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Abbreviations: scFv, single-chain variable fragment; HBV, hepatitis B virus; S, small 

surface protein; M, middle surface protein; L, large surface protein; HBsAg, hepatitis B 

surface antigen; AGL, antigenic loop; HBIG, hepatitis B immune globulin; IC50, 50% 

inhibitory concentration; mAb, monoclonal antibody; IFN-α, interferon α; NA, 

nucleos(t)ide analogue; SVP, subviral particle; NTCP, sodium-taurocholate 

cotransporting polypeptide; MVB, multivesicular body; Ig, immunoglobulin; VL, 

variable region of light chain; VH, variable region of heavy chain; IMAC, immobilized 

metal ion affinity chromatography; LCM, laser confocal microscopy; PHH, primary 

human hepatocyte; NAGE, native agarose gel electrophoresis; ELISA, enzyme linked 

immunosorbent assay. 
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Abstract 

Hepatitis B virus (HBV) envelopes as well as empty subviral particles carry in their lipid 

membranes the small (S), middle (M), and large (L) surface proteins, collectively known 

as hepatitis B surface antigen (HBsAg). Due to their common S domain all three proteins 

share a surface-exposed hydrophilic antigenic loop (AGL) with a complex disulfide 

bridge-dependent structure. The AGL is critical for HBV infectivity and virion secretion, 

and thus represents a major target for neutralizing antibodies. Previously, a human 

monoclonal antibody (mAb) targeting a conformational epitope in the AGL, IgG12, 

exhibited 1,000-fold higher neutralizing activity than hepatitis B immune globulin 

(HBIG). Here we designed a single-chain variable fragment (scFv) homolog of IgG12, 

G12-scFv, which could be efficiently produced in soluble form in the cytoplasm of E. 

coli SHuffle cells. Independent in vitro assays verified specific binding of G12-scFv to a 

conformational S epitope shared with IgG12. Despite 20-fold lower affinity, G12-scFv 

but not an irrelevant scFv potently neutralized HBV infection of susceptible hepatoma 

cells (IC50=1.8 nM). Strikingly, low concentrations of G12-scFv blocked virion secretion 

from HBV producing cells (IC50=1.25 nM) without disturbing intracellular viral 

replication, whereas extracellular HBsAg was reduced only at >100-fold higher though 

still nontoxic concentration. The inhibitory effects correlated with S binding specificity 

and presumably also G12-scFv internalization into cells. Together these data suggest 

G12-scFv as a highly specific yet easily accessible novel tool for basic, diagnostic, and 

possibly future therapeutic applications. 
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1. Introduction 

Current therapies for chronic hepatitis B (CHB), i.e. free or pegylated interferon α (IFN-α) 

and nucleos(t)ide analogues (NAs) (Trepo et al., 2014), only rarely achieve loss of 

HBsAg in the treated patients (3-7% for IFN-α; ~1% per year for NAs) and suffer from 

adverse effects and unpredictable duration of treatment (Zeisel et al., 2015). Hence there 

is an urgent need for the development of new anti-HBV therapeutics, including 

antibodies (Salazar et al., 2017). 

 

Sera of HBV infected patients contain complete genome-containing virions, genome-free 

empty virions (Hu and Liu, 2017) plus a huge excess (up to 105-fold) of empty envelopes 

termed subviral particles (SVPs). All these particles contain membrane embedded S, M, 

and L surface proteins, although the L protein content is highest in virions (Heermann et 

al., 1984). M and L are extended versions of S carrying an extra 55 amino acid (aa) PreS2 

(M) or extra PreS1 (108, 118, or 119 aa) plus PreS2 region (L) on their N termini. The 

226-aa S protein is the most abundant among the surface proteins. Between the second 

and third of its four proposed transmembrane domains and comprising approximately aa 

99-169 lies the AGL. It is exposed on the surface of virions and SVPs, and presents the 

dominant linear and conformational epitopes for neutralizing antibodies (Zanetti et al., 

2008). Within the AGL, aa from about position 120-150 form the highly conformational 

epitopes of the “a” determinant which is rich in disulfide-bond forming cysteine residues 

(Mangold et al., 1995; Wounderlich and Bruss, 1996). Furthermore, this region interacts 

with heparan sulfate proteoglycans, concentrating virions on the cell surface for 
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subsequent high affinity interactions between PreS1 part of L protein and the HBV 

receptor sodium-taurocholate cotransporting polypeptide (NTCP) (Sureau and Salisse, 

2013; Verrier et al., 2016); hence beyond PreS1 the AGL is a pivotal viral determinant of 

HBV infectivity. Accordingly, many mutations and/or disruption of the disulfide-bond 

network in the AGL interfere with viral infectivity (Urban et al., 2014), and antibodies 

targeting the AGL, like those targeting PreS1 such as mAb MA18/7 (Glebe et al., 2003), 

can possess virus neutralizing activity (Urban et al., 2014), the basis of prophylactic 

vaccination with S protein. 

 

Egress of HB virions and SVPs remain mechanistically elusive but are believed to 

proceed through different routes. SVP assembly likely initiates in the post-endoplasmic 

reticulum/pre-Golgi compartment, with particle secretion via the general secretory 

pathway (Huovila et al., 1992; Patzer et al., 1984). Mature nucleocapsids filled with 

relaxed circular DNA (rcDNA), and likely also empty capsids (Ning et al., 2017), are 

enveloped by interacting with the PreS parts of L on the cytosolic side of the ER 

membrane (Hu and Liu, 2017; Kluge et al., 2005; Pairan and Bruss, 2009), followed by 

budding into the multivesicular body (MVB) compartment of late endosomes (Kian Chua 

et al., 2006; Lambert et al., 2007; Watanabe et al., 2007) and finally exiting the cell via 

an exosomal pathway (Watanabe et al., 2007). Notably, the AGL is also pivotal for 

secretion of virions and SVPs as shown by the impaired secretion of naturally occurring 

AGL mutants (Chen et al., 2016; Khan et al., 2004; Kwei et al., 2013). Furthermore, high 

concentrations (≥100 μg/ml) of exogenously added AGL-specific immunoglobulins (Igs) 
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reportedly allowed internalization and interference with secretion of viral particles, 

although the exact particle types were not clearly discriminated (Neumann et al., 2010; 

Schilling et al., 2003). 

