while estabilishing

weights to features that were not selected by the users. In the same way, the context of the

diagrams and users is also ignored, but could enrich the results and lead to other real world

uses of them. These aspects could be evaluated as an upgrade of this research in future

works. Thinking about how to represent the context is a future work. An initial suggestion

is to create another structure that could store metadata about it and adapt the algorithms. In

addition, patterns and domains could be also considered.

Lastly, we did not have historical or collaboration data of users in the context of class

diagrams, and we needed to start without them. But we believe that the proposed approaches

can be used in these contexts, and that is why we still prefer to classify the approaches as

recommender systems approaches.

7.1 Limitations

After running the experiment we found that some features were not detected by the auto-

matic processing of the diagrams. This is related to mistakes in the manual cleanup and fix

of the XMI files, but we believe that the errors are not large enough to change our conclu-

sions. The size and the quality of the UML database are also points to be considered. The

limited number of subjects and the lack of UML specialists to evaluate the system are also

limitations, we just had non-experienced volunteers and we could not discover what users

really interested in UML class diagrams think about the study. We also could not evaluate

the UML diagrams in some context of use, and we just recommended them in a static way,

disregarding their context of use. These observations preclude us to generalize the results to

real world contexts.

We had no normality in the data and because of that we needed, most of the time, to use

7.2 Future work 78

non-parametric statistical tests, which decreases the results statistical power. Also, we could

not properly evaluate the knowledge-based approach because the users were not searching

for similar features, but only the selected ones. We performed all the evaluation around the

precision, and we do not have results for other measures.

7.2 Future work

We present below a list of future work proposals.

• Apply other metrics in addition to precision: We just have applied the precision

metric, but there are others to be investigated. One example is the Mean Reciprocal

Rank (MRR), that evaluates rankings;

• Describe UML diagrams by using other features: We have proposed a set of fea-

tures, but there is still room for others. They could be features that we have not ex-

plored (number of parameters, for example), quantities for features (we just have ex-

plored the presence or absence of some features) or code metric features (there are a

lot of works about features extracted from source code that can be explored together

with UML diagrams);

• Evaluate OntoRec setups: We have chosen a single setup for OntoRec, but there are

other possible configurations for this algorithm that can be evaluated by changing its

parameters;

• Evaluate OntoRec adequacy to the context: We have identified that users were

searching for the exact terms they have selected before. However, OntoRec has the

ability to increase the chances to recommend items that have features that are some-

how similar to the selected ones. We think that it is possible to so some study that

better appreciate this peculiarity;

• Explore other UML relations at OntoRec: The experiment ontology just describes

the generalization relationship between the elements, but there is a lot of other relation-

ships that can be described in the ontology, as aggregations, compositions and others.

7.2 Future work 79

One could explore what happens if we just change the ontology to use these other

relationships rather than the generalization, or a combination of them, for instance.

• Equivalences table to OntoRec: The idea here is to have another table in the end of

OntoRec to calculate equivalences between features. Imagine that we had the features

A, B and C and the final calculated vector by OntoRec is v = (1, 1, 0); next, we have

defined that features A and C are equivalent, and OntoRec should change the final

result to v = (1, 1, 1); or we could define that features A and B are opposed, and the

final vector should be v = (1, 0, 0). One could extend this proposal by adding some

type of weighting to this relationship: A could be 80% similar to C, and we could

have v = (1, 0.8, 0) as the solution. We previously called this feature as “equivalences

table” and it would be defined by extracting knowledge from the ontology;

• Explore OntoRec’s parameters relations with the ontology format: In this pro-

posal one can try to explain the relationship between each parameter at OntoRec and

the ontology format. This can help to find the best setup for this algorithm for a given

problem easily. Some observations that can be considered in this proposal: what hap-

pens with each setup if the provided ontology has an infinite height (this easily happens

by using web data, for example); what happens if the ontology looks (or not) like a

binary tree; investigate if the τ -nth approach is equivalent to the BFS one for all situ-

ations; investigate if it is possible to generalize the results for any ontology that does

not use cycles on any domain;

• Compare OntoRec with other ontologies: We think that there is a relationship be-

tween the algorithm and the quality of the ontology. Maybe one could discover another

ontology to describe the same domain, and the results may be different with it;

• Describe UML class diagrams in another way: Instead of describing the UML class

diagrams by using the proposed features, one could use other ways to do it, like by

getting information from OCL [60] rules, MDA [24] transformations, or others;

• Try other UML diagrams: One could try the same study we have made with another

UML diagrams;

7.2 Future work 80

• Use OntoRec in another domains: OntoRec can be used to evaluate other domains

besides UML, whether from software engineering, like relational databases, whether

from completely different domains, like music and movies. It is only necessary to

define a valid ontology for the algorithm and fulfill their prerequisites;

• Repeat this experiment by reducing the current threats to validity: With the results

of this work, one could try to reduce the threats to validity that we had here in a future

work;

• Evaluate user history: We have not evaluated user history. A future work could

consider acquiring and analyzing user’s past interactions with the UML diagrams

database.

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recommender sys-

tems. In Recommender Systems Handbook, chapter 7, pages 217–253. Springer US,

New York, NY, 2011. doi: 10.1007/978-0-387-85820-3.

[2] Charu C Aggarwal. Recommender Systems: The Textbook. Springer, 2016.

[3] Xavier Amatriain, Alejandro Jaimes*, Nuria Oliver, and JosepM. Pujol. Data mining

methods for recommender systems. In Francesco Ricci, Lior Rokach, Bracha Shapira,

and Paul B. Kantor, editors, Recommender Systems Handbook, pages 39–71. Springer

US, 2011. ISBN 978-0-387-85819-7. doi: 10.1007/978-0-387-85820-3_2.

[4] Anupriya Ankolekar, Katia Sycara, James Herbsleb, Robert Kraut, and Chris Welty.

Supporting online problem-solving communities with the semantic web. In Proceed-

ings of the 15th International Conference on World Wide Web, WWW ’06, pages 575–

584, New York, NY, USA, 2006. ACM. ISBN 1-59593-323-9. doi: 10.1145/1135777.

1135862.

[5] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval, vol-

ume 463. ACM press New York, 1999.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific Ameri-

can, 284(5):34–43, May 2001. URL http://www.sciam.com/article.cfm?

articleID=00048144-10D2-1C70-84A9809EC588EF21.

[7] S. Brin and L. Page. The anatomy of a large-scale hypertextual websearch engine.

Seventh International World-Wide Web Conference (WWW 1998), 30:107–117, 1998.

URL http://ilpubs.stanford.edu:8090/361/.

81

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://ilpubs.stanford.edu:8090/361/

BIBLIOGRAPHY 82

[8] Robin Burke. Knowledge-based recommender systems. In Encyclopedia of Library

and Information Systems, page 2000. Marcel Dekker, 2000.

[9] Robin Burke. Hybrid web recommender systems. In The Adaptive Web: Methods and

Strategies of Web Personalization., Lecture Notes in Computer Science, volume 4321,

page 377–408. Springer, Berlin-Heidelberg, 2007.

[10] T. Cerqueira. Estudo comparativo entre entre duas abordagens de sistemas de recomen-

dação para diagramas de sequência uml. Relatório de projeto de tese de doutorado

(UFCG). 2016.

[11] Thaciana Cerqueira, Leandro Marinho, and Franklin Ramalho. A content-based ap-

proach for recommending UML Sequence Diagrams. 2016. doi: 10.18293/SEKE-147.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-

troduction to Algorithms, chapter Elementary Graph Algorithms. The MIT Press, third

edition, 2009.

