
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Uma Abordagem para Representação e Rastreio de

Artefatos

Arthur de Sousa Marques

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Franklin Ramalho e Wilkerson L. Andrade

(Orientadores)

Campina Grande, Paraíba, Brasil

c©Arthur de Sousa Marques, 15/12/2014

i

ii

Resumo
Rastreabilidade de Requisitos refere-se ao processo de rastreio de requisitos ao longo de

todo o ciclo de vida de um software. Visto que um grande conjunto de informações é usado

e produzido e tais devem ser rastreadas, ela é essencial ao processo de desenvolvimento de

software. Não obstante, uma vez que a complexidade dos sistemas desenvolvidos cresce, a

miríade de artefatos relacionados também cresce. Sendo assim, engenheiros de requisitos

são encarregados de rastrear requisitos em diferentes níveis de abstrações. Neste contexto,

vale ressaltar que não há um consenso acerca do processo de rastreabilidade e, como con-

sequência, práticas de rastreabilidade de requisitos não podem ser unificadas em diferentes

ambientes organizacionais. Propor uma abstração comum para rastreabilidade de requisi-

tos e também identificar aspectos chave do processo de rastreabilidade são reconhecidos

como notáveis tópicos de pesquisa dentre os grandes desafios da rastreabilidade de requi-

sitos. Sendo assim, no presente trabalho, propomos uma Linguagem de Representação de

Rastreabilidade (TRL), que provê abstrações para a rastreabilidade de requisitos. Tal lin-

guagem é então explorada por um processo de rastreabilidade, centrado na mesma. Desta

forma, ao discutirmos detalhadamente as fases do processo proposto, atores, responsabili-

dades, entradas e saídas esperadas bem como contratos e interfaces que regem tal processo,

nós investigamos aspectos comuns do processo de rastreabilidade. A avaliação do presente

trabalho considera que: (i) a representação proposta foi avaliada considerando critérios de

legibilidade e redigibilidade, ou seja, quão compreensível ela é; e (ii) o processo proposto

foi avaliado considerando sua performance e eficiência, isto é, quão bem o processo apoia

atividades beneficiadas pela rastreabilidade de requisitos. Como resultados, observamos que

a linguagem e suas construções foram avaliadas como de fácil leitura e escrita e que a lin-

guagem é uma abordagem viável para abstrair rastreabilidade de requisitos. Além disso,

observamos que o processo proposto possui melhor performance e eficiência quando com-

parado à um processo ad hoc. Dados os resultados observados, a abordagem proposta (lin-

guagem e processo) fornece abstrações para o processo de rastreabilidade de requisitos bem

como fomentar a discussão acerca dos principais aspectos do processo de rastreabilidade,

desta forma, promovendo a rastreabilidade de requisitos portável.

iii

Abstract
Requirements Traceability (RT) refers to the process of tracing requirements through the

software development life-cycle. It is essential for the software development process be-

cause a lot of information is used and produced and it should be kept related or traceable.

Nevertheless, as the complexity of a system increases, the myriad of related artifacts also in-

creases. Therefore, one is encumbered of tracing requirements through different abstraction

levels. Moreover, there is not a consensus about the traceability process and, as a conse-

quence, requirements traceability practices cannot be unified across different organizational

settings. Proposing a common abstraction to requirements traceability and also identifying

common aspects to the requirements traceability process have been recognized as remark-

able research topics of the grand challenges of requirements traceability. Therefore, is this

work, we propose a Traceability Representation Language (TRL), which provides abstrac-

tions to requirements traceability. Such representation is then exploited by a requirements

traceability process centered on it. Thus, by thoroughly discussing process’ phases, activi-

ties, actors, responsibilities, and input/output artifacts as well as traceability contracts, which

govern process’ phases and how they intercommunicate, we investigate common aspects of

requirements traceability. The evaluation of the present work was twofold: (i) the proposed

language was evaluated considering its readability and writability, i.e. how comprehensible

it is; and (ii) the proposed process was evaluated regarding its performance and effective-

ness, i.e. how well it supports requirements traceability tasks. As a result, we observed that

the language’s constructions were evaluated as easily read/written and that it is a feasible ap-

proach to provide an abstraction to requirements traceability. Moreover, we observed that the

proposed process improves the performance and efficiency of the requirements traceability

process, while maintaining the same accuracy of other approaches. Therefore, the proposed

approach (language and process) is feasible to address abstractions to requirements traceabil-

ity as well as foster the discussion of major aspects of the requirements traceability process,

thus portable traceability can be addressed, i.e. how requirements traceability techniques can

be used across different projects or even organizations.

iv

Acknowledgements
I am grateful to God for giving me breath and happiness. For his guiding throughout this

long journey, providing me health, protection, and also wisdom to always seek inner peace

and the peace of those who are part of my life.

I am immensely grateful to my father Wilson and mother Lucia, who raised me and

taught to be a righteous person. For all the moments of advice and tenderness. I also thank

my brothers João and Hugo and how I grew up to be a better man inspiring me through

your examples as well as being an example to both of you. To Lisley, thank you for all

the moments at my side, for being my companion through life and being kind and gentle in

uncountable moments.

To Franklin and Wilkerson, two extraordinary professors, who by lucky are my advisors

during the master degree. I am greatly grateful to be your student and to have learned a

small parcel of your knowledge. Thanks for all the guidance, advices, patience, and also

misleading “the”s.

To all SPLab/e-Pol members for their friendship and help during the master degree. Spe-

cially, to Alysson, Adriana, Bruno, Dalton, Izabela, Katyusco, Luiz Augusto, Lilian, and

Matheus Gaudencio. Thanks for all the advices, guidance and friendship, making my days

lighter and pleasing.

I thank all close friends, who shared moments of joy and sadness and helped me in so

many uncountable ways. Special acknowledgments to Alcione Pinheiro, Andryw Marques,

Arthur Felipe, Barbara Tsuyuguchi, Diego Tavares and Elisa, Heloá Aires and her family,

Nathália Italiano, Ronaldo Regis, Simone Alciole and Carlinhos, Thiago Batista and his

family, and also Von Brauner and his family. I also thank my RPG friends, Fabiano, Felipe

Leal, Ítalo, Uian, and Wendel as well as past Accenture friends Abraão Morais, Anderson

Pablo, Arthur Navarro, Burns, Diego Maia, Francisco Barros, Francisco Chiquinho, Gustavo

Rocha, Hamon Barros, Jailson Pereira, Lobinho, Lorena Lira, Rafael Vilaca, Renato Ferraz

and so many others. Best regards.

In closing, I thank the Federal University of Campina Grande and the Federal Police of

Brazil for their financial support (by the agreement No 754664/2010) as well as all COPIN

staff members, which promptly helped me throughout the course.

v

vi

To my grandfather, who until his last breath was a passionate and wise man.

iii

Contents

1 Introduction 1

1.1 Benefits of Requirements Traceability . 1

1.2 Requirements Traceability Challenges . 2

1.3 Objective . 4

1.4 Scope . 4

1.5 Envisioned of Contributions . 5

1.6 Dissertation Outline . 7

2 Background 8

2.1 Requirement . 8

2.2 Artifact . 10

2.3 Requirements Traceability . 11

2.3.1 Importance of Traceability . 11

2.3.2 Trace Link . 12

2.3.3 Traceability Modes . 13

2.3.4 Traceability Model . 15

3 Traceability Representation Language 18

3.1 Trace Link Representation . 18

3.2 Language’s Constructions . 20

3.3 Queries Specification . 21

3.4 Example . 22

3.5 Chapter Debriefings . 23

iv

CONTENTS v

4 Traceability Process 25

4.1 Process Workflow . 25

4.1.1 Definition . 27

4.1.2 Production . 29

4.1.3 Extraction . 32

4.2 Process’ Contracts . 34

4.3 Chapter Debriefings . 36

5 Tool Support 38

5.1 Overview . 38

5.2 Architecture . 39

5.3 Usage . 40

5.4 Chapter Debriefings . 46

6 Evaluation 47

6.1 Language Evaluation . 47

6.1.1 Planning . 48

6.1.2 Results . 60

6.1.3 Discussion . 64

6.2 Process Evaluation . 67

6.2.1 Planning . 67

6.2.2 Results . 73

6.2.3 Discussion . 76

6.3 Chapter Debriefings . 78

7 Related Work 80

7.1 Traceability Challenges . 80

7.2 Traceability Query Languages . 82

7.3 Requirements Engineering Process Improvements 84

7.4 Chapter Debriefings . 86

8 Conclusions 88

8.1 Contributions . 89

CONTENTS vi

8.2 Limitations . 90

8.3 Future Work . 91

8.4 Final Remarks . 92

A Language’s Evaluation Questionnaire 100

B Process Evaluation Results 101

List of Symbols

AHP - Analytic Hierarchy Process

CASE - Computer-aided Software Enginneering

CoEST - Center of Excellence for Software Traceability

COST - Commercial off-the-shelf

DSL - Domain Specific Language

OCL - Object Constraint Language

OO - Object Orientation

RE - Requirements Engineering

RT - Requirements Traceability

SOA - Service Oriented Architecture

SQL - Structured Query Language

TQL - Trace Query Language

TracQL - Traceability Query Language

TRL - Traceability Representation Language

UML - Unified Modeling Language

VTML - Visual Trace Modeling Language

XML - Extensible Markup Language

vii

List of Figures

1.1 Hindered Interoperability of Traceability Processes 4

2.1 Software Requirements Traceability Overview 14

2.2 Traceability Model Overview . 15

3.1 Trace Link Representation Abstract Syntax 19

3.2 Query Abstract Syntax . 21

4.1 Traceability Process . 26

4.2 Software Development Life-Cycle . 27

4.3 Traceability Process - Definition Phase . 28

4.4 TestLink - TC01:Register patient with valid national ID number 29

4.5 Traceability Process - Production Phase 29

4.6 Traceability Process - Extraction Phase . 32

5.1 SORTT - Overview . 39

5.2 SORTT - Architecture Overview . 40

5.3 Traceability Process . 41

5.4 SORTT - Main Screen . 42

5.5 SORTT - Core and Test Cases Tabs . 43

5.6 SORTT - Query Screen . 44

5.7 SORTT - Query Output . 45

5.8 SORTT - Filtered Output . 45

6.1 Data Set Overview . 53

6.2 Writability Question . 55

viii

LIST OF FIGURES ix

6.3 Comparison Question . 56

6.4 Questionnaire Individual Question . 57

6.5 Questionnaire Comparison Question . 57

6.6 Language Evaluation - Experiment’s Overview 61

6.7 TRL - Questionnaire’s Answers Overview 62

6.8 TracQL - Questionnaire’s Answers Overview 62

6.9 TQL - Questionnaire’s Answers Overview 63

6.10 Process Evaluation - Experiment’s Overview 74

6.11 Process Evaluation - Performance Bar Chart Comparison 75

6.12 Process Evaluation - Effectiveness Bar Chart Comparison 75

List of Tables

2.1 EasyClinic Requirements . 9

2.2 EasyClinic Artifacts . 11

4.1 Tracing Contract . 35

4.2 Translating Contract . 35

4.3 Indexing Contract . 35

4.4 Searching Contract . 36

4.5 Rendering Contract . 36

6.1 Data Set Overview . 52

6.2 Data Set Numbers . 52

6.3 Experiment’s Tasks . 55

6.4 Language Individual Question Results . 63

6.5 AHP Trace Link Representation Result . 64

6.6 AHP Query Results . 64

6.7 Data Set Overview . 70

6.8 Experiment’s Results Overview . 74

7.1 Related Work - Languages . 84

7.2 Related Work - Processes . 86

B.1 Process Evaluation - Overall Results . 102

x

Listings

3.1 TRL - Trace Link Representation . 19

3.2 TRL - Language’s Constructions . 20

3.3 TRL - Simple Query . 21

3.4 TRL - Composite Queries . 22

3.5 TRL - Complex Queries . 22

3.6 TRL - EasyClinic Example . 23

3.7 TRL Backus-Naur’s Notation . 24

4.1 EasyClinic - Requirement Example . 28

4.2 EasyClinic - Tagging Strategy Example 30

4.3 Easy Clinic - Produced Trace Links Example 31

4.4 EasyClinic - Indexed and Grouped Trace Links Example 31

4.5 Easy Clinic - Extracted Trace Links Example 33

4.6 Easy Clinic - Filtered Trace Links Example 33

5.1 EasyClinic - Requirement Example . 41

5.2 SORTT - Grouped and Indexed Trace Links 43

xi

Chapter 1

Introduction

Requirements traceability refers to the ability to describe and follow the life of a require-

ment, in both a forwards and backwards direction (i.e. from its origins, through its devel-

opment and specification, to its subsequent deployment and use, and through all periods of

on-going refinement and iteration in any of these phases) [21].

In order to achieve traceability, a traceable environment must be established. Such envi-

ronment is composed of procedures, methods, techniques and tools to accomplish the trace-

ability process [43]. Usually, this environment is built upon a model that gives a uniform

view for traces and traceable objects. The traceability model [43] considers three main as-

pects, which encompass the definition, production, and extraction of trace links. The defi-

nition elucidates what type of artifacts should be traced and how traces are represented; the

production produces traces according to defined strategies and techniques; and finally, the

extraction provides different and flexible ways to retrieve the produced traces.

1.1 Benefits of Requirements Traceability

Once requirements traceability is established, an organization may benefit from its support in

different areas [2, 17, 31, 45, 55, 63], e.g. project management, process visibility, verification

and validation, and maintenance. For instance, requirements traceability:

1. Simplifies project estimates, making project management easier. By following trace-

ability links, a project manager can see how many artifacts will be affected by a change

request, thus she/he can measure its cost;

1

1.2 Requirements Traceability Challenges 2

2. Improves process visibility to both project engineers and customers. In such context,

engineers and customers have access to contextual information about the life-cycle

of requirements, which assist them in determining the origins of a requirement, its

importance, how it was implemented, and how it was tested;

3. Allows verifying whether a system complies with its requirements and that they have

been implemented accordingly. Hence, supporting verification and validation activi-

ties;

4. Makes it easy to determine what requirements, design, code, test cases, and other

requirement related artifacts need to be updated to fulfill a change request made during

the software project’s maintenance phases [2, 55].

Regarding aforementioned benefits, we emphasize the importance to trace requirements

to system artifacts. As a myriad of artifacts are produced during the life-cycle of a project,

by tracing requirements to such artifacts one may: (i) identify the correct parts of the system

to generate or reference appropriate test data; and (ii) determine which parts of the system

(artifacts) would be impacted due to changes in one or more requirements. As a consequence,

collateral effects to the deliverable software can be minimized if all artifacts are correctly

traced. Thus, better assuring the deliverable’s quality [2, 17, 31, 45, 55, 63].

1.2 Requirements Traceability Challenges

Besides requirements traceability benefits have been acknowledged [55,58], there are factors

that hinder its correct utilization [3,16,21,27,46]. For instance, there is not a consensus about

the traceability process [27, 46] and, as a consequence, requirements traceability practices

cannot be unified across different organizational settings [16]. Moreover, as the complex-

ity of developed systems increases, the myriad of artifacts and traceable information also

increases. Thus, one is encumbered of tracing requirements through different abstraction

levels and through heterogeneous traceability processes, which vary according to organiza-

tional settings [21, 22, 55]. As a consequence, throughout many organizations, requirements

traceability is a singular, burdensome, and time-consuming activity.

1.2 Requirements Traceability Challenges 3

In order to address the aforementioned issues, the present work considers the grand chal-

lenges of requirements traceability, proposed by Gotel et al [22]. By classifying research

contributions and tracking progress in the field, the challenges discuss the necessity (i) to

promote requirements traceability based on abstractions, rather than concrete artifact types;

and (ii) to identify and standardize key aspects of the traceability process.

The necessity to promote requirements traceability based on abstractions is related to

scalable traceability, i.e. inhibiting limits to what type of artifacts can be traceable. Con-

sidering heterogeneous sources of artifacts that are likely to arise in a project, one is en-

cumbered of the task to understand the particularities of each type of traced artifact through

different abstraction levels [22]. Therefore, benefits provided by requirements traceability,

such as identifying the correct parts of the system to be tested or determining which arti-

facts would be impacted due to changes are compromised due to the increasing overhead of

understanding each type of traced artifact.

Moreover, the necessity to identify and standardize key aspects of the traceability process

is related to portable traceability, i.e. how requirements traceability techniques can be used

across different projects or even organizations. The lack of a consensus about the traceability

process precludes that requirements traceability practices can be unified across different or-

ganizational settings. As a consequence, traceability practices, techniques or process cannot

be ported. For instance, suppose that a hospital management system called EasyClinic [15]

is being developed and traced by an organization A, which has a specific traceability process

(Figure 1.1). However, due to cost limitations and contract clauses, after being developed,

the maintenance of the system is carried over to organization B, whose traceability process

and trace link representation differ from A. In such context, without a uniform representa-

tion of trace links and also without an overall traceability process, the organization B cannot

exploit the already extracted trace links or even the process which produced them. Thus, the

heterogeneity of traceability processes as well as trace link representations preclude portable

traceability.

1.3 Objective 4

EasyClinic
Organization A Process A

Traces BProcess BOrganization B

Traces A

Figure 1.1: Hindered Interoperability of Traceability Processes

1.3 Objective

Considering the factors that hinder requirements traceability practices, the present work ob-

jectives are twofold (i) to provide an abstraction to traceable information; and (ii) to identify

key aspects of the traceability process considering the traceability model and also tracing

requirements to system artifacts. To this extent, we propose a Traceability Representation

Langauge (TRL); and also propose and detail a traceability process that exploits the defined

language.

Therefore, by means of the proposed representation (TRL) and process, the present work

proposes an approach for abstracting requirements traceability and tracing requirements to

system artifacts.

1.4 Scope

Considering defined objectives (Section 1.3), the present work restrains its contributions to

two research fields: (i) requirements traceability languages and (ii) requirements engineering

process improvements.

Regarding the definition of abstractions to requirements traceability, our work is related

to requirements traceability languages [33,34,45,57]. Notice that, identifying which artifacts

or elements should be traced as well as providing means of abstracting this information is

not a trivial task. Several traceability languages provide abstractions in different levels, such

1.5 Envisioned of Contributions 5

as requirements rationale [45], models [33, 45], or system artifacts [34, 57]. Even though,

specifying the concept of granularity and providing a way to define and retrieve artifacts

in these different levels of abstraction is challenging [22]. Therefore, TRL contribution is

restrained to providing abstractions to requirements and system artifacts as well as providing

means of retrieving them.

Additionally, by means of identifying key aspects of the requirements traceability pro-

cess, this research is related to requirements engineering process improvements. Even

though, process improvements in requirements engineering may consider different aspects

such as improving how system requirements are elucidated [24, 40, 59], how to understand

the dynamics and particularities of such process [20, 53, 61], how to improve requirements

traceability [22, 51], and so forth. Thus, our proposed process is restrained to the scope of

requirements traceability practices. Considering (i) the three major phases of the traceability

model (i.e. definition, production, and extraction); and (ii) tracing requirements to system ar-

tifacts in forward and backward directions, we observe how traceability techniques, methods,

and tools can be ported to different contexts. Thus, portable traceability can be addressed.

1.5 Envisioned of Contributions

As a consequence of the objectives defined in Section 1.3, the envisioned of contributions of

the present work are detailed as follows:

• A traceability representation language (TRL). TRL is a declarative language which

defines trace links as a relationship between requirements and artifacts. Through lan-

guage’s constructions, one can specify traced requirements and artifacts through a sin-

gle abstraction. Moreover, TRL provides the construction of traceability queries, that

support searching and retrieving requirement related artifacts;

• A requirements traceability process. TRL is exploited by a requirement traceability

process, centered on the traceability model. The proposed process encompasses the

three phases of the traceability model. In the definition phase, the process considers

the language specification as an input and the set of artifacts to be traced is defined

according to stakeholders’ needs. Then, in the production phase, artifacts are analyzed

1.5 Envisioned of Contributions 6

and tagged. Hence, trace links are produced (according to language’s constructions)

and grouped for later query and also maintenance. Finally, in the extraction phase,

requirements are queried (through language’s queries) and requirement related artifacts

are retrieved; Moreover, in order to provide interfaces to the traceability activities

and establish means of communication through the different activities/phases of the

proposed process, requirement traceability contracts are defined;

• A requirements traceability tool, namely SORTT, which supports the proposed ap-

proach and automates the production and extraction of trace links by means of different

traceability services. SORTT relies on the defined traceability contracts and encom-

pass distinct phases of the proposed process;

• Evaluation of the proposed approach. In order to evaluate the proposed approach,

we considered benchmarks from the Center of Excellence for Software Traceability

(CoEST)1 as well as an industrial project being developed at the Software Practices

Laboratory for the Federal Police of Brazil. Considering such projects, the evaluation

was twofold: (i) the proposed language was evaluated considering its readability and

writability, i.e. how comprehensible it is; and (ii) the proposed process was evaluated

regarding its performance and effectiveness, i.e. how well it supports requirements

traceability tasks. As a result, we observed that the language’s constructions were

evaluated as easily read/written and also that its queries support requirements trace-

ability tasks. Therefore, the proposed language is a feasible approach to provide an

abstraction to requirements traceability. Moreover, we observed that, in comparison

with an ad hoc process, the proposed process improves the performance and efficiency

of requirements traceability, while maintaining the same accuracy of other approaches.

