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Abstract Estimating water resources is important for adequate water management in the future, but suitable data
are often scarce. We estimated water resources in the Vilcanota basin (Peru) for the 1998–2009 period with the
semi-distributed hydrological model PREVAH using: (a) raingauge measurements; (b) satellite rainfall estimates
from the TRMM Multi-satellite Precipitation Analysis (TMPA); and (c) ERA-Interim re-analysis data.
Multiplicative shift and quantile mapping were applied to post-process the TMPA estimates and ERA-Interim
data. This resulted in improved low-flow simulations. High-flow simulations could only be improved with
quantile mapping. Furthermore, we adopted temperature and rainfall anomalies obtained from three GCMs for
three future periods to make estimations of climate change impacts (Delta-change approach) on water resources.
Our results show more total runoff during the rainy season from January to March, and temporary storages
indicate that less water will be available in this Andean region, which has an effect on water supply, especially
during dry season.

Key words TRMM, TMPA; climate change anomalies; ERA-Interim; hydrological modelling; Taylor diagram; quantile
mapping; Peru

Modélisation de ressources en eau et impact du changement climatique sur une échelle de temps
journalier dans les Andes péruviennes
Résumé Estimation des ressources en eau est importante pour la gestion adéquate de l’eau à l’avenir, mais les
données appropriées sont souvent rares. Nous avons estimé les ressources en eau dans le bassin de Vilcanota
(Pérou) pour la période 1998–2009 avec le PREVAH de modèle hydrologique semi-distribué en utilisant: (a) les
mesures pluviométriques; (b) les estimations des précipitations par satellite TRMM du multi-satellite
Précipitations analyse (TMPA); et (c) les données de réanalyse ERA-Interim. Changement multiplicatif et
cartographie quantile ont été appliqués à post-traiter les estimations TmpA et les données de l’ERA-Interim.
Cela s’est traduit par l’amélioration des simulations à faible débit. Simulations de haut-débit ne pouvaient être
améliorées avec la cartographie quantile. En outre, nous avons adopté la température et des précipitations
anomalies obtenues à partir de trois MCG pour trois périodes futures de faire des estimations des impacts du
changement climatique (Delta-changement d’approche) sur les ressources en eau. Nos résultats montrent ruissel-
lement plus total au cours de la saison des pluies de Janvier à Mars, et les stockages temporaires indiquent que
moins d’eau sera disponible dans la région andine, qui a un effet sur l’approvisionnement en eau, en particulier
pendant la saison sèche.

Mots clefs TRMM, TMPA ; changement climatique anomalies ; ERA-Interim ; modélisation hydrologique ; Taylor schéma ;
cartographie quantile ; Pérou

1 INTRODUCTION

In the context of climate change, water management
has become increasingly significant, especially in
mountainous regions which depend on water contri-
butions from glaciers (Viviroli et al. 2011) and

páramos. Páramos consist of a collection of neotro-
pical alpine grassland ecosystems covering the upper
region of the northern Andes (Buytaert et al. 2006).
Estimating water resources is therefore important for
adequate water management in the future. Here,
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hydrological models, driven by meteorological data,
can provide useful information for decision making.
However, access to ground-based meteorological
measurements is often difficult, especially in moun-
tainous regions like the Andes, where few data are
available (Schwarb et al. 2011).

Satellite-based precipitation estimates are a poten-
tial alternative source of forcing data for hydrological
modelling, since they cover a large area with a high
temporal and spatial resolution (Su et al. 2008). In recent
years, several satellite-based products have been devel-
oped (Tobin and Bennett 2010), including the Tropical
Rainfall Measuring Mission (TRMM) Multi-satellite
Precipitation Analysis (TMPA, Huffman et al. 2007).
TMPA estimates have been applied in hydrological
modelling all over the world (e.g. Collischonn et al.
2008, Lavado Casimiro et al. 2009, Wagner et al.
2009, Pan et al. 2010, Tobin and Bennett 2010,
Jiménez et al. 2011, Bitew et al. 2012). Lavado
Casimiro et al. (2009) used on-site rainfall data to
improve monthly TMPA estimates (3B43 product) for
two basins in Peru, and linked them to a water balance
model with monthly resolution. The improved data
appeared to describe the hydrological regimes well. Su
et al. (2008) applied the variable infiltration capacity
(VIC) semi-distributed hydrological model to the La
Plata basin in South America. Their simulations with
TMPA estimates were able to capture the daily flood
events well, but tended to overestimate most flood
peaks. Furthermore, seasonal and inter-annual stream-
flow variability was well reproduced. The analysis by
Su et al. (2008) demonstrated the potential of TMPA
products for hydrological forecasting in data-sparse
regions. Collischonn et al. (2008) found that raingauge
data gave better simulation results than TMPA estimates
in the Tapajós River basin, Brazil.

Other alternative sources of forcing data for
hydrological modelling are re-analysis products,
which are developed by reprocessing historical, obser-
vational data using a consistent modern analysis sys-
tem. One example is the global atmospheric re-analysis
product ERA-Interim (Berrisford et al. 2009).

The quantification of the effect of climate change
on hydrological components within a catchment is valu-
able for future planning within the water sector (Laghari
et al. 2012). In recent years, interest in climate change
modelling has grown. In the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change
(IPCC 2007), general circulation models (GCMs) were
used to give an overview of the current situation and
provide projections of possible changes in climate
(Ardoin-Bardin et al. 2009). The modelling of the

climatic system is very complex and the climate projec-
tions are not easy to incorporate into hydrological
impact studies (Allen and Ingram 2002, Ardoin-Bardin
et al. 2009). One problemwith GCMs is that the climate
models differ (IPCC 2001a, Ardoin-Bardin et al. 2009),
especially for precipitation (Dai 2006). However, using
a range of models can also be an advantage, for example
to sample potential uncertainty in the initial conditions
and also in future projections (Randall et al. 2007).
Furthermore, the resolution of the climate models is
often too coarse, compared to that of hydrological mod-
elling (IPCC 2001a, Ardoin-Bardin et al. 2009).
Regional climate models operate at higher resolution
and often with more detailed topography and physical
parameterizations (IPCC 2001b); GCMs are not perfect,
but they are still a powerful tool for assessing climate
change (Ardoin-Bardin et al. 2009).

