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1. Introduction
Glycyrrhiza species are members of the family Fabaceae. 
Glycyrrhiza is an important medicinal plant and contains 
glycyrrhizin, a glycoside making it sweeter than sugar. 
The roots of licorice are traditionally used for prolonging 
lifespan, improving health, detoxification, and cures 
for injury and swelling in China (Nomura and Fukai, 
1998). In addition to its pharmaceutical uses, licorice 
is also a drought-tolerant and deep-rooted plant and 
very important for wind breaking, sand fixing, and soil 
formation in semiarid ecosystems (Zhang and Ye, 2009). 
It has also been used in the tobacco, wine, cosmetics, 
beer, cola, and sweetener industries (Yao et al., 2008). 
There are 30 Glycyrrhiza species in the world, of which 
8 taxa are found in Turkey (Akan and Balos, 2008; Asl 
and Hosseinzadeh, 2008). Sumbul et al. (2003) reported 
that G. asymmetrica Hub.-Mor.; G. iconica Hub.-Mor.; 
G. flavescens Boiss. subsp. flavescens; G. flavescens Boiss. 
subsp. antalyensis Sümbül, Tufan, O.D.Düșen & Göktürk; 
G. aspera Pall.; G. echinata L.; G. glabra L. var. glabra; and 
G. glabra L. var. glandulifera (Waldst. & Kit.) Galushko are 
found in Turkey and the first 3 of these species are endemic 
to Turkey. In general, G. glabra L. is cross-pollinated and 

has a diploid (2n = 16) genome (Darlington and Wylie, 
1955; Mehrotra et al., 2012). 

Most medicinal plant species are harvested from the 
wild and extensive usage has led to endangerment or 
even extinction of some species (Schippmann et al., 2002; 
Larsen and Olsen, 2007). Conservation of medicinal 
plants is an important part of biodiversity conservation 
(Kate and Laird, 1999). Because of great market demand, 
the wild sources of this species are much reduced and 
the conservation of wild populations becomes urgent 
(Zhang et al., 2006; Zhang and Ru, 2010). Conservation 
of medicinal plants is a main concern of environmental 
policies in many countries and regions. 

Divergence of wild populations has been successfully 
identified using molecular tools such as DNA markers. 
Molecular genetic diversity studies for Glycyrrhiza species 
were performed with random amplified polymorphic 
DNA (RAPD) (Khan et al., 2009), inter-simple sequence 
repeat (ISSR) (Yao et al., 2008), and amplified fragment 
length polymorphism (AFLP) (Zhang et al., 2010) 
markers. Yamazaki et al. (1994) used RAPD and restriction 
fragment length polymorphism (RFLP) analyses to 
determine genetic relationships among Glycyrrhiza species 
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and found that G. glabra L. and G. uralensis Fisch. ex DC., 
which are richer in glycyrrhizin, are more closely related 
than G. echinata L. and G. pallidiflora Maxim. Although 
there are several studies dissecting the Glycyrrhiza genome 
with DNA markers systems such as RFLP, RAPD, and ISSR 
(Heubl, 2010), there are limited numbers, if any, of studies 
using simple sequence repeat (SSR) markers. SSR markers 
are known to be more polymorphic and render more 
consistent results than the other marker types indicated 
above. However, developing SSR markers is costly. SSR 
markers are known to be transferred across species and 
are widely used to detect genetic diversity in various crop 
plants (Lichtenzveig et al., 2005). For example, 39 highly 
polymorphic SSR markers were transferred to blackgram 
(Vigna mungo L. Hepper) from other food legumes (Gupta 
et al., 2013). Additionally, Medicago SSRs were transferred 
to the Trifolium repense L. genome and a genetic map was 
constructed accordingly (Demdoum et al., 2012). 

The objective of this study was to explore the 
transferability of SSR markers from Medicago truncatula 
Gaertn., Phaseolus vulgaris L., and Cicer arietinum L. 
genomes to distantly related Glycyrrhiza species found 
in the East Mediterranean region. Therefore, more 
consistent relationships among Glycyrrhiza species will be 
established.