[13] D. Cubranic, G.C. Murphy, J. Singer, and K.S. Booth. Hipikat: a project memory for

software development. Software Engineering, IEEE Transactions on, 31(6):446–465,

June 2005. ISSN 0098-5589. doi: 10.1109/TSE.2005.71.

[14] Brian Dobing and Jeffrey Parsons. How UML is used. Commun. ACM, 49(5):109–113,

May 2006. ISSN 0001-0782. doi: 10.1145/1125944.1125949.

[15] Brian Dobing and Jeffrey Parsons. Dimensions of UML diagram use: a survey of

practitioners. Journal of Database Management, 19, 2008. ISSN 10638016.

[16] Richard Durstenfeld. Algorithm 235: Random permutation. Commun. ACM, 7(7), July

1964. ISSN 0001-0782. doi: 10.1145/364520.364540.

[17] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-

guage. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3 edition,

2003. ISBN 0321193687.

BIBLIOGRAPHY 83

[18] Dragan Gašević, Dragan Djurić, and Vladan Devedžić. Mda-based automatic owl on-

tology development. International Journal on Software Tools for Technology Trans-

fer, 9(2):103–117, 2006. ISSN 1433-2787. doi: 10.1007/s10009-006-0002-1. URL

http://dx.doi.org/10.1007/s10009-006-0002-1.

[19] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to

weave an information tapestry. Communications of the ACM, 35(12):61–71, December

1992.

[20] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending and eval-

uating choices in a virtual community of use. In Proceedings of the SIGCHI conference

on Human factors in computing systems, pages 194–201. ACM Press/Addison-Wesley

Publishing Co., 1995.

[21] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. Recom-

mender Systems: An Introduction. Cambridge University Press, New York, NY, USA,

1st edition, 2010. ISBN 0521493366, 9780521493369.

[22] I. W. Kim and K. H. Lee. A model-driven approach for describing semantic web ser-

vices: From uml to owl-s. IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), 39(6):637–646, Nov 2009. ISSN 1094-6977. doi:

10.1109/TSMCC.2009.2023798.

[23] Rajiv Kishore and Raj Sharman. Computational ontologies and information systems

i: Foundations. Communications of the Association for Information Systems, 14(8),

2004. URL http://aisel.aisnet.org/cais/vol14/iss1/8.

[24] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven

Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2003. ISBN 032119442X.

[25] Joseph A Konstan, Bradley N Miller, David Maltz, Jonathan L Herlocker, Lee R Gor-

don, and John Riedl. Grouplens: applying collaborative filtering to usenet news. Com-

munications of the ACM, 40(3):77–87, 1997.

http://dx.doi.org/10.1007/s10009-006-0002-1
http://aisel.aisnet.org/cais/vol14/iss1/8

BIBLIOGRAPHY 84

[26] Ken Lang. Newsweeder: Learning to filter netnews. In Proceedings of the 12th Inter-

national Machine Learning Conference (ML95), Lake Tahoe, CA, 1995.

[27] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Anal-

ysis and Design and Iterative Development (3rd Edition). Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2004. ISBN 0131489062.

[28] A Lozano, A Kellens, and K. Mens. Mendel: Source code recommendation based on

a genetic metaphor. In Automated Software Engineering (ASE), 2011 26th IEEE/ACM

International Conference on, pages 384–387, Nov 2011. doi: 10.1109/ASE.2011.

6100078.

[29] Daniel Lucrédio, Renata P. de M. Fortes, and Jon Whittle. Moogle: a metamodel-based

model search engine. Software & Systems Modeling, 11(2):183–208, 2012. ISSN 1619-

1366. doi: 10.1007/s10270-010-0167-7. URL http://dx.doi.org/10.1007/

s10270-010-0167-7.

[30] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to

Information Retrieval. Cambridge University Press, Cambridge, England, 2009. URL

http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf.

[31] F. McCarey. Agile software reuse recommender. In Software Engineering, 2005. ICSE

2005. Proceedings. 27th International Conference on, pages 652–, May 2005. doi:

10.1109/ICSE.2005.1553632.

[32] Donald Metzler. Beyond bags of words: Effectively modeling dependence and features

in information retrieval. SIGIR Forum, 42(1):77–77, June 2008. ISSN 0163-5840. doi:

10.1145/1394251.1394271. URL http://doi.acm.org/10.1145/1394251.

1394271.

[33] Stuart E Middleton, Nigel R Shadbolt, and David C De Roure. Ontological user pro-

filing in recommender systems. ACM Transactions on Information Systems (TOIS), 22

(1):54–88, 2004.

[34] Russ Miles and Kim Hamilton. Learning UML 2.0. O’Reilly Media, Inc., 2006. ISBN

0596009828.

http://dx.doi.org/10.1007/s10270-010-0167-7
http://dx.doi.org/10.1007/s10270-010-0167-7
http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf
http://doi.acm.org/10.1145/1394251.1394271
http://doi.acm.org/10.1145/1394251.1394271

BIBLIOGRAPHY 85

[35] Raymond J Mooney and Loriene Roy. Content-based book recommending using learn-

ing for text categorization. In Proceedings of the fifth ACM conference on Digital

libraries, pages 195–204. ACM, 2000.

[36] M A S N Nunes. Towards to Psychological-based Recommenders Sys-

tems: A survey on Recommender Systems. Scientia Plena, 6(8):1028,

2010. URL http://www.scientiaplena.org.br/ojs/index.php/sp/

article/viewFile/119/48.

[37] OMG. Meta object facility (MOF) core specification, version 2, 2006. URL http:

//www.omg.org/spec/MOF/2.0/PDF/.

[38] OMG. XML metadata interchange (XMI) specification, version 2.1, 2009. URL

http://www.omg.org/spec/XMI/2.1/PDF/.

[39] OMG. Unified modeling language: Infrastructure, version 2.4.1, 2011. URL http:

//www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/.

[40] OMG. Unified modeling language: Superstructure, version 2.4.1, 2011. URL http:

//www.omg.org/spec/UML/2.4.1/Superstructure/PDF/.

[41] F. Palma, H. Farzin, Y. Gueheneuc, and N. Moha. Recommendation system for design

patterns in software development: An dpr overview. In Recommendation Systems for

Software Engineering (RSSE), 2012 Third International Workshop on, pages 1–5, June

2012. doi: 10.1109/RSSE.2012.6233399.

[42] Roberto Poli, Michael Healy, and Achilles Kameas. Theory and Applications of Ontol-

ogy: Computer Applications. Springer Publishing Company, Incorporated, 1st edition,

2010. ISBN 9048188466, 9789048188468.

[43] Paul Resnick and Hal R. Varian. Recommender systems. Commun. ACM, 40(3):56–58,

March 1997. ISSN 0001-0782. doi: 10.1145/245108.245121. URL http://doi.

acm.org/10.1145/245108.245121.

[44] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.

Grouplens: An open architecture for collaborative filtering of netnews. In Proceedings

http://www.scientiaplena.org.br/ojs/index.php/sp/article/viewFile/119/48
http://www.scientiaplena.org.br/ojs/index.php/sp/article/viewFile/119/48
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/XMI/2.1/PDF/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://doi.acm.org/10.1145/245108.245121
http://doi.acm.org/10.1145/245108.245121

BIBLIOGRAPHY 86

of the 1994 ACM Conference on Computer Supported Cooperative Work, CSCW ’94,

pages 175–186, New York, NY, USA, 1994. ACM. ISBN 0-89791-689-1. doi: 10.1145/

192844.192905. URL http://doi.acm.org/10.1145/192844.192905.

[45] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. Recommender

Systems Handbook. Springer-Verlag New York, Inc., New York, NY, USA, 1st edition,

2010. ISBN 0387858199, 9780387858197.

[46] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to Recommender Sys-

tems Handbook. In Recommender Systems Handbook, chapter 1, pages 1–35. Springer

US, New York, NY, 2011. doi: 10.1007/978-0-387-85820-3.

