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Abstract: A wide variety of rock types were produced by the latest Cretaceous magmatism in the Central Anatolian
Crystalline Complex. These rocks can be divided into three distinct units: (i) calc-alkaline, (ii) subalkaline/transitional,
and (iii) alkaline. The calc-alkaline rocks are mainly metaluminous (I-type) ranging from monzodiorite to granite. The
subalkaline/transitional rocks are also metaluminous (I-type) ranging from monzonite to granite. The alkaline rocks
are mainly peralkaline (A-type), ranging from feldspathoid-bearing monzosyenite to granite. Whole-rock oxygen
isotope data from the complex have a considerable range of §"°O values between 6.5%o0 and 14.8%o. Initial *Sr/*Sr
versus '*Nd/'**Nd ratios, and both ratios versus 8O values diagrams show that the intrusive rocks are derived from a
subduction-modified mantle and also have experienced fractional crystallisation coupled with crustal assimilation.
Delamination of a thermal boundary layer, and/or slab breakoff is the likely mechanisms for the initiation of the diverse
magmatism in the complex.

Key Words: I-type granite, A-type granite, oxygen isotope, Kaman-Kirsehir region, central Anatolia, Turkey

Orta Anadolu’da Es zamanli Ge¢ Kretase Kalkalken ve Alkalen Magmatizma
(Tiirkiye): Petrojenezde Oksijen izotop Kisitlamalari

Ozet: Orta Anadolu Kristalen Kompleksi icerisinde yeralan farkl tiirdeki kayag tipleri ge¢ Kretase magmatizmast ile
tretilmistir. Bu kayaglar ti¢ farkli birime ayirt edilmistir: (i) kalkalkalen, (ii) yarialkalen/gecisli, ve (iii) alkalen.
Kalkalkalen kayaglar genelde metaliiminiis (I-tip) olup, bilesimleri monzodiyoritden granite kadar degisir.
Yarialkalen/gegisli kayaglar da metaliiminiis (I-tip) olup, bilesimleri monzonitden granite kadar degisir. Alkalen
kayaglar genelde peralkalen (A-tip) olup, bilesimleri feldispatoyidli monzosiyenitden granite kadar degisir.
Kompleksdeki tiim kaya oksijen izotop verileri 6.5%o ve 14.8%o arasinda énemli oranlardaki §°O degerlerine sahiptir.
flksel *’Sr/*Sr-"*Nd/'**Nd oranlar, ve her iki oran-6"°0 diyagramlar1 gostermektedir ki intriizif kayaglar dalma-batma
ile degisiklige ugramis mantodan tiiremis ve ayrica fraksiyonal kristallesme ve kabuksal kirlenme gecirmistir. Kompleks
de farkli magmatizmalarin baglangici i¢in uygun mekanizmalar ya termal siir tabakasimnin delaminasyonu ya da
dalmakta olan levhanin (kirilip?) yok edilmesidir (slab breakoff).

Anahtar Sozciikler: I-tipi granit, A-tipi granit, oksijen izotop, Kaman-Kirsehir bolgesi, Orta Anadolu, Tirkiye

Introduction region, subduction, collision and extension have
occurred, associated with the formation of a wide

The Alpine-Mediterranean region is one of the most . ) : i .
variety of igneous rocks during pre-Tertiary, Tertiary

complex geodynamic settings on Earth. In this
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(subject of this study) and Quaternary times ($engor
& Yilmaz 1981). The large compositional diversity is
caused by (1) different source compositions, (2)
variable melting conditions, (3) complex chemical
and physical interactions between mafic and felsic
magmas, and (4) crustal contamination.
Interpretation of results from petrogenetic studies in
this region not only provides constraints on the
geodynamic processes, but also reveals changes in
magma source regions. One of the principal features
of collision-related magmatism is its subduction-
related  geochemical characteristics, despite
subduction processes having been terminated as a
result of continental collision. The subduction-
related signatures of these magmatic rocks are mainly
attributed to metasomatism by slab-derived fluids of
the mantle lithosphere prior to collision (e.g., Pearce
et al. 1990; Platt & England 1993; Turner et al. 1996).
Thus, the geochemical characteristics of collision-
related magmatism allow the evaluation of
subduction-related metasomatism of their mantle
source.

Oxygen isotopes provide a tracer of subducted
materials that were once part of the continental
crust. The oxygen isotope composition is particularly
useful because one can use simply binary mixing
equations to perform calculations.

Intrusive rocks are abundant in the central
Anatolian region and reveal a wide range of fabrics,
mineral assemblages and compositions. The §'°O
values of the central Anatolian intrusive rocks are
scarce (e.g., Tatar & Boztug 2005; Onal et al. 2005;
Boztug & Arehart 2007; Boztug et al. 2007a). In this
paper, we present new oxygen isotope data from the
key plutons in central Anatolia to establish the
compositional differences of the magma sources and
the processes responsible for the generation of this
wide variety of magmas. The combination of oxygen
isotope data with existing whole-rock, Sr, Nd
geochemistry and geochronologic data also have
been used in the paper to obtain a petrogenetic
model for the diverse magmatism in the complex.