 

Recently, we developed a human anti-HBs mAb IgG12 with very high affinity (Kd=7.56 

nM). IgG12 recognizes a conformational epitope in the AGL, most likely the “a” 

determinant, and displayed >1,000-fold higher HBV neutralizing activity than HBIG 

(Wang et al., 2016). Moreover, a one-dose administration of IgG12 into HBV transgenic 

mice achieved a prolonged (144-day) suppression of serum HBsAg levels (Wang et al., 

2016). This might be due to immune-modulatory functions of IgG, e.g. Fc-Fcγ receptor 

mediated effects, yet also to the potential blockade of virion secretion by internalized IgG 

(Neumann et al., 2010; Zhang et al., 2016). However, the large size of ~150 KDa of a 

complete mAb probably limits its tissue penetration ability and, furthermore, mAb 

production is still very costly (Elgundi et al., 2017; Li et al., 2016). 

 

Meanwhile, various antibody derivatives with simpler architectures such as antigen 

binding fragment (Fab), variable fragment (Fv), or single chain variable fragment (scFv) 

have been engineered, often using a well-characterized parental mAb as template. In 

scFvs, the variable regions of the light chain (VL) and of the heavy chain (VH) are 

covalently joined by a flexible peptide linker, e.g. ([G]4S)3 . Ideally, the resulting single 

~30 kDa polypeptide combines the binding specificity of the parental mAb with 

improved tissue penetration, lower immunogenicity and potentially less demanding and 
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less costly host requirements for production (Li et al., 2016; Saeed et al., 2017). This also 

facilitates further application-specific engineering, e.g. by linking the scFv to dyes, 

radionuclides, drugs, or other protein moieties. However, the simple monovalent scFv 

design also reduces avidity and possibly specificity and affinity for the target, with 

potentially strong negative impacts on neutralization potency which, in addition, may be 

influenced by the absence vs. presence of the Fc part (Chan et al., 2015; Kang et al., 2018; 

Sela-Culang et al., 2013; Torres and Casadevall, 2008). 

 

Here we aimed to exploit scFv technology to generate an E. coli expressable derivative of 

mAb IgG12, termed G12-scFv. As shown below G12-scFv could be solubly expressed in 

the cytoplasm of E. coli SHuffle cells and purified in amounts of ~2 mg/liter bacterial 

culture by immobilized metal ion affinity chromatography (IMAC). In vitro interaction 

assays, including competition with IgG12, confirmed specific, high affinity binding of 

G12-scFv to HBsAg and potent HBV neutralizing activity in cell culture infection 

experiments. Strikingly, very low concentrations of G12-scFv selectively inhibited virion 

release from stably HBV producing cells whereas higher concentrations were required for 

clear reductions in SVP secretion. Tracking native and fluorescently labeled G12-scFv by 

laser confocal microscopy (LCM) as well as endocytosis inhibition using specific 

inhibitors supported a model whereby the anti-virion effect correlates with G12-scFv 

internalization such that it preferentially encounters virions rather than SVPs. Hence 

G12-scFv and/or further optimized derivatives such as G12 diabodies should represent 

highly specific yet easily accessible tools for HBV-related basic studies as well as 
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diagnostic and possibly therapeutic applications. 

 

2. Materials and methods 

2.1 Plasmid constructs 

The E. coli expression vectors pET28a-His-G12-scFv-HA, 

pET28a-His-MA18/7-scFv-HA and pET28a-His-VRC01-scFv-HA, encode between Nde 

I and Xho I restriction sites the VL and VH domains of mAbs G12 and MA18/7 against 

HBV S and PreS1 (Kuttner et al., 1999; Wang et al., 2016), and of VRC01, targeting 

gp120 of human immunodeficiency virus 1 (HIV-1) (Wu et al., 2010), fused by the 

flexible linker ([G]4S)3 plus C-terminal HA tags. pET28a-His-G12-scFv-HCdel-HA 

encodes a mutated G12-scFv with deletion of 11 amino acids of the complementarity 

determining region 3 (CDR3) of VH. pCDNA6-NTCP-C9 harbors a codon-optimized 

open reading frame (ORF) for NTCP (GenBank accession no. NM_003049) with a C 

terminal C9 tag. pCH-9/3091 comprises a 1.05-fold HBV genome (genotype D, GenBank 

accession no. V01460) in which pre-genomic RNA (pgRNA) transcription is controlled 

by the cytomegalovirus immediate early (CMV-IE) promoter (Nassal, 1992). 

 

2.2 Cell culture, HBV infection, and plasmid transfection 

Huh-7 and HepG2 hepatoma cells, HepG2.2.15 (abbreviated as 2.2.15 hereafter) and 

HepAD38 were cultured as previously described (Ladner et al., 1997; Sells et al., 

1987). Primary human hepatocytes (PHHs) were isolated from liver resection tissue 

and cultured as described previously (Krieger et al., 2010; Mailly et al., 2015). The 
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respective protocols for the use of human materials were approved by the Ethics 

Committee of the University of Strasbourg Hospitals (CPP 10-17). A HepG2 cell line 

stably expressing C9-tagged NTCP was established by transfection with Sal 

I-linearized pCDNA6-NTCP-C9 and subsequent selection with 5 μg/ml blasticidin. 

HBV infection of HepG2-NTCP cells was performed as previously reported (Ni et al., 

2014). Transfections were performed using TransIT-LT1 reagent (Mirus) as 

recommended by the manufacturer. 

 

2.3 Protein expression and purification 

Bacterial expression using E. coli SHuffle-T7 (New England Biolabs) or BL21 (DE3) 

Star (ThermoFisher Scientific) as the hosts and subsequent purification of the scFvs for 

G12, MA18/7, and VRC01 were performed using previously reported methods (Wang et 

al., 2012). Briefly, E. coli hosts transformed with scFv expressing vectors were cultured 

in Luria-Bertani broth containing 0.5 mM isopropyl β-D-thiogalactoside (IPTG) at 30°C 

overnight to induce scFv expression. Bacteria were homogenized by ultrasonic treatment 

in the lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5% Triton X-100; 10 mM 

MgCl2, 1 mg/ml lysozyme, 50 μg/ml RNase A, 5 μg/ml DNase I, and protease inhibitor 

cocktails [Roche]). After centrifugation at 12,000 g for 30 min at 4°C, soluble scFvs in 

the clear supernatants were purified by IMAC with a Ni-nitrilotriacetic acid (Ni-NTA) 

Superflow column (Qiagen). Finally, the scFvs were dialyzed against PBS and 

concentrated by Amicon centrifugal filtration devices (Millipore) with a molecular cutoff 

of 3 KDa. 
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2.4 Native agarose gel electrophoresis (NAGE) of viral particles 

PEG precipitated HBV particles from culture supernatants were separated into virions 

and naked capsids by NAGE in 1% agarose gels run in 1×TAE buffer and transferred 

onto nylon membranes (Wang et al., 2012). Virion-derived capsid and naked capsid 

were probed by sequential incubation with polyclonal rabbit anti-core serum, 

peroxidase-conjugated anti-rabbit secondary antibody, and ECL reagents 

(PerkinElmer). 