General circulation models have been used for
several studies of the impact of climate change on
water resources in several regions of the world.
Lavado Casimiro et al. (2011) assessed the climate
change impacts on the hydrology of the Peruvian
Amazon-Andes basin by combining the outputs of
three GCMs with two hydrological models with
monthly resolution. Buytaert et al. (2009) found a
wide divergence in simulated monthly discharge for
catchments in south Ecuador that were driven by
different GCM forcing data. Vergara et al. (2011)
simulated flows for the 2050–2059 period in the
Santa River basin in Peru and found monthly dis-
charges were projected to decrease throughout the
year in comparison with observed historical values.

Since the Andean region of Peru is so vulnerable
to climate change (Bradley et al. 2006), the Peruvian
Ministry of the Environment, in collaboration with the
Swiss Agency for Development and Cooperation
(SDC), initiated a programme on climate change adap-
tation (PACC; Programa de Adaptación al Cambio
Climático) in the regions of Cuzco and Apurimac.
The programme integrates water management, disaster
prevention and food security. In order to support plan-
ning and resource management decisions that can guar-
antee a continuity of both water resources and
development, it is imperative to quantify the current
water resources and analyse the possible effects of
climate changes. However, data on the Peruvian
Andes are very limited (Salzmann et al. 2009) and, in
the region of the Vilcanota basin (VB) in Peru, for
example, little experience on estimating water
resources on a daily time scale was found.

Studies with TMPA estimates, ERA-Interim and
GCM data have already been done. Compared to
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these our focus lies on the presentation of alternative
data sources for hydrological studies to estimate
water resources, especially when few data are avail-
able. We also use two approaches of different com-
plexity in order to post-process TMPA and
ERA-Interim data and evaluate such methods with
respect to the estimation of water resources. We
introduce three data sources which are available for
the Vilcanota basin in the high mountains of Peru and
demonstrate how they can be used for hydrological
modelling, including the application of climate
impact scenarios and yield information on water
resources for the target region. Another objective is
to test for the first time the performance of the
hydrological model PREVAH (Precipitation-Runoff-
EVApotranspiration Hydrotope; Viviroli et al. 2009a)
for the study region, with the focus on simulations at
a daily time scale.

After introducing the study area, data and meth-
ods, we first compare the results of the PREVAH
hydrological model (forced with daily TMPA esti-
mates, ERA-Interim data and raingauge data) with
stream gauge data; and second, we evaluate the impact
of climate change on the daily hydrology by forcing
the hydrological model with outputs of three GCMs,
yielding impact scenarios for three future periods.

2 STUDY AREA AND DATA

2.1 Study area

The study area is in the southern Peruvian Andes
within the Vilcanota basin (VB), which is a tributary

of the Amazon River system (Fig. 1). The catchment
has an area of 9160 km2

, belongs to the administra-
tive division of Cuzco and is characterized by the
presence of glaciers, steep slopes and an elevation
range of 2160–6290 m a.s.l. Ecosystem complexes
like páramos and puna (Sánchez-Vega and Dillon
2006) play an important role in the dynamics of the
highland tributary system. Páramos exist above the
upper treeline and below the permanent snowline,
and have high humidity, low temperatures and a
high vegetation coverage. Puna, in contrast, have
lower humidity, a lower vegetation coverage and an
active vegetation season of only 5 months (Sánchez-
Vega and Dillon 2006).

Predominant soil types in the study area are
Lithosols and Kastanozems (FAO-UNESCO 1988).
Land cover/land use in VB is directly related to the
altitude, the prevailing climate and soil type. The
land cover is dominated by natural grassland
(82.7%), shrublands (10.4%), scattered areas of tradi-
tional cultivation (1.7%), and small glaciers and lakes
(1.4%). Agriculture occurs predominantly in the
inter-Andean valleys. The rural population practices
agricultural production, most of them being small-
scale farmers and livestock owners. The principal
urban area in VB is the city of Cuzco, where around
32.7% of the population in the study area is concen-
trated (INEI 2011).

Recent years have seen some extreme hydrolo-
gical events in VB, such as the 2010 flood (Lavado
Casimiro et al. 2010). A Tropical South rainfall
regime is predominant in VB (Villar et al. 2009),
with a rainy season between December and April,

Fig. 1 Study area and data network.
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and a dry season between May and November. From
1998 to 2009 the average annual precipitation was
777 mm year-1, with considerable variability between
years, which is connected with the sea surface tem-
perature in the tropical Atlantic Ocean and the
Southern Oscillation Index of the Pacific Ocean
(Lavado Casimiro et al. 2012). Generally, during El
Niño, droughts are observed in this region, while La
Niña is associated with heavy rain spells.

2.2 Available data

2.2.1 Ground station data A data portal with
historical climatic data collected from more than 100
stations of the Peruvian Meteorological and
Hydrological Service (SENAMHI) around Cuzco
was established as part of the PACC program (see
also Schwarb et al. 2011). Thirty-six (36) stations
were selected from this data portal. They contained
homogenized daily data on temperature, precipitation
and relative humidity for the years 1960–2009 (see
Table 1).

Daily discharge data for 1980–2009 were avail-
able for calibration from a streamgauge which gauges
the Vilcanota River close to Machu Picchu
(Km_105); these data are for a stable profile section.
The station belongs to a private hydropower com-
pany (EGEMSA).

2.2.2 TMPA estimates (TRMM 3B42 V6)
The TRMM 3B42 Research Version 6 product com-
bines measurements of different space-borne sensors
and gauge data at fine scales. These data consist of
hourly precipitation estimates (mm h-1), and are
available with a 3-h temporal and 0.25° × 0.25° spa-
tial resolution. Data had been collected since 1998

and coverage lies between 50°N and 50°S (Huffman
et al. 2007, Scheel et al. 2011).

The TRMM product, 3B42 V6, is a merged
dataset that takes advantage of the best available
data. The product is a combination of passive micro-
wave (PMW) and infrared (IR) precipitation esti-
mates from a variety of satellite platforms (TRMM;
the Defense Meteorological Satellite Program,
DMSP; the Aqua mission and National Oceanic and
Atmospheric Administration, NOAA; Huffman et al.
2007). The PMW coverage gaps are filled with high-
quality, calibrated infrared data (Tobin and Bennett
2010). The TMPA data are available in real time and
as a post-processed research product. The research
product is merged with ground station data and is
computed about 15 days after the end of each month
(Huffman et al. 2007, Su et al. 2008). In this study
we used the TRMM 3B42 V6 product (henceforth
called TMPA estimates) for the period 1998–2009.