Geological Background

The Central Anatolian Crystalline Complex is made
up of several metamorphic massifs (Akdagmadeni,
Kirsehir, Nigde), numerous granitic to syenitic
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plutons and dismembered ophiolites, and Tertiary
volcanic and sedimentary rocks that unconformably
overlie the crystalline rocks (Gonciioglu et al. 1991)
(Figure 1). The massifs constitute the nucleus of the
complex and consist of gneisses, schists,
amphibolites and marbles displaying different P-T-¢
trajectories (e.g., Whitney et al. 2001). Studies
concerning the ages of the main metamorphic events
suggest a  Late Cretaceous age (Late
Campanian—Early Maastrichtian) (Whitney et al.
2003; Whitney & Hamilton 2004).

Ophiolitic rocks occur in thrust sheets over the
massifs and represent dismembered remnants of the
Neo-Tethyan oceanic lithosphere. Ophiolitic
assemblages in the eastern part of the complex
(Figure 1) are composed mainly of serpentinised
peridotites with a significant listwaenite occurrence
along their sheared contacts with the metamorphic
massifs (e.g., Boztug et al. 1997), whereas those
exposed in the west consist essentially of gabbro,
diabase and individual basaltic dykes (e.g., Yaliniz &
Goncitioglu 1998). Most ophiolitic rocks are Late
Cretaceous (excluding metamorphosed equivalents)
and of supra-subduction type, derived from the
closure of the northern branch of the Neo-Tethyan
Ocean (e.g. Yaliniz et al. 1996).

Although the crystallisation ages for the central
Anatolian intrusive rocks are still debated,
radiogenic age determinations mainly indicate Late
Cretaceous—Palaeocene ages (e.g., Whitney et al.
2003; ﬂbeyli et al. 2004; Koksal et al. 2004; Boztug &
Jonckheere 2007; Boztug et al. 2007b; Boztug &
Harlavan 2008; Boztug et al. 2009a, b).

Petrology and Petrochemistry

Summaries of the field, petrographic, mineralogical
and geochemical characteristics of the intrusive
rocks from the Central Anatolian Crystalline
Complex are presented in Table 1. The magmatic
activity in the complex began during the Late
Cretaceous and created both calc-alkaline and
alkaline products (e.g., Ilbeyli 2004, 2005; ilbeyli et
al. 2004; Boztug & Arehart 2007) (Figure 2) (Table
1).

Samples from the Behrekdag, Cefalikdag, and
Celebi intrusions have been chosen as



N.ILBEYLI ET AL.

f;-i—: iz MIR_A
40’ +£+ r—‘-\ N

KIKIKKALE YOZGAT

cetei (5% }itﬁ
\tw;f x

e +&Bamnadag

Co efaltkdag/’ ‘

KIRSEHIR Q

#Q‘ o EY
TUZ GOLU c* @
= KAYSERIi @

(Salt Lake)

A+
L+
-

E
- \;E‘ISZINCAN SUTU et —a—a—t-

R 7ONE

( A
LEGEND

N THIHT . .
b intrusive rocks

- ophiolitic rocks

- metamorphic rocks

/ thrust fault
l;‘/ strike-slip fault

. J

0 20 km

Figure 1. Geological setting of the Central Anatolian Crystalline Complex (modified from Bingol 1989). Abbreviations: CACC—
Central Anatolian Crystalline Complex, IAESZ- Izmir-Ankara-Erzincan Suture Zone.

representatives of the calc-alkaline rocks, samples
from the Baranadag intrusion are representative of
the subalkaline/transitional rocks and samples from
the Hamit intrusion are representative of the alkaline
rocks (Figure 1). Details of the geological setting,
mineralogical and geochemical characteristics and
geochronological data of these intrusive rocks can be
found in Ilbeyli (2004, 2005) and Ilbeyli ef al. (2004),
and are summarised in Table 1.

Analytical Methods

Ten samples were selected for oxygen isotope
analyses. Inclusions such as mafic enclaves and
xenoliths were removed from the samples. Oxygen
isotope ratios were measured at the Scottish

Universities Environment and Research Centre,
United Kingdom. Oxygen was extracted by reacting
1-2 mg of sample with purified chlorine trifluoride
in a laser fluorination system, based on Sharp (1990).
The oxygen was converted to CO, by reaction on a
hot graphite rod, and its isotopic composition was
analysed on a VG PRISM III mass spectrometer. All
oxygen ratios are in the standard per mil notation
relative to VSMOW (Vienna Standard Mean Ocean
Water). Multiple analyses of NBS 28 reference
sample quartz give a mean value of 9.6%o. An
accepted value for this reference sample is 9.84%o
(Coplen et al. 1983). Precision estimated through
regular analysis of internal quartz standard (SES at
10.2%0) was 0.2%o (10).

