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Highlights 

 

 The "one-out, all-out" (OOAO) rule for combining assessment results for different 

biological quality elements is more prone to underestimation of the "correct" ecological 

status than alternative combination rules 

 The OOAO rule's tendency of underestimation of ecological status increases with the 

index values' uncertainty 

 Analysis of misclassification is complicated by the fact that the rate of misclassification 

inherently increases with the index values' proximity to status class boundaries 

Highlights (for review)
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ABSTRACT 27 

The European Water Framework Directive (WFD) requires that the ecological status of 28 

waterbodies is assessed using multiple biological quality elements (BQEs) that are combined 29 

into a single status class. The recommended combination rule (the "one-out, all-out" rule; 30 

OOAO) has been criticized for being unreasonably conservative and for being sensitive to 31 

uncertainty. In this study, the objective was to compare the sensitivity to uncertainty of four 32 

different combination rules: (1) OOAO, (2) OOAO with exclusion of one element (3) average 33 

and (4) weighted average. Index values for 5 BQEs (phytoplankton, phytobenthos, 34 

macrophytes, macroinvertebrates and fish) sampled from 10 lakes in the Wel River catchment 35 

in Poland were used to classify the lakes according to the OOAO and the three alternative 36 

combination rules. Based on the mean and (where possible) standard deviation of these index 37 

values, we modelled the risk of misclassification by simulating 10,000 resamples for each 38 

BQEs in each lake, classifying each resample and calculating the proportion of misclassified 39 

resamples under each combination rule. For individual BQEs, the risk of misclassification 40 

increased both with higher uncertainty and with the proximity of the index value to a class 41 

boundary. Under the OOAO rule, the risk of misclassification was more biased towards worse 42 

status ("underclassification") than towards better status. Furthermore, risk of 43 

underclassification was more affected by uncertainty under the OOAO rule compared with the 44 

alternative combination rules. This analysis has demonstrated the weaknesses associated with 45 

the OOAO rule for integration of BQEs for lake classification. However, the alternative 46 

combination rules are associated with other shortcomings, such as the need for subjective 47 

judgement, and involve a higher risk of not protecting the most sensitive BQE and thus the 48 

whole ecosystem. We recommend that future versions of instructions for WFD 49 

implementation consider alternatives to the OOAO combination rule, and provide guidelines 50 

for weighting of individual BQEs. 51 

52 
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BQE: biological quality element 62 

EQR: ecological quality ratio 63 

nEQR: normalised ecological quality ratio 64 

OOAO: One-out, all-out (combination rule) 65 

WFD: Water Framework Directive 66 
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1. Introduction68 

69 

The Water Framework Directive (WFD; EC 2000) of the European Union requires that 70 

member states must assess the ecological status of their surface waterbodies, including lakes. 71 

Across Europe, WFD-compliant national classification systems have been developed and 72 

adapted for assigning waterbodies to one of five classes of ecological status (high, good, 73 

moderate, poor and bad) (Hering et al., 2010). The WFD further requires that all waterbodies 74 

obtain good ecological status by 2015, and consequently all waterbodies found to be in 75 

moderate or worse status must be restored. Moreover, the WFD states that estimates of 76 

confidence and precision attained by the monitoring system should be provided in river basin 77 

management plans (Annex V, Section 1.3.4). Since restoration measures can be expensive, the 78 

uncertainty associated with waterbody classification should be of high interest for water 79 

resource management (Højberg et al., 2007; Irvine, 2004). If a lake in good or better status is 80 

wrongly classified as having less-than-good status ("underclassified"), money may be wasted 81 

on restoration measures that were not strictly needed (Prato et al., 2014). On the other hand, if 82 

a lake in less-than-good status is wrongly classified as good or better ("overclassified"), the 83 

ecosystem quality and services may be compromised. 84 

85 

Classification of ecological status of lakes should be based on a set of biological quality 86 

elements (BQEs) representing main ecosystem components, i.e. (1) phytoplankton, (2) 87 

macrophytes and phytobenthos, (3) benthic invertebrate fauna (here called 88 

"macroinvertebrates") and (4) fish (WFD, Annex V, Section 1.2.2). The WFD states that the 89 

policy should be based on the precautionary principle (§11); the idea of this principle is that if 90 

at least one component of ecosystem is impaired, this indicates that something is wrong in the 91 

ecosystem (waterbody) as a whole.  Moreover, the WFD requires that the ecological status 92 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5 
 

class for a waterbody "shall be represented by the lower of the values for the biological and 93 

physico-chemical monitoring results for the relevant quality elements" (Annex V, Section 94 

1.4.2 (i)). This implies that the status is determined by either the combined biological 95 

monitoring result or by the physical-chemical monitoring result (the lower of the two). 96 

However, the directive does not specify how to combine the values of multiple BQEs into one 97 

biological monitoring result. The guidance on classification provided by the Common 98 

Implementation Strategy for the WFD (EC 2005) has recommended the method known as 99 

"One-out, all-out" (OOAO): the waterbody status is determined by the BQE with the worst 100 

status. However, based on comparison with alternative rules for integrating BQEs, such as 101 

(weighted) average, median or other weight-of-evidence approaches, several authors have 102 

stated that the OOAO tend to result in a stricter classification than what seems reasonable 103 

(Alahuhta et al., 2009; Borja and Rodriguez, 2010; Caroni et al., 2013; Gottardo et al., 2011; 104 

Hering et al., 2010; Moss et al., 2003; Nõges et al., 2009; Nõges and Nõges, 2006; Prato et al., 105 

2014; Rask et al., 2010; Sutela et al., 2013; Søndergaard et al., 2005). Another concern with 106 

the OOAO method is that higher uncertainty in index values tend to result in even stricter 107 

classification (Caroni et al., 2013; EC (European Commission), 2005; Nõges et al., 2009; 108 

