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ABSTRACT: Documenting the heterogeneity of rainfall regimes is a prerequisite for water resources management, mitigation
of risks associated to extremes weather events and for impact studies. In this paper, we present a method for regionalization of
rainfall over the Peruvian Pacific slope and coast, which is the main economic zone of the country and concentrates almost 50%
of the population. Our approach is based on a two-step process based on k-means clustering followed by the regional vector
method (RVM) applied to a network of 145 rainfall stations covering the period 1964–2011. The advantage of combining
cluster analysis and RVM is demonstrated compared with just applying each of these methods. Nine homogeneous regions are
identified that depict the salient features of the rainfall variability over the study area. A detailed characterization of the rainfall
regime in each of the identified regions is presented in response to climate variability at seasonal and interannual timescale.
They are shown to grasp the main modes of influence of the El Niño Southern Oscillation (ENSO), that is, increased rainfall
over downstream regions in northern Peru during extreme El Niño events and decreased rainfall over upstream regions along
the Pacific slope during central Pacific El Niño events. Overall our study points to the value of our two-step regionalization
procedure for climate impact studies.
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1. Introduction

Rainfall along the Pacific slope and coast of South Amer-
ica is characterized by a complex pattern of spatial and
seasonal variability related to its meridional extension and
the prominent topography of the Andes Cordillera (Waylen
and Poveda, 2002; Garreaud et al., 2009). The Peruvian
Pacific slope and coast is located at tropical latitudes and
rainfall is mainly influenced by orographic conditions,
ocean and atmosphere. The region is characterized by
a steep topography that inhibits cross-shore atmospheric
flow and disrupt a geotropically balanced zonal wind,
inducing a northward sea level pressure gradient along the
coast that accelerate the wind northward (Muñoz and Gar-
reaud, 2005). Such a low-level northward mean circulation
is associated to cool sea surface temperature (SST) through
inducing upwelling and evaporation, which makes this
region persistently free of convective rainfall year-around
(Takahashi and Battisti, 2007). The Pacific coast of Peru is
thus mostly a ‘dry zone’ that only episodically experiences
rainfall events. At interannual timescales, those rainfall
events are associated to the El Niño Southern Oscillation
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(ENSO) phenomenon that is the main climatic influence
over rainfall over the Peruvian Pacific coast (Lagos et al.,
2008). A rainy season can also be developed owed to a
slight weakening of the southeast Pacific anticyclone and
the southward displacement of the Pacific Inter-Tropical
Convergence Zone (ITCZ) (Lavado et al., 2012).

Although this region concentrates more than 50% of
population of Peru, it remains poorly documented in
terms of rainfall regionalization. Recent works (Suarez,
2007; Lavado et al., 2012; Ochoa et al., 2014; Bourrel
et al., 2015) mostly focused on principal stations or major
watersheds. In 1999, a technical report (BCEOM, 1999)
proposed a previous rainfall regionalization for the Peru-
vian Pacific slope and coast based on the Regional Vector
Method (RVM) (Brunet-Moret, 1979), which consists
in assuming that for the same climatic zone under the
same rainfall regime, the annual rainfall is proportional
in-between stations, with a little random variation due to
rain distribution in the zone (Espinoza et al., 2009). In
that report, nine regions were delineated mainly located
over the northern coastal region.

Multivariate analysis techniques have proved their effi-
ciency to delineate homogeneous regions based on cli-
matic features such as rainfall data. Many authors have
used factor analysis, principal components, clustering
techniques or a mixture of all these techniques, to define
more precisely climatic zones or rainfall regions (e.g.

© 2016 Royal Meteorological Society



144 P. RAU et al.

Ünal et al., 2003; Raziei et al., 2008), to classify rain-
fall stations (e.g. Stooksbury and Michaels, 1991; Jack-
son and Weinand, 1995) and to analyse rainfall variabil-
ity or distribution patterns (Sneyers et al., 1989; Ramos,
2001; Muñoz-Diaz and Rodrigo, 2004; Dezfuli, 2010).
Recently Sönmez and Kömüşcü (2011) proposed a rainfall
reclassification for Turkey based on k-means methodology
highlighting the benefit over prior techniques as region-
alization based on topographic and climatic parameters,
long-term seasonal rainfall patterns (Türkeş et al., 2002)
and hierarchical clustering (Ünal et al., 2003). Sönmez and
Kömüşcü (2011) in particular indicate that their method
is efficient in grasping shifts in time periods. The advan-
tage of using a cluster analysis in the regionalization pro-
cedure stands in the fact that rainfall time series may be
non-stationary and/or non-Gaussian due to the complex of
influence of climate phenomena (Takahashi and Dewitte,
2015). For instance, the ENSO has a strong positive asym-
metry resulting from the fact that strong extreme events are
warm events (An and Jin, 2004; Boucharel et al., 2011),
resulting in a non-Gaussian distribution of most histori-
cal indices (Boucharel et al., 2009). Such non-linearity in
the large-scale circulation over the tropical Pacific is likely
to influence the rainfall over the Peruvian Pacific slope
and coast, which calls for refining regionalization proce-
dures just based on linear techniques (e.g. RVM). This is
one of the main motivations of this work that proposes
to estimate the improvement brought to rainfall region-
alization by applying a hybrid procedure consisting of
a combination of two widely used techniques: k-means
clustering (Hartigan and Wong, 1979) to obtain a coarse
regionalization that is used as first guess in the region-
alization using the RVM. Our aim is also to estimate to
which extent the decomposition of a large complex nar-
row area into a reduced number of homogeneous regions
can grasp the salient features of the ENSO influence onto
rainfall over the Pacific slope and coast of Peru (Horel and
Cornejo-Garrido, 1986; Goldberg et al., 1987; Tapley and
Waylen, 1990; Takahashi, 2004; Nickl, 2007; Lagos et al.,
2008; Lavado et al., 2012; Lavado and Espinoza, 2014;
Bourrel et al., 2015). The identified regions are also aimed
at being used for ecological and water resources manage-
ment and easing the interpretation of the manifestation
of the main climatic modes in the region as described in
Muñoz-Diaz and Rodrigo (2004), Sönmez and Kömüşcü
(2011) and Parracho et al. (2015).