531



LATE CRETACEOUS MAGMATISM IN CENTRAL ANATOLIA

surpeyerad Apysowr

aruoysoys 03 Y-y

(9101735 35014 2147

(&sb Asdsy s “zwb ‘zur) sa13-proyyedspiay
‘(2101115 35V2] 2143) £

(sonojopnasd ‘urpaydou) Surresaq-proyedspray

9jop1da 9)LIO[YD 9IOLIAS

9oured 9InyoasaId OyuLIOULd

3)1I0N[J ‘UODITZ

<9ede ‘sonbedo 9yuein

onudydiod oy orydroworpidAy

(ssoxoe wd ¢'¢ 03 dn)

Tedsproy rredre ym ondydiod oy -oury
(nueppwr) JIHFINF(MTES) XdDFIGF
(ans3unsey uopa) dwyFzOF

(anr0peiqey 01 anqpe) [d+dsy

QUad09e[ed 0] SN0ade}al)) 9Je]

snourwnyejotr

ayruoysoys 03 Y-y3ry

zwb ‘zw

931070 “QILIOYD “DIIILIAS

d)IUE[[E ‘UODIIZ

<oede ‘sonbedo 9yuein

snudydiod o3 orydrowornore

(ssoxoe wd G 03 dn) redspyay

yim onukydiod o -as1e0d

(onres) xdpFIg+(as3unsey-orsoudewr
uapd) dury+z10+

(sursapue 03 ase[031[0) [d+ds)

QUad09e[ed 0] SN0Ide}aI)) 9Je]

snourwnyerad / snourwnelaw

ajtuoysoys 03 Y-ySry

13 p13 zwb zw Tpzwub Tpzu

930p1da 9319[8d “QILIO[D OIS

S)IUEB[[E ‘UODIIZ

<omede ‘sanbedo ojuein
snufydiod oy srydiowornofe
(ssoxoe wod 61 03 dn)

Tedsppey yam onridydiod oy
-wnipaw y3noiy) -auly

(anres) xdDFIg+(opusiquioy
-orsauSewr 9)ruape) dury+z10+

(sutsapue 03 ayiqre) [J+dsy

QU3d09ked 0] SN03de)aI)) 9Je]

Xapul s, pueys

uonyisodwod Oy

(z 21081 99s) ad£) Yooy

uone)y

soseyyd £10ss320y

2IMXay,

JZIS ureIn)

uonIsodwod [eIduTy

By

yuregy

Jepeuereg

149PR) “Feprieya) ‘Fepypryag

uoinjg

“AnsTuayp093 Juawspe ofewr pue A3orerourwa Kyderdonad praty 1101 Jo SISeq dY) UO SOOI JAISNIIUT UBT[OJRUY [EIJUD ) JO UOTIDIJISSe]) T d[qe],

532



‘o)tuaAs zyrenb —4sb oyruafs redsproy rrexe —Asdsy ©3ruaks —4s oyueid —i3 oyurorpouers —pig 9yuozuow zyrenb —zwb 9jruozuow —zw ‘GyI0IpOZUOW Z)renb —1pzwb

9)uI01pozuow —Ipzur Jaured —110) urpydou —aN ‘@uaxorfdourp —xd) @nolq —ig 9oqrydure —dwry zyrenb —z30) oseporderd —[q edspiay rexe —dsy| :suonead1qqy

533

N.ILBEYLI ET AL.

(5002 ¥007) 1A2q]I

(5007) 14aqqq

(5007) 1&aqq]

(#002) v 12 1A3q[1 (#002) v 12 1Aaq[1 (¥002) v 12 TiAaqL $9OUIYY
(s2101718 35014 2143)
( §-2101715 350U4 2Y]) (12101735 35VI] Y1)
v V/1 $/-1 ad4y ayruern
ANITVITV TVNOILLISNVYL | ANITVITVINS ANITVITV-OTVD
sprey (eyuerd
‘sprey (9yrues ajerd uryim) [BUOISI[[00-UAS) DTOD-ULS pue
DdM pue D TOD-U4s pue (s11uead oxe oruEd[0A) (P861 v 12 3d>183J) sureaSerp
PPRY ODdM 243 Ut [[ej DVA 2} u2am13q Jo[d OVA 24} Ol [TeJ UOHBUTWILIISIP JTUO0}I3],