Sandin, 2005).  109 

 110 

Uncertainty in biological index values results from many sources, including natural temporal 111 

and spatial variation and sampling variation (see Clarke, 2013). The quantification of sources 112 

of uncertainty in index values and their significance for status classification have been 113 

addressed in many studies (Carvalho et al., 2013; Clarke and Hering, 2006; Kelly et al., 114 

2009b; Thackeray et al., 2013). Nevertheless, few studies have investigated the role of joint 115 

uncertainty of indices when several BQEs are integrated (but see Caroni et al., 2013). There is 116 

therefore a need for more research on how the OOAO and other BQE combination rules 117 
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perform in waterbody classification based on real data under different levels of sampling 118 

uncertainty. 119 

 120 

In our study, we have analysed the effects of joint uncertainty for five BQEs (phytoplankton, 121 

phytobenthos, macrophytes, macroinvertebrates and fish) sampled from 10 lakes in Poland. 122 

The analysis was based on simulations of index values for all BQEs with three levels of 123 

uncertainty (section 3.1), and application of four different combination rules (section 2.3) for 124 

the resulting BQE status classes. The objective of this paper was to address the following 125 

question: How does increasing levels of uncertainty affect the risk of misclassification of 126 

lakes under different BQE combination rules? To answer this question, we also investigated 127 

how uncertainty in index values affect the risk of misclassification at the BQE level, and how 128 

this risk was transferred to the whole-lake level under the different combination rules.  129 

 130 

2. Materials and methods 131 

 132 

2.1. Data 133 

 134 

The study area is the catchment of the lowland river Wel in central Poland, with a surface area 135 

of 822 km2. Surface waters in the Wel catchment are affected mainly by eutrophication due to 136 

agricultural runoff (app. 60% of areas of extensive agriculture in the catchment) and also by a 137 

few point sources of organic pollution. Ten lakes with surface area above 0.5 km2 are located 138 

in this catchment (Fig. 1, Table 1). The biological data used in this study were collected from 139 

all of the ten lakes in 2009 during the Polish-Norwegian project deWELopment (Soszka, 140 

2011). 141 

 142 
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2.2. Biological index values and classification system 143 

144 

In this study, each biological quality element (BQE) was represented by one index, as follows. 145 

- Phytoplankton: Phytoplankton Metric for Polish Lakes (Hutorowicz et al., 2011).146 

- Phytobenthos: Diatom index for lakes (phytobenthos) (Picińska-Fałtynowicz, 2011).147 

- Macrophytes: Ecological State Macrophyte Index (Kolada et al., 2011)148 

- Macroinvertebrates: Benthic Quality Index based on Chironomid Pupal Exuviae Technique149 

(macroinvertebrates; based on Ruse, 2010) (Gołub et al., 2011). 150 

- Fish: Lake Fish Index N2 (Białokoz and Chybowski, 2011).151 

For each index, the sampling method, calculation, the responses to eutrophication pressure 152 

gradients as well as classification scheme are described in the given references. For 153 

phytoplankton and macrophytes, respectively, a full description of the national assessment 154 

methods are given in the Technical Reports from the Intercalibration phase 2 (Phillips et al., 155 

2014; Portielje et al., 2014). Although the WFD defines phytobenthos and macrophytes as one 156 

BQE, the two organism groups are treated as two separate BQEs in this paper. The reason is 157 

that Poland, like most countries in the Central-Baltic region, has chosen to develop separate 158 

assessment methods for macrophytes and phytobenthos (Kelly et al., 2009a), and no 159 

integration rules exist at the moment (Portielje et al., 2014, Table 4.4). Moreover, changing 160 

environmental conditions may affect macrophytes and phytobenthos indices differently due to 161 

the differences in generation time and dispersal rate; therefore these organism groups may 162 

provide different information about ecosystem stability (Schneider et al., 2012). 163 

164 

The ecological classification system used in this study (Soszka, 2011) comprises, for each 165 

biological index, a reference condition representing the index value assumed for lakes 166 

undisturbed by anthropogenic impact, and class boundaries defining the index values on the 167 
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borders between the five ecological status classes (high, good, moderate, poor and bad). More 168 

information on the methods used for setting reference conditions and class boundaries for the 169 

Polish classification system is available in the WISER database on national assessment 170 

methods (http://www.wiser.eu/results/method-database; Birk et al., 2012), for all BQEs 171 

except macroinvertebrates. The full ecological classification system includes also physico-172 

chemical variables, which were not included here. For each index, as required by the WFD, 173 

the ecological quality ratio (EQR) was calculated as the index value divided by the reference 174 

condition value. The resulting indices in EQR scale have range 0-1 (Appendix A, Table A.1). 175 

Likewise, the class boundaries for each index were converted to EQR scale (Table A.2) by 176 

division by the respective reference condition value. Note that the class boundaries are non-177 

evenly spaced for all BQEs except phytoplankton (Table A.2); this is essential in comparison 178 

of the BQE classifications. For example, a BQE with narrow class width for good status (e.g. 179 

macrophytes, class width = 0.17) may be more susceptible to bias in the assessment of good 180 

status compared to a BQE with a wider class (e.g. fish, class width = 24). 181 

182 

To facilitate comparison of index values for different BQEs, the EQR values (Table A.1) were 183 

normalised (nEQR) by a piecewise linear transformation procedure (Caroni et al., 2013). The 184 

normalisation is based on the distance from the index value (in EQR scale) to the nearest class 185 

boundaries (Eq. 1): 186 

187 

nEQR = (EQR - lower_EQR) * (upper_nEQR - lower_nEQR) + lower_nEQR, (Eq. 1) 188 

    upper_EQR - lower_EQR) 189 

190 

where lower_EQR and upper_EQR are lower and upper class boundaries in EQR scale for the 191 

given index  (Table A.2), and lower_nEQR and upper_nEQR lower and upper class 192 
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boundaries in normalised EQR scale (high/good = 0.8, good/moderate = 0.6, moderate/poor= 193 