Several studies have been implemented to validate
the quality of the precipitation estimates of this pro-
duct. In the Central Andes, Scheel et al. (2011) tested
the dependency of the estimate performance on chan-
ging spatial and temporal resolutions. They found large
biases in the estimation of daily precipitation amounts.
The correlation with ground data increased strongly
with temporal aggregation, but the change in spatial
aggregation did not reveal any significant changes in
correlation coefficient and estimate performance. Su
et al. (2008) found similar results for the La Plata
Basin in South America. The TMPA estimates agreed
well with gauge data on a monthly time scale, but the
agreement was reduced on a daily time scale, espe-
cially for high rainfall rates.

2.2.3 ERA-Interim ERA-Interim is a re-
analysis of the global atmosphere and surface

Table 1 Overview of available meteorological data and their interpolation, further processing and available time period. P:
precipitation; T: temperature; RH: relative humidity; S: sunshine duration; and W: wind speed. Available data interpolated
with inverse distance weighting (IDW) are displayed in bold, those interpolated with detrended inverse distance weighting
(DIDW) are in italic and those with lapse rate (LPR) are underlined.

Ground station data TMPA ERA-Interim GCM

Available data P, T, RH P P, T, RH, S, W T, P
Time resolution Daily 3 h and daily Daily Monthly
Interpolation to
grid

IDW, DIDW; 540-m
resolution

IDW; 540-m resolution IDW, LPR; 540-m
resolution

Kriging (0.25° × 0.25° resolution)

Further
processing

Averaged to
meteorological sub-
units

Averaged to
meteorological sub-
units

Averaged to
meteorological sub-
units

Delta-change approach

Available time
period

1960–2009 1998–2009 1998–2009 CC scenarios 2010–2039,
2040–2069, 2070–2100
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conditions covering the data-rich period from 1979 to
the present (Berrisford et al. 2009) by the European
Centre for Medium-Range Weather Forecasts
(ECMWF). This dataset provides a multivariate, spa-
tially complete and coherent record for the global
atmospheric circulation. Gridded data products
include a large variety of 3-hourly surface parameters
and 6-hourly upper-air parameters (Dee et al. 2011).
We obtained from ECMWF gridded precipitation,
sunshine duration and wind speed data at a daily
resolution for the period 1998–2009. The precipita-
tion data had been tested and compared with other
datasets, for example by Lorenz and Kunstmann
(2012). They found an overestimation of rainfall
over the Andes of up to 2.5 mm d-1.

2.2.4 General circulation model (GCM) out-
puts To evaluate the potential future impact of
climate change in VB, precipitation and tempera-
ture outputs from GCMs of the IPCC Fourth
Assessment Report were coupled with the hydrolo-
gical model PREVAH. In this study, we used the
following GCMs: the BCM2 model (Bjerkness
Centre for Climate Research, Norway) with a reso-
lution of 1.9° × 1.9°; the CSMK3 model
(Commonwealth Scientific and Industrial Research
Organisation, CSIRO, Atmospheric Research,
Australia) with a resolution of 1.9° × 1.9°; and the
MIHR model (Center for Climate System Research,
University of Tokyo, National Institute for
Environmental Studies, and Frontier Research
Center for Global Change, JAMSTEC, Japan) with
a resolution of 1.1° × 1.1° (Semenov and
Stratonovitch 2010). We chose these three models
because they have a resolution below 2° and are
available for the two emissions scenarios A1B and
B1 (see below), and because they were already used
by Lavado Casimiro et al. (2011) to assess the
impact of climate change on the hydrology in two
Peruvian Amazon-Andes basins on a monthly scale.
We are aware that the whole range of possible
climate change output is not covered by choosing
only these three GCMs, but the exploration of more
GCMs was outside the scope of this study, being
focused on different data sources to obtain daily
hydrological time series for water resources assess-
ment in the target area.

Two scenarios were chosen from the Special
Report on Emissions Scenarios (SRES) to calculate
the future climate on a regional scale (2010–2100):
A1B and B1 (Semenov and Stratonovitch 2010). The
period 1965–1999 (called ‘the climate of the 20th

century’) was used to calculate the monthly anoma-
lies (Delta-change approach) in precipitation and
temperature. Monthly mean precipitation and tem-
perature data for each GCM, emissions scenario and
time period (climate of the 20th century 1965–1999,
2010–2039, 2040–2069, 2070–2100) were obtained
from the IPCC Distribution Centre (http://www.ipcc-
data.org). These data were spatially interpolated to
0.25° × 0.25° over our study region using the kriging
methodology (Oliver and Webster 1990, Lavado
Casimiro et al. 2011) (see Table 1).

2.2.5 Physiographical information Digital
elevation data were obtained from the Shuttle
Radar Topography Mission (SRTM) with a resolu-
tion of three arc seconds, soil information from the
FAO Soil Map of the World (FAO-UNESCO 1988,
Menzel 1996), and information on land use from
the MODIS Land Cover (MOD12Q1) product
(Friedl et al. 2002). Both meteorological and
physiographic data were pre-processed using a
suite of tools included in PREVAH (Viviroli et al.
2009a).

3 MODEL AND METHODOLOGY

3.1 Hydrological model PREVAH

The semi-distributed model PREVAH (Precipitation-
Runoff-EVApotranspiration Hydrotope, Viviroli et al.
2009a) was selected for the hydrological simulations
because it has the ability to describe and accurately
represent the heterogeneity of mountainous, hydrolo-
gical systems with highly variable environmental and
climatic conditions. The PREVAH model was devel-
oped by the Institute of Geography at the University
of Bern (GIUB), the Swiss Federal Institute for
Forest, Snow and Landscape Research (WSL) and
the Institute for Atmospheric and Climate Science
ETH Zürich (IACETH), Switzerland. The PREVAH
model has been applied to investigate water resources
in mountainous basins (Zappa and Kan 2007,
Kobierska et al. 2013) in poorly gauged areas of
China (Bosshard and Zappa 2008) and Russia
(Oltchev et al. 2002), and also as a source of hydro-
logical indicators for estimating climate change
impacts on vegetation distribution (Randin et al.
2009). A review of selected application examples
for PREVAH is presented in Viviroli et al. (2009a),
which also provides an overview of the model basics,
calibration and pre- and post-processing tools.

Water resources modelling in the Peruvian Andes 2047

http://www.ipcc-data.org
http://www.ipcc-data.org


3.1.1 Model parameterization Three types of
input data are required to run PREVAH: (a) meteor-
ological input: air temperature, precipitation, relative
humidity, global radiation, wind speed and sunshine
duration in hourly or daily time steps, (b) physiogra-
phical information for the hydrological response units
(HRUs), and (c) a control file with the configuration
of the tuneable model parameters that control the
individual sub-models. These parameters need to be
calibrated to adjust the model to the conditions at the
study site (Viviroli et al. 2009a).