[47] Elaine Rich. User modeling via stereotypes. Cognitive science, 3(4):329–354, 1979.

[48] M.P. Robillard, R.J. Walker, and T. Zimmermann. Recommendation systems for

software engineering. Software, IEEE, 27(4):80–86, 2010. ISSN 0740-7459. doi:

10.1109/MS.2009.161. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=5235134.

[49] Upendra Shardanand and Pattie Maes. Social information filtering: algorithms for

automating “word of mouth”. In Proceedings of the SIGCHI conference on Human

factors in computing systems, pages 210–217. ACM Press/Addison-Wesley Publishing

Co., 1995.

[50] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software De-

velopment: Technology, Engineering, Management. John Wiley & Sons, 2006. ISBN

0470025700.

[51] William Swartout and Austin Tate. Guest editors’ introduction: Ontologies. IEEE

Intelligent Systems, 14(1):18–19, January 1999. ISSN 1541-1672. doi: 10.1109/MIS.

1999.747901. URL http://dx.doi.org/10.1109/MIS.1999.747901.

[52] Henry C. Thode. Testing for Normality. Marcel Dekker, New York, NY, USA, 2002.

[53] Shari Trewin. Knowledge-based recommender systems. Encyclopedia of library and

information science, 69(Supplement 32):180, 2000.

http://doi.acm.org/10.1145/192844.192905
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5235134
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5235134
http://dx.doi.org/10.1109/MIS.1999.747901

BIBLIOGRAPHY 87

[54] A. Vargha and H. D. Delaney. A Critique and Improvement of the CL Common Lan-

guage Effect Size Statistics of McGraw and Wong. Journal on Educational and Behav-

ioral Statistics, 25(2):101–132, 2000.

[55] W3C. Owl web ontology language guide, February 2004. URL https://www.w3.

org/TR/2004/REC-owl-guide-20040210/.

[56] W3C. Owl 2 web ontology language document overview (second edition), December

2012. URL https://www.w3.org/TR/owl2-overview/.

[57] W3C. Resource description framework (rdf), February 2014. URL https://www.

w3.org/RDF/.

[58] W3C. Rdf 1.1 concepts and abstract syntax, February 2014. URL https://www.

w3.org/TR/2014/REC-rdf11-concepts-20140225/.

[59] W3C. Rdf 1.1 xml syntax, February 2014. URL https://www.w3.org/TR/

2014/REC-rdf-syntax-grammar-20140225/.

[60] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your Mod-

els Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2 edition, 2003. ISBN 0321179366.

[61] David A. Watt. Programming Language Design Concepts. John Wiley & Sons, 2004.

ISBN 0470853204.

[62] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell, and

Anders Wesslén. Experimentation in Software Engineering: An Introduction. Kluwer

Academic Publishers, Norwell, MA, USA, 2000. ISBN 0-7923-8682-5.

[63] Yunwen Ye and Gerhard Fischer. Supporting reuse by delivering task-relevant and

personalized information. In Proceedings of the 24th International Conference on

Software Engineering, ICSE ’02, pages 513–523, New York, NY, USA, 2002. ACM.

ISBN 1-58113-472-X. doi: 10.1145/581339.581402. URL http://doi.acm.

org/10.1145/581339.581402.

https://www.w3.org/TR/2004/REC-owl-guide-20040210/
https://www.w3.org/TR/2004/REC-owl-guide-20040210/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://doi.acm.org/10.1145/581339.581402
http://doi.acm.org/10.1145/581339.581402

Appendix A

OntoRec formalizations

This appendix presents some formalizations for the OntoRec algorithm (Chapter 4). Sec-

tion A.1 presents the information model, Section A.2 presents the formal definition for the

parameter τ and Section A.3 presents some other details in the preparation of the user vec-

tors.

A.1 Information Model

The main OntoRec concepts are formally described next:

• Users set U = {u1, u2, · · · , un}: Contains all the system users;

• Items set I = {i1, i2, · · · , im}: Contains all the system items (the elements to be

recommended);

• Feature set F = {f1, f2, · · · , fg}: Contains all features considered in the problem

domain;

• System classes set C = {c1, c2, · · · , ch}: Contains all the concepts that can be used

to represent the system. Each one of these concepts can be related to other concepts

at this set as specialization or generalization of the other. We call each one of these

concepts as a “class”;

• Ontology O for the classes C: We model an ontology O by using the classes set C

previously defined. For each class ck ∈ C there is a set Al = {a1, a2, · · · , am},m ≥ 0

88

A.1 Information Model 89

of attributes;

• All attributes’ set B =
|C|⋃
c=1

Ac: Contains all the attributes for all classes of O, where

C is the set of ontology classes and Ac is defined as previously presented;

• Mappable elements set M = Mα ∪Mβ: Contains all elements that can be mapped

from features, i.e. classes and attributes. Mα ∈ C is the subset of classes that are

mapped by the system, and Mβ ∈ B is the subset of attributes that are mapped by the

same system. Mα and Mβ will be formally defined next;

• Mapping discovery function map : F → M : Function that maps the feature set F

to elements in the set M , according to a previous defined mapping table related to the

problem instance;

• Mapped classes set Mα = {cj ∈ C : cj ∈ map(fk)∀(fk ∈ F)}: Contains all the

classes mapped by the system;

• Class attributes function getAttrs : C → 2B: Returns all the attributes that are

owned by a class, directly or by inheritance1;

• Mapped attributes set Mβ = {(co ∈ C, bp ∈ B) : bp ∈ getAttrs(co), bo ∈

map(fp)∀(fp ∈ F)}: Contains all the attributes mapped by the system. All the at-

tributes mappings are linked to a class, since each attribute can be mapped to the

owner class or its descendants;

• Owner’s definition function owner : B → C: Function that, given an attribute

bq ∈ B, returns the class cr ∈ C for which that attribute is mapped;

• Ancestry’s definition function ωancestors : (ω,M, λ) → 2C : Function that, consider-

ing the ontology O, returns the ancestors at ω level of ancestry for a reference element

m ∈ M . λ ∈ (0, 1) and, if is 1, the function will ignore the existence of levels that

contains just one direct descendant, otherwise these levels will not be ignored (this is

a parameter that will be better explained in future sections). To exemplify this behav-

ior, ω = 1 returns the immediate parents, and ω = 2 will return the grandparents, for

example;
12B is the power set of B.

A.2 τ formal definition 90

• Mapped descendant’s definition function µdesc : (C, υ) → 2M : Function that, con-

sidering the ontology O, returns the descendant classes for a given class c ∈ C that

are mapped to features. υ ∈ (0, 1) is a parameter that controls if classes in Mα or

attributes for any element in Mβ are returned by this function (the value 1 enables this

behavior, the value 0 disables it). The parameter υ will be better explained in future

sections.

These search strings were adapted to the content of the database’s files in this work and

can include non-standard XMI code and compatibility with UML 1.x and 2.x.

A.2 τ formal definition

Let Finterest ⊆ F be the subset of features of interest to the user. We define τ as the influence

range factor that a feature fw ∈ Finterest can have over F .