0.4, poor/bad= 0.2). The transformation to nEQR scale ensures standard class widths and 194 

boundaries for all BQEs (see also EC (2011), Fig. 12)
1
. This way, one can infer directly from 195 

each nEQR value (Table 2) both the status class and the distance to the nearest class 196 

boundaries. 197 

198 

2.3. BQE combination rules 199 

200 

Four alternative rules for combining the ecological status of multiple BQEs were applied in 201 

this study (Table 2). 202 

203 

Rule 1:"OOAO" (One-out, all-out). The status of the lake was determined by the lowest status 204 

of all the BQEs. 205 

Rule 2: "OOAO-E" (One-out, all-out after exclusion of one BQE). This combination rule is 206 

recommended in cases where one BQE has high variability or is for other reasons associated 207 

with low confidence (EC 2005). Here, macroinvertebrates were excluded (see section 3.1). 208 

Rule 3: "Avg" (Average). Following the WISERBUGS method (Clarke, 2013, see section 209 

3.1.), the status class for each BQE was converted to an integer (H=1, G=2, M=3, P=4, B=5), 210 

and the arithmetic average for all BQEs was calculated. This conversion implies that the 211 

proximity of an index value to class boundaries is ignored, which is not ideal. We 212 

nevertheless chose to base the average on integers instead of the actual nEQR values, to make 213 

our results comparable with other studies using WISERBUGS (e.g., Caroni et al., 2013; 214 

Kolada et al., 2013). If the average was halfway between two classes, it was assigned to the 215 

worse of the two classes. 216 

1
 A more detailed illustration of normalisation of EQR values can be found in the European Environment 

Agency's Data Dictionary for Lakes: http://forum.eionet.europa.eu/nrc-eionet-
freshwater/library/wise_reporting_2011/biological_reporting/biologydd_20110617jpg 
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Rule 4: "Avg-W" (Weighted average). The status classes were converted to numeric values as 217 

for Rule 3, but the class value for each BQE was multiplied by a weight inversely related to 218 

the uncertainty assumed for the BQE (see section 3.1). In this study macroinvertebrates were 219 

down-weighted (weight = 10%) relative to the other BQEs (each 22.5%). 220 

The notation "OOAO(-E)" will be used when the two rules OOAO and OOAO-E are 221 

considered jointly, and "Avg(-W)" for the two rules Avg and Avg-W considered jointly.  222 

 223 

3. Calculation: the WISERBUGS method for estimating risk of misclassification 224 

 225 

For analysing the risk of misclassification, we adopted the WISERBUGS method (Clarke, 226 

2013). The method assumes that index values used for ecological classification of a 227 

waterbody follow a normal distribution that can be specified by the mean and standard 228 

deviation of replicated samples. The standard deviation (SD) then represents the sampling 229 

uncertainty of the index. The estimated mean and SD defines a normal probability 230 

distribution, from which resamples of the index can be simulated by random drawing. This 231 

method recognises that the true status class of a waterbody is unknown, but considers the 232 

assessment based on the measured index value (cf. Table 2) as the "correct" class. 233 

Misclassification of the simulated index values is defined as assignment to any other class 234 

than the "correct" class. The risk of misclassification is thus based on the precision of the 235 

index values, which is measured by standard deviation (SD), but does not consider the 236 

accuracy (the proximity to the unknown correct status) (Clarke, 2013). 237 

 238 

3.1. Uncertainty in index values 239 

 240 
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Following the WISERBUGS method, characterisation of the probability distribution and 241 

estimation of sampling variation for indices should ideally be based on a large number of 242 

properly replicated samples, which are not available in most biological studies including ours. 243 

However, our aim was not to predict the exact risk of misclassification, but to compare the 244 

relative risk of misclassification for different levels of uncertainty. Therefore a pragmatic 245 

approach was taken: where possible, the SDs for each BQE was based on multiple samples 246 

from the same lake (taken at different stations, in different seasons or by different personnel), 247 

and calculated as pooled SD ("SD1") for all lakes. This uncertainty measure may be 248 

considered to include spatial and/or temporal variation in addition to sampling variation. For 249 

phytoplankton (SD1 = 0.056) and phytobenthos (SD1 = 0.046), the SD1 was calculated from 250 

4 lakes with 2-3 stations sampled once in summer and once in autumn, respectively. For 251 

macrophytes (SD1 = 0.051), the SD1 was calculated from 10 lakes surveyed by 2-3 different 252 

persons, once in the peak of the growing season. The faunal indices had insufficient samples 253 

for calculation of SD. However, since macroinvertebrates often had lower nEQR values that 254 

the other BQEs, we were particularly interested in how the exclusion or down-weighting of 255 

this BQE would affect the overall assessment and risk of misclassification. The 256 

macroinvertebrate index is used in national classification but the assessment system has not 257 

yet been intercalibrated with the systems of other Central-Baltic countries (Böhmer et al., 258 

2014), therefore this index was associated with lower confidence than the botanical indices. 259 

To reflect this lower confidence, we chose as a pragmatic solution to assign higher uncertainty 260 

for the macroinvertebrate index (SD1 = 0.10) than for the other BQEs. For fish, for simplicity, 261 

the sampling uncertainty was set to the same level as the botanical elements (SD1 = 0.05).  262 

 263 

3.2. Resampling and probability of misclassification of BQEs and lakes 264 

 265 
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The modelling approach in this study follows the WISERBUGS method (Clarke, 2013): 266 

stochastic simulation of biological index values with sampling uncertainty, and calculation of 267 

misclassification under different combination rules. Three levels of uncertainty were applied, 268 

denoted SD1, SD2 and SD3. Uncertainty level SD1 corresponds to the estimated or assumed 269 

