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Abstract1

Liquid chromatography coupled to high resolution mass spectrometry (LC-HR-2

MS) has been one of the main analytical tools for the analysis of small polar organic3

pollutants in the environment. LC-HR-MS typically produces a large amount of data4

for a single chromatogram. The analyst is therefore required to perform prioritization5

prior to non-target structural elucidation. In the present study we have combined6

the F-ratio statistical variable selection and the apex detection algorithms in order7

to perform prioritization in data sets produced via LC-HR-MS. The approach was8

validated through the use of semi-synthetic data, which was a combination of real9

environmental data and the artificially added signal of 31 alkanes in that sample.10

We evaluated the performance of this method as a function of four false detection11

probabilities namely: 0.01, 0.02, 0.05, and 0.1%. We generated 100 different semi-12

synthetic data sets for each F-ratio and evaluated that data set using this method.13

This design of experiment created a population of 30,000 true positives and 32,00014
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true negatives for each F-ratio, which was considered sufficiently large enough in order15

to fully validate this method for analysis of LC-HR-MS data. The effect of both the F-16

ratio and signal to noise ratio (S/N) on the performance of the suggested approach were17

evaluated through normalized statistical tests. We also compared this method to the18

pixel-by-pixel as well as peak list approaches. More than 92% of features present in the19

final feature list via F-ratio method were also present in conventional peak list generated20

by MZmine. However, this method was the only approach successful in classification of21

samples, thus prioritization, when compared to the other evaluated approaches. The22

application potential and limitations of the suggested method discussed.23

Introduction24

A large number of small polar organic pollutants are considered as chemicals of emerging25

concern (CECs) due to their fate and behavior in the environment (as reviewed by Klečka26

et al. 1 and La Farre et al. 2). Liquid chromatography coupled to the high resolution mass27

spectrometry (LC-HR-MS) has become the leading analytical instrumentation for analysis28

of these pollutants in different environmental compartments.3–5 Measuring these pollutants29

in the environment takes place through three different and/or complementary approaches,30

namely target analysis, suspect analysis, and non-target analysis.4,6–8 For target analysis31

the analyst has all the necessary information, including the retention time and the spec-32

tral information, for confident identification of a target analyte in complex environmental33

samples.9 On the other hand for the suspect screening only limited information is available34

while during non-target analysis the analyst does not have any prior information regarding35

the identity of the analytes in the sample.7,9 Even though non-target analysis is the most36

difficult and the least certain of the three mentioned approaches, this method is essential for37

the discovery of new CECs in the environment.4,6,738

39

Confident identification of pollutants based only on the data generated via non-target40
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analysis on LC-HR-MS, is a challenging task due to the volume and complexity of the data41

.10,11 During the non-target analysis, each sample may produce thousands of features, where42

each includes a measured exact mass, intensity, and the retention time.12,13 Therefore, the43

analyst may have to prioritize among the features for structural elucidation. For LC-HR-44

MS data, there have been different approaches used for prioritization during the non-target45

analysis. The simplest approach applies the absolute intesity and the detection frequency46

as the main criteria for prioritization.9,12 However, high signal intensity and the detection47

frequency does not guaranty environmental relevance. Another approach utilizes either tox-48

icity information (through effect-directed analysis14) or the elemental composition (through,49

for example, filters for halogenated compounds12). However, the mentioned approaches are50

complicated and may be biased towards a certain family of compounds, for example halo-51

genated ones. A less used approach, particularly in the field of environmental analysis, has52

been the application of unsupervised and/or supervised statistical methods, such as princi-53

pal component analysis (PCA) and partial least square discrimination analysis (PLS-DA)54

for prioritization of the relevant features.13,15 These statistical methods perform well when55

used in metabolomics due to a more clear change in the sample composition. However, these56

same methods may suffer when there is a high level of redundancy/similarity in the analyzed57

samples.16,17 Recent studies have shown the superior performance of the supervised F-ratio58

method combined with PCA for analysis of the data via gas chromatography coupled to59

low resolution mass spectrometry (GC-MS) of complex samples.16–20 However, the F-ratio60

method has never been used/optimized for the non-target analysis of the data recorded via61