For each f ∈ F there is a correspondent mapped element on the ontology O that is

represented by an element m ∈ M . This result allow us to consider that τ defines the set of

paths P = {p : ∀etξ∈ωancestors(ξ,et0 ,λ)p = (et0 , et1 , · · · , etξ)∧∀y∈Nety+1 ∈ ωancestors(1, ety , λ)},

for any value of λ, considering that ∀mx∈Mex0 = mx. If ex0 ∈ Mβ , i.e. is an attribute,

ex1 ∈Mα and is a class. Figure 4.3 contains an example of path for τ = 3.

A.3 User vector preparation details

For OntoRec, each user ut has a vector vt with length |F |. Each position of this vector

represents a feature f ∈ F , and is related to the information presented in ontology O by

means of the mapping table previously defined at Section 4.3. If the user is interested in a

particular feature, it will have initially the value 1 at the vector. Each one of the other features

(that the user has not interest) will receive the value 0.

In order to get that ancestors, we use the ωancestors function defined in Sec-

tion A.1. If τ = 2, ωancestors will return “StructuralFeature”, “DeploymentTarget” and

“ConnectableElement” for “PSA” (that is connected to the attribute “isStatic” on “Property”)

in the Figure 4.1, for instance, and all the features mapped to their children are related to

A.3 User vector preparation details 91

“PSA” for this value of τ . The larger is the τ parameter, the higher are the chances to have a

greater number of related elements.

Also, the BFS and the τ -nth approaches will compute a weight for all reached mapped

feature by running the Source Code A.1; In that code appear a function that we have not

defined yet, the “getDistances()”, that calculates the distances from a feature to all other

mapped and reachable ones; these distances will be used to calculate the final weight for

all other features. It is different for each approach, and their respective implementations are

presented for each one in the Sections A.3.1 and A.3.2.

Source Code A.1: Common code for both algorithm approaches

1 p u b l i c Map g e t F e a t u r e s W e i g h t (S e t Finterest , S e t Mα , S e t Mβ , I n t e g e r τ ,

Boolean λ , Boolean υ) {

2 Map r e s u l t ;

3

4 f o r (f ∈ Finterest) {

5 I n t e g e r pathsSum = 0 ;

6 Map dis tancesToMappedElems = g e t D i s t a n c e s (map(f) , Finterest , τ , λ , υ)

;

7 f o r (e l e m e n t : d i s tancesToMappedElems . k ey Se t ()) {

8 pathsSum += dis tancesToMappedElems [e l e m e n t] ;

9 }

10 f o r (e l e m e n t : d i s tancesToMappedElems . k ey Se t ()) {

11 I n t e g e r d i s t a n c e = dis tancesToMappedElems [e l e m e n t] ;

12 i f (! r e s u l t . hasKey (e l e m e n t)) {

13 r e s u l t [e l e m e n t] = 1 − (d i s t a n c e / pathsSum) ;

14 } e l s e {

15 I n t e g e r c u r r e n t R e s u l t = 1 − (d i s t a n c e / pathsSum) ;

16 r e s u l t [e l e m e n t] = (r e s u l t [e l e m e n t] + c u r r e n t R e s u l t) / 2 ;

17 }

18 }

19 }

20 re turn r e s u l t ;

21 }

The vector expansion is the most expensive part of the knowledge-based approach. It is

related to the number f of features in the proposal. In the worst case, τ is the height of the

A.3 User vector preparation details 92

tree and all features will be explored. As will be presented in the next subsections, OntoRec

uses BFS for searching in the ontology graph. Considering |V | the number of vertices and

|E| the number of edges in the graph, the cost of the BFS is O(|V | + |E|) [12]. The Source

Code A.1 does a loop for each feature in line 4, but the function “getDistances()” in line 6

will also iterate for each feature. Thus, the cost for the entire approch is about θ(f 2), since

the cost of the BFS is lower than that.

A.3.1 The Breadth-First Search (BFS) approach source code

The Source Code A.2 is an implementation of the function “getDistances()” in the

Source Code A.1 and implements the behavior described in Subsection 4.5.3. The

“BFSDistanceTo(m, λ)” function computes the distance by using the BFS algorithm, con-

sidering the λ parameter’s behavior as described in Subsection 4.5.1.

Source Code A.2: BFS approach code snippet

1 p u b l i c Map g e t D i s t a n c e s (Element r e f e r e n c e E l e m e n t , S e t Finterest , I n t e g e r τ ,

Boolean λ , Boolean υ) {

2 S e t r e s u l t = { } ;

3 S e t reachableMappedElems = { } ;

4 S e t a n c e s t o r s = ωancestors(τ , r e f e r e n c e E l e m e n t , λ)

5

6 f o r (mancestor ∈ a n c e s t o r s) {

7 reachab leMappedElems = reachab leMappedElems ∪ µdesc(mancestor, υ) ;

8 }

9

10 f o r (m ∈ reachab leMappedElems) {

11 i f (υ | | (! υ && ! (m ∈ Finterest))) {

12 I n t e g e r d i s t a n c e = r e f e r e n c e E l e m e n t . BFSDistanceTo (m , λ) ;

13 r e s u l t [m] = d i s t a n c e ;

14 }

15 }

16 re turn r e s u l t ;

17 }

A.3 User vector preparation details 93

A.3.2 τ -nth Ancestor approach source code

The Source Code A.2 is an implementation of the function “getDistances()” in the

Source Code A.1 and implements the behavior described in Subsection 4.5.4. The

“BFSDistanceTo(m,λ)” function computes the distance by using the BFS algorithm, con-

sidering the λ parameter’s behavior as described in the Subsection 4.5.1. The λ parameter is

also considered at ωancestors function as presented in the Section A.1.

The cost of this approach is greater than the BFS approach, once it needs to achieve the

τ -nth ancestors. Nevertheless, in the worst case, the previously presented cost θ(f 2) is higher

than the cost for that and this approach differ from the BFS one by a constant factor.

Source Code A.3: τ -nth approach code snippet

1 p u b l i c Map g e t D i s t a n c e s (Element r e f e r e n c e E l e m e n t , S e t Finterest , I n t e g e r τ ,

Boolean λ , Boolean υ) {

2 S e t r e s u l t = { } ;

3 S e t reachableMappedElems = { } ;

4 S e t a n c e s t o r s = ωancestors(τ , r e f e r e n c e E l e m e n t , λ)

5

6 f o r (mancestor ∈ a n c e s t o r s) {

7 reachab leMappedElems = reachab leMappedElems ∪ µdesc(mancestor, υ) ;

8 }

9

10 f o r (m ∈ reachab leMappedElems) {

11 i f (υ | | (! υ && ! (m ∈ Finterest))) {

12 I n t e g e r l e s s e r D i s t a n c e = ∞ ;

13 f o r (mancestor ∈ a n c e s t o r s) {

14 I n t e g e r d i s t a n c e = τ + mancestor . BFSDistanceTo (m , λ) ;

15 i f (d i s t a n c e < l e s s e r D i s t a n c e) {

16 l e s s e r D i s t a n c e = d i s t a n c e ;

17 }

18 }

19 r e s u l t [m] = l e s s e r D i s t a n c e ;

20 }

21 }

22 re turn r e s u l t ;

23 }

Appendix B

Bag-of-words algorithm search strings

The following tables contain the search strings for each user selected feature for the bag-of-

words algorithm, presented at Subsection 3.2.2.