 

2.5 Extraction of cytoplasmic capsid-borne viral DNAs and nuclear DNAs, 

Western blotting and Southern Blotting 

Details are given in the supplementary materials & methods. 

 

2.6 Extraction of virion DNAs and qPCR 

Details are also given in the supplementary materials & methods. 

 

2.7 Enzyme linked immunosorbent assay (ELISA) 

Microwell plates coated respectively with 5 μg/ml G12-scFv, VRC01-scFv, or IgG12 

were incubated with various concentrations of Chinese hamster ovary (CHO) 

cell-expressed S protein or sera from healthy donors or CHB patients, diluted 1:10 in 

PBS, at 37°C for 1 h, and subsequently reacted with peroxidase-conjugated anti-S 

(Shanghai Kehua Bio-Engineering Company, KHB). After extensive washing, the plates 
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were developed using 3, 3’, 5, 5’-tetramethylbenzidine (KHB) as substrate with 

subsequent stopping by sulphuric acid. Absorbance values at 450 nm (A450 nm) were 

recorded by an ELISA plate reader (Biorad). HBe and HBs antigens in culture 

supernatants were measured using commercial ELISA kits (KHB) according to the 

manufacturer’s manuals. For the competitive G12-scFv vs. IgG12 ELISA microwell 

plates coated with recombinant S protein (KHB) were incubated with 50 ng/ml IgG12 

plus increasing concentrations (ranging from 10 ng/ml to 20,000 ng/ml) of G12-scFv per 

well. After incubation and washing, the plates were reacted with a peroxidase-conjugated 

antibody targeting the Fc region of human IgG (a gift from Tianlei Ying, Fudan 

University) and processed as described above. 

 

2.8 Biolayer interferometry 

Biolayer interferometry (Concepcion et al., 2009) kinetically measures changes in 

interference patterns when the optical thickness at the tip of a biosensor coated with one 

type of molecule changes as a result of binding of an interacting other molecule (analyte) 

from the soluble phase. Here an Octet Red96 System (Pall ForteBio) system was used; 

amine-reactive sensors were coated with 5 µg/ml CHO cell-expressed S protein in 

sodium acetate buffer at pH 5.0 as recommended by the manufacturer, then set to bind 

various concentrations of G12-scFv or IgG12 at 37°C for 900 s, and dissociate in PBS for 

another 300 s. Equilibrium dissociation constant (Kd) was obtained with the Octet QK 

software package. 
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2.9 Immunofluorescence microscopy 

Cells grown on collagen-coated coverslips were fixed with 4% para-formaldehyde and 

permeabilized with 0.25% Triton X-100. After blocking with 3% bovine serum 

albumin (BSA, fraction V, Sigma) in PBS for 10 min, cells were incubated with the 

respective primary antibodies followed by Alexa Fluor 488 or Cy3 conjugated 

secondary antibodies. Nuclear DNA was stained with 4’, 6-diamidino-2-phenylindole 

(Sigma). Cells were visualized by a laser confocal scanning microscope (Leica TCS 

SP8). Image processing was conducted by Las AF Lite 2.6 software (Leica). 

Semi-quantitation of fluorescence density and co-localization analysis was done by 

ImageJ software. Co-localization was evaluated by Manders’ overlap coefficient 

(MOC) ranging from 0 (for no co-localization) to 1 (for complete co-localization) 

(Manders et al., 1993). 

2.10 Statistical analysis 

Results obtained from more than three independent experiments were shown as mean 

values ± standard deviations. Origin 8.0 software was used to evaluate statistical 

significance of differences between two experimental groups and calculate 50% 

inhibitory concentrations (IC50) in molar concentration. Statistical significance of 

differences between two treatment groups was assessed by one-way analysis of 

variance (ANOVA) using Origin 8.0. 

 

3. Results 

3.1 Soluble expression of G12-scFv in E. coli SHuffle T7 but not BL21 Star cells 
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Intra-chain disulfide bonds in the VL and VH domain of scFv are critical for correct 

protein folding (Liu and May, 2012), hence expression in the reducing cytoplasm of 

commonly used E. coli strains like BL21 and its derivatives often results in 

non-functional aggregates. Some biologically active single-domain antibodies and 

even IgG molecules have recently been obtained by soluble expression in the oxidative 

cytoplasm of E. coli SHuffle strain (Robinson et al., 2015; Zarschler et al., 2013), 

which is defective in both thioredoxin (trxB) and glutathione (gor) pathways and 

constitutively expresses the disulfide-bond isomerase DsbC in the cytoplasm (Lobstein 

et al., 2012). To test for potential benefits of using this strain we transformed SHuffle 

T7 and BL21 Star cells in parallel with the pET vector encoding G12-scFv with an N 

terminal His6-tag and C terminal HA-tag. G12-scFv expression was induced by 0.5 

mM IPTG and shaking cultivation at 30°C for 16 h. SDS-PAGE comparison of small 

aliquots of cells from induced vs. noninduced cultures directly lysed in SDS sample 

buffer showed a strong new band at the expected position of ~30 kDa in both strains 

(Fig. 1A, lanes +/- IPTG). This was confirmed for the preparative lysates obtained by 

sonication-based lysis (lanes “total”). However, after the lysates were cleared by 

centrifugation the respective band was prominently visible only in the soluble fraction 

from the SHuffle T7 cells (lanes “soluble”). Hence the SHuffle T7 strain proved 

clearly superior over BL21 Star for soluble expression of G12-scFv. 

 

To obtain scFvs for experimental controls, we designed analogous expression vectors 

for His6- plus HA-tagged scFvs derived from the HBV PreS1-specific mAb 18/7 
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(Glebe et al., 2003) and the HIV-1 gp120-specific mAb VRC01-IgG (Wu et al., 2010). 

Next we expressed all three scFvs in 600 ml SHuffle T7 cell cultures and purified 

them by Ni2+ IMAC. As expected the respective products eluted at the higher 

imidazole concentrations (Fig. 1B), although in substantially different amounts. 

