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Abstract 

Macrophytes are shown to affect the microbial activity in different aqueous 

environments, with an altering of the sediment cycling of mercury (Hg) as a 

potential effect. Here, we investigated how a meadow with permanently submerged 

macrophytes in a contaminated brackish fjord in southern Norway influenced the 

conditions for sulfate reducing microbial activity, the methyl-Hg (MeHg) production 

and the availability of MeHg. Historically discharged Hg from a chlor-alkali plant 

(60-80 tons, 1947-1987) was evident through high Hg concentrations (492 mg Tot-

Hg kg-1, 269 µg MeHg kg-1) in intermediate sediment depths (10-20 cm) outside of 

the meadow, with reduced concentrations within the meadow. Natural recovery of 

the fjord was revealed by lower sediment surface concentrations (1.9-15.5 mg Tot-

Hg kg-1, 1.3-3.2 µg MeHg kg-1). Within the meadow, vertical gradients of sediment 

hydrogen sulfide (H2S) Eh and pH suggested microbial sulfate reduction in 2-5 cm 

depths, coinciding with peak values of relative MeHg levels (0.5 % MeHg). We 

assume that MeHg production rates was stimulated by the supply and availability of 

organic carbon, microbial activity and a sulfide oxidizing agent (e.g. O2) within the 

rhizosphere. Following this, % MeHg in sediment (0-5 cm) within the meadow was 

approximately 10x higher compared to outside the meadow. Further, enhanced 

availability of MeHg within the meadow was demonstrated by significantly higher 

fluxes (p<0.01) from sediment to overlying water (0.1-0.6 ng m-2 d-1) compared to 

sediment without macrophytes (0.02-0.2 ng m-2 d-1). Considering the productivity 

and species richness typical for such habitats, submerged macrophyte meadows 
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located within legacy Hg contaminated sediment sites may constitute important 

entry points for MeHg into food webs. 

 

Keywords  

Gunneklevfjorden, Potamogeton crispus, sulfate, methyl mercury, microbial activity, 

rhizosphere 

1. Introduction 

Mercury (Hg) is a global pollutant known to bio accumulate and magnify through 

food webs, primarily as the methylated, organic and readily bioavailable form 

methyl mercury  (MeHg )(Morel et al., 1998). MeHg is a neurotoxin and has potential 

harmful effects on humans and animals (WHO, 1991).  On a global scale, rivers are 

estimated as the source of approximately 30 % of Hg to open ocean, of which more 

than 80 % is estimated to be buried in deltas and estuaries (Amos et al., 2014).  

Anaerobic estuarine and coastal marine environments are considered important 

sites for bacterial transformation of inorganic Hg into MeHg (Donaldson et al., 2010, 

Hollweg et al., 2009, Lehnherr, 2014, Lehnherr et al., 2011). Sulfate reducing 

bacteria (SRB) are commonly cited as key methylating microbes, particularly in 

saline and brackish systems where sulfate is abundant (Compeau and Bartha, 1985, 

King et al., 2000, Merritt and Amirbahman, 2009). Recent research have suggested 

that the ability to produce MeHg may be more broadly distributed among microbes 

than previously recognized (Parks et al., 2013, Podar et al., 2015).  Microbial MeHg 
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production may indirectly be controlled by factors affecting microbial community 

composition in general and SRB activity in specific (King et al., 2001, Ullrich et al., 

2001), such as temperature, pH, redox potential (Eh) gradients, sulfur (S) and 

availability of labile organic matter (Drott et al., 2008, Hollweg et al., 2009, Lehnherr 

et al., 2012b, Schartup et al., 2013a).  Recently, studies have documented that not 

only the presence but also species composition of submerged macrophytes may 

determine microbial abundance and affect microbial activity (Cosio et al., 2014, 

Regier et al., 2012).  The importance of vegetated areas for the production of MeHg 

have been demonstrated in agricultural wetlands, freshwater lakes, rivers and 

saltmarshes in southern temperate or tropical zones (Bravo et al., 2014, 

Krabbenhoft et al., 1998, Lehnherr et al., 2012a). However, knowledge is lacking for 

the influence of macrophytes on sediment MeHg production, flux from sediment and 

the subsequent potential for bioaccumulation of Hg within heavily contaminated 

areas. Macrophytes comprise a vast diversity of aquatic organisms in a wide range 

of littoral ecosystems (Cosio et al., 2014, Noges et al., 2010) and provide important 

and numerous microhabitats for aquatic organisms, offering shelter, substrate and 

food. Hence, the MeHg production within submerged macrophyte meadows could be 

of significant importance for bioavailability of Hg and uptake of MeHg into food 

webs.  