2. Study area

The study area comprises the Peruvian Pacific slope and
coast that covers an area of ∼280,500 km2. This region
borders with the Andes mountains by the east (69.8∘W),
whereas extending west to the Pacific Ocean (81.3∘W).
It borders with Ecuador in the north (3.4∘N) and with
Chile in the south (18.4∘S). Its maximum width, perpen-
dicular to the coastline reaches 230 km in the southern
part and is only 100 km in the northern part. This area is
characterized by a significant altitudinal gradient ranging

from 0 to ∼6500 m asl and includes 54 main river water-
sheds that cover near 90% of this region. The rivers gen-
erally flows from east to west from the Andes towards the
Pacific Ocean with bare and steep slopes that favour sig-
nificant rising, flooding and erosion during highly rainy
episodes (Lavado et al., 2012). On the one hand, under
normal conditions, this region is influenced by the South-
ern Pacific Anticyclone in combination with the Humboldt
current (cold SSTs) which produces dry and stable condi-
tions to the western central Andes, with moist air trapped
below the inversion zone at about 900 hPa–1000 m asl
(Vuille et al., 2000; Garreaud et al., 2002), conditions that
produce extreme aridity until about that altitude (Lavado
et al., 2012). Over this altitudinal limit, it is known that
there is an influence of the southward displacement of the
ITCZ and is supposed that other mechanisms influencing
over the Peruvian Andes, also influence over the Peru-
vian Pacific slope (i.e. humidity transport from the Ama-
zon, Bolivian High, etc.) (Nickl, 2007; Lagos et al., 2008),
nevertheless this has not be studied to date. On the other
hand, this region exhibits greater seasonal and interannual
rainfall variability than the two main others hydrological
regions of Peru: the Amazon and the endorheic Titicaca
drainage areas (Lavado et al., 2012), mainly caused by the
ENSO influence in the northern areas during the rainy sea-
son, with no clear evidence of the ENSO influence for cen-
tral and southern areas (Lagos et al., 2008; Lavado et al.,
2012; Lavado and Espinoza, 2014).

3. Data

3.1. Rainfall dataset

The database includes monthly rainfall records from
139 meteorological stations managed by the SENAMHI
(National Meteorological and Hydrological Service of
Peru) and 6 meteorological stations managed by the
INAMHI (National Meteorological and Hydrological
Institute of Ecuador). It was necessary to extend the area
into the foothills of the northern Andes, which cover
bi-national river watersheds between Peru and Ecuador.
Monthly rainfall data are available over 1964–2011
period. Over the 145 stations, 124 stations are located in
the Pacific slope and coastal region of Peru (see Figure 1)
and 11 belong to the Peruvian Atlantic drainage and 4 to
the Titicaca drainage. A careful quality check of this data
was performed using the RVM. In this dataset containing
145 stations records, 76% of them present more than 45
years of continuous records, 20% of them between 20
and 45 years of continuous records and only 4% of them
between 15 and 20 years of continuous records.

3.2. Sea surface temperature and ENSO indices

We used global values of in situ monthly SST obtained
from the Hadley Centre Global Sea Ice and Sea Surface
Temperature (HadISST) dataset (Rayner et al., 2003) over
1964–2011 time interval at 150∘–0∘E, 25∘S–25∘N of
the Pacific and Atlantic basins, which can be downloaded
at: http://www.metoffice.gov.uk/hadobs/hadisst/data/
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Figure 1. Geographical distribution of stations over the Peruvian Pacific
slope and coast. The contour in black thick line delimits the region
of interest. Rainfall record length of the stations is indicated by the
colours of the dots (five stations are represented by white points and
have between 15 and 20 years of data record, eight by yellow that have
between 21 and 30 years, eight by red that have between 31 and 40
years, eight by orange that have between 41 and 45 years and 95 stations
have more than 45 years of data records, represented by brown points).
A Digital Elevation Model (SRTM – 90 m) shows the topographical

characteristics and altitudes of the study area.

download.html available on a 1∘ × 1∘ grid. The evalua-
tion of the relationship between rainfall variability and
Tropical Pacific SST was conducted by using two oceanic
indices (the E and C indices) proposed in a recent study by
Takahashi et al. (2011). These indices are by construction
independent (orthogonal) and describe the two main
modes of ENSO related to the variability of Eastern equa-
torial Pacific (E) and Central equatorial Pacific (C). These
indices were also used in Lavado and Espinoza (2014)
and Bourrel et al. (2015) for depicting the influence of the
tropical Pacific SST onto rainfall over Peru.

4. Methods

The methodology is composed of three steps summa-
rized in Figure 2: the first one corresponds to the review-
ing of rainfall data, their homogenization by RVM and
the filling of missing monthly rainfall data; the second
one corresponds to the regionalization process including
k-means clustering and RVM analysis using an iterative

process by trial and error with the goal of searching regions
that present similar annual rainfall amount, and interan-
nual variability; and the last one corresponds to a detailed
characterization of the rainfall regime in each region in
response to climate variability at seasonal and interannual
timescales.

4.1. Data homogenization and validation

It was carried out in three steps:

1 The analysis period was chosen to be as long as possible
for a significant number of stations over the Pacific slope
and coast and complementary stations presented in data
section. We also impose that the selected stations should
have at least continuous records longer than 15 years.