The spatial and temporal resolutions to run the
model were selected according to the availability of
data. In this study, a spatial resolution of 540 m was
selected, according to previous studies about the criti-
cal resolution for hydrological modelling dependent on
catchment size (Zappa 2002); 1-day time steps were
selected as the final resolution for all input and output
data. Physiographical information was clustered into
HRUs to summarize the grid cells for those areas in
the basin in which similar hydrological behaviour
could be expected. Each HRU was described with a
set of parameters based on information derived from
the digital elevation model, soil maps, land use and
land surface characteristics (Viviroli et al. 2009a). The
soil depth and plant available field capacity were deter-
mined from soil classes contained in the FAO Soil Map
of the World (FAO-UNESCO 1988), as described in
(Viviroli et al. 2009a, Viviroli et al. 2007).

The inverse distance weighting (IDW), the
detrended inverse distance weighting (DIDW) and
lapse rate (LPR) methods were used to obtain gridded
meteorological data with a spatial resolution of 540 m
(Viviroli et al. 2009a) using the available set of ground
station, TMPA and ERA data (see Table 1). The
spatially interpolated meteorological information is
averaged for previously defined meteorological sub-
units (Viviroli et al. 2009a).

3.2 PREVAH calibration and validation

An automatic calibration procedure was applied to
adjust the tuneable parameters, and thus the model, to
the conditions prevailing in the specific catchment. The
model was calibrated for three different precipitation
datasets: The raingauge data, the TMPA estimates and
the ERA-Interim data. The model was calibrated by
maximizing the agreement between the observed
(Km_105) and simulated hydrographs, which involved
selecting a suitable set of tuneable parameters. The
tuneable parameters can be subdivided into five
families (precipitation, snowmelt, soil moisture

recharge, runoff formation and, optionally, ice melt),
which control the sub-models within PREVAH. The
most sensitive tuneable parameters are the adjustment
factors for snowfall and rainfall (Viviroli et al. 2009a),
the parameters controlling the snowmelt module
(Zappa et al. 2003), the soil moisture recharge (Zappa
and Gurtz 2003), the runoff generation module (Gurtz
et al. 2003) and the glacier melt module (Koboltschnig
et al. 2008). Selection of parameter values occurs
within a prescribed parameter space (originally defined
by physical considerations and experience). The accep-
table parameter space can be edited by the user
(Viviroli et al. 2007). The automatic calibration
approach was first presented in Zappa and Kan
(2007) and is explained in more detail in Viviroli
et al. (2009a). The period 1999–2004 was selected
for calibration, and the period 2005–2009 for valida-
tion. The first year (1998) was defined as a ‘spin up’
(Viviroli et al. 2009b). In particular, it serves to fill the
low-frequency storages for baseflow and snow. The
results from this year were therefore discarded and
not used for the evaluation of the model performance.
The following statistical criteria were used to evaluate
the calibration results: the Nash and Sutcliffe efficiency
coefficient (NS), the Nash and Sutcliffe logarithmic
coefficient (NSL) and the absolute bias (VOL, mm):

NS ¼ 1�
PN
i¼1

ðQobs � QsimÞ2

PN
i¼1

ðQobs � QobsÞ2

0
BBB@

1
CCCA (1)

NSL ¼ 1�
PN
i¼1

ðlnQobs � lnQsimÞ2

PN
i¼1

ðlnQobs � ln ðQobsÞÞ2

0
BBB@

1
CCCA (2)

VOL ¼
XN
i¼1

ðQsim � QobsÞ (3)

where Q is the simulated (sim) or observed (obs)
discharge (mm d-1).

3.3 Hydrological modelling with TMPA and
ERA-Interim data

By comparing the precipitation data of the TMPA
estimates and ERA-Interim with the basin averaged
interpolation of raingauge data, we found an under-
estimation of rainfall for the TMPA estimates and a
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very large overestimation for the ERA-Interim data
(see Fig. 2). Bias correction is a current state of
research and discussion (Ehret et al. 2012). Here,
we applied two different bias correction techniques
to compensate for this under- and overestimation
(straight multiplicative shift and quantile mapping).

Using the multiplicative shift method, we com-
pared daily precipitation data measured by rain-
gauges with the TMPA estimates and ERA-Interim
data for the years 1998–2009 and calculated the
mean monthly differences (see Table 2). The differ-
ences from 1999 to 2004 were used to calibrate the
datasets with a multiplicative shift (here explained for
the TMPA estimates):

RC ¼ RTMPA;i � Robs

RTMPA
(4)

where RC is the post-processed TMPA estimate on day i,
RTMPA,i is the TMPA estimate on day i, and Robs and
RTMPA are the long-term monthly means of the rain-
gauge data and TMPA estimates for a given month. The
years 2005–2009 were chosen for the validation.

The second post-processing method we applied
is quantile mapping (QM). This method originates
from the empirical transformation of Panofsky and
Brier (1968) and is based on daily constructed
empirical cumulative distribution functions (ecdf) of
modelled and observed datasets; in our case the
TMPA estimates (or ERA-Interim data) and the rain-
gauge data. The aim of this method is to translate the
TMPA estimates (or ERA-Interim data) into a plau-
sible range with respect to the dataset relying on
interpolated raingauge data. For each day, we esti-
mated the quantile of the daily precipitation of the
TMPA estimates (or ERA-Interim data) in the corre-
sponding ecdf and substituted this value with the
same quantile in the corresponding ecdf of the rain-
gauge data. To get a better approximation, we cali-
brated each year independently with the remaining
years by using the ecdf of the calibration year of the
TMPA estimates (or ERA-Interim data) and the ecdf
of the remaining years of the raingauge data. For
example, we built the ecdf for the year 1998 of the
TMPA estimates and the ecdf for the years
1999–2009 of the raingauge data and then applied
then the QM method. The advantage of the QM
technique is that no new extremes can be obtained
(Jakob Themeßl et al. 2011) and that the spatial
distribution of the rainfall amount is preserved.