2. Materials and methods
2.1. Plant material
The three species of Glycyrrhiza used in this study were 
collected from Hatay Province (East Mediterranean 
region) in Turkey. These were G. glabra L. var. glandulifera 
(Waldst. & Kit.) Galushko, G. echinata L., and G. 
flavescens Boiss. subsp. flavescens. Including the endemic 
G. flavescens, these 3 species are widespread in the East 
Mediterranean region. For genomic comparisons, legume 
species, including M. truncatula Gaertn. obtained from 
the US National Plant Germplasm System (NPGS; PI 
190083), P. vulgaris L. (cv. Terzibaba), and C. arietinum 
L. (cv. Gökçe), were germinated and tissue samples were 
collected when the plants were 3 weeks old. The donor 
legume seeds were kindly provided by Dr Cahit Erdoğan 
of the Mustafa Kemal University Agricultural Faculty, 
Hatay, Turkey. All tissue samples were preserved at –80 °C 
until analyses were performed.
2.2. Amplification of SSRs 
From the published reports, a total of 127 SSR primers 
previously developed and assayed for bean, chickpea, 
and barrel clover were utilized to determine whether SSR 
primers of such distantly related species are transferable 
to G. glabra, G. echinata, and G. flavescens genomes. Of 
those, we used 27 primers from common bean BM, BMD, 
PV, and GATS primer sources (Yu et al., 2000; Blair et 
al., 2003); 36 primers from chickpea NCPGR, TA, TAA, 

TR, and TS primer sources (Winter et al., 1999); and 64 
primers from barrel clover MTIC, AW, AJ, AW, CaSTMS, 
and CB primer sources (Julier et al., 2003; Chandra, 
2011). In addition to the primers depicted in Table 1, P. 
vulgaris markers such as PV-tttc001, PV-at001, PVBR14, 
BMd-1, BMd-15, BMd-18, BMd-42, BM154, BM160, 
BM161, BM175, BM183, BM187, BM188, BM199, 
BM200, BM209, BM210, BM211, GATS91, BM053, 
BM114, BM137, and BM143; C. arietinum markers 
such as CaSTMS15, CaSTMS2, CaSTMS21, NCPGR12, 
NCPGR19, NCPGR4, NCPGR6, TA113, TA117, TA118, 
TA130, TA135, TA14, TA142, TA200, TA206, TA21, TA22, 
TA27, TA28, TA46, TA64, TA72, TA76S, TAA58, TR2, 
TR29, TR31, TR43, TR7, and TS84; and M. truncatula 
markers such as MTIC12, MTIC14, MTIC19, MTIC21, 
MTIC210, MTIC237, MTIC238, MTIC248, MTIC251, 
MTIC258, MTIC27, MTIC273, MTIC289, MTIC299, 
MTIC304, MTIC314, MTIC318, MTIC331, MTIC338, 
MTIC339, MTIC345, MTIC347, MTIC35, MTIC354, 
MTIC365, MTIC432, MTIC441, MTIC470, MTIC471, 
MTIC475, MTIC48, MTIC51, MTIC58, MTIC64, MTIC7, 
MTIC72, MTIC79, MTIC82, MTIC84, MTIC90, MTIC93, 
MTIC94, AJ248338, AJ410087, AW698723, AW698894, 
and CB858137 were used for polymorphism studies.