Therefore, the proposed approach is feasible to address abstractions to requirements

traceability as well as foster the discussion of major aspects of the requirements trace-

ability process, thus portable and scalable traceability can be addressed.

1http://www.coest.org/

http://www.coest.org/

1.6 Dissertation Outline 7

1.6 Dissertation Outline

The remainder of the dissertation is organized as follows:

• Chapter 2: Background provides the theoretical background related to the main con-

cepts discussed in this work. Thus, concepts related to requirements, artifacts, and

requirements traceability are presented;

• Chapter 3: Traceability Representation Language presents our approach to repre-

sent traceable information through a Traceability Representation Language (TRL);

• Chapter 4: Traceability Process presents and details a requirements traceability pro-

cess that underlies on the whole traceability model and the proposed traceability rep-

resentation language and contracts;

• Chapter 5: Tool Support presents the design and implementation of the tool support

for our proposed approach (language and process);

• Chapter 6: Evaluation details how the proposed traceability representation language

and the proposed traceability process were evaluated;

• Chapter 7: Related Work discusses the fundamental works which are related to ours,

either as a basis for our work or for its comparison;

• Chapter 8: Conclusions presents our final remarks, limitations, and prospects for

future work.

Chapter 2

Background

In this chapter, we provide the theoretical background related to the main concepts discussed

in this dissertation. To this extent, we firstly introduce concepts related to requirements and

artifacts. Thus, the adopted definition of requirements traceability is presented and then,

major concepts related to it are also discussed.

2.1 Requirement

A requirement is a documented description of what a system should do – the services that it

provides and the constraints on its operations. A requirement reflects the needs of customers

or stakeholders for a system and contains a series of information necessary to its correct

conception [52]. Regarding the aforementioned definition, it encompasses both functional

and non-functional requirements.

Functional requirements are statements of services that the system should provide, how

the system should react to particular inputs, and how it should behave in particular situations.

On the other hand, non-functional requirements are constraints on the services or functions

offered by the system, which are often applied to the system as a whole, rather than individual

system features or services [52]. As an example, Table 2.1 presents both functional and non-

functional requirements for a hospital management system called EasyClinic1 [15]. Both

booking visits and changing reservations are examples of functional requirements. On the

1Minor modifications were made to the system in order to fully present all the concepts discussed through

this dissertation.

8

2.1 Requirement 9

Table 2.1: EasyClinic Requirements

Requirement Description

REQ014 The system shall book visits

REQ015 Operators may request changes on reservations

REQ091 System’s database management shall be implemented using Oracle 11g

other hand, strictly specifying Oracle 11g as the system’s database management is a non-

functional requirement.

Regarding the requirements briefly presented in Table 2.1, it is reasonable that they

should be further specified, thus one can establish the basis for agreement between cus-

tomers and contractors for the software to be developed. Considering that there are many

different software development methodologies [8, 30], there are also different ways to spec-

ify requirements. For instance, requirements can be detailed through user stories, using

natural language sentences or a structured natural language, through mathematical or graph-

ical notations, and so forth [44, 52]. Nevertheless, best practices, extracted from IEEE Std

830-1998 [26], state that a software requirements specification (SRS) should be:

1. Correct – if, and only if, every requirement stated therein is one that the software shall

meet. Notice that, there is no tool or procedure that ensures correctness. Usually, the

customer or stakeholders determine if the specification correctly reflect their needs. In

such context, traceability makes this procedure easier and less prone to errors;

2. Unambiguous – if, and only if, every requirement stated therein has only one inter-

pretation. As a minimum, this requires that each characteristic of the final product is

described using a single unique term;

3. Complete – if all significant requirements, whether functional or non-functional, are

included in the specification;

4. Consistent – if there is no conflict between any subset of individual requirements

described within the specification;

5. Ranked for importance and/or stability – if each requirement has an identifier to

indicate either the importance or stability of that particular requirement. For instance,

2.2 Artifact 10

some requirements may be essential, especially for life-critical applications, while oth-

ers may be desirable;

6. Verifiable – if, and only if, every requirement stated therein is verifiable. A require-

ment is verifiable if there exists some finite cost-effective process with which a person

or machine can check that the software product meets the requirement;

7. Modifiable – if the specification is structured such that any changes to the require-

ments can be made easily, completely, and consistently while retaining the structure

of the specification. A modifiable specification usually has a coherent and easy-to-use

organization, is not redundant and express each requirement separately;

8. Traceable – if the origin of each requirement is clear and if the specification facilitates

either the referencing of each requirement in future development or the enhancement

of the documentation. In such context, traceability is especially important when the

software product enters the operation and maintenance phase. As code and design

documents are modified, it is essential to be able to ascertain the complete set of re-

quirements that may be affected by those modifications.

In the scope of this work, we are specially interested on aspects related to the verifiability

of the software product and also the traceability of its requirements. Since one of the primary

measures of success of a software system is the degree to which it meets the purpose for

which it was intended [40], traceability can be of fundamental importance in such context

(as Section 2.3.1 details).

2.2 Artifact

Throughout this dissertation, an artifact is any element produced in a software development

project. They are originated from heterogeneous sources, such as system requirements, use

cases, source code files, test cases, and so forth. For instance, Table 2.2 presents an excerpt of

artifacts related to the EasyClinic’s requirement: booking visit. In such context, the require-

ments specification, which details the booking requirement, the source code files (classes)

and also the test cases, which test this functional requirement, are all considered as artifacts.

2.3 Requirements Traceability 11

Table 2.2: EasyClinic Artifacts

Requirement REQ014: The system shall book visits

Classes
Booking

BookingAgenda

Test Cases

TC01: Testing a booking in a visit day

TC02: Testing a booking not in a visit day

TC03: Testing a booking to a patient in an intensive care unit (ICU)

2.3 Requirements Traceability

Requirements traceability refers to the ability to describe and follow the life of a require-

ment, in both a forwards and backwards direction (i.e., from its origins, through its devel-

opment and specification, to its subsequent deployment and use, and through all periods of

on-going refinement and iteration in any of these phases.) [21].

In the software development life-cycle, a lot of information is usually used and produced.

They are originated from heterogeneous sources, such as system requirements, source code,

test cases, and so forth. Nevertheless, one of the primary measures of success of a software

system is the degree to which it meets the purpose for which it was intended [40]. Therefore,

verifying if a system meets its requirements is one essential task in the software development

process. Such task is supported by requirements traceability. It provide means to trace

requirements from its origins, through its development and specification, to its subsequent

deployment and use, and through all periods of ongoing refinement. Therefore, requirements

traceability is an essential task to the software development process.

2.3.1 Importance of Traceability

Typically, as the system evolves, its requirements change over time. New functional require-

ments are added, updated or deleted and also new constraints, or non-functional require-

ments, are specified. For instance, the traffic of a web social system could increase due to

new incoming users. In such context, one may require that the login and search operations

may take no longer than 3 seconds. Moreover, as the quantity of users increases, one may

require new search filters, thus users may find others more efficiently. In such context, the

2.3 Requirements Traceability 12

cost of changing a requirement increases dramatically over the life-cycle of a system [9,32].

Since maintenance usually encompasses changes in the requirements, it is critical for

stakeholders to understand requirements before making any changes to the system, and also

using the knowledge about requirements on making critical decisions about the system, de-

sign decisions and it maintenance [63]. In this context, requirements traceability may sup-

port:

• Change impact analysis: determining which parts of the system would be impacted

due to changes in one or more requirements [2, 55];

• Program Comprehension: understanding the relations between requirements as well as

the capture, tracking and evolution of requirements, in order to comprehend the overall

system evolution [42, 55];

• Consistency checking: determining if changes to the system have created unnoticed

and unintended contradictions to the traced requirements [17, 31, 45, 55];

• System testing: understanding requirements to identify the correct parts of the system

to generate or reference appropriate test data, and to check if tests properly cover all

requirements as well as checking standards compliance [2, 21, 55].

2.3.2 Trace Link

According to Gotel and Finkelstein a trace, or a trace link, is a relationship between a

requirement and an artifact [21]. It is noteworthy that based on this definition, an artifact

can be related to one or more requirements according to different types of relationships. In

such context, an element represents the different parts, entities, and objects present in this

relationship. Thus, elements are requirements as well as artifacts, such as use cases, source

code files, test cases, etc [55].

Regarding trace links, it is important to emphasize that stakeholders with different per-

spectives, goals and interests may be interested in different types of relations. Therefore,

existing approaches and tools for traceability support the representation of different types

of relations between requirements and artifacts. In such context, Spanoudakis and Zisman

2.3 Requirements Traceability 13

organize the various types of traceability relationships into eight main groups [55], which

are further detailed as follows:

• Dependency relations, which state that an element e1 depends on an element e2,

if the existence of e1 relies on the existence of e2, or if changes in e2 have to be

reflected in e1;

• Refinement relations are used to identify complex elements and how it is detailed, or

further refined, by other elements;

• Evolution relations type signify the evolution of elements of software artifacts. In this

case, an element e1 evolves to an element e2, if e1 has been replaced by e2 during

the development, maintenance, or evolution of the system;

• Satisfiability relations type, in which an element e1 satisfies an element e2, if e1

meets the expectation, needs, and desires of e2; or if e1 complies with a condition

represented by e2. Such relation type is usually used to establish constraints and pre-

conditions between requirements;

• Overlap relations state that an element e1 overlaps with an element e2, if e1 and e2

refer to common features of a system or its domain;

• Rationalisation relations, which are used to represent and maintain the rationale be-

hind the creation and evolution of elements, and decisions about the system at different

levels of detail;

• Contribution relations are used to represent associations between requirement arti-

facts and stakeholders that have contributed to the generation of the requirements;

• Conflict relation signifies conflicts between two elements e1 and e2. Conflict rela-

tions are usually used to signify conflicts between requirements, design decisions or

components.

2.3.3 Traceability Modes

Based on the trace link definition presented in Section 2.3.2, the concept of requirements

tracing is quite simple: to follow relationships or links [43]. Notwithstanding, there are sev-

2.3 Requirements Traceability 14

Figure 2.1: Software Requirements Traceability Overview

eral modes of traceability, which can assist different needs, such as the necessity to identify

the test cases related to a given requirement or the necessity to identify conflicting require-

ments and their stakeholders. Therefore, we further detail traceability modes.

Figure 2.1, extracted from [27], summarizes the several ways in which requirements trac-

ing can be performed. As regards the direction of tracing, a requirement may be traced in a

forward or backward direction; as regards requirements evolution, a requirement may be

traced to aspects occurring pre or post its inclusion in the requirements specification; and

as regards the type of the objects involved, we may have inter or extra-requirements trace-

ability. Forward traceability is the ability to trace a requirement to its subsequent generated

artifacts. On the other hand, backward traceability is the ability to trace an artifact to its

origin requirement. Furthermore, inter-requirements traceability refers to the relationships

between requirements, whereas extra-requirements traceability refers to the relationships be-

tween requirements and other artifacts.

In the present work, whenever not specified, when we refer to requirements traceability

(or tracing), its scope is limited to forward and backward traceability, usually in the context

of extra-requirements traceability, i.e. we are interested on tracing requirements to their

related artifacts or artifacts to their origin requirements.

2.3 Requirements Traceability 15

2.3.4 Traceability Model

In order to achieve traceability, a traceable environment must be established. The traceabil-

ity model is a central component of such environment, around which the tracing procedures,

methods, and tools are organized [43], therefore requirements traceability can be accom-

plished. The traceability model encompasses three main phases, summarized in Figure 2.2.

The definition elucidates what type of artifacts should be traced and how traces are repre-

sented; the production produces traces according to defined strategies and techniques; and

finally, the extraction provides different and flexible ways to retrieve the produced traces.

Define trace links and
traceable artifacts

Techniques, tools, and
algorithms to produce

traces links

Query traces in order to
extract requirement

related artifacts

Definition Production Extraction

Figure 2.2: Traceability Model Overview

The traceability model should define its trace units, i.e. how the traceable objects are

represented in the model [43]. To this extend, traces and which information they represent

should be clearly defined. Notice that, traces are a core element in the whole traceability

process. Once a trace link representation is defined, it will be created and manipulated

through the traceability process in order to trace requirements and their diverse relationships.

The production encompasses the perception, registration and maintenance of trace

links. Traces are produced according to the defined trace link representation. The gen-

eration of trace links can be manual, semi-automatic or automatic [55], and this pro-

cess of traces’ production is closely related to available techniques present in the litera-

ture [1, 4–6, 13, 14, 25]. For instance, traces can be manually produced by marking artifacts

with identifiers to their related requirements or traces can be automatically produced using

information retrieval techniques [1, 25], calculating term frequencies between requirement

specifications and artifacts.

According to Spanoudakis and Zisman, the manual generation of trace links is normally

supported by visualization and display tool components, in which the artifacts to be traced

2.3 Requirements Traceability 16

are displayed and the users can identify and mark the elements which are related [55]. Ex-

amples of this approach occur in mostly industrial requirement management tools, such as

IBM DOORS2 or Jazz3. Despite the fact that manual approaches help on identifying the

relationships between the traced artifacts, the effort to establish the relationships is still high,

specially when dealing with large and complex systems [55]. In such scenario, the correct-

ness of the traceability relations relies on (i) the understanding of the the system (and its

artifacts) to be traced; and (ii) the user who identify them.

Semi-automatic approaches try to overcome the burden of manually identifying trace

links. In this scenario, trace links are generated in a semi-automatic way. Users and auto-

mated processes interact in order to produce the trace links. For instance, users may register

traced artifacts in an event server, thus whenever an artifact is updated all related artifacts are

notified. Such approach is called event-based traceability [13,14]. As a second example, one

may conceive a rule-based engine to identify the relationships between artifacts, thus their

relationships are automatically extracted [54, 56]. The aforementioned approaches provide

improvements when compared with a manual approach, however the initial effort of estab-

lishing rules or registering artifacts in the event server may still cause the production of trace

links to be error prone and time consuming [55].

In order to minimize the time and effort to produce trace links, one may produce them

automatically. In this approach, automated processes delve into the traced artifacts and infer

their relationships based on some comparison criteria. For instance, Antoniol et al. pro-

pose the usage of information retrieval (IR) techniques in order to automatically identify

the relationships between requirements and source code files [1, 25]. Considering automatic

approaches, they in fact minimize the effort to extract trace links. Even though, they intro-

duce a new challenge, which is related to the trustworthiness of the automatic approaches.

Therefore, one may inquire if the automatically produced trace links are correct.

Regarding the production of trace links, it is important to emphasize that none of the de-

scribed approaches overcomes the other. Factors influencing the time and effort to establish

trace links as well as organizational environments, or standards, may dictate the usage of a

specific approach. Therefore, even with significant advancements in the field, requirements

2http://www-03.ibm.com/software/products/en/ratidoor
3https://jazz.net/

http://www-03.ibm.com/software/products/en/ratidoor
https://jazz.net/

2.3 Requirements Traceability 17

traceability remains a challenge [21, 22, 27].

Finally, the traceability model should define how traces are extracted. The extraction of

trace links should consider the necessity which drove the tracing and thus, provide different

and flexible ways to retrieve the traceable information [43]. To this extent, traces can be

extracted selectively, identifying artifacts which matches certain selected patterns of objects

and relations, or interactively, delving in a step-wise manner into traces and their relations

and inquiring the ones that are most likely related to the task at hand.

Chapter 3

Traceability Representation Language

In this chapter, we present an approach to represent traceable information through a Trace-

ability Representation Language (TRL) [36, 39]. TRL is a declarative language. Require-

ments, types of relationships, artifacts and their types are declared through language’s con-

structions. In turn, their relationships are retrieved through TRL’s specified queries.

In order to detail the proposed TRL and since trace links are a central artifact in the

whole traceability process, we firstly discuss TRL’s trace link representation (Section 3.1).

Then, we present language’s constructions (Section 3.2) and queries (Section 3.3). Finally,

a complete example is presented (Section 3.4) and then, we present the chapter debriefing

(Section 3.5).

3.1 Trace Link Representation

To define a trace link, we consider the most adopted traceability definition in the literature,

proposed by Gotel and Finkelstein [21], which states that a trace relates requirements and

artifacts. Thus, TRL defines trace links as relationships between artifacts, of some type,

and requirements. As each artifact can be related to a requirement in different ways, such

links also have a type of relationship.

Considering the aforementioned definition, Figure 3.1 presents TRL’s abstract syntax 1.

1 The usage of a UML meta-model to represent the grammar’s abstract syntax is a recurring standard

in the literature and it favors a holistic view of language’s elements and their relationships. Therefore, its

adoption [49].

18

3.1 Trace Link Representation 19

Notice that a trace link associates a requirement and an artifact. Also, it has a specific relation

type, which is derived from some of the relation types discussed through the literature [55],

and presented in the Chapter 2. Notice that, such enumeration is not complete, and it can be

further increased according to the different types of relationships that are likely to emerge in

the context of requirements traceability.

Requirement
description : String

Artifact Type
name : String name : String

TraceLink
name : String

1

1

<<enumeration>>
RelationKind

 Overlap
 Dependency
 Evolution
 Refinement
 Conflict

Relation
relationType :
RelationKind

1

Figure 3.1: Trace Link Representation Abstract Syntax

As a concrete syntax example, let us consider the EasyClinic system, presented in Chap-

ter 2. Listing 3.1 presents a trace link between one system requirement and one source code

file. The trace link t1 relates the booking requirement (REQ014) to the Booking class,

with an Overlap relation type, i.e. the class implements features described by the require-

ment [55]. On the other hand, the trace link t2 relates the booking requirement (REQ014)

to the TC01 test case, with an Dependency relation type, i.e. the test case shall be re-

vised whenever there are changes in the requirement [55]. Finnally, the trace link t3 state

that there is relation of conflic between requirements REQ015 and REQ014, i.e. if both

requirements are taken into account, the system’s state may become inconsistent [55].

Listing 3.1: TRL - Trace Link Representation
1 t r a c e l i n k t 1 = {REQ014 , Over lap , C las s , Booking } ;

2 t r a c e l i n k t 2 = {REQ014 , Dependency , Tes tCase , TC01 } ;

3 t r a c e l i n k t 3 = {REQ015 , C o n f l i c t , Requi rement , REQ014 } ;

3.2 Language’s Constructions 20

3.2 Language’s Constructions

TRL’s constructions compromise the major elements present in a trace link, i.e. require-

ments, artifacts, artifact types and also types of relationships. Such elements are summarized

in Figure 3.1 and detailed in this section.

Requirements, either functional or non-functional, are declared using the

requirement keyword. A requirement has a name, or an identifier, which facili-

tates its identification and relates it to its requirement specification. Such construction can

have an optional description field, further detailing the declared requirement. For instance,

Listing 3.2 presents the booking requirement according to TRL’s constructions (line 1).

First, the requirement is declared according to its ID (REQ014), then its description field

further details that this ID is in fact the booking visit requirement.

Artifacts are declared through the artifact keyword. They are constructed with two

parameters: (i) the first one, is the type of the artifact, which needs to be previously declared

through the type construction, and (ii) the second one is the name or the identifier of the

artifact itself. As an example, Listing 3.2 presents two artifacts and their types (lines 2-5).

First, (i) a Class type is declared representing all traced artifacts related to source code files

(line 2); and (ii) a TestCase type is also declared representing all traced artifacts related

to test cases (line 3); Then, the artifacts themselves are declared. The Booking class is

declared in line 4 and the test case TC01 is declared in line 5.

Additionally, the possible trace link relationships are declared using the

relationtype keyword (lines 6-7). If types of relationships are explicitly declared,

one can comprehend all project’s existing types of trace links even before querying them.

In such context, Listing 3.2 presents a Dependency relation type (line 6) as well as a

Overlap relation type.

Listing 3.2: TRL - Language’s Constructions
1 requirement REQ014 = {" Book V i s i t " } ;

2 type C l a s s ;

3 type T e s t C a s e ;

4 a r t i f a c t (C las s , Booking) ;

5 a r t i f a c t (Tes tCase , TC01) ;

6 r e l a t i o n t y p e Dependency ;

7 r e l a t i o n t y p e Over l ap ;

3.3 Queries Specification 21

3.3 Queries Specification

In addition to the declaration of requirements, types, relation types, and artifacts, TRL also

supports the specification of queries, that are used in order to retrieve and filter trace links.

The overall query abstract syntax is presented in Figure 3.2. A query has a name, a body

(formed by a query expression with operators and operands) and, optionally a series of pa-

rameters. Considering passed parameters as filters, the body defines how the result set of the

query will be retrieved.