2 To evaluate the homogeneity of datasets for identifying
inconsistent information in terms of quality issues as:
station microenvironment, instrumentation, variations
in time and position (Changnon and Kenneth, 2006); we
used here the RVM. It relies on the principle of annual
rainfall proportionality between neighbouring stations
represented as rainfall indexes which characterize the
rainfall pattern of a predetermined area. The RVM is
based on the calculation of an extended rainfall vec-
tor within the study period. This concept refers to the
calculation of a weighted average of rainfall anomalies
for each station, overcoming the effects of stations with
extreme and low values of rainfall. Then, the regional
annual pluviometric indices Zi and the extended average
rainfall Pj are found by using the least squares tech-
nique. This could be obtained by minimizing the sum
of Equation (1).

N∑
i=1

M∑
j=1

(Pij

Pj
− Zi

)
(1)

where i is the year index, j the station index, N the num-
ber of years, and M the number of stations. Pij stands
for the annual rainfall in the station j, year i; Pj is the
extended average rainfall period of N years; and finally,
Zi is the regional pluviometric index of year i. The com-
plete set of Zi values over the entire period is known
as ‘regional annual pluviometric indexes vector’. Being
an iterative process, this method allows to calculate the
vector of each of the predefined regions, then provides
a stations – vector interannual variability comparison, for
finally discards those that are not consistent with the
regional vector (RV). This process is repeated as much
as necessary. See more details of this method in Espinoza
et al. (2009).

3 For the stations that were selected during the homog-
enization process and also had missing monthly data,
once their spatial representation proved significant, were
subjected to a process of information completion. In
this case, this procedure was performed using the values
of rainfall index calculated from the RV and the mean
value of rainfall monthly data of the concerned station.
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Figure 2. Schematic of the methodological steps for the regionalization of the rainfall time series.

A more detailed description can be found in Bourrel
et al. (2015).

Through these three stages, 145 pluviometric stations
were validated. The geographical location of the 124
Peruvian Pacific slope and coastal stations is depicted in
Figure 1, which also mentions the rainfall record length
for each station.

4.2. Classification and regionalization process

In this section, we described the regionalization process
using the RVM approach, which required a first guess
to initialize the process. In this study, this first guess is
obtained performing a k-means clustering as a classifica-
tion of rainfall data from the stations selected in 3.1.

4.2.1. k-Means clustering technique

k-Means clustering is a statistical technique designed
to assign objects to a fixed number of groups (clusters)
based on a set of specified variables. One of the prin-
cipal advantages of k-means technique consists in its
cluster’s identifying performance which allows ranking
the obtained clusters as a function of their representa-
tiveness. The process involves a partitioning schema into
k different clusters previously defined. Objects that are
within those k clusters must be as similar as possible
to those that belongs to its own group and completely
dissimilar to the objects that are in the other clusters.
Similarity depends on correlation, average difference
or another type of metrics. By definition each cluster
is characterized by its own centroid with the cluster
members located all around it. The algorithm used
at annual rainfall timescale was the Hartigan–Wong

which adopts the squared Euclidean distance as a
dissimilarity measurement. See more details of this
method in Hartigan and Wong (1979).

A key part of the k-means application is to define an
optimum number of clusters. In order to succeed in the
definition of partitioning groups, an estimation of the sil-
houette number must be performed for each desired num-
ber of groups. The silhouette width is used to evalu-
ate the statistical significance of each identified cluster
(Rousseeuw, 1987). The silhouette value is obtained fol-
lowing Rousseeuw (1987) as:

S (i) =
min {b (i, k)} − a (i)

max {a (i) ,min (b (i, k))}
(2)

where a(i) corresponds to the average similarity between
the ith object and the other objects of the same group and
b(i,k) is the average similarity between the ith object and
the members of the kth clusters. The range of variation
for this silhouette index is between −1 and +1, when the
silhouette value is close to +1 means that there is a better
member correspondence to its own cluster, whereas a
negative value represents the object this is not well located
in the appropriate cluster. Meanwhile the value of 0 means
that objects could belong to any k cluster. We also compute
an average silhouette width for the whole k clusters which
represents the mean of S(i), and it can be used to choose
the best number of clusters, by taking the value of k for
which S(i) is maximal.

4.2.2. Regionalization analysis

There are classical ways to predefine regions; it can be
based on stations proximity and homogeneity, physio-
graphic patterns or topographical constraints related to iso-
hyets (Espinoza et al., 2009; Bourrel et al., 2015). Here,
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rainfall stations grouped by k-means clustering are set up
as predefined regions. The criteria for using k-means clus-
tering as first step of regionalization is based on the advan-
tages in time solving and the preset number of groups at
the beginning of the process whilst RVM requires defin-
ing the stations grouped into a predefined region, being a
long and exhaustive methodology if it is not provided an
accurate number of groups.

Regionalization was performed using the RVM, which
is generally oriented to: (a) assess rainfall data quality
based on the homogeneity within a predetermined region
(Espinoza et al., 2009) and (b) achieve rainfall region-
alization processes (establishment of representative vec-
tors of homogeneous rainfall zones) to gather the stations
exhibiting the same interannual variability. The process
for regionalization is similar to the process explained in
Section 4.1 (item 2). It depends on the computation of a
‘mean station’ or ‘vector’ from all data involved in the
study area that will be compared with each pluviometric
station (Brunet-Moret, 1979). Prior to the use of the RVM,
it is necessary to group stations into predefined regions.