Genomic DNA obtained from leaf samples was 
extracted using a CTAB method (Murray and Thompson, 
1980) with minor modifications. Genomic DNA was 
quantified on nanodrop (ACTGene UVS-99, USA), at 
A260/280 nm. The quality was confirmed on 0.8% agarose gel. 
Polymerase chain reaction (PCR) analysis was performed 
in 20 µL of reaction volume containing 30 ng of genomic 
DNA, 2.5 mM MgCl2, 2 µM of each primer pair, 0.6 U of Taq 
polymerase, and 2 mM of dNTPs in 10X reaction buffer. 
PCR amplifications were carried out using the MultiGene 
Thermal Cycler (Labnet International, USA) with an 
initial denaturation for 5 min at 95 °C, then 35 cycles of 
30 s denaturation at 94 °C and 30 s annealing at 50–60 °C, 
1 min extension at 72 °C, and final extension for 10 min 
at 72 °C. Amplified PCR products were electrophoresed 
on 3% Nu Micropor agarose (Prona, Spain) agarose gels 
containing 1X Tris-borate-EDTA buffer. The genomic 
DNA was stained with 1 µg/mL EtBr. The gels were run at 
140 V for 80 min. Gel photos were taken under UV light 
using the DNR MiniLumi (DNR Bio-Imaging Systems, 
Israel) gel documentation system.
2.3. Statistical analysis
Data were scored as presence of band as “1” and absence 
of band as “0” from SSR amplifications. To characterize 
genetic variation, the observed number of alleles (Na), 
effective number of alleles (Ne), Nei’s gene diversity (He), 
and Shannon’s information index (I) were calculated. 
All of the above calculations were performed using the 
POPGENE program, ver. 1.31 (Yeh et al., 1999). We used 
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chi-square analysis to compare whether the transferability 
rates of donor species were the same. Therefore, expected 
and observed number of transfers for donor species 
were calculated to find a chi-square value. Coefficient of 
similarity among species was calculated according to Nei 
(1972). The UPGMA tree was constructed using NTSYS v. 
2.02 (Rohlf, 1998).

3. Results 
Of the 127 SSR primers tested, 26 primers produced 
clear amplifications and polymorphic bands were 
observed on G. glabra, G. echinata, and G. flavescens. 

Three Glycyrrhiza species significantly differed in terms 
of marker transferability (chi-square value = 8.626; P = 
0.013). The highest rate of transferability was from M. 
truncatula (33%), followed by P. vulgaris and C. arietinum 
(11% and 6%, respectively). Twenty-one M. truncatula 
primers produced a total of 121 bands, of which 85 bands 
were polymorphic (Table 1). Three P. vulgaris L. primers 
produced 32 bands, of which 22 were polymorphic (Table 
1). Two C. arietinum primers produced 29 bands, of which 
21 were polymorphic (Table 1). The average of allele 
numbers and polymorphic bands for M. truncatula was 
5.76 and 4.05; for P. vulgaris it was 10.67 and 7.33; and for 

Table 1. Genetic analysis of markers and diversity values.

Donor species Marker Number of 
total bands

Number of 
polymorphic bands

Gene diversity 
value

Polymorphism 
information content

P. vulgaris BM140 16 12 0.375 0.305

BM153 7 4 0.500 0.375

PV-ag004 9 6 0.500 0.375

C. arietinum TA71 17 12 0.427 0.334

TaaSH 12 9 0.417 0.328

M. truncatula MTIC230 7 3 0.375 0.305

MTIC232 4 3 0.417 0.328

MTIC233 4 3 0.417 0.328

MTIC247 4 4 0.375 0.305

MTIC249 7 5 0.425 0.333

MTIC250 7 5 0.425 0.333

MTIC272 4 3 0.417 0.328

MTIC278 11 4 0.344 0.264

MTIC289 3 3 0.375 0.305

MTIC326 6 4 0.438 0.340

MTIC332 4 4 0.417 0.328

MTIC343 6 5 0.400 0.319

MTIC354 2 2 0.375 0.305

MTIC356 10 5 0.450 0.347

MTIC446 2 2 0.375 0.305

MTIC447 5 5 0.375 0.305

MTIC451 4 4 0.406 0.322

MTIC452 11 6 0.396 0.316

MTIC475 2 2 0.375 0.305

AW698672 6 6 0.375 0.305

AW698994 12 7 0.411 0.325

Total 182.00 128.00
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C. arietinum it was 14.5 and 10.5, respectively. Although 
the number of amplified markers were the highest in 
M. truncatula, gene diversity (h*) and polymorphism 
information content values were the highest in P. vulgaris 
markers (Table 1). The highest number of bands was 
obtained from C. arietinum primer TA71 while the lowest 
was obtained from M. truncatula primers MTIC354, 
MTIC446, and MTIC475 (Table 1). However, the most 
informative loci were from P. vulgaris markers BM153 and 
PV-ag004 (Table 1). Although MTIC278 produced one of 
the highest band numbers among M. truncatula Gaertn. 
markers, it was found to be the least informative (Table 1). 