LC-HR-MS and particularly for complex environmental samples.62

63

The mentioned statistical variable selection approaches can be applied to either a peak64

list11,13,15 or the whole chromatogram.16–24 Even though processing of the peak list is faster65

than the whole chromatogram due to its smaller size compared to the whole chromatogram,66

the raw chromatogram must go through preprocessing steps such as signal deconvolution,67
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peak finding, peak picking, and peak integration in order to generate a final peak list useful68

to a prioritization method. All these preprocessing steps are prone to error when dealing with69

highly complex samples.22–25 The application of the statistical variable selection approaches70

to the whole chromatogram has been shown to result in reliable models and therefore, reli-71

able prioritization.16–2572

73

The aim of this study is to adapt, comprehensively validate, and test the applicability74

of the F-ratio method for the non-target analysis of LC-HR-MS chromatograms of complex75

environmental samples. The F-ratio was applied to the whole chromatogram in order to76

minimize the data manipulation and produce a reliable statistical model. We combined the77

F-ratio method with the apex detection as well as adduct and isotope removal algorithms,78

in order to adapt this method to be used for non-target analysis of LC-HR-MS data. We79

comprehensively validated this method using a semi-synthetic data set, which consisted of80

the background signal generated from the real environmental samples with the addition of81

the signal of 31 alkanes randomly distributed as true positives and true negatives, and noise.82

This data set was evaluated 400 times where the random selection of the alkanes and the83

background signal caused generation of a completely different sample for each evaluation.84

Finally, the chromatograms of 15 sludge extracts from three different locations in Norway85

and three blanks were analyzed using the F-ratio method as well as conventional peak picking86

algorithms. We also applied the F-ratio method to the peak list and compared this feature87

list to the one produced via using the whole chromatogram. The feature lists via F-ratio88

were compared to the peak lists generated by a conventional peak pick method, in order to89

further evaluate and/or validate the applicability of this method for non-target analysis of90

LC-HR-MS data.91
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Experimental Methods92

Environmental Sampling and Sample Preparation93

15 sludge samples from three different wastewater treatment plants (WWTP) in Norway were94

collected (i.e. five replicates for each WWTP), during the spring of 2015. These WWTPs95

were located at Oslo, Hamar, and Gjøvik. The plants in Oslo and Hamar were equipped96

with a three stage treatment process, including physical, chemical, and biological treatment97

whereas the plant in Gjøvik has only the physical and chemical treatments. More details on98

the chemicals, the suppliers, and the sample preparation steps are provided in section S1 of99

Supporting Information.100

Instrumental Conditions and Analysis101

All the extracts were analyzed employing, Waters Acquity UPLC system (Waters Milford,102

MA, USA). An Acquity UPLC HSS C18 column (2.1 × 150 mm, particle size 1.8 mm) (Wa-103

ters, Milford, MA, USA) was used for all the separations. A mixture of solvent A, 5 mM104

ammonium formate at pH 3.0 and solvent B, acetonitrile with 0.1% formic acid at a constant105

flow rate of 0.4 ml min−1 was used for the chromatographic separations. The gradient varied106

from 87% of solvent A to 5% of solvent A. More details regarding this method are provided107

elsewhere.26 Both the analytical column and the column guard were kept as 50 ◦C during108

the separations.109

110

Xevo G2-S Q-TOF-MS (Waters Milford, MA, US) was used for analysis of all 18 samples,111

including the 15 sludge extracts and 3 blanks. The MS1, with a collision energy of 6 eV, and112

the MS2, with a collision energy ramp between 15 to 45 eV were simultaneously recorded113

during the whole chromatogram. We employed a mass range of between 90 Da and 700 Da114

with a sampling frequency of 1.8 Hz. More information regarding the mass spectrometer115

conditions is available elsewhere.26116
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Data Processing and Workflow117