 

In this study, we wanted to assess the impact of permanently submerged 

macrophytes on methylation and re-distribution of Hg in the sediments of 

Gunneklevfjorden, a brackish fjord in southern Norway which has been the recipient 
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for discharges of Hg from a chlor-alkali plant for 40 years (Skei, 1978a). Mercury-

cell chlor-alkali plants have been identified as major sources of Hg releases to the 

environment (Bravo et al., 2014, Ullrich et al., 2007). Even though the contamination 

of the fjord has been well known for decades (Skei, 1989), the abundance of MeHg 

and the role of the permanently submerged macrophytes in the production of MeHg 

has not previously been investigated. During 2013-2015 several investigations were 

undertaken to develop a remediation action plan intended to reduce the ecosystem 

risk from Hg and other contaminants. We hypothesized that the macrophytes create 

favorable conditions for anaerobic microbial activity with subsequent production of 

MeHg. To address the hypothesis, we examined spatial variation in total Hg (Tot-Hg) 

and MeHg concentrations in sediment and pore water, as well as the flux of Hg from 

sediments to overlying water.  

 

2. Materials and methods 

2.1 Study site 

Our study site, Gunneklevfjorden, is a 0.7 km2, shallow (max depth 11 m) fjord 

located in the temperate zone of Norway (Figure 1), connected to the urban 

impacted river Skienselva in the north and to the industrialized fjord Frierfjorden in 

the south. Tidal fluctuations are small (20-30 cm) and water exchange occurs mainly 

through the narrow and 3.5m deep channel in the north, resulting in typical surface 

waters salinity of 1-5 PSU whereas bottom waters may range 5-20 PSU (Molvær, 

1989, Molvær, 1979). The concentration of Hg and other contaminants in the river is 



6 
 

generally low compared to the water mass of the Gunneklevfjorden  and a recent 

mass-balance has estimated an annual export of 0.5 kg Hg from the 

Gunneklevfjorden to Skienselva and Frierfjorden (Olsen et al., 2015). 

 

Since early 1900, the Gunneklevfjorden has been severely influenced by 

anthropogenic activities and discharges from a range of industrial sources (Skei, 

1989). Between 1947 and 1987 the fjord suffered from discharges of approximately 

60-80 tons of Hg, of which 20-30 tons are estimated to be stored in the sediments 

within the fjord (Skei, 1978b).  

 

The Gunneklevfjord hosts a permanently submerged meadow of macrophytes 

(Figure 1) dominated by Potamogeton crispus (curly-leaf pondweed), which 

constitutes an important habitat within the fjord. The meadow is classified to be of 

national importance due to its size (>0.01 km2) and the presence of the threatened 

species  Zannichella palustris (horned pondweed) (Mjelde, 2015). Maximum depth 

for growth of macrophytes in Gunneklevfjorden was observed to be 2.5-3.0 m 

during the investigation period. Root penetration depth is known to vary depending 

on the macrophyte species and is typically 0-15 cm for the P. crispus (Wang, 2013), 

defining the rhizosphere. 
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Figure 1. Map of Gunneklevfjorden, Norway, with sampling sites outside the 

meadow (N, C1, C2, S1- S6) and within the meadow (M1-M7) during 2013-2015. The 

point of discharge of Hg (1947-1987) is marked with a circle. 

 

2.2 Core and grab sampling of sediments 

This paper is based on sediment and pore water samples collected through several 

independent investigations during 2013 – 2015, making up a total of 321 samples 

for various analysis (Table 1). Duplicate sediment cores (Core I and Core II) were 
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collected with a Niemistö core sampler at three sites outside the meadow (“North” 

(N), “Center1” (C1) and “Center2” (C2)), and one single core was collected within the 

meadow (site “Meadow1” (M1)) (Figure 1). The cores were cut in 1 cm thick slices 

down to 5 cm, in 2 cm thick slices from 5 to 15 cm, and then in 5 cm slices for the 

rest of the core. Core I was used for analyses of grain size (fraction <63 µm) and 

concentrations of Tot-Hg, MeHg and TOC. Core II (and Core I in M1) was used for 

direct electrode measurements of pH, Eh and sulfide during the sectioning of the 

sediment. In addition, Core II was used for 210Pb-dating by DHI Denmark (Eek and 

Slinde, 2015). 

 

The electrode measurements were done using an electrode assembly with separate 

sensors for pH (standard glass combination electrode), Eh (Radiometer P101 

platinum electrode) and S2-ions (Radiometer F1212S sulphide ion selective 

electrode). In field, standard IUPAC buffers of pH 4, 7 and 9 calibrated the pH 

electrode.  Both samples and standards were measured at in situ temperatures close 

to 10°C.  

 

The concentration of hydrogen sulphide (ΣH2S = [S2-] + [HS-] + [H2S])  was 

calculated using the measured potential on the sulphide electrode and pH  

(Boulègue, 1978, Schaanning et al., 1997). The term pS (= -logH2S) is preferred to 

denote H2S concentrations (mol L-1) calculated from electrode measurements 

performed directly in untreated sediment samples (Aller, 1978).  
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Additionally 51 sediment samples for analyses of Tot-Hg and MeHg were collected 

within and outside the meadow using an Ekman grab (Table 1). All sediment 

samples were immediately frozen in airtight containers after sampling and stored 

frozen (-20°C) until analyses.  