ASAH 9Y3 03 aAnR[aI YT 9Y3 pue
HTIT 2Y3 Ul JUSWIDLIU

Sorfetuoue Ny w>ﬁdmwﬁ Jjelopowr

0 J[BUS YILM PAYDLIUD-TY T [[e

UL

dSdH 243 01 AL YT oY) pue
ATIT 9Y) UT JUIWYDLIUD

Soffetuoue ny ®>UNWMQ Jjelopour

0 [[BUIS YIM PIYPLIUD-TYT [T

o1o[Rd-T[RY[

"(QX ‘X ‘WS TZ JH ‘N ‘BL)
HSAH Y} 01 dA1R[I (3D) HAI'T
Ayl pue (Y1, ‘ed ‘9 )

ATIT 23 Ul JUSWyOLIUu

saffewroue Ny ®>ENMOG Jjelopour 03

[[eWS [IIM PIYdLIUL-THY T [[e

oIfey[e-o[ed

(¥861 ‘I 12 931839

‘pastfeuLIou-HY )
sura)ed JuowdR-IIMN

(¥861 uorufog ‘pastenriou

-ayupuoy)) swraped

JUSWID [Jaed dIey

Xopur SWI[-I[eN[V

ey

Jepeuereg

149PR) “Feprieyo) ‘Fepypryag

uonjg

‘panunjuo)) ‘| dqer,



LATE CRETACEOUS MAGMATISM IN CENTRAL ANATOLIA

18
. Feld?t])atholdal O calc-alkaline
16 % syenite subalkaline/
g transitional
141 ©
g" Feldspathoidal
12 + monzosyghi
2"\' 4
10] 2 R O Quarge v
’ @S @yvnonzonite = T line
K n.m:it \E‘a"’p Subalk
8 d
I\:lb syeni
6 o
oftzgs bt Granite
*
4 4
, an"| @ Granodiorite
0
30 40 50 60 70 80 90

Si0, wt%

Figure 2. Classification of the central Anatolian plutonic rocks
(Middlemost 1994) using the total alkali-silica
diagram. Line (I) separates the alkaline and
subalkaline field of Miyashiro (1978) and line (II)
separates  the alkaline oversaturated and
undersaturated series (Giret & Lameyre 1980).

The full data set is given in Table 2. Major, trace
element and radiogenic isotope data of these rock
samples are also presented in Table 3.

Oxygen Isotope Geochemistry

Whole-rock oxygen isotope data from the Central
Anatolian Crystalline Complex have a large range of
80 values between 6.5%o and 14.8%o (Figure 3)

(Table 2). The calc-alkaline rocks have 6"°O values
ranging from 8.4%o0 to 11.1%o (Figure 3). The
subalkaline/transitional rock has only one analysis,
which has a 6"°0 value of 8.3%o (Figure 3).

The lowest 6"°0 (6.5%o) value is represented by
the feldspathoid-bearing rock (sample N33) and the
highest value (12.1%o0) belongs to the feldspathoid-
free rock (sample N290) of the alkaline samples
(Figure 3) (Table 2). A metasedimentary rock
(sample C-2) from central Anatolia has a 80 value
14.8%o. Typical oxygen isotopic compositions for
MORB (mid ocean ridge basalt) are between 5.2%o
and 6.4%o (Eiler et al. 2000). I-type granitoids have
8"°0 values of 6 to 10%o, whereas S-type granitoids
display higher §"°O values of 10 to 15%o (Harris et al.
1997) and A-type granitoids have 8'°O values of 6 to
8%o0 (Whalen et al. 1996).

Oxygen isotope ratios were analysed on mineral
separates (e.g., zircon) in preference to whole-rock
samples because the latter is susceptible to changes in
8"°0 values resulted by later hydrothermal alteration
(e.g., Valley et al. 1994; King et al. 1998; Monani &
Valley 2001). Although alteration at surface
temperatures causes an increase in & O values,
meteoric alteration in continental systems lowers
8"°0 values (e.g., Gregory & Criss 1986; Larson &
Taylor 1986; Criss et al. 1987; Taylor 1997; Jung et al.
2007).

Table 2. O isotope data of the intrusive rocks from the Central Anatolian Crystalline Complex. 8 * O values reported in per mil

relative to VSMOW.
Pluton / Area Characteristics Rock unit Sample no 6" 0, per mil
Behrekdag calc-alkaline quartz monzonite N2 10.3
Cefalikdag calc-alkaline quartz monzodiorite N78 9.4
quartz monzonite N20 9.9
granite N395 11.1
Celebi calc-alkaline quartz monzonite N75 8.4
Baranadag subalkaline/transitional monzonite N26 83
Hamit alkaline nepheline syenite N33 6.5
nepheline syenite N285 7.6
quartz syenite N290 12.1
Central Anatolia metasediment C-2 14.8

(Kirsehir)
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ALTERED MANTLE: MIXED SUPRACRUSTAL
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Figure 3. §'°0 values of the intrusive rocks and crust
(metasediment) from central Anatolia. Dividing lines
between altered, mantle, mixed and supracrustal rocks
are taken from Whalen et al. (1996).