All the chromatograms were recorded in profile mode employing MassLynx (Waters Milford,118

MA, US). The chromatograms were then exported as netCDF files, using DataBridge package119

(Waters Milford, MA, US) incorporated in the MassLynx software. The MS1 channel (i.e.120

low collision energy channel 6 eV) chromatograms were used for the data analysis. All the121

exported chromatograms were then imported into Matlab.27 These files were processed using122

the following sequnece of steps in the stated order including the binning, retention alignment,123

data matrix generation, F-ratio calculation, null-distribution validation, zero mask applica-124

tion, chromatogram folding, apex detection, and finally adducts and isotope removal. All the125

steps taken in this workflow are explained in detail below and section S2 of the Supporting126

Information.127

128

We binned the exported chromatograms using a bin thickness of 10 mDa, which was129

based on the observed mass accuracy of ± 5 mDa in our data set (section S2.1). The mass130

accuracy was defined based on the shift observed in the measured mass of the calibrant131

injected every 20 s into the source. The binned chromatograms were then retention aligned132

with a home-developed algorithm inspired by the piecewise method previously developed and133

validated by Synovec group.25,28 We added an additional mass spectral correlation control134

in order to increase the accuracy of the retention alignment. More details regarding both135

binning and retention alignment processes are provided in Supporting Information section136

S2. The retention aligned chromatograms were then unfolded to create a long vector of in-137

tensities for every single measured m/z value. These vectors were then stacked on top of each138

other in order to produce a large matrix which was used for the statistical prioritization.139

Every row in this matrix was a sample while every column was an independent variable.140

The F-ratio was calculated for each variable,16 or column of the matrix, based on a priori141

knowledge of the sample classification (section S2.3). An F-ratio threshold was calculated142

using the probability distribution generated via null-distribution analysis.19 This procedure143
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aims to minimize the number of false positive detections as well as the method validation144

during the analysis (see section S2.4). The variables that had an F-ratio smaller than the145

defined threshold, based on the null-distribution, were set to zero in the data matrix. This146

process was referred to as the zero mask application. Each zero mask applied chromatogram147

then was folded back into a matrix where a row was one scan and a column was the signal148

for a m/z value. We performed apex detection in the folded chromatograms (see section149

S2.5 of Supporting Information). The apex detection groups the non-zero and statistically150

meaningful variables which can be represented as a feature in the chromatogram. For ex-151

ample all the non-zero variables in a chromatographic peak can be grouped and represented152

via only one pair of retention time and m/z value, thus a feature. Therefore, the apex de-153

tection generates a list of unique retention time and m/z value pairs for each sample. This154

differs from conventional peak picking algorithms in that apex detection does not perform155

signal modeling and/or integration therefore minimizes the signal manipulation. Finally,156

the adducts and the isotopes were removed from this list in order to create the final unique157

feature list for each chromatogram. This workflow provides the necessary initial information158

for discovery-based non-target analysis of complex samples analyzed via LC-HR-MS.159

160

We also performed F-ratio analysis on the peak list produced by conventional peak pick-161

ing algorithm, MZmine 229(explained in detail below). The peak list was retention-aligned162

using a home-developed method using a mass window of 2 mDa and a retention window of 2163

S. The retention aligned peak tables were used for F-ratio and null-distribution calculations.164

The peaks in the peak list with an F-ratio larger than the threshold were kept in order165

to produce the feature list. The feature list, finally, was processed for adduct and isotope166

removal in order to generate the final feature list.167

168
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Data pretreatment169

During the validation process of the F-ratio method (i.e. analysis of the semi-synthetic data),170

we did not employ any data pre-treatment methods such as mean-centering, standardiza-171

tion, and normalization. This choice enabled us to comprehensively evaluate the effect of172

introduced noise on the performance of the F-ratio method. For the environmental sample173

analysis, we tested different data pre-treatment methods such as mean-centering, standard-174

ization, and normalization before processing the data set with F-ratio method. However,175

these pre-treatments did not affect the final unique feature list for the analyzed data set.176