 

Table 1. The total number of sediment samples (n=309) and pore water samples 

(n=12) collected for analyses of Tot-Hg, MeHg, TOC and electrode measurements 

(pH, Eh and pS) at different sites in the Gunneklevfjorden during 2013-2015.  

 

2.3 Pore water extraction and calculation of partition coefficients 
From 6 grab samples, sediment was subsampled, immediately placed in airtight 

containers and kept undisturbed, dark and cool (~ 4°C) until pore water extraction 

within 24 hours after sampling. Pore water was extracted by centrifugation at 7000 

Sampling sites 

Water 
depth 

(m) 

Number of 
cores/max 
core depth 

(cm) 

Number of core subsamples 
(slices) for analysis 

Number of grab 
subsamples (0-

5 cm) for 
analysis 

Number of pore 
water 

subsamples 
from grabs 

Tot-Hg MeHg TOC pH, pS, 
Eh 

Tot-Hg MeHg Tot-Hg MeHg 

Outside the meadow 
North (N), core 10 2/65 18  18 9 17     
Center1 (C1), core 6 2/65 18  18 9 18     
Center2 (C2), core 5 2/55 17 17 9 16     
South1 (S1), grab 3.1      14 5   
South2 (S2), grab 
South3 (S3), grab 
South4 (S4), grab 
South5 (S5), grab 
South6 (S6), grab 

3.4 
3.5 
3.1 
3.2 
3.8 

   1 
1 
1 
1 
1 

 1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

 
1 
1 
1 

 
1 
1 
1 

Within the meadow 
Meadow1 (M1), core 2.5 1/18 10 10 7 9     
Meadow2 (M2), grab 1.7      14 8   
Meadow3 (M3), grab 2.0      14 7   
Meadow4 (M4), grab 1.5    1  1 1 1 1 
Meadow5 (M5), grab 2.7    1  1 1 1 1 
Meadow6 (M6), grab 1.4    1  1 1 1 1 
Meadow7 (M7), grab 2.6    1  1 1   
Total number of data 
points 
  

  63 63 43 60 51 
 

29 
 

6 6 
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rpm for 30 minutes and filtering the supernatant through 0.45 µm membrane filter 

to remove remaining particles. Samples for MeHg analysis were preserved with 1 ml 

37% hydrochloric acid (HCl) (Braaten et al., 2014, USEPA, 1998). All pore water 

samples were stored frozen (-20°C) until analyzed.   

 

Partition coefficients (Kd) were calculated from concentrations of Tot-Hg and MeHg 

in sediment (0-5 cm) and pore water based on equation (1), and presented as 

Log(Kd): 

Log(Kd)=Log(Csediment/Cpore water )     (1) 

where  

Csediment = Concentration of Tot-Hg (µg/kg) or MeHg (µg/kg) in 0-5 cm 

sediment 

Cpore water=Concentration of Tot-Hg (µg/L) or MeHg (µg/L) in pore water 

from 0-5 cm sediment 

 

2.4 Flux measurements 

To measure the flux of Hg from sediment to overlying waters, triplicate box core 

samples (0.1m2, 30-40 cm deep) were collected outside (S1) and within the meadow 

(M1) simultaneously with the cores (Figure 1). The sampling and mesocosm set-up 

were done in accordance with well established procedures which provides large 

box-core samples with undisturbed vertical layering and little loss of benthic 

organisms (Berge et al., 1986, Näslund et al., 2011, Schaanning et al., 2008, Trannum 

et al., 2011, Trannum et al., 2010). In the mesocosm, the box-cores were submerged 
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to the rim in a water bath holding 10°C and with continuous flow of brackish water 

(5-10 PSU). The overlying water in each core was continuously exchanged with 

separate flows of 0.5-1 ml L-1 of the same water source. An airlift system described 

in Josefsson et al. (2012) was applied  in each core to maintain a well-mixed and oxic 

overlying water. The source water and the water above the sediment were sampled 

in separate bottles (1 L) after 2 months and again after 3 months for analysis of Tot-

Hg and MeHg. HCl was immediately added to the bottles for MeHg analysis. The 

water samples were kept cool (~4°C) and analyzed within 4 weeks from sampling.  

 

The flux (F) from sediment to overlying water was calculated by the following 

equation (2): 

 

F=(Co-Ci)Q/A         (2) 

where  

Ci = Concentration of Tot-Hg or MeHg in common source water 

CO=Concentration of Tot-Hg or MeHg in outlet water from each box core 

Q= Water flow rate through each box core 

A= Box core area (0.1 m2) 

 

Concentrations of MeHg were frequently below the detection limit (DL; 0.02 ng L-1) 

both in source water and in the overlying water. Nevertheless, concentrations (Ci) as 

low as 0.001 ng L-1 were reported at both measuring occasions and were used for 

flux calculations. The mean flow of 0.7 ml min-1 and a CO corresponding to the DL of 
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0.02 ng L-1 would yield a flux of 0.2 ng m-2 d-1.  Accordingly, this was considered as 

the detection limit for the MeHg fluxes reported.  