Using M. truncatula, P. vulgaris, and C. arietinum 
primers, no significant differences were observed among 
the Glycyrrhiza species in terms of number of effective 
alleles, polymorphic loci, Shannon diversity index, or 
total number of bands (P > 0.05; Table 2). The number 
of bands in Glycyrrhiza species was mostly higher than 
those of donor legume species. The P. vulgaris primers 
seemed to distinguish Glycyrrhiza species better since the 
band production rate (ranging 25%–33% more than the P. 
vulgaris genome produced for itself) was higher than those 
of other 2 donor legumes (Table 2). 

We also used the successfully transferred 26 SSR 
markers derived from 3 donor legume species to detect 
genetic diversity among G. glabra, G. echinata, and G. 
flavescens species. The transferred markers form each donor 
genome were used to construct dendrograms separately 
to identify how each marker system formed the genetic 
similarity among the 3 Glycyrrhiza species. According 
to genetic similarity tests, G. glabra and G. echinata were 

more similar to each other than to G. flavescens (Table 3). 
The dendrogram using M. truncatula primers appeared to 
be more consistent with the taxonomic separation of the 
Glycyrrhiza species since they were grouped separately 
from the M. truncatula (Figure). Within that group, G. 
glabra and G. echinata were within the same subgroup and 
were genetically similar to each other. The dendrogram 
using P. vulgaris markers formed 2 groups and although 
they are genetically distant from each other, P. vulgaris 
and G. flavescens were within the same group while G. 
glabra and G. echinata were in the other group (Figure). 
Similarly, in the dendrogram formed using C. arietinum 
primers, the donor species was within the same subgroup 
as G. flavescens, while G. glabra and G. echinata were in 
the other subgroup (Figure). Overall, using the 26 primers 
from 3 related donor legume genomes, G. glabra and G. 
echinata were found to be more similar to each other than 
to G. flavescens.

4. Discussion 
There have been many examples of SSR markers 
transferred within legume genera: from soybean to peanut 
(He et al., 2006); from M. truncatula to pea, fava bean, 
and C. arietinum (Gutierrez et al., 2005); and from M. 
truncatula, Pisum sativum, and Trifolium pratense to Lens 
culinaris (Reddy et al., 2010). However, there have been 
limited studies to transfer SSR markers to Glycyrrhiza 
species. In the present study, all the transferred markers 
amplified within Glycyrrhiza species were polymorphic. 
Additionally, the amplified primers were used to detect 
genetic diversity within the genus Glycyrrhiza. To our 

Table 3. Genetic similarity matrix constructed using M. truncatula, P. vulgaris, and C. arietinum primers.

 G. glabra G. echinata G. flavescens 

G. glabra  1.000   

G. echinata 0.810 1.000

G. flavescens 0.464 0.417 1.000

M. truncatula 0.381 0.333 0.393

G. glabra 1.000   

G. echinata 0.870 1.000

G. flavescens 0.261 0.217 1.000

P. vulgaris 0.391 0.348 0.522

G. glabra 1.000   

G. echinata 0.952 1.000

G. flavescens  0.381 0.333 1.000

C. arietinum 0.286 0.238 0.429
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best knowledge, the present study is the first attempt to 
transfer SSR markers from distantly related legume species 
to Glycyrrhiza species. The degree of polymorphism was 
also suitable to construct dendrograms that depicted the 
genetic relatedness of the 3 different Glycyrrhiza species. 
The results showed that G. flavescens is distantly related to 
G. glabra and G. echinata. Interestingly, G. flavescens was 
as genetically distant to the other Glycyrrhiza species as the 
other donor legumes. This result may suggest that G. glabra 

and G. echinata diverged from G. flavescens. However, 
further studies such as plastid genome comparisons 
are needed to confirm such a relationship (Jansen and 
Ruhlman, 2012). 

Amplified markers were usually weaker than the 
amplifications in donor species. Weaker bands amplified 
in related genomes were typical in transferability studies 
(Kuleung et al., 2004). Amplified markers from donor 
genomes generally resulted in similar banding patterns in 

Table 2. Observed number of alleles (na*), effective number of alleles (ne*), Nei’s (1973) gene diversity (h*), and 
Shannon’s information index (I*) values. Each donor species was analyzed separately. 