The hydrological model PREVAH was then
forced with the raingauge-derived estimates, the ori-
ginal and post-processed TMPA estimates and the
ERA-Interim data for VB. Simulations with post-
processed TMPA and ERA-Interim precipitation for-
cing were performed using the tuneable model para-
meters obtained by calibrating PREVAH with
raingauge forcing (see Section 3.2). By removing
the bias of TMPA and ERA with respect to the rain-
gauge forcing, we also assumed that we need to
adopt the same scaling of precipitation as estimated
for simulations driven by raingauge data. The simu-
lation results were compared with the observed daily
discharge at the streamgauge Km_105, and statisti-
cally assessed. In addition, Taylor diagrams were
used to test how well the simulations and

Table 2 Monthly factor of correction, based on long-term monthly mean rainfall (1998–2004) of raingauge data (Robs),
TMPA estimates (RTMPA) and ERA-Interim data (RERA-Interim).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Robs=RTMPA 1.19 1.27 1.13 1.26 0.86 0.64 0.51 0.81 1.07 1.38 1.13 1.36
Robs=RERA�Interim 0.36 0.46 0.44 0.26 0.13 0.12 0.21 0.17 0.14 0.23 0.16 0.29

Fig. 2 Mean monthly rainfall (mm) of raingauges, TMPA
estimates and ERA-Interim data (1998–2009). Two simple
post-processing methods, a multiplicative shift (MS) and
quantile mapping (QM) were used to correct the absolute
bias of TMPA and ERA-Interim precipitation data.
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measurements match each other in terms of their
correlation, root mean square difference and the
ratio of their variances (see Taylor 2001).

3.4 Hydrological modelling of climate change
scenarios

The performance of the three GCMs was tested by
comparing monthly temperature and precipitation for
the GCM climate of the 20th century (1965–1999)
with observed data from Lavado Casimiro et al.
(2011). The CSMK3 model performed best, but R
values were very high for all models except for the
BCM2 model for rainfall (see Table 3).

The following Delta-change approach (Gleick
1986, Graham et al. 2007, Bosshard et al. 2011)
was adopted to multiply or add the monthly changes
to the observed datasets for the period 1991–2009:

PSCENðtÞ ¼ POBSðtÞ � ΔPðSCENIDÞ (5)

TSCENðtÞ ¼ TOBSðtÞ þ ΔTðSCENIDÞ (6)

The relative monthly change of two GCM-derived
climate variables (ΔP and ΔT for precipitation and
temperature, respectively) between the climatology of
the 20th century (1965–1999) and a future period
(2010–2100) was calculated for each cell of the
GCM, SRES scenario and time period, and averaged
over the study region. No bias correction of the raw
GCM data was applied. At each time step t within the
hydrological model, these monthly changes (ΔP, ΔT)
were used to condition the gridded daily observed
meteorological information (see Section 2.2.1) (POBS

and TOBS) on precipitation P (multiplicative approach)
and air temperature T (additive approach). The term
SCENID is an identifier for the monthly-based
changes; PSCEN and TSCEN are the values of the
meteorological forcing after the modification, deter-
mined by factors obtained from the climate scenarios.

This method implies that the daily variability of PSCEN

or TSCEN within a specific month is transferred from
the observed data (POBS, TOBS). The use of data start-
ing from 1993 was only possible for raingauge-based
simulations. This extends the application of PREVAH
beyond the periods used for calibration, verification
and comparison with TMPA and ERA products.

Using the Delta-change methodology meant that
the results we obtained would not be evaluated with
respect to extreme events, since the variability of the
meteorological input (e.g. wet-dry spells and severe
precipitation events) is not changed with respect to
the baseline period.

4 RESULTS AND DISCUSSION

4.1 Post-processing of TMPA and ERA-Interim
data

The mean monthly differences between TMPA esti-
mates and raingauge data from 1998–2009 (Fig. 2)
show that TMPA estimates clearly underestimate
rainfall from September to April and slightly over-
estimate rainfall from June to July. This leads to a
rainfall volume deficit of –14.8% for the entire period
(1998–2009). The TMPA estimates seem more suita-
ble for this region than ERA-Interim precipitation
data, because the latter greatly overestimate mean
monthly rainfall during the whole year (+293%).
Due to this overestimation, ERA-Interim precipita-
tion data are a priori not suitable for detailed water
resources assessment in our study region. Post-
processing has to be applied to correct these biases.

4.1.1 Multiplicative shift The mean monthly
TMPA estimates corrected with the multiplicative
shift (henceforth called TMPA MS) yielded a better
approximation to the raingauge data after the shift, as
can be seen in Fig. 2. A slight overestimation in wet
months (December–February) can be detected, but
the overall performance seems to be better than
with the uncorrected TMPA estimates. However, the
difference in the sum of rainfall from 1998 to 2009
between the raingauge data and the TMPA estimates
was reduced from –14.8% to +2.8% with the multi-
plicative shift. The greatly overestimated precipita-
tion data of ERA-Interim could be corrected with the
multiplicative shift (ERA-Interim MS), but still an
overestimation persists (+13.96%, see Fig. 2). This
could be due to the correction factor based on the
chosen calibration period.

Table 3 Statistical comparison of the monthly observed
data from Lavado Casimiro et al. (2011) and the climate of
the 20th century (1965–1999) of the GCMs. B: bias
(mm, °C); R: Pearson correlation coefficient (-).

GCM Rainfall Temperature

B (mm) R (-) B (°C) R (-)

BCM2 −145 0.56 −3 0.87
MIHR −189 0.83 −3 0.85
CSMK3 −74 0.79 1 0.88
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The main limitation of the multiplicative shift
technique is that the correction factor is applied to
the TMPA estimates and ERA-Interim data regardless
of the amount of precipitation. As a result, peak flows
in particular were greatly overestimated, as demon-
strated by the flow duration curves presented in Fig. 3.

4.1.2 Quantile mapping The post-processed
TMPA estimates with quantile mapping (TMPA
QM), shown in Fig. 2, give a very good approxima-
tion to the raingauge data (much better than TMPA
MS). The difference in the sum of rainfall from 1998
to 2009 could be reduced to +0.9%. The absolute
bias in precipitation of the ERA-Interim data (ERA-
Interim QM) could be reduced to +0.8%, but an
underestimation in mean monthly rainfall from
January to March and an overestimation from May
to November exist (Fig. 2).

Apart from the overestimation at the beginning
of the year, ERA-Interim MS follows the monthly
shape of the raingauge data curve in Fig. 2 better than
ERA-Interim QM.