 

2.5 Chemical analysis 

Analysis of Tot-Hg in sediment was performed at the University College of Southeast 

Norway by a Lumex 915M instrument with a PYRO 915 pyrolysis unit (DL 0.5 µg kg-

1). MeHg in sediments was analyzed according to Bloom et al. (1997) and USEPA 

(1998). The method includes leaching with potassium bromide (KBr; 18 %), sulfuric 

acid (H2SO4; 5 %) and copper sulfate (CuSO4; 1M), extraction into dichloromethane 

(DCM) and back extraction into distilled water before heating (70 °C for 5 hours). 

Determination of MeHg in sediment was done with aqueous ethylation, purge and 

trap, and detection with cold vapor atomic fluorescence spectrometry (CVAFS). An 

automated system was then used for analysis of MeHg (Brooks Rand Labs MERX 

automated systems with Model III AFS Detector). Analysis of a MeHg certified 

reference material (CRM, ERM-CC580; estuarine sediment) was within the reported 

range (75 ± 4 ng g-1). The DL for MeHg was 20 pg g-1. TOC was analyzed in 43 of the 

sediment samples (Table 1) using a Phoenix 8000 TOC-TC analyzer, following 

standard method NS-ISO 8245  .  

 

Analyses for Tot-Hg and MeHg in water and pore water were based on USEPA 

Methods 1631 (USEPA, 2002) and 1630 (USEPA, 1998), respectively. Tot-Hg was 

determined by oxidation, purge and trap, and detected with CVAFS (DL 0.1 ng L-1), 

and MeHg was determined by distillation, aqueous ethylation, purge and trap, and 
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detected by CVAFS (DL 0.02 ng L-1). Precision of duplicate samples was < 10% for 

Tot-Hg and < 20% for MeHg. Recovery of blank spikes and matrix spikes were 80-

120 % for MeHg and 90-110 % for Tot-Hg.  

 

2.6 Statistical analysis 

All statistical analyses were done using the statistical language and software 

environment R, version 3.1.0 (Team, 2014).  The vertical distribution of Hg 

concentrations was explored by plotting the sediment depth profiles measured in 

the cores from site N, C1, C2, and M1. All data were further explored by test of 

correlation to reveal candidates for explanatory variables for Tot-Hg and MeHg in 

sediments. Shapiro test revealed normality for Tot-Hg and MeHg in sediment and for 

Tot-Hg in pore water without transformation, whereas normality was violated for 

MeHg in pore water. However, log-transformation did not improve normality for 

MeHg in pore water, so non-parametric tests were used for this parameter. ANOVA 

was used for testing the difference between within and outside the meadow in Tot-

Hg and MeHg in the upper 5 cm of sediment, whereas ANCOVA tested for presence 

of macrophytes as a significant predictor for MeHg in sediment. Samples below the 

DL were set to DL /2 for the statistical analysis. This was relevant only for results of 

MeHg in 4 of the 20 pore water samples (S2-4). 
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3. Results 

3.1 Biogeochemical characteristics 

Large horizontal and vertical variations were observed with regard to 

biogeochemical characteristics (Figure 2). Within the meadow (M1), a distinct TOC 

maximum (52.4 µg C mg-1 dw), high concentrations of sulfide (pS=3.8) and low 

values of Eh (-59mV) were found in 2-5 cm depth. Two pH minima (6.5 and 6.6) at 

about 2.5 and 4.5 cm depth, corresponded closely with the upper and lower 

boundary of the layer with high sulfide concentrations.  

 

Outside the meadow (C1 and C2) concentrations of TOC were high and the pH 

reached anomalous high values (>10). Anomalously high Eh values were recorded in 

the northern part (N) reaching more than 500 mV, compared to Eh in the range -295 

to 170mV at C1, C2 and in the meadow (M1). Sulfide was lacking at site N, and 

varied from pS=1.8 (~16 mM) in 55 cm sediment depth at site C1 to pS >15 in 12 cm 

depth within the meadow (M1). 
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Figure 2. Details (0-10 cm) of the vertical distribution of A) relative proportion (%) 

of fine grain (<63 µm); B) TOC (µg C mg-1 dw); C) pH; D) Eh (mV) and E) pS (-

log(ƩH2S)), measured in sediment cores from outside the meadow (N=black, 

C1=blue, C2=red) and within the meadow (M1=green). pH was not measured at site 

N. Note values in reverse order for pS. 

 

3.2 Sediment concentrations 

Tot-Hg and MeHg concentrations in sediment ranged from 0.24 to 142 mg Tot-Hg 

kg-1 dw and from 0.03 to 26.4 µg MeHg kg-1 dw (Table 2). Concentrations of both 

Tot-Hg and MeHg increased from the surface and down to peak concentrations 

found at 10-15 cm sediment depth outside the meadow (maximum 491 mg Tot-Hg 
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kg-1 dw and 268 µg MeHg kg-1 dw), and at 8 cm (19 mg Tot-Hg kg-1 dw) and 4-6 cm 

(33 µg MeHg kg-1 dw) within the meadow (Figure 3). Within the meadow, the 

methylated fraction of Hg reached 0.5 % MeHg at 4-6 cm depth, which was 

approximately 10-fold and significantly higher (p<0.001) compared to any of the 

other sampling sites (% MeHg <0.1) when comparing the upper 10 cm of the 

sediment depth profiles. 