Once calculated, the RV is compared iteratively with
data station for discarding those stations whose data are
not consistent with the RV and reprise the process. The
rejection of a given station could mean that this station
belongs to a neighbouring region that could present greater
consistency. Therefore in many cases, stations or areas
are re-grouped or divided in order to obtain regions that
show homogeneous features. The main statistical crite-
ria for regrouping stations into homogeneous regions is
based on thresholds applied to the standard deviation of
the differences between annual pluviometric indices of sta-
tions and the RV indices; and to the correlation coefficient
between RV and annual pluviometric values of stations.
These thresholds are fixed to the standard deviation lower
than 0.4 and correlation coefficient greater than 0.7. Rain-
fall database management and RVM were carried out using
the HYDRACCESS software (Vauchel, 2005).

4.2.3. Rainfall data interpolation

After regionalization based on punctual information (i.e.
rainfall stations), it was done a rainfall spatialization by
isohyets allowing to delimit polygonal regions. Annual
rainfall was interpolated incorporating elevation data using
the co-kriging classical geostatistical approach, which is
widely used in the hydrometeorological field (Goovaerts,
2000; Diodato, 2005; Buytaert et al., 2006). Co-kriging,
which is a multivariate version of kriging technique,
took into account the digital elevation model (DEM)
provided by NASA-NGA, Shuttle Radar Topographic
Mission (SRTM – 90 m) data (http://srtm.csi.cgiar.org)
as correlated secondary information based on a spherical
variogram (Goovaerts, 2000; Mair and Fares, 2011). This
rainfall interpolation map was used as a background raster
guide for delineating polygonal regions involving the sta-
tion points grouped with regionalization analysis. These
polygons follow the isohyets shape with geometrical
approach (perpendicular and bisector criteria of bound-
aries of regions traversing isohyets and stations) and a

statistical approach (revalidation of new defined areas with
the RVM with proper fit of stations inside each region).

Finally, representative monthly rainfall time series of
each region were obtained with the co-kriging methodol-
ogy because of better performance than other techniques
(e.g. Thiessen Polygons, Inverse Distance Weighted
and Kriging) over mountains areas (Hevesi et al., 1992a,
1992b; Goovaerts, 2000; Diodato, 2005). Time series were
assigned to centroids as representative points for obtain
mean latitude, longitude and altitude of each region.

4.3. Rainfall variability and sea surface temperature
anomalies

In order to investigate the relationship between rain-
fall and ENSO, a covariance analysis (i.e. singular
value decomposition – SVD) is used, which con-
sists in deriving the eigenvectors and eigenvalues
of the covariance matrix between rainfall anomalies
(December–January–February–March–April mean)
over the Peruvian Pacific slope and coast and the
SST anomalies over the Pacific and Atlantic basins
(December–January–February mean) that maximizes
the fraction of the cumulative squared covariance (Yang
and Lau, 2004). Data were previously detrended in the
period 1964 to 2011. More details and comments about
this technique can be found in Bretherton et al. (1992)
and Cherry (1997). In order to provide an estimate of the
statistical significance of the SVD modes, a Monte–Carlo
test is performed that consists in creating a surrogate data,
a randomized dataset of rainfall and sea surface temper-
ature by scrambling 40 yearly maps among the 48 years
in the time domain. The SVD is then performed on the
scrambled dataset. The same procedure of scrambling the
dataset and performing the analysis is repeated 500 times,
each time keeping the value of the explained covariance
of the first two dominant modes and comparing the SVD
modes of the original dataset and the ones of the scram-
bled dataset. The method is described in Björnsson and
Venegas (1997). The 90% confidence level of the mode
patterns is defined so as to the 10 and 90% percentiles
of the ensemble correspond to a value that differs from
the estimated mode by less than 0.5 times the standard
deviation among the ensemble.

5. Results

5.1. Rainfall classification

A cluster analysis of the annual rainfall data was performed
by applying k-means technique on the 124 rainfall stations
previously selected. The optimal value for the cluster
numbers was determined by an average silhouette value
and a negative silhouette number for a number of cluster
groups varying from 3 to 10 (see Table 1).

Maximum silhouette values are obtained for cluster 3
group (0.64), cluster 4 group (0.60) and cluster 6 group
(0.55), considering as a reasonable structure a cluster hav-
ing a silhouette value greater than 0.50 and as a weak struc-
ture a silhouette value less than 0.50 following Kononenko
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Table 1. Results of the k-means analysis for number of cluster
groups varying from 3 to 10.

Number of
cluster groups

3 4 5 6 7 8 9 10

Average
silhouette value

0.64 0.60 0.54 0.55 0.54 0.54 0.46 0.45

Negative
silhouette
number

6 4 9 6 8 6 11 9

Optimal values for selecting the number of cluster groups are shown in
bold.

and Kukar (2007). The number of negative silhouette val-
ues is minimal for cluster 3 group (6), cluster 4 group
(4) and cluster 6 group (6). After plotting the cluster
groups into a map showing their spatial distribution, we
select the cluster 3 and cluster 6 groups among them, as
these two clusters show certain arrangement of rainfall sta-
tions according to topographical and latitudinal variation
(Figure 3(a) and (b)). Cluster 4 group was an intermediate
group that corresponds to one sub-region in the north.

The two cluster groups (clusters 3 and 6) exhibit a sim-
ilar spatial distribution. Pluviometric stations from both
groups present an altitudinal distribution along the Pacific
slope and coast, defining three regions: the stations located
in lowlands (green triangles), in middle altitude basin
(white circles) and in highlands (black points). Cluster
6 group presents three additional regions, two of them
closely related to northern rainfall features for the middle
altitude basin (cluster 4 of cluster 6 group represented by
red triangles) and highlands (cluster 6 of cluster 6 group
represented by yellow circles). Two stations are considered
as isolated (cluster 5 of cluster 6 group represented by blue
circles).