Therefore, we decided to work with the raw data and avoid performing any type of pre-177

treatment.178

Computations179

All the mentioned data processing steps were performed via Matlab, employing a Windows180

7 Professional version (Microsoft Inc, USA) workstation computer with 12 CPUs and 128181

GB of memory.182

MZmine Peak Picking183

The conventional peak list for each chromatogram was generated using MZmine 2.29 The184

peak picking was performed by mass detection followed by GridMass 2D peak detection. A185

five scan window was selected for the smoothing of the chromatogram in the time dimension186

and a 10 mD window was used in the mass dimension. A minimum signal of 300 counts was187

required for a peak to be considered as a meaningful peak. These parameters were optimized188

based on the observed mass accuracy and the peak widths in both time and mass domains.189

These parameter settings resulted in feature numbers varying between 7,500 for blanks and190

12,500 for the samples from Oslo WWTP.191
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Principal Component Analysis (PCA)192

We employed principal component analysis (PCA)30 for classification/separation of the sam-193

ple groups. We performed PCA on the peak list generated via MZmine, variable selected peak194

list (i.e. the F-ratio applied to the peak list generated via MZmine) with F-ratio method,195

the whole chromatogram (i.e. pixel-by-pixel), and the variable selected chromatogram em-196

ploying F-ratio method. The PCA was performed on the mean centered data utilizing the197

singular value decomposition algorithm.30198

Results and Discussion199

We validated the F-ratio method for data generated via LC-HR-MS, employing both semi-200

synthetic data and the real environmental data. The use of semi-synthetic data enabled us201

to perform a large number of evaluations (i.e. total number of detection cases 62,000×4)202

knowing exactly the added signal, noise, and relative intensity of the added signal which,203

translated into comprehensive validation of the proposed method. This would not have204

been possible using spiked samples due to the limitation on the number of standards and205

injections as well as the potential interference between the sample and the standard mixture.206

This study is the first implication of this method for the data generated via LC-HR-MS as207

well as adaptation of this method in order for it to be included in non-target identification208

workflows. This method enables the direct prioritization of the unique features, which are209

the main cause of the separation of different sample groups. Therefore, the identification210

efforts can be focused on the prioritized unique features.211

Validation via Semi-synthetic Data212

We employed a semi-synthetic data set, which consisted of a combination of real environ-213

mental data and synthetic signal, for comprehensive validation of the F-ratio method. The214

signal of 31 alkanes (i.e. the neutral monoisotopic masses, Table S1) was added at different215
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concentrations to a background signal, which came from the real environmental data. During216

each analysis, these 31 alkanes were divided in two randomly selected groups where the first217

group of 15 alkanes was added to the background signal at concentration levels that were218

statistically meaningful. Therefore, for these 15 alkanes the resulting F-ratios were larger219

than the threshold. For the second group, 16 alkanes were added to the background at a sta-220

tistically constant concentration. Four different F-ratios of 208, 30, 28, and 13 having false221

positive detection probabilities of 0.01, 0.02, 0.05, and 0.1 %, respectively, were evaluated.222

Each F-ratio value was evaluated 100 times with different: background signal, combination223

of alkanes, concentration levels, and retention times of true positives (i.e. 15 alkanes) and224

true negatives, thus a total of 400 evaluations. The generation of the these semi-synthetic225

data is described in detail in Supporting Information, section S3. Alkanes were selected for226

our analysis because these compounds are not ionized by ESI source therefore we were sure227

that these compounds were not present in the real background signal. This design of exper-228

iment created a set of 15 true positives, 16 true negatives, and a different background signal229

during each evaluation, which enabled us to comprehensively examine the capabilities and230

limitations of the F-ratio method. The number of evaluation (i.e. 100 for each F-ratio) was231

selected based on our preliminary assessment, that showed that 100 analysis for each F-ratio232

would generate a large enough population of true positives (TP) 30,000 and true negatives233