SD for the respective indices, as described above. For level SD2, the SD for each BQE was 270 

multiplied by 2 (i.e., the variance was doubled). In level SD3, correspondingly, the SDs 271 

were multiplied by 3. We simulated 10,000 resamples for each BQE in each lake, classified 272 

each resample and calculated the proportion of misclassified resamples compared with the 273 

"correct" class. The simulation routine was programmed in R version 2.14.1 (R Development 274 

Core Team, 2011), and can be summarised in the following steps, for each lake. 275 

  276 

1. For each BQE and each SD level, assume that the index values follow a normal probability 277 

distribution N ~ (mean, SD) defined by the mean index value for the lake (in EQR scale; 278 

Table A.1) and the pooled SD (section 3.1).  279 

2. For each BQE and each SD level, simulate 10 000 samples (index values) drawn randomly 280 

from their respective probability distributions N ~ (mean, SD). 281 

3. For each simulation, assess the status class for each BQE based on their respective index 282 

values and class boundaries. 283 

4. For each simulation and each BQE combination rule, assess the integrated status class for 284 

the lake according to the obtained BQE status classes.  285 

5. For each SD level and each combination rule, calculate the proportion of "correct" 286 

classification as the number of simulations with the same class as obtained for the input data 287 

with the same combination rule (Table 1) divided by the total number of simulations. The 288 

remaining proportion of simulations represents the probability of misclassification (under the 289 

given combination rule).  290 
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 291 

For example, for macrophytes in Lake Kiełpińskie, the mean EQR is 0.51 (Table A.1) and the 292 

pooled SD1 is 0.051 (section 3.1). Simulation of 10 000 resamples from the normal 293 

distribution N ~ (mean=0.51, SD=0.051) resulted in 60.03% resamples in high class and 294 

39.96% in good class, as displayed in Fig. 2a (leftmost bar). Since the "correct" class in this 295 

case is high (cf. Table 2), the probability of misclassification is 39.96% (Fig. 2b, leftmost 296 

bar). 297 

 298 

3.3. Cross-lake comparisons of risk of misclassification 299 

 300 

The risk misclassification for the ten lakes combined was analysed by linear models, with the 301 

response variable being the number of misclassified simulated resamples for each lake (as 302 

described in section 3.2, step 5). Significant difference in misclassification among BQEs was 303 

tested both with BQE as a single predictor variable (one-way ANOVA) and with SD as a 304 

continuous co-variable (ANCOVA). The dataset used for this test comprised the number of 305 

misclassifications in the 10 lakes x 5 BQEs x 3 SD levels (in total 150 records). Likewise, 306 

difference in misclassification among combination rules was tested both with combination 307 

rule as single predictor variable and with SD level as a co-variable (dataset: 10 lakes x 4 308 

combination rules x 3 SD levels; in total 120 records). In addition, the number of over- and 309 

underclassifications were also used as alternative response variables. Pairwise comparison of 310 

the number of misclassifications between BQEs and between combination rules was 311 

performed by Tukey's "honestly significant difference" method (using the R function 312 

"TukeyHSD"). 313 

  314 
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Ecological status assessment sensu WFD should in principle be applied to waterbodies (and 315 

their components), not to larger geographical levels such as catchment. Nevertheless, to 316 

describe more general patterns for the whole catchment in this case study, an "aggregated 317 

class" for all lakes combined was assigned to each BQE and each combination rule (i.e., the 318 

class with the highest proportion of resamples for all lakes combined). For each BQE and 319 

combination rule, the number of misclassifications for all lakes combined was calculated as 320 

the total number of resamples for all lakes deviating from the correct "aggregated class". 321 

 322 

4. Results and Discussion 323 

 324 

4.1. Cross-lake patterns in status classification: effects of BQE combination rule 325 

 326 

Averaging the status class of individual BQEs generally resulted in higher status than 327 

applying the OOAO rule (nine out of ten lakes; Table 2), as expected. Different combination 328 

rules for BQE classes have been explored and compared to the OOAO in several other 329 

studies, such as average (Caroni et al., 2013; Nõges and Nõges, 2006; Sutela et al., 2013), 330 

median (Alahuhta et al., 2009; Caroni et al., 2013; Rask et al., 2010), and weight-of-evidence 331 

approaches or decision trees (Borja et al., 2009; Gottardo et al., 2011; Veríssimo et al., 2013). 332 

In each case, the alternative rule has given equal or better classification than the OOAO. 333 

Many of the authors have expressed concerns that the OOAO seems too conservative, 334 

especially when several BQEs are used. For example, the two largest lakes in Estonia 335 

(Võrtsjärv and Peipsi) both obtained moderate status, while more subjective expert-based 336 

estimates suggest that the status should be good (Nõges and Nõges, 2006).  337 

 338 
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Excluding macroinvertebrates (rule OOAO-E) improved the "correct" class compared with 339 

the OOAO for only two lakes (Table 2; Lake Grądy and Lake Hartowieckie). In these two 340 

lakes, the macroinvertebrates had the lowest status. Correspondingly, down-weighting 341 

macroinvertebrates when averaging the BQEs improved the "correct" class for only two lakes 342 

(Table 2; Lake Dąbrowa Mała and Lake Grądy). For Lake Dąbrowa Mała there was large 343 

disagreement among the BQEs, ranging from high to poor. Therefore, down-weighting one of 344 

the two poor BQEs was sufficient to shift the "correct" class from moderate to good.  345 

 346 

4.2. Misclassification of individual BQEs: effects of uncertainty  347 

 348 

Higher SD levels generally increased the risk of misclassification at the BQE level (e.g., Lake 349 