Species na* ne* h* I* Total bands

G. glabra  2 1.849 0.459 0.652 30

G. echinata 2 1.893 0.472 0.665 32

G. flavescens  2 1.872 0.466 0.658 33

M. truncatula 2 1.747 0.427 0.619 26

Total 121

G. glabra 2 1.830 0.454 0.646 8

G. echinata 2 1.910 0.476 0.669 9

G. flavescens 2 1.910 0.476 0.669 9

P. vulgaris 2 1.628 0.386 0.574 6

Total 35

G. glabra 2 1.893 0.472 0.665 8

G. echinata 2 1.960 0.490 0.683 9

G. flavescens 2 1.570 0.363 0.549 5

C. arietinum 2 1.800 0.444 0.637 7

Total 29

Figure. Dendrogram constructed using M. truncatula Gaertn., P. vulgaris L., and C. 
arietinum L. markers. 
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the Glycyrrhiza genome, suggesting that they were derived 
from the same loci and that these allelic regions of the 
primer binding sites are conserved. However, many of the 
primers could not be amplified in Glycyrrhiza genomes. 
This degree of site loss due to insertion or deletion is likely 
reflective of the genomic divergence in legume genomes.

Out of 127 SSR primers tested, only 26 primers were 
amplified and polymorphic in Glycyrrhiza species. A 
transferability rate of about 20% from such distantly related 
species could be considered a relatively good success, since 
within pulse crops or even closely related legume species 
SSR marker transferability rates could be as low as 16% 
(Choudhary et al., 2008; Reddy et al., 2010; Gupta et al., 
2013). The success rate is dependent upon the suitability of 
donor species, as well. In our study, M. truncatula resulted 
in the highest transferability rate (33%). With a small 
genome of about 500 Mbp, M. truncatula has been used as 
a model plant for various features of legume genetics and 
genomics (Cook, 1999). However, such information has 
not yet been used to understand the syntenic relationship 
with the genus Glycyrrhiza. In the present study, all of the 
amplified primers were polymorphic and, interestingly, 
the number of allelic fragments was mostly higher than 
in the donor species. This implies that once SSR primers 
are transferred to the Glycyrrhiza genome, especially from 
P. vulgaris or C. arietinum, markers could be even more 
informative than they were within the donor species. 
Although the number of P. vulgaris primers was lower, 
they appeared to be more informative than the either 
of the 2 other donor species. In addition, an increased 
number of alleles may imply polyploidy or multiallelic 
loci in Glycyrrhiza species. In the present study, MTIC237, 
MTIC289, and MTIC332 markers observed only 1 locus 
in G. flavescens and M. truncatula, while they observed 

more than 3 loci in G. glabra and G. echinata. There are 
also examples that many plant species are actually ancient 
polyploids (Soltis et al., 2004). So far, there has not been 
any information about the ploidy or multiallelic structures 
of Glycyrrhiza genomes. However, there are examples 
of multiallelic loci and polyploidy structures in several 
plant genomes such those of as vines (Frank et al., 2002; 
Hocquigny et al., 2004), Jerusalem artichoke (Buteler et al., 
1999), and olive (Bandelj et al., 2004). It is also possible 
that the higher number of allelic order may suggest higher 
polyploidy level (Essenlink et al., 2004). The present 
data are not strong evidence about the ploidy structure; 
however, more research is needed to reveal information 
about the chromosomal structure and ploidy level of 
Glycyrrhiza species.

The cost of developing SSR markers may be high; 
however, the wealth of sequence information in legume 
databases and the published literature may be a better 
source for dissecting Glycyrrhiza genomes. In the present 
study, we used SSR primers from distantly related legume 
species and were able to amplify those on Glycyrrhiza 
genomes. The results of this initial study are expected to 
help generate tools to identify genetic distributions of such 
an important medicinal plant and possibly understand the 
genomic synteny with other legumes in a relatively feasible 
way. Therefore, more SSR markers should be searched to 
dissect the genomic diversity among Glycyrrhiza species 
and to make conservation plans for the future.
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