(TN) 32,000 for that F-ratio, in order to fully validate this method. To compare the effect234

of different F-ratio probability value on the final results, we employed normalized statistical235

parameters such as rate of false positive, rate of false negative, sensitivity, specificity, and236

accuracy.31237

238

Increased F-ratios resulted in a smaller number of false positives and a larger number of239

false negatives. The number of false positive detection ranged from 2,518 cases for the F-ratio240

of 208 having a probability of 0.01% to 9,525 cases for the F-ratio of 13 with a probability241

of 0.1%, Table 1 and Figure S7. The largest number of false negative detections of 2204 was242
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observed for an F-ratio of 208 whereas the smallest number of false negative detections of243

1,404 was caused by an F-ratio of 13, Table 1. These trends were due to the fact that the244

selection of a large F-ratio value (i.e. more strict selection criterion) lowers the probability245

of false positive detection while increasing the probability of false negative detections. The246

observed changes in F-ratio method performance were better projected through normalized247

statistical parameters such as rate of false positive detection, rate of false negative detection,248

sensitivity, specificity, and accuracy, Table 1. For example, the drop in the specificity and249

accuracy observed for F-ratio of 13 (probability of 0.1%) showed the inadequacy of this F-250

ratio for the analyzed data set (Figure S7). This drop also indicated that this F-ratio may251

cause a large number of false positive detections when analyzing this data set. Therefore,252

the analyst is required to find an optimized F-ratio value in order to minimize the number253

of potential false positive detection while limiting the number of false negatives. Among the254

four F-ratios evaluated, the value of 28 (probability of 0.05%) showed to be the optimized255

one, considering that this value provided the largest accuracy level, second largest sensitivity256

level while maintaining a high level of specificity (Figure S7).257

258

Further evaluation of our data set, showed that for F-ratios ≥ 28 more than 70% of the259

false positive cases were coming from the background signal rather than the true negatives260

(i.e. added signal of alkanes at constant concentrations). The observed trend was caused261

by the high level of variability artificially introduced into the background signal during the262

background generation. For F-ratio of 13, around 50% of the false positives were true neg-263

atives. In this case even though the signal of true negatives did not have a large level of264

variability between sample groups, once added to the background, the variability in that265

signal increased due to the inherent large variance in the background signal. Therefore,266

these true negatives produced a large enough F-ratio, which met the F-ratio threshold and267

were selected as positive detections. When looking at the false negative cases, for all four268

F-ratios, the main causes of false negative detection were the large variability in the back-269
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ground signal and the S/N threshold setting during the apex detection. Also in this case,270

the random variability introduced into the true positives signal was not large enough to271

overcome the variability present in the background signal. We tested these hypothesis by272

increasing the initial concentration of the added signal of the true positives from 5% to 15%273

and also increasing the concentration factor from 2-8 to 2-20 (see section S3 of SI for more274

details). With an F-ratio of 28, increasing these parameters reduced drastically the number275

of false positive detection from 2,864 to 253 cases as well as the number of false negatives276

from 1,570 to 35 cases after 100 simulations. These results indicated that the combination277

of low level concentration of added alkanes, their low between sample group variability, and278

finally the large level of variability introduced into the background signal have an important279

effect on the performance of this algorithm.280

281

Mean centering and standardization (i.e. division by the square root of standard devia-282

tion of each variable) with an F-ratio of 28, added signal of 5%, and the concentration factor283

of 2-8 reduced the number of both false positive detection and false negative detection from284

2,864 to 350 cases and from 1,570 to 97 cases, respectively after 100 simulations. These285

pre-treatments’ approaches both decrease the noise levels in the data set while emphasizing286

the underlying trend.30 This implies that these data pre-treatments reduced the effect of287

artificially introduced noise in the data set while emphasizing the between group variability,288

thus a decrease in the number of false positive and false negative detection. The type of data289

pre-treatments employed prior to the F-ratio analysis is data set and objective dependent.30290

Therefore, the analyst is required to optimize these data pre-treatments approaches in ad-291

vance in order to be able to produce reliable results. Further investigation on the effect of292

these parameters on the F-ratio method are needed and will be subject of our future studies.293
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Table 1: The number of false positive detections, number of false negative detections, rate
of false positive, rate of false negative, sensitivity, specificity, and accuracy parameters cal-
culated for four different F-ratio values based on 100 evaluations for each F-ratio probability
value.