4.2 Hydrological modelling results with TMPA
and ERA-Interim data

4.2.1 After calibration and validation The
efficiency criteria of the simulation results of the cali-
bration, validation and full application period are pre-
sented in Table 4. Simulations with raingauge data
yielded better results (highest NS and NSL values
and the lowest discharge absolute bias) when compared
to discharge measurements than simulations with
TMPA estimates. Similar outcomes have been
achieved, for example, by Collischonn et al. (2008)
and Jiménez et al. (2011). Generally, the high-flow
periods are well captured by the TMPA estimates, but
we found, as did Su et al. (2008), that most of the peak
flows were overestimated (Fig. 3). Simulations with
TMPA estimates clearly underestimated the discharge
volume (around –24% of the total measured discharge
volume), whereas simulations with ERA-Interim data
overestimated discharge volume for the validation per-
iod (+62.56% of the total measured discharge volume);
this is most probably because of the previously
explained under- and overestimation of rainfall.

Fig. 3 Flow duration curves (1999–2009) for: (a) measured discharge and simulated raingauge data, TMPA estimates and
(b) ERA-Interim data, as well as the simulation results of the post-processed (MS and QM) data. The highest 0.5% of the
daily discharge is presented in the small graph.
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Additionally, an analysis was performed to eval-
uate the performance of the raingauge data (Fig. 4) in
reproducing higher and lower discharges. The largest
discrepancies can be observed during months with
high discharge; q10 und q90 are overestimated in
January and February but q50 shows a generally
good approximation. The model is able to reproduce
the variability of discharge in the target area. In
general, the comparison of the measured and simu-
lated discharge hydrograph for the period from 1999
to 2009 indicates that the model can well simulate the
total runoff and the yearly peak flows in VB.

4.2.2 After post-processing During high
flows, in particular, the correction factor amplified
the already high TMPA estimates and ERA-Interim

data, which led to an overestimation of discharge and
consequently low NS values. But apart from the high
flows, the post-processing with the multiplicative
shift compensated for the low TMPA and high
ERA-Interim precipitation values and led to a better
approximation to the measured discharge (higher
NSL and smaller VOL; see Table 4).

Post-processing with quantile mapping results in
much better NS, NSL and VOL values (Table 4).
Since, with this method, the data range of the rain-
gauge data was translated to the TMPA estimates and
ERA-Interim data, the highest discharge values show
much lower values after correction. However, com-
pared to the measured discharge, the highest runoff
values as summarized in the flow duration curve are
still slightly overestimated (Fig. 3).

Table 4 Efficiency criteria for the discharge simulations (calibration period: 1999–2004, validation period: 2005–2009, full
period: 1999–2009): NS, NSL and the absolute bias (VOL in %). Simulations were made with raingauge data, TMPA
estimates and ERA-Interim data, as well as with the post-processed data with multiplicative shift (MS) and quantile
mapping (QM). The efficiency criteria of the QM-simulations are only presented for the full period, because each year was
calibrated independently.

Simulations with Calibration Validation Full period

NS NSL VOL (%) NS NSL VOL (%) NS NSL Vol (%)

Raingauge data 0.91 0.92 −0.25 0.88 0.89 6.32 0.9 0.91 2.44
TMPA 0.52 0.74 −18.68 0.62 0.66 −24.21 0.56 0.71 −20.95
TMPA MS 0.23 0.83 10.49 0.51 0.82 8.63 0.35 0.83 9.73
TMPA QM 0.73 0.85 −3.25
ERA-Interim 0.56 0.65 −0.41 −0.11 0.42 62.56 0.34 0.55 25.36
ERA-Interim MS 0.62 0.76 −8.65 −0.39 0.68 42.89 0.19 0.72 15.98
ERA QM 0.57 0.75 −10.68

Fig. 4 Performance analysis of simulation results with raingauge data (grey lines) compared to observed data at the
streamgauge station Km_105 (black lines) after calibration (1999–2009). Displayed are the 10% quantile (q10), 50%
quantile (q50) and the 90% quantile (q90). The greatest discrepancies between simulated and observed discharge can be
observed during months with high discharge.
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Taylor diagrams were interpreted to see how
well the simulated pattern agrees with the observed
data (see Fig. 5). The Taylor diagram for 1999–2009
shows again that simulations with raingauge data
yield more similar results to the reference
(Km_105) than the simulations with TMPA. The
correlation of simulations with the TMPA and
TMPA MS is around 0.8, TMPA QM shows a
slightly higher value (0.85). Simulations with ERA-
Interim data (MS and QM) result with a correlation
between 0.7 and 0.8. The root mean square error
(marked as concentric circles originating at the refer-
ence) and standard deviation are higher for the simu-
lations with TMPA MS and ERA-Interim MS than
with the uncorrected data, which implies that they
deviate from the average more and are less accurate.
During the wet period (December–April), the agree-
ment between the simulated and observed values is
clearly lower than during the dry period. This also
results in very low NS and NSL values for TMPA
MS (e.g. December NS: –0.47, NSL: 0.17).
Significantly better results can be seen during the
dry period (May–November). For example, in June,
NS values of 0.97 and NSL values of 0.9 were
obtained for the uncorrected TMPA estimates. The
ERA-Interim MS and QM approaches show a lower
standard deviation and root mean square error com-
pared to the uncorrected data.

The advantage of the quantile mapping techni-
que is that time periods with no corresponding
observed precipitation data could still be corrected
with the ecdf of other time periods, where observed
data exist (similarly for post-processed data with a
multiplicative shift). Our results suggest that TMPA
estimates and ERA-Interim data can nevertheless be
considered as an additional data source in regions
with sparse data, but they should not be considered

as a replacement, as Scheel et al. (2011) also con-
cluded. The data user should be aware of the over-
estimated peaks and should consider an appropriate
correction technique.

4.3 Hydrological modelling of climate change
scenarios

4.3.1 Monthly changes Table 5 shows the
aggregated, monthly rainfall changes (ΔP) of the
A1B scenario for each month of the three future
time periods and GCMs. Generally, a tendency
towards negative ΔP can be distinguished, which
suggests there will be less rain in the future. With
time, there are more negative values. The MIHR
model shows the highest negative values and
BMC2 the lowest. The highest negative values
occur from May to August, when precipitation totals
are already low; which means that the effect of the
high negative values will be small. Positive ΔP
values are more likely from January to April, where
the values range from –16.2 to 13.9%. The ΔP of the
B1 scenario shows similar values and tendencies.
Under this scenario, the ΔP of the CSMK3 model is
generally less extreme than for the A1B scenario.