The values obtained for the central Anatolian
intrusive rocks may represent primary values or may
result from hydrothermal alteration that changes
80 values. Field evidence and petrographic
observations of the central Anatolian intrusive rocks
suggest that hydrous alteration was limited. Since the
representative intrusive rocks have fresh and
unaltered appearances in the field, most whole-rock
loss-on-ignition (LOI) values are less than 1 wt%,
and only one sample (N33) has a value of 1.05 wt%
LOI (Figure 4) (Table 4). This could indicate limited
amounts of volatiles in the samples.

Hydrous alteration under oxidising conditions
results in enrichment of the whole-rock Fe’*/Fe’*
ratio (Jung et al. 2007). The Fe’*/Fe’" ratios also
correlate positively with the LOI values during these
conditions (Jung et al. 2007). The Fe’*/Fe’* ratio vs
LOI, Fe’'/Fe’" ratio vs §"°0 and 6O vs LOI may
provide an indication of the extent to which such
alteration influenced the stable isotope chemistry of
the rocks analysed (Figure 4). There is a lack of
positive correlation between Fe’*/Fe’* and LOI for
the intrusive rocks (Figure 4a), indicating that they
are not altered. The Fe’*/Fe’* ratios vs §"°O values
(Figure 4b) show that there is also no correlation
between Fe’*/Fe’* and 6"°0. The 6"°O values display

negative trends with LOI for the calc-alkaline and
alkaline rocks (Figure 4c). Although some meteoric
alteration is probable in the alkaline rocks, the
correlations (Figure 4) could suggest that the
alteration was not important to any considerable
extent. The positive correlation of §'°O values with
initial '"“Nd/"**Nd ratios (largely insensitive with
respect to hydrous alteration; Jung et al. 2007) for the
intrusive rocks reveals that they are not altered (see
below Figure 7: inset figures). Therefore we can
assume that the §'°O values of the intrusive rocks
could be primary.

Discussion

The central Anatolian intrusive rocks are enriched in
LILE relative to HFSE (ilbeyli et al. 2004). In
addition, they are radiogenic in terms of Sr, and
unradiogenic in terms of Nd isotope ratios (lbeyli et
al. 2004). These features could be related to
combined crustal assimilation and fractional
crystallisation (AFC) (e.g., Hildreth & Moorbath
1988) or to mantle source enrichment by recycling of
crustal material (e.g., Gill 1981; Sun & McDonough
1989).

Initial ¥Sr/**Sr ratios of the plutonic rocks are
plotted against initial '*Nd/'**Nd ratios (Figure 5) to
reveal AFC or source enrichment processes in the
origin of central Anatolian intrusive rocks. All rock
types plot in the high initial *’Sr/**Sr and low initial
"*Nd/"'Nd quadrant in the range characteristic of
continental crustal sources or mantle sources with
large continental crustal components (Figure 5a).

Calculation of AFC curves are model-dependent,
since they require presumptions about the
fractionating mineral assemblages and mineral-melt
partition coefficients, the concentrations of the
chosen trace elements in the starting melt and the
contaminant(s) as well as the ratio of assimilation to
fractional crystallisation (Jung et al. 2004).

Estimation of the compositions of possible source
component(s) and also crustal contaminant(s) is a
very difficult problem for the central Anatolian
intrusive rocks, as there are no rock samples that can
be taken as representative of a parental magma(s)
(see Discussion section; Hbeyli 2005). Therefore, the
chosen values for the parental magmas are close to
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Figure 4. (a) Fe''/Fe’" versus LOL; (b) Fe’'/Fe’" versus 6'°0; and (c) 6"°O versus LOI diagrams for the
central Anatolian intrusive rocks.

Table 4. Loss-on-ignition (LOI), Fe,0, and FeO values and Fe’'/Fe’" ratios of the intrusive rocks from the Central Anatolian

Crystalline Complex.

Pluton Sample no LOI (wt%) Fe,0; ora) (WE%) FeO (wt%) Fe’'/ Fe**

Behrekdag N2 0.37 6.04 5.23 1.04

Cefalikdag N78 0.78 8.22 7.40 0.99
N20 0.51 5.77 5.19 1.00
N395 0.79 1.98 1.78 1.00