 

Figure 3. Vertical sediment profiles of Tot-Hg (mg kg-1 dw), MeHg (µg kg-1 dw) and 

% MeHg in 0-10 cm (A-C) and in the entire core (D-F), based on three core samples 

from outside the meadow (N=black, C1=blue and C2=red) and one from within the 

meadow (M1=green). Note different scales. 
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In the upper 5 cm of sediments where macrophyte roots are believed to impact 

sediment geochemistry, Tot-Hg and MeHg were significantly higher (p<0.05) 

outside the meadow compared to within (Figure 4), and so were TOC. However, four 

very high values of % MeHg (ranging 0.1-0.4 % MeHg) were observed within the 

meadow, and mean concentration was higher (0.07 % MeHg) than outside (0.02 

MeHg). 

 

Table 2. Mean±sd of sediment and pore water concentrations (0-5 cm) of Tot-Hg 

and MeHg based on pooled data from single grab samples. Log (Kd) is calculated 

according to equation (1). 

Site 

Tot-Hg MeHg 

Sediment 

(mg kg-1 dw) 

Pore water 

(µg l-1) 

Log(Kd) 

(l kg-1) 

Sediment 

(µg kg-1dw) 

Pore water 

(µg l-1) 

Log(Kd) 

(l kg-1) 

Outside the meadow 
 

mean±sd 54.2±35.2 0.9±0.5 4.8±0.6 14.6±9.1 0.01±0 3.1±0.2 

n 22 3 3 13 3 3 

Within the meadow 
 

mean±sd 9.5±11.9 0.6±0.9 4.9±0.6 3.4±4.5 0.09±0.08 2.05±0.5 

n 33 3 3 20 3 3 
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Figure 4. Tot-Hg (left) and MeHg (center) concentrations in 0-5 cm within and 

outside the meadow in A) sediments and B) pore water, and C) the fluxes of Tot-Hg 

(left) and MeHg (center). The right-hand figures show the proportion of Tot-Hg 

present as MeHg (% MeHg). The boxes present the median value and 50 % of the 

data.  

 

Close correlation was found between concentrations of Tot-Hg and MeHg (Figure 3) 

in the upper 5 cm of sediments (r=0.93) making Tot-Hg a significant predictor 

(p<0.001) for MeHg in sediment when including all samples.  However, Tot-Hg was 

not a significant parameter for MeHg (p= 0.09) within the meadow. Further, within 

the meadow Tot-Hg and MeHg in the sediments were closely correlated with TOC 

(r=0.96, p<0.01) (Figure 5), whereas outside the meadow the correlation was not 

significant (p= 0.22). Accordingly, linear regression models calculated for Tot-Hg 

and MeHg in sediment within the meadow including only concentrations of TOC 

(Figure 5) explained 93 % (r2=0.93) and 92 % (r2=0.92) of the variance in the 

dataset, respectively.  
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Figure 5. Concentrations of Tot-Hg (left) and MeHg (right) as a function of TOC in 

sediment (0-5 cm). Correlations were significant only within the meadow (p<0.05) 

and fitted regression lines are based on data from within the meadow only.  

 

3.3 Pore water concentrations 
Pore water concentrations of Tot-Hg reached higher concentrations outside the 

meadow than within (mean 0.9 µg L-1 and 0.6 µg L-1, respectively), whereas 

concentrations of MeHg reached higher values within the meadow than outside 

(mean 0.09 µg l-1 and 0.01 µg l-1, respectively). However, the differences were not 

significant at the 95% significance level, probably due to few data points and large 
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variance.  The % MeHg within the meadow reached a maximum of 0.24 % whereas 

outside the meadow the maximum was 0.003 % MeHg, and correlation between 

concentrations of Tot-Hg and MeHg in pore water was low when including all 

samples (r=-0.009, p=0.98). The calculated partitioning coefficient for MeHg 

(Kd,MeHg) was typically 1-3 orders of magnitude lower than the corresponding 

coefficient for Tot-Hg (Kd, TotHg) (Table 2). Within the meadow Log(Kd,MeHg) was 

significantly lower than outside (p=0.01), whereas insignificant difference was 

calculated for Log(Kd,Tot-Hg). 

 

3.4 Flux of Hg from sediment 

The flux of Tot-Hg from sediment (Figure 4) was not significantly different (p=0.91) 

within the meadow compared to (17-145 ng m-2 d-1) outside (8-160 ng m-2 d-1). 