Nonetheless, the pooled peak fractions from all three preparations could be sufficiently 

concentrated by ultrafiltration to assess protein-chemical purity by SDS-PAGE and 

Coomassie-Blue staining and verify the identity of ~30 kDa products by anti-His 

immunoblotting (Fig. 1C). The total yields per 600 ml culture for the G12-, VRC01- 

and 18/7-scFvs were 1.3 mg, 0.4 mg, and 0.07 mg, respectively. Hence the expression 

host as well as the specific sequence of a scFv contribute importantly to solubility. In 

addition, we also purified a mutated G12-scFv (G12-scFv-HCdel) with deletion of 11 

amino acids at the CDR3 of VH (Fig. 1C). 

 

3.2 Characterization of G12-scFv binding to S protein 

The binding affinity of G12-scFv was qualitatively and quantitatively assessed by a 

panel of assays. First, a dilution series of CHO cell-derived S protein was subjected to 

NAGE where SVPs migrate as a compact band with distinctly lower mobility than 

nonenveloped capsids (Birnbaum and Nassal, 1990; Sun and Nassal, 2006). After 

capillary transfer to a nylon membrane the blots were probed with G12-scFv-HA, a 

commercial polyclonal anti-S as positive control, and VRC01-scFv-HA as negative 

control. As shown in Fig. 2A, 0.8 μg/ml G12-scFv-HA recognized the native SVPs as 

efficiently as 0.25 μg/ml polyclonal anti-S, with a detection limit of ~10 ng, while 
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VRC01-scFv-HA gave no signal at all. Consistent with the well-known importance of 

CDR3 of VH for antigen binding (Davies and Cohen, 1996), G12-scFv-HCdel with a 

deletion of 11 CDR3 residues showed nearly no more SVP binding (Fig. S1A). In 

addition, immunofluorescence microscopy showed G12-scFv to recognize intracellular 

HBs protein rather than other cellular proteins in Huh-7 cells that were transiently 

transfected with an HBV expression vector (Fig. 2B and Fig. S11), corroborating 

specificity of the HBs interaction. However, like the parental G12 mAb, G12-scFv did 

not react with SDS-denatured HBs protein on Western blots (data not shown). HBsAg 

binding specificity was further checked using two samples of pooled sera from healthy 

donors and CHB patients, which were confirmed to be HBsAg negative and positive, 

respectively, by a commercial KHB ELISA kit (Fig. 2C). Next the wells of a 

microtiter plate were coated with 5 μg/ml of G12-scFv, IgG12, VRC01-scFv, or skim 

milk; in ELISA both G12-scFv and IgG12 clearly recognized the HBsAg-positive but 

not the healthy donor sample, indicating specificity for HBsAg rather than other serum 

proteins (Fig. 2C). Besides, serum HBsAg binding affinity of G12-scFv was weaker 

than that of IgG12 (Fig. 2C). 

 

To quantitatively compare the binding affinities for native S of G12-scFv versus 

IgG12, biolayer interferometry (Concepcion et al., 2009) was used to determine the 

equilibrium dissociation constants (Fig. 2D). IgG12 displayed subnanomolar binding 

(Kd=5.98×10-10 M); this is ~8-fold lower than measured by surface plasmon resonance 

(Wang et al., 2016), likely due to the disparate assay platforms and/or experimental 
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conditions. For G12-scFv, interferometry yielded a Kd value of 1.09×10-8 M. Though 

~20-fold weaker relative to IgG12 this still represents a very high binding affinity, in 

particular for an scFv. Specific but weaker binding to S protein than by IgG12 was 

confirmed in a microtiter plate format measuring the capacities of immobilized 

G12-scFv vs. IgG12 to bind soluble S protein (Fig. 2E). Lastly, we assessed the ability 

of G12-scFv and, as an irrelevant control, of the anti-HIV gp120 VRC01-scFv to 

compete with S binding to immobilized IgG12 (Fig. 2F). About 1 µg of G12-scFv per 

well reduced the ELISA signal to 50% whereas no clear inhibition was seen with up to 

20 µg of the irrelevant scFv. Hence despite lower affinity, G12-scFv bound 

competitively to S, in line with sharing a common conformational epitope with IgG12. 

The relatively high levels of G12-scFv required for competition likely relate to its 

lower affinity for the target antigen but also to the multiple repetitive epitopes on 

native SVPs which must all be blocked to prevent binding to the immobilized IgG12. 

 

3.3 G12-scFv potently neutralized HBV infection of HepG2-NTCP cells 

The parental IgG12 mAb blocked HBV infection in cultured cells with 1,000-fold 

higher efficiency than HBIG (Wang et al., 2016). To test the HBV neutralizing 

capacity of G12-scFv we first established a HepG2 cell line (HepG2-N1) which stably 

expresses NTCP (Fig. S2A) and is highly permissive for HBV infection (Fig. 

S2B-S2E). Its suitability for evaluating antiviral effects was verified by efficient 

post-infection inhibition of HBV replication by IFN-α and 3TC (Fig. S2D-S2E). To 

assess neutralization potency and specificity we preincubated HBV for 5 min with 
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serially diluted G12-scFv, or IgG12, or PreS1-targeting MA18/7-scFv, or the 

irrelevant VRC01-scFv. Next we inoculated HepG2-N1 cells overnight with the 

treated virus stocks at a constant nominal multiplicity of infection (MOI) of 500 viral 

genome equivalents (vge) per cell. Impacts on infection were monitored by HBeAg 

ELISA of the culture supernatants on day 5 post inoculation (Fig. 3A). G12-scFv 

potently blocked HBV infection, with an IC50 of 1.8 nM. The neutralizing activity of 

the parental mAb IgG12 was ~3-fold higher (IC50=0.57 nM), while that of 

MA18/7-scFv was ~7-fold weaker (Fig. 3A). Importantly, up to 5 µg/ml of the control 

VRC01-scFv had no effect (Fig. 3A). In addition, Northern blotting of viral RNAs 

extracted at day 5 post inoculation further demonstrated dose-dependent neutralization 

of HBV infection by G12-scFv as well as MA18/7-scFv (Fig. 3B). 