{ordered}

Query
name : String

<<abstract>>
Expression

SimpleExpression CompositeExpression
operator : OperatorKind

<<enumeration>>

OperatorKind
 And
 Or
 Not

<<abstract>>

Element

Parameter
name : String

ty
pe

term

parameters

body

0..*

name : String

1..*

<<abstract>>
Element

result
0..*

Figure 3.2: Query Abstract Syntax

For instance, consider the task of retrieving trace links related to the booking requirement.

In Listing 3.3, the query findRelated receives a requirement parameter r and states

that the set of trace links to be retrieved, or the result of the query, is filtered by this r

parameter.

Listing 3.3: TRL - Simple Query
1 query f i n d R e l a t e d (requirement r) { r e s u l t r ; }

Also, expression bodies support the declaration of composite expressions, which are

formed using logical operators and/or/not. For instance, the query findRelated could

be overloaded in order to (i) retrieve all trace links with a specific artifact type related to a

given requirement (line 1); or (ii) query all trace links with a specific type of relationship,

which are related to a given requirement (line 3).

3.4 Example 22

Listing 3.4: TRL - Composite Queries
1 query f i n d R e l a t e d (requirement r , type t) { r e s u l t r and t ; }

2

3 query f i n d R e l a t e d (requirement r , r e l a t i o n t y p e s) { r e s u l t r and s ; }

As the complexity of one requirement traceability task increases, more elaborated queries

can be constructed. For instance, the query findMultipleRelatedTraces, shown in

Listing 3.4, retrieves trace links related to two given requirements (r1 and r2), which are

filtered by a given artifact type (t). Nevertheless, querying trace links through different

parameters such as requirements, artifacts, artifact types, and types of relationships provide

a feasible mechanism to the extraction phase, present in the traceability model.

Listing 3.5: TRL - Complex Queries
1 query f i n d M u l t i p l e R e l a t e d T r a c e s (requirement r1 , requirement r2 , type t)

2 { r e s u l t r1 and r2 and t ; }

3.4 Example

As a complete example, let us consider the EasyClinic system, presented in Chapter 2 and

also throughout Sections 3.1, 3.2, and 3.3.

Listing 3.6 presents TRL constructions of this project, which could be manually declared,

or extracted by means of a traceability process (Section 4). Based on language’s declarations,

it is possible to identify system’s functional requirements (lines 1-2), such as booking vis-

its (REQ014) and changing reservations (REQ015), or non-functional requirements (line 3)

as the constraint on the system database (REQ091). Considering language’s declarations,

it is also possible to identify traced artifact types (lines 5-6), or even artifacts (lines 8-12).

Therefore, through TRL’s constructions, a requirements engineer can identify all groups of

traced artifacts as well as single artifacts, and their related types, in a unified manner. For

instance, one could identify that classes (line 5) and test cases (line 6) are traceable artifacts,

and that during project’s implementation, they are concretized through the Booking and

BookingAgenda classes as well as several test cases, such as TC01 to TC03. Addition-

ally, considering trace link relation types (lines 14-15), it is possible to reason that project’s

artifacts are related through Dependency and Overlap relationships.

3.5 Chapter Debriefings 23

As a final remark, Listing 3.6 also presents the specification of a traceability query (line

17). Considering the necessity to trace requirements to artifacts of a specific type, the query

findRelated provides means by which trace links can be searched and retrieved. There-

fore, one could exploit the declared query in order to automatically search for trace related

artifacts.

Listing 3.6: TRL - EasyClinic Example
1 requirement REQ014 = {" Book V i s i t " } ;

2 requirement REQ015 = {" Change r e s e r v a t i o n s " } ;

3 requirement REQ091 = {" O r a c l e 11g d a t a b a s e " } ;

4 . . .

5 type C l a s s ;

6 type T e s t C a s e ;

7 . . .

8 a r t i f a c t (C las s , Booking) ;

9 a r t i f a c t (C las s , BookingAgenda) ;

10 a r t i f a c t (Tes tCase , TC01−T e s t i n g a booking i n a v i s i t day) ;

11 a r t i f a c t (Tes tCase , TC02−T e s t i n g a booking n o t i n a v i s i t day) ;

12 a r t i f a c t (Tes tCase , TC03−T e s t i n g a booking t o a p a t i e n t a t ICU) ;

13 . . .

14 r e l a t i o n t y p e Dependency ;

15 r e l a t i o n t y p e Over l ap ;

16

17 query f i n d R e l a t e d (requirement r , type t) { r e s u l t r and t ; }

Regarding the EasyClinic example, presented in Listing 3.6, we emphasize language’s

syntax. The TRL’s syntax, written according to the Backus-Naur’s notation [23] is pre-

sented in Listing 3.7. Roughly, TRL is composed of five major expressions, which define

requirements (lines 4-5), types (line 7), artifacts (lines 9-10), relation types (line 12), and

also queries (lines 14-24).

3.5 Chapter Debriefings

Requirements traceability refers to the ability to describe and follow the life of a require-

ment, in both forwards and backwards direction [21]. In order to achieve traceability, a

traceable environment must be established. Such environment is composed of procedures,

methods, techniques and tools to accomplish the traceability process. Nevertheless, require-

ments traceability usually involves delving into a myriad of trace links and artifacts. Since

3.5 Chapter Debriefings 24

artifacts can have different natures, such as requirements specification, source code files, test

cases, and so forth, one is encumbered of tracing a requirement through different abstrac-

tions. Thus, it can be a burdensome, time consuming and elusive task [3, 21, 27, 46].

In order to provide a unified representation for expressing traceability information, re-

quirements traceability grand challenges [22] discuss the necessity of (i) traceability based

on abstractions, rather than concrete artifact types; and (ii) search, retrieval and filtering

capabilities in order to assist traceability tasks. Therefore, the proposed traceability repre-

sentation language can provide abstractions to artifacts, requirements and trace links as well

as provide declarative queries through which requirements traceability tasks can be accom-

plished. Hence, the proposed language is a feasible approach to provide an abstraction to

requirements traceability.

Listing 3.7: TRL Backus-Naur’s Notation
1 <tlrLanguage> : : = <tlrElement>∗

2 <tlrElement> : : = <requirementExpr> | <typeExpr> | <artifactExpr> | <relationExpr> | <queryExpr>

3

4 <requirementExpr> : : = " r e q u i r e m e n t " IDENTIFIER [<requirementDescription>] " ; "

5 <requirementDescription> : : = "=" " { " STRING " } "

6

7 <typeExpr> : : = " t y p e " IDENTIFIER " ; "

8

9 <artifactExpr> : : = " a r t i f a c t " " (" <artifactDeclaration> ") " " ; "

10 <artifactDeclaration> : : = IDENTIFIER " , " STRING

11

12 <relationExpr> : : = " r e l a t i o n t y p e " IDENTIFIER " ; "

13

14 <queryExpr> : : = " que ry " IDENTIFIER " (" [<queryParameters>] ") " " { " " r e s u l t " <queryExpression> " } "

15

16 <queryParameters> : : = <simpleParameter> [<multipleParameters>∗]

17 <multipleParameters> : : = " , " <simpleParameter>

18 <simpleParameter> : : = <parameterType> IDENTIFIER

19 <parameterType> : : = " r e q u i r e m e n t " | " t y p e " | " r e l a t i o n t y p e " | " a r t i f a c t "

20

21 <queryExpression> : : = <simpleQueryExpression> | <compositeQueryExpression>

22 <simpleQueryExpression> : : = [" ("] ["NOT"] IDENTIFIER [") "]

23 <compositeQueryExpression> : : = [" ("] <queryExpression> <queryOperator> <queryExpression> [") "]

24 <queryOperator> : : = "AND" | "OR"

Chapter 4

Traceability Process

In this chapter, we propose and detail a requirements traceability process [37,38] that under-

lies on the whole traceability model (i.e. definition, production and extraction). A traceability

process should define means by which pluggable activities, techniques, tools, and methods

interoperate with each other in order to achieve requirements traceability [16,43]. Therefore,

such process should be structured based on the traceability model and also it should define

contracts that each process’ phase should complies with [22]. Hence, we thoroughly discuss

process phases, activities, actors, responsibilities, and input/output artifacts.

In order to detail the proposed process, we first introduce its workflow (Section 4.1),

detailing each process’ phases, i.e. definition (Section 4.1.1), production (Section 4.1.2)

and extraction (Section 4.1.3), and subsequently, we detail how process’ phases interoper-

ate according to defined contracts (Section 4.2). Finally, concluding remarks are discussed

(Section 4.3).

4.1 Process Workflow

The proposed process is composed of three phases that are structured on the traceability

model, presented in Chapter 2 (Figure 2.2). The overall process workflow is presented in Fig-

ure 4.1, in which activities are represented as round-cornered rectangles (parenthesis above

the activities’ name represent its actors), input/output objects are represented as rectangles,

decisions are represented as diamond shapes, and finally swimlanes divide the process ac-

cording to the traceability model phases. Mostly analogous to the traceability model, in the

25

4.1 Process Workflow 26

(Requirement Engineers, Software Engineers)

Query trace related artifacts

(Stakeholders, Requirement
Engineers)

Define what artifacts are
traceable

Trace link
representation
instantiation

(Software Engineers)

Translate tagged artifacts to
trace link representation

Artifacts
grouped by
their types

1.. n

(Requirement Engineers, Software Engineers)

Define tagging strategies for
each artifact type

Tagging
strategy

(Software Engineers)

Tag each artifact according
to its tagging strategy

1.. n

(Software Engineers)

Group and index
trace links

Indexed trace links
database

Pr
od

uc
tio

n

1.. n

D
ef
in
iti
on Stakeholders

needs

1.. n
Trace link

representation
specification

Tagged
artifacts

Traceability
Need

1.. n

Ex
tr
ac
tio

n

Result
addresses

stakeholders'
needs?

noyes
A

A

Queried trace
related
artifacts

1.. n

(Requirement Engineers, Software Engineers)

Query trace related artifacts

(Requirement Engineers,
 Software Engineers)

Filter trace related
artifacts

Figure 4.1: Traceability Process

definition phase, the set of traceable artifacts is defined according to stakeholders’ needs.

In the production phase, artifacts are analyzed and tagged. Then, trace links are produced

and grouped for later query and also maintenance. Finally, in the extraction phase, require-

ments are queried and requirement related artifacts are retrieved. If extracted trace links are

suitable, then the process is finished. Otherwise, a new iteration should be considered.

Regarding the proposed process and its phases, it is important to emphasize that its activi-

ties and their cost are amortized throughout the software development life-cycle [52]. Hence,

its cost and effort are minimized through activities that are commonly carried over the con-

ception of a system. As presentend in Figure 4.2, there are five major phases that encompass

such life-cycle. First, requirements are elicited and, once specified, the system is designed

and developed. Thereafter, it is tested in order to assure that it meets its requirements and

then, system’s maintenance and evolution should be taken into account. Considering the

aforementioned phases, the traceability process definition phase is closely related to the re-

4.1 Process Workflow 27

quirements specification phase. As requirements are specified, one should reason how to

trace them. The production phase is related both the design and the software development

phases. Through the system design and development, its artifacts are produced and related

to their requirements. Finally, the extraction phase is related to the test and evolution phases.

Thus, during software testing one can reason which tests are related to a specific requirement

or in the evolution and maintenance phase, understand requirements evolution, conflicts or

dependencies.

Software
development

life-cycle

Requirement
Analysis

DesignEvolution

ImplementationTesting

Figure 4.2: Software Development Life-Cycle

As a running example, throughout the next sections and subsections, we will discuss the

proposed process, presenting how it is applied in the EasyClinic application context. In such

scenario, consider that the system and, more specifically, its requirements and test cases are

being traced due to the necessity of verifying if the system meets the purpose for which it

was intended.

4.1.1 Definition

The definition phase is summarized in Figure 4.3. TRL’s specification (Chapter 3) and stake-

holders needs are considered as inputs to the activity of defining what artifacts are traceable,

which produces the set of artifact types that need to be traced.

In the step 1©, the activity of defining which artifacts should be traced is heavily sup-

ported by stakeholders feedback. Stakeholders responsibility is to elucidate functional and

non-functional requirements, which artifacts will be produced as well as which ones should

4.1 Process Workflow 28

Define what
artifacts are
traceable

D
ef
in
iti
on Stakeholders

needs

1.. n
Trace link

representation
specification

1

Artifacts grouped by
their types

Figure 4.3: Traceability Process - Definition Phase

be traced. On the other hand, requirement engineers mediate the requirements specification

process, clarifying divergent or conflicting requirements and also realizing how traceable

artifacts comply with the adopted TRL.

Considering the TRL presented in Chapter 3, the trace link representation is one major

element through the traceability process. Its data structure, presented in Section 3.1, will de-

scribe how trace links are represented. Thus, requirement engineers should reason about how

traceable artifacts, and their relationships, will be translated to the adopted representation.

For instance, in order to evaluate if the EasyClinic system meets the purpose for which

it was intended, stakeholder’s needs state that requirements should be traced to test cases.

Requirements are specified as plain text documents, as Listing 4.1 presents. On the other

hand, test cases are written and structured using TestLink1, an open source test management

system, as detailed in Figure 4.4.

Listing 4.1: EasyClinic - Requirement Example
1 ID: REQ002

2 Description: R e g i s t e r P a t i e n t

3 Content: I t a l l o w s t h e o p e r a t o r t o meet r e q u e s t f o r a s u b s c r i b i n g s e r v i c e , which w i l l

r e g i s t e r a new p a t i e n t i n t h e sys tem d a t a base . A p a t i e n t t o be r e g i s t e r e d needs t o

p r o v i d e some b a s i c i n f o r m a t i o n such as h i s f i r s t and l a s t name , a d d r e s s , c o n t a c t number

and n a t i o n a l r e g i s t r a t i o n number . Once t h i s i n f o r m a t i o n i s p rov ided , t h e s u b s c r i b i n g

s e r v i c e w i l l v a l i d a t e them and r e g i s t e r t h e p a t i e n t , i f t h e g i v e n i n f o r m a t i o n i s v a l i d .

Otherwise , an e r r o r code and message w i l l be r e t u r n e d be t h e s u b s c r i b i n g s e r v i c e ,

d e t a i l i n g why t h e p a t i e n t was n o t s u c c e s s f u l l y r e g i s t e r e d . . .

Regarding the aforementioned artifact types, the output of the definition phase is the

project’s set of traceable artifacts, grouped by their types. Notice that, some of these artifacts

1http://testlink.org/

http://testlink.org/

4.1 Process Workflow 29

Figure 4.4: TestLink - TC01:Register patient with valid national ID number

are yet to be produced. Nevertheless, during artifacts’ design and conception, activities of

the production phase must be considered.

4.1.2 Production

Once the set of traceable artifacts is defined in the definition phase, it is necessary to plan how

trace links will be produced. The production phase underlies on defining tagging strategies

for each artifact type as well as defining how trace links will be produced, grouped and

indexed for later query. Such phase is summarized in Figure 4.5.

Trace link
representation
instantiation

Translate tagged
artifacts to trace link

representation

Artifacts
grouped by
their types

1.. n

Define tagging
strategy for each

artifact type

Tagging
strategy

Tag each artifact
according to its
tagging strategy

1.. n

Group and index
trace links

Indexed trace
links database

Pr
od

uc
tio

n

1.. n

Tagged
artifacts

A

2 3

4 5

Figure 4.5: Traceability Process - Production Phase

First, in the step 2©, a tagging strategy should be defined for each artifact type. The

4.1 Process Workflow 30

strategy describes how to relate a requirement to a certain type of artifact. A tagging strat-

egy is usually a plain text document, written in natural language, but structured such that

its objectives are clear and there are no ambiguities. Regarding tagging strategies, it is rea-

sonable to define strategies for each type of artifact, since different types of artifacts have

different particularities, however some artifacts can share strategies. Tagging strategies can

be implicit or explicit, and traceable artifacts’ content should conform to their strategies. An

explicit strategy defines a visible identifier that relates a requirement to the traceable artifact,

whereas an implicit strategy establishes an intrinsic relationship between an artifact and a

requirement. For instance, using a common vocabulary across different artifacts could be

considered an implicit strategy, shared by different artifact types. On the other hand, a more

explicit strategy would prescribe keywords to each artifact type. As an example, Listing 4.2

describes the adopted strategy to tag requirements and test cases in the EasyClinic system.

Listing 4.2: EasyClinic - Tagging Strategy Example
1 −− In each r e q u i r e m e n t document , add t h e p r e f i x REQ f o l l o w e d by t h r e e d i g i t s r e p r e s e n t i n g

i t s s e q u e n t i a l i d e n t i f i e r , e . g . t h e second r e q u i r e m e n t " r e g i s t e r p a t i e n t " would be

t a g g e d as "REQ002 − R e g i s t e r P a t i e n t . doc " ;

2 −− In each t e s t case , add a keyword wi th t h e i d e n t i f i e r o f t h e r e q u i r e m e n t which i s

e x e r c i s e d by t h e t e s t c a s e . For i n s t a n c e , bo th t e s t c a s e s " R e g i s t e r p a t i e n t w i th v a l i d

n a t i o n a l ID number " and " R e g i s t e r p a t i e n t w i th i n v a l i d n a t i o n a l ID number " would have

t h e keyword REQ002 , o f t h e r e g i s t e r p a t i e n t r e q u i r e m e n t .

3 −− . . .

Once tagging strategies are defined for each artifact type, in the step 3©, artifacts are

tagged according to their strategies. This is a straightforward process, although organiza-

tional policies and also internal reviews are encouraged in order to verify if artifacts conform

to their strategies. For instance, in order to tag test cases, TestLink provides a keyword func-

tionality, as presented in Figure 4.4. Thus, a keyword with the requirement identifier is added

to each test case, which has a dependency to the referenced requirement.

Succeeding tagged artifacts, in the step 4©, parsers should be provided for each strategy.

They are responsible for translating trace links from tagged artifacts to the proposed repre-

sentation (TRL). Contrasting the TRL, which is the input of the definition phase, the output

of this activity is the instantiation of the trace links, according to the adopted representation.

For instance, once the parser of the test cases specified on TestLink is run, the set of trace

links relating test cases with their respective requirements is produced, such as presented in

4.1 Process Workflow 31

Listing 4.3.

Listing 4.3: Easy Clinic - Produced Trace Links Example
1 t r a c e l i n k t1 = {REQ002 , Dependency , T e s t Case , "TC01 : R e g i s t e r p a t i e n t w i th v a l i d n a t i o n a l ID

number "}

2 t r a c e l i n k t2 = {REQ002 , Dependency , T e s t Case , "TC02 : R e g i s t e r p a t i e n t w i th i n v a l i d n a t i o n a l

ID number "}

3 . . .

4 tn = { . . . }

Finally, in the step 5©, trace links are grouped and indexed according to a grouping and

indexing strategy. Hence, trace links can be queried according to different factors. As part

of this activity it is necessary to define a grouping and indexing strategy. Once a strategy is

defined, trace links are grouped and indexing according to it. Grouping and indexing trace

links facilitate overall trace comprehension and further analysis. For instance, Listing 4.4

presents a tree-like grouping data structure, in which traces are stored as forest of trees and

each requirement is the root of a tree.

Listing 4.4: EasyClinic - Indexed and Grouped Trace Links Example
1 − REQ002

2 −− Dependency

3 −−−− T e s t Case

4 −−−−−− "TC01 : R e g i s t e r p a t i e n t w i th v a l i d n a t i o n a l ID number "

5 −−−−−− "TC02 : R e g i s t e r p a t i e n t w i th i n v a l i d n a t i o n a l ID number "

6 . . .

7 − REQn

8 −− Type of R e l a t i o n s h i p

9 −−−− Type of A r t i f a c t

10 −−−−−− A r t i f a c t s

Regarding grouped and indexed trace links, presented in step 5©, it is important to em-

phasize that the proposed process allows both the update of existing trace links or their

complete re-production, i.e. by re-executing the production phase of the traceability pro-

cess, trace links maintenance might be addressed. Trace links maintenance is accomplished

by means of reasoning which trace links were added, deleted, or updated to the trace links

database [35]. Hence, through this approach only a fraction of the grouped and indexed

trace links is altered. Notwithstanding, in order to assure the trustworthiness and the up to

date of the trace links database, trace links maintenance also implies on additional costs and

burdens to the proposed process [27, 46, 55]. Contrary to the trace links maintenance ap-

4.1 Process Workflow 32

proach, the trace link re-production approach considers that all the trace links are completely

updated throughout process’ execution. By completely re-producing trace links, one can as-

sure that they reflect the current state of the project [62]. Nevertheless, in order to mitigate

costs related to the time and effort of this approach, automatic scripts or tools are required.

Otherwise, the approach is impracticable [27, 46, 55].