Table B.1: Search strings for the bag-of-words approach (1)

User selected feature Search string

PSA

(("uml:Class" || "UML:Class") || ("uml:Interface" ||

"UML:Interface" || name="interface")) + (ownedAt-

tribute || "UML:Attribute") + ("isStatic=true" || "owner-

Scope=classifier") + (packagedElement || "UML:Model")

PADV

(("uml:Class" || "UML:Class") || ("uml:Interface" ||

"UML:Interface" || name="interface")) + (ownedAttribute ||

"UML:Attribute") + (defaultValue || Attribute.initialValue) +

(packagedElement || "UML:Model")

PASC ("uml:AssociationClass" || "UML:AssociationClass") + (pack-

agedElement || "UML:Model")

PRI
("uml:Interface" || "UML:Interface" || name="interface") +

(interfaceRealization || "Dependency.supplier") + Interface +

(packagedElement || "UML:Model")

94

95

Table B.2: Search strings for the bag-of-words approach (2)

User selected feature Search string

PABC ("uml:Class" || "UML:Class") + "isAbstract=true" + (pack-

agedElement || "UML:Model")

PTC

(("uml:Class" || "UML:Class") || ("uml:Interface" ||

"UML:Interface" || name="interface")) + (ownedTem-

plateSignature || TemplateParameter) + (packagedElement ||

"UML:Model")

PEN ("uml:Enumeration" || UMLEnumeration) + (packagedEle-

ment || "UML:Model")

POP ("uml:Class" || "UML:Class") + ownedAttribute + "uml:Port"

+ (packagedElement || "UML:Model")

PSO

(("uml:Class" || "UML:Class") || ("uml:Interface" ||

"UML:Interface" || name="interface")) + (ownedOpera-

tion || "UML:Operation") + ("isStatic=true" || "owner-

Scope=classifier") + (packagedElement || "UML:Model")

PAO

(("uml:Class" || "UML:Class") || ("uml:Interface" ||

"UML:Interface" || name="interface")) + (ownedOperation ||

"UML:Operation") + "isAbstract=true" + (packagedElement ||

"UML:Model")

PNAA
("uml:Association" || "UML:Association") + (navigable-

OwnedEnd || "isNavigable=true") + (packagedElement ||

"UML:Model")

PDA
(("uml:Class" || "UML:Class") || ("uml:Interface" ||

"UML:Interface" || name="interface")) + ownedAttribute

+ "isDerived=true" + (packagedElement || "UML:Model")

96

Table B.3: Search strings for the bag-of-words approach (3)

User selected feature Search string

POQ
(("uml:Class" || "UML:Class") || ("uml:Interface" ||

"UML:Interface" || name="interface")) + (qualifier || "Associ-

ationEnd.qualifier") + (packagedElement || "UML:Model")

PSHA
("uml:Association" || "UML:Association") + (ownedEnd

|| AssociationEnd) + ("aggregation=shared" || "aggrega-

tion=aggregate") + (packagedElement || "UML:Model")

PCOA
("uml:Association" || "UML:Association") + (ownedEnd ||

AssociationEnd) + "aggregation=composite" + (packagedEle-

ment || "UML:Model")

PGS "uml:GeneralizationSet" + (packagedElement ||

"UML:Model")

POD

(("uml:Dependency" || "UML:Dependency") || ("uml:Usage"

|| "UML:Usage") || ("uml:Abstraction" || "UML:Abstraction")

|| "uml:InterfaceRealization" || "uml:ComponentRealization"

|| "UML:Permission" || "Dependency.supplier") + (pack-

agedElement || "UML:Model")

POI ("uml:Interface" || "UML:Interface" || name="interface") +

(packagedElement || "UML:Model")

POG ("uml:Generalization" || "UML:Generalization") + (pack-

agedElement || "UML:Model")

Appendix C

Vargha Delaney and Wilcoxon tables for

all data

Table C.2 contains the Vargha Delaney effect size metric [54] for all combinations of ap-

proaches. Table C.1 presents the Wilcoxon pairwise test [62] to the same combinations. Both

tables are analysed at Subsection 5.2.4.

Table C.1: Wilcoxon test results for all data

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 1103 0.17

Knowledge-based Bag-of-words 1248.5 0.72

Knowledge-based Random 1227.5 0.61

Content-based Knowledge-based 1498 0.17

Content-based Bag-of-words 1453 0.28

Content-based Random 1432.5 0.35

Bag-of-words Knowledge-based 1352.5 0.72

Bag-of-words Content-based 1148 0.28

Bag-of-words Random 1278.5 0.88

Random Knowledge-based 1373.5 0.61

Random Content-based 1168.5 0.35

Random Bag-of-words 1322.5 0.88

97

98

Table C.2: Vargha Delaney test results for all data

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.42 Small Content-based (0.32, 0.53)

Knowledge-based Bag-of-words 0.48 Small Bag-of-words (0.37, 0.59)

Knowledge-based Random 0.47 Small Random (0.37, 0.58)

Content-based Knowledge-based 0.58 Small Content-based (0.47, 0.68)

Content-based Bag-of-words 0.56 Small Content-based (0.45, 0.66)

Content-based Random 0.55 Small Content-based (0.44, 0.65)

Bag-of-words Knowledge-based 0.52 Small Bag-of-words (0.41, 0.63)

Bag-of-words Content-based 0.44 Small Content-based (0.34, 0.55)

Bag-of-words Random 0.49 Small Random (0.39, 0.60)

Random Knowledge-based 0.53 Small Random (0.42, 0.63)

Random Content-based 0.45 Small Content-based (0.35, 0.56)

Random Bag-of-words 0.51 Small Random (0.40, 0.61)

Appendix D

Vargha Delaney and Wilcoxon tables for

the top-3 results of the auxiliary

experiment

The following tables contains the Vargha Delaney effect size metric [54] and the Wilcoxon

pairwise test [62] for all combinations of approaches, grouped by the number of features at

user profile and considering the top-3 results. For more information about this data see the

Section 5.3.

99

100

Table D.1: Vargha Delaney test results for top-3 results and profile length 1

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.31 Large Content-based (0.17, 0.51)

Knowledge-based Bag-of-words 0.39 Medium Bag-of-words (0.2, 0.62)

Knowledge-based Random 0.81 Large Knowledge-based (0.52, 0.95)

Content-based Knowledge-based 0.69 Large Content-based (0.49, 0.83)

Content-based Bag-of-words 0.56 Small Content-based (0.44, 0.68)

Content-based Random 1 Large Content-based -

Bag-of-words Knowledge-based 0.61 Medium Bag-of-words (0.38, 0.8)

Bag-of-words Content-based 0.44 Small Content-based (0.32, 0.56)

Bag-of-words Random 0.91 Large Bag-of-words (0.59, 0.98)

Random Knowledge-based 0.19 Large Knowledge-based (0.05, 0.48)

Random Content-based 0 Large Content-based -

Random Bag-of-words 0.09 Large Bag-of-words (0.02, 0.41)

101

Table D.2: Wilcoxon test results for top-3 results and profile length 1

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 20 0.08

Knowledge-based Bag-of-words 25 0.37

Knowledge-based Random 52 0.03

Content-based Knowledge-based 44 0.08

Content-based Bag-of-words 36 0.38

Content-based Random 64 0

Bag-of-words Knowledge-based 39 0.37

Bag-of-words Content-based 28 0.38

Bag-of-words Random 58 0

Random Knowledge-based 12 0.03

Random Content-based 0 0

Random Bag-of-words 6 0

102

Table D.3: Vargha Delaney test results for top-3 results and profile length 2

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.43 Small Content-based (0.36, 0.5)

Knowledge-based Bag-of-words 0.54 Small Knowledge-based (0.44, 0.64)

Knowledge-based Random 0.85 Large Knowledge-based (0.73, 0.92)

Content-based Knowledge-based 0.57 Small Content-based (0.5, 0.64)

Content-based Bag-of-words 0.61 Medium Content-based (0.53, 0.68)

Content-based Random 0.89 Large Content-based (0.79, 0.95)