However, within the meadow there was a significant (p<0.05) higher Tot-Hg flux - to 

- sediment concentration ratio, whereas the Tot-Hg flux - to - pore water 

concentration ratio was not significantly different from outside (p=0.43). The flux of 

MeHg and the % MeHg in the flux from sediment to water was significantly higher 

(p=0.06 and p=0.009, respectively) within the meadow (0.1-0.6 ng MeHg m-2 d-1 and 

0.3-1.0 %MeHg with mean ± sd 0.31 ± 0.24) compared to outside the meadow (0.02 

- 0.2 ng MeHg m-2 d-1 and 0.1-0.3 % MeHg with mean ± sd 0.1 ± 0.08). Further, there 

was a significantly higher MeHg flux - to – MeHg sediment concentration ratio 

within the meadow (p=0.01), indicating that there are other mechanisms controlling 

the flux of MeHg within the meadow in addition to sediment concentration of MeHg, 
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whereas the MeHg flux – to – MeHg pore water concentration ratio was slightly 

higher outside the meadow compared to within (p=0.07). 

 

4. Discussion 

4.1 Evidence for enhanced microbial activity within the meadow 

Outside the meadow, the natural processes appeared to be biased by the industrial 

discharges and anthropogenic disturbances, which most probably is responsible for 

the anomalies observed in the sediment depth profiles from outside the meadow 

(Figure 2). According to 210Pb-analysis (Eek and Slinde, 2015), the upper 10-25 cm 

of the sediment includes the period of mercury discharges from the chlor-alkali 

plant (1947-1987). The wide range of pH in these sediments has later been 

confirmed by microelectrode measurements within the 0-5 cm layer, which showed 

pH from 8.0 to 10.8 at sampling site S1 and 4.4-7.8 at site M1 (Schaanning et al., 

2014). The low pH may be due to readily available degradable organic matter 

(Schaanning and Kupka Hansen, 2005). The anomalously high Eh values recorded at 

site N was consistent with the lack of H2S, which is normally associated with positive 

Eh values, though Eh>500 mV is not normally found in natural sediments and may 

result from a persistent influence from electroactive redox compounds discharged 

from industrial processes (e.g. Cl2/Cl-, Mg/Mg2+).  

 

Although H2S is present in sediment outside the meadow at levels similar to those 

found in the meadow, the vertical profiles of pS as well as Eh are very different 

(Figure 2). This, together with the higher methylation efficiency within the meadow 
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(Figure 3) indicates that different mechanisms are controlling the MeHg production 

within and outside the meadow. The low Eh and pS values at about 2-5 cm depth 

within the meadow indicates sulfate reduction and production of H2S in this depth, 

supporting the hypothesis that the macrophytes create favorable conditions for 

anaerobic sulfate reducing microbial activity, though sulfate reduction was not 

measured directly. The conditions in sediments outside the meadow seem to be 

heavily influenced by post-deposition chemical processes rather than natural 

processes. Within the meadow, the distinct TOC maximum in 2-5 cm depth may be 

explained by organic carbon exudates from plant roots into the rhizosphere, as 

described by others (Cosio et al., 2014). Exudates may be a major contributor to 

labile carbon for microbial processes feeding bacterial activity and carbon 

degradation via sulfate-reduction (Gilmour and Riedel, 1995) to an extent that 

dissolved sulfide accumulates in the pore water. The H2S production caused by 

degradation of organic matter via sulfate reduction (CH2O + ½ SO42- = HCO3- + ½ 

H2S) will buffer the pH at about 7.0. Numerous reactions between sulfide and 

various oxidizing agents (e.g. O2, NO3 and Fe- and Mn- oxide minerals) may occur to 

remove the H2S produced, and produce the acid required to explain the pH-minima 

observed on either side of the high sulfide zone (e.g. HS- + O2 = SO42-+H+). The 

striking similarity of the two pH minima at about 2.5 and 4.5 cm in M1 would not be 

expected if labile electron acceptors like O2 and NO3 were supplied by diffusion from 

the overlying water. Therefore, active release of O2 from the plants on both sides of 

the sulfide production maximum is a simple way of explaining the symmetry of both 

the pH and the pS profiles across this layer. Thus, the observed biogeochemical 



24 
 

profiles can be reasonably explained by plant roots injection of labile carbon, and an 

electron acceptor such as O2 (or NO3), at sediment depths between 2 and 5 cm. This 

supports previous findings that macrophyte roots in frequently submerged habitats 

(e.g. wetlands, bogs) provide pathways that introduce O2 into the sediment column, 

thereby enhancing the depth of the redox transition zone (Aldridge and Ganf, 2003), 

and affecting the biogeochemical cycling of sulfur in sediments.  