Software engineers are the main actors of the production phase. However, requirement

engineers and system architects have major roles while defining tagging strategies. Require-

ment engineers, system architects and software engineers should agree upon how to relate

requirements to traceable artifacts. Thus, software engineers can execute the remaining ac-

tivities of the production phase, either manually or automatically. As a final remark, it is

also necessary to decide if the trace links should be maintained or produced. Such decision is

closely related to organizational policies, project’s deadlines and costs. Therefore, project’s

stakeholders should agree upon which strategy should be considered.

4.1.3 Extraction

The extraction phase underlies on querying, rendering and filtering trace links. Such phase

is summarized in Figure 4.6.

Traceability
Need

Query trace
related artifacts

1.. n Queried trace
related
artifacts

Filter trace
related artifacts

Result
addresses

stakeholders'
needs?

noyes
A

Ex
tr
ac
tio

n 6 7

8

Indexed trace
links database

Figure 4.6: Traceability Process - Extraction Phase

The query activity, detailed in the step 6©, should consider any element present in a trace

link as queryable. Since tracing is an auxiliary activity to achieve some goal [43], providing a

flexible search mechanism is essential. As traces are retrieved, it is necessary to present them.

Therefore, as an output of the querying activity, the queried traces are rendered. Rendering

4.1 Process Workflow 33

the query output provides mechanisms to facilitate the overall comprehension of the trace

links and also their possible relationships. For instance, Listing 4.5 presents the set of ex-

tracted test cases related to the register patient requirement (REQ002), previously presented

in Listing 4.3. It is important to highlight that, in this example, the result is rendered as plain

text, using the trace link representation data structure. Notwithstanding, other data structures

could be used to render the result such as requirement traceability matrices, graphs, and so

forth [43, 55].

Listing 4.5: Easy Clinic - Extracted Trace Links Example
1 t r a c e l i n k t1 = {REQ002 , Dependency , T e s t Case , "TC01 : R e g i s t e r p a t i e n t w i th v a l i d n a t i o n a l ID

number "}

2 t r a c e l i n k t2 = {REQ002 , Dependency , T e s t Case , "TC02 : R e g i s t e r p a t i e n t w i th i n v a l i d n a t i o n a l

ID number "}

In the step 7© of the extraction phase, one can filter the set of extracted trace links ac-

cording to the elements present in the trace link data structure. Considering that a myriad of

artifacts can be related to a requirement, it is reasonable that they can be filtered according

to the task at hand. Therefore, the set of retrieved traces can be successively filtered until the

desired traces are identified. As an example, suppose that one is encumbered of filtering all

exception flows related to the register patient requirement (REQ002). Listing 4.6 presents

the set of filtered trace links which satisfy this scenario.

Listing 4.6: Easy Clinic - Filtered Trace Links Example
1 t r a c e l i n k t2 = {REQ002 , Dependency , T e s t Case , "TC02 : R e g i s t e r p a t i e n t w i th i n v a l i d n a t i o n a l

ID number "}

Finally, in the step 8©, it is necessary to decide if extracted trace links satisfy the task

which drove their extraction. The process is finished once extracted trace links assist the

motivating task. Otherwise, tagged artifacts need refinement and a new iteration is necessary.

It is important to highlight that deciding if extracted trace links are satisfactory or not is a

challenging task [22, 27], thus this decision is up to project’s stakeholders.

Software engineers are also the main actors of the extraction phase. They manipulate

the trace links generated in the production phase in order to retrieve requirement related arti-

facts. Notwithstanding, software engineers should agree with stakeholders and requirement

engineers decision about the satisfiability of extracted trace links.

4.2 Process’ Contracts 34

4.2 Process’ Contracts

In addition to the process workflow, the definition of actors, activities and responsibilities, it

is important to emphasize process contracts and how the different process phases interoper-

ate. The contracts specification was motivated by traceability grand challenges [22], which

describe the necessity of defining contracts that provide support for instantiating traceability

roles and responsibilities as well as establishing how they exchange information. By pro-

viding interfaces to traceability activities, traceability contracts foster portable traceability

and provide means by which different organizations can exchange traceable information.

Considering the traceability model presented in Chapter 2, five major contracts were de-

fined for the proposed requirements traceability process (Figure 4.1), which describe that

it should be: (1) traceable; (2) translatable; (3) indexable; (4) searchable; and (5) render-

able. The proposed contracts guide trace links creation and manipulation and also enable the

portability of the proposed process. They encompass the whole traceability model, defining

major services provided by each phase. The tracing, translating and indexing contracts con-

sider the production phase, they provide interfaces to the activities of parsing and translating

tagged artifacts to the proposed trace link representation as well as grouping and indexing

trace links. On the other hand, the searching and rendering contracts encompass the extrac-

tion phase. They provide interfaces to the activities of querying and filtering trace links as

well as rendering the output of such activities. Notice that, for each contract, there is one or

more services that comply with the proposed contract. Furthermore, each contract has a set

of operations that must also be provided by the implementing service.

The tracing and translating contracts consider the activity of translating tagged artifacts

into the adopted representation. In order to achieve so, the tracing contract, detailed in

Table 4.1, offers services to extract trace links from tagged artifacts. Its major operation,

parse dictates that the implementing service produces trace links related to one or more

types of traced artifacts. Such contract, is closely related to the production of trace links and

relies on existing techniques to extract the relationships between requirements and artifacts,

detailed in Chapter 2. As an example, EasyClinic test cases are written in TestLink. Thus, a

TestLinkTracingService would extract the traces of this artifact type. If other types

of artifacts are to be traced, other services complying with the tracing contract would be

4.2 Process’ Contracts 35

Table 4.1: Tracing Contract

parse
pre: Traceable artifacts are tagged according to the defined strategy

post: All tagged artifacts are parsed and trace links are produced

Table 4.2: Translating Contract

write
pre: Trace links were produced

post: The set of produced trace links is written to the adopted TRL

read
pre: Trace links are represented according to the adopted TRL

post: The set of produced trace links is read from the adopted TRL

specified.

Once artifacts are parsed, the translating contract defines how the set of parsed trace

links should be represented according to the described TRL. Table 4.2 presents the translating

contract. Its main operation, write, define that trace links can be written to the described

representation, guaranteeing that they can be created and manipulated. Analogously, the

read operation defines that traces represented in the adopted representation can be read.

Notice that, the tracing and translating contracts are closely related and the parsing and

read/writing process usually occur sequentially.

Indexing and searching contracts are closely related. Their design should consider how

trace links are stored (either in memory or in disk). The indexing contract, detailed in

Table 4.3, offers services to communicate with the storage service to group and index trace

links. Its four operations detail the addition and removal of trace links from the storage

system. The addition can occur in a batch manner, through the index operation or singularly,

through the add operation. Similarly, the clear and remove operations detail how trace links

are removed from the storage system.

Table 4.3: Indexing Contract

clear
pre: Storage system is available

post: All grouped/indexed trace links are removed from the storage system

index
pre: Storage system is available

post: Trace links are grouped/indexed into storage system

add
pre: Storage system is available; Trace link does not exist in the storage system

post: A new trace links is added to the already grouped/indexed trace links

remove
pre: Storage system is available; Trace link exists in the storage system

post: An existing trace links is removed from the grouped/indexed trace links

update
pre: Storage system is available; Trace link exists in the storage system

post: An existing trace links is updated into the grouped/indexed trace links

4.3 Chapter Debriefings 36

Table 4.4: Searching Contract

query
pre: Storage system is available; Trace links can be queried;

post: Trace links that conform to passed parameters are retrieved from the storage system

filter
pre: Storage system is available; Trace links were queried;

post: The set of previously retrieved trace links is filtered according to passed parameters

Table 4.5: Rendering Contract

render
pre: Existing data structure to represent traceability relationships

post: Trace links are represented according to the selected data structure

Once trace links are stored, the searching contract offers services to communicate with

the storage service in order to retrieve them. It considers that a storage service is available

and the existence of fields that can be used as a query criteria. Hence, once the query

operation is executed, all trace links that conform to query parameters should be retrieved.

Moreover, the filter operation describes that retrieved trace links can be filtered according to

a filter criteria. Thus, the query and filter operations encompasses the extraction phase, of

the traceability model.

Finally, once trace links are retrieved, it is necessary to render them. In such context,

Table 4.5 details the rendering contract, which defines how extracted trace links will be

displayed. Its major operation, render considers the existence of data structures that can be

manipulated in order to render and represent trace links in a meaningful way. For instance,

graphs, trees or traceability matrices could be considered as possible data structures to orga-

nize extracted trace links [43,55]. As a post condition, the contract’s operation states that the

trace links are rendered according to selected data structure.

4.3 Chapter Debriefings

The benefits of requirements traceability have been acknowledged by different researches

both from academy and practice [55, 58] and, as a consequence different maturity levels

dictates its use [12]. Even though, there is not a consensus about the major aspects of the

requirements traceability process. The heterogeneity of organizational processes preclude

that traceability practices can be unified across different organizations and, consequently,

that traceability processes can be ported.

4.3 Chapter Debriefings 37

Identify means to extract common aspects of the requirements traceability process and

promote its portability is one of the grand challenges of requirements traceability [22].

Therefore, we proposed a requirements traceability process which underlies on the trace-

ability model (i.e. definition, production and extraction). Moreover, while designing the

proposed process, we have considered a common trace link representation and established

major contracts that prescribe how the process phases interoperate. Thus, the proposed pro-

cess can foster the discussion of key aspects related to the traceability process as well as its

roles, responsibilities, and contracts.

As a final remark, it is important to emphasize that the proposed process does not en-

compass all possible scenarios in which requirements traceability can be used [45]. As a

consequence, it may not be adequate to some organizational environments or some require-

ment traceability tasks, e.g. requirements rationale [45]. Even though, the proposed process

fosters the discussion of major aspects of requiremenst traceability and how portable trace-

ability can be addressed.

Chapter 5

Tool Support

As a first step towards automation, we developed a prototype tool – Service Oriented

Requirements Traceability Tool (SORTT)1 – which automates part of the activities described

in the proposed requirements traceability process, presented in Chapter 4. Therefore, in this

chapter, we present the tool’s overview (Section 5.1), architecture (Section 5.2) and its exe-

cution flow (Section 5.3) as well as overall considerations about it (Section 5.4).

5.1 Overview

SORTT is a service oriented requirements traceability tool. It automates the activities of

(1) producing trace links, (2) translating then into the proposed traceability representation

language, (3) indexing and (4) searching them as well as (5) rendering retrieved trace links.

To this extend, a main module interacts with a series of services through their provided

operations. Therefore, one can trace requirement related artifacts through SORTT’s func-

tionalities.

Figure 5.1 details SORTT workflow. First, in 1©, the set of traceable artifacts is sent to

the parser module, which will produce the trace links in 2©. The produced trace links are

the input of the translator, which translate them according to the adopted trace link represen-

tation. Once trace links are translated, in 3© the translator output is indexed in the storage

system through the indexer module. Additionally, translated trace links are returned to the

main module, hence parsed requirements, artifacts, types of artifacts, and types of relation-

1Available at http://goo.gl/STU3kf

38

http://goo.gl/STU3kf

5.2 Architecture 39

ships can be visualized and manipulated. Considering the necessity to extract trace links,

one must specify queries through the adopted language. Thus, in 4©, the specified queries

are parsed and sent to the querier, which will execute them, according to declared parame-

ters. Finally, in 5© the result of an executed query is returned to the renderer, which displays

it according to a defined data structure.

translated
trace links

Core

Renderer

Parser

Indexer

Querier

Translator

rendered
trace links

traceable artifacts

produced trace links

parsed queries

translated
trace links

insert

Storage
System

1

query

query result

query result

2

3

3

4

5

Figure 5.1: SORTT - Overview

Notice that SORTT workflow is closely related to the defined traceability process, pre-

sented in Chapter 4. Particularly, it considers the defined traceability contracts as well as the

defined trace link representation language as major artifacts, which traverse through SORTT

modules/services.

5.2 Architecture

In order to automate the activities of producing, translating, indexing, querying, filtering and

rendering trace links, SORTT integrates five major services, which (1) produce trace links;

(2) translate them according to one language’s constructions; (3) index extracted trace links;

(4) search and retrieve trace links, according to language’s queries; and (5) render them,

based on a defined visualization data structure. In such context, tool’s services work almost

independently and are highly customizable. Nevertheless, their underlying communication

is based on the proposed requirements traceability contracts (Chapter 4).

SORTT’s architecture is built upon a service oriented architecture (SOA), which con-

siders the traceability contracts as its cornerstone. Its architecture comprising modules, ser-

vices and the contracts that they rely on are presented in Figure 5.2. Its main module, the

5.3 Usage 40

extractor integrates the renderer, indexer and querier services. In turn, the parser and trans-

lator services produce trace links and communicate with the storage system in order to store

them. Regarding the previously mentioned architecture, SORTT is intended to be highly

configurable. Services can be (de)attached to its core module and different services can be

provided according to organizational needs.

SORTT

Traceable

<<Component>>
Indexer

<<Component>>
Storage System

<<Component>>
Translator

<<Component>>
Querier

<<Service>>
Storage

Indexable

Searchable

Translatable

Renderable

<<Component>>

Extractor

<<Component>>
Parser

<<Component>>
Renderer

Figure 5.2: SORTT - Architecture Overview

In its current implementation, SORTT has services to extract trace links between re-

quirements and test cases as well as services to translate the already extracted trace links

from benchmarks of the Center of Excellence for Software Traceability (CoEST). Its under-

lying storage system is implemented using Apache Solr2 and, consequently, the indexer and

querier services are implemented through its application programming interface (API). Fi-

nally, the renderer service is implemented using the JTree API, thus trace links are displayed

in a set of hierarchical trees of nodes.

5.3 Usage

As an example of SORTT’s workflow, let us consider a requirement traceability task sup-

ported by it. To this extent, let us revisit the traceability process (Figure 5.3) proposed

in Chapter 4 and the EasyClinic example. In such example, a requirements engineer is in

charge of identifying artifacts related to the booking visit requirement.

Considering the CoEST’s EasyClinic application, source code files and test cases are

defined as traceable artifacts. Thus, in the step 1© of the definition phase (Figure 5.3), these
2http://lucene.apache.org/solr/

http://lucene.apache.org/solr/

5.3 Usage 41

Define what
artifacts are

traceable

Trace link
representation
instantiation

Translate tagged
artifacts to trace link

representation

Artifacts
grouped by
their types

1.. n
Define tagging

strategy for each
artifact type

Tagging
strategy

Tag each artifact
according to its
tagging strategy

1.. n

Group and index
trace links

Indexed trace
links database

Pr
od

uc
tio

n

1.. n

D
ef
in
iti
on Stakeholders

needs

1.. n
Trace link

representation
specification

Tagged
artifacts

Traceability
Need

Query trace
related artifacts

1.. n

Ex
tr
ac
tio

n

Queried trace
related
artifacts

Filter trace
related artifacts

Result
addresses

stakeholders'
needs?

noyes
A

A

1

2 3

4 5

6
7

8

Figure 5.3: Traceability Process

artifacts are defined as traceable. In the production phase (Figure 5.3), in the step 2©, a

tagging strategy is defined for each artifact type. Therefore, in the step 3©, test cases and

source code files are tagged according to defined strategies. Notice that, we merely cite steps

1 to 3 for the sake of completeness3. Nevertheless, SORTT’s workflow encompasses the

remaining steps of the proposed process (4 to 8).

In order to translate tagged artifacts (step 4©), in SORTT properties file, the engineer sets

the directories or archives to be traced, as presented in Listing 5.1. These properties will be

the input of the CoESTParser and CoESTTranslator services, as further detailed.

Listing 5.1: EasyClinic - Requirement Example
1 # e a s y C l i n i c

2 c o e s t . r e q u i r e m e n t s = / c o e s t / e a s y C l i n i c _ R e q u i r e m e n t s . xml

3 c o e s t . a r t i f a c t s = / c o e s t / e a s y C l i n i c _ C l a s s e s . xml ; / c o e s t / e a s y C l i n i c _ T e s t C a s e s . xml

4 c o e s t . t r a c e s = / c o e s t / easyCl in ic_Links_UC_CC . xml ; / c o e s t / easyCl in ic_Links_UC_TC . xml

3CoEST’s benchmark does not describe how these steps were carried out and it only presents traceable

requirements, artifacts, and their relationships as XML files

5.3 Usage 42

Once properties are set, the tool is executed. Figure 5.4 presents SORTT initial screen.

It displays tabs for traced artifacts, such as test cases, source code files, and use cases. In

turn, a core tab displays requirements and declared queries. Regarding the initial screen, it

has three main functionalities, which (i) produces the trace links; (ii) index them; and also

(iii) query requirement related artifacts.

Figure 5.4: SORTT - Main Screen

Considering the step 4© of the production phase, through the extract trace links

functionality, SORTT communicates with the CoESTParser and CoESTTranslator

services. Therefore, trace links are produced and requirements and artifacts are translated

to the TRL’s format. As an example, Figure 5.5 presents the tool’s output. Each one os

its tabs are populated according to language’s constructions. For instance, in the Core tab,

requirements are presented as well as language’s queries. On the other hand, the remaining

tabs presents traceable artifacts, such as the excerpt of test cases presented in the Test

Cases tab.

Once trace links are produced, they must be indexed. In order to group and index them, in

5.3 Usage 43

Figure 5.5: SORTT - Core and Test Cases Tabs

the step 5© of the production phase (Figure 5.4), the index trace links functionality

is executed. Listing 5.2 presents an excerpt of the indexer operation output. Considering that

the indexer service underlying storage system is implemented using Apache Solr, a reverse

index strategy [20] group and index elements by their related requirements.

Following process’ execution flow, in the step 6© of the extraction phase (Figure 5.4) one

must query artifacts related to the booking requirement. In order to trace them, first it is

necessary to declare TRL’s queries, as the ones presented in Figure 5.5 core tab. The queries

will search and retrieve produced trace links according to their declared parameters and result

expression. For instance, the requirement_query is suitable to search artifacts related

to the booking requirement.

Listing 5.2: SORTT - Grouped and Indexed Trace Links
1 a r t i f a c t , semantic , a r t i f a c t _ t y p e , vers ion , id , requirement

2 Booking . j ava , Dependency , C las s_code , 1485318975184175104 ,23 , "REQ014 , REQ015"

3 BookingAgenda . j ava , Dependency , C las s_code , 1485318975190466560 , 24 , "REQ014 , REQ015"

4 P a t i e n t . j ava , Dependency , C las s_code , 1485318975066734592 , 5 , "REQ014 , REQ015"

5 V i s i t o r . j ava , Dependency , C las s_code , 1485318975214583808 , 28 , "REQ014 , REQ015"

6 . . .

In order to query requirement related artifacts, the query trace links functionality

is executed. It parsers the specified queries and send them to the querier, as presented in

Figure 5.6. In the query menu, parsed queries are displayed in the up left corner, grouped

by their names. In the bottom left corner, selected query’s expression body is displayed

and its incoming parameters can be edited by changing the tag(s) <value>. Once query’s

5.3 Usage 44

parameters are edited, the query can be run through a request to the querier service using the

run query button.

Figure 5.6: SORTT - Query Screen

As an example, Figure 5.7 presents the output of the requirement_query passing

the booking requirement as a parameter (REQ014). Notice that, the result is structured

according to the renderer service. Thus, trace links are displayed as a set of hierarchical tree

of nodes.

As the result is displayed, the engineer decides to filter the result, visualizing only the

test cases related to the booking requirement. Therefore, in the step 7© of the extraction

phase (Figure 5.4), trace links are filtered through the filter operation. Figure 5.8 present

operation’s output. Similarly to the query operation, the result is structured according to the

renderer service.

Finally, in the step 8© of the extraction phase (Figure 5.4), the engineer must decide if the

extracted trace links attend to the task which drove their extraction. If extracted trace links

are suitable, then the process is finished. Otherwise, a new iteration should be considered.

5.3 Usage 45

Figure 5.7: SORTT - Query Output

Figure 5.8: SORTT - Filtered Output

5.4 Chapter Debriefings 46

5.4 Chapter Debriefings

As observed by Kannenbergnd and Saiedian, the number of traceability links that need to

be captured grows exponentially with the size and complexity of the software system. This

means that manually capturing traceability data for large systems requires an extreme amount

of time and effort [27]. Thus, requirements traceability can be a burdensome, time consum-

ing and elusive task [3, 21, 46].

Considering the time and effort to extract trace links, Gotel and Finkelstein state that

an adequate tool support is essential for overcoming requirement traceability burdens [21].

Notwithstanding, computer-aided software engineering tools (CASE tools) do not address

the particularities of each organizational need. Therefore, organizations must create their

in-house tools [46], which could likely be used in similar contexts if portable and scalable

traceability are considered through the tool’s design [22]. Otherwise, tools are organizational

specific and cannot be ported.

Regarding the aforementioned issues, we designed SORTT, a service oriented require-

ments traceability tool. Considering portable and scalable traceability, SORTT automates

activities of the requirements traceability process through its plugabble services. Their com-

munication rely on established contracts, which dictates how different requirement traceabil-

ity activities would exchange information. Hence, customization is addressed while main-

taining defined interfaces which can be exploited by different organizations.