Even if cluster 6 group is less representative than cluster
3 group in terms of silhouette value, cluster 6 group is con-
sidered acceptable for representing correctly the variability
of northern rainfall, offering an initial classification of rain-
fall or initial approach of rainfall regionalization over the
Peruvian Pacific slope and coast.

5.2. Regionalization

After cluster definition, the RVM was performed over
these preliminary regions using an iterative process by trial
and error, that adds and deletes stations from neighbouring
regions considering the criteria described in Section 4.2.2.
This process could be also verified by their interannual
coefficient of variation (CV). In Figure 4, the stations
located in the western area of the coast (lowlands) present
greater values of CV (>1.8) than those located in middle
altitude basin and in highlands. Northern region presents
higher CV values in lowlands and in the middle altitude
basin. Highlands present lower CV values (<0.8) along the
Pacific slope independently of the latitude.

High CV values in the northern region correspond
to strong interannual rainfall variability with anomalies
greater than 1000 mm year−1. High CV values are also
observed along southern latitude which are mostly caused

by small values around the near zero annual average. These
values are due to the large-scale mid-tropospheric sub-
sidence over the southeastern subtropical Pacific Ocean,
enhanced by the coastal upwelling of cold water (Enfield,
1981; Virji, 1981; Vuille et al., 2000; Garreaud et al.,
2002; Lavado et al., 2012).

Based on the iterative process of the RVM, we iden-
tify nine homogeneous rainfall patterns (see Figure 5).
Comparing with the initial cluster groups derived from
k-means, rainfall stations from clusters 1, 2 and 4 located
in the coastal zone and northern Andes (see Figure 3(b))
exhibit higher coefficients of variation in coastal proxim-
ity (see Figure 4). Cluster 1 includes the regions 1, 4 and
7 along the coastal zone. Cluster 4 defines region 2: in this
case, clustering process successfully assigned each station
as well as RV reported them as separate from other regions.
Cluster 5 and 6 are regrouped into region 3. Finally, cluster
3 defines regions 5, 6, 8 and 9: in this case, the low variabil-
ity, their high altitude as the latitudinal extension, defines
these four regions.

k-Means methodology and RVM did not provide a final
regionalization by their own. For clustering method, some
groups are not well defined because of isolated stations to
be included in other groups, associated to low silhouette
values (see cluster 2 from cluster 3 group in Figure 3(a) and
clusters 2, 3 and 6 from cluster 6 group in Figure 3(b)). This
can be explained by the characteristics of the annual rain-
fall database used, related to the presence of non-globular
clusters with a chain-like shape or with not well defined
centres (see regions 3, 8 and 9 in Figure 5), which are one
of the principal disadvantages using this technique (Kauf-
man and Rousseeuw, 1990). For the RVM, it is possible to
obtain grouped regions following only the statistical crite-
ria with the thresholds presented in Section 4.2.2.. How-
ever, there is the risk of increasing computing time and
obtaining unrealistic groups because of using only a statis-
tical criteria and not an initial arrangement inferred in this
case from the k-means clustering. k-Means inferred three
regions for lowlands, middle altitude basin and highlands
(see Figure 3(b)) as a first guess to the final regionalization
by the RVM in the north (see regions 1, 2 and 3 in Figure 5)
and in the south (see regions 7, 8 and 9 in Figure 5), which
it not was possible to identify using only the RVM (not
shown). The two-step methodology (k-means and RVM)
has also presented a slight improvement in the thresholds
of Section 4.2.2. with respect to the thresholds obtained
with RVM only, with about +6% for the standard deviation
of the differences between annual pluviometric indices of
stations and the RV indices (from 0.39 to 0.42); and about
+0.5% for the correlation coefficient between RV and
annual pluviometric values of stations (from 0.78 to 0.79).

Following the approach summarized in the flow chart
presented in Figure 2 and applying the methodology
described in Section 4.2.3.; the nine regions were well
delineated taking into account the rainfall interpolation
map as shown in Figure 5. Annual rainfall in each region
exhibits a relationship with altitude and latitude, rainfall
is higher at low latitudes and at southern latitudes in high
altitudes as shown in Figures 5 and 6.
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Figure 3. Spatial distribution of (a) cluster 3 group and (b) cluster 6 group obtained with the k-means process. Silhouette value for each cluster group
is provided in the bottom panels.

Correlation coefficient between the stations and the
regional vector of each region was calculated separately
and the spatial distribution of these coefficients of correla-
tion is shown in Figure 7. The purpose of this analysis is to
emphasize the level of representation of the regional vec-
tor and identify locally the areas within a region where this
vector is more representative. Considering regions 4 and
7, the coefficient of correlation is less than 0.7 and greater

than 0.5. These coefficients are considered as acceptable
considering the dryer conditions with more than 90% of
the rainfall records near zero throughout the year due to
hydroclimatic features, where any value greater than zero
causes a strong variability reducing the relationship with
its RV. For the northern regions 1 and 2, the mean cor-
relation is more than 0.9 being a very good representa-
tion of RV and the more representative areas are shown
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in red coloration. The strong correlation values are due to
extreme rainfall events related with ENSO strong events
increasing the association level between stations and RV.
Regions 3, 5, 6, 8 and 9 located in highlands, have correla-
tions greater than 0.7 being a good representation of the RV
with the more representatives areas in orange coloration.

5.3. Regions characterization

In this section, we document the rainfall seasonal distri-
bution and interannual variability over the nine identified
regions. Some of geographical features (area, latitudi-
nal and altitudinal ranges) are presented in Table 2. All
regions present a unimodal rainfall seasonal distribution
(see Figure 8) and differ from their peak calendar month,
intensity and duration of the rainy season.