Bag-of-words Knowledge-based 0.46 Small Knowledge-based (0.36, 0.56)

Bag-of-words Content-based 0.39 Medium Content-based (0.32, 0.47)

Bag-of-words Random 0.78 Large Bag-of-words (0.64, 0.88)

Random Knowledge-based 0.15 Large Knowledge-based (0.08, 0.27)

Random Content-based 0.11 Large Content-based (0.05, 0.21)

Random Bag-of-words 0.22 Large Bag-of-words (0.12, 0.36)

103

Table D.4: Wilcoxon test results for top-3 results and profile length 2

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 336 0.04

Knowledge-based Bag-of-words 427 0.4

Knowledge-based Random 666 0

Content-based Knowledge-based 448 0.04

Content-based Bag-of-words 476 0.01

Content-based Random 700 0

Bag-of-words Knowledge-based 357 0.4

Bag-of-words Content-based 308 0.01

Bag-of-words Random 611.5 0

Random Knowledge-based 118 0

Random Content-based 84 0

Random Bag-of-words 172.5 0

104

Table D.5: Vargha Delaney test results for top-3 results and profile length 3

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.49 Small Content-based (0.47, 0.51)

Knowledge-based Bag-of-words 0.6 Small Knowledge-based (0.54, 0.66)

Knowledge-based Random 0.92 Large Knowledge-based (0.86, 0.96)

Content-based Knowledge-based 0.51 Small Content-based (0.49, 0.53)

Content-based Bag-of-words 0.61 Medium Content-based (0.55, 0.66)

Content-based Random 0.93 Large Content-based (0.87, 0.96)

Bag-of-words Knowledge-based 0.4 Small Knowledge-based (0.34, 0.46)

Bag-of-words Content-based 0.39 Medium Content-based (0.34, 0.45)

Bag-of-words Random 0.81 Large Bag-of-words (0.72, 0.88)

Random Knowledge-based 0.08 Large Knowledge-based (0.04, 0.14)

Random Content-based 0.07 Large Content-based (0.04, 0.13)

Random Bag-of-words 0.19 Large Bag-of-words (0.12, 0.28)

105

Table D.6: Wilcoxon test results for top-3 results and profile length 3

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 1540 0.33

Knowledge-based Bag-of-words 1881.5 0

Knowledge-based Random 2899.5 0

Content-based Knowledge-based 1596 0.33

Content-based Bag-of-words 1904 0

Content-based Random 2912 0

Bag-of-words Knowledge-based 1254.5 0

Bag-of-words Content-based 1232 0

Bag-of-words Random 2548.5 0

Random Knowledge-based 236.5 0

Random Content-based 224 0

Random Bag-of-words 587.5 0

106

Table D.7: Vargha Delaney test results for top-3 results and profile length 4

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.5 NO effect NONE is superior (0.5, 0.5)

Knowledge-based Bag-of-words 0.6 Small Knowledge-based (0.55, 0.65)

Knowledge-based Random 0.86 Large Knowledge-based (0.8, 0.9)

Content-based Knowledge-based 0.5 NO effect NONE is superior (0.5, 0.5)

Content-based Bag-of-words 0.6 Small Content-based (0.55, 0.65)

Content-based Random 0.86 Large Content-based (0.8, 0.9)

Bag-of-words Knowledge-based 0.4 Small Knowledge-based (0.35, 0.45)

Bag-of-words Content-based 0.4 Small Content-based (0.35, 0.45)

Bag-of-words Random 0.73 Large Bag-of-words (0.64, 0.8)

Random Knowledge-based 0.14 Large Knowledge-based (0.1, 0.2)

Random Content-based 0.14 Large Content-based (0.1, 0.2)

Random Bag-of-words 0.27 Large Bag-of-words (0.2, 0.36)

107

Table D.8: Wilcoxon test results for top-3 results and profile length 4

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 2450 NA

Knowledge-based Bag-of-words 2940 0

Knowledge-based Random 4200 0

Content-based Knowledge-based 2450 NA

Content-based Bag-of-words 2940 0

Content-based Random 4200 0

Bag-of-words Knowledge-based 1960 0

Bag-of-words Content-based 1960 0

Bag-of-words Random 3577 0

Random Knowledge-based 700 0

Random Content-based 700 0

Random Bag-of-words 1323 0

108

Table D.9: Vargha Delaney test results for top-3 results and profile length 5

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.5 NO effect NONE is superior (0.5, 0.5)

Knowledge-based Bag-of-words 0.6 Small Knowledge-based (0.54, 0.65)

Knowledge-based Random 0.75 Large Knowledge-based (0.68, 0.81)

Content-based Knowledge-based 0.5 NO effect NONE is superior (0.5, 0.5)

Content-based Bag-of-words 0.6 Small Content-based (0.54, 0.65)

Content-based Random 0.75 Large Content-based (0.68, 0.81)

Bag-of-words Knowledge-based 0.4 Small Knowledge-based (0.35, 0.46)

Bag-of-words Content-based 0.4 Small Content-based (0.35, 0.46)

Bag-of-words Random 0.63 Medium Bag-of-words (0.53, 0.71)

Random Knowledge-based 0.25 Large Knowledge-based (0.19, 0.32)

Random Content-based 0.25 Large Content-based (0.19, 0.32)

Random Bag-of-words 0.37 Medium Bag-of-words (0.29, 0.47)

109

Table D.10: Wilcoxon test results for top-3 results and profile length 5

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 1568 NA

Knowledge-based Bag-of-words 1876 0

Knowledge-based Random 2352 0

Content-based Knowledge-based 1568 NA

Content-based Bag-of-words 1876 0

Content-based Random 2352 0

Bag-of-words Knowledge-based 1260 0

Bag-of-words Content-based 1260 0

Bag-of-words Random 1961.5 0.01

Random Knowledge-based 784 0

Random Content-based 784 0

Random Bag-of-words 1174.5 0.01

110

Table D.11: Vargha Delaney test results for top-3 results and profile length 6

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.5 NO effect NONE is superior (0.5, 0.5)

Knowledge-based Bag-of-words 0.59 Small Knowledge-based (0.52, 0.66)

Knowledge-based Random 0.86 Large Knowledge-based (0.75, 0.92)

Content-based Knowledge-based 0.5 NO effect NONE is superior (0.5, 0.5)

Content-based Bag-of-words 0.59 Small Content-based (0.52, 0.66)

Content-based Random 0.86 Large Content-based (0.75, 0.92)

Bag-of-words Knowledge-based 0.41 Small Knowledge-based (0.34, 0.48)

Bag-of-words Content-based 0.41 Small Content-based (0.34, 0.48)

Bag-of-words Random 0.71 Large Bag-of-words (0.56, 0.83)

Random Knowledge-based 0.14 Large Knowledge-based (0.08, 0.25)

Random Content-based 0.14 Large Content-based (0.08, 0.25)

Random Bag-of-words 0.29 Large Bag-of-words (0.17, 0.44)

111

Table D.12: Wilcoxon test results for top-3 results and profile length 6

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 392 NA

Knowledge-based Bag-of-words 462 0.02

Knowledge-based Random 672 0

Content-based Knowledge-based 392 NA

Content-based Bag-of-words 462 0.02

Content-based Random 672 0

Bag-of-words Knowledge-based 322 0.02

Bag-of-words Content-based 322 0.02

Bag-of-words Random 559.5 0

Random Knowledge-based 112 0

Random Content-based 112 0

Random Bag-of-words 224.5 0

112

Table D.13: Vargha Delaney test results for top-3 results and profile length 7

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.5 NO effect NONE is superior (0.5, 0.5)