The temperature changes (ΔT) show a clear posi-
tive tendency, which suggests temperatures will rise
increasingly with time. The range of ΔT for the A1B
scenario is between 0.3 and 5.6% and for the B1
scenario between –1.1 and 3.9%. The highest ΔT
occurred with the MIHR model.

4.3.2 Impact on water resources in VB The
impact of climate change on the daily hydrology in
VB was estimated by forcing PREVAH with the
application of ΔP and ΔT to the observed daily
meteorological information on precipitation and

Fig. 5 Taylor diagram with standard deviation, correlation and root mean square (grey circles originating at reference) for:
(a) the period 1999–2009, (b) the wet period December–April and (c) the dry period May–November. Discharge simulation
with raingauge data, TMPA estimates, ERA-Interim data and the post-processed TMPA and ERA-Interim data with a
multiplicative shift (MS) and quantile mapping (QM), compared with measured discharge (Km_105) as a reference.
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temperature (1991–2009). By calculating the percen-
tage change in discharge (mean of all three GCMs)
and comparing our results with Lavado Casimiro
et al. (2011), we found less negative values (Table
6). The B1 scenario in particular shows clear negative
values in Lavado Casimiro et al. (2011), whereas our
study determined mostly positive values. This could
be due to the positive ΔP values at the beginning of
the year (see Table 5), where the rainfall sums are
already high and the effect of ΔP is therefore high. In
Table 6 the months with the minimum and maximum
change in discharge are displayed for the PREVAH
simulations for each period. A high range can be
detected. The comparison to Lavado Casimiro et al.
(2011) is limited because of the use of two different
hydrological models (MWB3, monthly time step),
different observed data from two stations (Pisac and
Km_105) for the baseline period, and because of the
use of ΔEvaporation instead of temperature.

The outputs of the PREVAH simulations consist
of various variables in the hydrological cycle that can

be evaluated and used for water resources assess-
ment, for example, (a) the total runoff (mm d-1) and
(b) total water in the system (mm d-1) shown in
Fig. 6.

The greatest changes in total runoff occur in the
months with the most runoff (January–March) and
for q90, with the differences likely to become much
more marked in the future scenario (2069–2100). For
the basin, this means that, during the rainy season,
more runoff has to be expected, which could also
lead to higher flood peaks. However, how great the
change will finally be is uncertain as the climate
models (e.g. CSMK shows lower runoff for
January–March) and the scenarios A1B and B1
yield different results. These differences illustrate
the uncertainties involved in modelling climate
change and predicting its possible impact.

The advantage of daily simulations is that dis-
charge fluctuations within a month can be detected,
which could be important for water management.
However, interpreting the simulation results on a

Table 5 Monthly rainfall changes (ΔP, %) for the A1B scenario.

Month A1B scenario ΔP (%)

2010–2039 2040–2069 2070–2100

BMC2 MIHR CSMK3 BMC2 MIHR CSMK3 BMC2 MIHR CSMK3

Jan −3.0 −4.3 5.1 9.7 7.4 3.2 5.7 −0.9 −2.9
Feb 6.0 −4.6 −1.4 6.3 6.4 12.4 9.6 −1.4 −2.5
Mar 8.8 −4.9 −2.6 7.9 2.3 −4.4 7.8 6.4 −1.1
Apr 3.4 9.2 13.9 −16.2 7.1 5.3 0.8 7.7 −7.6
May −13.0 −13.0 −35.4 9.4 −13.7 −26.4 −18.8 −15.2 −49.7
Jun 5.8 −8.6 −10.0 −10.1 −17.9 −22.6 −16.5 −43.1 −40.3
Jul −17.1 −20.6 14.2 −25.0 −39.2 −16.5 −41.4 −45.4 −31.3
Aug −7.5 −35.5 −14.4 −13.5 −31.7 −23.8 −13.9 −58.0 −35.8
Sep −0.8 −2.6 15.0 −8.4 −22.2 8.5 −3.0 −39.1 7.7
Oct −3.2 −5.8 −3.4 3.0 −17.8 −9.5 0.2 −24.8 4.7
Nov 4.2 −2.3 −1.0 1.2 −10.8 −5.7 5.7 −15.8 −12.8
Dec −8.7 −4.4 7.3 −6.4 2.4 −7.5 −0.4 5.3 −20.6

Table 6 Percentage of change in flow: results of simulations with hydrological models MWB3 and PREVAH. The
calculated mean of the three GCMs was compared with the observed discharge: Pisac in Lavado Casimiro et al. (2011)
and Km_105 in our study. The minimum and maximum percentage change for each period and the month when they
occurred are shown in parentheses.

A1B B1

MWB3 PREVAH MWB3 PREVAH
Pisac Km_105 Pisac Km_105

2020s 6% 2% (–8.7% Dec; 10.6% Jan) −2% 1% (–6.5% Nov; 11.4% Jan)
2050s 3% 8% (–8.9% Nov; 25.7% Sep) −7% −2% (–24.8% Nov; 12.8% Sep)
2080s −1% 6% (–30.5% Dec; 38.6% Sep) −5% 6% (–19.7% Nov; 21.4% Aug)
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daily scale must be done with care, since, with the
Delta-change approach, we make no change in the
natural variability of the meteorological input from
the interpolated ground observations. It is most prob-
able that the obtained changes within a month are
smaller than the natural variability of the time series
during the baseline period (see Bosshard et al. 2011).
As a further study, a bias-correction of the GCM data
could be conducted (Bosshard et al. 2013a).

The total water in the system in the PREVAH
model (Fig. 6(b) and (c)) is defined as the sum of
several model internal water storages: snow, intercep-
tion, soil moisture, unsaturated runoff and saturated
runoff storages (Viviroli et al. 2009a). In the future,
less water will be temporarily stored and will thus not
be available for use in the target region, which will
have a great effect on the water supply, especially
during the dry season. From May to November,
resources are less for all GCMs and lower values

are reached more often. This tendency can also be
seen for the soil moisture storage for May–October
and December–March, with the exception of the
BCM2 model. Less water will be available for plants,
which compromises agriculture. Snowmelt shows
clearly lower values in the future, most likely because
less snow will be stored in the target area. This will
probably be most noticed during the dry season when
discharge is already low. Changes in temperature will
have an influence, e.g. on snow and its storage,
whereas changes in precipitation have a much greater
influence, e.g. on total runoff (Bosshard et al.
2013b). Both are dependent on the quality of the
given GCM, as Ardoin-Bardin et al. (2009) also
observed.