Chapter 6

Evaluation

In this chapter, we present how the proposed traceability representation language (TRL)

and the proposed traceability process were evaluated. Considering that the evaluation was

twofold: (i) proposed language; and (ii) proposed process, we divide the presented evaluation

in Sections 6.1 and 6.2. Both evaluations were structured considering a goal, question, metric

approach [7]. Therefore, for each evaluation, we present its objective, methodology, results

and discussion.

6.1 Language Evaluation

Regarding the proposed language, we elaborated an empirical experiment to evaluate it. The

experiment was structured considering the goal, question, metric approach [60]. Therefore,

our objective is to analyze the proposed language in order to evaluate it in comparison with

traceability languages1 according to languages’ simplicity in the point of view of system

developers in the context of trace links extraction. Therefore, our experiment aims at

evaluating the understandability and the ease of use of our proposed language in comparison

with existing ones.

In order to understand the conducted experiment, the next subsections further detail its

planning (Section 6.1.1), results (Section 6.1.2), and discussion (Section 6.1.3).

1The compared languages are classified as traceability query languages. Even tough, they provide support

to the declaration of requirements and artifacts and also have an underlying trace link data structure.

47

6.1 Language Evaluation 48

6.1.1 Planning

In order to analyze the proposed requirements traceability language, we detail in the follow-

ing subsections the experiment’s objective, hypotheses, object of study, subjects, designed

questionnaire, variables, metrics, as well as the overall experiment’s design.

Objective

In order to evaluate the proposed TRL, we have considered traceability query languages,

present in the literature. To this extent, we compared TRL with TracQL (Traceability Query

Language) [57] and also TQL (Trace Query Language) [34]. Thus, the objects of study of

the experiment are:

• TRL – the proposed language presented in this dissertation and detailed in Chapter 3;

• TracQL – a graph-based traceability query language built on Scala. TracQL consid-

ers trace links as a graph like data structure, in which artifacts and requirements are

uniformly represented as vertices and their links as edges [57];

• TQL – a traceability query language built on top of XML, which considers that re-

quirements and artifacts are nodes and trace links are modeled as locators to these

nodes [34].

It is important to highlight that the selected traceability query languages, namely TracQL

and TQL, focus on query capabilities in order to search and retrieve trace links. Even though,

they also provide support to the declaration of requirements and artifacts. Moreover, they

also have a data structure to represent their trace links. Additionally, the authors of all trace-

ability query languages used in the designed experiment were contacted through their in-

stitutional emails and the conductor explained his work and intended experiment. In such

scenario, the authors were asked for possible running tools and extra documentation, which

could clarify any gap in the compared languages. Therefore, all languages could be com-

pared without bias.

Regarding selected languages, the experiment compares them according to readability

and writability criteria. Readability is how well one can read and comprehend the con-

structions of a given language. On the other hand, writability is how well one could write

6.1 Language Evaluation 49

programs/code in a given language. Therefore, our experiment aims at evaluating the un-

derstandability and the ease of use of our proposed language in comparison with existing

ones.

Furthermore, despite not being the main objective of the experiment, we also observed

how the proposed language contributes towards portable and scalable traceability [22].

Hypotheses

The experiment’s major null hypothesis is that there is no difference between languages

simplicity or ease of use. Such hypothesis is decomposed into more specific ones, i.e. there

is no difference between the readability and writability of TRL and TracQL (H∅1 and H∅2)

and; there is no difference between the readability and writability of TRL and TQL (H∅3 and

H∅4).

H∅1 : TRL readability = TracQL readability (6.1)

Ha1.1 : TRL readability > TracQL readability (6.2)

Ha1.2 : TRL readability < TracQL readability (6.3)

H∅2 : TRL writability = TracQL writability (6.4)

Ha2.1 : TRL writability > TracQL writability (6.5)

Ha2.2 : TRL writability < TracQL writability (6.6)

H∅3 : TRL readability = TQL readability (6.7)

6.1 Language Evaluation 50

Ha3.1 : TRL readability > TQL readability (6.8)

Ha3.2 : TRL readability < TQL readability (6.9)

H∅4 : TRL writability = TQL writability (6.10)

Ha4.1 : TRL writability > TQL writability (6.11)

Ha4.2 : TRL writability < TQL writability (6.12)

Additionally, the experiment’s hypotheses also consider language’s trace links and

queries comprehension. Hence, specific hypotheses assume that (i) there is no difference

between TRL and TracQL trace links comprehension (H∅5) as well as TRL and TQL ones

(H∅6) and; (ii) there is no difference between TRL and TracQL queries comprehension (H∅7)

as well as TRL and TQL queries (H∅8).

H∅5 : TRL trace link comprehension = TracQL trace link comprehension (6.13)

Ha5.1 : TRL trace link comprehension > TracQL trace link comprehension (6.14)

Ha5.2 : TRL trace link comprehension < TracQL trace link comprehension (6.15)

H∅6 : TRL trace links = TQL trace links (6.16)

Ha6.1 : TRL trace links > TQL trace links (6.17)

6.1 Language Evaluation 51

Ha6.2 : TRL trace links < TQL trace links (6.18)

H∅7 : TRL queries = TracQL queries (6.19)

Ha7.1 : TRL queries > TracQL queries (6.20)

Ha7.2 : TRL queries < TracQL queries (6.21)

H∅8 : TRL queries = TQL queries (6.22)

Ha8.1 : TRL queries > TQL queries (6.23)

Ha8.2 : TRL queries < TQL queries (6.24)

Regarding experiment’s hypotheses, if we reject the null hypothesis for either TracQL

or TQL, we will further investigate which language has better outcome by testing their

alternative hypotheses (Ha1 and Ha8).

Corpus of the Study

As an object of study, the experiment considered four benchmarks extracted from the Center

of Excellence for Software Traceability (CoEST) and a real project under development for

the Federal Police of Brazil2. Therefore, the experiment’s tasks were carried out in these data

sets.

Tables 6.1 and 6.2 present the experiment’s data set. The CoEST’s data set compromises

the recurrent example used in this dissertation, the EasyClinic, and also the SMOS, eTour

and WV_CCHIT projects3. On the other hand, the industrial project corresponds to the e-

Pol project, which is currently being developed by the Software Practice Laboratory under

2Names and major details of this system are omitted due to privacy policies.
3Available at http://www.coest.org/index.php/resources/dat-sets

http://www.coest.org/index.php/resources/dat-sets

6.1 Language Evaluation 52

Table 6.1: Data Set Overview
System Description

EasyClinic Small health care application to manage medical ambulatories

e-Pol Federal Police’s system to support the process and access to information coming from investigations

eTour Tour guide system

WV_CCHIT Health information system

SMOS High school student monitoring system

Table 6.2: Data Set Numbers
System #Requirements #Artifacts #Trace links

easyClinic 30 110 156

e-Pol 21 129 197

eTour 58 116 308

WV_CCHIT 116 1064 587

SMOS 67 100 1044

a development and research agreement between the Federal University of Campina Grande

and the Federal Police of Brazil.

The described data sets have been selected due to the fact that they have trace links be-

tween a variety of artifacts, such as client requirements, intern requirements, source code

files and also test cases. Hence, we have evaluated each language in different contexts.

Additionally, while selecting each project, we have considered the project’s number of re-

quirements, artifacts and trace links as presented in Table 6.2 and Figure 6.1. In such context,

we highlight that due to privacy policies and time limitations, only 30% of the e-Pol project

was used in the experiment.

As a final remark, since the extraction of trace links can be a burdensome and time

consuming task [3, 21, 27, 46] and this activity is not evaluated in this experiment, the tasks

were carried out in three distinct versions of the tool SORTT. Each version was configured

such that it could automatically extract the trace links of each project and translate them into

the evaluated language. Therefore, participants could read and analyze the traceable artifacts

according to each language’s construction and also write the necessary queries in order to

retrieve the subset of artifacts related to each assigned task.

6.1 Language Evaluation 53

Participants

The experiment counted on 14 participants, which were equally selected from an industrial

project being developed for the Federal Police of Brazil (e-Pol) and also from M.Sc/Ph.D stu-

dents of the Software Practices Laboratory4, both held at the Federal University of Campina

Grande.

The selection process was carried out through personal invitations, which were later for-

malized through email. From 22 invitations, 14 participants were available. Thus, the con-

ductor scheduled a time and date which was adequate for each participant’s personal agenda.

Regarding selected participants, they were divided into two groups according to their

origin, i.e. graduated and undergraduated ones. Hence, each evaluated system was assigned

to at least one participant from each group. Moreover, one of the selected participants of each

group was assigned to a pilot execution. Thus, their data was discarded from analysis. As

their data was discarded, two systems (EasyClinic and eTour) demanded more participants

than the other ones in order to balance them through the discarded participants. Nevertheless,

we highlight that all the assignment process was randomly executed.

As a final remark, we highlight that all participants were trained in all traceability lan-

guages. Thus, we could mitigate a learning bias and have a common basis among them.

Experiment’s training considered individual presentations for each participant with the con-

4http://labs-br.org/en/splab/

Figure 6.1: Data Set Overview

http://labs-br.org/en/splab/

6.1 Language Evaluation 54

ductor. Such training detailed each language and their particularities and considering ex-

planations, questions and clarifications, which spent approximately twenty minutes. Once

the training was over, all its material was available for later inquiry. It is important to high-

light that in order to avoid any bias, the conductor assured that the training was blind, i.e.

participants did not known the authors of the presented languages and they were presented

impartially.

Tasks

In order to evaluate each language, we have assigned requirements traceability tasks to the

selected participants. The tasks were designed considering traceability questions that are

likely to arise in the life-cycle of a project, such as the ones discussed by Malletic and Col-

lard [34]. Hence, once a system was assigned to a participant, its tasks were also randomly

assigned to him/her.

Table 6.3 presents all the designed traceability tasks groped by their systems. The de-

signed tasks describe the extraction of trace links related to: (i) a given requirement; (ii) a

given requirement, filtering trace links by some artifact type; and to (iii) a given requirement,

in which the trace links have a specific relation type. Notice that, these tasks have an increas-

ing order of complexity and exercise different elements present in a trace link, such as its

requirement, its artifact and also its type of relationship.

Questionnaire

Considering best practices for conducting controlled experiments with human partici-

pants [28] and also for comparing domain-specific languages [29], the data for further anal-

ysis was gathered through one questionnaire. Therefore, the designed questionnaire is a

central artifact in the whole evaluation process and thus, we further detail its conception.

As the first step towards the design of the questionnaire, we surveyed for already existing

questionnaires which could be applied in our context. Such research was indeed fruitful and

we identified two researches which provided the basis for our questionnaire. The first one, is

a family of experiments in order to compare domain specific languages, presented by Kosar

et al. [29], whereas the second one is a survey applied by Gondim in order to evaluate domain

specific languages used in the steps of compiler’s constructions [19]. Based on these works,

6.1 Language Evaluation 55

Table 6.3: Experiment’s Tasks
System Task Description

EasyClinic

Extract all trace links related to the requirement 18

Extract all trace links from source code artifacts, which are related to the requirement 18

Extract trace links related to the requirement 10 with a dependency relationship

e-Pol

Extract all trace links related to the requirement UC32

Extract all trace links from test case artifacts, which are related to the requirement UC12

Extract trace links related to the requirement UC12 with a dependency relationship

eTour

Extract all trace links related to the requirement UC1

Extract all trace links from source code artifacts, which are related to the requirement UC1

Extract trace links related to the requirement UC1 with a dependency relationship

WV_CCHIT

Extract all trace links related to the requirement 1675

Extract all trace links from requirements artifacts, which are related to the requirement 1677

Extract trace links related to the requirement 1679 with a dependency relationship

SMOS

Extract all trace links related to the requirement SMOS02

Extract all trace links from source code artifacts, which are related to the requirement SMOS56

Extract trace links related to the requirement SMOS56 with a dependency relationship

we further detail the questionnaire’s creation.

The designed questionnaire has mostly two types of questions: (i) individual evaluation

questions; and (ii) comparison questions. For each language, in the individual questions, the

questionnaire inquires the participants about their comprehension of its constructions and

queries. Such questions request that the participant state his comprehension to read or write

one language’s constructions (either based on the assigned tasks or based on language’s code

snippets). Then, comparison questions compare each language based on their constructions.

As an example, Figure 6.2 presents one individual evaluation question, based on assigned

tasks, whereas Figure 6.3 presents one comparison question.

Figure 6.2: Writability Question

Once the questionnaire was elaborated, it was evaluated with a pilot execution, further

detailed in this section. Based on it, we could not identify any ambiguous or dubious ques-

6.1 Language Evaluation 56

Figure 6.3: Comparison Question

tion. Therefore, the questionnaire was documented, clarifying the purpose of the experi-

ment, specifying a term of consent and also detailing definitions and adopted terms. Hence,

the questionnaire was published through the Google survey service and it was sent to the

experiment’s participants, in the moment of the experiment’s execution.

More details of the questionnaire are presented in Appendix A.

Independent and Dependent Variables

Experiment’s independent variables covered the selected system, the order of presentation

of each evaluated language, participants’ experience and also the complexity of the assigned

tasks.

Regarding selected languages, assigned systems and participants, independent variables

were controlled such that each participant executed the set of previously described tasks

in one assigned system for all the three evaluated languages, which were presented in a

randomized order. Moreover, assigned systems were balanced, thus being equally distributed

among participants. Finally, the participants were blocked in two groups according to their

characteristics (system developers or academics).

Experiment’s dependent variables considered readability and writability criteria. They

were gathered from applied questionnaires, which collected the necessary data for later sta-

tistical analysis.

For the languages individual evaluation, a Likert scale measured readability and writabil-

ity criteria. For instance, Figure 6.4 presents a Likert scale question in which one has to

judge the readability/writability of the TRL’s requirement construction. In such context, all

language individual evaluation questions used the same scale, i.e. a range varying from very

easy to very difficult.

6.1 Language Evaluation 57

Figure 6.4: Questionnaire Individual Question

Languages pairwise comparison considered comparison matrices, structured using a sim-

ilar range to the Likert scale questions. Although, in the comparison questions one has to

compare all three languages in a pairwise manner. For instance, Figure 6.5 presents a com-

parison question. In this type of question, one has to compare the left language (referred

as A) with the right language (referred as B). If the left language is considered more read-

able/writable than the right one, then the question’s answer is the leftmost value. Otherwise,

it is the rightmost value. In such context, the answers of the comparison questions are con-

verted into a numerical scale, such that: (i) equally compared languages have a value of 1;

(ii) a slight advantage to one language has a value of 3; and (iii) a significant advantage to

one language has a value of 5. Thus, comparison questions can be further analyzed.

Figure 6.5: Questionnaire Comparison Question

Metrics

Considering experiments dependent variables, by means of our analysis, we have observed

(i) measures of central tendency for Likert scale questions; and (ii) overall comparison ranks,

computed according to the assigned comparison’s numerical values.

Considering the individual questions, the mode, or the most frequent value, was adopted

as a measure of central tendency for the analysis of these questions. The mode is normally

used for categorical data and is adequate for questionnaires’ responses. Therefore, its adop-

tion.

6.1 Language Evaluation 58

Regarding the comparison questions, their answers are measured according to an analyt-

ical hierarchical process (AHP). Introduced by Thomas Saaty [50], the analytic hierarchy

process is an effective approach for measuring which is the best decision (or choice) by re-

ducing complex decisions in a pairwise comparison. The AHP process can be decomposed in

three consecutive steps, such that the approach: (1) computes the vector of criteria weights;

(2) computes the matrix of local option scores; and then (3) computes the global scores and

ranks the options in decreasing order.

As a concrete example, let us consider one single questionnaire comparison answer.

Equation 6.25 presents the first step of the AHP approach while decomposing the languages

comparisons. The vector of criteria weights V =
(
a1, a2, a3

)
summarizes this answer. TRL

has a slight advantage over TracQL (a1) and a significant advantage over TQL (a2). Lastly,

TracQL has also a slight advantage over TQL (a3).

V =
(
3, 5, 3

)
(6.25)

Equation 6.26 presents the second step of the approach. The ratio matrix A is constructed

according to the described vector V, such that its upper diagonal values represent the com-

parison criteria, while the lower diagonal values are its inverse values.

A =

TRL TracQL TQL

TRL 1 3 5

TracQL 1
3

1 3

TQL 1
5

1
3

1

 (6.26)

Finally, Equation 6.27 presents the normalized local scores. Such scores are computed

by normalizing the ratio matrix and summing each one of its rows, i.e. it divides each weight

by the sum of the weights in the same column, and then it averages the entries on each row,

thus obtaining the score vectors S.

S =

TRL TracQL TQL

TRL 1 3 5

TracQL 0.33 1 3

TQL 0.20 0.33 1

Sum 1.53 4.33 9

→

− TRL TracQL TQL

TRL 0.65 0.69 0.55

TracQL 0.21 0.23 0.33

TQL 0.14 0.08 0.12

Sum 1 1 1

=

Avarage

0.63

0.25

0.12

 (6.27)

6.1 Language Evaluation 59

As a conclusion, in the final step of the approach, one can rank that the TRL language

is selected in 63% of the cases, the TracQL one in 25% of the cases and finally, the TQL

language in 12% of the them.

Regarding the comparison of the three evaluated languages, the AHP approach can de-

compose the decision of identifying a better language according to readability and writabil-

ity criteria in a pairwise manner. Furthermore, such approach provides means to statistically

evaluate and rank our data. Therefore, its adoption.

Setup and Procedures

The experiment’s setup considered the design of each traceability task according to the par-

ticularities of each project. The traceable artifacts of each project were divided into directo-

ries and the experiment’s tool support was configured such that the trace links were extracted

from the traced artifacts according to each language’s construction.

Considering that TracQL an TQL languages were evaluated in a proof of concept proto-

type tool, the language’s authors stated that it was not adequate for our planned experiment.

Therefore, we configured our own tool support’s text editor such that the extracted trace

links could be translated to each language’s construction, i.e. three different translator ser-

vices were attached to SORTT according to the evaluated language. This setup was planned

in order to provide a uniform environment, in which participants could explore each language

equally.

Experiment’s procedure followed a defined guide, in which participants were introduced

to the three languages used during the experiment, then the conductor provided a small script

detailing the overall experiment’s structure and after any questions or doubts were clarified

the project and its tasks were assigned to the participant. Finally, participants used each

language in a randomized order and, after being presented to all languages, answered the

questionnaire.

Regarding experiment’s setup and procedure, we highlight that a pilot execution was

carried out with two participants, one from each group (which were later discarded from the

analysis of the results). During the pilot execution participants provided insightful feedback

about the experiment’s training. They asked specific questions about the languages’ syntax

and how some queries could be specified. Therefore, the experiment training (examples and

6.1 Language Evaluation 60

explanations) were further refined in order to better clarify each language’s constructions.

Moreover, the conductor questioned the participants of the pilot execution about the clarity

of the experiment’s questionnaire and they stated that its questions were clear and easy to

understand. Finally, SORTT’s functionalities were exploited without any difficulties and the

participants stated that its language highlight was a remarkable feature. Therefore, the pilot

execution did not identify any critical point in the experiment and assured that the planned

setup was adequate for the experiment’s context.

Design

In order to evaluate the proposed language, the experiment followed a completely random-

ized design. Figure 6.6 presents the general overview of the experiment, which considered

best practices for conducting controlled experiments with human participants [28] and also

for comparing domain-specific languages [29]. First, graduated and undergraduate students

from the Federal University of Campina Grande were selected as experiment’s participants

and then, different traceability benchmarks and an industrial project were adopted as the

corpus of the study. Considering the selected participants and the corpus of the study, we

assigned three traceability tasks for each participant in one randomized selected project. The

tasks were carried out using the SORTT tool, configured with all evaluated languages, i.e.

TRL, TracQL, and TQL. Thereafter, a questionnaire was applied to the participants and, thus,

the necessary data was gathered and results analyzed.

6.1.2 Results

Once the experiment was run and the questionnaires were applied, the necessary data was

collected and then, the results were analyzed.

Regarding the evaluation of the answers of the individual questions, Figures 6.7, 6.8

and 6.9 summarize the questionnaire’s responses. In such context, Figure 6.7 summarizes

the responses of the TRL language proposed in this dissertation. According to it, it is possible

to state the in general participants judged that the language is very easy to read and also very

easy to write. Figure 6.8 presents the results of the TracQL language, in which participants

stated that it is very easy to read and write. Finally, Figure 6.9 presents the results of the TQL

6.1 Language Evaluation 61

Language's comprehension
 Readability
 Writeability

WHERE
Federal University of Campina Grande

CONTEXT
Offline experiment

CORPUS

Benchmark Industrial System

4 1

EXPERIMENT

PARTICIPANTS

Undergraduate Graduate

7 7

Powerpoint presentation
DSL material
DSL code snippets

Research instrument:
questionnaire
Measurement scale:
ordinal (1-5, low-high)

Learning Experimental Tasks Data Collection

DEPENDANT VARIABLES ANALYSIS/STATISTICS

Research instrument: traceability
tasks
Learning material available: yes
Pretest performed: yes

INDEPENDENT VARIABLES

Selected system
Language's presentation
 order
Experience
Task complexity

AHP Matrices
t-test
Kruskal-Wallis

20 min. 60 min. 10 - 30 min.