 

4.2 Enhanced MeHg production in the rhizosphere 

The maximum Hg concentrations across all sampling sites were found outside the 

meadow at site C1, reaching 492 mg Tot-Hg kg-1 dw and 269 µg MeHg kg-1dw in 14 

cm sediment depth (Figure 3). These values are in the same order of magnitude as 

concentrations reported from other chlor-alkali plant sites (Ullrich et al., 2007), and 

demonstrates the role of the sediment as a sink for Hg discharges. Distance from the 

previous point of discharge (Figure1) and water circulation patterns are probable 

explaining factors for the differences in surface sediment concentrations of Tot-Hg 

between outside and within the meadow (Figure 4).  In addition, we suggest a 

possible “barrier effect” from the macrophytes, as the P.crispus in Gunneklevfjorden 

has been observed to create a dense meadow with stems reaching from the seabed 

to the water surface. This may have the potential to limit the water flow through the 

meadow and thereby reducing the supply of particles into the meadow area. Earlier 

studies have reported that macrophytes tend to enhance sedimentation rates and 

reduce resuspension (Garcia et al., 2003, Le Hir et al., 2007, Vereecken et al., 2006, 
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Wetzel, 2001).  Hence, it appears that the impact from macrophytes on 

sedimentation rates may be site specific.  

 

The decrease in Hg concentration from peak values in the sediment depth profiles 

towards the sediment surface seen both within and outside the meadow, probably 

reflects elimination of discharges and sedimentation of cleaner particles after the 

chlor-alkali plant was closed down in 1987. Within the meadow the peak Tot-Hg 

value was more shallow than outside the meadow, probably modified with slightly 

slower sediment growth in the meadow due to higher bioturbation and different 

sedimentation or compaction processes, as discussed above.  

 

Enhanced MeHg production within the meadow was most clearly evidenced by 

solid-phase MeHg and % MeHg (Figure 3B, 3C), with peak MeHg concentrations (4-6 

cm) coinciding with the low pH and sulfide production layer (Figure 2C, 2E), 

indicating that this is a dynamic maximum related to processes that may be 

controlled by the rhizosphere system. These results are complimentary to empirical 

evidence that high concentrations of sulfide inhibit the bioavailability and 

subsequently the Hg methylation at high sulfide concentrations through a range of 

mechanisms, such as precipitation of HgS (Gilmour et al., 1998, Benoit et al., 2001, 

Langer et al., 2001, Jay et al., 2002, Drott et al., 2007, Skyllberg et al., 2006, Han et al., 

2007, Liu et al., 2009, Zhang et al., 2012, Graham et al., 2012), though the vertical 

distribution pattern provided no evidence for accumulation of Tot-Hg in this layer 

(Figure 3A). However, the roots themselves might act as a storage site for Hg (Olsen 
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et al., 2016). Higher MeHg is often observed in ecosystems and sediment with low 

pH (Golding et al., 2007, St. Louis et al., 1996) and methylating microorganisms have 

been found to be favored at lower pH (Rubec, 2003, Winch et al., 2008), indicating 

that related microbial processes may causes both (low pH and higher MeHg). 

 

The enhanced MeHg production within the meadow seen in the sediment depth 

profiles was not reflected in the surficial sediments when comparing between the 

two contrasting environments (Figure 4), though the methylated fraction (% MeHg) 

may be a better indication on favorable conditions for the methylation process than 

absolute MeHg concentrations, which tend to be proportional to Tot-Hg. The slightly 

enhanced value of % MeHg within the meadow (Figure 4-1C), and the coinciding 

sediment depth (2-5 cm) for the peak % MeHg value (Figure 3C) and the sulfide 

production layer (Figure 2E), strongly suggest that this is also the depth at which 

MeHg enter the sediment. The enrichment of TOC within the meadow at 

approximately the same depth (Figure 2B), indicated that TOC might be an 

important factor explaining the presence of MeHg.  The influence of TOC on MeHg 

production was supported by the correlation between TOC and MeHg within the 

meadow (Figure 5). Most likely, the MeHg is produced within the rhizosphere itself, 

favored by input of organic carbon, high microbial activity and availability of other 

electron acceptors such as O2 or NO3. This is complimentary to other studies that 

have concluded on the sediment-water interface as the primary methylation site 

(Bravo et al., 2014), and supports that macrophytes in brackish waters stimulate 

MeHg production, as has previously been suggested for other habitats (Aldridge and 
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Ganf, 2003, Canario and Vale, 2012). Outside the meadow, the lack of correlation 

between MeHg and TOC indicates that MeHg production is not stimulated by high 

concentrations of TOC alone (Figure 2B). Tot-Hg being the only predictor for MeHg 

in sediments has also been found in other studies of estuarine sediments (Schartup 

et al., 2013b). Thus, we suggest that the production of MeHg within the meadow as 

well as outside is based on legacy Hg as a source, whereas the geochemical 

conditions within the meadow are heavily impacted by macrophyte-induced 

geochemistry and bears little evidence of the industrial history.  