Knowledge-based Bag-of-words 0.56 Small Knowledge-based (0.44, 0.68)

Knowledge-based Random 0.63 Medium Knowledge-based (0.46, 0.77)

Content-based Knowledge-based 0.5 NO effect NONE is superior (0.5, 0.5)

Content-based Bag-of-words 0.56 Small Content-based (0.44, 0.68)

Content-based Random 0.63 Medium Content-based (0.46, 0.77)

Bag-of-words Knowledge-based 0.44 Small Knowledge-based (0.32, 0.56)

Bag-of-words Content-based 0.44 Small Content-based (0.32, 0.56)

Bag-of-words Random 0.56 Small Bag-of-words (0.36, 0.74)

Random Knowledge-based 0.38 Medium Knowledge-based (0.23, 0.54)

Random Content-based 0.38 Medium Content-based (0.23, 0.54)

Random Bag-of-words 0.44 Small Bag-of-words (0.26, 0.64)

113

Table D.14: Wilcoxon test results for top-3 results and profile length 7

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 32 NA

Knowledge-based Bag-of-words 36 0.38

Knowledge-based Random 40 0.17

Content-based Knowledge-based 32 NA

Content-based Bag-of-words 36 0.38

Content-based Random 40 0.17

Bag-of-words Knowledge-based 28 0.38

Bag-of-words Content-based 28 0.38

Bag-of-words Random 36 0.59

Random Knowledge-based 24 0.17

Random Content-based 24 0.17

Random Bag-of-words 28 0.59

Appendix E

Vargha Delaney and Wilcoxon tables for

the top-5 results of the auxiliary

experiment

The following tables contains the Vargha Delaney effect size metric [54] and the Wilcoxon

pairwise test [62] for all combinations of approaches, grouped by the number of features at

user profile and considering the top-5 results. For more information about this data see the

Section 5.3.

114

115

Table E.1: Vargha Delaney test results for top-5 results and profile length 1

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.25 Large Content-based (0.11, 0.47)

Knowledge-based Bag-of-words 0.38 Medium Bag-of-words (0.17, 0.63)

Knowledge-based Random 0.81 Large Knowledge-based (0.52, 0.95)

Content-based Knowledge-based 0.75 Large Content-based (0.53, 0.89)

Content-based Bag-of-words 0.63 Medium Content-based (0.46, 0.77)

Content-based Random 1 Large Content-based -

Bag-of-words Knowledge-based 0.63 Medium Bag-of-words (0.37, 0.83)

Bag-of-words Content-based 0.38 Medium Content-based (0.23, 0.54)

Bag-of-words Random 0.91 Large Bag-of-words (0.59, 0.98)

Random Knowledge-based 0.19 Large Knowledge-based (0.05, 0.48)

Random Content-based 0 Large Content-based -

Random Bag-of-words 0.09 Large Bag-of-words (0.02, 0.41)

116

Table E.2: Wilcoxon test results for top-5 results and profile length 1

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 16 0.03

Knowledge-based Bag-of-words 24 0.36

Knowledge-based Random 52 0.03

Content-based Knowledge-based 48 0.03

Content-based Bag-of-words 40 0.17

Content-based Random 64 0

Bag-of-words Knowledge-based 40 0.36

Bag-of-words Content-based 24 0.17

Bag-of-words Random 58 0.01

Random Knowledge-based 12 0.03

Random Content-based 0 0

Random Bag-of-words 6 0.01

117

Table E.3: Vargha Delaney test results for top-5 results and profile length 2

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.41 Small Content-based (0.34, 0.48)

Knowledge-based Bag-of-words 0.56 Small Knowledge-based (0.45, 0.67)

Knowledge-based Random 0.91 Large Knowledge-based (0.79, 0.96)

Content-based Knowledge-based 0.59 Small Content-based (0.52, 0.66)

Content-based Bag-of-words 0.66 Medium Content-based (0.57, 0.74)

Content-based Random 0.98 Large Content-based (0.9, 1)

Bag-of-words Knowledge-based 0.44 Small Knowledge-based (0.33, 0.55)

Bag-of-words Content-based 0.34 Medium Content-based (0.26, 0.43)

Bag-of-words Random 0.89 Large Bag-of-words (0.78, 0.95)

Random Knowledge-based 0.09 Large Knowledge-based (0.04, 0.21)

Random Content-based 0.02 Large Content-based (0, 0.1)

Random Bag-of-words 0.11 Large Bag-of-words (0.05, 0.22)

118

Table E.4: Wilcoxon test results for top-5 results and profile length 2

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 322 0.02

Knowledge-based Bag-of-words 442.5 0.28

Knowledge-based Random 713 0

Content-based Knowledge-based 462 0.02

Content-based Bag-of-words 518 0

Content-based Random 770 0

Bag-of-words Knowledge-based 341.5 0.28

Bag-of-words Content-based 266 0

Bag-of-words Random 698 0

Random Knowledge-based 71 0

Random Content-based 14 0

Random Bag-of-words 86 0

119

Table E.5: Vargha Delaney test results for top-5 results and profile length 3

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.48 Small Content-based (0.46, 0.51)

Knowledge-based Bag-of-words 0.61 Medium Knowledge-based (0.54, 0.67)

Knowledge-based Random 0.95 Large Knowledge-based (0.9, 0.98)

Content-based Knowledge-based 0.52 Small Content-based (0.49, 0.54)

Content-based Bag-of-words 0.63 Medium Content-based (0.57, 0.68)

Content-based Random 0.96 Large Content-based (0.91, 0.99)

Bag-of-words Knowledge-based 0.39 Medium Knowledge-based (0.33, 0.46)

Bag-of-words Content-based 0.38 Medium Content-based (0.32, 0.43)

Bag-of-words Random 0.89 Large Bag-of-words (0.82, 0.94)

Random Knowledge-based 0.05 Large Knowledge-based (0.02, 0.1)

Random Content-based 0.04 Large Content-based (0.01, 0.09)

Random Bag-of-words 0.11 Large Bag-of-words (0.06, 0.18)

120

Table E.6: Wilcoxon test results for top-5 results and profile length 3

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 1512 0.16

Knowledge-based Bag-of-words 1903 0

Knowledge-based Random 2988.5 0

Content-based Knowledge-based 1624 0.16

Content-based Bag-of-words 1960 0

Content-based Random 3024 0

Bag-of-words Knowledge-based 1233 0

Bag-of-words Content-based 1176 0

Bag-of-words Random 2800.5 0

Random Knowledge-based 147.5 0

Random Content-based 112 0

Random Bag-of-words 335.5 0

121

Table E.7: Vargha Delaney test results for top-5 results and profile length 4

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.5 NO effect NONE is superior (0.5, 0.5)

Knowledge-based Bag-of-words 0.61 Medium Knowledge-based (0.56, 0.65)

Knowledge-based Random 0.94 Large Knowledge-based (0.88, 0.97)

Content-based Knowledge-based 0.5 NO effect NONE is superior (0.5, 0.5)

Content-based Bag-of-words 0.61 Medium Content-based (0.56, 0.65)

Content-based Random 0.94 Large Content-based (0.88, 0.97)

Bag-of-words Knowledge-based 0.39 Medium Knowledge-based (0.35, 0.44)

Bag-of-words Content-based 0.39 Medium Content-based (0.35, 0.44)

Bag-of-words Random 0.84 Large Bag-of-words (0.77, 0.89)

Random Knowledge-based 0.06 Large Knowledge-based (0.03, 0.12)

Random Content-based 0.06 Large Content-based (0.03, 0.12)

Random Bag-of-words 0.16 Large Bag-of-words (0.11, 0.23)