Region 1 extends over northern lowlands includ-
ing drier areas as the Sechura desert (79∘–81∘W and
5.5∘–6.5∘S) where the average interannual rainfall is
about 90 mm year−1. A maximum seasonal rainfall is
observed in March (see Figure 8(a)1) with a rainy season
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Figure 5. The nine homogeneous rainfall regions after the regionaliza-
tion process of clustering and RVM. Interpolated surface of annual rain-
fall (isohyets obtained using co-kriging method) is also shown to demon-

strate rainfall differences between regions.

from January to May (JFMAM) with values less than
50 mm month−1 which represent near to 90% of the
annual rainfall. The rest of the year is considered as dry
due to values near or equal to zero, corroborating the irreg-
ularity in the seasonal rainfall pattern (see Figure 8(a)1)
and in the interannual variability of monthly rainfall (see
Figure 8(a)2) at the coast (Garreaud et al., 2002; Lavado
et al., 2012).

Region 2 comprises a large part that belongs to the
foothills of the northern Andes covering bi-national river
watersheds of Peru and Ecuador. This zone exhibits an
irregular seasonal rainfall pattern (see Figure 8(b)1) and
an irregular interannual variability of monthly rainfall
(see Figure 8(b)2). Average interannual rainfall value is
around 370 mm year−1. The wettest period occurs between
January and April (JFMA) cumulating near to 90% of total
rainfall.

Northern coastal regions as regions 1 and 2 are sig-
nificantly affected by strong events represented by
two peaks reaching 413 mm month−1 in March 1983
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and 299 mm month−1 in March 1998 for region 1 (see
Figure 8(a)2); and 746 mm month−1 in March 1983
and 708 mm month−1 in March 1998 for region 2 (see
Figure 8(b)2). A summary of rainfall statistics is given in
Table 2 and a boxplot representation of monthly rainfall
in Figure 9. Outliers from Figure 9, represented by small
circles, correspond to values exceeding 1.5 times the
interquartile range (IQR). All regions have observations
that exceed Q3+ 1.5(IQR), however, northern coastal
regions 1 and 2 differs from the rest for having greater
number of outliers values (14 and 17%, respectively) with
the largest rainfall anomalies reaching 56 and 25 times of
mean monthly rainfall for regions 1 and 2, respectively.
Most of the interannual variability in rainfall, reflected
as well in higher CV values (see Table 2), is directly due
to the occurrence of the strong El Niño events indicating
also a high intensity of interannual variability than other
regions. This is particularly obvious for region 1 where
three extreme rainfall events are observed corresponding
to the year 1972, 1982 and 1997, known as strong El
Niño years. Interestingly the more inland region 2 exhibits
interannual variations of rainfall that does not necessarily
corresponds to the strong El Niño years. These events may
correspond to local convective events associated to coastal
warm oceanic conditions related mainly to Kelvin waves
and the Madden and Julian Oscillation (MJO) (Woodman,
1985; Bourrel et al., 2015).

Region 3 covers bi-national river watersheds of Peru
and Ecuador bordering with the Amazon Basin by the
east. This is also the wettest region (see Figures 8(c)1,
(c)2 and 9). On the other hand, rainfall amount decreases
southward with rainfall regularity in the seasonal pattern
(see Figure 8(c)1) and in the interannual variability of
monthly rainfall (see Figure 8(c)2), with a rainy season
from January to April (JFMA) that represents almost 70%
of the annual rainfall. Mean interannual rainfall reaches
1024 mm year−1, representing 11 times of the mean inter-
annual rainfall of region 1 and 3 times of region 2 (see
Table 2). The rainfall interannual variations are weakly
associated to the extreme El Niño events (the correlation

between the E index and rainfall is 0.2) but is negatively
correlated to the C index (r =−0.4) indicating that the
R3 region is sensitive to cool enhanced coastal conditions
during Central Pacific El Niño events (Bourrel et al.,
2015). The inter-events fluctuations are also noticeable
which are related to local convective events not related
to ENSO but mostly by the ITCZ and the large-scale
atmospheric variability associated to the MJO (Tapley
and Waylen, 1990; Takahashi, 2004; Bourrel et al., 2015).
Also noteworthy, there is an increase of rainfall peaks
frequency over the last two decades (see Figure 8(c)2).

Region 4 is the longest region located between the
coastal plain and the foothills of the western Andes and
contains some of the major coastal cities as the capital
Lima. This region corresponds to a zone influenced by
the large-scale mid-tropospheric subsidence of the south-
eastern subtropical Pacific Ocean, enhanced by the coastal
upwelling of cold water (Vuille et al., 2000; Garreaud
et al., 2002; Lavado et al., 2012) without presenting a rela-
tionship between strong rainfall peaks and strong ENSO
events. Then, mean interannual rainfall reaches a value
of 16 mm year−1 defining the driest region in the coun-
try (see Table 2) with rainfall irregularity in the seasonal
pattern (see Figure 8(d)1) and in the interannual variabil-
ity of monthly rainfall (see Figure 8(d)2) very common in
coastal regions (see Figure 9). The wet period from Jan-
uary to March (JFM) represents near to 75% of the annual
rainfall. In the southern part, drier areas are found such as
the Nazca desert (74.5∘–75.5∘W and 14.5∘–15.5∘S).

Region 5 comprises a border with region 3 and the
Amazon Basin by the east. The mean interannual rainfall
reaches 492 mm year−1 and the wet period occurs between
December and April (DJFMA) cumulating near to 80%
of total rainfall. No rainfall peaks were identified during
strong El Niño events (see Figure 8(e)2) as those in regions
1 and 2, suggesting that rainfall in regions 4 and 5 are prob-
ably to be affected by others processes, either local (e.g.
coastal SST) or non-local (e.g. dry air transport from the
southern region that reduce the rainfall), resulting in a het-
erogeneous interannual variability of monthly rainfall (see
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Figure 8(e)2) with a low value of coefficient of variation
around 0.3 (see Table 2).