The difference between the baseline period and
the simulation results for the multi-annual means for
four water resource parameters can be distinguished
in Table 7. For the baseline period, the yearly amount

Fig. 6 Future projections of (a) total runoff and (b),(c) total water in the system (mm d-1) in VB for the periods 2010–2039,
2040–2069 and 2070–2100. (c) Represents the differences to measured discharge during the baseline period (1993–2010).
Total water in the system is defined as the sum of several model internal water storages: snow, interception, soil moisture,
unsaturated runoff and saturated runoff. Daily PREVAH calculation results of BCM2 (blue), CSMK (red) and MIHR
(green) compared with the baseline period (1993–2010) for the A1B (solid line) and B1 (dashed line) scenarios, shown for
the three quantiles q10, q50 and q90; (c) only for q50). Climatology is computed by considering for each day in the year a
centred moving window of 31 days.
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of adjusted interpolated precipitation is around twice
that of actual evaporation and of total runoff. A small
part of the water is temporarily stored in the available
soil moisture storage. In the future, according to the
MIHR and CSMK3 models, less precipitation will
occur. The tendency for actual evaporation is also
negative, probably because less water is available
during the dry period. The yearly mean of soil moist-
ure will probably also decrease. Less precipitation
and soil moisture will mostly affect farmers, but
whether the yearly total runoff in the future will
decrease or increase is not clearly detectable.

5 CONCLUSIONS

In this paper, we evaluated the use of alternative data
sources for hydrological modelling of water
resources in the high mountains of Peru, where few
ground measurements are available. Satellite-based
precipitation data (TMPA) and re-analysis data
(ERA-Interim) were used for the hydrological mod-
elling of a time period in the past in the Vilcanota
basin (VB), while GCM outputs were applied for the
modelling of future water resources in the region.

The TMPA estimates tended to underestimate
and ERA-Interim data to overestimate the total sum
of precipitation for the whole period of 1998–2009.
We applied two simple post-processing methods—a
multiplicative shift and quantile mapping—to correct
these errors. Bias correction is a current state of
research and discussion, especially for GCM correc-
tion (Ehret et al. 2012), but, as we demonstrated, it is
also useful for other datasets like TMPA and ERA-
Interim data. Generally, both post-processing

methods led to a better approximation to the mea-
sured discharge. The multiplicative shift reduced the
absolute bias in the TMPA estimates and ERA-
Interim data, but peak flows in particular were over-
estimated. Quantile mapping improved the outcomes
of hydrological simulations and reduced the error in
higher peak flow estimates. This resulted in lower
absolute bias and higher NS values. We found rain-
gauge measurements more reliable for simulating
total runoff than TMPA estimates and ERA-Interim
data. Nevertheless, in regions with little data avail-
ability, TMPA estimates and ERA-Interim data can
be considered as an important additional data source
for hydrological simulations.

The newly updated TMPA 3B42 research pro-
duct version 7 was released in June 2012, and
includes several changes concerning the metadata,
data structures, parameters and other factors. The
number of output products has increased from two
to six, which allows the user to better analyse and
understand the information used to compute the pro-
duct (Huffman et al. 2011). In a further investigation,
it would be interesting to test the performance of this
version 7 product and compare it to the results of this
study.

More high-resolution satellite-based data are
likely to be available in the future and re-analysis
methods will improve. Therefore, further studies on
the quality and availability of such satellite-based
rainfall estimates and re-analysis data would be
worthwhile, especially in poorly gauged areas.

For the simulation of future water resources, we
applied the Delta-change method and combined the
output of three GCMs with the hydrological model

Table 7 Difference (in %) between the baseline period (1993–2009) and the simulation results of multi-annual means (mm
year-1) for precipitation, actual evaporation, total runoff and storage of plant available soil moisture for the A1B and B1
scenarios. Negative changes are marked in bold.

Baseline period A1B (%)

1993–2009 2010–2039 2040–2069 2070–2100

(mm year-1) BCM2 MIHR CSMK3 BCM2 MIHR CSMK3 BCM2 MIHR CSMK3

Precipitation 834 0.5 −4.2 1.9 2.2 −0.2 −0.6 3.6 −4.3 −7.3
Actual evaporation 443 −0.5 −2.0 0.0 −1.1 −3.8 −2.0 −1.1 −6.3 −3.6
Total runoff 403 2.7 −3.2 5.2 9.4 10.2 3.7 14.4 8.7 −6.0
Soil moisture [mm] 54 0.0 −7.4 1.9 1.9 −3.7 −3.7 3.7 −9.3 −11.1

B1 (%)
Precipitation 834 −1.8 −2.5 2.5 −2.4 −4.9 −3.7 4.0 −3.5 −0.6
Actual evaporation 443 −1.1 −3.4 0.2 −0.9 −5.6 −1.1 −0.2 −5.0 −0.2
Total runoff 403 −2.7 1.5 6.0 −3.2 1.5 −4.2 9.9 5.7 2.0
Soil moisture [mm] 54 −3.7 −5.6 1.9 −3.7 −9.3 −7.4 3.7 −7.4 −1.9
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PREVAH. We found changes in total runoff for
months with the highest discharge (January–March),
with the differences likely to become much more
marked in 50 years. More runoff is to be expected
during rainy season, but in total less water will be
stored (e.g. as snow, interception, soil moisture, unsa-
turated runoff and saturated runoff storages), which
could lead to water shortages, especially during dry
seasons, when agriculture, fauna and humans depend
on water supply the most. However, how large these
changes are likely to become is uncertain, as climate
models yield different results. An improvement could
be made by choosing more GCMs, e.g. a higher
spread in the obtained results could be expected. In
particular, changes in precipitation have a marked
influence, e.g. on total runoff (Bosshard et al.
2013b). Both precipitation and temperature are
dependent on the quality of the given GCMs, as
Ardoin-Bardin et al. (2009) also observed.

In this study, the hydrological model PREVAH
was used for the first time in Peru. It seems to model
the hydrological resources well and is therefore sui-
table for this region. The advantage of this hydrolo-
gical model is the output at daily time steps.
Variability within a month can be detected and
used, for example, for projects in water resource
management. However the results have to be inter-
preted with care, since, with the Delta-change
method, the natural variability of the meteorological
input is not changed.

We have seen that it is possible to accomplish a
hydrological study of past and future water resources,
even if very few data are available. Free accessible
data sources, like TMPA estimates, ERA-Interim data
and GCM outputs, combined with a hydrological
model, provide a good basis for building a database
for further studies.
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