Celebi N75 0.54 4.34 391 0.99

Baranadag N26 0.58 5.42 4.88 1.00

Hamit N33 1.05 6.49 5.84 1.00
N285 0.77 4.44 4.00 1.00
N290 0.64 1.79 1.61 0.99
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Figure 5. (a) '"“Nd/"*Nd, versus “Sr/**Sr, diagram for the central Anatolian plutonic rocks and hypothetical
basement samples. The mantle array is after DePaolo (1988); (b) “*Nd/"**Nd, versus *’Sr/*Sr, plot showing
AFC model for the calc-alkaline intrusive rocks; and (c) “*Nd/**Nd, versus *’Sr/*Sr, plot displaying AFC
model for the subalkaline/transitional and alkaline intrusive rocks. Tick marks on each curve represent 5%
crystallisation intervals (F). In this model, crystallisation ends after F reaches 0.05. Tick marks on the AFC
curves represent the ratio of the final mass of magma to the initial mass of magma. Abbreviations: D— the
bulk partition coefficient, F— the fraction of melt remaining, r— the ratio of the rate of assimilation to the
rate of fractional crystallisation, S,— source for the calc-alkaline rocks, C,— crust for the calc-alkaline rocks,
S,— source for the subalkaline/transitional and alkaline rocks, C,— crust for the subalkaline/transitional
and alkaline rocks. Assumed mantle and crustal end-member compositions are given in Table 5.

those of the least acidic samples for the calc-alkaline
(source I- S)) and alkaline intrusive rocks (source A-
S,) (Table 5). Two metamorphic samples (C-2 and
N490) from the Central Anatolian Crystalline
Complex are used as the crustal components [crust I-
C, (sample no. C-2) for the calc-alkaline samples and
crust A- C, (sample no. N490) for the alkaline
samples] (Figure 5, Table 5). Unfortunately, there is
also insufficient Sr-Nd isotope data to define crustal

end-member compositions of the complex, so
possible Sr and Nd isotope compositions for C-2 and
N490 are assumed (Table 5). O isotope composition
is available only for C-2 (Table 2).

The AFC modelling has been conducted using
the AFC equations of DePaolo (1981), the bulk
partition coefficient (D) and the ratio of the rate of
assimilation to the rate of fractional crystallisation
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Table 5. Table showing possible parental magmas and contaminants for the central Anatolian intrusive rocks used in the petrogenetic

modelling.
Crust A (C,)
Source I (S)) CrustI (C) Source A (S,) for the for the
for the calc-alkaline for the calc-alkaline rocks  subalkaline/transitional subalkaline/transitional
rocks (sample no: C-2) & alkaline rocks & alkaline rocks
(sample no: N490)
Sr/*Sr, 0.7080 0.7200 0.7070 0.7250
Sr ppm 1000 50 1400 85
"Nd/"*Nd, 0.51240 0.51180 0.51245 0.51160
Nd ppm 30 26 25 19
8 '* 0 per mil 7 14.8 5.7 18
(r) presented in Figure 5. All models use Dg, of 1.2 20
(for the calc-alkaline rocks) — 1.5 (for the alkaline c c,
rocks) and Dy, of 0.8 (for both rock types), values 181 2 K32 c B
broadly consistent with the observed geochemical 6] © | //* (o
behaviour of Sr and Nd in these rocks. The modelled 14 § Qo// B
AFC mixing curves pass close to the plutonic rocks _, Fparent(s) and /4 7
. ontami /
(Figure 5b, c¢). Between ~25% and ~35% upper 12 are LZ;;Z?:;(S) /}9 /
. . . . \ )
crustal contaminant is required in the AFC 1 p—— OQ/’ __/Q,/gc
modelling for the calc-alkaline rocks, whereas R N7§O/FC/7“"'C')"
between ~22% and ~30% upper crustal contaminant 8 §§ S, /o/'
is required in the AFC modelling for the alkaline 6 3% jod
. o 3l @
rocks (Figure 5b, c). Such rates make assimilation
acceptable because at upper crustal levels higher 4 O calc-alkaline
rates would not be possible (DePaolo 1981). 2 aition
L. O alkaline
In terms of determining source(s) of 0
contamination, oxygen isotopes also provide a 40 0 60 0 80
Si0;Wt%

potentially powerful tool because many components
that can be present in the crust have differing 6"°0
values (e.g., James 1981; Bacon et al. 1989; Feeley &
Sharp 1995; Macpherson et al. 1998). The upper
portion of ocean crust is shifted in 6 °0/8"°O because
of low-temperature hydrothermal alteration and also
the presence of high 6O sediments, and thus
metasomatising fluids are high in 6"°O (Eiler et al.
1998; Eiler 2001). 5"%0 values can also be shifted by
assimilation or remelting of altered igneous rocks
(Valley et al. 2005).