Figure 6.6: Language Evaluation - Experiment’s Overview

language, in which the most frequent value also states that participants judged the language

as very easy to read and write. In addition to the pie charts with the distribution of responses,

Table 6.4 summarizes the most frequent value regarding the readability and writability of

each language.

Considering the preceding results, a Kruskal-Wallis statistical test [60] tested experi-

ment’s hypotheses H∅1 to H∅4. At a significance level of 5%, test results could not reject the

readability null hypotheses (H∅1 and H∅2). On the other hand, writability null hypotheses

(H∅3 and H∅4) were rejected and there is statistical difference between languages’ writabil-

ity. By analyzing the computed percentages of each language, presented in Figures 6.7, 6.8

and 6.9, one can rank that TracQL is more writable than TRL and also TQL, whereas TRL

is more writable than TQL.

By comparing each evaluated language in a pairwise manner, language’s comprehension

and particularities can be further differentiated. Hence, we also analyzed the answers of the

pairwise comparison questions, through the AHP approach. In these type of questions, par-

ticipants judged the readability and writability criteria while comparing two queries, written

in the three evaluated languages. Moreover, one specific comparison question also requested

6.1 Language Evaluation 62

1. Readability 2. Writability

Figure 6.7: TRL - Questionnaire’s Answers Overview

1. Readability 2. Writability

Figure 6.8: TracQL - Questionnaire’s Answers Overview

6.1 Language Evaluation 63

1. Readability 2. Writability

Figure 6.9: TQL - Questionnaire’s Answers Overview

Table 6.4: Language Individual Question Results
Language Readability Writability

TRL Very easy Very easy

TracQL Very easy Very easy

TQL Very easy Very easy

that participants decided which trace link representation was more comprehensible. There-

fore, we evaluated experiment’s remaining hypotheses, H∅5 to H∅8.

Table 6.5 summarizes all participants’ responses to the comparison of the language’s

trace link representation. According to it, 61% of the responses prioritized the TRL rep-

resentation, 25% the TracQL representation, and 14% the TQL one. Such results are also

supported by t-tests, which confirmed with a significance level of 5% that, for the comparison

of TRL and TracQL and also for the comparison of TRL and TQL, the TRL trace link rep-

resentation was the mostly chosen one. Thus, experiment’s trace links null hypotheses were

rejected (H∅5 and H∅6), and their alternative hypotheses (Ha5.1 and Ha6.1) were confirmed.

Table 6.6 summarizes the comparison of the language’s queries. The TRL queries were

prioritized in 45% of the cases, whereas the the TracQL ones in 35% of them, and in 20% the

TQL queries were prioritized. Considering the small difference between the prioritization of

TRL and TracQL queries, we do not have statistical data to state that one of them is mostly

adopted (not rejecting H∅7). On the other hand, t-tests confirmed with a significance level of

6.1 Language Evaluation 64

Table 6.5: AHP Trace Link Representation Result
P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Rank

TRL 0.69 0.71 0.66 0.30 0.69 0.55 0.66 0.69 0.69 0.69 0.30 0.69 0.61

TracQL 0.21 0.14 0.09 0.61 0.10 0.33 0.09 0.21 0.21 0.21 0.61 0.21 0.25

TQL 0.10 0.14 0.25 0.09 0.21 0.12 0.25 0.10 0.10 0.10 0.09 0.10 0.14

Table 6.6: AHP Query Results
P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Rank

TRL
0.12 0.63 0.61 0.30 0.43 0.61 0.20 0.57 0.61 0.30 0.61 0.14

0.45
0.12 0.66 0.61 0.30 0.43 0.61 0.14 0.57 0.61 0.69 0.61 0.30

TracQL
0.60 0.11 0.09 0.61 0.14 0.30 0.60 0.29 0.30 0.09 0.30 0.57

0.35
0.60 0.25 0.09 0.61 0.14 0.30 0.57 0.29 0.30 0.21 0.30 0.61

TQL
0.28 0.26 0.30 0.09 0.43 0.09 0.20 0.14 0.09 0.61 0.09 0.29

0.21
0.28 0.09 0.30 0.09 0.43 0.09 0.29 0.14 0.09 0.10 0.09 0.09

5% that the TRL queries are prioritized in comparison with the TQL queries (rejecting H∅8

and confirming Ha8.1).

As a final observation, the questionnaire gave the participants the opportunity to discuss

their personal thoughts about either the experiment or the evaluated languages. This was an

optional question, which three participants answered as follows:

• “In the TRL code snippets, I think that the query’s call should be present along with

its declaration”;

• “In general the TracQL language was easier due to the fact that I can mentally visu-

alize its graph structure. Therefore, it was easier to understand its elements and write

its queries”;

• “In my opinion, in the TRL language, I was more comfortable in reading and writing

its constructions and queries”.

More details of the results are presented in Appendix A.

6.1.3 Discussion

Considering experiment’s results, all traceability languages are easily read and written. Nev-

ertheless, while analyzing the experiment’s design, its construction and later its execution,

6.1 Language Evaluation 65

we observed that the languages trace link representation highly influences how artifacts are

declared and how queries are constructed.

As presented in Table 6.5, the TRL trace link representation5 was easily comprehended

by participants, hence it was better ranked among all analyzed languages representations.

Notice that, since each language’s trace link representation influences its query declarations,

we also observed the language’s query ranking. Table 6.6 presents the overall query rank-

ing among the three evaluated languages. Regarding such rank, the TRL representation was

prioritized in 61% of the cases. Therefore, it is possible to state that in general the TRL

language presents better results in comparison with the TQL language. On the other hand,

TRL and TracQL are fairly equal. Considering that TracQL is, in general, more writable,

though TRL presents a more comprehensible trace link representation, both languages are

suitable abstractions to requirements traceability. In such context, it is important to high-

light that there was no statistical evidence to identify better queries between the TRL and

the TracQL languages. However, our overall conclusions are based both on the languages

individual analysis and also their pairwise comparisons.

In addition to the quantitative analysis, we qualitatively discuss the proposed language

and its tool support based on questionnaire’s responses. To this end, we highlight that among

all the compared languages, TRL was the only one to support the extraction of trace links in

an industrial project (e-Pol) through its tool support (SORTT). In such scenario, as stated by

languages’ authors, both TracQL and TQL do not provide a downloadable and executable

tool which could be used in order to extract trace links from this project. Moreover, TRL tool

support is implemented considering a service oriented architecture, hence different traceabil-

ity techniques can be exploited by the tool. For instance, in order to extract trace links from

both the industrial project (e-Pol) and from benchmarks (CoEST), two distinct services were

implemented and attached to SORTT. Likewise, different services for the extraction of trace

links and also for their search, retrieval and filtering could be attached to the tool. Therefore,

the tool can be customized according to different organizations’ needs.

Regarding language’s queries, participants’ feedback stated that, even when TRL’s ex-

5 Notwithstanding, it is important to emphasize current restrictions of the adopted representation. Consid-

ering that artifacts are always traced to requirements, direct links between two non-requirement artifacts are

not currently supported, and future language improvements will consider them.

6.1 Language Evaluation 66

pression body clearly stated how parameters are manipulated, the result keyword seems

ambiguous. As the incoming parameters appears in the result expression, some participants

were confused how the result set would be extracted. In turn, TracQL provided filters in its

query body, which were easily comprehensible for the experiment’s tasks. Though, some

participants were intrigued how to manipulate such filters in more complex scenarios. Con-

sidering such statements, we believe that the differences between complexity and ambiguity

are the likely cause of no statistical evidence to identify a better query between TRL and

TracQL. On the other hand, TQL queries were the least prioritized ones, in which partici-

pants stated that queries parameters were difficult to understand.

Although it is not the goal of our evaluation, we also discuss how the proposed approach

contributes towards portable and scalable traceability [22]. Portable traceability addresses

how requirements traceability techniques can be used across different projects or even or-

ganizations. We contribute towards it by proposing a trace link representation which was

prioritized among all evaluated trace link representations. If such data structure is adopted

as a standard, different traceability tools can communicate with each other through com-

mon data. Furthermore, the provided tool support also enables that one can attach different

services for extracting, indexing, searching and filtering trace links. In such scenario, even

when different services are in use, they are abstracted through TRL constructions. Contrarily,

neither TracQL nor TQL exploited how they contribute towards portable traceability.

Scalable traceability focuses on inhibiting limits to what type of artifacts can be trace-

able. In order to address scalable traceability, we first considered a variety of systems with

different natures and types of traceable artifacts. Considering such systems, all their re-

quirements, artifacts and trace links could be represented by TRL. Furthermore, since the

variety of traced artifacts is likely to increase, new extraction services can be developed and

attached to SORTT without compromising a whole traceability process. Hence, our pro-

posed approach contributes towards scalable traceability. In contrast, TracQL exploits only

graph abstractions, thus scalable traceability is limited by graph traversing approaches. Fi-

nally, TQL illustrated high-level traceability queries without a concrete case study and, as a

consequence, scalable traceability is not directly addressed.

Considering experiment results and presented discussion, it is possible to state that the

TRL language, and its tool support, provides a feasible abstraction to requirements traceabil-

6.2 Process Evaluation 67

ity. It is very easily readable/writable, its trace link representation is comprehensible and its

queries can retrieve different sets of traces, according to the task at hand.

Threats to Validity

As a final remark, it is also important to mention the threats that we identified to the validity

of the experiment as well as how we addressed or mitigated them.

In order to mitigate a construction threat, we contacted languages’ authors and gathered

all the necessary information for the experiment execution. Moreover, we also conducted a

pilot execution of the experiment. Therefore, construction threats could be mitigated.

We minimized participants’ history and maturation internal threats randomizing as-

signed languages, system and tasks. By controlling/randomizing such factors, we could

avoid a learning bias which could favor one specific language.

Finally, due to project’s particularities, our obtained results cannot be externalized to

other contexts. Notwithstanding, five different systems with different contexts/types of trace

links were considered, thus we could mitigate an external threat.

6.2 Process Evaluation

Regarding the proposed process and developed tool support, we elaborated an empirical ex-

periment to evaluate them. The experiment was structured considering the goal, question,

metric approach [60] and its objective is to analyze the proposed requirements traceability

process in order to evaluate it in comparison with an ad hoc process according to effective-

ness and performance metrics in the point of view of system developers in the context of

trace links extraction.

In order to understand the conducted experiment, the next subsections further detail its

planning (Section 6.2.1), results (Section 6.2.2), and discussion (Section 6.2.3).

6.2.1 Planning

In order to analyze the requirements traceability process, we detail experiment’s objective,

object of study, subjects, experimental units, variables, metrics, questions and hypotheses, as

well as the overall experiment’s design.

6.2 Process Evaluation 68

Objective

The experiment’s objective is to analyze the proposed requirements traceability process. To

this extent, we compare two requirement traceability processes. The first one is an ad hoc

process. The second, is the proposed process described in Chapter 4. For such comparison,

a set of requirements and test cases was presented to participants, and then, they identified

the trace links between them.

It is important to highlight that the ad hoc process was selected as a baseline for the ex-

periment because, to the best of our knowledge, requirement traceability processes described

in the literature are superficial and do not explicitly describe process phases and activities,

precluding that they can be faithfully reproduced.

Hypotheses

Regarding described processes, their effectiveness and performance were measured based on

four hypotheses, considering time, precision, recall and efficiency metrics, which are further

detailed in this section.

The experiment’s major null hypotheses are detailed in Equations 6.28, 6.31, 6.34,

and 6.37. The first assumption (H∅1) is that the time spent extracting trace links is equal

among both processes. The second assumption is that the precision (H∅2) of both processes

is equal, whereas the third hypothesis is that the recall (H∅3) of both processes is equal.

Finally, experiment’s last assumption (H∅4) is that the efficiency of both processes is equal.

If we reject any of these hypotheses, we will further investigate which one has a better

outcome by testing their alternative hypotheses (Ha1 to Ha4).

H∅1 : T (ad hoc) = T (proposed process) (6.28)

Ha1.1 : T (ad hoc) > T (proposed process) (6.29)

Ha1.2 : T (ad hoc) < T (proposed process) (6.30)

6.2 Process Evaluation 69

H∅2 : P (ad hoc) = P (proposed process) (6.31)

Ha2.1 : P (ad hoc) > P (proposed process) (6.32)

Ha2.2 : P (ad hoc) < P (proposed process) (6.33)

H∅3 : R(ad hoc) = R(proposed process) (6.34)

Ha3.1 : R(ad hoc) > R(proposed process) (6.35)

Ha3.2 : R(ad hoc) < R(proposed process) (6.36)

H∅4 : E(ad hoc) = E(proposed process) (6.37)

Ha4.1 : E(ad hoc) > E(proposed process) (6.38)

Ha4.2 : E(ad hoc) < E(proposed process) (6.39)

Corpus of the Study

As an object of study, the experiment considered a real project under development for the

Federal Police of Brazil, namely e-Pol, previously presented in Section 6.1.16.
6 It is important to emphasize the observed difference in the corpus of the study between the first experi-

ment (Section 6.1) and the second one (Section 6.2). Both experiments considered the e-Pol project [36, 37].

However, due to later revisions and feedback, the proposed language was evaluated with a larger data set [39].

6.2 Process Evaluation 70

Table 6.7: Data Set Overview
System Description #Requirements #Artifacts #Trace links

e-Pol
Federal Police’s system to support the process and ac-

cess to information coming from investigations
21 129 197

The studied system supports the processing of information coming from police investi-

gations. Its first internal release, considered in this experiment, has more than 70 use cases

and approximately 60 KLOC, divided into more than 30 packages, 600 classes and 400 test

cases.

Regarding the aforementioned system, the experiment counted on a subset of its require-

ments and test cases representing 30% of the overall project’s requirements and test cases.

This selection was necessary in order to execute the experiment in an affordable time without

compromising either participant’s schedule or project’s deadlines. Table 6.7 presents exper-

iment’s data set overview, which randomly selected 21 requirements, with 129 related test

cases, and 197 trace links.

As a manner of comparison, an oracle containing the trace links related to the corpus of

the study was created. In order to construct it, all artifacts related to the extracted subset

were manually analyzed and evaluated by the conductor of the experiment, which produced

its trace links. Thereafter, they were revised and confirmed by the project’s manager.

Participants

The experiment counted on 12 participants, which are related to the e-Pol project. Con-

sidering project’s privacy policies, we could not select participants freely. Thus, our set of

participants was limited to the ones who had a non disclosure agreement with the project.

Considering our set of participants, we applied questionnaires in order to identify partic-

ipants’ knowledge of the evaluated system and requirements engineering practices. There-

fore, we divided participants into novices or experienced ones. Novice participants are new-

comers, which had just begin working in the project and did not had coursed the software

engineering discipline. On the other hand, experienced participants had at least one year of

experience in the project and had coursed the software engineering discipline.

The selection process was straightforward. We asked project’s manager about partici-

pant’s availability and then, they scheduled an affordable time and date to participate in the

6.2 Process Evaluation 71

experiment.

Tasks

In order to evaluate each process, we have assigned requirements traceability tasks to the

selected participants. They require that all existing trace links related to one requirement

should be identified. Based on the assigned process, the tasks were carried out in distinct

ways.

In the ad hoc process, participants manually identified which artifacts were related to a

given requirement. In such context, each participant followed his own approach while iden-

tifying requirement related artifacts. For instance, some participants followed a pragmatic

approach by analyzing each step of each test case, whereas other participants searched for

specific words that could identify a requirement.

On the other hand, the proposed process follows previously discussed process phases,

detailed in Chapter 4. The set of artifacts that were to be traced was manually analyzed, and

the agreed tagging strategy, which was defined by one of the experienced participants, con-

sidered explicit keywords to identify requirement related artifacts. Thus, this set of artifacts

was tagged by the participants according to the defined strategy. Thereafter, the remaining

phases were supported by SORTT, which extracted and indexed trace links from tagged arti-

facts. Later, participants exploited SORTT’s query mechanism and searched for requirement

related artifacts.

Independent and Dependent Variables

Experiment’s independent, variables considered the assigned process and also the assigned

requirement. Furthermore, we considered the participant’s experience as a noisy variable

which could interfere on our data analysis. On the other hand, the dependent variables are

the time spent on executing the whole process and the set of extracted trace links.

Metrics

Considering experiments dependent variables, in order to measure process performance and

effectiveness, by means of our analysis, we have observed the following metrics:

6.2 Process Evaluation 72

• Total time (T) spent per process. For the ad hoc process, measuring the the total

time is straightforward, since there are no distinct phases and the participants followed

their own steps. However, for the proposed process, the total time is measured by the

sum of each process phase (i.e. definition, production, extraction), whether manual or

automated.

Tad hoc = Texecution (6.40)

Tproposed process = Tdefinition + Tproduction + Textraction (6.41)

• Precision (P) is the ratio between the number of correctly extracted trace links and the

total number of extracted trace links (correct or not). A correctly extracted trace link

is one that it exists in the built oracle.

P =
Ncorretly extracted trace links

Nextracted trace links
(6.42)

• Recall (R) is the ration between the number of correctly extracted trace links and the

total number of correctly existing trace links. Existing trace links were computed in

the experiment’s oracle.

R =
Ncorretly extracted trace links

Ncorrectly existing trace links
(6.43)

• Efficiency (E) is the ration between the harmonic mean of precision and recall (F-

measure [48]) and the total time spent to execute the process. The F-measure can be

interpreted as a weighted average of the precision and recall, where its best value is 1

and worst 0.

F-measure = 2
P.R

P +R
(6.44)

E =
F-measure

T
(6.45)

6.2 Process Evaluation 73

Regarding the aforementioned metrics, they are observed considering the median as a

measure of central tendency. The median is the middle score for a set of data. It is less

susceptible to outliers and skewed data. Therefore, its adoption.

Setup and Procedures

In the setup of the experiment, the conductor gathered copies of experiment’s requirements

in a directory and also created a TestLink project with the copies of the subset of test cases

do be traced. Therefore, we had a controlled environment with all necessary artifacts.

Experiment’s procedure followed a guideline. Participants were introduced to major

concepts of requirements engineering and requirements traceability and presented to their

assigned process and tasks. Thereafter, for each process, participants had an unlimited time

to carry out their tasks and at the end of them, they provided their extracted trace links to the

conductor, which measured the time spent during their activities.

Design

The experiment followed a latin square design [60]. Figure 6.10 presents the general

overview of the experiment. Considering participants related to a real industrial project,

we extracted the trace links from 30% of the project’s requirements and test cases and then,

randomly assigned a requirement and a process to a participant, asking him/her to extract

test cases in order to relate the assigned requirement to them. Then, we measured the time

spent executing each process and the number of extracted trace links, thus the defined met-

rics were computed according to observed variables. Hence, we could statistically analyze

the gathered data and test our hypotheses.

6.2.2 Results

Once the experiment was run and the necessary data was collected, experiment’s result were

analyzed.

Overall, the experiment spent approximately 232 minutes analyzing and retrieving re-

quirement related artifacts from 129 test cases. The ad hoc process spent 159 minutes with

a median of 15 minutes per assigned requirement, whereas the proposed process spent 73

6.2 Process Evaluation 74

DEPENDANT VARIABLES

Time
Number of extracted trace
links

WHERE
Federal University of Campina Grande

CONTEXT
Offline experiment

CORPUS

Industrial System

1

EXPERIMENT

PARTICIPANTS

Novice Experienced

6 6

Powerpoint presentation
Google Drive documents

Research instrument:
Task responses
Measurement scale:
Intervalar

Learning Experimental Tasks Data Collection

ANALYSIS/STATISTICS

Research instrument: traceability
tasks
Learning material available: yes
Pretest performed: yes

INDEPENDENT VARIABLES

Assigned process
Assigned requirement
Participants' experience

Mann-Whitney Wilcoxon test

20 min. Unlimited

Figure 6.10: Process Evaluation - Experiment’s Overview

Table 6.8: Experiment’s Results Overview
Metric Ad hoc Proposed Process

Time 15 minutes 7 minutes

Precision 100% 100%

Recall 100% 100%

F-measure 100% 100%

Efficiency 6% 14%

minutes, with a median of 7 minutes per assigned requirement. The median of both pro-

cesses for the precision and recall metrics is 100%. Additionally, the ad hoc process had a

median value of 6% for the efficiency metric, while the proposed process had a median value

of 14%. Such analysis is summarized in Table 6.8 and Figures 6.11 and 6.12.