F-ratio values (probability of false positive detection %)

Parameter 208 (0.01) 30 (0.02) 28 (0.05) 13 (0.10)

False positive detectiona (FP) 2,518 3,172 2,864 9,525
False negative detectiona (FN) 2,204 2,220 1,570 1,404

Rate of false positive detectionb (%) 7.3 9.0 8.0 23.0
Rate of false negative detectionc (%) 6.8 6.9 5.0 4.5

Sensitivityd (%) 93.2 93.1 95.0 95.5
Specificitye (%) 92.7 91.0 91.8 77.1
Accuracyf (%) 92.9 92.0 93.3 85.0

aThis parameter represents the number false positive detection out of total number of detections of 62,000,
including 30,000 true positives (TP) and 32,000 true negatives (TN); bThe rate of false positive31 was

calculated as FP/(FP+TN); cThe rate of false negative31 was calculated as: FN/(TP+FN); dThe
sensitivity31 values were calculated using: TP/(TP+FN); eThe specificity31 values were calculated with:

TN/(TN+FP); f The accuracy31 values were calculated employing: (TP+TN)/(TP+FP+FN+TN).

The effect of S/N on F-ratio algorithm294

The S/N is an important parameter, which affects the performance of the F-ratio algorithm295

particularly during the apex detection. The apex detection step aims to reduce the level296

of redundancy in the data set by grouping variables, that can be represented by a unique297

one (see section S2.5 for more detailed information). We evaluated the effect of S/N on the298

results of the algorithm with an F-ratio of 28. This evaluation was performed by varying299

the S/N from 1 to 10 (i.e. 1, 3, and 10) and performing 20 analysis for each S/N value. The300

F-ratio of 28 was selected based on the fact that it appeared to be the optimized F-ratio for301

the evaluated data set.302

303

We observed a slight decrease in the number of false positive detection as a function of304

increase in the S/N while the increase in the S/N had a positive effect on the number of305

detected false negatives, Table 2. However, the changes in the S/N did not appear to cause306

a large variation in the normalized statistical parameters such as rate of false positive, rate307
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of false negative, sensitivity, specificity, and accuracy.31 This suggested that the S/N ratio308

has a less relevant effect on the performance of this method compared to the F-ratio value.309

However, these results may be case dependent, therefore optimization of this parameter310

based on the data set should be considered by the analyst.311

Table 2: The number of false positive detections, number of false negative detections, rate
of false positive, rate of false negative, sensitivity, specificity, and accuracy parameters cal-
culated for four different S/N values, having an F-ratio of 28, based on 20 simulations for
each S/N.

S/N values

Parameter 1 3 10
False positive detectiona (FP) 654 629 583
False negative detectiona (FN) 122 151 166

Rate of false positive detectionb (%) 9.0 9.0 8.0
Rate of false negative detectionc (%) 2.0 2.5 2.7

Sensitivitye (%) 98.0 97.5 97.3
Specificityf (%) 90.7 91.1 91.7
Accuracyg (%) 94.1 94.1 94.3

aThis parameter represents the number false positive detection out of total number of detections of 12,400,
including 6,000 true positives (TP) and 6,400 true negatives (TN); bThe rate of false positive31 was
calculated as FP/(FP+TN); cThe rate of false negative31 was calculated as: FN/(TP+FN); eThe

sensitivity31 values were calculated using: TP/(TP+FN); f The specificity31 values were calculated with:
TN/(TN+FP); gThe accuracy31 values were calculated employing: (TP+TN)/(TP+FP+FN+TN).