The 6"°0 values of the central Anatolian plutonic
rocks are plotted against SiO, (Figure 6). The
intrusive rocks align along two different trends
starting from two different hypothetical parental
magma compositions (i.e. source S; and source S,)
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Figure 6. §'°O values versus silica plot for the central Anatolian
intrusive rocks. Abbreviations: S— source, C— crust,
S,— source for the calc-alkaline rocks, C,- crust for the
calc-alkaline rocks, S,— source for the
subalkaline/transitional and alkaline rocks, C,— crust
for the subalkaline/transitional and alkaline rocks,
FC- fractional crystallisation, AFC- fractional
crystallisation coupled with crustal assimilation.

and, crossing from each other, heading toward two
separate crustal compositions (i.e. crust C; and crust
C,) (Figure 6). Two contrasting groups in the central
Anatolian plutonic rocks can be also displayed in
initial *’Sr/*Sr and '“Nd/'*'Nd ratios vs SiO,
diagrams (see figure 8 in Ilbeyli et al. 2004).
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The calc-alkaline rock samples are characterised
by slightly higher 8O values than the alkaline rock
samples (Figure 6). The contaminants have also
higher 8'°0 values (14.8-18%o) (Table 5) than the
calc-alkaline and alkaline samples. Fractional
crystallisation (FC) has little effect (< 1%o) on 80
values (Sheppard & Harris 1985), therefore oxygen
isotopes are a powerful indicator of source
composition and/or degree of crustal contamination.
The trend for the calc-alkaline rocks indicates that
the rocks have undergone mainly FC and only AFC
in the latest stages. On the other hand, the 50
values of the alkaline rock samples (including the
subalkaline/transitional sample) show a well-defined
positive correlation with silica (Figure 6). This
indicates that the evolution of the alkaline samples is
governed by AFC processes and probably also some
alteration processes. The higher §'°O values of the
calc-alkaline rocks suggest a mantle source which is
more enriched in subduction components than the
source of alkaline rocks (Figure 6).

The distinction between source contamination
and crustal assimilation can be identified using O-Sr
isotopic modelling (e.g., James 1981; Taylor 1986;
Ellam & Harmon 1990). Oxygen isotope enrichment
is a sensitive indicator of crustal contamination,
whereas Sr isotopes can be either sensitive or
insensitive to contamination (e.g., Davidson et al.
1990; Ellam & Harmon 1990; Mason et al. 1996).

The 6"°0 values are plotted against initial 'Sr/*Sr
ratios (Figure 7) to better define the process(es)
causing the formation of the two trends in Figure 6
for the central Anatolian plutonic rocks. Initial
"*Nd/"**Nd vs §'°0 values are also plotted in Figure 7
as inset figures. Initial *’Sr/**Sr ratios increase with
increasing 8"%0 values, whereas initial “*Nd/"**Nd
ratios decrease with 6"°O values. We also plot
theoretical trends that reflect AFC mixing models
(Figure 7). The crustal material underlying the
alkaline rocks is much more radiogenic in terms of
Sr, and unradiogenic in terms of Nd than the one
that underlies the calc-alkaline rocks (Figure 7). The
calc-alkaline and alkaline samples (including one
subalkaline/transitional) plot around or close to the
modelled AFC trends. Between ~25% and ~55%
upper crustal contaminant is required in the AFC
modelling for the calc-alkaline rocks, whereas

between ~15% and ~65% upper crustal contaminant
is required in the AFC modelling for the alkaline
rocks (Figure 7). The most silicic calc-alkaline
(N395) and alkaline (N290) samples have higher
assimilation (~55% for Sr; ~50% for Nd; the former)
(~60% for Sr; ~65% for Nd; the latter) than the other
calc-alkaline and alkaline samples.

The main variations shown by isotope data (Sr,
Nd, O) (Figures 5-7) for the central Anatolian
plutonic rocks can be also seen in plots of Th/Y vs
Nb/Y and Nb/Zr vs Nb (Figure 8). The former plot
(Figure 8a) shows that all intrusive rocks form trends
that run parallel to the mantle array but are displaced
towards higher Nb/Y ratios, indicating either
derivation from an enriched mantle source to which
subduction component had been added, or AFC, or
both (Ilbeyli ef al. 2004). The Th/Y and Nb/Y ratios
increase from the calc-alkaline through the
subalkaline/transitional and alkaline plutonic rocks
(Figure 8a). The high Nb/Y ratio of the alkaline rocks
can be explained by derivation from more
enrichment in a within-plate component than that of
the calc-alkaline plutonic rocks. The central
Anatolian plutonic rocks do not form a trend from
the mantle array to the crust (Figure 8a), so AFC is
not likely to have been the only process for the
generation of the plutonic rocks.