 

3.4 G12-scFv was internalized by hepatoma cells and PHHs 

Many scFvs have been reported to be able to penetrate into tissues and cells (Ha et al., 

2014; Monnier et al., 2013; Park et al., 2017; Rudnick and Adams, 2009; Safdari et al., 

2016). For subsequent studies on a potential intracellular antiviral activity of G12-scFv, 

we first investigated internalization of G12-scFv and VRC01-scFv in the stably HBV 

producing hepatoma cell line 2.2.15 by LCM. Cells were incubated with 5 μg/ml of 

the respective scFv for 24 h, extensively washed to remove unbound scFvs, then 

analyzed by anti-HA immunofluorescence. Compared to the blank control (Fig. S3), 

both scFvs appeared to be associated with the cellular periphery and also be situated 

inside cells (Fig. 4A and 4B). Both scFvs co-localized with Rab5 (Fig. 4A) and Rab7 
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(Fig. 4B), markers of early and late endosomes in the endocytic pathway, when 

assessed by the MOC (Fig. 4A and 4B). G12-scFvs binding to and penetration into the 

2.2.15 cells had a kinetic component in that the intracellular signals increased from 2 h 

over 5 h to 24 h post-incubation (Fig. S4). In addition, LCM also revealed 

internalization of Alexa Fluor 488 conjugated G12-scFv (A488-G12-scFv, Fig. S5A) 

into 2.2.15 cells and co-localization with Rab5 and Rab7 after incubation with 2.2.15 

cells for 24 h (Fig. S5B). Furthermore, time lapse live-cell confocal microscopy 

showed that internalized A488-G12-scFv gradually decayed within 6 h after the 

exogenously added A488-G12-scFv was withdrawn from the culture medium (Fig. 

S5C), in line with intracellular degradation. Notably, in PHHs scFv uptake was also 

seen whereas cell surface binding was much less apparent (Fig. S6). S-independent 

G12-scFv internalization was further observed in naïve HepG2 cells, where 

endocytosed G12-scFv co-localized with Rab7 (Fig. S7 and top panels of Fig. 5A). 

Furthermore, nystatin and dynasore, specific small molecule inhibitors of caveolin- 

and dynamin-mediated cellular endocytosis (Dutta and Donaldson, 2012), significantly 

decreased internalization of G12-scFv into HepG2 cells (Fig. 5A and 5B), suggesting 

that both endocytic pathways are involved in the uptake. Collectively, these 

experiments indicated that G12-scFv was endocytosed by hepatoma cells via host 

endocytic pathways and suggested subsequent transportation into the early and late 

endosomes. 

 

3.5 G12-scFv markedly suppressed virion secretion in 2.2.15 cells 
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To test whether G12-scFv treatment could interfere with HBV DNA replication and 

virion secretion, 2.2.15 cells were maintained in medium containing 5 μg/ml of 

G12-scFv or, as control, VRC01-scFv. Every other day, media were collected and 

replaced by fresh scFv-containing media until day 6 (Fig. 6A). On day 8, cells were 

extensively washed and treated by trypsin to remove unattached scFvs, then lysed with 

NP-40 lysis buffer for analysis of intracellular viral DNA and proteins. Anti-HA 

immunoblotting detected both scFvs in the cytoplasmic extracts (Fig. 6B), supporting 

the immunofluorescence-based evidence for scFv internalization by 2.2.15 cells (Fig. 4 

and Fig. S5). Intracellular L protein, capsids, and capsid-borne viral DNA detected by 

Western blotting, NAGE, and Southern blotting, respectively, did not differ between 

G12- and VRC01-scFv treated cells (Fig. 6B and 6C). On the other hand, intracellular 

S seemed to slightly accumulate in the G12-scFv treated cells (Fig. 6B). No overt 

cytotoxic effects were observed for either scFv, as corroborated by cell counting kit-8 

(CCK8) cell viability assays for up to 200 µg/ml of G12-scFv (Fig. S9). 

 

To examine the impact of G12-scFv vs. the control VRC01-scFv on extracellular viral 

particles, virions, SVPs, and naked capsids were enriched from the pooled culture 

supernatants (Fig. 6A) by PEG precipitation. In NAGE, enveloped genome-free as 

well as genome-filled capsids comigrate with SVPs and thus can be separated from the 

faster migrating naked capsids (Birnbaum and Nassal, 1990; Ning et al., 2017; Sun 

and Nassal, 2006). Immunoblotting with a polyclonal anti-core antiserum revealed an 

excess of virion-associated capsids over naked capsids, regardless of the scFv (Fig. 
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6D). However, in the G12-scFv treated samples enveloped but not naked capsids were 

reduced by >50% compared to the control (Fig. 6D, top). A similar reduction was seen 

for extracellular virion borne DNA, which was extracted from enveloped 

genome-filled capsids following anti-PreS1 immunoprecipitation of PEG-precipitated 

extracellular viral particles (Fig. 6D, bottom). In contrast, the S binding-inactive 

mutant G12-scFv-HCdel did not alter extracellular virion-associated capsids (Fig. 

S1B). Moreover, immunoblotting of the PEG precipitates revealed a strong decrease of 

extracellular L protein in the G12-scFv treated samples to ~30% of that in the 

VRC01-scFv control (Fig. 6E). By contrast, S protein was only mildly suppressed to 

70% of the control (Fig. 6E), as corroborated by an only minor reduction in the ELISA 

value of secreted HBsAg (Fig. 6E). Secreted HBeAg was not at all altered by 

G12-scFv treatment (Fig. 6E). Together, these data were in line with an S-specific 

effect of G12-scFv, however with a greater negative impact on both genome-free and 

genome-filled virions than on SVPs. 

 

To further characterize this anti-virion effect we incubated the 2.2.15 cells with serial 

five-fold dilutions of G12-scFv and the control scFv, starting with 0.5 µg/ml (16.4 nM) 

as highest concentration. We then monitored the levels of intracellular vs. extracellular 

capsids (by NAGE), S protein (by Western blot) and viral DNA (by qPCR and 

Southern blotting). As shown in Fig. 6F and Fig. S10 (upper panels), neither G12-scFv 

nor the control scFv had a detectable effect on the intracellular HBV markers. 

However, for the extracellular samples (lower panels in Fig. 6F and Fig. S10) a 
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two-fold decrease in L protein and a massive (~10-fold) drop in virion-associated 

capsids as well as virion DNA were seen at the two highest doses of G12-scFv (IC50 = 

1.25 nM) whereas Western blot detectable S protein remained largely unaffected. The 

irrelevant scFv had again only minor, if any, impacts. Increasing the scFv 

concentrations to 1, 2, and 5 µg/ml did not change these patterns (Fig. S8), indicating 

that inhibition of virion release was already maximal at 0.1 µg/ml (3.28 nM). At even 

higher scFv concentrations (5 to 50 µg/ml) G12-scFv, but not the control scFv, was 

able to reduce also extracellular S besides L while both intracellular S and L still 

remained unaffected (Fig. 6G). Cytotoxic effects were not responsible for the 

reduction in secreted virions at low and/or of S protein at high concentrations of 

G12-scFv as up to 200 µg/ml of the scFv did not affect cell viability (Fig. S9). 