Comparison between the unique feature list and the conventional312

peak list313

Once the F-ratio method was validated via semi-synthetic data, we processed the chro-314

matograms of the 15 sludge samples plus 3 method blanks using this algorithm. The same315

data set was also processed via MZmine, employing previously optimized parameters. The316

F-ratio method produced a list of unique features for each sample whereas MZmine created a317

conventional peak list for the same samples. We compared the unique feature lists produced318

via F-ratio method to the conventional peak lists by MZmine as well as the unique feature319
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lists produced via application of F-ratio method to both the whole chromatogram and the320

peak list by MZmine. These comparisons enabled us to further evaluate/validate the F-ratio321

method for analysis of the data generated via LC-HR-MS.322

323

More than 92% of the unique features via F-ratio method were also present in the con-324

ventional peak list via MZmine. For example, for one of the Oslo samples after the adducts325

and isotopes removal 109 out of total 112 (i.e. 97%) unique features were also present in326

the peak list of the same sample generated by MZmine. The number of features, via F-327

ratio method, before adducts and isotope removal ranged from 403 features for one of the328

blank samples to 127 for the Oslo sample whereas after the adducts and isotope removal329

the unique features numbers ranged between 302 for the blank sample and 112 for the Oslo330

sample. For the conventional peak list, we observed around 7500 peaks for the blank whereas331

this number was around 12500 for the sludge samples. When comparing the unique feature332

list to the conventional peak list, the number of discrepancy cases varied between 3 cases333

for Oslo sample and 23 cases for the blank samples. A discrepancy case is defined as a334

unique feature detected via F-ratio that is not present in the conventional peak list. All335

the discrepancy cases were classified in two categories, for ease of explanation. The first336

category and the most dominant one, particularly in the blank samples belonged to unique337

features, which appeared to be noise rather than analytical signal. Considering the large338

number of variables evaluated occurrence of a certain number of false positives was likely.339

The second category was mainly caused by the fact that MZmine performs peak modeling340

during the peak picking and uses the modeled apex for estimation of both m/z value and341

the retention time. Using this approach, this algorithm may group shoulders of a peak with342

the main peak. The F-ratio method however treats the shoulders as independent variables343

and thus potential unique features. This category of discrepancy cases may also be caused344

by the resolution of our instrument of 35,000. All considered, the F-ratio combined with the345

apex detection algorithm method showed to have a large number (i.e. ≤ 92%) of common346
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unique features with the conventional peak picking approach which is an indication of its347

robustness. Furthermore, these results imply that this method can be implemented in the348

non-target workflows for structural elucidation.349

350

The F-ratio applied to the whole chromatograms of the environmental samples resulted351

in 250 unique feature in average while producing 3 unique features in average when applied352

to the peak list generated via MZmine. A large number of the observed discrepancy cases353

were due to the signal deconvolution, which was caused by the complexity of the analyzed354

samples. The unsuccessful signal deconvolution was directly translated into the large within355

group variability in the area of the integrated peaks, thus their lack of detection. The second356

group of discrepancies was due to the peak modeling algorithm in MZmine, which failed to357

detect the shoulder of a peak in the m/z domain as a separate peak, therefore their absence358

from the unique feature list. It should be noted that the mentioned sources of failure in359

the F-ratio applied to the peak list may be case dependent and may vary from dataset to360

dataset. Further investigation of the potential sources of discrepancy between the F-ratio361

variable selection applied to the whole chromatogram vs the peak list are needed.362

363

The F-ratio method appeared to be able to successfully separate the sample groups364

while both peak list and pixel-by-pixel methods failed in carrying out this task, Figure 1.365