Once overall characteristics of our sample were identified, we further investigated our

data set in order to perform the hypotheses tests. First, we grouped the results according

to participants’ experience and observed that there was not a statistical difference between

experienced participants and newcomers. Hence, we considered the whole data set of each

process and observed that they were not normally distributed. Therefore, we tested our

previous defined hypotheses considering a Mann-Whitney Wilcoxon’s test and a significance

level of 5%.

6.2 Process Evaluation 75

Figure 6.11: Process Evaluation - Performance Bar Chart Comparison

Figure 6.12: Process Evaluation - Effectiveness Bar Chart Comparison

6.2 Process Evaluation 76

First, experiment’s precision and recall hypotheses (H∅2 and H∅3) were tested and nei-

ther the hypothesis that the precision of both processes is equal (ρ = 0.28) nor the hypothesis

that the recall of both processes is equal (ρ = 0.17) could be rejected.

Then, the time hypothesis (H∅1) was tested and its null hypothesis rejected (ρ = 0.0005).

Also, the alternative hypothesis (Ha1.1) that the time spent on the ad hoc process was greater

than the time spent on the proposed process was rejected (ρ = 0.0002).

Finally, experiment’s efficiency hypothesis (H∅4) was tested. First, the hypothesis that

both processes’ efficiency are equal (ρ = 0.0006) was rejected and then, a second test

rejected the alternative hypothesis (Ha4.1) that the ad hoc process has a greater efficiency

(ρ = 0.0003).

According to the observed results and hypotheses tests, it is possible to state that the

proposed process has a greater efficiency and spends less time executing the requirements

traceability process. On the other hand, we do not have statistical evidence to extract con-

clusions based on the precision and recall metrics.

Experiment’s raw results are detailed in the Appendix B.

6.2.3 Discussion

Analyzing experiment results and hypotheses tests, it is possible to state that the proposed

process has a better performance (H∅1 and H∅4) in comparison with the ad hoc process. In

such scenario, the provided tool support was essential. SORTT decreased the effort to ex-

tract trace links by automating process’ activities, whereas the ad hoc process pragmatically

analyzed all traced artifacts. Additionally, both processes had the same accuracy (H∅2 and

H∅3). Most likely, ad hoc tests had 100% accuracy due to the fact that all the set of traced

artifacts was analyzed. On the other hand, the proposed process had 100% accuracy as a

result of tagging all the set of traced artifacts. Based on such observations, it is possible to

state that the proposed process has a better performance in comparison with the ad hoc pro-

cess. However, such gains are mostly related to the provided tool support and we highlight

that benefits provided by it need to be distinguished from the ones provided by the proposed

process. For instance, while evaluating processes execution, we emphasize roles and respon-

sibilities. In the ad hoc process, there was not a clear division of roles and responsibilities,

thus the effort to extract traces was associated with only one participant. Hence, the ad hoc

6.2 Process Evaluation 77

execution was burdensome. On the other hand, the proposed process had clear roles and

responsibilities. Thus, its execution was distributed between participants (among process

phases), and its effort was minimized.

In addition to the empirical analysis, it is important to highlight that both the adopted TRL

and the process contracts did not impose an additional effort to the proposed process. First,

the proposed contracts were embedded into SORTT architecture. Thus, participants were

not aware of each service’s particularities and how they fulfilled the defined contracts. Also,

TRL trace link representation was a major data structure which transited through process

phases. Nevertheless, the proposed contracts and the adopted TRL facilitated the overall

process workflow. They provided data structures for each process phase and established

means of communication between them. Hence, the proposed process could be automated,

improving its performance and mitigating the effort to trace artifacts.

Threats to Validity

As a final remark, it is important to mention the threats that we identified to validity of the

experiment as well as how we addressed or mitigated them.

We minimized participants’ history and maturation internal threats controlling the set

of requirements per participant and also randomizing assigned requirements and processes.

Our conclusion threats are minimized by the sample size, which counted on 129 test cases

and 12 participants, which is a substantial number considering project’s nature. Nevertheless,

we highlight that experiment’s participants were limited to the ones related to the evaluated

project. Thus, the small number of participants and, consequently, experimental units may

hinder the statistical power of our tests. Moreover, performance results indicate that the con-

text of the experiment could not encompass complex scenarios, which could reflect critical

tasks in software engineering and more complex traceability scenarios should be considered

in future evaluations. Furthermore, project’s particularities need to be considered, thus our

obtained results cannot be externalized to other contexts.

Regarding external threats and experiment’s limitations, we also highlight that our com-

parison did not considered industrial tools, such as IBM DOORS or Jazz. We did not com-

pare industrial tools with SORTT due to different factors such as the time, procedures and

effort to built an environment which could equally compare them. Regarding such factors,

6.3 Chapter Debriefings 78

we emphasize that most industrial tools demand one requirement traceability process cen-

tered on the tool, thus we could not distinguish the underlying traceability process from the

tool itself. As a final note, we also highlight that experiment’s validation did not consider a

comparison with a requirements traceability process consolidated by maturity levels. Even

though, obtained results are fruitful to the discussion of common aspects of the requirements

traceability process.

6.3 Chapter Debriefings

In this chapter, we have presented the empirical evaluation of the proposed traceability lan-

guage as well as the empirical evaluation of the proposed requirements traceability process.

To evaluate the proposed language, we have set up a controlled experiment, in which

participants had to use different traceability query languages in order to retrieve different

trace links. The experiment considered a variety of data sets, either from the literature or

from industrial projects, and observed readability and writability criteria as well as how par-

ticipants comprehended languages’ trace link representation and queries. As a result, we

observed that the TRL proposed trace link representation is prioritized in comparison with

the other languages. Moreover, TRL queries were also prioritized and the language construc-

tions were evaluated as easily read/written. Even though, the TracQL language was ranked

as the most writable language and, despite not having the better trace link representation,

TracQL’s queries are also adequate to search and retrieve trace links. In such context, the

small difference between the prioritization of TRL and TracQL queries did not provide sta-

tistical data to identify a language with a better outcome. Thus, both TracQL and TRL are

feasible languages to provide an abstraction to requirements traceability.

To evaluate the proposed process, we have set up a controlled experiment, in which par-

ticipants had to identify requirement related artifacts either following an ad hoc approach or

following the proposed process. The experiment considered an industrial project and estab-

lished trace links based on its test cases. As a result, we observed that the proposed process

improves the performance and efficiency of the RT process, while maintaining the same ac-

curacy of the ad hoc process. Notwithstanding, the experiment’s setup and the analysis of

its validity threats indicates that most of the performance gains are due to the process’ tool

6.3 Chapter Debriefings 79

support. Therefore, the proposed process and its tool support are a feasible approach to im-

prove requirements traceability. Moreover, the proposed process phases and contracts also

foster the discussion of major aspects of the RT process, thus portable traceability can be

addressed.

Chapter 7

Related Work

Requirements engineering and requirements traceability have been recognized as fundamen-

tal fields in the software engineering research area [40, 55]. In this context, Nuseibeh and

Easterbrook had systematically reviewed the major contributions in the requirements en-

gineering area [40], whereas Spanoudakis and Zisman had thoroughly revised the require-

ments traceability research field [55]. Considering the myriad of works in the requirements

engineering and requirements traceability fields, in this chapter we discuss the fundamental

works which are related to ours, either as a basis for our work or for its comparison.

In order to present the related work, first we list major works that address the challenges

of requirements traceability (Section 7.1). Thus, providing a fundamental background related

to requirements traceability and its challenges. Subsequently, we detail literature works

which are related to requirements traceability languages (Section 7.2) as well as the ones

related to requirements engineering process improvements (Section 7.3). Thus, concluding

remarks are discussed (Section 7.4).

7.1 Traceability Challenges

In the late 90s, Gotel and Finkelstein were pioneers in the analysis of the requirements trace-

ability problem [21]. Based on empirical studies, involving over 100 practitioners as well

as an evaluation of presented tool support, they observed that most computer-aided software

engineering (CASE) tools do not cover requirements traceability, and that the few ones that

cover it suffer from problems of poor integration and inflexibility. Hence, environments

80

7.1 Traceability Challenges 81

which integrate tools for all aspects of development enable requirements traceability through-

out a project’s life-cycle. In such context, a common language separating the representation

of requirements would offer potential gains [21].

Succeeding Gotel and Finkelstein, Ramesh investigated the adoption of traceability prac-

tices in organizational environments [46]. By contrasting low-end and high-end requirements

traceability users in an empirical experiment, he observed that in the absence of automated

tools, traceability will not only be error prone and time consuming, but may be impossible to

maintain [46]. Regarding the necessity of automated tools, he forecasts that process centered

environments are a feasible approach to define the creation and the maintenance of traceable

information [46].

In the beginning of the 21st, Kannenberg and Saiedian revisit the challenges involving re-

quirements traceability [27]. Though much has changed, the size and complexity of new de-

veloped systems significantly influence requirements traceability and the cost of creating and

maintaining traceable information. By observing organizational problems and inadequate

tool support, it is discussed that the lack of well defined process and the view of require-

ments traceability as means of standards compliance hinder its correct utilization. In such

context, commercial off-the-shelf (COST) tools provide only simplistic support for require-

ments traceability. Adopting COST requirements traceability tools require that one project’s

methodology must be centered around the tool workflow and, as previously observed by

Gotel and Finkelstein, most of them are inflexible or lack integration with organizations’

existing methodologies [27].

Eventually, in an attempt to bring light to the requirements traceability problems as well

as classify research contributions and track progress in the field, the Center of Excellence

of Software Traceability (CoEST) outlines eight challenges that needs to be addressed in

order to achieve requirements traceability [22]. The eight challenges state that requirements

traceability must be purposed, cost-effective, configurable, trusted, scalable, portable, valued

and ubiquitous. Regarding such challenges and their research topics, as one of the basis of

the present work, we consider the necessity to (i) design approaches to traceability based

upon traceability abstractions, rather than concrete artifacts types, which can accommodate

all the artifacts that are likely to arise in the life of a project (ii) standardize key aspects

of the traceability process; and (iii) define traceability roles and responsibilities within a

7.2 Traceability Query Languages 82

traceability development contract, providing support for instantiating and discharging these

in different project and organizational settings. Thus, we discuss requirements traceability

in the scope of portable and scalable traceability.

7.2 Traceability Query Languages

Throughout literature, different languages have been used for traceability analysis in spite of

their different aims. As examples, we cite SQL [47], OCL [10], and XML [35]. Additionally,

domain specific languages have been proposed to directly address traceability needs, such as

TracQL [57], TQL [34], or VTML [33]. Considering the vastness of languages used in the

context of requirements traceability, and in order to compare them, we selected TracQL and

TQL due to their completeness. Notice that, to the best of our knowledge, no previous work

has explicitly compared traceability languages and we identified a single work that compared

TracQL with domain specific languages (DSLs). Even though, the compared DSLs could be

used in any domain problem rather than requirements traceability [57].

Regarding TracQL, a graph-based traceability query language, presented in Chapter 6,

our approach mostly differ from theirs on: (i) the usage of an external DSL, explicitly declar-

ing traced artifacts through TRL’s constructions; and (ii) the definition of queries using ex-

pressions, instead of a graph like query structure. In TracQL, complex tasks require that

TracQL queries traverse a graph accessing direct and indirect successors. Thus, writing

complex queries in TracQL can be an elusive task. On the other hand, the TRL establishes

direct links through requirements and artifacts, hence queries can be written independently

of the existence of direct or indirect links. Regarding language extensibility, it is important

to note that TracQL is the only evaluated language which provides it. TracQL provides ex-

tensibility since it is built on Scala, hence new types can be declared extending existing ones.

On the other hand, TRL considers a language grammar and, as a consequence, extensibility

is currently not possible without adding new constructions to the grammar. We also highlight

that in order to measure readability and writability criteria, the evaluation of TracQL con-

sidered compiler tokens [57], whereas we considered human participants and a Likert scale.

Additionally, we also considered an analytic hierarchy process comparison. Therefore, we

believe that our work considers more factors that need to be acknowledged while comparing

7.2 Traceability Query Languages 83

traceability languages.

TQL, a traceability query language built on top of XML, and also introduced in Chap-

ter 6, differs from our approach on: (i) the fact that abstractions are accessed through TQL

functions, but are not explicitly declared, whereas TRL declares them; and (ii) the usage

of source and target parameters in TQL queries. In such context, the separation of source

and target locators can be elusive, since a trace link is a bidirectional relationship. On the

other hand, our queries are based on the traceability definition proposed by Gotel and Finkel-

stein [21]. Therefore, trace links can be retrieved considering both forwards and backwards

traceability. As a final remark, we highlight that in [34], TQL evaluation did not considered

traceability benchmarks or an industrial project. The presented evaluation is limited to illus-

trating how TQL queries address a number of traceability questions. On the other hand, we

infer our conclusions from an experiment, in which we have considered different data sets,

with different types of trace links. Also, in order to better guarantee the soundness of our

conclusions, our evaluation also considered possible threats to its validity.

As a final remark, and for the sake of completeness, we cite Mäder and Cleland-Huang

proposal of a Visual Trace Modeling Language (VTML) [33]. In order to provide a high level

abstraction to requirements traceability, their approach assumes the existence of and underly-

ing meta-model, which is referred as the Traceability Information Model (TIM). Considering

such model, VTML utilizes standard UML class diagrams to model traceability queries as

a set of OCL constraints [11] enforced in the traceability meta-model. Such approach was

evaluated comparing VTML queries with SQL ones. In such context, we were not able

to empirically compare it with our approach due to setup hindrances. As VTML required

a TIM, we were unable to faithfully construct such artifact in the context of the CoEST

benchmarks or the e-Pol project, thus precluding that the language could be compared with

the other ones. Nevertheless, we highlight that our evaluation considered similar criteria to

theirs. More specifically, our language evaluation criteria, i.e. readability and writability,

were based on theirs, since these are important factors measuring the usage of a traceability

language.

Considering the discussion presented in this section, and the compared criteria, Table 7.1

summarizes the compared languages: TRL, TracQL, and TQL. TRL and TQL are external

DSLs with specific grammars, whereas TracQL is an internal DSL built on Scala. Being an

7.3 Requirements Engineering Process Improvements 84

Table 7.1: Related Work - Languages
Language DSL Extensibility Evaluation Readability/Writability Portable Scalable

TRL external no empirical experiment yes partially yes

TracQL internal yes empirical experiment yes no partially

TQL external no illustrative examples yes no no

internal DSL, TracQL is also the only language to provide extensibility, since new types can

be declared extending existing ones. All languages were evaluated considering readability

and writability criteria. TRL and TracQL were evaluated considering empirical experiments,

whereas TQL presented illustrative examples to language’s constructions. TRL partially ad-

dresses portable and scalable traceability. Portable traceability is partially addressed since

a common trace link representation must be adopted, whereas scalable traceability is par-

tially addressed through the design and implementation of new services. On the other hand,

TracQL partially addresses scalable traceability, since new types and functions can extend

the language. Finally, TQL do not consider portable or scalable traceability.

7.3 Requirements Engineering Process Improvements

Requirements traceability was recognized as a key process area [51], even though few works

have studied its particularities in the context of requirements engineering process improve-

ments. To the best of our knowledge, the majority of the works on such field focus on (i)

the aspects of elucidating system requirements [24, 40, 59]; and (ii) how to understand the

dynamics and particularities of such process [20, 53, 61]. Nevertheless, we discuss major

contributions to process improvements considering the requirements traceability research

scope.

Sawyer et al. thoroughly presents and details software process improvement practices

in the scope of requirements engineering [51]. Notwithstanding, they observed that the re-

quirements process is much less homogeneous and well understood than the software devel-

opment process as a whole. Additionally, the necessity to identify common aspects of the

requirements traceability process is a major research field, related to the grand challenges

of requirements traceability [22]. Therefore, these researches are one of the basis of our

work. We consider these issues and propose a requirement traceability process centered on

7.3 Requirements Engineering Process Improvements 85

the traceability model, thoroughly discussing process phases, activities, actors, responsibili-

ties and input/output artifacts. Notwithstanding, we do not provide a definitive solution to the

heterogeneity of traceability processes or to portable traceability. Even though, the investiga-

tion presented on this dissertation can foster future works which address this research field,

e.g. the definition of contracts which govern the requirements traceability process phases.

Considering traceability grand challenges, Gotel et al. proposed a generic traceabil-

ity process [22]. Throughout their work, process key phases and some of its activities are

briefly described. However, they neither detailed such process nor specified how the process

phases/activities would interoperate. In such context, our work differs from theirs on: (i) the

usage of a common trace link representation through process phases; (ii) the delineation of

process phases as well as its major activities; (iii) the definition of process’ actors, respon-

sibilities, and inputs/outputs; and (iv) the definition of contracts, which established how the

process phases/activities would exchange data. As a final remark, we highlight that their

process was discussed without a concrete case study or evaluation, whereas, in order to sup-

port our conclusions, we presented an empirical investigation of our process, in which we

have considered an industrial project as the corpus of the study. Additionally, we presented

SORTT, a service oriented requirements traceability tool, which supports the proposed pro-

cess and automates part of its activities.

Ramesh and Jarke proposed four reference models in order to provide a modeling frame-

work for requirements traceability [45]. Their models specified requirements management

and requirements rationale as well as declared the relationships between requirements and

system components/design. Although, the necessary activities to implement the models were

not detailed and their work focused on how the models were conceived. In such context, our

work is related to their requirements and components/design reference model, however we

mostly differ from theirs on the scrutinization of or our proposed process and its activities.

Notice that, even when our proposed process can be used in different contexts, such approach

cannot address all organizations and traceability needs, which reinforces the conception of

different reference models, as discussed by Ramesh and Jarke. Finally, we highlight that

their approach was automated by means of SLATE, a System Level Automation Tool for

Engineers, whereas our approach is backed by SORTT. SLATE differs form SORTT due to

the fact that (i) it is more focused in high level requirements tracing, such as requirements

7.4 Chapter Debriefings 86

Table 7.2: Related Work - Processes
Language

Defined trace link

representation

Detailed phases

and activities

Roles and

responsibilities

Traceability

contracts

Tool

Support

TRL yes yes yes yes yes

Gotel et al. no partially partially partially no

Ramesh and Jarke no partially yes no yes

management and requirements rationale, and (ii) all traced artifacts and requirements are de-

clared directly in the tool, and need to be maintained through its functionalities. On the other

hand, SORTT (i) focuses on requirements to system artifacts, and (ii) extracts traces directly

from produced artifacts, which are maintained independently of the tool and are abstracted

through TRL’s constructions.

Considering the discussion presented in this section, and the compared criteria, Table 7.2

summarizes the compared processes: TRL based process, Ramesh and Jarke [45], and Gotel

et al. [22]. Regarding the compared criteria, it is important to emphasize that the TRL

based process considers traceability contracts which provide interfaces to its activities. In

such context, Gotel et al. also emphasize the necessity of traceability contracts, but do not

propose or detail them. On the other hand, Ramesh and Jarke do not consider such interfaces.

7.4 Chapter Debriefings

In this chapter, we have presented a structured review of requirements traceability works in

the scope of requirements traceability challenges, languages, and process improvements. In

such context, we have observed problems related to the heterogeneity of traceability pro-

cesses as well as the lack of an integrated tool support, which could accommodate organi-

zations’ specific needs. Therefore, we have considered the necessity to provide abstractions

to requirements traceability, standardize key aspects of the requirements traceability process,

and define requirements traceability process, thus proposing a traceability representation lan-

guage and a traceability process, centered on the traceability model. Moreover, considering

factors such as the cost and time related to manual traceability as well as the lack of ade-

quate tool support, we designed SORTT, a service oriented requirements traceability tool,

which integrates different customizable services related to different phases of the require-

7.4 Chapter Debriefings 87

ments traceability process.

Chapter 8

Conclusions

In this work, we considered the necessity to provide abstractions to requirements traceability

and also the necessity to standardize key aspects of the requirements traceability process con-

sidering the traceability model and also tracing requirements to system artifacts. Therefore,

we presented an approach to represent traceable information through a traceability repre-

sentation language (TRL). Such language is then exploited through a traceability process,

traversing its phases, and being a major artifact in requirements traceability contracts.

The presented approach considers Gotel and Finkelstein requirements traceability defi-

nition and presents a declarative language through which requirements and artifacts are rep-

resented. Moreover, the proposed language also provides means to specify queries, which

search and retrieve the relationships between declared requirements and artifacts. By means

of the proposed language, and also by considering the traceability model, we presented a

traceabily process centered on them. Thus, we detailed process’ phases, activities, actor,

and responsibilities as well as presented requirements traceability contracts, which govern

process’ phases and how they exchange information. Finally, as a tool support, we presented

SORTT, a Service Oriented Requirements Traceability Tool, which automates part of the

activities detailed in the proposed process.

In order to evaluate the proposed approach, we elaborated two empirical studies, con-

sidering benchmarks from the Center of Excellence for Software Traceability and also an

industrial project being developed by the Federal University of Campina Grande, analyzing

both the proposed language and the proposed process.