Ratios of HFSE (e.g., Nb, Zr) can give useful
information about magma source composition (e.g.,
Davidson 1996; Singer et al. 1996). Nb and Zr are
mainly mantle-derived and strongly fractionated
during melting or magma-mixing (e.g., Thirlwall et
al. 1994; Davidson 1996). The Nb/Zr ratios are not
affected by FC and crustal contamination (e.g.,
Seghedi et al. 2004). Different Nb/Zr ratios are
interpreted in terms of variations in source
composition and/or changes in degree of partial
melting of the mantle (e.g., Thirlwall et al. 1994;
Singer et al. 1996). In Figure 8b, the Nb/Zr ratios and
Y increase from the calc-alkaline through the
subalkaline/transitional to the alkaline plutonic
rocks. The calc-alkaline rocks are closer to a MORB-
like source comparable to that of the
subalkaline/transitional ~and alkaline rocks.
However, the alkaline rocks are closer to an OIB-like
source (Figure 8b). Figure 8 shows that the alkaline
rocks are more enriched in a within-plate
component than the calc-alkaline plutonic rocks
(Figure 8b).
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Figure 7. (a) 0 values versus *'Sr/**Sr, diagram showing the results of AFC for
the calc-alkaline intrusive rocks (inset figure: 8”0 vs '*Nd/ 144Ndi); (b)
8'°0 values versus *’Sr/**Sr, diagram displaying the results of AFC for
the subalkaline/transitional and alkaline rocks (inset figure: §"°O vs
**Nd/"*Nd,). Tick marks on each curve represent 5% crystallisation
intervals. In this model, crystallisation ends after F reaches 0.05. Tick
marks on the AFC curves represent the ratio of the final mass of
magma to the initial mass of magma. Abbreviations: D— the bulk
partition coefficient, F- the fraction of melt remaining, r— the ratio of
the rate of assimilation to the rate of fractional crystallisation, S,—
source for the calc-alkaline rocks, C,— crust for the calc-alkaline rocks,
S,— source for the subalkaline/transitional and alkaline rocks, C,—
crust for the subalkaline/transitional and alkaline rocks.
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Figure 8. (a) Th/Y versus Nb/Y diagram for basic and intermediate intrusive
rocks (samples <63% SiO, are plotted) (after Seghedi et al. 2004). (b)
Nb/Zr versus Nb diagram for basic and intermediate intrusive rocks
(after Seghedi et al. 2004). MORB and OIB values after Sun &

McDonough (1989).

Based on the Sr-Nd-O data, it seems possible that
the central Anatolian magmas were derived from a
source composed of two distinct mantle and crustal
components. The variations (Figures 5-8) shown by
the calc-alkaline intrusive rocks could suggest that
they are derived from a mantle source containing

subduction components, and later experienced
assimilation and fractional crystallisation processes.
In contrast, the subalkaline/transitional and alkaline
intrusive rocks could be derived from a more-
enriched mantle source compared to the calc-
alkaline intrusive rocks. These assumptions are in

543



LATE CRETACEOUS MAGMATISM IN CENTRAL ANATOLIA

general agreement with the interpretation, based on
initial *’Sr/**Sr and '"Nd/'"“Nd data, that the
coexistence of calc-alkaline and alkaline magmatism
in the complex may be explained by pre-collision
differences in their mantle source regions (Ilbeyli et
al. 2004; Tlbeyli 2005).

Mechanism of Melt Genesis

Slab detachment has been increasingly recognised in
many collision-related systems (e.g., Pearce et al.
1990). Lithospheric thinning through delamination
is induced by thermal and mechanical instability of
the continental lithosphere. Rapid unroofing by
isostasy is accompanied by hot asthenospheric
upwelling and magmatic underplating. For the
central Anatolian intrusive rocks, which are
interpreted to have been derived from a subduction-
modified mantle source(s), the likely mechanisms
for magma generation are either lithospheric
extension or uplift; or melting of mantle lithosphere
by the perturbation of the geotherm due to
delamination of the thermal boundary layer, or slab
detachment.  Perturbation of  subduction-
metasomatised lithosphere by either delamination of
the thermal boundary layer or slab detachment may
have generated the primary magmas for the central
Anatolian plutonic rocks (ilbeyli et al. 2004). Both
processes would lead to conductive heating of
enriched mantle. This may have assisted or initiated
the orogenic collapse that followed collision and
uplift. A similar mechanism was also suggested for
the origin of the east-central Anatolian intrusive
rocks (Ozgeng & Ilbeyli 2009). This mechanism was
also noted for the generation of the central Anatolian
intrusive rocks (Ilbeyli & Pearce 1997; Aydin et al.
1997; Boztug 1998).
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Conclusions

The intrusive rocks of the Central Anatolian
Crystalline Complex can be divided into three
groups on the basis of their field, petrographic,
major-trace element and isotopic characteristics.
These are: (i) calc-alkaline, (ii)
subalkaline/transitional, and (iii) alkaline. These
intrusive rocks cover a petrological range from
monzodiorite through quartz monzonite to
syenite/granite. Whole-rock oxygen isotope data
from the complex have a range of "°O values from
6.5%o to 14.8%o.

The oxygen isotope values show that the intrusive
rocks originated from a mantle source containing
large subduction components, although a within-
plate component is also present in the source of
alkaline rocks. All rock types have experienced
crustal assimilation and fractional crystallisation. In
the region, the coexistence of calc-alkaline and
alkaline magmatism could be attributed to mantle
source heterogeneity before collision. Delamination
of the thermal boundary layer, and/or slab breakoff is
the likely mechanisms for the initiation of the diverse
magmatism in the complex.
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