Region 6 borders with the Amazon Basin by the east
and shows a heterogeneous rainfall pattern without
distinguishing any peak corresponding to the strong El

Niño events (see Figure 8(f)2). Rainfall distribution is
well defined with a rainy season from December to March
(DJFM) that represents near to 85% of the annual rainfall
(see Figure 8(f)1) and with a mean interannual rainfall
reaching 366 mm year−1.
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Table 2. Geographical features and annual rainfall values for the nine identified regions.

Region Area
(km2)

Altitudinal
range (m asl)

Latitudinal
range (∘S)

Annual minimum
rainfall

(mm year−1)

Annual maximum
rainfall

(mm year−1)

Annual average
rainfall

(mm year−1)

CV SD
(mm year−1)

1 20 300 0–500 4.2–7.3 3.2 1345.2 89.7 2.6 233.3
2 27 600 0–1500 3.4–7.3 17.3 2772.2 366.5 1.5 534.2
3 27 200 1500–3500 3.6–8.3 533.0 1812.9 1023.7 0.3 294.4
4 48 600 0–1500 7.3–15.5 1.6 62.2 15.5 0.7 11.4
5 32 500 1000–5000 7–11 174.1 825.8 492.4 0.3 145.8
6 30 400 2000–5000 11–15 75.0 693.5 365.9 0.4 133.3
7 49 300 0–2500 15.5–18.4 5.1 54.9 23.2 0.6 13.5
8 25 400 2500–4000 14.6–17.8 23.2 528.8 296.1 0.4 111.8
9 30 100 3500–5500 14.4–17.7 220.5 833.2 594.0 0.2 143.2

Region 7 is characterized by lower rainfall regime
with a rainy season from JFM accounting for 65% of
the annual rainfall. Furthermore, this region is one of the
driest areas in the country where the interannual rainfall
(23 mm year−1) presenting rainfall irregularity in the
seasonal pattern (see Figure 8(g)1) and in the interannual
variability of monthly rainfall (see Figure 8(g)2). This
region could be considered as an extension of region 4,
also influenced by the large-scale mid-tropospheric sub-
sidence of the southeastern subtropical Pacific Ocean but
differing in the increase of rainfall peaks frequency in the
last decade unlike region 4 as can be seen in Figure 8(g)2.

Region 8 comprises an area thus belongs to the foothills
of the southern Andes. This zone exhibits irregular rainfall
in the seasonal pattern (see Figure 8(h)1) and in the inter-
annual variability of monthly rainfall (see Figure 8(h)2).
The mean interannual rainfall presents a higher value
than region 7, reaching 296 mm year−1. The wettest period
occurs between December and March (DJFM) cumulating
near to 90% of total rainfall (see Figure 8(h)1).

Finally, region 9 borders with the Titicaca Basin in the
south and east and with the Amazon Basin by the east. The
mean interannual rainfall reaches 594 mm year−1 and the
wet period occurs between December and March (DJFM)
cumulating near to 80% of total rainfall. Similar to region
8, region 9 presents a deficit in rainfall during strong El
Niño events (see Figure 8(h)2 and (i)2). However, unlike
region 8, it presents rainfall regularity in the seasonal pat-
tern (see Figure 8(i)1) and in the interannual variability of
monthly rainfall (see Figure 8(i)2) associated with a low
value of coefficient of variation around 0.2 (see Table 2)
indicating also the lowest intensity of interannual variabil-
ity. Up to this point, we propose a co-variability analysis
between rainfall and tropical SST (see paragraphs below)
to deepen the understanding of the relationship between
regions and ENSO. Other climatological variables men-
tioned in Section 2 will need further research and are out
of scope of this work.

In order to estimate the value of the regionalization
for interpreting the impact of climatic variability over
rainfall along the Pacific slope and coast of Peru, a
covariance analysis is performed between the rainfall
time series of the nine regions and the SST anoma-
lies over the Tropical Pacific and Atlantic Oceans.

For clarity, the SST anomalies are considered for the
peak ENSO season (i.e. December–January–February
mean, hereafter DJF) whereas the rainfall fluctuations
are considered for the approximate rainy season (i.e.
December-January-February-March-April season, here-
after DJFMA). The results of the covariance analysis
(see Section 4.3 for details) are presented in Figures 10
and 11, showing the patterns and time series of the first
(Figure 10) and second (Figure 11) SVD modes between
SST in the tropical Pacific and Atlantic over DJF and
rainfall over the regions over DJFMA. Values of the
mode patterns, significant at the 90% level, are indicated
by the colour shading (Figures 10(b) and 11(b)) and
the red colour (Figures 10(a) and 11(a), see method in
Section 4.3). The results indicate a significant relationship
between both fields because the percentage of covari-
ance is 66% and 23% for the first and second modes,
respectively, and the associated time series of the mode
patterns are significantly correlated [r value reaches 0.59
(0.54) for mode 1 (2) in Figure 10(c) (Figure 11(c)),
respectively]. The first mode for SST accounts for the
strong eastern Pacific El Niño variability as suggested by
the large positive skewness of the principal component
time series associated to the two strong El Niño events of
1997/1998 and 1982/1983. The correlation between the
time series associated to the SST mode pattern and the
E index reaches 0.80. The second mode is reminiscent
of the central Pacific El Niño variability because it has a
strong positive loading near the deadline. Its associated
principal component time series is strongly correlated to
the C index reaching a correlation of 0.96, significant at
the 95% level. Interestingly the time series associated to
the first mode for SST is also highly correlated with the
C index (r = 0.73), which indicates that extreme rainfall
events are related to both the E and C modes. It explains
in particular why the SST mode pattern has a significant
loading in the central Pacific which is not the case for the
E mode pattern with is more confined towards the coast of
Ecuador (see Takahashi et al., 2011).