Multivariate statistical methods such as principal component analysis (PCA) when dealing366

with large, complex datasets with a large level of noise and redundancy may fail to classify367

the samples in logical groups. Consequently, univariate methods such as F-ratio are used368

prior to these tests in order to reduce the redundancy in the data set. Therefore, a clear369

and logical separation of the samples in the score plots is a crucial indication of a successful370

prioritization/variable selection. We performed PCA on zero mask applied chromatograms371

following the variable selection, the retention aligned peak list via MZmine, and the whole372

chromatogram (i.e. pixel-by-pixel analysis). In the case of the sludge samples the inherent373
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complexity of the background signal was translated into inability of both peak list based374

and pixel-by-pixel based methods to separate these sample groups from each other properly.375

The F-ratio method, on the other hand, was able to perform separation of the sample groups376

because this method retains the variables that are causing the clustering of samples within a377

particular group. We also performed the F-ratio variable selection on the peak list generated378

via MZmine. In this case also the PCA was not able to separate the sample groups from379

each other, Figure 1. Therefore, it was not possible to perform a prioritization based on380

the peak list using the F-ratio method. Despite the mentioned complexity, the F-ratio381

method was able to separate the sample groups from each other, thus performing successful382

prioritization. These results also indicate the applicability of F-ratio method within the383

structure elucidation workflows during non-target analysis of complex samples analyzed via384

LC-HR-MS.385

Figure 1: Figure depicting the PCA score plots of (a) peak list based classification, (b)
peak list based after F-ratio variable selection (c) pixel-by-pixel analysis, and (d) the F-ratio
method during the prioritization for non-target analysis of the 15 sludge samples plus 3
blanks.
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Potential and Limitations386

The F-ratio method combined with the apex detection showed to be a robust and reliable387

approach for prioritization of the unique features that are relevant to the sample classifica-388

tion. This method was effective at prioritization even for cases where the other conventional389

methods may fail due to the complexity of the analyzed data set, Figures 2 and 1. This390

method minimizes the data manipulations such as peak picking and/or modeling and at the391

same time results in a list of unique features which can be used for structure elucidation.392

The F-ratio method reduces the redundancy in the data set and detects the relevant vari-393

ables in the data set enabling the analyst to focus on the identification of only the unique394

and relevant features. This method also has the advantage of being less dependent on the395

absolute intensity of the each chemical signal in the sample compared to the conventional396

prioritization methods. In other words, as long as a chemical signal causes large enough397

variability between the sample groups, independently from its absolute intensity, it will be398

detected as a unique relevant feature (Figure 2). Additionally, this method can be used399

for a battery of discovery-based non-targeted applications as long as there are replicates400

present. Furthermore, by changing the initial hypothesis, one can interrogate the data set401

in a completely different way. For example in case of the sludge samples in this study, by402

assuming that all the sludge samples belonged to one group and the blanks to another group,403

we could have selected the unique features which are in common in all the sludge samples404

and simultaneously subtracted the blanks from our samples.405

406

There are also some limitations to application of F-ratio method for non-target analysis407

of LC-HR-MS data. This method is computationally expensive due to the large data sets408

produced when employing LC-HR-MS. For example, each sludge sample chromatogram in409

this study produced around 180 million variables (Figure 2), which requires a large compu-410

tational power in order to be done in a timely manner. Moreover, this method has to be411

complemented with target and suspect analysis using the conventional methods for ubiq-412
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uitous chemicals or pollutants where measurable concentrations are more uniform. These413

pollutants would not be detected as unique features with statistically significant differences414

between sample groups. Also the use of data pre-treatment should be evaluated by the an-415

alyst on a case study base.416

417

Considering capabilities and the limitations of the F-ratio method, this approach has a418

great potential to be applied to the LC-HR-MS non-target discovery-based analysis. The ap-419

plication of this method as well as its combination with the structural elucidation workflows420

are going to be subject of our future studies.421

Figure 2: Figure depicting an overview of the F-ratio method vs the conventional methods
as well as the venn diagrams of the comparison between the unique feature list and the
conventional peak list generated via MZmine.
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