Kiełpińskie, Fig. 2b), as could be expected. However, the probability distribution across status 350 

classes for the simulated samples (Fig. 2a) was also determined by the proximity of the index 351 

value to a class boundary. The proximity to a class boundary in normalised EQR scale can be 352 

inferred from the normalised EQR values in Table 2. For Lake Zarybinek, for example, the 353 

nEQR of phytoplankton and macrophytes (0.39 and 0.37, respectively) were just below the 354 

moderate/poor boundary (0.4). This was reflected in the simulated resamples and resulting 355 

classification at the BQE level (Fig. 3a): the two mentioned BQEs had almost equal 356 

probability of assessment to moderate or poor class. Consequently, the probability of 357 

misclassification (Fig. 3b) was high (>40%) for these BQEs. For these BQEs where 358 

misclassification was already high due to the proximity to a class boundary, higher SD 359 

typically increased this risk only slightly.  360 

 361 

The importance of uncertainty in index values for risk of misclassification at BQE level, as 362 

demonstrated here, has also been clearly demonstrated in previous studies (Caroni et al., 363 
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2013; Clarke et al., 2006; Kelly et al., 2009b; Ruse, 2010; Szoszkiewicz et al., 2007). The 364 

estimated or assumed sampling uncertainty for the BQEs in this study (approx. 0.05 - 0.10) 365 

were based on few samples, but correspond well to SD levels estimated for index values in 366 

other studies (with similar index scale; 0-1). Examples include invertebrates in rivers (SD 367 

0.058-0.065; Clarke et al., 2006), invertebrates in lakes (SD 0.032-0.094; Caroni et al., 2013), 368 

diatoms in rivers and lakes (temporal variation; SD approx. 0-0.1; Kelly et al., 2009b). The 369 

SD levels in this study can therefore be considered to be within a realistic range for sampling 370 

uncertainty. For monitoring and classification in practice, index values will also be affected 371 

by other sources of uncertainty (e.g. natural temporal variation in the ecosystem). The higher 372 

levels of uncertainty used in the simulations (SD2 up to 0.20) might be considered a 373 

conservative estimate of other uncertainty sources as well.  374 

 375 

The importance of an index value's proximity to class boundaries for the risk of 376 

misclassification of the BQE has also been demonstrated in numerous other studies 377 

(Carstensen, 2007; Clarke and Hering, 2006; Kelly et al., 2009b; Kolada et al., 2013; Ruse, 378 

2010; Szoszkiewicz et al., 2007). However, although the proximity to a class boundary 379 

represents a source of uncertainty for the classification, this factor is not an error that can be 380 

reduced. Thus, instead of defining the status as one class (e.g. poor for phytoplankton in Lake 381 

Zarybinek, Fig. 3a), one might consider the proximity to class boundaries and describe the 382 

status as "poor-to-moderate", or in probabilistic terms (e.g. 60 % poor and 40% moderate). A 383 

more advanced approach - a fuzzy inference system - was used by Gottardo et al. (2011): they 384 

considered also uncertainty in the class boundaries and assigned the membership of each 385 

index to two neighbouring classes, expressed by percentages. If the status of a BQE is defined 386 

as belonging to two classes in such a probabilistic way, the very concept of misclassification 387 

should be reconsidered. 388 

389 
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 4.3. Misclassification of individual lakes: effects of BQE combination rule and uncertainty 390 

 391 

As for individual BQEs, the misclassification of whole lakes increased with the level of SD. 392 

However, the effects of SD for individual lakes were confounded by the effects of proximity 393 

of index values to class boundaries. For Lake Kiełpińskie, the pattern of misclassification 394 

under the OOAO(-E) rules (Fig. 2d) reflected the pattern of the worst BQE (macrophytes and 395 

macroinvertebrates; Fig. 2b). Under the Avg(-W) rules, in contrast, the risk of 396 

misclassification was very low (Fig. 2d), reflecting the fact that most index values were far 397 

from the class boundaries (cf. Fig. 2a and Table 2). For Lake Zarybinek, in comparison, the 398 

Avg(-W) rules resulted in a high degree of overclassification compared with the OOAO(-E) 399 

rules (Fig. 3d); this reflects that three of the BQEs were close to an upper class boundary (as 400 

described above; Fig 3c). For Lake Dąbrowa Mała, where several BQEs had almost equal 401 

probability of two neighbouring classes (Fig. 4a), and thus high risk of misclassification (Fig. 402 

4b), the "correct" lake class was altered by changed weighting in the combination rule (Fig. 403 

4c). In this case, the large difference in risk of misclassification for Avg-W vs. Avg (Fig. 4d) 404 

was due to the shift in the "correct" class.  405 

 406 

The currently recommended modification of the OOAO rule - excluding the BQE with 407 

highest uncertainty (EC 2005) - will automatically reduce the risk of underclassification. 408 

However, there is also a risk that the excluded BQE actually is the most vulnerable 409 

component, and that excluding this element will result in e.g. good status when moderate 410 

status would be more appropriate, and therefore will fail to protect this BQE. More generally, 411 

from a scientific point of view, discarding available information (even if uncertain) is not the 412 

best means for obtaining a more reliable result. Moreover, if one BQE is routinely excluded 413 

from status classification, it is more likely that it will eventually be excluded from monitoring 414 
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programmes (Søndergaard et al., 2005); this loss of information may in the long run increase 415 

the risk of inappropriate management decisions. 416 

 417 

The average combination rules may seem favourable from a statistical point of view, because 418 

they make better use of all available information, and give more robust and balanced results 419 

also under high uncertainty. However, these combination rules will not necessarily ensure the 420 

protection of the whole ecosystem, especially in cases where there is large disagreement 421 

among the BQEs (e.g. Kiełpińskie, Fig. 2). Down-weighting of BQEs with low confidence 422 

may reduce the risk of misclassification (Fig. 6b), but may also fail to protect the most 423 

sensitive BQEs (e.g. Dąbrowa Mała, Fig. 4). Moreover, weighted average or other weight-of-424 

evidence approaches (e.g., Gottardo et al., 2011) are not straightforward to implement, 425 

because the choices will need to be justified, and there is a risk that the weighting can be 426 

manipulated in order to obtain desired results. Guidelines for weighting of different BQEs, 427 

e.g. based on uncertainty or other measures of confidence, would therefore be useful.  428 