 

3.6 G12-scFv treatment drastically inhibited virion secretion in Huh-7 cells 

To confirm that the anti-virion effects of G12-scFv were not restricted to 2.2.15 cells 

we monitored its impact on virion secretion from another hepatoma cell line, Huh-7, 

upon transfection with the HBV expressing plasmid pCH-9/3091 (Nassal, 1992). 

Treatment with 5 μg/ml of G12- or VRC01-scFv had no detectable influence on 

intracellular viral replication markers including capsids, capsid-borne viral DNA (Fig. 

7A), L or S protein (Fig. 7B). However, as for 2.2.15 cells, G12-scFv treatment 

strongly reduced extracellular virion-associated capsid and virion DNA to ~30% of the 

control scFv, without affecting extracellular naked capsids (Fig. 7C). Therefore the 

overall reduction in extracellular HBV core proteins detected by Western blotting (Fig. 
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7D, middle panel) originated mostly from the loss of enveloped capsids. Extracellular 

L protein was also reduced to a lower level relative to the control than S protein 

(28.6% vs 59.7%, Fig. 7D, upper panel). Overall extracellular HBsAg levels were 

reduced to ~55% of the control (Fig. 7D, bottom panel). Hence G12-scFv exerted 

comparable anti-virion effects in two different human hepatoma cell lines. 

 

4. Discussion 

ScFvs represent a new class of promising biopharmaceuticals for diagnostic and 

therapeutic medicine, as evidenced by the increasing number of preclinical and clinical 

trials (Elgundi et al., 2017; Nelson, 2010). However, the advantages of their simplified 

structure may be offset by reduced target binding and lower neutralization potency. In 

this study, we achieved efficient production of a scFv derivative of the S protein 

binding, virus neutralizing mAb IgG12 in a robust, cost-effective E. coli expression 

system. Importantly, G12-scFv solubly expressed in the bacterial cytoplasm exerted 

target-specific high-affinity binding to S protein (Kd=10.9 nM) and inhibited HBV 

infection of a susceptible HepG2 cell line with only three-fold lower potency (IC50=1.8 

nM) than the parental mAb. Remarkably, similarly low concentrations of G12-scFv 

(IC50=1.25 nM) interfered selectively with virion rather than SVP secretion from 

2.2.15 as well as Huh-7 human hepatoma cells. This interference correlated with 

G12-scFv’s target specificity and presumably also cellular internalization. 

 

4.1 G12-scFv target specificity and affinity 
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S protein binding activity of the bacterially expressed G12-scFv was validated by a 

panel of assays, including NAGE of SVPs, immunofluorescence microscopy, biolayer 

interferometry, and ELISA (Fig. 2), all of which were in line with correct folding and 

disulfide bond formation. Specificity of G12-scFv for S protein was confirmed by the 

selective recognition, in the presence of many other proteins, of cells expressing 

HBsAg (Fig. 2B and Fig. S11) and of CHB patient serum (Fig. 2C). As suggested by 

competitive ELISA, G12-scFv bound to a conformational HBs epitope shared with 

that of the parental mAb IgG12 (Fig. 2F), though with ~20-fold lower affinity 

(Kd=10.9 nM; Fig. 2D). This is expected because in contrast to the two paratopes per 

IgG the scFv is monovalent, and the artificial joining of VL and VH might affect the 

relative orientation of the two domains and thus slightly reshape the antigen binding 

site (Sela-Culang et al., 2013); also, potentially beneficial allosteric impacts from the 

constant regions cannot occur (Sela-Culang et al., 2013). However, compared to a 

commercial polyclonal anti-S antiserum (Fig. 2A) and published anti-S mAbs or scFvs 

G12-scFv maintained an unusually high target affinity (Kim and Park, 2002; Maeda et 

al., 1999; Shin et al., 2007; Tajiri et al., 2010). If desired, this might be further 

enhanced by modern antibody engineering techniques (Saeed et al., 2017). 

 

4.2 G12-scFv HBV neutralizing activity 

Using secreted HBeAg and viral RNAs as infection markers, G12-scFv was shown to 

potently neutralize HBV infection (IC50=1.8 nM). In view of the ~20-fold lower target 

affinity compared to IgG12 (Fig. 2D) a ~3-fold lower neutralizing potency may appear 
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surprising (Fig. 3A). However, a previous study also found no linear correlation 

between the antigen binding affinities and neutralization activities of antibodies 

targeting the “a” determinant in HBsAg (Tajiri et al., 2010). The simplest scenario for 

virus neutralization by such antibodies, including G12-scFv, is masking of the AGL on 

the virion surface, preventing its attachment to the low-affinity receptor heparan 

sulfate proteoglycan (Sureau and Salisse, 2013; Verrier et al., 2016). However, this 

mechanism should be competed by SVPs which also contain the AGL and can 

outnumber virions by orders of magnitude. It might therefore be considered that the 

structure and/or accessibility of the AGL epitopes is not strictly identical on virions 

versus SVPs and that some antibodies, possibly including IgG12 and G12-scFv, gain 

their high neutralizing potency from preferential binding to virions. One approach to 

verify this hypothesis would be to immunoprecipitate SVPs and virions from culture 

supernatants of HBV producing cells or CHB patient sera with IgG12 and G12-scFv 

and then compare the viral envelope proteins as well as virion-borne DNA between 

input and precipitated samples. 

 

4.3 G12-scFv cell internalization and selective blocking of virion secretion 

In the current study, G12-scFv was found to bind to and penetrate into hepatoma cells 

and PHHs (Fig. 4, Fig. 5, and Fig. S4-S7) in an S-independent manner, providing a 

potential link to the observed inhibition of virion secretion. To our knowledge, this is 

the first report on selective and potent inhibition of virion secretion by a scFv targeting 

S protein at a nanomolar concentration. Two previous reports have shown that intact 
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mAbs against S at ≥100 μg/ml (~667 nM) concentration reduced extracellular viral 

DNA and HBsAg (Neumann et al., 2010; Schilling et al., 2003). As extracellular viral 

DNA was derived from both naked nucleocapsids and virions, the mAbs’ exact impact 

on the different extracellular particles remained unclear (Neumann et al., 2010; 

Schilling et al., 2003). In our study, by using NAGE to separate naked capsids from 

SVPs and genome-free and genome-filled virions we clearly showed that G12-scFv 

did not affect naked nucleocapsid secretion (upper panels of Fig. 6D and 7C, lower 

panel of Fig. 6F). Moreover, immunoblotting post NAGE plus qPCR as well as 

Southern blotting post anti-PreS1 immunoprecipitation showed that G12-scFv 

efficiently inhibited secretion of both genome-free and genome-filled virions at an IC50 

of 1.25 nM (Fig. 6D, Fig. 6F, Fig. 7C, Fig. S8, and Fig. S10). Detectably decreasing 

HBsAg secretion required >100 fold higher concentrations of G12-scFv (Fig. 6G), 

attesting to a selectively virion-directed inhibition. 