Regarding the proposed traceability representation language (TRL), we investigated fac-

88

8.1 Contributions 89

tors related to its readability and writability. To this extent, it was compared to traceability

query languages, namely TracQL and TQL. As a result, we observed that TRL is prioritized

in comparison with the other languages. TRL queries were prioritized and the language

constructions were evaluated as easily read/written. Though, TracQL also presents as an ad-

equate language, in which TracQL as evaluated as easily read/written. Therefore, TRL and

TracQL are feasible approaches to provide an abstraction to requirements traceability.

Additionally, the proposed requirements traceability process was compared to an ad hoc

process in the context of the industrial project. To this extent, factors such as the performance

and effectiveness of the compared process were analyzed and, as a result, we observed that

in comparison with the ad hoc process, the proposed process has a better performance and

efficiency due to its provided tool support. On the other hand, both the ad hoc process and

the proposed process had the same accuracy. Even though there were no highly significant

quantitative gains through the usage of the proposed process, qualitative analysis was fruit-

ful. The discussion of a traceability process considering the defined phases present in the

traceability model as well as the design of requirements traceability contracts foster the dis-

cussion of major aspects of the requirements traceability process, thus portable traceability

can be addressed.

8.1 Contributions

In short, the present work’s contributions are summarized as follows:

• Proposition of an approach to abstract traceable information through a traceability

representation language (TRL);

• Evaluation of the proposed language in different requirement traceability projects, with

heterogeneous types of traceable information;

• Proposition of a requirements traceability process centered on the traceability model;

• Definition of requirements traceability contracts which establish means of communi-

cation through requirements traceability process’ phases;

• Design of a service oriented requirements traceability tool, namely SORTT;

8.2 Limitations 90

• Evaluation of the proposed process in an industrial project under development.

8.2 Limitations

As a final remark, it is important to emphasize the limitations of the presented work.

Cosidering the proposed TRL, it is important to highlight that the language does not

provide extensibility, and new constructions demand the extension of the language’s gram-

mar. Moreover, the languages focuses on providing abstractions to requirements and system

artifacts, although it currently supports only one level of granularity, i.e. artifacts or require-

ments cannot be grouped such that the language provides different levels of granularity, from

coarse-grained to fine-grained traceability [40, 43]. As a final note, since the language fo-

cuses on providing abstractions to requirements and system artifacts, its query mechanism is

centered on traceability in forward and backward directions, which may not be adequate to

some tasks supported by requirements traceability.

Regarding the proposed process and, more specifically, the production of trace links, we

highlight that the present work do not propose a new technique to produce them. In fact,

the production of trace links depends on already existing techniques and, as a consequence,

it is suitable to the same faults and problems that they have [3, 16, 21, 27, 46]. Such tech-

niques focus on the automatic production of trace links thus, instead of considering the whole

traceability process, they exclusively encompass activities of the production phase. In such

context, they could be adapted and exploited by the proposed process. For instance, Egyed

and Grünbacher [18] propose the production of trace links based on test scenarios. Con-

sidering a minimal set of trace links extracted from these scenarios, new ones are inferred

based on trace analysis techniques. Hence, their approach could be inserted in the produc-

tion phase of the proposed process, i.e. creating the test scenarios, tagging them with tested

requirements, and also producing and inferring trace links. Moreover, factors related to the

maintainability of trace links are not addressed. Even that our proposed approach extracts

traces links directly from artifacts, if the artifacts are not correctly updated, incorrect trace

links can be extracted [27, 46].

8.3 Future Work 91

8.3 Future Work

Considering presented contributions, a wide variety of research questions and topics remains

to be investigated. Most of these topics are related to the ones discussed throughout the grand

challenges of requirements traceability [22]. Notwithstanding, in this section, we highlight

interesting research fields related to the present work.

First, it is possible to perform a more complete evaluation of traceability languages and

their expressiveness. For such evaluation, one could implant the evaluated languages in

different organizations, observing how they suit organizations’ needs and also how the lan-

guages are used through the life-cycle of a project.

Another interesting research could consider a more complete evaluation of traceability

processes. For instance, one could consider factors such as the scalability of traceability

processes and how different artifact types can be plugged to them. Moreover, one could

observe how traceability processes comply with standards or regulatory measures, defining

metrics and means to compare traceability processes.

Regarding traceability processes, an in depth evaluation of traceability contracts is an

interesting research topic. Considering that traceability contracts provide interfaces between

process activities, access the benefits and the gains that the contracts could provide to trace-

ability processes was superficially addressed in this work. Therefore, further investigating

the traceability contracts is a promising research topic. Moreover, access how trace links

maintenance can be addressed is a second open research topic. The discussion in the present

work briefly considered trace links maintenance, though this is a depth research field, with

challenges and particularities that requires further research.

Finally, an empirical evaluation of industrial tools and their underlying traceability pro-

cesses is indeed a fruitful investigation field. By evaluating traceability tools as well as

practitioners’ thoughts [41], one can identify the actual needs of requirements traceability

and envision a new generation of traceability tools.

8.4 Final Remarks 92

8.4 Final Remarks

Considering the grand challenges of requirements traceability, and more specifically, the

research topics investigated in the present work, our study presents initial steps towards

portable and scalable traceability. Notwithstanding, a wide variety of research questions and

topics remains to be investigated. Hence, the present work is an attempt to enlighten possible

approaches which address part of the requirement traceability problems.

Bibliography

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering traceabil-

ity links between code and documentation. Software Engineering, IEEE Transactions

on, 28(10):970–983, 2002.

[2] P. Arkley and S. Riddle. Overcoming the traceability benefit problem. In Requirements

Engineering, 2005. Proceedings. 13th IEEE International Conference on, pages 385–

389, Aug 2005.

[3] Paul Arkley, Paul Mason, and Steve Riddle. Position Paper: Enabling Traceability.

Proceedings of 1st TEFSE, 2002.

[4] N. Assawamekin, T. Sunetnanta, and C. Pluempitiwiriyawej. Resolving multiperspec-

tive requirements traceability through ontology integration. In Semantic Computing,

2008 IEEE International Conference on, pages 362–369, 2008.

[5] N. Assawamekin, T. Sunetnanta, and C. Pluempitiwiriyawej. Deriving traceability re-

lationships of multiperspective software artifacts from ontology matching. In Software

Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing,

2009. SNPD ’09. 10th ACIS International Conference on, pages 549–554, 2009.

[6] N. Assawamekin, T. Sunetnanta, and C. Pluempitiwiriyawej. Mupret: An ontology-

driven traceability tool for multiperspective requirements artifacts. In Computer and

Information Science, 2009. ICIS 2009. Eighth IEEE/ACIS International Conference

on, pages 943–948, 2009.

[7] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The goal question metric

approach. In Encyclopedia of Software Engineering. Wiley, 1994.

93

BIBLIOGRAPHY 94

[8] H. D. Benington. Production of large computer programs. In Proceedings of the 9th In-

ternational Conference on Software Engineering, ICSE 87, pages 299–310, Los Alami-

tos, CA, USA, 1987. IEEE Computer Society Press.

[9] Keith H. Bennett and Vaclav T. Rajlich. Software maintenance and evolution: A

roadmap. In Proceedings of the Conference on The Future of Software Engineering,

ICSE ’00, pages 73–87, New York, NY, USA, 2000. ACM.

[10] Lionel C. Briand, Yvan Labiche, and Tao Yue. Automated traceability analysis for

{UML} model refinements. Information and Software Technology, 51(2):512 – 527,

2009.

[11] Jordi Cabot and Martin Gogolla. Object constraint language (ocl): A definitive guide.

In Proceedings of the 12th International Conference on Formal Methods for the De-

sign of Computer, Communication, and Software Systems: Formal Methods for Model-

driven Engineering, SFM’12, pages 58–90, Berlin, Heidelberg, 2012. Springer-Verlag.

[12] Mary Beth Chrissis, Mike Konrad, and Sandy Shrum. CMMI Guidlines for Process

Integration and Product Improvement. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2003.

[13] J. Cleland-Huang, C.K. Chang, and M. Christensen. Event-based traceability for man-

aging evolutionary change. Software Engineering, IEEE Transactions on, 29(9):796–

810, 2003.

[14] J. Cleland-Huang, C.K. Chang, G. Sethi, K. Javvaji, Haijian Hu, and Jinchun Xia.

Automating speculative queries through event-based requirements traceability. In Pro-

ceedings of the 10th IEEE RE, pages 289–296, 2002.

[15] A De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhancing an artefact management

system with traceability recovery features. In Proceedings of the 20th IEEE ICSM,

2004.

[16] Ralf Dömges and Klaus Pohl. Adapting traceability environments to project-specific

needs. Commun. ACM, 41(12):54–62, December 1998.

BIBLIOGRAPHY 95

[17] Alexander Egyed and Paul Grunbacher. Supporting software understanding with au-

tomated requirements traceability. International Journal of Software Engineering and

Knowledge Engineering, 15(05):783–810, 2005.

[18] Alexander Egyed and Paul GRünbacher. Supporting software understanding with au-

tomated requirements traceability. International Journal of Software Engineering and

Knowledge Engineering, 15(05):783–810, 2005.

[19] Daniel Gondim. Uma abordagem para construcao das etapas de analise de um com-

pilador. Master’s thesis, Universidade Federal de Campina Grande, Campina Grande,

2014.

[20] Tony Gorschek and Alan M. Davis. Requirements engineering: In search of the depen-

dent variables. Information and Software Technology, 50(1–2):67 – 75, 2008.

[21] O. C Z Gotel and A. C W Finkelstein. An analysis of the requirements traceability

problem. In Proceedings of the 1st IEEE RE, 1994.

[22] Orlena Gotel, Jane Cleland-Huang, JaneHuffman Hayes, Andrea Zisman, Alexander

Egyed, Paul Grunbacher, Alex Dekhtyar, Giuliano Antoniol, and Jonathan Maletic.

The grand challenge of traceability. In Software and Systems Traceability. Springer,

2012.

[23] Dick Grune. Parsing Techniques: A Practical Guide. Springer Publishing Company,

Incorporated, 2nd edition, 2010.

[24] Noriko Hanakawa and Masaki Obana. A metrics for meeting quality on a software

requirement acquisition phase. In Oscar Dieste, Andreas Jedlitschka, and Natalia Ju-

risto, editors, Product-Focused Software Process Improvement, volume 7343 of Lecture

Notes in Computer Science, pages 260–274. Springer Berlin Heidelberg, 2012.

[25] J.H. Hayes, A. Dekhtyar, and J. Osborne. Improving requirements tracing via informa-

tion retrieval. In Proceedings of the 11th IEEE RE, pages 138–147, 2003.

[26] E. Iee. Ieee recommended practice for software requirements specifications. Technical

report, IEEE, 1998.

BIBLIOGRAPHY 96

[27] A. Kannenberg and H. Saiedian. Why software requirements traceability remains a

challenge. The Journal of Defense Software Engineering, 2009.

[28] AndrewJ. Ko, ThomasD. LaToza, and MargaretM. Burnett. A practical guide to con-

trolled experiments of software engineering tools with human participants. Empirical

Software Engineering, 2013.

[29] Tomaz Kosar, Marjan Mernik, and JeffreyC. Carver. Program comprehension of

domain-specific and general-purpose languages: comparison using a family of experi-

ments. Empirical Software Engineering, 2012.

[30] C. Larman and V.R. Basili. Iterative and incremental developments. a brief history.

Computer, 36(6):47–56, June 2003.

[31] James Law and Gregg Rothermel. Incremental dynamic impact analysis for evolving

software systems. In Proceedings of the 14th International Symposium on Software

Reliability Engineering, ISSRE ’03, pages 430–, Washington, DC, USA, 2003. IEEE

Computer Society.

[32] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Characteristics of application

software maintenance. Commun. ACM, 21(6):466–471, June 1978.

[33] Patrick Mader and Jane Cleland-Huang. A visual traceability modeling language. In

Proceedings of the 13th International Conference on Model Driven Engineering Lan-

guages and Systems: Part I, MODELS 10, pages 226–240, Berlin, Heidelberg, 2010.

Springer-Verlag.

[34] J.I Maletic and M.L. Collard. Tql: A query language to support traceability. In 5th

ICSE Workshop on TEFSE, 2009.

[35] Jonathan I. Maletic, Michael L. Collard, and Bonita Simoes. An xml based approach

to support the evolution of model-to-model traceability links. In Proceedings of the

3rd international workshop on Traceability in emerging forms of software engineering,

TEFSE ’05, pages 67–72, New York, NY, USA, 2005. ACM.

BIBLIOGRAPHY 97

[36] Arthur Marques, Franklin Ramalho, and Wilkerson L. Andrade. An approach to repre-

sent trace links considering portable and scalable traceability. Submitted to the Brazil-

ian Symposium on Software Engineering (SBES), April 2014.

[37] Arthur Marques, Franklin Ramalho, and Wilkerson L. Andrade. Towards a require-

ments traceability process centered on the traceability model. Submitted to The 15th

International Conference of Product Focused Software Development and Process Im-

provement (PROFES), June 2014.

[38] Arthur Marques, Franklin Ramalho, and Wilkerson L. Andrade. Towards a require-

ments traceability process centered on the traceability model. Submitted to the ACM

Symposium on Applied Computing (SAC), September 2014.

[39] Arthur Marques, Franklin Ramalho, and Wilkerson L. Andrade. TRL – a traceability

representation language. Submitted to the ACM Symposium on Applied Computing

(SAC), September 2014.

[40] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: A roadmap. In

Proceedings of the Conference on The Future of Software Engineering, ICSE ’00, pages

35–46, New York, NY, USA, 2000. ACM.

[41] Marian Petre. Uml in practice. In Proceedings of the 2013 International Conference

on Software Engineering, ICSE ’13, pages 722–731, Piscataway, NJ, USA, 2013. IEEE

Press.

[42] John L. Pfaltz. Using concept lattices to uncover causal dependencies in software. In

Rokia Missaoui and Jurg Schmidt, editors, Formal Concept Analysis, volume 3874 of

Lecture Notes in Computer Science, pages 233–247. Springer Berlin Heidelberg, 2006.

[43] Francisco A.C. Pinheiro. Requirements traceability. In Julio Cesar Sampaio Prado Leite

and Jorge Horacio Doorn, editors, Perspectives on Software Requirements, volume 753

of The Springer International Series in Engineering and Computer Science, pages 91–

113. Springer US, 2004.

[44] Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and Techniques.

Springer Publishing Company, Incorporated, 1st edition, 2010.

BIBLIOGRAPHY 98

[45] B. Ramesh and M. Jarke. Toward reference models for requirements traceability.

Software Engineering, IEEE Transactions on, 27(1):58–93, 2001.

[46] Balasubramaniam Ramesh. Factors influencing requirements traceability practice.

Commun. ACM, 1998.

[47] S.P. Reiss. Incremental maintenance of software artifacts. Software Engineering, IEEE

Transactions on, 2006.

[48] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton, MA,

USA, 2nd edition, 1979.

[49] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language Ref-

erence Manual, The (2Nd Edition). Pearson Higher Education, 2004.

[50] T.L. Saaty. Fundamentals of the Analytic Hierarchy Process. RWS Publications, 2000.

[51] Pete Sawyer, Ian Sommerville, and Stephen Viller. Requirements process improvement

through the phased introduction of good practice. In Software Process - Improvement

and Practice, pages 31–44, 1997.

[52] Ian Sommerville. Software Engineering: (Update) (8th Edition) (International Com-

puter Science). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2006.

[53] Ian Sommerville and Jane Ransom. An empirical study of industrial requirements

engineering process assessment and improvement. ACM Trans. Softw. Eng. Methodol.,

14(1):85–117, January 2005.

[54] George Spanoudakis. Plausible and adaptive requirement traceability structures. In

Proceedings of the 14th international conference on Software engineering and knowl-

edge engineering, SEKE ’02, pages 135–142, New York, NY, USA, 2002. ACM.

[55] George Spanoudakis and Andrea Zisman. Software traceability: A roadmap. In Hand-

book of Software Engineering and Knowledge Engineering. World Scientific Publish-

ing, 2004.

BIBLIOGRAPHY 99

[56] George Spanoudakis, Andrea Zisman, Elena Pérez-Minana, and Paul Krause. Rule-

based generation of requirements traceability relations. Journal of Systems and

Software, 72(2):105 – 127, 2004.

[57] N. Tausch, M. Philippsen, and J. Adersberger. Tracql: A domain-specific language for

traceability analysis. In 10th Working IEEE WICSA Conference, 2012.

[58] Richard Torkar, Tony Gorschek, Robert Feldt, Mikael Svahnberg, Uzair Akbar Raja,

and Kashif Kamran. Requirements traceability: a systematic review and industry case

study. International Journal of Software Engineering and Knowledge Engineering,

22(3):385–434, 2012.

[59] Toshihiko Tsumaki and Tetsuo Tamai. Framework for matching requirements elicita-

tion techniques to project characteristics. Software Process: Improvement and Practice,

11(5):505–519, 2006.

[60] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell, and

Anders Wesslén. Experimentation in software engineering: an introduction. Kluwer

Academic Publishers, Norwell, MA, USA, 2000.

[61] A.S.Aminah Zawedde, M.D.Martijn Klabbers, D.Ddembe Williams, and M.G.J.Mark

van den Brand. Understanding the dynamics of requirements process improvement:

A new approach. In Danilo Caivano, Markku Oivo, MariaTeresa Baldassarre, and

Giuseppe Visaggio, editors, Product-Focused Software Process Improvement, volume

6759 of Lecture Notes in Computer Science, pages 276–290. Springer Berlin Heidel-

berg, 2011.

[62] C. Ziftci and I. Krueger. Tracing requirements to tests with high precision and recall.

In Automated Software Engineering (ASE), 2011 26th IEEE/ACM International Con-

ference on, pages 472–475, Nov 2011.

[63] Celal Ziftci. Mining Test Cases To Improve Software Maintenance. PhD thesis, Uni-

versity of California, San Diego, 2013.

Appendix A

Language’s Evaluation Questionnaire

For the sake of simplicity, and also due to the author’s environmental awareness, the ques-

tionnaire is available online1. It’s important to emphasize that, even that the questionnaire is

accepting new responses, this is a sibling questionnaire of the original one.

Analogously, questionnaire’s summary of responses2 and also results analyses3 are avail-

able online.

1http://goo.gl/JxxTfM
2http://goo.gl/Asi3AB
3http://goo.gl/ylFO90

100

http://goo.gl/JxxTfM
http://goo.gl/Asi3AB
http://goo.gl/ylFO90

Appendix B

Process Evaluation Results

101

102

Table B.1: Process Evaluation - Overall Results
Participant Process Requirement Time Precision Recall F-measure Efficiency

P1

AD UC12 21 1 1 1 0.04

PP UC05 8.63 1 1 1 0.11

P2

AD UC05 8 1 0.66 0.8 0.1

PP UC12 4.95 1 1 1 0.20

P3

AD UC03 15.5 1 1 1 0.06

PP UC24 7.57 1 1 1 0.13

P4

AD UC25 18 1 1 1 0.05

PP UC05 4.95 1 1 1 0.20

P5

AD UC24 4.49 1 0.5 0.66 0.14

PP UC03 6.53 1 1 1 0.15

P6

AD UC05 17.49 0.95 1 0.97 0.055

PP UC25 4.75 1 1 1 0.21

P7

AD UC01 21.4 1 1 1 0.04

PP UC03 7.75 1 1 1 0.12

P8

AD UC25 15.5 0.63 1 0.77 0.05

PP UC01 7.63 1 1 1 0.13

P9

AD UC12 11 1 1 1 0.09

PP UC01 6.92 1 1 1 0.14

P10

AD UC01 12.29 1 1 1 0.08

PP UC12 5.91 1 1 1 0.16

P11

AD UC24 14.3 1 1 1 0.06

PP UC13 7.28 1 1 1 0.13

P12

AD UC13 12.2 1 1 1 0.08

PP UC24 4.65 1 1 1 0.21

	Introduction
	Benefits of Requirements Traceability
	Requirements Traceability Challenges
	Objective
	Scope
	Envisioned of Contributions
	Dissertation Outline

	Background
	Requirement
	Artifact
	Requirements Traceability
	Importance of Traceability
	Trace Link
	Traceability Modes
	Traceability Model

	Traceability Representation Language
	Trace Link Representation
	Language's Constructions
	Queries Specification
	Example
	Chapter Debriefings

	Traceability Process
	Process Workflow
	Definition
	Production
	Extraction

	Process' Contracts
	Chapter Debriefings

	Tool Support
	Overview
	Architecture
	Usage
	Chapter Debriefings

	Evaluation
	Language Evaluation
	Planning
	Results
	Discussion

	Process Evaluation
	Planning
	Results
	Discussion

	Chapter Debriefings

	Related Work
	Traceability Challenges
	Traceability Query Languages
	Requirements Engineering Process Improvements
	Chapter Debriefings

	Conclusions
	Contributions
	Limitations
	Future Work
	Final Remarks

	Language's Evaluation Questionnaire
	Process Evaluation Results