 429 

 4.4. Cross-lake patterns in misclassification: effects of uncertainty under different 430 

combination rules 431 

 432 

The "aggregated class" of individual BQEs for all lakes combined (see section 3.3) ranged 433 

from poor to good (Fig. 5a), and was not affected by the uncertainty level in index values 434 

(SD1 - SD3). Nevertheless, the uncertainty levels affected the probability distribution across 435 

status classes, and hence the risk of misclassification (Fig. 5b).  436 

 437 

The inclusion of uncertainty also revealed a more nuanced picture of the overall effects of 438 

combination rules. Although exclusion of macroinvertebrates generally did not alter the 439 
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"correct" lake class compared to the OOAO combination rule (Table 2), it shifted the overall 440 

aggregated distribution of simulated classes towards higher status (Fig. 5c). Consequently, the 441 

overall rates of misclassification were slightly reduced by this modification of the 442 

combination rule (Fig. 5d).  443 

 444 

Analysis of among-lake variation in misclassification for individual BQEs showed significant 445 

effects of both BQE (F4,144 = 10.58, p < 0.001) and SD level (F1,144 = 29.23, p<0.001). The 446 

Tukey HSD test (Fig. 6a) revealed that on average, misclassification was significantly higher 447 

for macroinvertebrates and macrophytes than for phytobenthos and fish, with phytoplankton 448 

in-between. The extra high SD for assumed macroinvertebrates (approximately twice as high 449 

as for the other BQEs) did not result in a correspondingly high rate of misclassification for 450 

this BQE; this indicates that the proximity to class boundaries is an equally important factor 451 

for the risk of misclassification. The bias towards overclassification (Fig. 6a), especially for 452 

macrophytes, reflects that the index values were often close to upper class boundaries. 453 

 454 

The probability of misclassification did not differ significantly among the different 455 

combination rules, according to the ANOVA test (Fig. 6b). However, the combination rules 456 

influenced the numbers of under- or overclassification. The number of underclassifications 457 

were significantly lower under the Avg(-W) rules than under the OOAO rule (F3,116 = 8.68, p 458 

< 0.001). Conversely, the Avg rule resulted in more overclassifications than OOAO (F3,116 = 459 

3.30, p < 0.03).  460 

 461 

The effect of SD level on the number of misclassifications of whole lakes varied among the 462 

combination rules. For the two OOAO(-E) rules, the rate of misclassification increased 463 

significantly with SD (F1,58 = 8.61, p < 0.005). In contrast, under Avg(-W), misclassification 464 
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was not significantly affected by SD (F1,58 = 0.148, p < 0.70). Correspondingly, the number of 465 

underclassifications increased with SD under the OOAO(-E) rules (F1,58 = 3.31, p = 0.062), 466 

but was not affected by SD under the Avg(-W) rules (F1,58 = 1.60, p = 0.21). The number of 467 

overclassifications was not affected by SD (both F1,58 < 0.73, p > 0.39). 468 

469 

A similar pattern was found by Caroni et al. (2013), using the WISERBUGS simulation 470 

approach for Swedish lakes with data on 2-4 BQEs with SD ranging from 0.00001 to 0.25: 471 

The proportion of misclassifications, as well as the bias towards "underclassification", 472 

increased more with SD when BQEs were combined by OOAO than when BQE classes were 473 

averaged. 474 

475 

In conclusion, three tendencies can be inferred from the aggregated distribution of status of all 476 

lakes (Fig. 5) and from the statistical testing of percentage misclassification among lakes. 477 

First, the total number of misclassifications is slightly higher under the OOAO rule than under 478 

the other three combination rules. Second, under the OOAO there are considerably more 479 

underclassifications than overclassifications; under the other combination rules these two 480 

types of misclassifications are more balanced. Third, higher uncertainty (SD) increases the 481 

percentage of misclassification, and especially the percentage of underclassification, more 482 

under the OOAO than under the other rules. In other words, because the OOAO rule never 483 

gives "the benefit of the doubt", higher levels of doubt (uncertainty) will generally lead to 484 

stricter assessments. 485 

486 

4.5. Implications for water management policy 487 

488 
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The most critical outcome of status classification may be whether a waterbody fails to meet 489 

the WFD objective of good ecological status, and therefore will need restoration measures. 490 

Classification with the OOAO rule resulted in moderate or worse status for all lakes in the 491 

Wel catchment; accordingly all of these lakes need restoration. The average combination rules 492 

improved the status from moderate to good in two cases; the weighted average even improved 493 

the status from poor to good in one case. In such situations, the choice of a strict combination 494 

rule such as the OOAO can determine management decisions in favour lake restoration, and 495 

therefore cause considerable economic costs (Prato et al., 2014). Conversely, selecting a more 496 

liberal average-based combination rule e.g. for Kiełpińskie would imply that lake restoration 497 

is not needed, even though the moderate status of two BQEs indicated that improvement was 498 

needed in this case. 499 

500 

For lake management in practice, the quantification of uncertainty of index values (as 501 

required by the WFD) may be difficult, and estimation of the risk of misclassification will 502 

therefore be a challenge. Based on this study, it is not possible to conclude for a given lake 503 

that an average-based combination rule will give higher or lower risk of misclassification than 504 

the OOAO rule. Nevertheless, one can generally expect that the risk of misclassification will 505 

be more affected by uncertainty in index values if the OOAO combination rule is used 506 

compared with an average-based rule. Moreover, using the OOAO, one can expect a higher 507 

risk of underclassification compared with overclassification if the uncertainty is high. 508 