122

Table E.8: Wilcoxon test results for top-5 results and profile length 4

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 2450 NA

Knowledge-based Bag-of-words 2975 0

Knowledge-based Random 4585 0

Content-based Knowledge-based 2450 NA

Content-based Bag-of-words 2975 0

Content-based Random 4585 0

Bag-of-words Knowledge-based 1925 0

Bag-of-words Content-based 1925 0

Bag-of-words Random 4122 0

Random Knowledge-based 315 0

Random Content-based 315 0

Random Bag-of-words 778 0

123

Table E.9: Vargha Delaney test results for top-5 results and profile length 5

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.5 NO effect NONE is superior (0.5, 0.5)

Knowledge-based Bag-of-words 0.6 Small Knowledge-based (0.54, 0.65)

Knowledge-based Random 0.84 Large Knowledge-based (0.77, 0.89)

Content-based Knowledge-based 0.5 NO effect NONE is superior (0.5, 0.5)

Content-based Bag-of-words 0.6 Small Content-based (0.54, 0.65)

Content-based Random 0.84 Large Content-based (0.77, 0.89)

Bag-of-words Knowledge-based 0.4 Small Knowledge-based (0.35, 0.46)

Bag-of-words Content-based 0.4 Small Content-based (0.35, 0.46)

Bag-of-words Random 0.73 Large Bag-of-words (0.64, 0.81)

Random Knowledge-based 0.16 Large Knowledge-based (0.11, 0.23)

Random Content-based 0.16 Large Content-based (0.11, 0.23)

Random Bag-of-words 0.27 Large Bag-of-words (0.19, 0.36)

124

Table E.10: Wilcoxon test results for top-5 results and profile length 5

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 1568 NA

Knowledge-based Bag-of-words 1876 0

Knowledge-based Random 2632 0

Content-based Knowledge-based 1568 NA

Content-based Bag-of-words 1876 0

Content-based Random 2632 0

Bag-of-words Knowledge-based 1260 0

Bag-of-words Content-based 1260 0

Bag-of-words Random 2302 0

Random Knowledge-based 504 0

Random Content-based 504 0

Random Bag-of-words 834 0

125

Table E.11: Vargha Delaney test results for top-5 results and profile length 6

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.5 NO effect NONE is superior (0.5, 0.5)

Knowledge-based Bag-of-words 0.59 Small Knowledge-based (0.52, 0.66)

Knowledge-based Random 0.93 Large Knowledge-based (0.83, 0.97)

Content-based Knowledge-based 0.5 NO effect NONE is superior (0.5, 0.5)

Content-based Bag-of-words 0.59 Small Content-based (0.52, 0.66)

Content-based Random 0.93 Large Content-based (0.83, 0.97)

Bag-of-words Knowledge-based 0.41 Small Knowledge-based (0.34, 0.48)

Bag-of-words Content-based 0.41 Small Content-based (0.34, 0.48)

Bag-of-words Random 0.81 Large Bag-of-words (0.67, 0.9)

Random Knowledge-based 0.07 Large Knowledge-based (0.03, 0.17)

Random Content-based 0.07 Large Content-based (0.03, 0.17)

Random Bag-of-words 0.19 Large Bag-of-words (0.1, 0.33)

126

Table E.12: Wilcoxon test results for top-5 results and profile length 6

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 392 NA

Knowledge-based Bag-of-words 462 0.02

Knowledge-based Random 728 0

Content-based Knowledge-based 392 NA

Content-based Bag-of-words 462 0.02

Content-based Random 728 0

Bag-of-words Knowledge-based 322 0.02

Bag-of-words Content-based 322 0.02

Bag-of-words Random 633 0

Random Knowledge-based 56 0

Random Content-based 56 0

Random Bag-of-words 151 0

127

Table E.13: Vargha Delaney test results for top-5 results and profile length 7

Approach 1 Approach 2 A Effect Superior Confidence

interval for

A (α = 0.05)

Knowledge-based Content-based 0.5 NO effect NONE is superior (0.5, 0.5)

Knowledge-based Bag-of-words 0.56 Small Knowledge-based (0.44, 0.68)

Knowledge-based Random 0.69 Large Knowledge-based (0.49, 0.83)

Content-based Knowledge-based 0.5 NO effect NONE is superior (0.5, 0.5)

Content-based Bag-of-words 0.56 Small Content-based (0.44, 0.68)

Content-based Random 0.69 Large Content-based (0.49, 0.83)

Bag-of-words Knowledge-based 0.44 Small Knowledge-based (0.32, 0.56)

Bag-of-words Content-based 0.44 Small Content-based (0.32, 0.56)

Bag-of-words Random 0.63 Medium Bag-of-words (0.4, 0.81)

Random Knowledge-based 0.31 Large Knowledge-based (0.17, 0.51)

Random Content-based 0.31 Large Content-based (0.17, 0.51)

Random Bag-of-words 0.38 Medium Bag-of-words (0.19, 0.6)

128

Table E.14: Wilcoxon test results for top-5 results and profile length 7

Approach 1 Approach 2 W p-value

Knowledge-based Content-based 32 NA

Knowledge-based Bag-of-words 36 0.38

Knowledge-based Random 44 0.08

Content-based Knowledge-based 32 NA

Content-based Bag-of-words 36 0.38

Content-based Random 44 0.08

Bag-of-words Knowledge-based 28 0.38

Bag-of-words Content-based 28 0.38

Bag-of-words Random 40 0.3

Random Knowledge-based 20 0.08

Random Content-based 20 0.08

Random Bag-of-words 24 0.3

	Introduction
	Problem
	Research Objectives
	Research scope
	Contributions
	Relevance of the proposal
	Dissertation Structure

	Background
	UML Class Diagrams
	UML Metamodel
	MetaObject Facility (MOF) and XML Metadata Interchange (XMI)

	Information Retrieval
	The Bag-of-Words model
	Term Frequency - Inverse Document Frequency (tf-idf)

	Recommender Systems
	Ontologies and knowledge representation
	The semantic web
	Resource Description Framework (RDF)
	The Ontology Web Language (OWL)

	Techniques for UML Class Diagrams Recommendations
	User and item profiles
	Recommender systems approaches proposed in this work
	Random items recommendation
	Bag-of-words based approach
	Item's vector (content) based approach
	Knowledge-based approach

	OntoRec: A Recommender Profile Generation Approach Based on Ontologies
	Features versus Classes
	The need of inheritance
	The Mapping Table
	The parameter
	Preparing the user vector
	The parameter
	The parameter
	Breadth-First Search (BFS) approach
	-nth Ancestor approach

	Calculating the recommended items

	Evaluation
	Problem statement
	Setup
	Context and scope
	Experiment design
	Execution
	Results and analysis
	Practical significance (interpretation)

	Additional experiment
	Context and scope
	Execution
	Experiment design
	Results and analysis
	Practical significance (interpretation)

	Validity Threats
	Conclusion validity threats
	Internal validity threats
	Construct validity threats
	External validity threats

	Related Works
	Traditional Recommender Systems
	Recommender Systems for Software Engineering
	Recommender Systems for UML Models

	Conclusion
	Limitations
	Future work

	OntoRec formalizations
	Information Model
	 formal definition
	User vector preparation details
	The Breadth-First Search (BFS) approach source code
	-nth Ancestor approach source code

	Bag-of-words algorithm search strings
	Vargha Delaney and Wilcoxon tables for all data
	Vargha Delaney and Wilcoxon tables for the top-3 results of the auxiliary experiment
	Vargha Delaney and Wilcoxon tables for the top-5 results of the auxiliary experiment