 

4.3 The impact of macrophytes on availability of Hg 

Enhanced % MeHg in pore water within the meadow compared to outside was 

consistent with enhanced production of MeHg, and was in accordance with previous 

observations from both marine and freshwater vegetated areas (He et al., 2007, 

Hines et al., 2000, Ullrich et al., 2001). The observed low Kd-values for MeHg within 

the meadow (Table 2) most likely is a result of higher MeHg production rates 

overruling slow equilibrium kinetics, though pore water concentrations may also be 

influenced by shorter-term changes in solubility or adsorption processes unrelated 

to microbial MeHg production (Hammerschmidt et al., 2008, Sunderland et al., 2006, 

Jonsson et al., 2009). A greater partitioning (low Kd) into pore water in the presence 

of high sulfide concentrations has been reported for both inorganic Hg and MeHg 

(Bailey et al., 2017, Bloom et al., 1999, Merritt and Amirbahman, 2007, 

Hammerschmidt et al., 2008, Jonsson et al., 2009), though this does not explain the 

difference in solubility of MeHg within and outside the meadow since sulfide was 
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equally high in the two areas. Despite a small data-set for pore water and 

subsequent Kd calculations, and the inherent risk for biased pore water results due 

to oxidation of pore water samples, our estimated Kd values are in the same order of 

magnitude as found in other studies (Lyon et al., 1997). 

 

Accordingly, the higher flux of MeHg within the meadow compared to outside 

(Figure 4C) was consistent with higher solubility of MeHg in the meadow (Log 

Kd,MeHg = 2.6) compared to outside (Log Kd,MeHg = 3.5)  (Table 2).  Hence, MeHg may 

perhaps escape from the sediments before being bound to the sediment particles. 

The combination of enhanced % MeHg in pore water and enhanced solubility of 

MeHg within the meadow may contribute to explain the enhanced flux of Tot-Hg 

relative to sediment concentration from within the meadow (Figure 4C-1), as there 

is a weaker binding of MeHg to particles compared to Tot-Hg, demonstrated by 

lower Kd-values for MeHg than for Tot-Hg (Table 2). In addition, the formation of 

soluble organic complexes or compounds other than MeHg would be expected from 

the higher availability of organic carbon in the rhizosphere (Ndungu et al., 2016). 

Also, higher abundance of benthic organisms and subsequent bioturbation within 

the meadow could explain the higher flux-to-sediment ratio of both Tot-Hg and 

MeHg compared to outside.  Bioturbation will enhance mixing between pore water 

and overlying water (Hollweg et al., 2009) and lower the pore water concentrations 

which are in a dynamic steady state between dissolution and loss by diffusion to the 

overlying water. Further, this could explain the nearly significantly lower (p=0.07) 

flux – to – pore water MeHg concentration ratio within the meadow compared to 
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outside, despite higher flux of MeHg within the meadow. The median flux values for 

within and outside the meadow (0.20 ng m-2 d-1 and 0.09 ng m-2 d-1, respectively) 

up-scaled to the respective sediment surface areas showed that the meadow which 

constitutes approximately 10 % of the area represents approximately 25 % of the 

daily flux of MeHg from sediment to water (20.3 µg d-1 and 59.4 µg d-1, respectively).  

 

5. Conclusions 

We assume that MeHg production rates within the meadow was stimulated by the 

supply and availability of organic carbon, microbial activity and a sulfide oxidizing 

agent (e.g. O2). Thus, higher MeHg production rates combined with increased 

bioturbation are probably the most important factors enhancing the release of 

MeHg from sediments vegetated by macrophytes, as suggested by others (Cosio et 

al., 2014, Hollweg et al., 2009, Lehnherr, 2014).  

No comparable flux data has been found in the peer-reviewed literature for 

contaminated, brackish, temperate waters, demonstrating the novelty of this study. 

However, our flux values were generally lower than reported for MeHg during 

spring and summer in temperate wetlands and lakes (Krabbenhoft et al., 1998, 

Lehnherr et al., 2012a),  but this comparison may not be relevant without taking 

into consideration a possible seasonality in MeHg production (Bloom et al., 2004, 

Gosnell et al., 2016, Merritt and Amirbahman, 2008).  The functioning of the 

macrophytes in supplying O2 (or other electron acceptors) and TOC to the 

rhizosphere, probably implies that seasonal fluctuations in biomass production, 
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including macrophyte growth, results in seasonal fluctuations of MeHg production 

in vegetated habitats.  

 

This study supports the hypothesis that macrophytes promote a microenvironment 

favorable for microbial processes typically found in redox transition zones, such as 

SRB activity and subsequent sulfate reduction, stimulating the production of MeHg. 

Hence, submerged macrophyte meadows located within Hg contaminated sediment 

sites may enhance the availability of Hg to aquatic food chains. Thus, productive 

meadows may represent important entry points for food webs, compared to 

presumably less productive non-meadow areas. How important this entry point is 

will be determined by several factors including biota feeding strategy and time 

spent within the meadow. Because porewater sulfide affects both MeHg production 

and MeHg partitioning, factors that control porewater sulfide are critical to 

understanding Hg cycling. The MeHg production and availability in macrophyte 

habitats located within legacy Hg contaminated sites needs more attention in future 

studies, with regard to both quantitative scaling and the factors controlling the 

methylation process.  
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