509 

The OOAO rule for classification of waterbodies was recommended  by the EC (2005) as a 510 

means implementing the precautionary principle and protecting the whole ecosystem. 511 

Moreover, the biological indices based on different taxonomic groups may indicate 512 

anthropogenic pressures of different types (e.g., nutrient enrichment vs. habitat degradation) 513 
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or occurring at different spatial and temporal scales (e.g., local habitats vs. watershed-level) 514 

(Carlisle et al., 2008; Walters et al., 2009). In this respect, the OOAO rule makes more sense 515 

than other, less conservative rules.  516 

 517 

Although the OOAO rule is simple to implement in practice, the consequences of using this 518 

rule become more complicated when considering the effects of uncertainty, as shown by our 519 

analysis and by Caroni et al. (2013). In future versions of guidelines for WFD 520 

implementation, these findings should be considered and alternative combination rules should 521 

be discussed. Like other authors (Alahuhta et al., 2009), we will not conclude by 522 

recommending one particular combination rule as the most appropriate, but hope that our 523 

results contribute to a better understanding of the benefits and shortcomings of different 524 

combination rules when applied to different ecosystem.  525 

 526 

We support the statements that more research is needed on combination rules for integrated 527 

waterbody assessment under uncertainty (Caroni et al., 2013; Nõges et al., 2009). The existing 528 

datasets in this and other cited studies provide opportunities for more investigation using 529 

simulation approaches such as WISERBUGS, e.g. with different criteria for weighting BQEs 530 

and different uncertainty levels under alternative combination rules. The aim should be to 531 

obtain a combination rule that ensures the protection of the whole ecosystem elements under 532 

pressure, while the risk of underclassification and "false alarm" for restoration is acceptable 533 

for waterbody management in practice.  534 
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Appendix A 729 

 730 

Table A.1. Mean index values in EQR scale for each BQE.  731 

 732 

Lake name Biological quality element (BQE)
a
 

 PP PB MP MI FI 

Dąbrowa 

Wielka 

0.42 0.70 0.67 0.53 0.78 

Dąbrowa 

Mała 

0.39 0.82 0.50 0.43 0.94 

Rumian 0.31 0.70 0.39 0.38 0.61 

Zarybinek 0.39 0.59 0.32 0.36 0.39 

Tarczyńskie 0.12 0.56 0.33 0.09 0.08 

Grądy 0.30 0.79 0.33 0.06 0.31 

Lidzbarskie 0.34 0.67 0.32 0.24 0.36 

Kiełpińskie 0.81 0.69 0.44 0.59 0.94 

Hartowieckie 0.46 0.78 0.48 0.31 0.33 

Zwiniarz 0.18 0.85 0.26 0.28 0.25 

733 
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Table A.2. Class boundaries in EQR scale used for status classification and for calculation of 734 

normalised EQR values, for each biological quality element (BQE). 735 

 736 

BQE
a
 Class boundaries

b
 

 H/G G/M M/P P/B 

PP 0.8 0.6 0.4 0.2 

PB 0.8 0.6 0.4 0.15 

MP 0.68 0.51 0.34 0.17 

MI 0.9 0.69 0.45 0.21 

FI 0.69 0.45 0.25 0.1 

a
 PP = phytoplankton, PB = phytobenthos, MP = macrophytes, MI = macroinvertebrates, FI = 737 

fish 738 

b
 H = high, G = good, M = moderate, P = poor, B = bad 739 

 740 
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Figure captions 

 

Fig. 1. Location of the study area. Upper left panel: map of Europe with location of Poland; 

lower left panel: map of Poland with location of the Wel river catchment; right panel: location 

of ten lakes within the Wel river catchment in North-Central Poland. The numbers refer to 

lake names in Table 1. 

 

Fig. 2. Uncertainty in classification of Lake Kiełpińskie for different biological quality 

elements (BQEs), different BQE combination rules and different uncertainty levels in BQE 

index values. For more information on the lake, see Table 1. The labels above the bars show 

the "correct class" (cf. Table 2). For abbreviations and more details, see Table 2. The 

distribution of status classes based on 10,000 simulated resamples (see section 3.2). (a) 

Percentage of status classes assessed for each BQE and for each uncertainty level (1, 2, 3). (b) 

Percentage of resamples of each BQE categorised as underclassification and 

overclassification, respectively. (c) Percentage of waterbody status classes assessed for each 

BQE combination rule and for each uncertainty level. (d) Percentage of waterbody status 

classes categorised as underclassification and overclassification, respectively.  

 

Fig. 3. Uncertainty in classification of Lake Zarybinek for different biological quality 

elements (BQEs), different BQE combination rules and different uncertainty levels in BQE 

index values. For abbreviations and more details, see Fig. 2. 

 

Fig. 4. Uncertainty in classification of Lake Dąbrowa Mała for different biological quality 

elements (BQEs), different BQE combination rules and different uncertainty levels in BQE 

index values. For abbreviations and more details, see Fig. 2. 

Figure



2 
 

 

Fig. 5. Summarised uncertainty in classification of all ten lakes combined for different 

biological quality elements (BQEs), different BQE combination rules and different 

uncertainty levels in BQE index values. In plots (a) and (c), the percentage of resamples for 

each status class is summed for all lakes. The "correct aggregated status" is the class with the 

highest proportion of resamples for all lakes combined, for each BQE (a) and each 

combination rule (c), respectively. For abbreviations and more details, see Fig. 2. 