 

The ~500 fold higher anti-virion activity of G12-scFv compared to two previously 

reported mAbs (Neumann et al., 2010; Schilling et al., 2003) was possibly endowed by 

a combination of high S-binding affinity and more efficient cellular uptake. At ≥100 

μg/ml concentration, uptake of the anti-S mAbs into hepatoma cells was supposedly 

mediated by interactions between the mAbs’ IgG constant fragment (Fc) regions with 

cell surface Fc receptors (Neumann et al., 2010; Schilling et al., 2003). While this 

pathway cannot apply to the Fc-less scFvs, various other cell surface receptors may 

enable receptor-mediated endocytosis of scFvs and mAbs (Rudnick and Adams, 2009; 
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Safdari et al., 2016). HBs protein on the cell surface was not required because the 

nonrelated VRC01-scFv showed similar properties as G12-scFv (Fig. 4 and Fig. S6). 

More importantly, naïve HepG2 cells without expressing any HBV proteins still took 

up G12-scFv (Fig. 5 and Fig. S7). Also, immunofluorescence microscopy did not 

detect HBs protein on the cell surface (Fig. S11). However, a probable 

endocytosis-stimulating effect by low levels of cell-surface expressed HBs protein, 

suggested e.g. by data from anti-HBs chimeric antigen receptor (CAR) T cells (Krebs 

et al., 2013), is not excluded. A significant decrease of G12-scFv endocytosis by 

nystatin and dynasore suggested the involvement of caveolin- and dynamin-mediated 

endocytic pathways (Fig. 5). However, the actual mechanism of G12-scFv uptake 

remains to be determined. 

 

Plausibly related to cell internalization was the efficient and selective suppression of 

HBV virion secretion by G12-scFv in two different hepatoma cell lines (Fig. 6 and Fig. 

7). This suppression was target-specific as it was not seen with the VRC01-scFv 

control and G12-scFv-HCdel (Fig. S1B); also, intracellular and extracellular 

non-enveloped capsids and their associated DNA were not affected. Furthermore, 

suppression was not due to non-specific cytotoxic effects of G12-scFv (Fig. S9). 

Despite this selectivity, the antiviral activity of G12-scFv was particularly manifest in 

the extracellular samples and for virions and L but not S protein (Fig. 6 and Fig. 7), all 

in line with virion release as the major target for interference. Tetherin, counteracted 

by the HIV-1 Vpu protein, blocks the final fission of enveloped HI virions from the 
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cell surface (Perez-Caballero et al., 2009). However, extensive inspection by 

transmission electron microscopy did not reveal related surface structures on the 

G12-scFv treated cells (not shown). Notably, release of the L protein-rich virions and 

the filamentous subset of SVPs, but not the bulk of spherical SVPs which contain little 

L, involves the late endosome (also called MVB, (Hu and Liu, 2017). Uptake of 

G12-scFv via caveolin- and dynamin-mediated endocytic pathways and subsequently 

by an endosomal route, as suggested by its co-localization with the endosomal markers 

Rab5 and Rab7 (Fig. 4, Fig. 5, Fig. S5 and S7), would provide an opportunity for 

selective encounters with L protein and/or L-rich particles and an accompanying 

impairment of their secretion, perhaps by blocking interactions with host factors 

involved in release (Hoffmann et al., 2013; Rost et al., 2006). The selective reduction 

in extracellular L protein (Fig. 6 and Fig. 7) could then reflect preferential binding of 

G12-scFv to its target epitope as presented on L versus on S protein; alternatively, 

exclusion of the bulk of S protein from the MVB might already be sufficient to explain 

this selectivity as well as the requirement for 100-fold higher concentrations of 

G12-scFv to block SVP secretion. 

 

5. Conclusions 

In this study, we developed an E. coli derived G12-scFv with an unusually high 

affinity for S protein (Kd=10.9 nM). Soluble expression in the cytoplasm of E. coli 

SHuffle cells provided a convenient low-cost access to milligrams of biologically 

active G12-scFv, featuring highly efficient neutralizing activity (IC50=1.8 nM). Most 
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remarkably, in a target-specific yet Fc-independent fashion G12-scFv selectively 

suppressed secretion of both empty and genome-filled virions, presumably correlating 

with its cell internalization capacity. This combination of properties should make 

G12-scFv a valuable new tool for HBV basic research as well as diagnostic, 

prophylactic and possibly therapeutic applications. Further enhancing G12-scFv´s 

antiviral activity by conversion into bivalent (diabodies), bispecific, or higher valency 

derivatives appears both feasible and highly worthwhile. 
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Figure legends 

Fig. 1. Expression and purification of histidine-tagged recombinant scFvs. (A) 
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Soluble expression of 6×His tagged G12-scFv in SHuffle T7 but not BL21 Star cells. 

Total lysates and their soluble fractions from cells of the indicated E. coli strains with 

or without IPTG treatment were analyzed by SDS-12.5% PAGE and Coomassie-Blue 

staining (CBS). The position of the ~30 kDa His-G12-scFv-HA protein is indicated by 

an arrowhead. (B) Purification of 6×His tagged scFvs through Ni-NTA 

chromatography. G12-, VRC01-, and MA 18/7-scFv bound the Ni-NTA columns were 

eluted with a linear concentration gradient (96 mM-416 mM) of imidazole and 

analyzed by SDS-PAGE and CBS. (C) Verification of the size and purity of 

concentrated scFvs. SDS-PAGE followed by CBS (upper panel) and by anti-His 

Western blotting (lower panel) showed major bands for G12-, VRC01-, MA 18/7-scFv, 

and G12-scFv-HCdel at the expected positions of 30.5 KDa, 29.5 KDa, 29.1 KDa, and 

28 KDa, respectively. 

 