The analysis of the mode patterns for rainfall clearly
indicates that the first mode accounts for extreme rain-
fall events in the northern part of Peru (regions 1 and 2)
whereas the second mode pattern has a larger loading (neg-
ative value) for the upstream regions (region 3, 6, 8 and
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9), clearly indicative that during central Pacific El Niño
events, the Pacific slope of Peru experiences a deficit in
rainfall that increases with altitude. Note that this analy-
sis is consistent with results from previous works (Lavado
and Espinoza, 2014; Bourrel et al., 2015), which anal-
ysed the relationship between E and C indices and stations
over the Peruvian territory and over the North to Centre
of the Peruvian Pacific coast and slope, respectively. We
here provide a more quantitative estimate of this relation-
ship through the covariance analysis, which indicates its
potential for climate impact studies. In particular, the SVD
modes would allow building a linear statistical model of
rainfall over the Peruvian Pacific coast using SST as a

predictor. The regionalization procedure prior to conduct-
ing the SVD analysis is also valuable in easing the inter-
pretation of the ENSO impact on rainfall, in particular, by
avoiding probable spurious effects associated to outliers or
multiple atmospheric influences. Another important result
arising from this analysis is that the extreme rainfall events
over the Peruvian Pacific coast are not solely influenced by
extreme El Niño events (accounted for by the E mode) but
are also influenced by SST in the central equatorial Pacific,
as evidenced by the strong correlation between the princi-
pal component of the first SVD mode for SST and the C
index. This suggests that the magnitude and location along
the equator of the SST anomalies in the central Pacific are
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Figure 11. Same as Figure 10, but for the second SVD mode.

important parameters to determine the ENSO impact of
rainfall over the Peruvian Pacific coast.

6. Conclusions

This study proposes a method for the regionalization of
the rainfall in the Peruvian Pacific slope and coast that
consists in a two-step procedure: a preliminary cluster
analysis (k-means) followed by the RVM analysis. Using
this procedure, nine regions are identified that depicts
synthetically the relationship between rainfall variability
and altitude and latitude. In particular, rainfall variability
is higher at the northern latitudes and it decreases to the
south in high altitudes. The motivation for performing a
classification using cluster analysis prior to the region-
alisation by RVM stands in the complex of processes
influencing rainfall variability over this region. In particu-
lar, previous studies (Lavado and Espinoza, 2014; Bourrel
et al., 2015) have shown that rainfall along the Pacific
slope and coast of Peru experiences the influence of both
type of El Niño, and due to the strong positive skewness
of strong El Niño events, the distribution of rainfall data is
not Gaussian, limiting to some extents the linear analysis
approach (i.e. RVM). It was in particular verified that
our approach leads to a different definition of the regions
than an approach based only on RVM. We inferred three
regions for lowlands, middle altitude basin and highland
in the northern and southern Pacific slope and coast, which
was not possible to identify using the method based on
the RVM only. The k-means clustering analysis allows
for a preliminary grouping of station data that is used as
a first guess for the RVM and this step constrains to a
large extend the regionalization procedure. The proposed
two-step methodology also leads to a slight improvement
in the thresholds estimated with the RVM only.

The nine identified regions are shown to grasp the
salient features of the influence of ENSO onto rainfall
along the Pacific slope and coast of Peru (Horel and
Cornejo-Garrido, 1986; Goldberg et al., 1987; Tapley and
Waylen, 1990; Takahashi, 2004; Nickl, 2007; Lagos et al.,
2008; Lavado et al., 2012; Lavado and Espinoza, 2014;
Bourrel et al., 2015), which illustrate its potential for
climate impact studies. The dominant co-variability mode
between SST in the tropical Atlantic and Pacific Oceans
and the reduced set of time series associated to the nine
regions has a strong positive loading over the northern part
of Peru (regions 1 and 2) for precipitation and over the
eastern tropical Pacific for SST, thus accounting for
extreme El Niño events. On the other hand, the second
mode pattern has a larger loading (negative value) for
the upstream regions along the Pacific slope (region 3,
6, 8 and 9), clearly indicative that during central Pacific
warming, these regions experience a deficit in rainfall that
tends to increase with altitude (more negative in the north
than in the south). This is consistent with Lavado and
Espinoza (2014) which analysed the relationship between
the two types of ENSO and stations over the Peruvian
territory, while providing a more synthetic picture of the
ENSO influence. In addition, the first co-variability mode
between rainfall and SST indicates that extreme rainfall
events take place in the North (regions 1 and 2) and are
influenced by SST anomalies in the central Pacific (i.e.
SST anomalies that project on the C mode), which was not
identified in previous works. We attribute this discrepancy
between our result and the one by Lavado and Espinoza
(2014) to the regionalization procedure that we perform
prior to the statistical analysis with ENSO indices. In par-
ticular, our regionalization product accounts exclusively
for rainfall variability over the Peruvian Pacific continental
slope and coast, and is not influenced by stations located
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at high-altitude regions that might be influenced by inland
circulation patterns. The regionalisation procedure has
also the advantage of reducing the influence of outliers in
the covariance analysis.

Future work will be dedicated to further investigate the
ENSO/rainfall relationship based on the nine identified
regions, incorporating other atmospheric and oceanic key
indices (cf. Bourrel et al., 2015). Our product will also
provide valuable information for hydrological sensitivity
analysis over Peruvian Pacific watersheds (through hydro-
logical modelling) for quantifying the effects of climate
variability and human activities on runoff with the aim of
improving ecological and water resources management.
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