 

Fig. 6. Outcome of the analysis of variance (ANOVA) in misclassification for the ten lakes by 

different BQEs, different combination rules and different levels of uncertainty in individual 

BQE index values. The calculation of misclassification for each simulated resample is 

described in section 3.2, step 5. The displayed percentage of misclassification represents the 

average number of misclassified resamples for all lakes. The letters above the bars in plot (a) 

indicate significant differences between BQEs according to the ANOVA (see method 

description in secction 3.3): pairs of BQEs with significatntly different percentage of 

misclassification have no common letters above the bars. For abbreviations and more details, 

see Fig. 2. 
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Fig. 2.  
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Fig. 3.  
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Fig. 4.  
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Fig. 5.  
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Fig. 6.  
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Table 1  

 The main characteristics of the ten lakes used in the study. Mixing types: s = stratified, ns = non-stratified. Land use forms: NAT = natural and 

semi-natural; AGR = agriculture, URB = urban. After Soszka (2011). For geographic location, see Fig. 1. 

 

No. Lake 

Surface 

area 

(km
2
) 

Max 

depth 

(m) 

Mean 

depth 

(m) 

Retention 

time 

(years) 

Mixing 

type 

Catchment 

area 

(km
2
) 

Land use in catchment (%) 

NAT AGR URB 

1 Dąbrowa 

Wielka 
6.15 34.7 8.2 2.50 s 95.5 22.6 76.2 1.2 

2 Dąbrowa 

Mala 
1.73 34.5 10.0 0.59 s 159.1 25.2 73.8 1.0 

3 Rumian 3.06 14.4 6.5 0.36 s 254.4 22.5 76.7 0.8 

4 Zarybinek 0.74 7.0 2.4 0.03 ns 270.1 22.7 76.4 0.9 

5 Tarczyńskie 1.64 9.2 3.8 0.10 ns 296.2 23.8 75.4 0.8 

6 Grądy 1.13 9.1 4.7 0.10 ns 332.9 25.8 73.4 0.8 

7 Lidzbarskie 1.22 25.5 10.1 0.12 s 534.3 29.4 69.3 1.3 

8 Kiełpińskie 0.61 11.0 6.1 2.50 s 14.3 56.9 42.8 0.3 

9 Hartowieckie 0.70 5.2 2.9 1.11 ns 8.7 17.9 82.1 0.0 

10 Zwiniarz 0.50 5.8 3.0 1.11 ns 7.9 34.3 65.7 0.0 

 

Table
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Table 2  

Ecological status of the ten lakes (Table 1) based on data for each biological quality element (BQE) and integration of all BQEs using different 

combination rules (see section 2.3). The values under BQEs are normalised ecological quality ratios (nEQR; see section 2.2). Ecological status 

classes correspond to the following intervals of nEQR: 0-0.2 = Bad, 0.2-0.4 = Poor, 0.4-0.6 = Moderate, 0.6-0.8 = Good, 0.8-1 = High. 

Lake name Biological quality element
a
 Combination rule

b
 

 PP PB MP MI FI OOAO OOAO-E Avg Avg-W 

Dąbrowa 

Wielka 

0.42 0.70 0.79 0.47 0.86 Moderate Moderate Good Good 

Dąbrowa 

Mała 

0.39 0.82 0.59 0.38 0.96 Poor Poor Moderate Good 

Rumian 0.31 0.70 0.46 0.34 0.73 Poor Poor Moderate Moderate 

Zarybinek 0.39 0.59 0.37 0.33 0.54 Poor Poor Poor Poor 

Tarczyńskie 0.12 0.56 0.39 0.09 0.16 Bad Bad Poor Poor 

Grądy 0.30 0.79 0.38 0.06 0.46 Bad Poor Poor Moderate 

Lidzbarskie 0.34 0.67 0.38 0.23 0.51 Poor Poor Moderate Moderate 

Kiełpińskie 0.83 0.69 0.51 0.52 0.96 Moderate Moderate Good Good 

Hartowieckie 0.46 0.78 0.56 0.28 0.48 Poor Moderate Moderate Moderate 

Zwiniarz 0.18 0.85 0.30 0.26 0.40 Bad Bad Poor Poor 

a
 PP = phytoplankton, PB = phytobenthos, MP = macrophytes, MI = macroinvertebrates, FI = fish 

b
 OOAO = one-out, all-out, OOAO-E = one-out, all-out after exclusion of MI, Avg= average; Avg-W = average with down-weighting of MI 
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Fig. S1. Uncertainty in classification of Lake Dąbrowa Wielka for different BQEs, different 

BQE combination rules and different levels of uncertainty in individual BQE index values. 

For more details, see Fig. 2. 
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Fig. S2. Uncertainty in classification of Lake Rumian for different BQEs, different BQE 

combination rules and different levels of uncertainty in individual BQE index values. For 

more details, see Fig. 2. 
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Fig. S3. Uncertainty in classification of Lake Tarczyńskie for different BQEs, different BQE 

combination rules and different levels of uncertainty in individual BQE index values. For 

more details, see Fig. 2. 
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Fig. S4. Uncertainty in classification of Lake Grądy for different BQEs, different BQE 

combination rules and different levels of uncertainty in individual BQE index values. For 

more details, see Fig. 2. 
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Fig. S5. Uncertainty in classification of Lake Lidzbarskie for different BQEs, different BQE 

combination rules and different uncertainty levels in BQE index values. For more details, see 

Fig. 2. 
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Fig. S6. Uncertainty in classification of Lake Hartowieckie for different BQEs, different BQE 

combination rules and different levels of uncertainty in individual BQE index values. For 

more details, see Fig. 2. 
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Fig. S7. Uncertainty in classification of Lake Zwiniarz for different BQEs, different BQE 

combination rules and different levels of uncertainty in individual BQE index values. For 

more details, see Fig. 2. 
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