Fig. 2.  G12-scFv binding to SVP and native S protein. (A) Detection of G12-scFv 

binding to SVP by NAGE and immunoblotting. SVPs from CHO cells were separated 

by NAGE and transferred onto a nylon membrane. The membrane was sliced into 

three pieces for immunoblotting using rabbit polyclonal anti-HBs, G12-scFv-HA, and 

VRC01-scFv-HA respectively. (B) Detection of G12-scFv binding to intracellular HBs 

protein by immunofluorescence microscopy. Huh-7 cells were transfected, or not, with 

the HBV expressing plasmid pCH-9/3091 and subjected for immunostaining with 0.5 

μg/ml G12-scFv-HA, anti-HA, and Cy3-conjugated secondary antibodies. Cells were 

visualized by LCM. (C) Specific binding of G12-scFv and IgG12 to HBsAg in the 
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pooled sera of CHB patients. Pooled sera from healthy donors and CHB patients, 

confirmed as HBsAg negative and positive, respectively, in a commercial anti-HBs 

ELISA (KHB) were ten-fold diluted in PBS and incubated in the wells of a microtiter 

plate coated with 5 μg/ml milk, VRC01-scFv, G12-scFv, or IgG12. Pre-coated wells 

from the KHB kit served as control. Bound HBsAg was then detected using the kit 

reagents. (D) Biolayer interferometry to measure binding affinity of G12-scFv to 

recombinant S from CHO cells. (E) ELISA detection of G12-scFv binding to 

recombinant S protein. (F) Competitive S binding to IgG12 and G12-scFv. 

 

Fig. 3. Dose-dependent inhibition of HBV infection by G12-scFv. HepG2-N1 cells 

were inoculated overnight with 500 vge/cell HBV which had been incubated for 5 min 

with serially diluted VRC01-, G12-, or MA 18/7-scFvs or with IgG12. After extensive 

washing, cells were cultured in DMEM containing 2.5% DMSO. Secreted HBeAg in 

10-fold diluted supernatants (A), or intracellular viral RNAs (B) were detected at day 

5 post-inoculation by ELISA and Northern blotting, respectively. A450 nm values with 

subtracting the cutoff value of 0.12 for the HBeAg test were shown. IC50 was 

calculated with Origin 8.0 software. pc RNA, precore mRNA; pgRNA, pregenomic 

RNA. For comparison, signal intensity of pc/pgRNA was normalized to that of 

GAPDH mRNA (as the loading control). Normalized values from untreated cells were 

set at 100%. 

 

Fig. 4. VRC01- and G12-scFvs were internalized to 2.2.15 cells and co-localized 
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with Rab5 and Rab7. 2.2.15 cells were treated with 5 μg/ml of scFvs for 24 h and 

fixed. Incubation with rat anti-HA and rabbit anti-Rab7 or anti-Rab5 primary 

antibodies was followed by Cy3- and Alexa Fluor 488-conjugated secondary 

antibodies. Signals of Rab5 or Rab7 (in green) and scFv (in red) were visualized by 

LCM. Images inside the squares with the dashed outlines are shown in higher 

magnification. MOC was measured by ImageJ software and was used to evaluate the 

co-localization between Rab5 or Rab7 and scFvs. 

 

Fig. 5. Significant inhibition of G12-scFv internalization into HepG2 cells by 

nystatin and dynasore. HepG2 cells grown on collagen coated coverslips were 

pretreated with DMSO, 50 μg/ml nystatin, and 40 μM dynasore at 37 °C for 1 h, and 

were then supplemented with 10 μg/ml G12-scFv for 6 h. Cells were extensively 

washed and immunofluorescently stained by antibodies against Rab7 and HA tag. (A) 

Representative LCM images showing G12-scFv internalization and co-localization 

between G12-scFv and Rab7. (B) Nystatin and dynasore significantly inhibited 

G12-scFv internalization. More than 20 randomly-picked visual fields with similar cell 

counts from each treatment group were captured and were semi-quantitated by ImageJ 

software for fluorescence densities of G12-scFvs. Significance of difference between 

vehicle and compound treatment groups was deduced by ANOVA and box plot 

analysis using Origin 8.0 software. The average fluorescence densities were labeled 

with orange bars. 

 



36 
 

Fig. 6. G12-scFv dose-dependently suppressed HBV virion secretion from 2.2.15 

cells. (A) Experimental procedure. Five million 2.2.15 cells per well were seeded into  

six-well plates and were cultured in DMEM supplemented with VRC01-scFv or 

G12-scFv, with medium changes every second day. Two ml culture supernatant from 

each well was collected every two days from day 4 to day 8 post-treatment with scFv. 

Cells were harvested at day 8 post-treatment. Intra, intracellular samples; Extra, 

extracellular samples; v. capsid, virion-associated capsids; n. capsids, naked capsids. 

Blotting signals were semi-quantitated by MultiGauge V2.2 software. For comparison, 

detection signals of VRC01-scFv treatment group or non-treatment group were set at 

100%. (B) Western blotting analysis of intracellular proteins. (C) Analysis of 

intracellular capsid and capsid-associated HBV DNA by NAGE and Southern blotting. 

(D) Determination of extracellular virion associated capsids (v. capsid) and naked 

capsids (n. capsid) by NAGE and virion borne DNA by qPCR. Short- and long-time 

exposures of the same blot are shown to better visualize the naked capsids. (E) 

Analysis of extracellular proteins by Western blotting and detection of secreted HBs 

and HBe antigens by ELISA. (F) G12-scFv suppressed virion secretion selectively and 

dose-dependently. (G) Dose-dependent inhibition of HBsAg secretion by G12-scFv. *, 

non-specific band, which only occurred when using a commercial polyclonal anti-S 

antibody from Abcam. 

 

Fig. 7. G12-scFv potently suppressed virion secretion from Huh-7 cells. Four 

million Huh-7 cells per well grown in six-well plates were transfected with 
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pCH-9/3091 plasmid, and cultured in DMEM supplemented with 5 μg/ml of 

VRC01-scFv or G12-scFv. Culture supernatants were collected according to the 

procedure in Fig. 6A. Blotting signals were semi-quantitated by MultiGauge V2.2 

software. For comparison, signals of VRC01-scFv treatment group were set at 100%. 

Intra, intracellular samples; Extra, extracellular samples. (A) Analysis of intracellular 

capsids and capsid-associated HBV DNA by NAGE and Southern blotting. (B) 

Western blotting analysis of intracellular proteins. (C) Determination of extracellular 

virion-associated capsids and naked capsids by NAGE and virion DNA by qPCR. (D) 

Analysis of extracellular proteins by Western blotting and detection of secreted HBs 

antigen by ELISA. 
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